图论及其应用第三章答案电子科大
电子科技大学研究生试题《图论及其应用》(参考答案)
![电子科技大学研究生试题《图论及其应用》(参考答案)](https://img.taocdn.com/s3/m/8568e0f59ec3d5bbfd0a74a5.png)
电子科技大学研究生试题《图论及其应用》(参考答案)考试时间:120分钟一.填空题(每题3分,共18分)1.4个顶点的不同构的简单图共有__11___个;2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。
则G 中顶点数至少有__9___个;3.设n 阶无向图是由k(k ?2)棵树构成的森林,则图G 的边数m= _n-k____;4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_.5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。
图G二.单项选择(每题3分,共21分)1.下面给出的序列中,是某简单图的度序列的是( A )(A) (11123); (B) (233445); (C) (23445); (D) (1333).2.已知图G 如图所示,则它的同构图是( D )3. 下列图中,是欧拉图的是( D )4. 下列图中,不是哈密尔顿图的是(B )5. 下列图中,是可平面图的图的是(B )AC DA B CD6.下列图中,不是偶图的是( B )7.下列图中,存在完美匹配的图是(B )三.作图(6分)1.画出一个有欧拉闭迹和哈密尔顿圈的图;2.画出一个有欧拉闭迹但没有哈密尔顿圈的图;3.画出一个没有欧拉闭迹但有哈密尔顿圈的图;解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。
解:由克鲁斯克尔算法的其一最小生成树如下图:权和为:20.五.(8分)求下图G 的色多项式P k (G).解:用公式(G P k -G 的色多项式:)3)(3)()(45-++=k k k G P k 。
六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。
解:设该树有n 1个1度顶点,树的边数为m.一方面:2m=n 1+2n 2+…+kn k另一方面:m= n 1+n 2+…+n k -1 v v 13图G由上面两式可得:n 1=n 2+2n 3+…+(k -1)n k七.证明:(8分) 设G 是具有二分类(X,Y)的偶图,证明(1)G 不含奇圈;(2)若|X |≠|Y |,则G 是非哈密尔顿图。
图论 三四章习题
![图论 三四章习题](https://img.taocdn.com/s3/m/97fe8928a5e9856a561260d4.png)
G1的度序列为: (d1+1,d2+1,…,dn+1, n) 由条件:不存在小于(n+1)/2的正整数m,使得dm+1≦m,且 d(n+1)-m <(n+1)-m。于是由度序列判定定理知:G1是H图,得 G有H路。
G1Leabharlann 613.证明:若G不是H图,则G度弱于某个 Cm1 ,n , 且有
v m1 2
3
32. (1)证明:考虑G=Cn˅H 的最小点割V。根据联图的定义, 则必有V包含Cn 或者H,否则G-V后一定连通。如果Cn ∈V,则 由H是K连通的可知|V|=n+k。若H ∈V,则V中至少还需要包含Cn 中两个不相邻的顶点,也可得|V|=n+k。故G是n+k连通的。 (2)在Cn 上任取相邻的两点x,y,设这两个点在Cn上的两条路分 别为P1和P2。考虑宽为n+k的x-y容器,因为H仅包含n+k-2个点, 经过H中的点,且独立的(x,y)路最多有n+k-2个,且每条路的 长度都为2。因此在每个容器中必包含P1和P2。故dn+k(x,y)=n-1。
1. 证明方法与p. 47 定理3类似
3. 设无环图G是阶数大于2的连通图,则下列命题等价 (1)G是块,即G是2-连通的; (2)G的任意两个顶点在某个圈上; (3)G的任一个顶点和任一条边在某个圈上; (4)G的任意两边在某个圈上; (5)G的任意两个顶点u,v及任一边e,总存在连接u,v 且过e的路; (6)G的任意三个顶点,总存在连接其中任意两个顶点, 并且通过第三个顶点的路 (7)G的任意三个顶点,总存在连接其中任意两个顶点, 并且不过第三个顶点的路 证明:1 2 2:p.48 定理4 3:令u是任一顶点,vw是任一边,由(2),存在
电子科技大学图论作业
![电子科技大学图论作业](https://img.taocdn.com/s3/m/b157bacb988fcc22bcd126fff705cc1755275fc7.png)
图论作业3一、填空题1. 完全图K2n共有个不同的完美匹配。
2. 超方体Q6的最小覆盖包含的点数为。
3. 图K m,n (m≤n)的最小覆盖包含的点数为。
4. 完全图K60能分解为个边不重的一因子之并。
5. 完全图K61能分解为个边不重的二因子之并。
6. 假设G是具有n个点、m条边、k个连通分支的无圈图,则G的荫度为。
7. 图G是由3个连通分支K1, K2, K4组成的平面图,则其共有个面。
8. 设图G与K5同胚,则至少从G中删掉条边才可能使其成为可平面图。
9. 设连通平面图G具有5个顶点,9条边,则其面数为。
10. 若图G是10阶极大平面图,则其面数等于。
11. 若图G是10阶极大外平面图,其内部面共有个。
二、不定项选择题1. 关于非平凡树T,下面说法错误的是( )(A) T至少包含一个完美匹配;(B) T至多包含一个完美匹配;(C) T的荫度大于1;(D) T是只有一个面的平面图;(E) T的对偶图是简单图。
2. 下列说法正确的是( )(A) 三正则的偶图存在完美匹配;(B) 无割边的三正则图一定存在完美匹配;(C) 有割边的三正则图一定没有完美匹配;(D) 有完美匹配的三正则图一定没有割边;(E) 三正则哈密尔顿图存在完美匹配。
3. 下列说法正确的是( )(A) 在偶图中,最大匹配包含的边数等于最小覆盖包含的点数;(B) 任一非平凡正则偶图包含完美匹配;(C) 任一非平凡正则偶图可以1-因子分解;(D) 偶度正则偶图可以2-因子分解;(E) 非平凡偶图的最大匹配是唯一的。
