示波器探头基础知识
示波器探头基础系列之五——示波器探头使用指南(上)
示波器探头基础系列之五——示波器探头使用指南(上)
于C1 和C2,部分的来源与探头针到地的寄生电容Ctrip。
如前所述,高阻探头适用于信号频率低于50MHz 的场合。
这些探头相对便宜,因为它们只使用无源器件。
另外,他们有非常宽的动态范围。
其最小电压幅度取决于探头的衰减因子和示波器的垂直灵敏度。
衰减因子为高电压输入信号提供了便利,如10:1 衰减无源探头支持最高600V 输入电压。
同时,这些探头提供许多种附件,如可变长度电缆选件、各种探头前端、适配器、连接地线。
高阻探头如何影响测量图4 计算带宽和上升时间的测量系统
当示波器被用来测量电路或器件,需要估计测量仪器如何影响待测电路。
大多数情况下,可以建立示波器的输入模型(包括探头),并量化负载效应和
信号偏差。
测试人员关于待测电路的知识加上示波器厂家提供的仪器和探头的规格书,可以建立整个测试系统的模型。
考虑测试系统的简化模型,如图4 所示。
示波器和高阻探头被简化为等效并联RC 电路。
同样的,待测电路可以被简化为戴维宁等效模型。
如果待测电路的源电阻,Rs,约为50Ohm,当使用传统的10:1 高阻探头,则有理由忽略探头10MOhm 电阻,Ro。
这样,系统的等效电路包含有串连电阻,Rs,和并联电容(该电容的值可认为是源电容Cs 和探头输入电容Co 之和。
从这个简单的模型中,我们可以估计示波器对信号上升时间的影响。
由电路分析知识可知,RC 电路对应阶跃输入的响应,其上升时间Tr 有如下公式:
如下例子提供了一些典型的参数值,可以很好的解释适用高阻探头对测量结果带来的影响。
示波器探头入门
1-1 中加以说明,探头在此测量图中作为一个未定义的方框而被指明。
探头事实上无论它是什么,它必须在信号源和示波器输入之间提供足够便利的和高质量的连接(图 1-2 )。
适当的连接有3个关键性的定义问题-物理连接,对电路运行的影响,及信号的传送。
图1-1. 探头是在示波器和测试点之间进行物理和电路连接的设备。
图1-2. 大多数探头由一个探头尖,一根探头电缆线,及一个补偿盒或其它类型的信号调节网络组成。
1理想的探头在理想世界中,理想的探头将提供下列关键的属性:连接简单和便利绝对的信号保真度零信号源极负载完全的噪音抗扰性连接简易和便利。
一个连接到测试点的物理连接已经作为探测的关键要求之一被论及。
使用理想的探头,你应该能够使物理连接简单及便利。
对于小型化电路,如高密度的表面装配技术( SMT ) 电路,微型探头及多种类的为SMT设备设计的探头尖适配器,能够使连接简易及便利。
图 1-3a所示,为这样的一个探头系统。
然而,这些探头,对于具有高电压和普通标准导线的工业功率电路而言,是太小了。
对于功率应用,需要应用更大尺寸的具有更多边缘保护的探头。
图1-3b和表1-3c是此类探头的例子。
图1-3b是一根高电压探头,图1-3c是一个通用探头上的夹具。
从这几个物理连接的例子可以看出,对于所有的应用来说,没有唯一的理想的探头尺寸及外形结构,因此,我们设计了各种各样尺寸外形及结构的探头,从而满足各种各样的应用和物理连接的要求。
绝对信号保真度。
理想的探头应该忠实地将信号从探头尖传送到示波器输入端。
换句话说,探头尖处的原有信号应当被忠实地复制到示波器输入端。
a. 探测 SMT 设备。
b. 高电压探头。
c. 通用探头上的夹具。
图1-3 多种多样的探头可应用于不同的技术应用及测量需求之中。
2图 1-5 . 探头和示波器设计为在规定的带宽范围上进行测量。
超越了 3 dB 点的频率,信号振幅极度削弱,测量结果是无法预知的。
图 1-4 .探头是由分布式的阻抗、感抗、电容组成。
示波器探头用途
示波器探头用途示波器探头是示波器系统的一个重要组成部分,用于在电子电路测试和测量中获取并测量电信号。
它通过将电信号连接到示波器的输入通道,将电信号转换成示波器能够显示和分析的波形。
示波器探头的主要用途是测量电路中的电压和电流。
在电子电路的设计、开发、测试和故障排除过程中,探头是非常重要的工具。
下面将详细介绍示波器探头的用途和工作原理。
1. 电压测量:示波器探头最常见的用途是测量电压信号。
示波器通过探头将待测电路的电压连接到示波器的输入通道,然后显示电压随时间变化的波形图。
这样就可以观察电信号的幅值、频率、相位等特征,从而对电路进行分析和调试。
2. 电流测量:除了电压测量外,示波器探头也可以用于测量电路中的电流信号。
为了测量电流,探头通常需要与一个电阻器(称为测量电阻或电流夹)一起使用。
