3.1.1《用树状图或表格求概率(1)》北师版
北师大版九年级数学上册3.1用树状图或表格求概率教学设计
一、教学目标
(一)知识与技能
1.理解并掌握概率的基本概念,知道概率是描述随机事件发生可能性大小的数值。
2.学会使用树状图和表格列举所有可能的结果,并能运用概率公式计算简单事件的概率。
3.能够利用树状图和表格解决实际问题,提高解决问题的能力。
4.掌握如何判断事件的独立性,以及如何计算相互独立事件的概率。
三、教学重难点和教学设想
(一)教学重难点
1.重点:让学生掌握使用树状图和表格列举所有可能结果的方法,以及如何运用概率公式计算简单事件的概率。
难点:培养学生将实际问题转化为数学模型的能力,以及如何在实际问题中运用概率知识进行求解。
2.重点:让学生理解独立事件的定义,掌握相互独立事件的概率计算方法。
难点:引导学生运用独立事件的概率计算方法,解决实际问题。
3.小组合作,共同探究一个复杂的概率问题,例如“抛掷两枚骰子,求两个骰子点数和为7的概率”。要求学生在讨论过程中,充分运用所学知识,发挥团队协作精神,共同解决问题。
4.完成一份关于本节课学习心得的反思报告,内容包括:对本节课知识的理解、在解题过程中遇到的困难与解决方法、对概率学习的感悟等。通过反思,促使学生深入思考,提高自我认知。
本章节的教学设计旨在让学生掌握概率的基本概念和求解方法,提高他们解决实际问题的能力。在教学过程中,注重培养学生的学习兴趣、团队协作能力和自主学习能力,使他们形成正确的价值观,为将来的学习和生活打下坚实基础。
二、学情分析
九年级的学生已经具备了一定的数学基础,对概率的概念有初步的了解,但在具体问题分析和解决方法上仍需加强。他们在之前的学习中,已经接触过简单的概率计算,能够列举一些事件的可能结果,但对于复杂事件的概率求解,还需要进一步引导和训练。此外,学生在团队合作、问题探究等方面的能力有待提高。因此,在本章节的教学中,应注重以下几点:
3.1《用树状图或表格求概率》第1课时 北师大版九年级数学上册教案
第三章概率的进一步认识3.1 用树状图或表格求概率第 1 课时一、教学目标1.经历猜测、试验、收集试验数据、分析试验结果等活动过程,进一步体验数据的随机性,记录数学活动经验.2.通过试验进一步感受随机事件发生的频率的稳定性,理解事件发生频率与概率的关系,并能用试验频率估计事件发生的概率,加深对概率意义的理解.3.能运用画树状图和列表的方法计算一些简单事件的概率.4.能利用概率解决一些简单的实际问题,理解概率对日常生活和生产实践的指导作用,体会概率是描述随机现象的数学模型,发展应用意识.5.在试验和收集数据的活动过程中,发展合作交流的意识和发现问题、提出问题的能力.二、教学重点及难点重点:会用树状图和列表的方法计算随机事件发生的概率.难点:理解事件出现的等可能性,正确地分析出两步试验中出现的所有情况.三、教学用具多媒体课件.四、相关资源《掷一枚质地均匀的骰子》动画,《用列举法求概率——画树状图法》动画.五、教学过程【复习引入】问题(1)具有何种特点的试验称为古典概型?(2)对于古典概型的试验,如何求事件的概率?师生活动:教师利用多媒体出示问题,学生回答:(1)一次试验中,可能出现的结果有有限多个;各种结果发生的可能性相等.具有以上特点的试验称为古典概型.(2)对于古典概型的试验,我们可以从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率.一般地,如果在一次试验中,有种可能的结果,并且它们发生的可能性都相等,事件A包含其中的种结果,那么事件A发生的概率为.设计意图:通过问答的方式,帮助学生回忆学过的知识,为本节课的学习准备好知识基础.【探究新知】列举法:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法.师生活动:教师讲授,学生聆听,掌握列举法的定义.设计意图:因为教材没有列举法的概念,通过教师讲授,使学生对列举法有初步的认识.小明、小颖和小凡都想去看周末电影,但只有一张电影票,三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反面朝上,则小颖获胜;若一枚正面朝上、一枚反面朝上,则小凡获胜.你认为这个游戏公平吗?做一做:连续掷两枚质地均匀的硬币,“两枚正面朝上”、“两枚反面朝上”、“一枚正面朝上,一枚反面朝上”这三个事件发生的概率相同吗?先分组进行试验,然后累计各组的试验数据,分别计算这三个事件复习的频数与频率,并由此估计这三个事件发生的概率.师生活动:教师出示问题,学生分组进行试验,交流数据并累计各组数据后再计算.设计意图:通过实际问题中的游戏背景引入,激发学生的学习兴趣.由学生亲自动手进行试验,经历猜测、试验、收集试验数据、分析试验结果等活动过程,进一步体验数据的随机性.学生通过交流与合作,体会到与他人合作交流的重要性,发展学生合作交流的意识与能力.当试验次数越多,频率稳定,用频率估计事件发生的概率.议一议:在上面掷硬币的试验中,(1)掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?