4. 下列说法中错误的是( )(A) 完全图K101包含1-因子;(B) 完全图K101包含2-因子;(C) 完全图K102包含1-因子;(D) 完全图K102包含2-因子;(E) 图G的一个完美匹配实际上就是它的一个1因子;(F) 图G的一个2-因子实际上就是它的一个哈密尔顿圈。
5. 下列说法正确的是( )(A) 方体Q n可以1-因子分解;(B) 非平凡树可以1-因子分解;(C) 无割边的3正则图可以1-因子分解;(D) 有割边的3正则图一定不可以1-因子分解;(E) 可1-因子分解的3正则图一定是哈密尔顿图。
图论及其应用第三章答案(电子科大)
![图论及其应用第三章答案(电子科大)](https://img.taocdn.com/s3/m/5351451658fb770bf78a5557.png)
习题三:● 证明: 是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意 及 , G 中的路 , 必含 .证明:充分性: 是 的割边,故 至少含有两个连通分支,设 是其中一个连通分支的顶点集, 是其余分支的顶点集,对12,u V v V ∀∈∀∈,因为 中的 不连通,而在 中 与 连通,所以 在每一条 路上, 中的 必含 。
必要性:取12,u V v V ∈∈,由假设 中所有 路均含有边 ,从而在 中不存在从与到 的路,这表明 不连通,所以e 是割边。
● 3.设G 是阶大于2的连通图,证明下列命题等价: 1 G 是块2 G 无环且任意一个点和任意一条边都位于同一个圈上;3 G 无环且任意三个不同点都位于同一条路上。
:是块,任取 的一点 ,一边 ,在 边插入一点 ,使得 成为两条边,由此得到新图 ,显然 的是阶数大于3的块,由定理, 中的u,v 位于同一个圈上,于是 中u 与边 都位于同一个圈上。
:无环,且任意一点和任意一条边都位于同一个圈上,任取 的点u ,边e ,若 在 上,则三个不同点位于同一个闭路,即位于同一条路,如 不在 上,由定理, 的两点在同一个闭路上,在 边插入一个点v ,由此得到新图 ,显然 的是阶数大于3的块,则两条边的三个不同点在同一条路上。
:连通,若 不是块,则 中存在着割点 ,划分为不同的子集块 , , , 无环,12,x v y v ∈∈,点 在每一条 的路上,则与已知矛盾, 是块。
● 7.证明:若v 是简单图G 的一个割点,则v 不是补图 的割点。
证明: 是单图 的割点,则 有两个连通分支。
现任取 , 如果 不在 的同一分支中,令 是与 处于不同分支的点,那么, 与 在 的补图中连通。
若 在 的同一分支中,则它们在 的补图中邻接。
所以,若 是 的割点,则 不是补图的割点。
● 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。
图论及其应用习题答案
![图论及其应用习题答案](https://img.taocdn.com/s3/m/380be54f4b7302768e9951e79b89680202d86b6f.png)
图论及其应用习题答案图论及其应用习题答案图论是数学的一个分支,研究的是图的性质和图之间的关系。
图是由节点和边组成的,节点表示对象,边表示对象之间的关系。
图论在计算机科学、电子工程、物理学等领域有着广泛的应用。
下面是一些图论习题的解答,希望对读者有所帮助。
1. 问题:给定一个无向图G,求图中的最大连通子图的节点数。
解答:最大连通子图的节点数等于图中的连通分量个数。
连通分量是指在图中,任意两个节点之间存在路径相连。
我们可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历图,统计连通分量的个数。
2. 问题:给定一个有向图G,判断是否存在从节点A到节点B的路径。
解答:我们可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历图,查找从节点A到节点B的路径。
如果能够找到一条路径,则存在从节点A到节点B的路径;否则,不存在。
3. 问题:给定一个有向图G,判断是否存在环。
解答:我们可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历图,同时记录遍历过程中的访问状态。
如果在搜索过程中遇到已经访问过的节点,则存在环;否则,不存在。
4. 问题:给定一个加权无向图G,求图中的最小生成树。
解答:最小生成树是指在无向图中,选择一部分边,使得这些边连接了图中的所有节点,并且总权重最小。
我们可以使用Prim算法或Kruskal算法来求解最小生成树。
5. 问题:给定一个有向图G,求图中的拓扑排序。
解答:拓扑排序是指将有向图中的节点线性排序,使得对于任意一条有向边(u, v),节点u在排序中出现在节点v之前。
我们可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历图,同时记录节点的访问顺序,得到拓扑排序。
6. 问题:给定一个加权有向图G和两个节点A、B,求从节点A到节点B的最短路径。
解答:我们可以使用Dijkstra算法或Bellman-Ford算法来求解从节点A到节点B的最短路径。
这些算法会根据边的权重来计算最短路径。
电子科大 应用随机过程及应用 (陈良均 朱庆棠)第三章作业
![电子科大 应用随机过程及应用 (陈良均 朱庆棠)第三章作业](https://img.taocdn.com/s3/m/509ffac38bd63186bcebbc64.png)
(ii) 分解 对于参数为λ 对于参数为λ的Poisson过程, 过程,假设发生的每一个事件 独立的以概率做了记录, 独立的以概率做了记录,未做记录的概率为1-p。令 N1(t)是到t为止做了记录的事件数, 为止做了记录的事件数,而N2(t)是未做记录 的事件数, 的事件数,则{N1(t);t ≥0}和 {N2(t);t ≥0}分别是具 有参数pλ 和(1-p)λ的独立Poisson过程。 过程。
相互独立。 相互独立。而且
P ( N (t ) = k ) = ∑ P ( N 1 (t ) = j, N 2 (t ) = k − j ) = ∑ P ( N 1 (t ) = j )P ( N 2 (t ) = k − j )