电流信号在通过测量电阻时会产生一个电压信号,然后通过示波器探头测量和显示出来。
这种测量方法称为电流探头(Current Probe),常用于测量高频电流、交流电流等特殊应用。
3. 高频测量:示波器探头可用于高频测量。
高频信号在传输过程中容易产生衰减和信号失真,因此示波器探头必须具有快速的响应速度和良好的频率响应特性。
一些高频示波器探头还配备了阻抗匹配调节器,可以在不同频率下匹配待测电路的阻抗,提高测量精度。
4. 差分信号测量:示波器探头还可以用于测量差分信号。
差分信号是由两个相互干扰的信号组成,常见于许多电路和系统中。
示波器探头的差分测量功能允许用户同时测量并显示两个信号之间的差异,从而帮助分析噪声、干扰、共模电压等问题。
5. 逻辑信号测量:除了模拟信号测量外,示波器探头也可以用于逻辑信号测量。
逻辑信号是数字系统中常见的信号形式,通常表示为0和1。
示波器探头可以将逻辑信号转换成模拟信号,并显示出信号的高电平和低电平状态以及信号的变化情况。
这对于分析和调试数字电路非常有用。
总结起来,示波器探头是示波器系统中的一个重要工具,主要用于测量电压和电流信号。
示波器及探头使用
示波器及探头使用公司目前使用的示波器以数字示波器为主,分为两类,一类是福禄克(FLUKE)数字示波器,另一类是泰克(Tektronix ),另外还有一台建伍(KENWO0D)模拟示波器。
示波器在生产和研发中都是非常重要的一种仪器,而且也是非常昂贵的一种仪器,所以正确使用示波器不仅能提高工作效率,也能减小对示波器的不合理损耗。
一、示波器基础知识♦什么叫示波器?示波器本质上是一种图形显示设备,它描绘电信号的图形曲线。
在大多数应用中,呈现的图形能够表明信号随时间的变化过程:垂直(Y)轴表示电压,水平(X)轴表示时间。
有时称亮度为Z轴。
这一简单的图形能够说明信号的许多特性,例如:信号的时间和电压值振荡信号的频率信号所代表电路的“变化部分” 信号的特定部分相对于其他部分的发生频率是否存在故障部件使信号产生失真信号的直流值(DC)和交流值(AC)信号的噪声值和噪声是否随时间变化。
♦波形测量频率和周期不断重复的信号具有频率特性。
频率的单位是赫兹(Hz),表示一秒时间内信号重复的次数。
成为周期每秒。
重复信号也具有周期特性,即信号完成一个循环所需要的时间量。
周期和频率互为倒数关系,即1/ 周期等于频率,同理1/ 频率等于周期。
电压电压是电路两点间的电势能或信号强度。
有时把地线或零电压作为参考点。
如果测量的是波形从最高峰值到最低峰值的电压值,则称为电压的峰值- 峰值。
幅度幅度是指电路两点间电压量。
幅度通常指被测信号以地或零电压为参考时的最大电压。
其他有些示波器还提供了测量相位、占空比、延时、上升时间等的功能。
♦示波器的分类模拟示波器本质上,模拟示波器工作方式是直接测量信号电压,并通过从左到右穿过示波器屏幕的电子束在垂直方向描绘电压。
示波器屏幕通常是阴极射线管(CRT。
电子束投到荧幕的某处,屏幕后面总会有明亮的荧光物质。
当电子束水平扫过显示器时,信号的电压是电子束发生上下偏转,跟踪波形直接反映到屏幕上。
在屏幕同一位置电子束投射频度越大,显示得也越亮。
示波器有源无源电压探头的区分及操作规程
示波器有源无源电压探头的区分及操作规程示波器有源无源电压探头的区分一、无源电压探头1、无源探头无源探头由导线和连接器制成,在需要补偿或衰减时,还包括电阻器和电容器。
探头中没有有源器件(晶体管或放大器),因此不需为探头供电。
无源探头一般是最坚固、性价比高的探头,它们不仅使用简便,而且使用广泛。
2、高阻无源电压探头从实际需要启程,使用较多的是电压探头,其中高阻无源电压探头占最大部分。
无源电压探头为不同电压范围供应了各种衰减系数1TImes;,10TImes;和100TImes;。
在这些无源探头中,10TImes;无源电压探头是常用的探头。
对信号幅度是1V峰峰值或更低的应用,1×探头可能要比较适合,甚至是必不可少的。
在低幅度和中等幅度信号混合(几十毫伏到几十伏)的应用中,可切换1×/10×探头要便利得多。
但是,可切换1×/10×探头在本质上是一个产品中的两个不同探头,不仅其衰减系数不同,而且其带宽、上升时间和阻抗(R和C)特点也不同。
因此,这些探头不能与示波器的输入完全匹配,不能供应标准10×探头实现的较优性能。
3、低阻无源电压探头大多数高阻无源探头的带宽范围在小于100MHz到500MHz或更高的带宽之间。
而低阻无源电压探头(又称为50欧姆探头、Zo探头、分压器探头)的频率特性很好,接受匹配同轴电缆的探头,带宽可达10GHz和100皮秒或更快的上升时间。