(2)掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?师生活动:教师出示问题,学生思考、讨论,教师分析、引导.教师分析:由于硬币质地均匀,因此掷第一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论掷第一枚硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.本题中掷第一枚硬币和掷第二枚硬币是两个相互独立的事件.解:(1)掷第一枚硬币可能出现“正面朝上”和“反面朝上”两种结果;它们发生的可能性一样.(2)掷第二枚硬币也是可能出现“正面朝上”和“反面朝上”两种结果;它们发生的可能性一样.(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现“正面朝上”和“反面朝上”;它们发生的可能性相同;如果第一枚硬币反面朝上也一样.利用树状图或表格列出所有可能出现的结果:总共有4种结果,每种结果出现的可能性相同.其中,小明获胜的结果有1种:(正,正),所以小明获胜的概率是;小颖获胜的结果有1种:(反,反),所以小颖获胜的概率也是;小凡获胜的结果有2种:(正,反),(反,正),所以小凡获胜的概率是.因此,这个游戏对三人是不公平的.归纳利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.思考 利用画树状图和列表的方法求概率时应注意些什么?师生活动:教师出示问题,学生思考、讨论,教师找学生代表回答,最后师生共同得出答案.答:利用画树状图和列表的方法求概率时,应注意各种结果出现的可能性要相同.设计意图:通过这个问题,让学生知道利用树状图和列表的方法求概率时各种结果出现的可能性要相同.如果学生用其他的方法不重复、不遗漏地列出所有的结果,也应给予鼓励,但引导学生对不同列举方法进行比较,使学生体会画树状图、列表这两种方法的优越性.【典例精析】例 小颖有两件上衣,分别为红色和白色,有两条裤子,分别为黑色和白色,她随机拿出一件上衣和一条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?解:画树状图得:共有4种等可能的结果,恰好是白色上衣和白色裤子的有1种情况,恰好是白色上衣和白色裤子的概率是:.设计意图:指导学生如何规范应用列表法解决概率问题.此外,对于本题,教师也可以让学生用画树状图法解答.【课堂练习】1.不透明的袋子中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为().A .B .C .D .2.在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为( ).A.B.C.D.3.小明对小红说:“我们来做一个游戏,我向空中扔3个硬币,如果它们落地后全是正面朝上,你就得10分,如果它们全是反面朝上,你也得10分,但是,如果它们落地时是其他情况,我就得5分,得分多者获胜,好不好?”小红说:“让我考虑一分钟,至少有两枚硬币必定情况相同,因为如果有两枚情况不同,则第三枚一定会与这两枚硬币之一情况相同.而如果两枚情况相同,则第三枚与其他两枚情况相同或情况不同的可能性一样.因此,3枚硬币情况完全相同或情况不完全相同的可能性是一样的.但是小明是用5分来赌它们的,这分明对我有利,好吧,小明,我和你做这个游戏!”请问:小红的推理正确吗?参考答案1.C.2.C.3.解:首先利用树状图列出3枚硬币落地时的所有可能结果:由图可知总共有(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)8种结果,每种结果出现的可能性都相等,其中3枚情况完全相同的概率是,3枚情况不完全相同的概率是.因为×10<×5,所以这个游戏规则不公平,对小明有利.小红的推理不正确.设计意图:让学生加深对所学知识的理解.六、课堂小结1.列举法的定义:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法.2.适合用列表法解决概率的情况:当一次试验涉及两个因素(例如掷两枚骰子),并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.我们不妨把两枚骰子分别记为第1枚和第2枚,这样就可以用方形表格列举出所有可能出现的结果.3.适合用画树状图法解决概率的情况:用树状图列举出的结果看起来一目了然,当事件要经过多次步骤(三步以上含三步)完成时,用这种“画树状图”的方法求事件的概率很有效.注意:利用画树状图和列表的方法求概率时,应注意各种结果出现的可能性要相同.师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:帮助学生养成系统整理知识的学习习惯,加深认识,深化提高,形成学生自己的知识体系.七、板书设计3.1 用树状图或表格求概率(1)1.列举法的定义2.用树状图或表格求概率。
九年级数学上册 3.1.1 用树状图或表格求概率教案 (新版)北师大版
