免疫组化技术全程原理

合集下载

免疫组化技术

免疫组化技术

免疫组化技术免疫组化技术是现代生物学研究领域中一项重要的实验技术,它通过利用抗体与特定抗原的高亲和力结合特异性标记,可以准确地检测和定位分子在细胞和组织中的分布,并在这一基础上进行生物学功能的研究。

本文将对免疫组化技术的原理、应用以及发展趋势进行详细介绍。

一、免疫组化技术的原理免疫组化技术基于生物体对抗原与抗体的免疫反应,利用抗体与抗原的特异性结合来标记和检测感兴趣的分子。

免疫组化技术的关键步骤包括:抗原的固定、抗原的暴露、与抗原的特异性结合和信号检测等。

在免疫组化技术中,抗原通常需要进行固定,以保持其在组织中的形态和位置不变。

一般来说,抗原可通过形成固定化复合物或被共价结合到载玻片或膜上。

随后,我们需要将抗原从组织中溶出,以使其暴露于抗体。

这一步骤通常涉及脱水、脱脂和脱钙等处理。

暴露后的抗原可以与特异抗体结合,形成抗原-抗体复合物。

为了标记抗原-抗体复合物,我们需要选择适当的检测系统。

目前常用的检测方法包括荧光染色、酶学染色和放射性标记等。

其中,荧光染色技术具有高灵敏度和分辨率,能够利用荧光显微镜直接观察标记物的分布。

二、免疫组化技术的应用免疫组化技术在许多研究领域中广泛应用。

在医学领域,它常用于研究肿瘤形成机制、诊断和预后判断。

通过免疫组化技术,我们可以检测和定位许多肿瘤标志物,如癌胚抗原(CEA)和肿瘤相关抗原(CA)等,从而帮助医生进行早期诊断和治疗。

在神经科学领域,免疫组化技术被广泛用于研究神经元发育、突触形成和神经退行性疾病。

通过标记神经元特异性蛋白质,如神经元特异性烯醇化酶(NSE)和神经纤维酸性蛋白(NF)等,可以清晰地观察和研究神经元的结构和功能。

此外,免疫组化技术在细胞和分子生物学研究中也具有广泛的应用。

通过对细胞内蛋白质、DNA和RNA等分子的定位和检测,我们可以研究细胞的生物学功能和基因调控机制。

例如,通过检测特定蛋白质的表达和定位,可以研究调节细胞周期和细胞分化的信号通路。

免疫组化一抗二抗原理

免疫组化一抗二抗原理

免疫组化一抗二抗原理一、免疫组化技术原理免疫组化技术是一种重要的生物化学检测方法,通过使用一抗和二抗的相互作用,来检测目标物质在细胞或组织中的分布和定量。

其原理主要包括以下几个步骤:1. 抗原表达和固定:首先,需要提取或制备出待检测物质的抗原,并将其固定在载玻片或微孔板上。

2. 样品处理:将待检测的细胞或组织样品处理,使其表达出目标物质。

3. 一抗处理:将经过特异性识别的一抗加入样品中,一抗能够与目标物质发生特异性结合,并形成抗原-抗体复合物。

4. 二抗处理:加入与一抗来源物种不同的二抗,二抗能够与一抗发生特异性结合,并进一步增强抗原-抗体复合物的信号。

5. 检测信号放大:通过连接二抗的酶标记物或荧光标记物,可以进一步放大信号。

6. 显色或荧光检测:通过加入适当的显色剂或荧光探针,可以将特定信号转化为可见的颜色或荧光。

7. 显微镜观察:使用显微镜观察和分析样品中的标记信号分布情况,从而确定目标物质的位置和数量。

二、免疫组化技术应用免疫组化技术广泛应用于生物医学研究、临床诊断和药物开发等领域。

具体应用包括:1. 细胞和组织定位:通过标记特定抗原或蛋白质,可以确定其在细胞或组织中的定位,帮助研究者了解其功能和相互作用。

2. 疾病诊断:免疫组化技术可以检测疾病标志物,如癌症标志物、病毒抗原等,用于早期诊断和病情监测。

3. 药物研发:免疫组化技术可用于评估药物在细胞或组织中的靶点表达和药效。

4. 免疫组织化学:通过标记细胞或组织中的特定分子,可以帮助鉴定组织类型、识别病理变化以及评估治疗效果。

5. 免疫组化芯片:免疫组化芯片技术结合了高通量技术和多路复用的优势,可以快速、准确地检测多个标志物,有望在个性化医疗中得到广泛应用。

三、免疫组化技术的发展前景随着生物技术和分子生物学的不断发展,免疫组化技术也在不断创新和改进。

未来的发展方向主要包括:1. 自动化和高通量:通过引入自动化设备和流程,提高实验的标准化和效率,同时实现多个标志物的高通量检测。

免疫组化的原理及应用

免疫组化的原理及应用

免疫组化的原理及应用原理免疫组化(Immunohistochemistry,IHC)是一种通过特异性抗体与相应抗原的特异性结合,利用染色反应显示出有关蛋白质在组织或细胞中的位置与数量的技术。

简单来说,免疫组化是通过酶标法或荧光法等方法,利用特异性抗体标记目标蛋白质,从而在组织或细胞中检测和定位目标蛋白质的方法。

免疫组化的原理主要包括以下几个步骤:1.抗原修复:免疫组化一般需要在标本切片前对组织进行抗原修复处理,以恢复和增强抗原的免疫活性。

2.阻断非特异性结合:在免疫组化过程中,为了防止非特异性结合的出现,需要使用非特异性抗体或蛋白质进行阻断。

3.抗体结合:将特异性抗体与标本中的目标抗原进行结合,可采用直接法或间接法。

4.信号显示:对于直接法,特异性抗体上已标记有荧光染料或酶标标记,可直接显示信号;对于间接法,再添加与特异性抗体免疫结合的二抗,二抗上标记有荧光染料或酶标标记,用于显示信号。