这种探头是为用于50欧姆环境中设计的,这些环境一般是高速设备检定、微波通信和时域反射计(TDR)。
4、无源高压探头“高压”是相对的概念。
从探头角度看,我们可以把高压定义为超过典型的通用10×无源探头可以安全处理的电压的任何电压。
高压探头要求具有良好的绝缘强度,保证使用者和示波器的安全。
二、有源电压探头1、有源探头有源探头包含或倚靠有源器件,如晶体管。
常见的情况下,有源设备是一种场效应晶体管(FET),它供应了特别低的输入电容,低电容会在更宽的频段上导致高输入阻抗。
常用示波器及探头的使用
示波器最常用的设置
• 最常用的设置 • 示波器主要有三个设置区,第一个
是:“VERTICAL”设置区,用来 设置信号显示时垂方向的有关状况 ,诸如显示幅度,在屏幕上的上下 位置等。第二个是 “HORIZONTAL”设置区,用来 设置信号显示时在水平方向的有关 状况,比如左右位置和信号显示宽 度。第三个是最复杂的 “TRIGGER”设置区,用来设置 信号的触发方式,正是因为数字示 波器提供了丰富的触发方式才使其 功能很强大。 • “VERTICAL”通常设置为 2.0V;“HORIZONTAL”根据所 观察的具体信号设置; “TRIGGETR”通常设置为: TRIGGER MENU →SET LEVEL TO 50%→Type( main)→Edge(pop-up)。
• TDS754 500MHz带宽,2G/s采样。
• TDS784 1GHz带宽,4G/s采样;
• TDS794 2Gห้องสมุดไป่ตู้z带宽,4G/s采样;
• TDS7404 4GHz带宽,20G/s采样。
• CSA7000系列,直接可以测试光口,其他同 TDS7000,型号少一些。
• 带宽:描述了示波器固有的上升时间(即时延)。
常用探头校正
• 电流探头的校正: • 探头接在示波器的通道1上,按下电
流探头上“DEGAVSS”和 “BALANCE”按钮调校和校零,校 零好后,示波器TDS754上CH1显 示出单位“mA”。
探头使用注意事项1
• 手不要触摸探头 • 探头地就近接被测信号的地 • 探头探针就近接被测信号管脚 ,探头要尽量与电
路板PCB板面垂直 • 测试时,尽量减小探头探针与探头地所构成环路
的面积 • 探头的地线不要悬空,只能接电路板上的地线,不
示波器探头知识
示波器被誉为“电子工程师的眼睛”,作为示波器不可缺少的组成部分,示波器探头的参数直接影响到测试结果的准确性及正确性,因此,能否正确选取合适的示波器探头直接关系到测试工作的成败,作为一名电子工程师,我们必须知道各种示波器探头的特点、原理及适用场合。
示波器探头的种类有很多,大体上可以分为电压、电流、逻辑等几大类,如下图所示:♦电压探头理想中的电压探头没有负载效应,不会对测量造成任何影响,同时对信号没有任何失真。
理想探头具备如下特征:1).输入电阻无限大;2).输入电容为0;3).带宽无限大;4).动态范围无线大;5).1:1衰减;6).无延迟;7).无相位偏移;8).机械结构适合测量应用。
在实际中,这种理想探头是不存在的。
为了说明探头对测量的影响,我们可以把探头模型简单等效为一个R、L、C电路,把这个模型与被测电路放在一起,如下图所示:如上图所示,Rprobe是探头的输入电阻,为了尽可能减少探头对被测电路的影响,要求探头本身的输入电阻Rprobe越大越好,但是Rprobe是不可能做到无穷大的,所以就会和被测电路产生分压,使得实测电压比实际电压小。
为了避免探头电阻负载造成的影响,一般要求Rprobe要大于Rsource和Rload的10倍以上。
大部分探头的输入阻抗在几十K欧姆到几十兆欧姆之间。
Cprobe是探头本身的输入电容。
这个电容不是刻意做进去的,而是探头的寄生电容。
这个寄生电容也是影响探头带宽的最重要因素,因为这个电容会衰减高频成分,把信号的上升沿变缓。
通常高带宽的探头寄生电容都比较小。
理想情况下Cprobe 应该为0,但是实际做不到。
一般无源探头的输入电容在10pf 至几百pf 间,带宽高些的有源探头输入电容一般在0.2pf 至几pf 间。
Lprobe是探头导线的寄生电感,通常1mm 探头的地线会有大约1nH 的电感,信号和地线越长,电感值越大。
探头的寄生电感和寄生电容组成了谐振回路,当电感值太大时,在输入信号的激励下就有可能产生高频谐振,造成信号的失真。
示波器探头的知识
信號的特點: 選用某一個探頭去測試一個信號, 對信號特點的了解非常重要.