课题:3.1.1用树状图或表格求概率教学目标:1.经历猜测、试验、收集试验数据、分析试验结果等活动过程,进一步体验数据的随机性,积累数学活动经验.2.通过试验进一步感受随机事件发生的频率的稳定性,理解事件发生的频率与概率的关系.3.会用列表或画树状图等方法计算简单事件发生的概率.4.在试验和收集数据的活动过程中,发展合作交流的意识和发现问题、提出问题的能力.教学重点与难点:重点:用列表或画树状图等方法计算简单事件发生的概率.难点:用列表或画树状图等方法列举简单事件发生的所有结果.课前准备:多媒体课件、学生课前做抛硬币试验并记录试验数据.教学过程:一、温故而知新活动内容:(多媒体出示)思考下列问题:1.小明和小颖一起做游戏。
在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一个球,摸到红球小明获胜,摸到白球小颖获胜。
(1)这个游戏对双方公平吗?(2)如果是你,你会设计一个什么游戏活动判断胜负?2.抛掷一枚均匀的硬币,硬币落下后,会出现几种情况?分别是什么?每一种结果出现的可能性相同吗?正面朝上反面朝上3.小颖小明和小凡都想去看周末的电影,但只有一张电影票,三人决定一起做游戏谁获胜谁就去看电影.游戏规则如下:连续掷两枚质地均匀的硬币.若两枚正面朝上,则小明获胜;若两枚反面朝上,则小颖获胜;若一枚正面朝上一枚反面朝上则小凡获胜.你认为这个游戏公平吗?处理方式:第1、2个问题由学生口答,第3个问题可找2—3人回答,并适当阐述理由,根据学生回答情况适时引入新课并板书课题.设计意图:使学生再次体会“游戏对双方是否公平”,并由学生用自己的语言描述出“游戏公平吗”的含义是游戏的双方获胜的概率要相同.同时,巧妙的利用一个“如果是你,你会设计一个什么游戏活动判断胜负?”的问题,引发学生的思考及参与的热情,如果学生说出“掷硬币”的方法,自然引出本节课的内容.二、百花齐放春满园活动内容1:(多媒体出示)同学们,请将你们课前的试验数据汇总表进行分析,根据汇总过程及结果你会有什么发现?请把你的发现与大家交流一下.(附:试验数据表格)表格一:表格二:表格三:师:通过大量试验及数据分析我们发现,在一般情况下,“一枚正面朝上、一枚反面朝上”发生的概率大于其他两个事件发生的概率.所以,这个游戏不公平,对小凡有利.处理方式:所同学在课前将小组内的试验数据进行整理汇总,并根据汇总结果分析游戏是否公平?课堂上让学生适当交流通过实验发现的结论,然后通过提问的形式让学生展示自己的试验心得及发现的结论.设计意图:本环节的设置,让学生在试验活动中,积累活动经验,通过试验数据的整理汇总,初步感受游戏的不公平性,并对频率与概率的关系有个初步的了解.活动内容2:在这个问题情境中,小明、小颖和小凡获得电影票的概率究竟是多大?请同学们思考如下问题:(多媒体出示自主探究题目)师:经过同学们的认真思考及讨论,我们知道了无论抛掷第一枚硬币出现怎样的结果,抛掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率也是相同的.根据同学们自己列举的图示,我们改进之后可以形成如下形式:(利用多媒体出示以下内容)处理方式:学生结合自主探究题目,独自思考2分钟左右后在小组内进行讨论交流;然后利用幻灯片对第1、2题找1—2生进行回答,第三题在学生回答后提出“你能否尝试用图形表示它们的结果?”,在学生思考讨论后,根据巡查中学生出现的情况,找3---4个学生在黑板上展示其讨论结果.对学生在黑板上展示的讨论结果中出现的问题,进行针对性的修改,并利用多媒体展示规范的利用“树状图”或“列表法”列举所有可能出现的结果.设计意图:这一环节,学生实践的基础上,进行深入的探索,从感性认知上升为理性思维,从而更深刻的认识到抛掷一枚均匀的硬币“正面朝上”和“反面朝上”的可能性是相同的;第三问的设计先让学生尝试用图形表示出现的结果,既激发学生的探索欲望,又为下一步的教学作铺垫.然后通过多媒体的直观展示,让学生更加深刻的理解如何利用“树状图”或“列表法”列举一个事件发生的所有结果.三、学贵于行之活动内容1:我们已经能够利用“树状图”或“列表法”来列举一个事件发生所可能出现的所有结果,你能利用所学知识帮助小颖解决这个问题吗?请同学们仔细审题,完整的写下你的答案.(多媒体出示学以致用题目)处理方式:找2生在黑板上进行展示,其他学生在练习本上处理,然后针对学生出现的问题,进行纠正,在解题过程中,要特别强调列表或树状图后文字语言的描述,从而使解题过程更加规范.设计意图:本环节的设计既让学生练习了用“树状图”或“列表法”求概率的方法,同时又规范了用“树状图”或“列表法”求概率的解题步骤.四、问渠那得清如许,为有源头活水来师:同学们,知识的积累、能力的提升在于及时的总结.通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.你又有哪些困惑,提出来让大家来帮你解决.学生间畅谈自己本节课的收获及困惑.设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.五、操千曲而后晓声师:通过本节课的学习,同学们的收获一定很多!