5.结果观察与分析:利用显微镜观察标本中信号的形态、分布和强度,进行结果判读和分析。

应用免疫组化在生命科学研究、临床诊断和药物研发等领域都有广泛的应用。

以下列举一些主要的应用:1.细胞定位:通过使用特异性抗体和荧光染料标记目标蛋白质,可以在细胞水平上观察和定位目标蛋白质的分布和表达情况。

2.组织检测:通过在组织切片上应用免疫组化技术,可以检测和定位特定蛋白质在组织中的表达情况,并用于研究组织的结构和功能。

3.癌症诊断:免疫组化在肿瘤诊断中有重要的应用价值。

通过检测肿瘤标志物的表达情况,可以帮助医生判断肿瘤类型、分级和预后,并指导相应的治疗方案。

4.药物研发:免疫组化可以用于评估新药对蛋白质表达的影响,了解新药的作用机制,以及筛选适合的治疗靶点。

5.神经科学研究:免疫组化在神经科学领域的研究中也有广泛的应用。

通过免疫组化技术,可以观察和定位神经元、神经递质和突触相关蛋白质,帮助研究神经系统的结构和功能。

总的来说,免疫组化技术广泛应用于生命科学研究和临床实践中,为我们研究细胞和组织的结构与功能、研究疾病机制、辅助临床诊断等提供了有力的工具和方法。

免疫组化的原理

免疫组化的原理

免疫组化的原理
免疫组化是一种利用抗体与其特异性抗原结合的反应来检测或定位特定分子的方法。

它主要基于抗体的高度特异性与高亲和力,能够识别并结合到抗原上。

免疫组化的过程一般包括固定组织、抗原还原、孵育抗体、洗涤、孵育二次抗体和检测。

具体步骤如下:
1. 固定组织:将待检测的生物组织固定在载玻片上,通常使用形式固定剂或冷冻剂进行固定。

2. 抗原还原:对固定组织进行抗原还原处理,以破坏抗原与抗体结合时的形态学阻滞并使抗原更易于与抗体结合。

3. 孵育抗体:将含有特异性抗体的抗体溶液加到载玻片上的组织切片上,允许其与目标抗原结合。

此时,如果组织中存在目标抗原,抗体就会与其结合形成免疫复合物。

4. 洗涤:通过洗涤步骤去除未结合的抗体,减少干扰性信号的产生。

洗涤通常使用磷缓冲盐溶液或其他缓冲溶液进行多次冲洗。

5. 孵育二次抗体:加入标记有酶、荧光物质或放射性同位素等的二抗溶液,使其与已结合的抗原-一抗复合物发生反应。

二次抗体通常是对多种一抗的特异性抗体。

6. 检测:使用相应的技术,如酶标记法、荧光标记法或放射性
探测等,检测二次抗体与抗原-一抗复合物的结合情况。

通过信号的产生和可视化,可以确定抗原的存在位置以及其表达程度。

总的来说,免疫组化是一种通过利用抗体与抗原间的特异性反应,实现对目标抗原的检测和定位的方法。

其原理主要是通过抗原-抗体的结合来实现对特定分子的识别和鉴定。

免疫组化的原理及操作规程

免疫组化的原理及操作规程

免疫组化的原理及操作规程免疫组化,即免疫组织化学染色技术,是一种利用抗原与抗体特异性结合的原理,通过化学反应使标记抗体的显色剂(如荧光素、酶、金属离子、同位素等)显色,从而确定组织细胞内抗原(多肽和蛋白质)的定位、定性及相对定量的研究方法。

该技术广泛应用于临床病理诊断、生物医学研究以及药物开发等领域。

本文将详细介绍免疫组化的原理及操作规程。

一、免疫组化的原理免疫组化的基本原理是抗原与抗体的特异性结合。

抗原是指能够刺激机体产生免疫应答,并能与免疫应答产物(抗体或致敏淋巴细胞)发生特异性结合的物质。

抗体是机体的免疫细胞在抗原刺激下产生的具有特异性识别能力的免疫球蛋白。

在免疫组化中,通常将目标抗原(如某种蛋白质或多肽)作为待检测物,通过特定的抗体与之结合,再利用标记技术使抗体可视化,从而实现对目标抗原的定位、定性和定量研究。

免疫组化的标记技术主要有直接法和间接法两种。

直接法是将标记物(如荧光素、酶等)直接标记在抗体上,使其与目标抗原结合后直接显色。

间接法则是利用未标记的抗体(一抗)先与目标抗原结合,然后再通过标记的二抗(与一抗特异性结合的抗体)与一抗结合,最终实现显色。

间接法具有更高的灵敏度和灵活性,因此在实际应用中更为常见。

二、免疫组化的操作规程免疫组化的操作规程主要包括以下几个步骤:1. 标本处理:根据实验需求选择合适的组织标本,并进行固定、脱水、包埋等处理,制备成组织切片或细胞涂片。