我們需要了解那些特點呢?
第一, 信號的頻率成分. 純正的正弦曲線擁有單一的頻率,例如1KHz的純正 正弦波就只有1KHz的頻率成分. 但是如果是1KHz的方波呢? 其頻率成分就 比較複雜, 它還包含很多次的諧波成分,3次,5次,7次…….如果不考慮這些諧 波成分的話,波型就會失真. 所以我們在在選用探頭時就需要考慮信號的頻率 成分帶寬跟探頭帶寬之間的關係,一般遵行5倍原則,就是探頭的帶寬要比信 號基礎頻率高3~5倍, 才能保證測試的精確性. 另外信號的上升時間也需要考 慮,基本頻率只有100KHz,上升時間為10nS的方波, 其諧波成分遠比純正的 1MHz的正弦波高的多. 我們現在做的硬開關的switch power supply其內部 波型絕大多數為方波.
Page 3 of 10
P&C SBG Peripherals SBU
7.CMRR(共模抑制比): 這個參數是指差分探頭的一個最重要的指標. CMRR會 隨頻率的提高而下降. CMRR=Ad(差分信號電壓增益)/Ac(共模信號電壓增益)
8. 傳播延遲: 傳播延遲是探頭器件及信號通過這些器件從探針傳送到示波器連 器所需要時間的函數.通常情況傳播延遲是由於探頭的電纜導致的.
P&C SBG Peripherals SBU
Page 5 of 10
7.電流探頭( Tek Tcp303) 帶寬: 20MHz 最快上升時間: <7nS 典型延遲時間: 53nS 最小分辨率: 5mA/div 額定最大電流測量範圍: 150A DC
500A Peak Pulse Current 操作溫度範圍:0 to 50 degree C 需要配合TCP A300使用
2024年度示波器探头基础入门指南(上)
05
示波器探头使用注意事项
2024/3/24
21
正确连接示波器与探头
确保示波器与探头之间的接口匹配,避免使用不合适的 转接器或适配器。
将探头的接地夹连接到被测电路的接地端,确保测量的 准确性和安全性。
在连接探头前,确保示波器和探头均已关闭电源,以防 止电气冲击。
拧紧探头与示波器之间的连接螺丝,确保接触良好,避 免信号失真或噪声干扰。
2024/3/24
1. 提取电路中的信号
3. 提供适当的阻抗匹配,以减小 信号失真和反射
4
种类与特点
种类
1. 无源探头
2. 有源探头
2024/3/24
5
种类与特点
3. 差分探头
4. 电流探头
特点
2024/3/24
6
种类与特点
01
02
03
04
无源探头
简单、低成本,但带宽和负载 效应有限。
有源探头
带宽限制
探头的带宽是指其能够准确传输信号的最高频率。在选择探头时,需要根据被测信号的频 率范围选择合适的带宽,以确保信号的准确传输。
11
探头对地电容影响
对地电容的定义
探头对地电容是指探头与地之间的等效电容。这个电容会对被测电路产生影响,尤其是在高频信号测量中。
2024/3/24
对地电容的影响
对地电容会与被测电路中的其他元件形成谐振回路,导致信号失真或产生振荡。此外,对地电容还会引入额外的噪声 和干扰,影响测量结果的准确性。
频率响应
频率响应描述了探头在不同频率下的 幅度和相位特性。理想的探头应具有 平坦的频率响应,即在不同频率下具 有相同的幅度和相位特性。
2024/3/24
示波器电压探头原理
示波器电压探头原理示波器是一种用于测量电信号波形的仪器,而电压探头是示波器的重要组成部分。
电压探头的作用是将被测电路的电压转换为示波器可以测量的电压信号,并保持信号的准确性和稳定性。
本文将介绍示波器电压探头的原理及其工作方式。
一、电压探头的基本原理电压探头的基本原理是利用高阻抗输入电路来测量电路中的电压信号。
通常情况下,电压探头由一个内部电阻和一个电容组成。
电阻用于限制电流的流动,电容则用于对电压进行滤波。
当电压探头连接到被测电路上时,内部电阻和电容将与被测电路并联。
由于电压探头的输入阻抗很高,可以忽略不计,因此它不会对被测电路造成影响。
同时,电容的作用是对电压信号进行滤波,以提供稳定的测量结果。
二、电压探头的工作方式电压探头的工作方式可以分为两个步骤:信号传递和信号调节。
1. 信号传递在信号传递过程中,电压探头将被测电路的电压信号传递给示波器。
当电压探头连接到被测电路上时,探头的输入端将接收到电压信号。
由于电压探头的高阻抗输入电路,这个过程基本上是无损的,不会对被测电路造成影响。
2. 信号调节在信号传递到示波器之前,电压探头会对信号进行调节以适应示波器的测量范围。
这通常涉及到放大和衰减两个过程。
放大是指将被测电路的电压信号放大到示波器可以测量的范围内。
放大过程通常由探头内部的放大器完成。