收获的质量如何呢?请完成下面的达标检测题.(多媒体出示)1.掷一枚质地均匀的硬币10次,下列说法正确的是( ) A .可能有5次正面朝上 B .必有5次正面朝上 C .掷2次必有1次正面朝上 D .不可能10次正面朝上2.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是( )A.12B.13C.23D.143.从两组牌面分别是1,2的牌中各摸一张牌,则其牌面数字之和为3的概率为()A.13B.14C.12D.154.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会相同,小红希望上学时经过每个路口都是绿灯,出现这种情况的概率是()A.12B.14C.1 D.0处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.六、学而时习之必做题:习题3.1 第1,2题.选做题:小明和小颖做掷骰子的游戏,规则如下:1.游戏前,每人选一个数字:2.每次同时掷两枚均匀骰子;3.如果同时掷得的两枚骰子点数之和,与谁所选数字相同,那么谁就获胜.板书设计:学生展示区。
九年级数学上册3.1用树状图或表格求概率习题课件1(新版)北师大版
第二次摸到红球的有 4 种情况,∴P(第一次摸到绿球,第二次摸到红球)=146 =14 ②∵两次摸到的球中有 1 个绿球和 1 个红球的有 8 种情况,∴P(两次 摸到的球中有 1 个绿球和 1 个红球)=186=12 (2)23
第十三页,共14页。
16.(2014·武汉)袋中装有大小相同的2个红球和2个绿球. (1)先从袋中摸出1个球后放回,混合均匀(jūnyún)后再摸出1个球. ①求第一次摸到绿球,第二次摸到红球的概率; ②求两次摸到的球中有1个绿球和1个红球的概率; (2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红 球的概率是多少?请直接写出结果.
10.(2014·南京)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件 的概率:
(1)抽取1名,恰好(qiàhǎo)是甲; (2)抽取2名,甲在其中.
解:(1)抽取 1 名,恰好是甲的概率为13 (2)共 3 种等可能的结果, 甲在其中的有 2 种情况,∴抽取 2 名,甲在其中的概率为23
第七页,共14页。
第三章 概率(gàilǜ)的进一步认识
3.1 用树状图或表格(biǎogé)求概率
第1课时 求较简单(jiǎndān)的随机事件发生的概率
第一页,共14页。
知识点:求涉及两个因素的随机事件发生的概率 1.一个盒子内装有大小、形状相同的四个球,其中红球 1 个、绿球 1 个、白球 2 个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白 球的概率是( C )
111 1 A.2 B.4 C.6 D.12 2.(2014·临沂)从 1,2,3,4 中任取两个不同的数,其乘积大于 4 的概率是( C )
新北师大版九上数学3.1.用树状图或表格求概率
球除了颜色以外没有任何区别。两袋中的球都搅匀。 蒙上眼睛从口袋中取一只球,如果你想取出1只黑 球,你选哪个口袋成功的机会大呢?
甲 袋
20红,8黑
乙袋 20红,15黑,10白
解:在甲袋中,P(取出黑球)=
在乙袋中,P(取出黑球)=
1 3
>
2 7
2 8 = 7 28 1 15 = 3 45
所以,选乙袋成功的机会大。
初中数学资源网
例6.甲、乙、丙三人打乒乓球.由哪两人先打呢? 他们决定用 “石头、剪刀、布”的游戏来决定,游戏 时三人每次做“石头” “剪刀”“布”三种手势中的 一种,规定“石头” 胜“剪刀”, “剪刀”胜“布”, “布”胜“石头”. 问一次比赛能淘汰一人的概率是多 游戏开始 少? 甲 石 剪 布 乙 石 剪 布 石 剪 布 石 剪 布
用树状图或 表格求概率
1.概率的计算:
一般地,若一件实验中所有可能结果出现 的可能性是一样,那么事件A发生的概率为
事件A可能出现的结果数 P(A)= 所有可能出现的结果数
2.求事件发生的常用一种方法就是将所有可能的 结果都列出来,然后计算所有可能出现的结果总 数及事件中A可能出现的结果数,从而求出所求事 件的概率。 3.在求概率时,我们可用“树状图”或“列表法” 来帮助分析。
解:由树形图得,所有可能出现的结果有27个,它们出现的可能性相等。 (1)三辆车全部继续直行的结果有1个,则 P(三辆车全部继续直行)= (2)两辆车右转,一辆车左转的结果有3个,则
1 27
3 1 P(两辆车右转,一辆车左转)= = 27 9 7 (3)至少有两辆车左转的结果有7个,则 P(至少有两辆车左转)= 27
第一辆车
左 直 右 左
直 直 右 左
3.1用树状图或表格求概率(放回型或独立型)课件++2023—2024学年北师大版数学九年级上册
(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用“画树状图”或“列表”等方法写出分析过程).