固定是为了保持组织或细胞的形态结构,防止抗原丢失;脱水则是为了去除组织中的水分,便于后续操作;包埋则是将组织块包裹在支持物(如石蜡)中,便于切片。

2. 抗原修复:由于固定和脱水等处理过程可能导致抗原表位的遮蔽或改变,因此在进行免疫组化染色前,需要对抗原进行修复。

常用的修复方法包括热修复、酶修复和酸修复等。

具体方法应根据实验需求和抗原性质进行选择。

3. 阻断内源性酶活性:为了避免组织内源性酶对后续显色反应的干扰,需要使用相应的阻断剂(如过氧化氢)对内源性酶活性进行阻断。

免疫组化法原理

免疫组化法原理

免疫组化法原理一、免疫组化法概述免疫组化法(immunohistochemistry,IHC)是一种将抗体与组织中的特定抗原结合并可视化的技术。

它是一种常用的诊断和研究工具,可用于检测肿瘤、感染和自身免疫性疾病等多种疾病。

二、免疫组化法的基本原理1. 抗原-抗体反应IHC技术基于抗原-抗体反应,即将特异性的抗体与组织中的特定抗原结合。

在IHC技术中,主要使用单克隆或多克隆抗体。

单克隆抗体来源于同一B细胞,具有高度特异性和亲和力;多克隆抗体则由多个B 细胞产生,具有较广泛的特异性。

2. 报告物质为了可视化抗原-抗体反应结果,在IHC技术中需要使用报告物质。

常见的报告物质包括酶标记物和荧光标记物。

酶标记物包括辣根过氧化物酶(HRP)和碱性磷酸酶(AP)等,荧光标记物则包括荧光素、罗丹明和荧光素异硫氰酸酯等。

3. 反应步骤IHC技术一般包括以下几个步骤:(1)取材:首先需要取得组织样本,如肿瘤组织或正常组织。

(2)制片:将组织样本切片,并固定在载玻片上。

(3)抗体处理:将特异性抗体加入载玻片上的组织切片中,与目标抗原结合。

(4)洗涤:去除未结合的抗体。

(5)报告物质处理:加入报告物质,可视化抗原-抗体反应结果。

(6)染色:使用适当的染色剂对载玻片进行染色,以增强可视化效果。

(7)观察和分析:使用显微镜观察载玻片,并进行结果分析。

三、免疫组化法的优缺点1. 优点(1)高度特异性:IHC技术可使用特异性抗体对目标抗原进行检测,具有较高的特异性。

(2)定量分析:通过计算染色强度或阳性细胞比例等参数,可进行定量分析。

(3)组织结构信息:IHC技术可同时检测抗原和组织结构信息,有助于了解病理过程。

(4)广泛应用:IHC技术可用于检测多种疾病,如肿瘤、感染和自身免疫性疾病等。

2. 缺点(1)假阳性结果:IHC技术可能会出现假阳性结果,即抗体与非目标抗原结合。

(2)标本制备困难:标本制备需要严格控制多个因素,如取材方式、切片厚度和固定时间等。

免疫组化原理及应用

免疫组化原理及应用

象PAP法那样由抗酶血清制备而成,所以背景着色减少,
敏感性更高。
HRP HRP
ABC法:
HRP biotin
ABC复合物 马抗兔(二抗)
兔抗x(一抗)
⑥S-P法:是在ABC法的基础上进行了改进,第一、第二步
与ABC法相同,在第三步,将链酶卵白素直接与酶耦合在
一起,减少了操作步骤,进一步增加了灵敏度,现被广泛
应用。
HRP
HRP
S-P法:
SA
酶链卵白素
HRP
BT
羊抗鼠IgG(二抗)
BT 鼠抗x(一抗)
(三)具体操作步骤
以S-P法为例:
1. 石蜡切片脱蜡至水;
2. 蒸馏水冲洗,PBS浸泡5分钟,(如需采用抗原修复,可 在此步后进行);
3. 3活%性H;2O2室温孵育5-10分钟,以消除内源性过氧化物酶的
4. 5-10%正常山羊血清(PBS稀释)封闭,室温孵育10分钟。 倾去血清勿洗,滴加适当比例稀释的一抗或一抗工作液, 37℃孵育1-2小时或 4 ℃过夜;
HRP HRP
PAP法:
HRP
兔PAP复合物(三抗)
羊抗兔IgG (二抗)
兔抗 x
(一抗)
⑤ABC法:很早以前,人们就注意到给动物饲以大量的鸡蛋
白,会引起明显的“维生素H缺乏症”。经研究发现,在
鸡蛋白中含有一种碱性蛋白,分子量为68000,称卵白素
(avidin)。一个avidin分子上有4个biotin(生物素)结合
—HRP(FITC)
直接法:
②间接法:也称二步法。第一步用的是不标记的第一抗体, 第二步用标记有酶或荧光素的抗第一抗体同种动物IgG的 抗体。本方法的优点是在检测各种不同抗原时,只要第一 抗体是免疫同一类动物产物的抗体,均可应用相同的第二 抗体,不象直接法那样需对各种抗体逐个标记。此外由于 第一抗体的一个分子作为抗原可结合多个第二抗体分子, 故敏感性较直接法大为提高。

免疫组化原理和步骤

免疫组化原理和步骤

免疫组化原理和步骤免疫组化(Immunohistochemistry,IHC)是一种广泛应用于组织学和细胞学研究中的实验方法,主要用于检测和定位蛋白质在组织或细胞中的分布和表达水平。

它结合了免疫学原理和组织学技术,通过使用特异性的抗体和染色剂来实现对目标蛋白质的检测和可视化。

免疫组化的原理主要是利用抗体的高度特异性与抗原相结合,然后使用染色技术来显示抗原的位置。

该技术的基本原理可分为抗原-抗体反应、信号放大和信号显示三个步骤。

第一步:抗原-抗体反应免疫组化的第一步是选择合适的抗体,通过与目标蛋白质的特异性结合来形成抗原-抗体复合物。

抗体可以是单克隆抗体或多克隆抗体。

单克隆抗体具有高度特异性,只能结合到特定的抗原上。

多克隆抗体具有高度敏感性,可以结合多个位点,从而实现信号放大。

通常,为了提高抗原的可检测性,需要对组织样本进行抗原修复处理。

这可以通过热处理(如蒸汽加热、微波加热)或酶切处理来实现。

修复可以解除组织样本中抗原与蛋白质结构之间的交联,增加抗体的渗透性和可结合性。

当抗原-抗体反应发生时,可通过一系列化学反应来形成抗原-抗体复合物。

例如,可以使用二抗来与抗原-抗体复合物结合,然后使用辣根过氧化物酶(HRP)或碱性磷酸酶(AP)标记的二抗来与二抗结合。

该反应可形成稳定的抗体-酶复合物。

第二步:信号放大由于抗原-抗体复合物的信号很弱,通常需要进行信号放大以便更好地检测到目标蛋白质。

放大信号的方法有很多种,其中最常用的是酶免疫标记联合酶放大技术。

酶免疫标记是通过将抗体与酶结合,使其能够催化特定的化学反应来产生荧光、色素或光学信号。

常用的酶免疫标记包括辣根过氧化物酶(HRP)和碱性磷酸酶(AP)。

这些酶能够催化荧光素、二苯基胺、硝基蓝等底物的氧化还原反应,从而产生可视化的信号。

酶放大技术常用的方法包括:免疫酶化学法(如DAB法)、免疫荧光法和免疫酶学荧光混合法等。

这些方法可通过将底物转化为可见的色素或荧光信号来标记抗原-抗体复合物,从而实现目标蛋白质的检测和定位。

免疫组化的原理及试验步骤

免疫组化的原理及试验步骤

免疫组化的原理及实验步骤一免疫组化的原理免疫组化是利用抗原与抗体特异性结合的原理,通过化学反应使标记抗体的显色剂(荧光素、酶、金属离子、同位素) 显色来确定组织细胞内抗原(多肽和蛋白质),对其进行定位、定性及定量的研究,称为免疫组织化学。

二免疫组化的实验步骤固定1.浸入式:将组织样本直接放入固定液(4%的多聚甲醛等固定液)内,4℃浸泡2小时,不超过12小时2. 灌注式:主要适用于脑部组织,用从心室灌注生理盐水排空血管中血液后灌注固定液切片1.石蜡切片:(1) 使用从低浓度到高浓度的乙醇使组织脱水;(2)将组织浸入二甲苯中透明;(3)在溶蜡箱中,组织被石蜡包埋;(4)将包埋好的蜡块冷却后固定于切片机上,切成薄片,并将薄片贴于玻片上;(5)用二甲苯脱蜡并重新从高到底浸泡乙醇;注意:石蜡切片制备好后还需要进行抗原修复以解开被甲醛交联的抗原决定簇上的氨基或羧基,常用方法有微波热修复,煮沸热修复,酶消化方法2. 冰冻切片:将固定的组织放入液氮或干冰-丙酮中迅速冷却,然后切片机切片,并将片贴于玻片上封固1.防止脱片,可以使用树脂胶或多聚赖氨酸进行黏附。

2.避免内源性过氧化酶的影响,可以用3%双氧水处理15min,(针对用过氧化酶标记的抗体)3.避免内源生物素的影响,可以鸡蛋清或卵白素进行封闭;4.避免非特异性染色,可以用二抗来源的血清进行封闭染色1.滴加稀释后的一抗,4℃过夜,PBS或者脱脂牛奶洗5min 3次;2.滴加稀释后的二抗,37℃孵育30min,PBS或者脱脂牛奶洗5min 3次;显色:选择与二抗配套的显色系统,进行反应,PBS终止反应后,用苏木素村然胞核,乙醇梯度脱水,二甲苯透明,中性树胶封片,37℃干燥48小时,显微镜下观察。