j=0 j=0 j k− j k k
(λ t ) (λ t ) = ∑ 1 e − λ1 t 2 e −λ2t j! ( k − j )! j=0
[
]
( )
( )
(
)
ρ=
(
)(
)
一维概率密度函数
一维特征函数 二维概率函数 f (s , t , x , y ) = −
[X − m (t )]2 t ∈ T 1 exp − 2 D (t ) 2 λ D (t ) x∈ R t∈T ϕ (t , u ) = exp im (t )u − 1 D (t )u 2 2 x∈ R f (t , x ) =
i i i =1
n
X (t )为正态分布 m X (t ) = E [X (t )] = E [ξ t + W (t )] = E (t )E (ξ ) + E [W (t )] = 0
(t > s ) E [X 2 (t )] = E [ξ 2 t 2 + W (t )W (s ) + W (t )ξ s + W (s )ξ t ] = ts + s σ 2 D (t ) = t 2 + t 2σ 2 D (s ) = s 2 + s 2 σ 2 C (s , t ) = C (t , s ) = R (t , s ) = ts + s σ 2
图论及其应用第一章答案(电子科大版)
![图论及其应用第一章答案(电子科大版)](https://img.taocdn.com/s3/m/7227067d7fd5360cba1adb96.png)
习题一(yangchun):4.证明下面两图同构。
证明:作映射f : v i ↔ u i (i=1,2….10)容易证明,对∀v i v j ∈E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图(a)与(b)是同构的。
5.证明:四个顶点的非同构简单图有11个。
证明:设四个顶点中边的个数为m ,则有: m=0:m=1 :m=2:m=3:m=4:(a)v 234(b)m=5:m=6:因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。
11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)不是图序列。
证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列;(6,6,5,4,3,3,1)是图序列1112312(1,1,,1,,,)d d n d d d d d π++=--- 是图序列(5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。
●12.证明:若,则包含圈。
证明:下面仅对连通图的下的条件下进行证明,不连通的情形可以通过分成若干个连通的情形来证明。
设,对于中的路若与邻接,则构成一个闭路。
若是一条路,由于,因此,对于,存在与之邻接,则构成一个圈。
●17.证明:若G 不连通,则连通。
证明:对于任意的,若与属于G 的连通分支,显然与在中连通;若与属于的同一连通分支,则与分别在中连通,因此,与在中连通。
18.证明:若,则.证明:若为的割边,则=,若为的非割边,则=,所以,若,则有.。
图论第三章答案
![图论第三章答案](https://img.taocdn.com/s3/m/4c0bdb6acaaedd3383c4d393.png)
14. 12枚外观相同的硬币,其 中有一枚比其他的或轻 或重.使用决策树描述一个 算法,使得只用一个天 平且最多进行三次比较 就可以确定出坏币并且 判断出它是 轻是重..
解:如下图:
补充:如果连通加权图 G的权值互不相同,则 G有唯一一棵最小生成树 .
证:反证法,设G有T1 , T2 两棵最小生成树,则 T1 , T2的权之和相等, 且存在边e1 , e2 权值不同. 此时e1 T1但e2 T2,e2 T2 但e1 T1 , 令T3 T1 e1 e2,T4 T2 e2 e1,则T3和T4亦是生成树. 由e1,e2的权不同可知:T3或T4中必有一个是权比 T1 ( T2 )小的树,得矛盾 .
11. 根据图回答下列问题 . (a.)对下列每个二进制序列 进行解码. (1)100111101 (2)10001011001(3)10000110110001(4)0001100010110000 (b.)对下列单词进行解码 . (1)den(2)need (3)leaden(4) penned
8. 明下列各题: 1.)若完全二叉树T有m个内点和k个叶子点,则m k 1. 2.)完全二叉树T的边数e,满足e 2(k 1).其中,k为叶子点数.
证: (1.)因为有m个内点的完全二叉树有 2m 1个顶点, 所以由顶点关系得: 2m 1 m k , 则m k 1. (2.)因为树T的边数(e) 顶点数(2m 1) 1, 所以e 2m 2(k 1).
3. 设无向图 G中有n个顶点 m条边,且 m n, 则G中必有圈.
设G有连通分支 T1 , T2 , , Tk (k 1) , 若G中无圈,则 Ti (1 i k ) 也无圈,所以 Ti 是树 .
图论习题
![图论习题](https://img.taocdn.com/s3/m/5717b000a6c30c2259019e0e.png)
《图论及其应用》习题课教材杨春编电子科技大学应用数学学院内容提要本书主要对张先迪等编的研究生《图论及其应用》教材的习题进行解答。
该书可作为研究生图论教学的参考教材。
前言现实生活中,许多问题都可归结为一个由点和线组成的图形的问题。
例如,由点代表车站,线代表铁路线的铁路网络图;点代表路口,线代表街道的城市交通图;点代表管道接头,线代表管道的自来水供水系统;点代表电路的结点,线代表结点间的电气元件的电网络图;点代表网络的结点,线代表通讯线的通讯网络、计算机网络等等。
图论正是研究这些由点和线组成的“图形”问题的一门学科。
图论起源于18世纪,其第一篇论文是由欧拉(Euler,1707—1782)于1736年所完成。
这篇论文解决了一个当时还没有解决的著名问题—哥尼斯堡(Königsberg)七桥问题(见第四章)。