解:画树状图为:
共有12种等可能的结果,其中抽得的2张卡片上的数字之和为3的倍数的结果数为4,所以抽得的2张卡片上的数字之和为3的倍数的概率 .
片,卡片除正面图案不同外,其余均相同,其中两张正面印有冰墩墩图案,一张正面印有雪容融图案,将三张卡片正面向下洗匀,从中随机一次性抽取两张卡片,则抽出的两张都是冰墩墩卡片的概率是__.
5.(2022·珠海市一模)某品牌免洗洗手液按剂型分为凝胶型、液体型、泡沫型三种型号(分别用 , , 依次表示这三种型号).小辰和小安计划每人购买一瓶该品牌免洗洗手液,上述三种型号中的每一种免洗洗手液被选中的可能性均相同.
(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是__;
(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).
解:树状图如下:
由上可得,一共有12种等可能性,其中一定有乙的可能性有6种,故一定有乙的概率是 .
10.如图,正方形的边长为2,中心为 ,从 , , , , 五点中任取两点.
(1)求取到的两点间的距离为2的概率;
解:从 , , , , 五点中任取两点,所有等可能出现的结果有: , , , , , , , , , ,共有10种,满足两点间的距离为2的结果有 , , , 这4种,则 两点间的距离为 .
(2)求取到的两点间的距离为 的概率;
共有6种等可能的结果,它们为 , , , , , .
(2)求点 在 轴上的概率.
[答案] 点 在 轴上的结果数为3, 点 在 轴上的概率 .第2课 用树状图或表格求概率 (不放回型)
初中数学北师大版九年级上册《3.1 用树状图或表格求概率(1)》课件
课堂练习
1.三张外观相同的卡片分别标有数字1,2,3,从中随机一 次抽出两张,这两张卡片上的数字恰好都小于3的概率是( A )
A .1 3
B. 2 3
C. 1 6
D. 1 9
课堂练习
2.袋内装有标号分别为1,2,3,4的4个小球,从袋内随机 取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后, 再随机取出一个小球,让其标号为这个两位数的个位数字,则组 成的两位数是3的倍数的概率为( B )
新知讲解
做一做:小明、小凡和小颖都想去看周末电影,但只有一张电影票.三 人决定一起做连续抛掷两枚均匀的硬币游戏,谁获胜谁就去看电影.
两枚正面朝上,我 获胜
你认为这个游戏公平吗?
一枚正面朝上、 一枚反面朝上,
我获胜
两枚反面朝上,我 获胜
新知讲解
连续掷两枚均匀的硬币总共有4种结果,每种结果出现的可能性相 同. 其中:
做一做:连续掷两枚质地均匀的硬币,“两枚正面朝上”、
“两枚反面朝上”、“一枚正面朝上、一枚反面朝上”这三个事件
发生的概率相同吗?
(1)独立实验,并完成下表:
掷硬币的结果
两枚正面朝上
两枚反面朝上
一枚正面朝上、 一枚反面朝上
频数
频率
新知讲解
(2)小组活动:4个同学为一个小组,把4个人的试验数据汇 总,得到小组试验(200次)结果.
掷硬币的结果 频数
两枚正面朝上
两枚反面朝上
一枚正面朝上、 一枚反面朝上
频率
新知讲解
(2)小组活动:4个同学为一个小组,把4个人的试验数据汇
总,得到小组试验(200次)结果.
1
事件“两枚正面朝上”的概率为: 4 事件“两枚反面朝上”的概率为: 1 事件“一枚正面朝上、一枚反面朝上4”的概率为:2 1
北师大版九年级数学(上)第三章概率的进一步认识3.1用树状图或表格求概率(第一课时).