酶免疫组化技术的原理

酶免疫组化技术的原理

酶免疫组化技术的原理
酶免疫组化技术(Enzyme-linked immunohistochemistry,简称IHC)是一种常用的免疫组化方法,利用酶-抗体互相作用来
检测和定位特定蛋白质在细胞或组织中的表达情况。

酶免疫组化技术的原理如下:
1. 定位抗原:首先,组织样本(如切片)被固定在载玻片上,并经过脱水和脱脂处理。

然后,使用一个特异性的抗体来与目标蛋白质的抗原决定簇结合。

这种抗体可以是单克隆或多克隆抗体,根据实验需求选择。

2. 二抗结合:免疫组化中的主要问题是如何检测抗原-抗体复
合物。

为此,需要加入一种与抗原-抗体复合物特异结合的次
级抗体。

通常,次级抗体被标记有一种特定的酶(如辣根过氧化物酶HRP),以便后续酶的检测。

3. 酶底物加入:将特定的酶底物加入样本中,并与酶发生反应。

酶底物与酶的作用形成可见的色素沉积物或发光反应,从而可以观察到特定的反应区域。

4. 反应停止:当反应达到所需的程度后,可以通过加入适当的停止剂(如酸溶液)来停止酶的作用。

这有助于固定和稳定酶产生的可见信号,并防止颜色的继续发展。

5. 观察和分析:最后,使用显微镜观察样本,并根据所得的结果对组织或细胞中的目标蛋白质进行定位和定量分析。

一般来
说,颜色越明亮表示目标蛋白质的表达越高。

总的来说,酶免疫组化技术利用酶标记的次级抗体对特定抗原进行检测和定位,通过酶底物反应生成可见色素或发光信号,从而实现对目标蛋白质在组织或细胞中的表达情况的研究。

免疫组化原理和步骤

免疫组化原理和步骤

免疫组化原理和步骤实验原理:抗体和抗原之间的结合具有高度的特异性,免疫组织化学正是利用了这一原理。

先将组织或细胞中的某种化学物质提取出来,以此作为抗原或半抗原,通过免疫动物后获得特异性的抗体,再以此抗体去探测组织或细胞中的同类的抗原物质。

由于抗原与抗体的复合物是无色的,因此还必须借助于组织化学的方法将抗原抗体结合的部位显示出来,以其达到对组织或细胞中的未知抗原进行定性,定位或定量的研究。

实验步骤:(一)脱蜡和水化:脱蜡前应将组织芯片在室温中放置60分钟或60℃恒温箱中烘烤20分钟。

1、组织芯片置于二甲苯中浸泡10分钟,更换二甲苯后在浸泡10分钟。

2、无水乙醇中浸泡五分钟。

3、95%乙醇中浸泡五分钟。

4、75%乙醇中浸泡五分钟。

(二)抗原修复:用于福尔马林固定的石蜡包埋组织芯片:1、抗原热修复(1)高压热修复在沸水中加入EDTA(ph8.0)或0.01m柠檬酸钠缓冲溶液(ph6.0)。

盖上不锈钢锅盖,但不能锁定。

将玻片置于金属染色加上,缓慢加压,是玻片在缓冲液中浸泡五分钟,然后将盖子锁定,小阀门将会升起来。

10分钟后除去热源,置入凉水中,当小阀门沉下去后打开盖子。

此方法适用于较难检测或核抗原的抗原修复。

(2)沸热修复电炉或水浴锅加热0.01柠檬酸钠缓冲液(ph6.0)至95℃左右,放入组织芯片加热10-15分钟。

(3)微波炉加热在微波炉里加热0.01柠檬酸钠缓冲液(ph6.0)至沸腾后将组织芯片放入,断电,间隔5-10分钟,反复1-2次。

适用的抗原Bcl-2、ax、AR、PR、C-fos、x-jum、z-kit、c-myc、E-cadherin。

ChromograninA、Cyclin、ER、Heatshock、Protein、HPV、Ki-67、MDMZ、P53、P34、P15、P-glycoprotein、PKC、PCNA、ras、Rb等2、酶消化方法常用0.1%胰蛋白酶和0.4%胃蛋白酶液。

免疫组化的原理和步骤

免疫组化的原理和步骤

免疫组化的原理和步骤免疫组化是一种常用的实验方法,它利用特异性抗体与免疫原之间的相互作用,通过对细胞或组织中特定抗原的定位和检测,以揭示细胞或组织中特定分子的存在和分布情况。

在免疫组化中,主要包括抗原修复、特异性抗体结合、信号放大、染色和显微镜观察等步骤。

第一步:抗原修复抗原修复是为了提高抗原的可见性,常见的修复方法有热原修复和化学原修复。

热原修复是将组织样本在热压下加热一段时间,以恢复被固定、变性或交联的抗原的活性。

化学原修复是使用化学试剂改变组织中蛋白分子的结构,使其易于抗体结合。

抗原修复可以显著提高抗原的可见性,有利于后续的免疫组化实验。

第二步:特异性抗体结合特异性抗体是免疫组化实验的关键。

在这一步中,需要选择与目标抗原高度特异性结合的抗体。

常用的抗体包括单克隆抗体和多克隆抗体,可以通过直接标记抗体或者间接标记抗体的方式进行实验。

对于直接标记抗体,抗原与荧光物质、酶或金颗粒等直接结合,可通过荧光显微镜、光学显微镜或电子显微镜直接观察抗原的分布和定位。

对于间接标记抗体,首先给定的抗原与一种特异性的一抗反应,接着加入与一抗结合的二抗,最后加入标记有荧光物质、酶或金颗粒等的三抗,通过标记物的发光或染色来观察抗原的分布和定位。

