数理统计期末复习题1
概率论与数理统计复习题1-知识归纳整理
概率论与数理统计复习题(一)A. 古典概型挑选题1. 在所有两位数(10-99)中任取一两位数,则此数能被2或3整除的概率为 ( ) A. 6/5 B . 2/3 C. 83/100 D.均不对2. 对事件A,B.下列正确的命题是 ( ) A .如A,B 互斥,则A ,B 也互斥B. 如A,B 相容,则A ,B 也相容C. 如A,B 互斥,且P(A)>0,P(B)>0,则A.B 独立 D . 如A,B 独立,则A ,B 也独立3. 掷二枚骰子,事件A 为闪现的点数之和等于3的概率为 ( ) A.1/11 B . 1/18 C. 1/6 D. 都不对5. 甲,乙两队比赛,五战三胜制,设甲队胜率为0.6,则甲队取胜概率为( ) A. 0.6B. C 35*0.63*0.42C. C 350.63*0.42+C 45*0.64*0.4D .C 35*0.63*0.42+C 45*0.64*0.4+0.656. 某果园生产红富士苹果,一级品率为0.6,随机取10个,恰有6个一级品之概率( ) A. 1B. 0.66C . C 466104.06.0D.(0.6)460.4)(7. 一大楼有3层,1层到2层有两部自动扶梯,2层到3层有一部自动扶梯,各扶梯正常工作的概率为 P ,互不影响,则因自动扶梯不正常不能用它们从一楼到三楼的概率为( ) A.(1-P )3 B. 1-P 3C . 1-P 2(2-P )D.(1-P )(1-2P )8. 甲,乙,丙三人共用一打印机,其使用率分别p, q, r ,三人打印独立,则打印机空暇率为( ) A. 1-pqr B . (1-p )(1-q )(1-r ) C. 1-p-q-r D. 3-p-q-r 9. 事件A,B 相互独立, P(A)=0.6, P( A B )=0.3, 则 P(AB)=( ) A . 0.15 B. 0.2 C. 0.25 D. 0.110. 甲,乙各自射击一目标,命中率分别为0.6和0.5,已知目标被击中一枪,则此枪为甲命中之概率 ( ) A . 0.6 B. 0.3 C. 0.5 D. 0.55 11. 下列命题中,真命题为 ( )A. 若 P (A )=0 ,则 A 为不可能事件知识归纳整理B .若A,B 互不相容,则1BA P )=( C.若 P(A)=1,则A 何必然事件D.若A,B 互不相容,则 P(A)=1-P(B)12. A,B 满足P(A)+P(B)>1,则A,B 一定( )A. 不独立B. 独立C. 不相容 D . 相容13. 若 ( ),则〕〕〔=〔)P(B)-1P(A)-1B A P( A. A,B 互斥 B. A>B C. 互斥,B A D . A,B 独立14. 6本中文书,4本外文书放在书架上。
概率论与数理统计期末考试试题及参考答案
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
《概率论与数理统计A》期末习题一答案
《概率论与数理统计A 》期末习题一答案一、简答题(本题满分30分,共含6小题,每小题5分)1、设A ,B 为随机事件,A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,求()P AB 。
解:32.04.08.0)()()(=⨯==B P A P B A P 。
(5分)2、设随机变量X 的概率密度为⎩⎨⎧<<=其他 010 )(x cx x f ,求常数c 的值。
解:121)(1===⎰⎰+∞∞-c dx cx dx x f ,因此2=c 。
(5分) 3、 已知随机变量)4,1(~N X ,求}21{<<X P 。
解:()021}21221211{}21{Φ-⎪⎭⎫⎝⎛Φ=-<-<-=<<X P X P (3分) 1915.05.06915.0=-=。
(2分)4、设随机变量X 和Y 相互独立,)4,3(~N X ,)9,2(~N Y ,求变量12+-=Y X Z 的数学期望和方差。
解:()()()()51261212=+-=+-=+-=Y E X E Y X E Z E ; (2分)()()()()25916412=+=+=+-=Y D X D Y X D Z D 。
(3分) 5、 已知10个产品中有3个次品,现从中有放回地取3次,每次任取1个,求所取的3个产品中恰有2个次品的概率。
解:设X :所取得3个产品中次品的个数,则⎪⎭⎫⎝⎛103,3~B X (2分)1000189107103}2{223=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛⋅==C X P (3分) 6、设随机变量X 、Y 相互独立,且都服从标准正态分布,则Z(同时要写出分布的参数) ?~(1)t 。
(5分)二、(本题满分10分) 编号为1,2,3的三台仪器正在工作的概率分别为0.9,0.8和0.4,从中任选一台。
(1) 求此台仪器正在工作的概率;(2) 已知选到的仪器正在工作,求它编号为2的概率。
概率论与数理统计(I)期末考试样卷1参考答案
教研室(系)主任签名: 分院(部)领导签名:第 页 (共 页)概率论与数理统计(I )期末考试样卷1参考答案一、填空题( 每小题3分,共24分)1. 在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3个记录其纪念章的号码。
则最小号码为5的概率=235101/12C C =。
2. 设事件,A B 都不发生的概率为0.2,且()()0.6P A P B +=,则,A B 同时发生的概率为_____0.2_____. 3. 已知111(),(),()432P A P B A P A B ===,则()P A B = 1/3 。
4. 设在15只同类型的零件中有2只是次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出次品的只数,则X 的分布律为5. 设连续型随机变量X 的分布函数为0,0,()s i n ,0,21,,2x F x A x x x ππ⎧⎪<⎪⎪=≤≤⎨⎪⎪>⎪⎩ 则A =____1______,||6P X π⎛⎫<= ⎪⎝⎭____1/2______方差为0.02的正态分布,设Ф(x)为标准正态分布函落在区间(9.95,10.05)内的概率为 0.9876 。
立同服从(0,1)N ,则21~ni i X X ==∑2()n χ.X 与Y 独立,则(2)Var X Y -=_____13_____ )列结论中肯定正确的是( D ).; (B ),A B 相容;()B ; (D )()()P A B P A -=.()0P B >,则下列选项必然成立的是( A ).); (B )()(|)P A P A B ≤; ); (D )()(|)P A P A B ≥.Y X ,独立,记21Z X Y =-+,则~Z ( C ).1)-; (C )(2,8)N ; (D )(2,9)N . EXEY ,则( B ).; (B )DY DX Y X D +=+)(; (D )X 与Y 不独立.应量为:甲厂家是乙厂家的2倍;乙、丙两厂相等。
数理统计期末复习题
期末复习题 一、填空题(每空2分,共30分)1.已知随机变量X 的分布列如下,则常数a =_______。
X 1 2 3 4 5Pa 2a 0.3 0.3 0.12. 方差分析的前提条件是_________、__________和独立性。
3. 设随机变量X 与Y 相互独立,且D(X)=3,D(Y)=6,则D (3X -Y )= ________。
4. 设随机变量),(~p n B X ,()2,E X =() 1.2,D X = 则n = ______ ,p = ______。
5.正交试验中,若选用正交表)2(1516L ,共需要进行 次实验,最多可以安排 个因素 水平的试验。
6. 用P 值法进行检验时,若P 值α>,则结论应当是________0H 。
7.设总体X 服从正态分布N (μ,2σ),其中μ未知,X 1,X 2,…,X n 为其样本。