这篇论文也使欧拉成为了图论和拓扑学的创始人。
图论诞生后,特别是近三十年来发展十分迅速,应用也十分广泛。
其应用已涉及物理学、化学、运筹学、计算机科学、信息论、控制论、网络理论、社会科学、以及管理科学等诸多领域。
由于图论与计算机科学紧密相联系,近若干年来,在计算机科学、计算机网络的迅猛发展下,更拓展了图论的应用发展空间。
在计算机的许多领域内,它都占有一席之地。
图论在矩阵论、群论等其它一些数学分支中,也有其重要的应用。
张先迪等编的《图论及其应用》一书精选了内容广泛、难度各易的习题,其中的大多数习题都是对图论的进一步学习是应当掌握的。
本书依序将该书的重要内容摘要列出,并将全部习题给出了详细解答。
本书所涉及到的术语、符号与该书一致。
有些习题存在多种解法,在一般情况下,只给出一种解法供参考。
由于编者水平有限及编写时间的匆忙,书中难免出现一些缺点和错误,恳请同行专家及读者提出宝贵意见和建议,以使本书得以不断改进和完善。
编者2004.7目录第一章图的基本概念1.1 图和简单图1.2 子图与图的运算1.3 路与图的连通性1.4 最短路及其算法1.5 图的代数表示及其特征1.6 极图1.7 交图与团图习题1第二章树2.1 树的概念与性质2.2 树的中心与形心2.3 生成树2.4 最小生成树习题2第三章图的连通度3.1 割边、割点和块3.2 连通度3.3 应用3.4 图的宽距离和宽直径习题3第四章欧拉图与哈密尔顿图4.1 欧拉图4.2 高效率计算机鼓轮的设计4.3 中国邮路问题4.4 哈密尔顿图4.5 度极大非哈密尔顿图4.6 旅行售货员问题4.7 超哈密尔顿图4.8 E图和H图的联系4.9 无限图中的欧拉,哈密尔顿问题习题4第五章匹配与因子分解5.1 匹配5.2 偶图的匹配与覆盖5.3 Tutte定理与完美匹配5.4 因子分解5.5 最优匹配与匈牙利算法5.6 匹配在矩阵理论中的应用习题5第六章平面图6.1 平面图6.2 一些特殊平面图及平面图的对偶图6.3 平面图的判定及涉及平面性的不变量6.4 平面性算法习题6第七章图的着色7.1 图的边着色7.2 顶点着色7.3 与色数有关的几类图7.4 完美图7.5 着色的计数,色多项式习题27.6 List着色7.7 全着色7.8 着色的应用习题7第八章Ramsey定理8.1 独立集和覆盖8.2 Ramsey定理8.3 广义Ramsey数8.4 应用习题8第一章 图的基本概念§1.1 图和简单图定义1 一个图G 定义为一个有序对(V , E ),记为G = (V , E ),其中 (1)V 是一个非空集合,称为顶点集或边集,其元素称为顶点或点;(2)E 是由V 中的点组成的无序点对构成的集合,称为边集,其元素称为边,且同一 点对在E 中可出现多次。
电子科技大学研究生图论总结
![电子科技大学研究生图论总结](https://img.taocdn.com/s3/m/93c4cedd51e79b89680226f3.png)
第一章:图论基本概念 1.定义平凡图/非平凡图 简单图/复合图 空图 n 阶图 连通图/非连通图完全图n K12n n n m K偶图,m n K 完全偶图,m n m K mn K 正则图图和补图,自补图 自补图判定方法 定点的度 d v 最小度 最大度 握手定理2d v m图的度序列与图序列,图序列判定方法(注意为简单图) 图的频序列 2.图运算删点/删边 图并/图交/图差/图对称差 图联 积图/合成图111122,u adjv u v u adjv 或 超立方体 3.连通性 途径 迹 路图G 不连通,其补图连通一个图是偶图当且仅当它不包含奇圈 4.最短路算法(b t A T ) 5.矩阵描述邻接矩阵及其性质,图的特征多项式 关联矩阵 6.极图??L 补图 完全L 部图 完全L 几乎等部图 托兰定理第二章:树 1.定义树:连通的无圈图 森林 树的中心和树的形心?入<=sqrt(2m(n-1)/n)生成树 根树 出度 入度 树根 树叶 分支点 m 元根树 完全m 元根树 2.性质每棵非平凡树至少有两片树叶图G 是树当且仅当G 中任意两点都被唯一的路连接T 是(n,m)树,则m = n – 1 具有k 个分支的森林有n-k 条边每个n 阶连通图边数至少为n-1(树是连通图中边的下界) 每个连通图至少包含一棵生成树 3.计算 生成树计数 递推计数法: G G e G e关联矩阵计数法:去一点后,每个非奇异阵对应一棵生成树最小生成树(边赋权)避圈法 破圈法完全m 元树: 11m i t第三章:图的连通性1. 割边、割点和块(性质使用反证法) 割边: w G e w G边e 为割边当且仅当e 不在任何圈中割点: w G v w Gv 是无环连通图G 的一个顶点,v 是G 的割点当且仅当V(G-e)可以被划分为两个子集,v 在两个子集内点互连的路上 块:没有割点的连通子图 G 顶点数>=3,G 是块当且仅当G 无环且任意两顶点位于同一圈上v 是割点当且仅当v 至少属于G 的两个不同的块2. 连通度点割 k 顶点割 最小点割(最少用几个点把图割成两份) G 的连通度 G连通图没顶点割时连通度 1G n ,非连通图 0G边割 k 边割 最小边割(最少用几条边把图割成两份) G 的边连通度 G递推到无圈,自环不算圈性质: 任意图G 有 G G GG 是(n,m)连通图, 2m G nG 是(n,m)单图,若 2n G,则G 必定连通 G 是(n,m)单图,对应k n ,若 22n k G,则G 是k 连通G 是(n,m)单图,若 2n G,则 G G敏格尔定理: G 中分离不相邻x,y 的最小点数等于独立的x,y 路最大数目G 中分离x,y 的最小边数等于边不重x,y 路最大数目第四章 E 图与H 图 一、 E 图(走完所有边) 1. 定义,性质与判定E 图(欧拉环游)与E 迹,走完所有边回到出发点与不回到出发点E 图性质与判定:E 图 G 的顶点度数为偶数度 G 的边集合能划分为圈 E 迹性质与判定:E 迹 G 中只有两个顶点度为奇数 2. 求解路径算法 找欧拉环游:都是偶数度点:Fleury 算法(避割边行走)两奇数点欧拉环游:奇数点补充最短路后得到欧拉环游多奇数点欧拉环游:补充偶数度并不断交换 (中国邮路问题算法) 二、 H 图(走完所有点) 1. 