放大器可以将电压信号放大几十倍或几百倍,以便更好地显示在示波器屏幕上。
衰减是指将被测电路的电压信号降低到示波器可以接受的范围内。
衰减过程通常由探头内部的电阻网络完成。
电阻网络可以根据示波器的测量范围选择不同的衰减系数,以保证测量的准确性和稳定性。
三、电压探头的使用注意事项在使用电压探头时,需要注意以下几点:1. 阻抗匹配:要确保电压探头的输入阻抗与示波器的输入阻抗匹配,以保证测量的准确性。
一般情况下,示波器的输入阻抗是固定的,而电压探头的输入阻抗可以通过选择不同的探头进行调整。
2. 频率响应:电压探头的频率响应是指在不同频率下的响应能力。
示波器探头基础知识
ScopeArt先生”团队成员示波器探头是示波器使用过程中不可或缺的一部分;它主要是作为承载信号传输的链路;将待测信号完整可靠的传输至示波器;以进一步进行测量分析..很多工程师很看重示波器的选择;却容易忽略对示波器探头的甄别..试想如果信号经过前端探头就已经失真;那再完美的示波器所测得的数据也会有误..所以正确了解探头性能;有效规避探头使用误区对我们日常使用示波器来说至关重要在绝大多数示波器测量环境下;我们都需要使用探头..示波器探头有很多种;内部原理构造迥异;使用方法也各不相同..本文主要给大家介绍示波器探头的种类及工作原理;探头使用过程注意事项以及如何选择示波器探头..1 示波器探头种类及工作原理对于DC直流或一般低频信号而言;示波器探头只是一个由特定阻抗R所形成的一段传输线缆..而随着待测信号频率的增加和不规则性;示波器探头在测量过程中会引入寄生电容C以及电感L;寄生电容会衰减信号的高频成分;使信号的上升沿变缓..寄生电感则会与寄生电容一起构成谐振回路;使信号产生谐振现象..所有这些都会对我们测量信号的准确性带来挑战..图1 探头电气特性示意图示波器探头按供电方式分可分为无源探头和有源探头..无源探头又分为无源低压、无源高压及低阻传输线探头等;有源探头又分为有源单端、有源差分、高压差分探头等..此外;在一些特殊应用下;还会使用到电流探头AC、DC、近场探头、逻辑探头以及各类传感器光、温度、振动探头等..无源探头是最常用的一类电压探头;也是我们在购买示波器时标配赠送的探头..如图2所示..图2 无源探头示意图无源探头一般使用通用型BNC接口与示波器相连;所以大多数厂家的无源探头可以在不同品牌的示波器上通用某些厂家特殊接口标准的探头除外;但由于示波器一般无法自动识别其他品牌的探头类型;所以此时需要手动在示波器上设置探头衰减比;以保证示波器在测量时正确补偿探头带来的信号衰减..图3所示为日常最为常见的一类无源探头原理示意图;它由输入阻抗Rprobe、寄生电容Cprobe、传输导线一般1至1.5米左右、可调补偿电容Ccomp组成..此类无源探头一般输入阻抗为10M;衰减比因子为10:1..图3无源探头原理图在使用此类探头时;示波器的输入阻抗会自动设置为高阻1M..此时示波器BNC通道输入点的电压Vscope与探头前端所探测的电压值Vprobe的关系满足以下对应关系:Vprobe/Vscope = 9M + 1M / 1M = 10 : 1由关系式可知;示波器得到的电压是探头探测到电压的十分之一;这也是无源探头10:1衰减因子的由来..无源探头具备高阻抗10M;因此它对待测电路的负载效应将在第二部分详述很小;能覆盖一般低频频段500MHz以内;耐压能力强300V-400Vrms;价格便宜;通用性好;所以得到广泛使用..当无源探头的衰减因子为100:1、1000:1甚至更高时;此类探头一般归类为无源高压探头..由于其衰减比很大;因此能测量高压、超高压电信号..图4 R&S RT-ZH10高压探头还有一类无源探头;其衰减比为1:1;信号未经衰减直接经过探头传输至示波器;其耐压能力不及其它无源探头;但它具备测试小信号的优势..由于不像10:1 衰减比探头那样信号需要示波器再放大10倍显示;所以示波器内部噪声未放大;测量噪声更小;此类更适用于测试小信号或电源纹波噪声..图5 R&S HZ-154 1:1/10:1可调衰减比无源探头无源传输线探头是另一类特殊的无源探头;其特点是输入阻抗相对较低;一般为几百欧姆;支持带宽更高;可达数GHz以上..图6为输入阻抗为500的10:1无源传输线探头原理图:图6传输线探头原理图传输线探头具备低寄生电容;低输入阻抗的特性;一般用来测量高频信号..在使用传输线探头时应该注意将示波器输入阻抗设置为50;以与传输线50阻抗相匹配;传输线探头的典型应用为测量50传输线上的电信号;通过SMA-N等不同的转换接头;传输线探头也可用在频谱分析仪等其它测试设备上..