若假设检验问题为2201H 1; H 1σσ≠:=:,则应采用 检验。
8. 估计量优劣的主要评判标准是________、________和一致性。
9. 设随机变量2~(1.5,)XN σ,且(1.5 2.5)0.19P X <<=,则(2)P X <=_______ (参考值:(0.5)0.69,(0.6)0.73,(1.25)0.89,(0.25)0.60φφφφ====)10.2S 可作为_______的点估计。
二、单选题(每题3分,共45分)1.某人连续向同一目标射击,每次命中目标的概率为3/5,他连续射击直到命中为止,则射击次数为4的概率是( )(A )453)( , (B )52533⨯)(, (C )53523⨯)(, (D )4115)53(52C )( 2.设~(0,1)X N ,()x φ为X 的分布函数,则(|2|3)P X ->是( )(A ))1()5(φφ+, (B ))1()5(1φφ+- , (C ))1(1)5(φφ-+, (D ))1()5(2φφ-- 3. 某药物治愈率为0.4,现有5个病人服用该药,则5个人中有3个治愈的概率为( )(A )236.04.0⨯ , (B )34.0 , (C )34.053⨯, (D )23356.04.0⨯⨯C4. 设125,,...x x x 是来自(5,2)N 的简单样本,则()E x 和()D x 分别为( )(A )5,2 (B )5(C )1,0.4 (D )5,0.45. 在假设检验中,用α和β分别表示犯第一类错误和第二类错误的概率,则当样本容量一定时,下列说法正确的是( )(A )减少α,增加β (B )增大α,β往往增大(C )减少α,β往往增大 (D )无法确定 6. 设n X X X ,,,21 为总体)3,1(2N 的一个样本,X 为样本均值,则下列结论中正确的是( )(A ) )(~/31n t nX -; (B ) )1,(~)1(3112n F X ni i ∑=-;(C ) )1,0(~/31N nX -; (D ) )1(~)1(31221--∑=n X ni i χ7. 设总体2~(,)X N μσ,n x x x ,...,21是来自总体X 的简单样本,则下列估计量中,不是总体参数μ的无偏估计的是( )(A )10.40.6n X X +(B )i X (C )123X X X +-(D )12...n X X X +++ 8. 对正态总体),(2σμN 的假设检验问题中,使用u 统计量解决的问题是( ). (A) 已知方差,检验均值 (B) 未知均值,检验方差 (C) 已知均值,检验方差 (D) 未知方差,小样本,检验均值 9.单因素方差分析中,当F 值(1,)F k n k <--时,可以认为( )(A) 各样本均值都不相等 (B) 各总体均值不等或不全相等 (C) 各总体均值都不相等 (D) 各总体均值相等10.方差分析时使用的F 统计量是( )(A) 组间平方和除以组内平方和 (B) 组内平方和除以组间平方和 (C) 组间均方除以组内均方 (D) 组内均方除以组间均方 11.设事件A 与B 相互独立,则( )(A) A 与B 不能同时发生 (B) A 与B 一定能同时发生 (C) A 与B 相互独立 (D) A 与B 不独立 12. 甲、乙两人进行射击,A ,B 分别表示甲、乙射中目标,则A B ⋂( ) (A)两人都没射中目标 (B) 甲没射中,乙射中 (C)至少有一人没射中目标 (D) 至少有一人射中目标13. 对因素A 、B 、C 、D 用49(3)L 正交表安排试验,用直观分析法对试验结果进行正交分析和计算,所得因素A 、B 、C 、D 的极差分别为A R =25, B R =16,C R =23,D R =8,则各因素对试验结果的影响从大到小的次序为( )(A )A 、B 、C 、D ; (B )D 、B 、A 、C ; (C )A 、C 、B 、D ; (D )B 、D 、A 、C 14. 若两事件A 和B 相互独立,且满足()( ),()0.3,P AB P A B P A ==则()P B =( ) (A )0.4 (B )0.5 (C )0.6 (D )0.715. 设A ,B 为随机事件,P (B )>0,P (A|B )=1,则必有( )(A )P(A ∪B)=P (A ), (B )B A ⊂, (C )P (A )=P (B ), (D )P (AB )=P (A )三、解答题(共25分)(保留两位小数)(参考值:0.0250.051.961.65u u == 0.0250.05(24)2.06(24) 1.71t t ==)1. (5分)某厂生产的化纤强度服从正态分布,长期以来其标准差稳定在0.85σ=,现抽取了一个容量为25n =的样本,测定其强度,算得样本均值为 2.25x =,试求这批化纤平均强度μ的置信水平为0.95的置信区间。
概率论与数理统计期末复习题1-3
概率与数理统计期末复习题一一、填空题1.设随机变量X的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,31)(31xxexfx,则数学期=+-)(XeXE。
2.设随机变量X,Y相互独立,且服从正态分布N(-1,1),则Z=2X-Y的概率密度。
3.进行三次独立试验,在每次试验中事件A出现的概率相等,已知A至少出现一次的概率等于6437,则事件A在一次试验中出现的概率P(A)= .4.设X,Y是随机变量,D(X)=9,D(Y)=16,相关系数21=XYρ,则D(X+Y)= .5. 口袋中装有2个白球,3个红球,从中随机地一次取出3个球,则取出的3个球中至多有2个红球的概率为 .6. 已知随机变量X服从参数为λ的泊松分布,且21}0{==XP,=<}2{XP.二、已知随机变量X的概率密度为⎩⎨⎧<<=其他,01,2)(xxxf.求Y= 3lnX的分布函数.三、玻璃杯成箱出售,每箱装有10只玻璃杯.假设各箱含0只,1只和2只次品的概率分别为0.9,0.06,0.04.一顾客要买一箱玻璃杯,售货员随意取出一箱,顾客开箱随机取出3只,若这3只都不是次品,则买下该箱杯子,否则退回.求(1)该顾客买下该箱玻璃杯的概率;(2)在顾客已买下的一箱中,确实没有次品的概率.四、设随机变量(X,Y)的概率密度为⎪⎩⎪⎨⎧-≤≤≤≤=其他,0660,1,31),(xyxyxf,求 ( 1)边缘密度)(),(yfxfYX; (2)协方差cov(X,Y),并问X 与Y 是否不相关?五、已知一批产品的某一数量指标X服从正态分布)6.0,(2μN,问样本容量n为多少,才能使样本均值与总体均值的差的绝对值小于0.1的概率达到0.95. [96.1)975.0(Φ=,6456.1)95.0(Φ=,29.1)90.0(Φ=]。
六、使用归工艺生产的机械零件,从中抽查25个,测量其直径,计算得直径的样本方差为6.27.现改用新工艺生产, 从中抽查25个零件,测量其直径,计算得直径的样本方差为 4.40. 设两种工艺条件下生产的零件直径都服从正态分布,问新工艺生产的零件直径的方差是否比旧工艺生产的零件直径的方差显著地小(05.0=α)?七、设总体X的的概率密度为⎪⎩⎪⎨⎧<<-=--其它,010,11);(12xxxfθθθθ其中1>θ,是未知参数,),,,(21nxxx是总体X的样本观察值.求(1)θ的矩估计量;(2) θ的极大似然估计量Lθ,并问Lθ是θ的无偏估计吗?八、设随机向量(X,Y)的概率密度为⎩⎨⎧≤≤≤≤=其它,010,1,8);(yxyxyyxf求 (1)条件概率密度)|(yxfX;(2) Z=X+Y的概率密度.;概率与数理统计期末复习题二一、一、选择题1.设随机变量X和Y相互独立,其概率分布为X 1 2 Y 1 21/3 2/3 1/3 2/3则下列命题正确的是。
概率论与数理统计期末考试试题及答案