第三步:信号放大为了增加信号的灵敏度和准确性,常常需要对抗原-抗体结合进行信号放大,最常用的方法是酶标方法。

在酶标法中,将特异性抗体与带有酶标记的二抗结合,酶标记的二抗与染色剂的底物作用时,能生成可见的颜色或发光信号,从而实现对抗原的检测和定位。

常用的酶标方法有还原粉末树脂染色法(如DAB法)和荧光素酶法等。

第四步:染色染色是免疫组化实验的关键步骤之一、通过染色方法可以使未染色的组织或细胞变得可见,从而明确表达抗原的位置和数量。

常用的染色方法有光学显微镜下的暴露荧光显微镜和电子显微镜。

第五步:显微镜观察最后一步是通过显微镜来观察和分析免疫组化结果。

光学显微镜和电子显微镜是常用的观察工具。

免疫组化原理和步骤

免疫组化原理和步骤

免疫组化原理和步骤免疫组化是一种广泛应用于生命科学领域的技术,可以用来检测和鉴定细胞和组织中特定蛋白分子的存在、定位和表达量。

免疫组化基于免疫学原理,通过使用特异性抗体与待检测分子特异性结合,再通过可视化和定量分析来观察和测定待检测分子的存在和分布情况。

本文将详细介绍免疫组化的原理和步骤。

免疫组化的原理:免疫组化是基于免疫学原理的一种实验方法,其核心原理是特异性抗体与待检测分子的免疫反应。

免疫反应可分为两种类型:直接法和间接法。

1.直接法:直接法是指特异性抗体直接与待检测分子发生免疫反应。

在这种方法中,待检测物与特异性抗体结合后,通过标记在抗体上的标记物来直接检测待检测物的存在。

常用的直接标记物包括酶(如辣根过氧化物酶HRP)、荧光染料(如荧光素同工酶)和放射性同位素(如3H和125I)。

直接法的优点是操作简单,敏感度高,但标记物的选择受限。

2.间接法:间接法是指通过特异性抗体与检测物结合,再加入与抗体结合的二抗发生免疫反应。

间接法的优点是能够使用多种不同的二抗,从而提高了敏感度和特异性。

常用的二抗包括抗IgG的兔抗或小鼠抗。

这些二抗通常是与辣根过氧化物酶结合,并以酶标记物(如DAB)或荧光染料(如荧光素同工酶)来可视化。

免疫组化的步骤:免疫组化实验通常需要经过一系列的步骤,包括固定组织、制备切片、抗原解脱、抗体标记和可视化。

下面是免疫组化的详细步骤:1.组织固定:首先将待检的组织材料使用适当的固定剂进行处理,目的是固定细胞和组织结构,以保持其形态和抗原的保存。

常见的固定剂包括福尔马林、乙酸乙酯、乙醇等。

2.制备组织切片:使用组织切片机将固定的组织切割成薄片,通常厚度为3-5微米。

切片后,可以将切片保存在载玻片上待用。

3.抗原解脱:组织切片上的抗原往往由于固定处理而失去了原有的免疫反应活性,需要进行抗原解脱的处理。

抗原解脱的方法包括酶解法、热解法和酸解法等,可以恢复抗原的免疫反应性。

4.抗体标记:选择适当的特异性抗体,并将其与标记物结合。

免疫组化步骤及原理

免疫组化步骤及原理

免疫组化步骤及原理免疫组化是一种用于检测和定位特定细胞组织中特定分子的技术。

它可以帮助我们研究细胞的结构和功能,并在疾病诊断和治疗中发挥重要作用。

以下是免疫组化的步骤及其原理。

步骤一:标本固定免疫组化的第一步是将待检测组织样本固定在载玻片或其他固定载物上。

常用的固定剂包括福尔马林(formalin)和牛血清白蛋白(BSA)。

固定的目的是保持组织的形态结构并防止其腐解。

步骤二:脱水和去蜡接下来,固定的组织样本通常需要通过一系列酒精浓度逐渐脱水,然后使用组织蜡进行浸泡固化。

蜡浸泡的目的是保护组织细胞结构,并便于切片及后续的免疫标记。

步骤三:抗原暴露在进行免疫组化之前,需要通过抗原暴露步骤使组织样本中的目标分子或抗原暴露出来,便于其和抗体的结合。

这可以通过热处理(如加热松弛),酶解(如胰蛋白酶消化)或抗原修复剂(如热带缓冲液或消化酶)进行。

步骤四:非特异性结合位点的阻断为了阻断非特异性结合位点,需要在进行免疫反应之前进行非特异性抗体预处理。

这可以通过与蛋白质或动物血清结合的非免疫球蛋白(如Bovine Serum Albumin,BSA)或鱼胶(Fish Gelatin)来实现。

这样,可以降低背景信号并提高特异性。

步骤五:抗体结合在免疫组化过程中,使用特异性抗体与待检测的目标分子结合形成免疫复合物。

这些抗体可以是单克隆抗体或多克隆抗体。

单克隆抗体是由同一B细胞产生的一类抗体,具有高度特异性,并且可以与特定的抗原结合。

多克隆抗体则由多个B细胞产生,可以结合目标分子的多个表位。

步骤六:荧光或酶标记的二抗结合为了检测抗体和目标分子的结合,可以使用荧光染料或酶标记的二抗。

荧光染料(如FITC,Cy3,Cy5等)可以在荧光显微镜下观察到相应的光信号。

酶标记的二抗通常使用辣根过氧化物酶(HRP)或碱性磷酸酶(AP)来标记,这些酶可以催化或参与染色反应,并在光镜下呈现颜色。

步骤七:显色和观察显色的方法根据使用的标记物不同而有所不同。

免疫组化过程及原理

免疫组化过程及原理

免疫组化过程及原理免疫组化,是一种通过特异性抗体和荧光素等探针对组织切片中的分子进行定位和鉴定的技术。

这种技术广泛应用于生物医学研究和医学诊断中。

本文将介绍免疫组化的过程和原理。

一、样品制备样品制备是免疫组化技术的第一步。

样品主要包括组织切片、胞液、细胞培养物等。

制备样本主要方法有固定、切片、脱水等步骤。

在进行免疫组化之前,必须使用固定剂对样本进行固定。

固定剂的选择应根据不同的样品以及需要检测的分子性质而定。

通常,使用含有甲醛或戊二醛的固定剂。

二、抗体选择和标记选择适当的抗体和相应的探针是免疫组化技术的关键。

抗体是能特异性与靶分子结合的蛋白质,可通过季节性生产、杂交瘤融合技术等方法制备。

标记技术有荧光标记、酶标记、金粒子标记等。

取决于使用的抗体和探针类型,所使用的技术将会是不同的。

三、特异性识别将标记好的抗体溶液滴到固定后的组织切片表面,然后进行特异性识别,即特异性抗体与分子特异性结合的过程。

在该步骤中,选定的抗体只与需要检测的分子特异性的表达区域结合。

四、荧光检测使用荧光显微镜检测标记分子特异性抗体对组织切片上分子特异性结合的情况。

在免疫组化的过程中,荧光探针的特异性荧光信号为明显的标记。

荧光显微镜能够捕捉到这些信号,并将它们转化成清晰可见的图像。

通过荧光检测可以确定细胞表达、蛋白质定位、蛋白质互作等。

五、数据记录和结果分析将荧光显微镜的图像记录下来,并通过图像分析软件进行数据处理和结果分析。

对比对照组、干预组与实验组数据,确定显著的差异。

进行加权平均、标准差、方差等数学方法,基于统计学得出可靠的结论。