定义与性质H 图(H 圈)与H 路:走完所有点回到出发点与不回到出发点 G 图是H 图 w G S S 2. H 图判定3n 的单图G ,如果 2nGG 是H 图3n 的单图G ,任意不相邻u,v 有 d u d v n G 是H 图图G 的闭包是H 图 G 是H 图 度序列判定法:123n d d d d ,3n ,若对任意的2nm,有m d m 或n m d n m ,则G 是H 图123n d d d d ,3n ,若对任意的2nm,有m d m 且n m d n m ,则G 是非H 图 2. 极大非哈密尔顿图定义:如果图G 的度大于等于其他非H 图,则称G 为极大非H 图(非H 图的度上限),m n C 图: ,2m n m m n m C K K K,m n C 图是非H 图G 是非H 图 G 度弱于某个,m n C 图(证) N 阶单图G 度优于所有,m n C 图 G 为H 图 彼得森图是超H 图4. TSP 问题(边赋权近似最优H 圈求解)最优H 图下界:去点求最小生成树,选最小关联边12e e , 11w T w e w e第五章 图的匹配与因子分解 1.边匹配定义: 匹配 饱和点/非饱和点 最大匹配/完美匹配 M 交错路/M 可扩路 贝尔热定理:G 的匹配M 是最大匹配,当且仅当G 不包含M 可扩路(反证) 2.偶图匹配Hall 定理(偶图匹配存在性定理,完美匹配): N S S 推论:k 正则偶图G 存在完美匹配(证) 匹配算法: 匈牙利算法最优匹配算法3.点覆盖边匹配数等于点覆盖数时匹配为最大匹配覆盖为最小覆盖 哥尼定理:偶图中最大匹配边数等于最小覆盖点数(用) 4.托特定理一般图G 有完美匹配当且仅当 G S S推论:没有割边的3正则图存在完美匹配(充分条件)(证) 5.因子分解因子分解,n 度正则因子 一因子分解:2n K 可一因子分解具有H 圈的三正则图可一因子分解 若三正则图有割边,则它不能一因子分解 二因子分解: G 的一个H 圈肯定是一个二因子,但二因子不一定是H 圈(二因子可以不连通)21n K 可2因子分解2n K 可分解为一个1因子和n-1个2因子之和。
电子科技大学图论及其应用5班第4-5章作业
![电子科技大学图论及其应用5班第4-5章作业](https://img.taocdn.com/s3/m/494a1d05581b6bd97f19eaa8.png)
习题43: 1)、画一个有Euler闭迹和Hamilton圈的图。
2)、画一个有Euler闭迹但没有Hamilton圈的图。
3)、画一个有Hamilton圈但没有Euler闭迹的图4)、画一个既没有Hamilton圈也没有Euler闭迹的图7、证明:将G中的孤立点去掉后的图为G1,则G1也是没有奇度点的,且G1的最小度大于等于2.则G1存在一个圈S1,在G1 –S1中去除孤立的点,得到一个新的图G2,显然G2也没有奇度的点,且G2的最小度大于等于2.这样G2中也存在一个圈S2,这样一直下去,指导Gm中有圈Sm,且Gm-Sm都是孤立的点。
这样E(G) = E(G1)并E(G2)…..并E(Gm).命题得证。
10、证明:1)、如果G不是而连通的图,那么G存在割点v或则G是不连通的,G-v的连通分支数大于等于2.由定理:若G是H图,则对于V的每个飞空真子集S,均有G-S的连通分支数小于等于S的顶点数,知,G是非H图。
2)、G 是2部图,且|X|<|Y|,则有G-X的连通分支数等于|Y|>|X|由上边的定理知,G是非H图。
12、证明:假设G中新加入的一点,为V,它和G中的每一个顶点均相连,这样得到新的图G^,这样G^的度序列为(d1+1,d2+1……,dv+1,V)。
因为不存在正整数m<(v+1)/2,使其满足dm<m和dv-m+1<v-m,即不存在m<(v+1)/2,满足dm+1<=m和dv-m+1<v-m+1 = (v+1) –m。
由定理知,G^中含有Hamilton圈C,这样G^-C就是G的H路,命题得证。
习题51、1)、证明:每个k方体都有完美匹配(k>=2)。
假设K方体的顶点坐标为:(x1,x2…,xk),取(x1,x2,….,xk-1,0)和(x1,x2,…,xk-1,1)两个顶点之间的边的全体集合为M,这样M,中的边均不相邻,所以M是一个匹配,且|M| = 2^(k-1)。
电子科技大学图论05-18年研究生考试
![电子科技大学图论05-18年研究生考试](https://img.taocdn.com/s3/m/28a4bf1752ea551810a687d1.png)
则由 v 2 到 v5 的途径长度为 2 的条数为 _________ 。 6 、 若 K n 为 欧 拉 图 , 则 n= _________ ; 若 K n 仅 存 在 欧 拉 迹而 不 存 在 欧 拉 回 路 ,则 n= _________ 。 7、无向完全图 K n (n 为奇数),共有 _________ 条没有公共边的哈密尔顿圈。 8 、设 G 是具 有二 分类 ( X , Y ) 的偶 图, 则 G 包含 饱和 X 的每 个顶 点的 匹配 当且 仅当
(A) (54221)
(B) (6654332)
(C) (332222)
(2)已知图 G 有 13 条边,2 个 5 度顶点,4 个 3 度顶点,其余顶点的的度数为 2,则图 G 有( A )个 2 度点。
(A) 2 ( B) 4 (C ) 8 (3) 图 G 如(a)所示,与 G 同构的图是( C )
vV ( G )
d (v) 6n 6n 12 m 3n 6, 这与 G 是简单连通平
面图矛盾。 六、证明:(1) 若 G 恰有两个奇度点 u 与 v,则 u 与 v 必连通; (2) 一棵树至多只有一个完美匹配 (10 分). 证明;(1) 因为任意一个图的奇度点个数必然为偶数个,若 G 恰有两个奇度点 u 与 v,且它们不连通,那么就会得出一个连通图只有一个奇度点的矛盾结论。所 以若 G 恰有两个奇度点 u 与 v,则 u 与 v 必连通。 (2) 若树 T 有两个相异的完美匹配 M 1 , M 2 ,则 M 1M 2 且 T [ M 1M 2 ] 中 的每个顶点的度数为 2,则 T 中包含圈,这与 T 是数矛盾! 七、求图 G 的色多项式 Pk (G ) (15 分).