)B =________________.3个,恰好抽到,(8ak ==(24)P X -<= .乙企业生产的50四、(本题12分)设二维随机向量(,)X Y 的联合分布律为\01210.10.20.120.10.2Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独立?为什么?五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他 求()(),E X D X一、填空题(每小题3分,共30分) 1、ABC 或AB C 2、0.6 3、2156311C C C 或411或0.3636 4、15、136、2014131555kX p 7、1 8、(2,1)N - 二、解 设12,A A 分别表示取出的产品为甲企业和乙企业生产,B 表示取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ======== ........ 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=⨯+⨯= ..................... 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ⨯===........................................ 12分 三、(本题12分)解 (1)由概率密度的性质知 340391()21224x f x dx kxdx dx k +∞-∞⎛⎫=+-=+= ⎪⎝⎭⎰⎰⎰故16k =. .......................................................................... 3分 (2)当0x ≤时,()()0x F x f t dt -∞==⎰;当03x <<时, 2011()()612xxF x f t dt tdt x -∞===⎰⎰; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞⎛⎫==+-=-+- ⎪⎝⎭⎰⎰⎰;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞⎛⎫==+-= ⎪⎝⎭⎰⎰⎰;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤⎧⎪⎪<<⎪=⎨⎪-+-≤<⎪⎪≥⎩............................................ 9分(3) 77151411(1)22161248P X F F ⎧⎫⎛⎫<≤=-=-=⎨⎬ ⎪⎩⎭⎝⎭.................................. 12分四、解 (1)由分布律的性质知01.0.20.10.10.21a +++++=故0.3a = ......................................................................... 4分(2)(,)X Y 分别关于X 和Y 的边缘分布律为0120.40.30.3X p ........................................................... 6分120.40.6Y p ................................................................ 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===⨯=,故 {}{}{}0,101P X Y P X P Y ==≠==所以X 与Y 不相互独立. ............................................................. 12分 五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞⎡⎤⎡⎤==+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰ ............... 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰................................. 9分 221()()[()].6D XE X E X =-= ................................................... 12分一、填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = P( A ∪B) =2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: 没有任何人的生日在同一个月份的概率4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= ,分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , 1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1)1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他求边缘密度函数(),()X Y x y ϕϕ;2) 问X 与Y 是否独立?是否相关?计算Z = X + Y 的密度函数()Z z ϕ1、(10分)设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。
数理统计期末考试试题
一、X 服从),(2σμN ,2σ为已知,原假设和备择假设为0:0:10>↔=μμH H 用U 检验法进行检验,求该检验的势函数及犯第二类错误的概率. 96.1,65.1,05.0025.005.0===U U α (12分)二、X 的分布密度函数为⎪⎩⎪⎨⎧≤>=-000),(11x x e x f x θθθ (1)求θ的最大似然估计量; (7分)(2)该估计量是否为θ的有效估计 (7分)三、n X X X ,...,21为来自),0(θ上均匀分布的样本,证明i n x n X X ≤≤=1)(max 是θ的充分统计量,并证明其为θ的无偏估计。
四、121,,...,+n n X X X X 为来自),(2σμN 的样本,2,n S X 分别为的样本均值和样本方差,求111+-+-n n n n S XX 的概率分布五、在某橡胶产品的配方中,考虑3种不同的促进剂和4种不同分量的氧化锌,各配方作2次实验.设在各水平的搭配下胶品的定强指标服从正态分布且方差相同, 已知5.17,75.4,13.82,58.38====E AXB B A Q Q Q Q 问促进剂、氧化锌分量以及它们的交互作用对定强指标有无显著影响.29.3)15,3(,49.3)12,3(,89.3)12,2(,3)12,6(,05.005.005.005.005.0=====F F F F α六.某电话交换台在一小时内接到电话用户呼叫次数按每分钟统计得到记录如下: 呼叫次数 0 1 2 3 4 5 6 >7频 数 8 16 17 10 6 2 1 0问电话交换台每分钟接到呼叫次数X 是否服从泊松分布. (14分)七、),(~2σμN X ,2σ未知,求μ的置信度为α-1的置信区间。
(8分) 八、n θ是θ的一个估计量,当∞→n 时有0ˆ,0ˆ→→n n D E θθ.证明nθˆ是θ的相合估计量,即0}ˆ{lim =≥-∞→εθθn n P 九、X 服从两点分布B(1.p).n X X X ,...,21为其样本,参数p 的先验分布为),(γαβ.求p 的后验分布. (10分)。
高校统计学专业数理统计期末试卷及详解
高校统计学专业数理统计期末试卷及详解一、选择题1. 在统计学中,数据可分为以下哪两种类型?A.连续型和离散型B. 定量型和定性型C. 正态分布型和偏态分布型D. 样本数据和总体数据答案:B. 定量型和定性型解析:定量型数据是指可用数值表示且具有可比较性的数据,如身高、体重等;定性型数据则是以描述性质的方式呈现,如性别、颜色等。