六、检测标准化免疫组化技术在不同实验室或者不同操作者之间具有高度可变性。

为了在不同的实验室、不同的操作者不同的样品下得出相同的结果,需要标准化免疫组化的流程。

标准化流程包括选择合适的抗体、标准化抗体稀释度、制剂及品质检测,检测标准的制定等。

标准化流程的制定保证了实验之间的准确性和可重复性,提高了免疫组化技术的可靠性。

免疫组化原理及步骤

免疫组化原理及步骤

免疫组化原理及步骤免疫组化是一种常用于研究细胞和组织中蛋白质的定位、表达及定量的方法。

其原理基于抗原与抗体之间的特异性结合。

在进行免疫组化实验时,通常需经历如下步骤:1. 取样与制片:从待研究的组织或细胞中取得样本,并将其固定在载玻片或切片上,以便后续的实验处理。

2. 抗原恢复:某些样本经过固定处理后,可能会造成抗原的损失或掩盖。

因此,为了使抗原能更好地被抗体识别,常需要进行抗原恢复的步骤。

一般而言,常用的抗原恢复方法包括加热处理、酶解或化学处理等。

3. 阻断非特异性结合:为了避免非特异性的结合,需使用一些非特异性抗体或蛋白质(如牛血清白蛋白、胶原蛋白等)来阻断待测抗体结合样本中的非特异性位点。

4. 抗体标记与孵育:选择特异性与待测抗原结合的一抗体,并将其标记上可视化信号或发光染料等。

在将该标记抗体和样本一同孵育的过程中,待测抗原会与一抗体发生特异性结合。

5. 洗涤:通过洗涤步骤,去除与抗体无关的非特异性结合物,以减少背景信号的干扰。

6. 可视化和显色:对于免疫组化实验,最终需要将特异性结合的抗原或抗体定位,并使其可视化。

这可以通过结合染色剂、酶标记或荧光标记等方法实现。

7. 评价与分析:最后,通过显微镜观察和图像分析等手段,对标记结果进行定性或定量的评价与分析。

可以使用计算机软件进行图像处理和定量分析以获取更准确的数据。

总之,免疫组化的原理在于利用抗原与抗体的特异性结合来对蛋白质进行检测与定位。

在实验过程中,需要进行样本取样与制片、抗原恢复、非特异性结合阻断、抗体标记与孵育、洗涤、可视化和显色、评价与分析等一系列步骤。

这些步骤均为确保实验结果的准确性和可靠性所必需的。

免疫组化的原理

免疫组化的原理

免疫组化的原理Immunohistochemistry(IHC)是一种利用免疫系统来检测细胞、组织或者小生物体内分子的实验技术,是一种应用于组织学检测、病理确诊的重要技术。

它的原理是通过病理切片是片上检测需要检测的分子,使用特异性抗体进行识别,最终能够定位和检测表达在目标器官内的分子,它是非常灵敏、无损及特异性检测标记分子的非常好的技术。

IHC的原理:一、抗体-抗原互补结合原理:1、抗体特异性结合抗原。

抗体的特异性是IHC技术的基础。

特异性抗体可以结合抗原,而不能结合其他物质。

抗原多呈正带状,而抗体多带有伞状结构,当抗体的伞状结构分子正好叠合到抗原的正带状结构上,抗体和抗原之间就产生了特殊的互补结合,这种称之为抗体-抗原互补结合原理。

2、亲和力和特异性由结合位点决定。

通过化学技术和免疫技术制备的抗体,其结合抗原的特异性及亲和力皆由抗体-抗原结合位点决定。

抗体的结合位点是抗体的锁义基团,锁义基团是抗佖的非常重要的部分,它是抗体与抗原结合的主要部分,是决定抗体的亲和力和特异性的参数,这既收入抗体的设计和制备中极为重要。

二、夹杂结合原理:1、现有方法标记抗原。

一般情况下,在IHC技术中并不使用天然抗原,而是通过表征技术或者催化技术将抗原与染色剂进行结合,赋予抗原特异性染色能力,使夹杂物无间接具有特异性结合抗原的能力,从而在可见的角度观察抗原的表达。

一般情况下,将夹杂物与抗原结合使用适当的催化剂及表征剂,使夹杂物具有高特异性及高亲和力。

2、夹杂物与抗体结合。

在夹杂物与抗原结合后,抗体可以与夹杂物进行结合,夹杂物与抗体以非互补结合方式结合,结合受夹杂物的电性,静电场等多种因素的影响,夹杂物与抗体的结合也受这些因素的左右。

三、加荧光染色原理:1、荧光物质加入染色浴中。

在进行IHC技术的染色时,可以加入荧光染料,包括紫外线发射荧光染料(如荧光团、磷脂酰磷脂)和近红外发射荧光染料(如荧光团、高分子胺)。

2、抗体和夹杂物结合共同发射荧光。

免疫组化技术的原理及方法

免疫组化技术的原理及方法

免疫组化技术的原理及方法免疫组化技术是一种广泛应用于生物医学研究和临床诊断的高灵敏度和高特异性的实验技术。

它通过特异性抗体与目标分子间的特异性结合来检测目标分子的存在和表达水平。

在该技术中,抗体作为探针,能够识别和结合目标分子的特定表位,从而可定量或定性地检测分子的存在或表达水平。

免疫组化技术的原理基于生物体自然产生的免疫应答机制。

当有外来物质(抗原)进入机体时,机体的免疫系统会产生抗体来与其特异性结合。

抗体与抗原结合后会激活一系列免疫反应,包括免疫效应细胞的激活和分泌抗体的B细胞的增殖和分化。

在免疫组化技术中,我们可以利用这一特性,使用高亲和力的特异性抗体来实现对目标分子的检测。

直接法是利用已标记的特异性抗体直接与目标分子结合。

这种方法在实验操作上比较简单,但需要对每种目标分子都有特异性标记的抗体。

直接法适用于目标分子丰度较高(>100 ng/mL)的情况。

间接法是通过两步反应实现对目标分子的检测。

第一步,使用未标记的特异性抗体与目标分子结合;第二步,使用标记抗体与先前结合的抗体结合。

标记抗体可以是酶、荧光染料、放射性同位素等。

这种方法的优势是只需要使用少量的少数几个标记抗体即可覆盖多种目标分子的检测,同时具有更高的灵敏度。

免疫组化技术的方法还包括免疫组化染色、免疫印迹和流式细胞术等。

其中,免疫组化染色是一种常见的方法,它通过对标本中特定目标分子的特异性染色来实现对其定位和定量的研究。

该方法适用于形态学研究和病理诊断。

免疫印迹是一种能够定性和定量地检测蛋白质表达的方法,通过将不同大小的蛋白质分子分离,并使用特异性抗体来检测目标蛋白质。

流式细胞术则是一种通过细胞表面的特异性抗体标记来分析和分离细胞的技术,它可以实现对细胞表型、蛋白质表达水平和细胞数量的检测。

总之,免疫组化技术是一种依赖于特异性抗体与目标分子结合的实验技术。

通过选择合适的检测方法和抗体,免疫组化技术可以应用于各种生物医学领域,如基础研究、临床诊断和药物研发。

免疫组化原理

免疫组化原理

免疫组化原理
免疫组化是以免疫反应作为检测和细胞定位的一种基础生物技术,它是将抗体和标记物(通常为金纳米粒)相结合,从而能够分子水平对细胞标记染色并对分子结构作出物理分析的方法。