图7传输线探头的典型应用需要注意的是;由于传输线探头的低阻抗;它的负载效应会比较明显..因此;此类探头仅适用于与低输出阻抗几十至100欧姆的电路测试..对于更高输出阻抗的电路;我们可以选择使用高阻有源探头的方案;将在后续详述..图8 R&S RT-ZZ80 8.0GHz无源传输线探头介绍完无源探头;我们接下来看看有源探头..顾名思义;有源探头区别于无源探头最大的特点是“有源”;即它需要提供电源才能工作..如今大多数有源探头都配备有特殊接口;通过与示波器连接从示波器获得电源;而不需要额外提供外置电源某些型号除外..下图所示为有源单端探头原理图:图9 有源单端探头原理图有源单端探头一般具备高阻抗1M上下;低寄生电容..其前端有一个高带宽的放大器;有源探头的供电主要用于此放大器..放大器驱动信号经过50传输线到达示波器;示波器的输入阻抗需选择为50作匹配..由于其较低的寄生电容和50欧姆传输;有源单端探头可以提供比无源探头更高的带宽;因此主要应用在高频信号的测量领域..优点和缺点往往是并存的;有源单端探头亦是如此..能够测量更高带宽的信号是其优点;但由于需要集成有源放大器;因而其成本相对于无源探头来说更高;一个几 GHz带宽的有源单端探头价格可达数万人民币..除此之外;由于高带宽放大器的信号输入范围十分有限;因而其动态范围有限;一般有源单端探头的动态范围仅在几伏范围之内;探头所能承受的最大电压也只有几十伏..相对于前面所说的无源传输线探头;有源单端探头同样可以应用在低阻抗高频率信号的测量环境;且由于其输入阻抗相对于无源传输线探头更高;因此它的负载效应更小..不仅如此;R&S有源单端探头还可以与RT-ZA9N型转换接头;USB供电附件连接;进而用在射频信号源和频谱分析仪上;用来测试特殊环境下的信号;如传统50欧姆同轴线缆无法连接的探测点处;或者需要使用高阻探头探测待测点信号频谱时..图10 R&S RT-ZS系列单端有源探头与RT-ZA9 N型转换头相连除了有源单端探头之外;有源差分探头是另外一类重要的有源探头..我们可以从字面上来理解这两种探头的区别;有源单端的前端有两处连接点:信号点和地..有源差分顾名思义主要用来测试差分信号;探头前端有三处连接点:信号正、信号负、地..图11 有源单端探头前端左与有源差分探头前端右有源差分探头的原理图如下:图12有源差分探头原理图与有源单端探头相比;其最大不同在于使用了差分放大器..有源差分探头同样具备低寄生电容和高带宽特性;所不同的是;有源差分探头具有高共模抑制比CMRR;对共模噪声的抑制能力比较强..有源差分探头主要用来测试差分信号;即测试两路信号一般为相位相差180度的正反信号的相对电压差;与地无关..图13差分信号测试原理示意图上图显示了用有源差分探头测试差分信号的原理;图中红色波形显示的为差分信号Vin+;蓝色波形显示为差分信号Vin-;二者幅度相同;相位相差180 度..Vin+和Vin-经由差分探头正、负探测点探测后经过差分放大器放大;然后传输至示波器;最后得到如图绿色差分波形..这里要介绍几个概念;以便大家能够更好的理解共模抑制比CMRR..共模Common Mode:差分信号两端具有相同幅度和相位的信号成分;用表达式表示为Vcm =Vin+ + Vin-/2.由于理想的Vin+、Vin-幅度相同;相位相反;所以二者相加应该为零..但在实际工作环境下;Vin+、Vin-上会叠加上噪声干扰Vnoise..由于 Vin+、Vin-所处环境相同;因而在二者上叠加的噪声也往往相同;所以由CM表达式可知:CM = Vnoise.差模Differential Mode:差分信号两端不同的信号成分;用表达式表示为Vdm = Vin+ - Vin-.共模抑制Common Mode Rejection:差分放大器对共模信号的抑制能力;即差分放大器的一项主要能力是对Vnoise进行抑制消除..如果共模电压Vcm经过差分放大器的增益为Acm;差模电压Vdm经过差分放大器的增益为Adm;则我们可以用共模抑制比Common Mode Rejection Ratio即CMRR来表示共模抑制能力;其表达式为:CMRR = Adm / Acm举例如下图:差模信号Vdm幅度为1V;经过差分放大器后幅度为2V;即Adm = 2. 共模信号Vcm幅度为4.5V;经过差分放大器后幅度抑制为0.45V;即Acm=0.1. 因此;CMRR = 2 / 0.1 = 20:1 = 26dB..图14 差分信号测试举例对于理想的差分放大器而言;我们希望其完全抑制共模信号;从而消除噪声Vnoise对差分信号测量的影响..