2. 下列哪个统计指标用来度量数据的集中趋势?A. 标准差B. 方差C. 中位数D. 最大值答案:C. 中位数解析:中位数是将数据按升序排列后,位于中间位置的数值,它可以较好地度量数据的集中趋势。
3. 若两个事件A和B相互独立,则下列说法正确的是:A. P(A并B) = P(A) × P(B)B. P(A或B) = P(A) + P(B)C. P(A|B) = P(A)D. P(A且B) = P(A) + P(B)答案:A. P(A并B) = P(A) × P(B)解析:当事件A和B相互独立时,它们的联合概率等于各自概率的乘积。
4. 假设一组数据的标准差为0,则该组数据的变异程度是?A. 高B. 低C. 无法确定D. 不存在答案:B. 低解析:标准差反映了数据的变异程度,当标准差为0时,数据的变异程度为低。
5. 在一组数据中,75%的数据落在均值两侧的范围内,这个范围可以用以下哪个统计指标来度量?A. 标准差B. 方差C. 百分位数D. 偏度答案:A. 标准差解析:标准差描述了数据的离散程度,当数据的标准差较小时,就说明数据集中在均值附近,75%的数据落在均值两侧可以通过标准差来衡量。
二、填空题1. 在正态分布曲线上,μ代表_______,σ代表_______。
答案:μ代表均值,σ代表标准差。
2. 甲、乙两个班的考试成绩平均数分别为75和80,标准差分别为8和10。
如果将甲、乙两个班的成绩合并,合并后的成绩标准差为_____。
答案:合并后的成绩标准差无法确定。
概率论与数理统计复习题1
概率论与数理统计复习题一、 填空题(每题2分)1、设连续型随机变量的概率密度函数为()f x ,则()f x dx +∞-∞=⎰12、 随机变量X 服从泊松分布,其分布律{},0,1,2...!kP X k e k k λλ-===3、 随机变量X 服从标准正态分布,其概率密度函数22()x f x -=4、一批产品,由甲厂生产的占31,其次品率为5%,由乙厂生产的占32,其次品率为10%,从这批产品中随机取一件,恰好取到次品的概率为1125、 随机变量X~N (2,22),则P {X ≤0}=0.1587 (Φ(1)=0.8413)6、甲、乙两门高射炮彼此独立地向一架飞机各发一炮, 甲、乙击中飞机的概率分别为0.3和0.4,则飞机至少被击中一炮的概率为0.58 二、 选择题(每题2分)1. 设随机变量X 的概率密度函数为2(1)8()x f x +-=,则X ~ B 。
A. (1,2)N -B. (1,4)N -C. (1,8)N -D. (1,16)N - 2. 设随机变量X 、Y 都服从区间[0,1]上的均匀分布,则E(X+Y)= C 。
A. 16B. 12C. 1D. 23. X 为随机变量,其方差存在,c 为任意非零常数,则下列等式正确的是 A 。
A. D(X+c)=D(X)B. D(X+c)=D(X)+cC. D(X-c)=D(X)-cD. D(cX)=cD(X)4. 设随机事件A 与B 互不相容,且P(A)>0,P(B)>0,则 D 。
A.()1()P A P B =- B.()()()P AB P A P B = C.()1P A B ⋃= D. ()1P AB =5. 设A 、B 为随机事件,且P(B)>0,P(A|B)=1,则必有 A 。
A.()()P A B P A ⋃= B.A B ⊂ C.()()P A P B = D. ()()P AB P A = 三、 计算题(每题8分)1. 把10本书任意放在书架的一排上,求其中指定的3本书放在一起的概率。
数理统计 期末试题及答案
数理统计期末试题及答案注意事项:本文为数理统计期末试题及答案,按照试题的要求,将试题和答案进行整理和排版,以便学生们参考和复习。
以下为试题及答案的详细内容。
一、选择题1. 下列哪个统计图可以用于表示定性变量的分布情况?A. 饼图B. 直方图C. 线图D. 散点图答案:A2. 假设某地区的年降雨量服从正态分布,平均降雨量为50mm,标准差为10mm。
设有一天的降雨量为X,X~N(50,10^2),则P(X≥60)等于多少?A. 0.1587B. 0.3413C. 0.5000D. 0.8413答案:D3. 在一场篮球赛中,甲队的命中率为75%,乙队的命中率为80%。
已知甲队共投篮20次,乙队共投篮30次。
问:甲队在这场比赛中命中球的次数比乙队多多少次?A. 1B. 2C. 3D. 4答案:B4. 某投资公司第一天投资100万美元,以后每天投资额为前一天的1/4。
设投资额构成一个等比数列,求该公司的总投资额。
A. 200万美元B. 240万美元C. 250万美元D. 300万美元答案:C5. 一个城市中共有A、B、C三个医院,过去一年中A医院门诊病人数占总病人数的1/3,B医院门诊病人数占总病人数的1/4,C医院门诊病人数占总病人数的1/6。
如果某天随机选择一位门诊病人,那么他就诊于C医院的概率是多少?A. 1/6B. 1/5C. 1/4D. 1/3答案:A二、计算题1. 设X为正态分布随机变量,已知X~N(50,16),求P(45≤X≤55)。
答案:要求P(45≤X≤55),可以使用标准正态分布表计算。
先求得标准化后的值:(45-50)/4=-1.25,(55-50)/4=1.25。
查表可得P(-1.25≤Z≤1.25)=0.7881-0.1056=0.6825。
故P(45≤X≤55)≈0.6825。
2. 甲、乙两人独立地各自以相同的速率生产零件,甲人生产的零件平均每小时有2个次品,乙人生产的零件平均每小时有3个次品。
概率论与数理统计期末复习题(1)
期末复习题一、填空题1. 设A,B 为随机事件,已知P(A)=0.7,P(B)=0.5,P(A-B)=0.3,则P (B-A )= 。
2.设有20个零件,其中16个是一等品,4个是二等品,今从中任取3个,则至少有一个是一等品的概率是 .3.设()4 ,3~N X ,且c 满足()()c X P c X P ≤=>,则=c 。
4. 设随机变量X 服从二项分布,即===n p EX p n B X 则且,7/1,3),,(~ .5. 设总体X 服从正态分布)9,2(N ,921,X X X 是来自总体的样本,∑==9191i i X X 则=≥)2(X P 。
6. 设B A ,是随机事件,满足===)(,)(),()(B P p A P B A P AB P 则 .7. B A ,事件,则=⋃B A AB 。
8. 设随机变量Y X ,相互独立,且)16,1(~),5,1(~N Y N X ,12--=Y X Z 则的相关系数为与Z Y9.随机变量=≤≤-=Φ=Φ}62{,9772.0)2(,8413.0)1(),4,2(~X P N X 则 . 10. 设随机变量X 服从二项分布,即===n p EX p n B X 则且,5/1,3),,(~ . 11. B A ,事件,则=⋃B A AB 。
12. 连续型随机变量X 的概率密度为()⎩⎨⎧≤>=-00,0,3x x e x f x λ则=λ .13. 盒中有12只晶体管,其中有10只正品,2只次品.现从盒中任取3只,设3只中所含次品数为X ,则()==1X P .14. 已知二维随机变量221212(,)~(,;,;)X Y N μμσσρ,且X 与Y 相互独立,则ρ=______ .15. 设随机变量X 服从二项分布),(p n B ,则=+)83(X D . .二、选择题1. 设离散型随机变量X 的分布列为其分布函数为F(x),则F(3)= .A. 0B. 0.3C. 1D. 0.8 2. 设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤<-≤≤=其它,021,210,x x x x x f则X 落在区间()2.1 ,4.0内的概率为( ).(A) 0.64;(B) 0.6; (C) 0.5; (D) 0.42.3. 矩估计是( )A. 点估计B. 极大似然估计C. 区间估计D. 无偏估计 4. 甲乙两人下棋,每局甲胜的概率为0.4,乙胜的概率为0.6,。
概率论与数理统计 期末复习1