免疫组化也可以用于蛋白分布的定位,已经是蛋白细胞定位的相关研究的一种重要技术手段。

免疫组化的检测原理基于抗原抗体反应(Ag-Ab反应)。

它将抗体(Ab)特异性结合到特定的抗原(Ag)上,当抗体和抗原结合时便可特异性的识别出细胞中的某个特征蛋白(Ag)。

基于以上原理,免疫组化通常可以分为以下几个步骤:
一、组织剥离和脱脂处理:根据实验要求,将植物组织剥离出来,然后用溶剂(如乙醇或硝酸乙酯)将其中的脂质溶解,以获得细胞结构。

二、蛋白抗原溶解:用相应溶剂(如硝酸乙酯或无水乙醇)将蛋白质抽提出来,提取出与实验步骤相关的抗原。

三、抗原显示:有2种则主要方法,抗原结合金纳米技术(IBM)和免疫染色化学技术(ICC),分别用于抗原的检测和显示。

四、细胞活性测定:可以采用传统活性染色技术,例如双光子显微镜或免疫荧光,或者采用新的高分辨率技术,如电子显微技术,以增加细胞定位的准确度。

使用免疫组化技术,研究者可以对细胞膜特异性分布蛋白质进行分析,并确定其在细胞结构上的精确位置。

此外,有了免疫组化技术,研究者可以用它来评估药物在细胞水平上的作用机制,并将关联的分子结构定向的定位出来。

通过这种方法,可以进一步深入解析和探究植物细胞结构及其相关分子的机制,为植物的育种、病害防控和改良工作提供了重要的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

免疫组化技术全程原理一、概念和常用方法介绍1、定义用标记的特异性抗体对组织切片或细胞标本中某些化学成分的分布和含量进行组织和细胞原位定性、定位或定量研究,这种技术称为免疫组织化学(immunohistochemistry)技术或免疫细胞化学(immunocytochemistry)技术。

2、原理根据抗原抗体反应和化学显色原理,组织切片或细胞标本中的抗原先和一抗结合,再利用一抗与标记生物素、荧光素等的二抗进行反应,前者再用标记辣根过氧化物酶(HRP)或碱性磷酸酶(AKP)等的抗生物素(如链霉亲和素等)结合,最后通过呈色反应或荧光来显示细胞或组织中化学成分,在光学显微镜或荧光显微镜下可清晰看见细胞内发生的抗原抗体反应产物,从而能够在细胞爬片或组织切片上原位确定某些化学成分的分布和含量。

3、分类1)按标记物质的种类,如荧光染料、放射性同位素、酶(主要有辣根过氧化物酶和碱性磷酸酶)、铁蛋白、胶体金等,可分为免疫荧光法、放射免疫法、免疫酶标法和免疫金银法等。

2)按染色步骤可分为直接法(又称一步法)和间接法(二步、三步或多步法)。

与直接法相比,间接法的灵敏度提高了许多。

3)按结合方式可分为抗原-抗体结合,如过氧化物酶-抗过氧化物酶(PAP)法;亲和连接,如卵白素-生物素-过氧化物酶复合物(ABC)法、链霉菌抗生物素蛋白-过氧化物酶连结(SP)法等,其中SP法是比较常用的方法;聚合物链接,如即用型二步法,此方法尤其适合于内源性生物素含量高的组织抗原检测。

4、目前几种常用免疫组化方法简单介绍1)免疫荧光方法是最早建立的免疫组织化学技术。

它利用抗原抗体特异性结合的原理,先将已知抗体标上荧光素,以此作为探针检查细胞或组织内的相应抗原,在荧光显微镜下观察。

当抗原抗体复合物中的荧光素受激发光的照射后即会发出一定波长的荧光,从而可确定组织中某种抗原的定位,进而还可进行定量分析。

由于免疫荧光技术特异性强、灵敏度高、快速简便,所以在临床病理诊断、检验中应用较广。

2)免疫酶标方法免疫酶标方法是继免疫荧光后,于60年代发展起来的技术。

基本原理是先以酶标记的抗体与组织或细胞作用,然后加入酶的底物,生成有色的不溶性产物或具有一定电子密度的颗粒,通过光镜或电镜,对细胞表面和细胞内的各种抗原成分进行定位研究。

免疫酶标技术是目前最常用的技术。

本方法与免疫荧光技术相比的主要优点是:定位准确,对比度好,染色标本可长期保存,适合于光、电镜研究等。

免疫酶标方法的发展非常迅速,已经衍生出了多种标记方法,且随着方法的不断改进和创新,其特异性和灵敏度都在不断提高,使用也越来越方便。

目前在病理诊断中广为使用的有ABC法、SP三步法、即用型二步法检测系统等。

3)免疫胶体金技术免疫胶体金技术是以胶体金这样一种特殊的金属颗粒作为标记物。

胶体金是指金的水溶胶,它能迅速而稳定地吸附蛋白,对蛋白的生物学活性则没有明显的影响。

因此,用胶体金标记一抗、二抗或其他能特异性结合免疫球蛋白的分子(如葡萄球菌A蛋白)等作为探针,就能对组织或细胞内的抗原进行定性、定位,甚至定量研究。

由于胶体金有不同大小的颗粒,且胶体金的电子密度高,所以免疫胶体金技术特别适合于免疫电镜的单标记或多标记定位研究。

由于胶体金本身呈淡至深红色,因此也适合进行光镜观察。

如应用银加强的免疫金银法则更便于光镜观察。

5、被检测的物质组织或细胞中凡是能作为抗原或半抗原,如蛋白质、多肽、氨基酸、多糖、磷脂、受体、酶、激素、核酸及病原体等都可用相应的特异性抗体进行检测。

6、特点1)特异性强。

免疫学的基本原理决定抗原与抗体之间的结合具有高度特异性,因此,免疫组化从理论上讲也是组织细胞中抗原的特定显示,如角蛋白(keratin)显示上皮成分,LCA显示淋巴细胞成分。

只有当组织细胞中存在交叉抗原时,才会出现交叉反应。

2)敏感性高。

在应用免疫组化的起始阶段,由于技术上的限制,只有直接法、间接法等敏感性不高的技术,那时的抗体只能稀释几倍、几十倍;现在由于ABC法或SP三步法的出现,使抗体稀释上千倍、上万倍甚至上亿倍仍可在组织细胞中与抗原结合,这样高敏感性的抗体抗原反应,使免疫组化方法越来越方便地应用于常规病理诊断工作。

3)定位准确、形态与功能相结合。

该技术通过抗原抗体反应及呈色反应,可在组织和细胞中进行抗原的准确定位,因而可同时对不同抗原在同一组织或细胞中进行定位观察,这样就可以进行形态与功能相结合的研究,对病理学领域开展深入研究是十分有意义的。

7、从蛋白水平检测角度,免疫组化技术与Western blotting、ELISA的异同1)Western blotting:蛋白质免疫印迹,也是利用抗体抗原反应原理,结合化学发光等技术来检查组织或细胞样品内蛋白含量的检测方法。