3.1用树状图或列表求概率(第一课时)一、课标要求:(一)内容要求1.了解利用数据可以进行统计推断,发展建立数据分析观念;感受随机现象的特点。
2.能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率。
(二)数学思想方法(核心概念):本节课是简单的两步实验,可以通过计算得到它的概率,所渗透的数学思想是:转化、类比、在树状图中体会几何直观。
本节课的核心概念为:模型思想、数据分析观念、应用意识。
二、教材与学情分析(一)教材分析:本节课是九年级上册第三章《概率的进一步认识》第一节第一课时,通过七年级下册“概率初步”的学习,学生已经通过试验、统计等活动感受随机事件发生频率的稳定性即“当试验次数很大时,事件发生的频率稳定在相应概率的附近”;体会到概率是描述随机现象的数学模型。
学生已经获得概率的计算有两种方式:理论计算和试验估算。
本章第一节通过游戏活动,让学生经历猜测、试验、收集数据、分析数据等活动过程,然后学习计算这类事件发生概率的两种方法---画树状图和列表法。
本节共三课时,第一课时通过一个试验活动引出求概率的树状图和列表法,第二课时和第三课时分别选择不同的情境,让学生经历利用画树状图和列表法求出概率并解决问题的过程。
(二)学情分析:1.学习条件和起点能力分析学生已经认识到现实生活中存在大量的随机事件,初步感受到数据的随机性,并研究了一些简单随机事件发生的概率,对一些现象做出了合理的解释,对游戏活动的公平性可借助概率作出评判;学生已经感受到了频率的稳定性,能理解在大量重复试验的基础上,可用试验频率估计事件发生的概率。
2.学生在七年级已经通过试验、统计等活动感受随机事件发生的频率的稳定性即“当试验次数很大时,事件发生的频率稳定在相应概率的附近”,初步体会概率是描述随机现象的数学模型,实验的过程就是渗透“概率模型思想”的过程,通过之前的学习学生大脑中初步建立起了“概率是刻画现实世界随机事件发生可能性大小的重要模型”,具备了将实际问题转化为相应的概率模型的意识、模型化思维和应用意识。
北师大版九年级数学上册同步教学课件:第三章教学课件3.1.1用树状图或表格求概率 (共12张PPT)精品
想一想
“配紫色”游戏
表格可以是:
黄
蓝
绿
红
(红,黄)
(红,蓝)
白
(白,黄)
(白,蓝)
游戏者获胜的概率是1/6.
(红,绿) (白,绿)
想一想
“配紫色”游戏的变异
用如图所示的转盘进行“配紫色”游戏. 蓝 小颖制作了下图,并据此求出游戏者获胜的 1200红 概率是1/2.
红
(红,红)
红
蓝红
蓝
(红,蓝)
开始
1 3
2
游戏规则是: 如果所摸球上的数字与转盘转出的数字之和为 2,那么游戏者获胜.求游戏者获胜的概率.
例题解析
学以致用
解:每次游戏时,所有可能出现的结果如下:
1
2
3
1
(1,1)
(1,2)
(1,3)
2
(2,1)
(2,2)
(2,3)
总共有6种结果,每种结果出现的可能性相同,而所 摸球上的数字与转盘转出的数字之和为2的结果只 有一种:(1,1),因此游戏者获胜的概率为1/6.
用树状图怎么解答例2?请用行动来证明“我能行”.
本课小结
由“配紫色”游戏得到了什 么用树状图和列表的方法求概率时应
注意各种结果出现的可能性务必相同. “配紫色”游戏体现了概率模型的思 想,它启示我们:概率是对随机现象的 一种数学描述,它可以帮助我们更好 地认识随机现象,并对生活中的一些 不确定情况作出自己的决策.
了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色
在一起配成了紫色.
(1)利用树状图或列 表的方法表示游戏者
红
白
蓝 黄
绿
所有可能出现的结果.
北师大版九年级数学上册第3章1用树状图或表格求概率
根据表格提供的信息分别求出事件A、B、C发生的频率.
自主探究 (10min)
1.请同学们阅读课本60-61页.
2.做一做:连续掷两枚质地均匀的硬币,“两枚正面朝上”“两枚反面朝
上”“一枚正面朝上、 一枚反面朝上”这三个事件发生的概率相同吗?
(不相同)
独立试验,并完成下表.你能估计出这三个事件发生的概率吗?
包含三步或三步以上时用画树状图法方便,此时不宜列表.
(2)画树状图时,每个“分支”的意义不同,但它们发生的可能
性相同,因此不能忽略任何一种情况.
(3)用树状图计算概率时,必须保证两步之间的相互独立性,两
步试验结果的可能性相同且结果是有限个,否则会导致结果
错误
知识点2:列表法求概率(重点、难点)
列表法是用表格的形式反映事件发生的各种结果出现的次数和方式,以及某
=
.
1.教材习题:完成课本第62页
习题3.1.
2.作业本作业:
自身的数学交流水平,发展学生合作交流的能力.
转盘游戏、猜拳游戏在我们的生活中随处可见,请两位同学
上台游戏,同时转动如图所示的两个转盘,若两个转盘所转
出的两个数字同时是2,则第一位同学获得奖励,若不同时
是2,则第二位同学获得奖励,那么这个游戏公平吗?