(A)
图论及应用习题答案
![图论及应用习题答案](https://img.taocdn.com/s3/m/c6d76837f56527d3240c844769eae009581ba22f.png)
图论及应用习题答案图论及应用习题答案图论是数学中的一个分支,研究的是图的性质和图之间的关系。
图论在现实生活中有着广泛的应用,涵盖了许多领域,如计算机科学、通信网络、社交网络等。
本文将为读者提供一些关于图论及应用的习题答案,帮助读者更好地理解和应用图论知识。
1. 图的基本概念题目:下面哪个不是图的基本概念?A. 顶点B. 边C. 路径D. 线段答案:D. 线段。
图的基本概念包括顶点、边和路径。
线段是指两个点之间的连线,而在图论中,我们使用边来表示两个顶点之间的关系。
2. 图的表示方法题目:以下哪个不是图的表示方法?A. 邻接矩阵B. 邻接表C. 边列表D. 二叉树答案:D. 二叉树。
图的表示方法包括邻接矩阵、邻接表和边列表。
二叉树是一种特殊的树结构,与图的表示方法无关。
3. 图的遍历算法题目:以下哪个不是图的遍历算法?A. 深度优先搜索B. 广度优先搜索C. 迪杰斯特拉算法D. 克鲁斯卡尔算法答案:D. 克鲁斯卡尔算法。
图的遍历算法包括深度优先搜索和广度优先搜索,用于遍历图中的所有顶点。
迪杰斯特拉算法是用于求解最短路径的算法,与图的遍历算法有所不同。
4. 最小生成树题目:以下哪个算法不是用于求解最小生成树?A. 克鲁斯卡尔算法B. 普里姆算法C. 弗洛伊德算法D. 公交车换乘算法答案:D. 公交车换乘算法。
最小生成树是指包含图中所有顶点的一棵树,使得树的边的权重之和最小。
克鲁斯卡尔算法和普里姆算法是常用的求解最小生成树的算法,而弗洛伊德算法是用于求解最短路径的算法,与最小生成树问题有所不同。
5. 图的应用题目:以下哪个不是图的应用?A. 社交网络分析B. 路径规划C. 图像处理D. 数字逻辑电路设计答案:D. 数字逻辑电路设计。
图的应用广泛存在于社交网络分析、路径规划和图像处理等领域。
数字逻辑电路设计虽然也涉及到图的概念,但与图的应用有所不同。
总结:图论是一门重要的数学分支,具有广泛的应用价值。
通过本文提供的习题答案,读者可以更好地理解和应用图论知识。
图论及其应用1-3章习题答案(电子科大) (1)
![图论及其应用1-3章习题答案(电子科大) (1)](https://img.taocdn.com/s3/m/1092f96bf5335a8102d220ce.png)
学号:201321010808 姓名:马涛习题14.证明图1-28中的两图是同构的证明 将图1-28的两图顶点标号为如下的(a)与(b)图作映射f : f(v i )→u i (1≤ i ≤ 10)容易证明,对∀v i v j ∈E((a)),有f(v i v j )=u i u j ∈E((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图1-27的两个图是同构的。
6.设G 是具有m 条边的n 阶简单图。
证明:m =⎪⎪⎭⎫⎝⎛2n 当且仅当G 是完全图。
证明 必要性 若G 为非完全图,则∃ v ∈V(G),有d(v)< n-1 ⇒ ∑ d(v) < n(n-1) ⇒ 2m <n(n-1)⇒ m < n(n-1)/2=⎪⎪⎭⎫⎝⎛2n , 与已知矛盾!充分性 若G 为完全图,则 2m=∑ d(v) =n(n-1) ⇒ m= ⎪⎪⎭⎫⎝⎛2n 。
9.证明:若k 正则偶图具有二分类V = V 1∪V 2,则 | V 1| = |V 2|。
(a)v 1v 2 v 3 v 4v 5 v 6v 7v 8 v 9v 10 u 1 u 2u 3u 4u 5 u 6 u 7 u 8 u 9 u 10 (b)证明 由于G 为k 正则偶图,所以,k | V 1 | =m = k | V 2 | ⇒ ∣V 1∣= ∣V 2 ∣。
12.证明:若δ≥2,则G 包含圈。
证明 只就连通图证明即可。
设V(G)={v 1,v 2,…,v n },对于G 中的路v 1v 2…v k ,若v k 与v 1邻接,则构成一个圈。
若v i1v i2…v in 是一条路,由于δ≥ 2,因此,对v in ,存在点v ik 与之邻接,则v ik ⋯v in v ik 构成一个圈 。
17.证明:若G 不连通,则G 连通。
证明 对)(,_G V v u ∈∀,若u 与v 属于G 的不同连通分支,显然u 与v 在_G 中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点,则u 与w ,v 与w 分别在_G 中连通,因此,u 与v 在_G 中连通。
图论及应用参考答案
![图论及应用参考答案](https://img.taocdn.com/s3/m/2946d22749d7c1c708a1284ac850ad02de800732.png)
图论及应用参考答案图论及应用参考答案图论是数学中的一个重要分支,研究的是图的性质和图之间的关系。
图由节点(顶点)和边组成,节点代表对象,边代表对象之间的关系。
图论不仅在数学中有广泛的应用,也在计算机科学、物理学、生物学等领域中发挥着重要的作用。
本文将介绍图论的基本概念和一些应用。
一、图论的基本概念1. 图的类型图分为有向图和无向图。
有向图中的边有方向,表示节点之间的单向关系;无向图中的边没有方向,表示节点之间的双向关系。
2. 图的表示方法图可以用邻接矩阵或邻接表来表示。
邻接矩阵是一个二维数组,其中的元素表示节点之间是否有边相连;邻接表是一个链表数组,数组中的每个元素对应一个节点,链表中存储了该节点相邻的节点。
3. 图的性质图的性质包括节点的度、连通性和路径等。
节点的度是指与该节点相连的边的数量;连通性指的是图中任意两个节点之间是否存在路径;路径是指由边连接的节点序列。
二、图论在计算机科学中的应用1. 最短路径算法最短路径算法是图论中的经典问题之一,它用于计算图中两个节点之间的最短路径。
著名的最短路径算法有迪杰斯特拉算法和弗洛伊德算法。
这些算法在网络路由、地图导航等领域中有广泛的应用。
2. 最小生成树算法最小生成树算法用于找到一个连通图的最小生成树,即包含所有节点且边的权重之和最小的子图。
普里姆算法和克鲁斯卡尔算法是常用的最小生成树算法。
这些算法在电力网络规划、通信网络设计等领域中有重要的应用。
3. 图的着色问题图的着色问题是指给定一个图,将每个节点着上不同的颜色,使得相邻节点之间的颜色不同。
这个问题在地图着色、任务调度等方面有实际应用。
三、图论在物理学中的应用1. 粒子物理学在粒子物理学中,图论被用来描述和分析粒子之间的相互作用。
图论模型可以帮助研究粒子的衰变、散射等过程,为理解物质的基本结构提供了重要的工具。
2. 统计物理学图论在统计物理学中也有应用。
例如,渗透模型中的图可以用来研究流体在多孔介质中的渗透性质,为石油勘探、水资源管理等提供了理论基础。
电子科大 张晓军老师 图论
![电子科大 张晓军老师 图论](https://img.taocdn.com/s3/m/9e87cf355a8102d276a22fe2.png)
思考? 上述结论对无环图成立吗?