对于一般的差分信号测量而言;20dB的CMRR已经足够;而R&S RT-ZD40的CMRR可达50dB;性能非常优异..图15 R&S RT-ZD40有源差分探头值得一提的是;R&S的有源单端探头和有源差分探头上都配备了MicroButton多功能按钮和ProbeMeter探头计功能..其中;MicroButton是位于有源探头前段的一个微型按钮;用户可以在测试时很方便的按动按钮;从而执行对示波器的特定控制可自定义;如:自动设置、默认设置、单次运行、连续运行等..图16 MicroButton多功能按钮ProbeMeter则是集成在有源探头前端的16位DC电压计;可用来直接在探头点处测试直流电压;这与其他厂家使用探头捕获波形然后输送到示波器;进而对波形进行测量得到DC数值的方案完全不同..很显然;ProbeMeter摒除了探头传输的失真影响;从而具备了0.1%的高精准度..在使用差分探头时;可以借助此功能方便快捷查看单端、共模、差模电压数值..图17 ProbeMeter探头电压计有源差分探头可用于绝大多数较小幅度差分信号的测量;但对于幅度达上百甚至上千幅的高压差分信号而言;有源查分探头就显得力不从心了..此时我们只能借助于高压差分探头的帮忙;相对于一般差分探头而言;高压差分探头具有更高的动态范围;能够承受更高的电压..图18 R&S RT-ZD01 ±1400V 高压差分探头高压差分探头相对于无源高压探头而言价格昂贵;因此有用户在测试高压差分信号时会选择将示波器的电源接地线剪断;使示波器“浮起来”进行测试;这是非常危险的;一定要杜绝此类行为..我们将在第二部分详细说明..电流探头严格意义上说也属于有源探头的一种;几乎所有的电流探头在使用过程中都需要供电..电流探头主要分为三类:AC仅能测试交流电、DC仅能测试直流电、AC+DC..而目前大多数电流探头都具备了AC+DC的测量功能..电流探头的原理如下;主要是利用电磁效应AC测量和霍尔效应DC测量..图19 AC+DC电流探头原理图当有AC电流经过导线穿过电流探头的前段闭合钳口时;会有相应磁场产生;通过磁场的强弱直接感应到电流探头的线圈..探头就象一个电流变压器;系统直接测量的是感应电流..如果是DC或者低频电流;当电流钳闭合后;电流导线附近会出现一个磁场..磁场使霍尔传感器内的电子发生偏转;在霍尔传感器的输出产生一个电压..系统根据这个电压产生一个反相补偿电流至电流探头的线圈;使电流钳中的磁场为零;防止磁饱和..系统根据反相电流测得实际得电流值..电流探头的选择主要依据其测量带宽、量程以及钳口直径等..MSO数字逻辑探头在数字逻辑测试中会经常使用;与一般8bit模拟探头相比;数字逻辑探头根据示波器所设置的判决门线电平;将捕获的电压按照0、1跳变1bit的数字信号在屏幕上显示出来..用户可以根据多路数字信号的逻辑电平及关系来判断逻辑电路的性能..图20 R&S RTO-B1数字逻辑探头EMI近场探头是另一类特殊的探头类型;它实际使用了天线接收原理;用来捕获电路板上空间辐射的电磁场干扰;特别是在系统集成中做EMI电磁干扰的诊断..图21 EMI近场探头示意图除了以上给大家介绍的各种探头之外;还有光探头、温度传感探头及其他各类传感探头等..原则上来说;任何一款能够将各物理量转换成电压信号并具备与示波器互连能力的传感器都可以作为示波器探头;用户可以根据具体使用环境和需求选择适合的探头类型..------未完待续-----------------------------------------作者介绍:聂文伟先生于2008年毕业于北京交通大学电信学院;电磁场与微波技术专业;获工学硕士学位..毕业后供职于ZTE中兴通讯股份有限公司;先后从事无线产品测试与海外营销方面的工作..2012年加入罗德与施瓦茨公司;现任罗德与施瓦茨公司西安示波器业务发展工程师;主要负责西北地区的示波器产品市场推广工作..在示波器探头基础入门指南上一文中;我们主要介绍了示波器探头的种类及其工作原理;接下来我们将介绍示波器探头的主要指标;如何选择示波器探头;以及在示波器探头的使用过程中应该注意哪些问题..2 示波器探头的主要指标2.1 带宽与示波器一样;示波器探头的频响类似一个低通响应..探头的带宽是指探头响应输出幅度下降到70.7%-3dB时对应的输入信号频率..图1探头频响及带宽定义当示波器配合探头使用时;示波器+探头就构成了一套测量系统;此测量系统的带宽满足以下公式:可见;探头带宽越高;对示波器带宽的影响也就越小..一般我们推荐示波器探头的带宽为示波器带宽的1.5倍;即探头带宽略高于示波器带宽..2.2 上升时间探头的上升时间是指探头对阶跃函数10%-90%的响应时间..