小明、小凡和小颖都想周末去看电影,但只有一张电影票.三人决定一
填表略.估计事件“两枚正面朝上”的概率为
,事件“一枚正面朝上、
“两枚反面朝上”的概率为
一枚反面朝上”的概率为
,事件
=
自主探究 (10min)
3.1.1 用树状图或表格求概率 教案 北师大版数学
3.1.1 用树状图或表格求概率教案
一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论掷第一枚硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.
指出:我们通常利用树状图或表格列出所有可能出现的结果.
现在再来解决刚开始的问题:做一做:小明、小凡和小颖都想去看周末电影,但只有一张电影票.三人决定一起做连续抛掷两枚均匀的硬币游戏,谁获胜谁就去看电影.
小明:两枚正面朝上,我获胜
小颖:两枚反面朝上,我获胜
小凡:一枚正面朝上、一枚反面朝上,我获胜
你认为这个游戏公平吗?
解:连续掷两枚均匀的硬币总共有4种结果,每种结果出现的可能性相同.其中:
小明获胜的结果有1种:(正,正),所以小明获胜的概率
是1 4;
小颖获胜的结果有1种:(反,反),所以小颖获胜的概率
也是1 4;
小凡获胜的结果有2种:(正,反)(反,正),所以小凡获
胜的概率是21 42
;
因此,这个游戏对三人是不公平的.
归纳:利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.
一只箱子里面有3个球,其中2个白球,1个红球,他们1.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是( )
A. B.
C. D.
2. 一个袋中有2个红球,2个黄球,每个球除颜色外都相同,从中一次摸出2个球,2个球都是红球的可能性( )
A. B.
C.
D.
基础作业
21
41
6121
4161
树状图。
3.1.1用树状图或表格求概率(第1课时)(课件)2024-2025学年九年级数学上册(北师大版)
1.1. 用树状图或表格求概率
北师大版九年级数学上册
学习&目标
1.会用画树状图或列表的方法计算简单随机事件发生的概率;
(重点)
2.能用画树状图或列表的方法不重不漏地列举事件发生的所有
可能情况.(难点)
3.会用概率的相关知识解决实际问题.
情境&导入
1.什么叫事件的概率?
2.一般地,如果在一次试验中有n种可能结果,并且它们发生的可
由于硬币是均匀的,因此抛掷第一枚硬币出现“正面朝上”和
“反面朝上”的概率相同。无论抛掷第一枚硬币出现怎样的结果,
抛掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率也是相
同的。所以,抛掷两枚均匀的硬币,出现的(正,正)(正,反)
(反,正)(反,反)四种情况是等可能的。
因此,我们可以用树状图或表格表示所有可能出现的结果。
探索&交流
我们可以用树状图或表格表示所有可能出现的结果.
树状图
第一枚 第二枚硬币
硬币
正
开始
反
正
所有可能出现的结果
(正,正)
(正,反)
反
正
(反,正)
反
(反,反)
探索&交流
第二枚硬币
表格 第一枚硬币
正
反
正
反
(正,正)
(正,反)
(反,正)
(反,反)
总共有4中结果,每种结果出现的可能性相同.其中:
1
小明获胜的概率:
概率是( A )
3
A.
10
3
B.
20
7
C.
20
7
D.
10
小结&反思
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.小颖有两件上衣,分别为红色和白色,有两条 裤子,分别为黑色和白色,她随机拿出意见上衣 和一条裤子穿上,恰好是白色上衣和白色裤子的 概率是多少?(用树状图和表格求概率)
第五环节:学而时习之,不亦乐乎
1.(必做题)随堂练习. 2.(选做题)请同学们课后完成下面练习: 小明和小颖做掷骰子的游戏,规则如下: ① 游戏前,每人选一个数字: ② 每次同时掷两枚均匀骰子; ③ 如果同时掷得的两枚骰子点数之和,与谁所选数字 相同,那么谁就获胜. (1)在下表中列出同时掷两枚均匀骰子所有可能出现 的结果: (2)小明选的数字是5,小颖选的数字是6.如果你也 加入游戏,你会选什么数字,使自己获胜的概率比他们 大?请说明理由.