概率论与数理统计 期末复习(一)第二章 随机变量及其分布一、了解离散性随机变量及其概率分布:特征:可列无穷多 二、熟练掌握三种常用离散性随机变量的分布律(0-1)分布 、 二项分布、 泊松分布(泊松定理的应用) (知道:期望方差)【例1-1】某种型号器件的寿命X(以小时计)具有概率密度()⎪⎩⎪⎨⎧>=,其他00100,10002x x x f现有一大批此种器件(设备损坏与否相互独立),任取5只,问其中至少有2只寿命大于1500小时的概率.【例1-2】设顾客在某银行窗口等待服务的时间X(min)服从指数分布,其概率密度为()⎪⎩⎪⎨⎧>=-,其他00,515/x ex f x X 某顾客在窗口等待服务,若超过10min ,他就离开,他一个月要到银行5次,以Y 表示一个月内他未等到服务而从窗口离开的次数,写出Y 的分布律,并求出{}1≥Y P .【例1-3】设有80台同类型设备,各台工作是相互独立的,发生故障的概率都是0.01,且一台设备的故障能由一个人处理.考虑两种配备维修工人的方法,其一是由4人维护,每人维护20台;其二是由3人共同维护80台.试比较这两种方法在设备发生故障时不能及时维修的概率的大小.【例2-1】一电话总机每分钟收到呼唤的次数服从参数为4的泊松分布,求某一分钟内呼唤次数大于2的概率.【例2-2】保险公司在一天内承保了5000张相同年龄,为期一年的寿险保单,每人一份.在合同有效期内若投保人死亡,则公司需赔付3万元. 设在一年内,该年龄段的死亡率为0.0015,且各个投保人是否死亡相互独立. 求该公司对于这批投保人的赔付金额总数不超过30万元的概率.三、熟练掌握连续型随机变量分布函数的概念,以及概率密度和随机变量分布函数的关系要点: {}x X P x F ≤=)(;⎰=∞-xdt t f x F )()(,若)(x F 在x 点连续,则有)()('x f x F =; 概率密度的性质:⎰=≥∞∞-1)(,0)(dx x f x f 满足这两个条件的函数才可以认为是概率密度;四、熟练掌握三种连续型随机变量的分布 均匀分布、指数分布、正态分布(知道:概率密度、分布函数、期望方差) 【例3-1】设随机变量X 的分布函数为:⎪⎩⎪⎨⎧≥<≤<=e x e x x x x F X ,11,ln 1,0)((1) 求{}{}⎭⎬⎫⎩⎨⎧<<≤<<252,30,2X P X P X P ;(2) 求概率密度)(x f X .【例3-2】设随机变量X 的概率密度为:()⎪⎩⎪⎨⎧<≤-<≤=其他,,,021210x x x x x f求X 的分布函数.【例3-3】设()()x g x f ,都是概率密度函数,求证:()()()()10,1≤≤-+=αααx g x f x h 是一个概率密度函数.【例4-1】设K 在(0,5)服从均匀分布,求关于x 的方程:02442=+++K Kx x有实数根的概率.【例4-2】(记住正态分布引理) 设随机变量()22,3~N X :(1) 求{}52≤<X P ;(2) 试确定常数c,使得{}{}c X P c X P ≤=>;(3) 试确定常数d 的最小值,使得{}9.0≥>d X P .【例4-3】设顾客在某银行窗口等待服务的时间X(min)服从指数分布,其概率密度为()⎪⎩⎪⎨⎧>=-,其他00,515/x ex f x X 某顾客在窗口等待服务,若超过10min ,他就离开,他一个月要到银行5次,以Y 表示一个月内他未等到服务而从窗口离开的次数,写出Y 的分布律,并求出{}1≥Y P .五、求随机变量的函数分布的两种方法: (1)直接法:{}{})]'())[(?()())(?()()(111y g y g x f y f y g x F y x g P y Y P y F X Y X Y ---=⇒=≤=≤=(2)定理法:P52 定理直接套公式(套公式要注意在x 的定义域上)(x g y =必须是严格单调!)【例5-1】设)1,0(~N X (1) 求X e Y =的概率密度;(2) 求122+=X Y 的概率密度; (3) 求X Y =的概率密度.【例5-2】设随机变量X 的概率密度为()⎪⎩⎪⎨⎧>=-,其他00,x e x f x 求2X Y =的概率密度.【练习】1. 某人进行射击,设每次射击的命中率为0.02,独立射击400次,试估计他至少击中2次的概率.2. 设()λπ~X ,且{}{}21===X P X P ,求{}4=X P .3. 设()λπ~X ,其分布律为{},...2,1,0,!===-k k e k X P kλλ,试确定k 的值,使得{}k X P =最大.4. 设()p n b X ,~,其分布律为{}10.,...,2,1,0,)1(<<=-==-p n k p p C k X P k n kk n ,试确定k 的值,使得{}k X P =最大.5. 设连续型随机变量X 的分布函数为: ()()+∞<<∞-+=x x B A x F arctan(1) 求B A ,的值;(2) 求X 的概率密度()x f .6. 设连续型随机变量X 的概率密度为:()⎩⎨⎧<<+=其他,010,x b ax x f且8521=⎭⎬⎫⎩⎨⎧>X P ,(1) 求b a ,的值;(2) 求⎭⎬⎫⎩⎨⎧≤<2141x P ;(3) 求随机变量X 的分布函数()x F .7. 对某地区考生抽样调查的结果表明,考生的数学成绩(百分制)近似服从()2,72σN ,其中σ未知,已知96分以上的考生占总数的2.3%.试求考生的数学成绩介于60分与84分之间的概率.8. 设321,,X X X 是随机变量,且()()()232213,5~,2,0~,1,0~N X N X N X ,{}22≤≤-=x P P j ,(j=1,2,3),则( )(13-8)(A) 321P P P >> (B) 312P P P >> (C) 213P P P >> (D) 231P P P >>9. (13-14)设随机变量Y 服从参数为1的指数分布,a 为常数且大于零,则{}a Y a Y P >+≤1的值为.10. (11-8)设()()x F x F 21,为2个分布函数,其相对应的概率密度为()()x f x f 21,,其都是连续函数,则下列选项中必为概率密度的是( )(A) ()()x f x f 21 (B) ()()x F x f 122 (C) ()()x F x f 21 (D) ()()()()x F x f x F x f 1221+11. (10-8)设()x f 1为标准正态分布的概率密度,()x f 2为[-1,3]上均匀分布的概率密度,若()()())0,0(0,0,21>>⎩⎨⎧>≤=b a x x bf x x af x f 为概率密度,则b a ,应该满足( )(A) 432=+b a (B) 423=+b a (C) 1=+b a (D) 2=+b a12. (06-14)设随机变量X 服从正态分布()2111,σμN ,随机变量Y 服从正态分布()2222,σμN ,且{}{}1121<-><-μμY P X P ,则下列结论成立的是( )(A) 21σσ< (B) 21σσ> (C) 21μμ< (D) 21μμ>13. (02-21)设随机变量X 的概率密度为: ()⎪⎩⎪⎨⎧≤≤=其他,00,2cos 21πx x x f 对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.14. 设随机变量),(~σμN X ,求证:随机变量)0,(≠+=a b a b aX Y 为常数,也服从正态分布 ()2','~σμN Y ,并指出2','σμ的值.15. 设随机变量X 在区间()10,服从均匀分布. (1) 求X e Y =的概率密度;(2) 求X Y ln 2-=的概率密度.。
概率论与数理统计复习题(1)
概率论与数理统计复习题(1)复习题概率论与数理统计复习题一、填空题1.已知则.2.已知,A, B两个事件满足条件,且,则。
3.设一批产品有12件,其中2件次品,10件正品,现从这批产品中任取3件,若用表示取出的3件产品中的次品件数,则.4.同时抛掷3枚硬币,以X表示出正面的个数,则X的概率分布为.5.设随机变量X的概率密度为用Y表示对X的3次独立重复观察中事件出现的次数,则。