邻接矩阵的进一步推广-有向图
v1 e1 e2 e5 e3
e6 v3
v2
e4
v4
⎡0 1 0 0⎤
A
=
⎢⎢1 ⎢1
0 0
1 1
1⎥⎥ 0⎥
⎢⎣0 0 0 0⎥⎦
每一列之和 为该顶点的
入度
每一行 之和为 该顶点 的出度
推广的邻接矩阵(复合图)续。。。
1
v
2
G1
G2
u1
3 v1
u2 u3
v2
v3
G1×G2
G2[G1]=?
1u
G2[G1] ≅ G1[G2] ???
1v
2u 3u
2v
3v
n 方体 Qn
1
01
0
00
Q1
Q2
011 11
010
001
10
000
Q3
111 110
011 010
§1.3 路与图的连通性
途径 迹
1
4
58
路
67
连通图
2
3
连通分支 ω(G)
G
G’
关系,而且要求这种对应关系保持结点间的邻
接关系.对有向图同构还要求保持边的方向.
b
a
e v1
d c
v4 v5 v3 v2
(1)
(2)
(3)
(4)
a
e
c
v1
v2
v6
f
b
d
v3
v5
v4
(5)
(6)
(7)
电子科技大学研究生试题《图论及其应用》(参考答案)
![电子科技大学研究生试题《图论及其应用》(参考答案)](https://img.taocdn.com/s3/m/448a084876c66137ee0619c4.png)
电子科技大学研究生试题《图论及其应用》(参考答案)考试时间:120分钟一.填空题(每题3分,共18分)1.4个顶点的不同构的简单图共有__11___个;2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。
则G 中顶点数至少有__9___个;3.设n 阶无向图是由k(k ≥2)棵树构成的森林,则图G 的边数m= _n-k____;4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_.5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。
图G图G二.单项选择(每题3分,共21分)1.下面给出的序列中,是某简单图的度序列的是( A )(A) (11123); (B) (233445); (C) (23445); (D) (1333).2.已知图G 如图所示,则它的同构图是( D )3. 下列图中,是欧拉图的是( D )4. 下列图中,不是哈密尔顿图的是(B )5. 下列图中,是可平面图的图的是(B )A Bb c123A B 3CDAD6.下列图中,不是偶图的是( B )7.下列图中,存在完美匹配的图是(B )三.作图(6分)1.画出一个有欧拉闭迹和哈密尔顿圈的图;2.画出一个有欧拉闭迹但没有哈密尔顿圈的图;3.画出一个没有欧拉闭迹但有哈密尔顿圈的图;解:四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。
A B DC123A B DC解:由克鲁斯克尔算法的其一最小生成树如下图:权和为:20.五.(8分)求下图G 的色多项式P k(G).解:用公式)()()(e G P G P e G P k k k •+=-,可得G 的色多项式:)3)(2()1()()(3)()(2345---=++=k k k k k k k G P k 。
六.(10分) 一棵树有n 2个顶点的度数为2,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。
电子科技大学《图论及其应用》-08年研究生试卷
![电子科技大学《图论及其应用》-08年研究生试卷](https://img.taocdn.com/s3/m/92819c5003020740be1e650e52ea551810a6c9a4.png)
电子科技大学研究生试卷一.填空题(每题2分,共20分)1.若n 阶单图G 的最大度是∆,则其补图的最小度()G δ=_n −1−∆_; 2.若图111(,)G n m =,222(,)G n m =,则它们的联图12G G G =∨的顶点数=_nn 1+nn 2;边数=mm 1+mm 2+nn 1nn 2;3.G 是一个完全l 部图,i n 是第i 部的的顶点数i=1,2,3,…,l 。
则它的边数为∑nn ii nn jj 1≤ii≤j≤l ;4.下边赋权图中,最小生成树的权值之和为5. 若n G K =,则G 的谱()spec G =�−1n −1n −116. 5个顶点的不同构的树的棵数为__4___;7. 5阶度极大非哈密尔顿图族是CC 1,5,CC 2,5;8. G 为具有二分类(X,Y)的偶图,则G 包含饱和X 的每个顶点的匹配的充分必要条件是|N (S )|≥|S |,对所有S ⊆X 成立9.3阶以上的极大平面图每个面的次数为 3 ;3阶以上的极大外平面图的每 个内部面的次数为__3__;10. n 方体的点色数为___2___;边色数为___n ___。
二.单项选择(每题3分,共12分)1.下面给出的序列中,不是某图的度序列的是( B ) (A) (33323); (B) (12222); (C) (5533); (D) (1333).2.设V(G)={}1,2,3,4,5,{}()(1,2),(2,3),(3,4),(4,5),(5,1)E G =则图(,)G V E =的补图是( B3.下列图中,既是欧拉图又是哈密尔顿图的是( B )4.下列说法中不正确的是( C ) (A)每个连通图至少包含一棵生成;(B) 2 3 5 (A) 2 35(B)23 5 (C) 234(D)(C)(D) (A)1(B)k 正则偶图(k>0)一定存在完美匹配; (C)平面图(*)*G G ≅,其中*G 表示G 的对偶图; (D)完全图2n K 可一因子分解。
图论及其应用第3章
![图论及其应用第3章](https://img.taocdn.com/s3/m/43cb45da240c844769eaeebd.png)
u1 e1
.