第五环节:当堂检测
1.一个袋中有2个红球,2个黄球,每个球除颜色外都相同, 从中一次摸出2个球,2个球都是红球的可能性是( ) A、 B、 C、 D、
2. 一个盒子中有1个红球、1个白球,这些球除颜色外都相 同,从中随机摸出一个球,记下颜色后放回,再从中随机 摸出一个球。求 (1)两次都摸到红球的概率; (2)两次摸到不同颜色的球的概率。
因此,这个游戏对三人是不公平的。
教师启发
利用树状图或表格,我们可以不重复,不 遗留地列出所有可能的结果,从而比较方 便地求出某些事件发生的概率。
第三环节:会当凌绝顶,一览众山小
活动内容1:一个盒子中装有一个红球、一个白球。
这些球除颜色外都相同,从中随机地摸出一个球,记 下颜色后放回,再从中随机摸出一个球。求: (1)两次都摸到红球的概率; (2)两次摸到不同颜色球的概率; 只有一张电影票,通过做这样一 个游戏,谁获胜谁就去看电影。如果 是你,你如何选择?
大时,试验频率基本稳定,而且在一般情况下,“一 枚正面朝上。一枚反面朝上”发生的概率大于其他两 个事件发生的概率。所以,这个游戏不公平,它对小 凡比较有利。
第二环节:一花独放不是春,百花齐放春满园
深入探究:在上面抛掷硬币试验中,
(1)抛掷第一枚硬币可能出现哪些结果? 它们发生的可能性是否一样? (2)抛掷第二枚硬币可能出现哪些结果? 它们发生的可能性是否一样? (3)在第一枚硬币正面朝上的情况下, 第二枚硬币可能出现哪些结果?它们发生 可能性是否一样?如果第一枚硬币反面朝 上呢?
பைடு நூலகம்教师启发
让我们小组交流一下自己的想法吧!
第二环节:一花独放不是春,百花齐放春满园
探究体会:
由于硬币是均匀的,因此抛掷第一枚硬币出现 “正面朝上”和“反面朝上”的概率相同。无论抛掷 第一枚硬币出现怎样的结果,抛掷第二枚硬币时出现 “正面朝上”和“反面朝上”的概率也是相同的。所 以,抛掷两枚均匀的硬币,出现的(正,正)(正, 反)(反,正)(反,反)四种情况是等可能的。
如果不公 平,猜猜谁 获胜的可能 性更大?
教师启发
第二环节:一花独放不是春,百花齐放春满园
活动内容:
(1)每人抛掷硬币20次,并记录 每次试验的结果,根据记录填写 下面的表格:
抛掷硬币 应注意什么 问题?
教师启发
第二环节:一花独放不是春,百花齐放春满园
活动内容:
(2)5个同学为一个小组,依次累计各组的试验数据, 相应得到试验100次、200次、300次、400次、500 次……时出现各种结果的频率,填写下表,并绘制成 相应的折现统计图。
教师启发
因此,我们可以用树状图或表格 表示所有可能出现的结果。
第二环节:一花独放不是春,百花齐放春满园
总共有4种结果,每种结果出现的可能性相同。其中, 小明获胜的结果有1种:(正,正),所以P(小明获胜)= 1
4 1 4
小颖获胜的结果有1种:(反,反),所以P(小颖获胜)=
2 1 4 2
小凡获胜的结果有2种:(正,反)(反,正),所以P(小 凡获胜)=
第二环节:一花独放不是春,百花齐放春满园
活动内容:
(3)由上面的数据,请你分别 估计“两枚正面朝上”“两枚反 面朝上”“一枚正面朝上、一枚 反面朝上”这三个事件的概率。 由此,你认为这个游戏公平吗?
想想,我们 刚才都经历了哪 些过程?你有什 么体会? 教师启发
活动体会:从上面的试验中我们发现,试验次数较
第三章
概率的进一步认识
1 用树状图或表格求概率(一)
第一环节:温故而知新,可以为师矣。
问题再现:
小明和小凡一起做游戏。在 一个装有2个红球和3个白球(每个 球除颜色外都相同)的袋中任意摸 出一个球,摸到红球小明获胜, 摸到白球小凡获胜。 (1)这个游戏对双方公平吗? (2)如果是你,你会设计一个 什么游戏活动判断胜负?
在一个 双人游戏中, 你是怎样理 解游戏对双 方公平的?
教师启发
第一环节:温故而知新,可以为师矣
新问题:
小明、小凡和小颖都想去看 周末电影,但只有一张电影票。 三人决定一起做游戏,谁获胜谁 就去看电影。游戏规则如下: 连续抛掷两枚均匀的硬币, 如果两枚正面朝上,则小明获胜; 如果两枚反面朝上,则小颖获胜; 如果一枚正面朝上、一枚反面朝 上,小凡获胜。 你认为这个游戏公平吗?
教师启发
第四环节:小结 1、本节课你有哪些收获?有何感想? 2、用列表法求概率时应注意什么情况?
学会了 用列表法求随机事件发生的理论概率 (也可借用树状图分析) 用列表法求概率时应注意各种情况发生 的可能性务必相同 合作交流的重要性,体会到了一种精神: 就是要勇于暴露自己的思想
教师启发
明白了
懂得了