6.设随机变量X~,且,则_________7.若二维随机变量(X, Y)的区域上服从均匀分布,则(X,Y)的密度函数为8.设二维随机变量(X,Y)的概率密度为则。
9.设随机变量X的分布律为X-202P0.40.30.3。
10.设随机变量X的概率密度为则 A = 。
11.设,则,。
12.已知离散型随机变量X服从参数为2的泊松分布,,则。
13.设,,,则.14.设总体是来自总体X的样本,则,。
15.设是总体的样本,则当常数时,是参数的无偏估计量.16.一袋中有50个乒乓球,其中20个红球,30个白球,今两人从袋中各取一球,取后不放回,则第二个人取到红球的概率为。
.17.已知、两事件满足条件,且,则= 。
18.已知,,,则、、都不发生的概率为。
.19.设一次试验中事件发生的概率为,又若已知三次独立试验中至少出现一次的概率等于,则。
.20.设事件和中至少有一个发生的概率为,和中有且仅有一个发生的概率为,那么和同时发生的概率为.21.20个运动员中有两名国家队队员,现将运动员平分为两组,则两名国家队队员分在不同的组的概率为。
.22.已知,,则.23.甲袋中有5只白球,5只红球,15只黑球,乙袋中有10只白球,5只红球,10只黑球,从两袋中各取一球,则两球颜色相同的概率为.24.设、是随机事件,,,,则,,.25.设两两相互独立的三个事件、、满足条件,,且已知,则.26.若,且,,则.27.设、为随机事件,已知,,,则.28.设,,,则0.1,0.5,.29.已知,,,则.30.设、相互独立,,,则.31.已知,,,则.32.一个实习生用同一台机器接连独立的制造了3个同种零件,第个零件不合格的概率为,以表示3零件中合格品的个数,则。
概率论与数理统计期末试卷及答案(1)
概率论与数理统计期末试卷一、填空(每小题2分,共10分)1.设是三个随机事件,则至少发生两个可表示为______________________。
2. 掷一颗骰子,表示“出现奇数点”,表示“点数不大于3”,则表示______________________。
3.已知互斥的两个事件满足,则___________。
4.设为两个随机事件,,,则___________。
5.设是三个随机事件,,,、,则至少发生一个的概率为___________。
二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。
每小题2分,共20分)1. 从装有2只红球,2只白球的袋中任取两球,记“取到2只白球”,则()。
(A) 取到2只红球(B)取到1只白球(C)没有取到白球(D)至少取到1只红球2.对掷一枚硬币的试验, “出现正面”称为()。
(A)随机事件(B)必然事件(C)不可能事件(D)样本空间3. 设A、B为随机事件,则()。
(A) A (B) B(C) AB (D) φ4. 设和是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是()。
(A) 与互斥(B)与不互斥(C)(D)5. 设为两随机事件,且,则下列式子正确的是()。
(A) (B)(C)(D)6. 设相互独立,则()。
(A) (B)(C)(D)7.设是三个随机事件,且有,则()。
(A) 0.1 (B) 0.6(C) 0.8 (D) 0.78. 进行一系列独立的试验,每次试验成功的概率为p,则在成功2次之前已经失败3次的概率为()。
(A) p2(1–p)3 (B) 4 p (1–p)3(C) 5 p2(1–p)3 (D) 4 p2(1–p)39. 设A、B为两随机事件,且,则下列式子正确的是()。
(A) (B)(C) (D)10. 设事件A与B同时发生时,事件C一定发生,则()。
(A) P(A B) = P (C) (B) P (A) + P (B) –P (C) ≤ 1(C) P (A) + P (B) –P (C) ≥ 1 (D) P (A) + P (B) ≤P (C)三、计算与应用题(每小题8分,共64分)1. 袋中装有5个白球,3个黑球。
概率论与数理统计期末考试试卷答案
概率论与数理统计期末考试试卷答案一、选择题(每题5分,共25分)1. 下列事件中,不可能事件是()A. 抛掷一枚硬币,正面朝上B. 抛掷一枚硬币,正面和反面同时朝上C. 抛掷一枚骰子,出现7点D. 抛掷一枚骰子,出现1点答案:C2. 设A、B为两个事件,若P(A-B)=0,则下列选项正确的是()A. P(A) = P(B)B. P(A) ≤ P(B)C. P(A) ≥ P(B)D. P(A) = 0答案:B3. 设随机变量X服从二项分布B(n, p),则下列结论正确的是()A. 当n增加时,X的期望值增加B. 当p增加时,X的期望值增加C. 当n增加时,X的方差增加D. 当p增加时,X的方差减少答案:B4. 设X~N(μ, σ^2),下列选项中错误的是()A. X的期望值E(X) = μB. X的方差D(X) = σ^2C. X的概率密度函数关于X = μ对称D. 当σ增大时,X的概率密度函数的峰值减小答案:D5. 在假设检验中,显著性水平α表示()A. 原假设为真的情况下,接受原假设的概率B. 原假设为假的情况下,接受原假设的概率C. 原假设为真的情况下,拒绝原假设的概率D. 原假设为假的情况下,拒绝原假设的概率答案:C二、填空题(每题5分,共25分)6. 设A、B为两个事件,P(A) = 0.5,P(B) = 0.6,P(A∩B) = 0.3,则P(A-B) = _______。
答案:0.27. 设随机变量X服从泊松分布,已知P(X=1) = 0.2,P(X=2) = 0.3,则λ = _______。
答案:1.58. 设随机变量X~N(μ, σ^2),若P(X<10) = 0.2,P(X<15) = 0.8,则μ = _______。
答案:12.59. 在假设检验中,若原假设H0为μ=10,备择假设H1为μ≠10,显著性水平α=0.05,则接受原假设的临界值是_______。
答案:9.5或10.510. 设X、Y为两个随机变量,若X与Y相互独立,则下列选项正确的是()A. E(XY) = E(X)E(Y)B. D(X+Y) = D(X) + D(Y)C. D(XY) = D(X)D(Y)D. 上述选项都正确答案:D三、解答题(每题25分,共100分)11. 设某班有50名学生,其中有20名男生,30名女生。
概率论和数理统计期末考试题及答案
概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。
则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。
《概率论与数理统计》期末试题一答案
1、 设A 与B 为互不相容的两个事件,0)B (P >,则=)|(B A P 0 。
2、 事件A 与B 相互独立,,7.0)(,4.0)(=+=B A P A P 则 =)(B P 0.5 。
3、 设离散型随机变量X 的分布函数为 0 1-<x=)(x F a 11<≤-xa 32- 21<≤x b a + 2≥x且21)2(==X P ,则=a61 =b , 65。
4、 某人投篮命中率为54,直到投中为止,所用投球数为4的概率为___6254________。
5、 设随机变量X 与Y 相互独立,X 服从“0-1”分布,4.0=p ;Y 服从2=λ的泊松分布)2(π,则._______24.2____)(_______,4.2____)(=+=+Y X D Y X E6、 已知,31,9)Y (D ,16)X (D X Y =ρ== 则.___36___)Y 2X (D =-7、 设总体X 服从正态分布),,0(2σN 从总体中抽取样本,,,,4321X X X X 则统计量24232221X X X X ++服从_______)2,2(F ______________分布。
8、 设总体X 服从正态分布),1,(μN 其中μ为未知参数,从总体X 中抽取容量为16的样本,样本均值,5=X 则总体均值μ的%95的置信区间为____(4.51,5.49)____。