e2
u2 u 3
图3-2
u4
定理1 e是图G的割边当且仅当e不在G的任何圈中。 证明 因定理的结论若在G的含e的连通分支中成立,则 必在G中成立,所以我们不妨就假定G连通。 必要性 设e = uv 是图G的割边, 若e含在圈C中,令P = C-e。易知P是G-e中一条(u, v)路。任取G-e中两个 不同点x和y,因G连通,故G中存在 (x, y) 路Γ。若Γ不 含e,则Γ也是G-e中一条(x, y) 路;若Γ含e,用P替换e 后也可得到G-e中一条(x, y) 路,以上表明G-e连通,这 与e是割边矛盾,所以e不在G的任何圈中。 充分性 设e = uv,若e不是G的割边,则G-e仍连通,从 而在G-e中存在(u, v) 路P,这样P+e便是G中含e的圈,这 与假设“e不在G的任何圈中矛盾”。所以e是G的割边
定义2 对n阶连通图G,若G存在顶点割,则称G的最小 u 顶点割中的点数为G的连通度;否则称n-1为其连通度 。G的连通度记为κ(G),简记为κ;对非连通图G定义 G2 G1 κ(G) = 0。
κ(G1) =κ(G2) =1
连通度也可描述为“删去图中k(k可为0)个点,使图 不连通或成为单点图的最小k值”。
而n-k+1是H的点数,由引理1知H是连通的。所以G是k 连通的。 例4 对右图所示的5阶图, 当k = 3时满足定理8的条件, 所以该图是3连通的。
图论及其应用第2章答案(电子科大版)
![图论及其应用第2章答案(电子科大版)](https://img.taocdn.com/s3/m/9cb633b3dbef5ef7ba0d4a7302768e9951e76e34.png)
图论及其应用第2章答案(电子科大版)
习题二(yangchun):
7.证明:非平凡树的最长路的起点和终点均是1度的。
证明设是非平凡树T中一条最长路,若则与在中的邻接点只能有一个,否则,若与除了中顶点之外的其他顶点相连,则可以继续延长,这与是最长路是相矛盾的。
若与上的某顶点相连,则就构成了圈,这与数相矛盾,推出不是最长路。
即说明与是树叶,则与均是一
度的。
所以非平凡树的最长路的起点和终点均是度的。
9.证明:顶点度数为偶数的连通图本身可构成一个包含所有边的闭迹。
证明:证明:由于是连通非平凡的且每个顶点度数为偶数,所以中至少
存在圈,从中去掉中的边,得到的生成子图,若没有边,则的边集合能划分为圈。
否则,的每个度数均为偶数的连通图,反复这样抽取,最终划分为若干圈。
设是的边划分中的一个圈。
若仅由此圈组成,则显然是闭迹。
否则,由于连通,所以,必然存有公共顶点。
于是,是一条含有与的边的迹,如此拼接下去,得到包含的所有边的一条闭迹.
16.Kruskal算法能否用来求:
(1)赋权连通图中的最大权的树?
(2)赋权图中的最小权的最大森林?如果可以,怎样实现?
答:1、不能,由Kruskal算法得到的任何生成树一定是最小生成树。
2、能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题三:
● 证明:e 是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u ,v )必含e .
证明:充分性: e 是G 的割边,故G −e 至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ∀∈∀∈,因为G 中的u,v 不连通,而在G 中u 与v 连
通,所以e 在每一条(u,v)路上,G 中的(u,v)必含e 。
必要性:取12,u V v V ∈∈,由假设G 中所有(u,v)路均含有边e ,从而在G −e 中不存在从u 与到v 的
路,这表明G 不连通,所以e 是割边。
● 3.设G 是阶大于2的连通图,证明下列命题等价:
(1) G 是块
(2) G 无环且任意一个点和任意一条边都位于同一个圈上;
(3) G 无环且任意三个不同点都位于同一条路上。
(1)→(2):
G 是块,任取G 的一点u ,一边e ,在e 边插入一点v ,使得e 成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G 中的u,v 位于同一个圈上,于是G 1中u 与边e 都位于同一个圈上。
(2)→(3):
G 无环,且任意一点和任意一条边都位于同一个圈上,任取G 的点u ,边e ,若u 在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u 不在e 上,由定理,e 的两点在同一个闭路上,在e 边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。
(3)→(1):
G 连通,若G 不是块,则G 中存在着割点u ,划分为不同的子集块V 1, V 2, V 1, V 2无环,
12,x v y v ∈∈,点u 在每一条(x,y)的路上,则与已知矛盾,G 是块。
●
7.证明:若v 是简单图G 的一个割点,则v 不是补图G
̅的割点。
证明:v 是单图G 的割点,则G −v 有两个连通分支。
现任取x,y ∈V(G −v), 如果x,y 不在G −v 的同一分支中,令u 是与x,y 处于不同分支的点,那么,x,与y 在G −v 的补图中连通。
若x,y 在G −v 的同一分支中,则它们在G −v 的补图中邻接。
所以,若v 是G 的割点,则v 不是补图的割点。
● 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。
解:()12G κ= 最小点割 {6,8}
1()2G λ= 最小边割{(6,5),(8,5)}
()25G κ= 最小点割{6,7,8,9,10}
2()5G λ= 最小边割{(2,7)…(1,6)}
●
13.设H 是连通图G 的子图,举例说明:有可能k(H)> k(G).
解:
通常k (H )<k(G).
e
H
整个图为G,割点e左边的图H为G的的子图,k(H)=3k(G)=1,则k(H)>k(G).。