与免疫组化技术相比,定量可能更加准确;当然Western blotting也可定性和定位(通过提取膜蛋白或核蛋白、胞浆蛋白分别检测其中抗原含量,进而间接反映它们的定位),但敏感性远远低于免疫组化技术。

2)ELISA:酶联免疫吸附试验,也是利用抗体-抗原-抗原结合反应原理来检查体液或组织匀浆中蛋白含量的检测。

与免疫组化技术相比,定量最准确,是分泌性蛋白检测首选方法之一。

关键环节剖析1、酶免疫组化的关键环节1)标本固定:固定的目的是①防止标本从玻片上脱落;②除去防碍抗原-抗体结合的类脂,使抗原抗体结合物易于获得良好的染色结果;③固定的标本易于保存。

固定剂的选择一般用4%多聚甲醛,但睾丸组织、眼可能要选用Bouin’s液或mDF液效果较好。

2)脱水、石蜡包埋和制片:脱水用梯度乙醇(由低到高)充分脱水、对组织要完全浸蜡、切片时刀片要干净和锋利。

否则,容易裂片和脱片等。

3)脱蜡和水化:这是为了后面的抗体等试剂能够充分与组织中抗原等结合反应。

脱蜡可以先60度20min,然后立即二甲苯1-3分别10min(这个时间是由二甲苯新鲜程度和室温等综合决定的),但当天制好的切片一般先60度3-4h。

水化用梯度乙醇(由高到低)。

若脱蜡和水化不全易出现局灶性反应和浸洗不全,而产生非特异性背景着色。

4)抗原修复:由于组织中部分抗原在甲醛或多聚甲醛固定过程中,发生了蛋白之间交联及醛基的封闭作用,从而失去抗原性;通过抗原修复,使得细胞内抗原决定族重新暴露,提高抗原检测率。

常用的修复方法从强到弱一般分为三种,高压修复、微波修复、胰酶修复。

修复液也分为若干种(具体的可以查阅相关资料,大量的:中性的、高pH的等)。

我们实验室一般用微波修复中火6min*4次,效果不错。

注意微波修复后自然冷却30min左右(只要你觉得修复液的温度达室温即可)。

5)细胞通透:目的是使抗体能够充分地进入胞内进行结合反应。

一般用Triton X-100、蛋白酶k 等通透液。

如Triton X-100可以溶解细胞膜、细胞核膜、细胞器膜上的脂质而使抗体及大分子结构的物质进入胞浆和胞核内,故在细胞免疫组化时尤为推荐使用,这样抗体就能顺利进入胞内与相应抗原结合。

在免疫组织化学(>10um厚切片)和免疫细胞化学中一般用Triton X-100 作为细胞通透剂,在膜上打孔。

同时也是一种去污剂,一般在PBS中加入后终浓度是0.05%即可,而前者终浓度是0.5%-1%。

石蜡切片4um左右可以不通透,因为细胞已经被切开了。

6)灭活内源性过氧化物酶和生物素:在传统的ABC法和SP法中,免疫组化反应结果容易收到内源性过氧化物酶和生物素的干扰,必须用过氧化氢和卵白素等进行灭活。

灭活内源性POD一般3%过氧化氢灭活时间短点,可以10min左右,而0.3%过氧化氢则可以适当延长封闭时间,一般10~30min;用甲醇配置过氧化氢比双蒸水或PBS可能好在保护抗原和固定组织作用,过氧化氢孵育时间过长易引起脱片;现用现配,配好后4度避光保存。

不过,现在已有“第二代即用型免疫组化试剂盒”避免内源性生物素的干扰,推荐使用。

7)血清封闭:组织切片上有剩余的位点可以与一抗非特异性结合,造成后续结果的假阳性;封闭血清一般是和二抗同一来源的,血清中动物自身的抗体,预先能和组织中有交叉反应的位点发生结合;也可以用小牛血清、BSA、羊血清等,但不能与一抗来源一致。

一般室温10-30min。

但也要防止封闭过度8)一抗和二抗浓度和孵育时间:一抗孵育条件在免疫组化反应中最重要,包括孵育时间、温度和抗体浓度。

一抗孵育温度有几种:4度、室温、37度,其中4度效果最佳;孵育时间:这与温度、抗体浓度有关,一般37度1-2h,而4度过夜和从冰箱拿出后37度复温45min。

具体条件还要摸索。

二抗孵育条件:二抗一般室温或37度30min-1h,具体时间需要摸索,而浓度一般有工作液,若是浓缩液还要摸索浓度。

但在免疫组化中我们一般先把二抗浓度和孵育时间先定下,然后去摸索一抗浓度和孵育时间。

建议一抗反应在4度最佳,反应温和,但时间最好超过16~24h。

9)抗体稀释液:其实许多实验室抗体稀释液就用一般PBS即可,但专用的抗体稀释液中除PBS 成份外,还加了叠氮化钠防腐剂、BSA稳定剂等组份,对抗体的多次回收利用较好。

正因为这种原因,我一直用国产的专用抗体稀释液,一段时间在更换新抗体稀释液时实验结果出现了阴性结果(提示可能一抗没有结合),最后从抗体浓度和孵育时间、封闭时间等原因排除后,发现是新抗体稀释液的PH值偏酸,而使抗原抗体反应不佳,终而出现假阴性结果。

10)切片清洗(浸洗、冲洗和漂洗):为了防止一抗、二抗等试剂残留而引起非特异性染色,所以适当地加强清洗(延长时间和增多次数)尤为重要,我一般在一抗孵育前的清洗是3min*3次,而一抗孵育后的清洗均为5次*5min。

注意:①单独冲洗,防止交叉反应造成污染。

②温柔冲洗,防止切片的脱落。

我喜欢用浸洗方式;③冲洗的时间要足够,才能彻底洗去结合的物质。

④PBS 的PH和离子强度的使用和要求。

这方面我有惨痛教训,当时我买的抗体稀释液偏酸,结果背景一片黄(未见特异性染色),建议PH在7.4-7.6浓度是0.01M。

(中性及弱硷性条件(PH7-8)有利于免疫复合物的形成,而酸性条件则有利于分解;低离子强度有利于免疫复合物的形成,而高离子强度则有利于分解)11)DAB显色:背景的深浅和特异性染色的深浅均可以由DAB孵育条件决定。

DAB显色时间不是固定的,主要由显微镜下控制显色时间,到出现特异性染色较强而本底着色较浅时即可冲洗;DAB显色时间很短(如几秒或几十秒)就出现很深的棕褐色,这很可能说明你的抗体浓度过高或抗体孵育时间过长,需要下调抗体浓度或缩短你的抗体孵育时间;此外,若很短时间就出现背景很深,还有可能你前面的封闭非特异性蛋白不全,需要延长封闭时间;DAB显色时间很长(如超过十几分钟)才出现阳性染色,一方面可能说明你的抗体浓度过低或孵育时间过短(最好一抗4度过夜);另一方面就是封闭时间过长。

相关文档
最新文档