(96.1975.0=u )9、 若),(~),,(~222211σμσμN Y N X ,且X 与Y 相互独立,则Y X Z +=服从______),(222121σσμμ++N ______分布。
一、 计算题(每小题10分,共60分)1、 (10分)已知8只晶体管中有2只次品,从其中取两次,每次任取一只,做不放回抽样。
求下列事件的概率:(1)一只是正品,一只是次品;(2)第二次才取得次品;(3)第二次取出的是次品。
数理统计学期末考试卷子
数理统计学期末考试卷子一、选择题1. 下列哪个不是统计学的基本概念?A. 总体B. 样本C. 中位数D. 方差2. 相对频率是指:A. 某个数出现的次数B. 某个数出现的频率C. 某个数在总数中的比例D. 某个数的个数3. 样本容量越大,样本均值的估计:A. 变得更加准确B. 变得更加不准确C. 与总体均值无关D. 无法估计4. 统计学中经常使用的分布是:A. 泊松分布B. 正态分布C. 二项分布D. 均匀分布5. 样本方差的计算公式为:A. (Σxi - μ)^2B. Σ(xi^2)C. Σ(xi - μ)^2 / nD. Σ(xi - μ)^2 / (n-1)二、计算题1. 有一个班级30名学生,他们期末考试成绩如下:(单位:分)85, 90, 78, 92, 88, 75, 80, 85, 86, 79, 84, 93, 87, 88, 82, 81, 77, 83, 94, 89, 87, 84, 85, 79, 91, 76, 80, 83, 86, 90请计算这30名学生的平均分、中位数和方差。
2. 一家公司的员工月薪数据如下:(单位:元)5000, 6000, 5500, 5800, 6200, 6500, 5800, 5700, 5300, 5900请计算这些员工的平均工资、工资中位数和工资标准差。
三、简答题1. 什么是正态分布?正态分布有什么特点?2. 请解释什么是中心极限定理?它对数理统计学有什么重要意义?3. 为什么要使用抽样调查?抽样调查有什么优点和局限性?四、推断题1. 一项调查显示,某电商平台的用户年龄分布呈正态分布,平均年龄为35岁,标准差为5岁。
现在随机抽取10名用户,请根据这10名用户的年龄推断这家电商平台的用户年龄情况。
2. 一份问卷调查显示,80%的受访者认为某品牌的产品质量很好。
现在随机抽取100名受访者,请根据这100名受访者的回答推断整体受访者对产品质量的看法。
2016数理统计期末练习题1
欢迎阅读数理统计(sh ù l ǐ t ǒn ɡ j ì)期末练习题1. 在总体(z ǒngt ǐ)中抽取(ch ōu q ǔ)容量为的样本(y àngb ěn),如果(r úgu ǒ)要求样本均值落在内的概率不小于0.95,则n 至少为多少2.设是来自的样本,问n 多大时才能使得成立3. 由正态总体抽取两个独立样本,样本均值分别为,样本容量分别15,20,试求.5.设是来自的样本,经计算,试求.6.设n x x ,,1 是来自的样本,试确定最小的常数c,使得对任意的,有.7. 设随机变量 X~F(n,n),证明9.设是来自的样本,试求服从 分布.10.设总体为N(0,1),21,x x 为样本,试求常数k ,使得11.设n x x ,,1 是来自的样本,是来自的样本,c,d 是任意两个不为0的常数,证明其中分别是两个样本方差. 12.设是来自的样本,试求常数c使得服从t 分布,并指出分布的自由度 。
13.设从两个方差相等的正态总体中分别抽取容量为15,20的样本,其样本方差分别为试求14. 某厂生产(sh ēngch ǎn)的灯泡使用寿命,现进行(j ìnx íng)质量检查,方法(f āngf ǎ)如下:随机抽取若干个灯泡,如果这些灯泡的平均寿命(p ín ɡ j ūn sh òu m ìn ɡ)超过2200h,就认为该厂生产的灯泡质量(zh ìli àng)合格,若要使检查能通过的概率不低于0.997,问至少应检查多少只灯泡? 15.设 是来自正态分布),(2σμN 的一个样本, 与分别是样本均值与样本方差。
求k,使得 ,21.设是来自正态分布总体的一个样本。
是样本方差,试求满足的最小n 值 。
1. 设(X 1, X 2, …,X n )为来自正态总体 N(?, ?2)的样本, ?2未知, 现要检验假设H 0: ? = ?0, 则应选取的统计量是______; 当H 0成立时, 该统计量服从______分布.2. 在显着性检验中,若要使犯两类错误的概率同时变小, 则只有增加______.1. 设总体X ~ N(?, ?2) , ?2已知, x 1, x 2, …, x n 为取自X 的样本观察值, 现在显着水平? = 0.05下接受了H 0: ? = ?0. 若将? 改为0.01时, 下面结论中正确的是(A) 必拒绝H 0 (B) 必接受H 0 (C) 犯第一类错误概率变大 (D) 犯第一类错误概率变小 2. 在假设检验中, H 0表示原假设, H 1为备选假设, 则称为犯第二类错误的是 (A) H 1不真, 接受H 1 (B) H 0不真, 接受H 1 (C) H 0不真, 接受H 0 (D) H 0为真, 接受H 13. 设(X 1, X 2, …,X n )为来自正态总体 N(?, ?2)的样本, ?, ?2未知参数, 且,则检验假设H 0: ? = 0时, 应选取统计量为 (A)(B)(C)(D)4,对于(du ìy ú)单因素试验方差分析的数学模型,设为总离差平方和,为误差(w ùch ā)平方和,为效应(xi àoy ìng)平方和,则总有1、设来自(l ái z ì)总体(zǒngtǐ)的样本值为,则总体X 的经验分布函数在处的值为_____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009期末复习题注:这份答案是在2009年最后一晚做出来的,时间比较紧,所以可能有些地方不严谨,有什么错误还请各位多包涵。
处理一个问题有很多合理的办法,这份答案所列出的只不过代表个人的想法,仅供参考。
这份答案算是送大家的新年礼物吧,预祝大家期末考试顺利,一年都有好运孟帅1. 设随机变量X 和Y 相互独立,且都服从正态分布N(0,32),而921,,,X X X 和921,,,Y Y Y 分别是来自总体X 和Y 的样本,则统计量U =292221921YY Y X X X ++++++ 服从什么分布?为什么?解:分子分母同除以9得到服从N (0,1), 服从X ²(9)分布,因此U 服从 t (9)分布(课本92页)2.某大学来自A,B 两市的新生中分别抽取10名和11名男生调查身高,测得他们的身高分别为cm x 176=,cm y 172=,样本方差分别为3.1121=S ,1.922=S 。
不妨设两个城市的男生的身高分别服从正态分布),(21σμN 和),(22σμN ,求21μμ-的95%的置信区间,并请在0.05水平下判断两个城市的男生身高是否相等?解: 但是 未知,构造111页)91i X ∑9119i i X =∑9213i i Y =()∑22212σ=σ=σ2σ()()12X Y --μ-μ。
=10, =11, =11.3,=9.1, =176, =172。
代入T 表达式得到T= 。
T 服从t ( + -2)查附表7得到 =2.093得到 的置信区间为:(1.088,6.912) 这个区间不包含0,可以直接判定在0.05水平下两城市男生身高不相等。
如果想严谨一点就在进行假设检验:原假设:两城市男生身高相等;备择:两城市男生身高不等。
检验统计量,和 比较。
如果T 大于,拒绝原假设,否则接受。
3.随机调查了某校200名沙眼患者,经用某种疗法治疗一定时期后治愈168人,试求总体治愈率的95%置信区间。
解:样本率p=0.84,用大样本正态近似法求解,置信区间为:(,)(课本115页)S ω1n 2n 21S 22S XY 1n 2n ()1241.3915-μ-μ()12μ-μ()219t 0.05X Y-()219t 0.05()219t 0.052p u α-2p u α+n=200,查附表4得 =1.96095%置信区间为(0.789,0.891) 4.假设从两个总体)1,0(~N X 和)1,1(~N Y等概率地抽取样本并进行分类,分类过程如下:如果样本值大于96.1则判定为总体Y ,否则就判断为总体X ,试问:将总体X 错判为总体Y 的概率是多少?将总体Y 错判为总体X 的概率是多少?解:P (总体X 错判为总体Y )=P (X >1.96),查附表4, =1.96故P (X >1.96)=0.025P (总体Y 错判为总体X )=P (Y ≤1.96)=P (Y-1≤0.96), 而Y-1服从N (0,1)查附表3得到Φ(0.96)=0.8315,故P (Y ≤1.96)=0.8315 5.为测定某药的剂量x 与血药浓度γ之间的关系,测得如下数据:求γ关于x 的回归方程,并检验方程的显著性(01.0=α)。
解:求回归方程:可以用公式手算,2u 0.052u0.0561622166i i i ii X Y X YXX==- β=-∑∑a Y X=-β当然,考试时允许用计算器的,把上面的数据直接键入,很快便出结果了。
回归方程:检验方程的显著性:原假设:无线性关系;备择:回归效果显著计算统计量 , ,(课本229-230页) 剩下的就是狂按计算器。
F=343.88,查附表8得到 =21.2,所以拒绝原假设,方程回归效果显著。
当然,用r 检验也可以,二者本质上是一样的,在此不再赘述。
6.在诱发大白鼠鼻咽癌的试验中,一组用亚硝酸向鼻腔滴注(鼻注组),另一组在鼻注的基础上加维生素B 12肌注(鼻注+B 12),试验数据如下:试问 ”鼻注” 与 ”鼻注+B 12” 对大鼠诱发癌的作用是否有关联?用什么方法检验?假如上述数据列表中的第二格的数据变为6,该方2.7763.453x γ=+()2U F n Q=-()621i i U ==γ-γ∑()621i i i Q ==γ-γ∑()0.0114F ,法是否还适用?为什么? 解:用X ²检验。
原假设:无关联;备择:有关联a=52,b=19,c=39,d=3,n=113计算统计量 =5.287(课本166页)查附表6得到 所以拒绝原假设。
数据列表中的第二格的数据变为6,这个时候用X ²检验就有点勉强了,四格表的数据画成柱形图时,成对角线斜坡状是最理想的,而此时出现了6和3两个很小的状态,正态性很差,因而不适合。
此时应当用精确概率检验:a=52,b=6,c=39,d=3,n=100代入得 P=0.244>0.05,故不拒绝原假设,既无关。
7:随机抽取8名健康者的血液,将其的血滤液放置不同时间(0,45m ,90m ,135m ),测定血糖浓度,每个受试者有4个测定值。
请问,应该用什么方法分析血糖在不同放置时间的变化?假如要分析各个时间点的差异,应该如何判定?为什么?受试放置时间(分)()()()()()220.5n ad bc n a b a c b d c d --χ=++++()20.051 3.841χ=()()()()a b a c b d c d P n a b c d +!+!+!+!=!!!!!者 编号 0 1 45 2 90 3 135 4 (1) 95 95 89 83 (2) 95 94 88 84 (3) 106 105 97 90 (4) 98 97 95 90 (5) 102 98 97 88 (6) 112 112 101 94 (7) 105 103 97 88 (8)95929080解:时间为单因素,不同时间为不同水平。
原假设:;备择:不全相等。
=1833.96875, =890.38,=943.59=9.89,F 服从于F (3,28)分布查附表8得到 =2.95,因此拒绝原假设,即时间对血糖浓度有影响。
既然时间对血糖浓度有影响,那么就要进行两两比较,以分析各1234μ=μ=μ=μ()48211T ij j i SS x x ===-∑∑e SS A SS ()()41324A e SS F SS /-=/-()0.05328F ,个时间点的差异。
本题中只有四个水平,用单纯的t 检验当然是可以的,但不推荐。
下面将以Q 检验法为例:=101, =99.5, =94.25, =87.125R=max{ - }=13.875在0.05水平,k=4,f=28下查q 表(相当郁闷的是,表里没有28自由度的数据,只好用内插法了)q (4,24)=3.90, q (4,30)=3.84。
得到q (4,28)=3.86q=13.929>q (4,28)因此拒绝原假设。
四个组的均值两两做差,绝对值大于的认为有显著性差异,发现从第二组到第三组就有显著差异了。
(注:Q 、S 检验课本上没有细述,在第八章-方差检验的课件上) 8:对一组胃炎病人先后服用两种药物,然后分别测定其最大排酸量(mmol/h ),请问,应该用什么方法分析两种药的效果之间的差异。
为什么?需要注意什么问题?1x 2x 3x 4xix j xe S =R q =()()()()443028304244302430qq q q ,28-,-=,-,-()428T e D q S =,⨯/T D病例 甲药 乙药 病例 甲药 乙药 编号 XY编号 XY1 11.51 8.84 12 14.56 12.49 2 12.05 10.49 13 9,468.043 22.26 22.28 14 11.20 9.44 4 3.11 1.78 15 16.53 14.12 5 2.03 1.76 16 8.05 6.67 6 4.61 3.85 17 4.54 3.87 7 1.23 0.91 18 9.22 7.93 8 2.53 2.04 19 6.08 4.92 9 3.96 2.99 20 8.657.5210 4.683.9221 13.92 11.93 1111.76 9.932210.36 14.68解:这是一组配对资料,可以考虑使用配对T 检验(课本129页)。
采用t 检验首要数据考虑的正态性。
当然,这一点一般是默许我们使用的。
只有当数据波动特别明显是才考虑(第九题就不符合正态性)。
配对T 检验:设,D 服从N (μ,σ²) 原假设:μ=0;备择:μ≠0。
=3.389t 服从于t (22-1)分布。
查附表7得到 =2.080i i i D X Y =-0.9954550D t -μ-==()0.05221t故拒绝原假设。
采用符号检验或者秩检验也可以。
例如符号检验,根据原始数据的大小定义+、-号:+、+、-、+、+、+、+、+、+、+、+、+、+、+、+、+、+、+、+、+、+、-。
即使不计算也能看出来+太多了。
S=min{ }=2, 在α=0.05,n=22情况下,查附表12得到 =5, 因而拒绝原假设。
9:用两种方法测定同一批人血清样品中的黄体生成素(HCG-CH )含量(mg/L ),试分析两法的效果,能否用固相法取代双抗体法。
解:这同样是配对资料的分析,但是和上一题不同,本体绝对不可以用T 检验。
数据的波动太大,要是这样的数据也能当做正态,那这个世界就和谐了。
可以考虑使用符号检验,wilcoxon 符号秩检验。
n n +-,sα符号检验法:原假设:两种方法效果相同;备择:不相同。
差值标记:+、0、+、+、+、+、+、-、0、-、+、+。
差值为零的不计入。
S=2,n=10,α=0.05。
查附表12得到 =1, S > ,所以接受原假设。
符号秩检验: 差值绝对值序列:0.65、2.8、14.3、22.5、29、200、910、1100、(-)1120、(-)4840对应的秩为1到10=1+2+3+4+5+6+7+8=36, =9+10=19 T=19根据n=10,α=0.05查附表13得到 =8,T > ,因而接受原假设。
10:两组大鼠,一组为药物组、另一为空白对照组。
两组大鼠在4个不同级别的压力(分别是20、40、60、80mmHg)下测量数据,所得数据为在不同压力作用下测量的计量资料(一只大鼠同时有四个不同的数据)。
现要对两组大鼠的测量数据进行统计分析比较,以了解药物对不同压力下测量的数据有无影响。
请问采用哪种统计分析方法? 解:上课的时候老师说过10题和11题仅仅是提醒我们处理数据时要 注意同质性原则,统计方法不作要求。