一般而言;探头带宽越高;上升时间越短..与示波器一样;大多数探头的带宽与上升时间满足0.35公式;即:T rise = 0.35/BWprobe示波器+探头测量系统的上升时间则满足以下公式:2.3 输入阻抗探头一般都标注了输入阻抗值;从50至10M甚至更高..探头的输入阻抗会严重影响探头的负载效应将在第三节中详述..输入阻抗越大;探头的负载效应越小;对待测电路正常工作影响也就越小..输入阻抗越小;探头的负载效应越大;对待测电路正常工作的影响就越大..2.4 输入电容输入电容是有源探头的一项关键指标..有源探头的输入电容一般很小;小至pF甚至零点几pF..小的电容会在高的频带上提供较大的输入阻抗;从而减小负载效应..由输入电容导致的输入阻抗公式如下:R in = 1/2πfCin由以上公式可知;Cin越小;探头可以支持更高的带宽f;这也是为什么有源探头相对于无源探头而言可以提供更大的带宽的原因..2.5 衰减比一般探头都会对探测到的信号进行衰减;然后输送至示波器..最常见的衰减比为10:1;即信号衰减为原始的十分之一;此时衰减比标注为10X..此外;常见的还有1X、100X、1000X探头等..2.6 最大输入范围探头都有最大输入范围;超过一定输入范围则可能损坏探头..3 示波器探头使用注意事项3.1 负载效应探头的负载效应是指被测电路接上探头后;探头与示波器一起组成了待测电路的并联负载;从而吸引一部分电流流入示波器;对原始待测电路上的信号产品影响..如果负载效应很大;则测到的波形与原始波形变化很大;示波器就不能准确测量波形..图2示波器探头接入引起负载效应那么如何评判探头的负载效应呢一般来说;探头接入的输入阻抗应为待测电路待测点处输出阻抗的10倍以上;此时负载效应较小;测量误差在允许范围以内..如下图所示:图3负载效应示例在探头探测前;探测点的电压为5V × 100K/100+100K=4.995V..探头探测后;并联了一个1M的阻抗;此时探测点的电压为:5V × 90.9k/100+90.9k = 4.994V此时;探头引入的负载效应仅为0.001V;可以忽略不计..如果待测点的输出阻抗更高;则需要使用更高输入阻抗的探头..值得一提的是;当我们测试由信号源输出的射频信号时;一般使用的是50传输线缆..50的传输线缆与信号源输出阻抗50相匹配;使功率最大的传输至示波器;从而保证了测量精度..而在某些时候;工程师希望测试电路板上某个探测点处的频谱;往往使用剪断的50传输线缆;在剪断处剥离地和传输芯;用以接触探测点..线缆另一端则连接至频谱仪..图4前段剥离的50传输线缆这种做法则是不可取的;电路板上的探测点与射频源的输出不同;由于传输线的50低阻抗;会对测试点处引入较大的负载效应..正确的做法是;使用高输入阻抗的探头取代50传输线缆;与频谱仪连接..R&S提供了RT-ZA9的BNC-N转接头方案;它可以将高输入阻抗的R&S有源探头1M与频谱仪或接收机相连接;对需要高阻抗测试的DUT进行精准测量..图5 RT-ZA9转接头示意图前面介绍过;探头一般含有电阻、容性阻抗和感性阻抗..电阻的负载效应会对信号DC分量测量造成影响;对波形的幅度测量造成误差..容性阻抗对AC分量的测量造成影响;比如会影响延缓信号的上升时间..感性阻抗则会对波形测量引入振铃现象..图6探头负载效应分类3.2 探头补偿我们在与电子测量工程师的交流中;经常提到探头补偿的问题..当我们购买示波器后第一次使用时;或者因探头资源紧张而临时拿其他品牌探头使用时;都会涉及到探头补偿问题..所谓探头补偿是指示波器与探头连接使用时;调整探头的可变电容;在探头与示波器之间进行频率补偿;使频率达到相对稳定的状态..当补偿完成后;具备如下关系式:R scope × Cscope= Rprobe× Cprobe即:为了最大限度地传送信号;示波器的输入电阻和电容必须与探头输出的电阻和电容相匹配;此时探头具有最优信号传送能力..那么如何进行探头补偿呢探头补偿一般针对无源探头而言有源探头也存在补偿;使用过无源探头的工程师可能会发现;在无源探头与示波器接触的一端上有一个小孔;这个小孔内有一个十字旋钮..通过探头自带的螺丝刀小工具即可深入小孔内调节探头的可调电容值..图7调节无源探头的可调电容值具体原理如下图所示:图8通过调节探头可调电容Ccomp来实现探头匹配探头补偿的步骤如下:连接探头与示波器通道;将探头前端连接至示波器上的探头补偿Π方波信号一般为1KHz、1V的信号;使用自带小工具调节探头可调电容;使得示波器上显示的方波信号的高低电平部分保持平稳;即实现探头与示波器的匹配..在调节探头时;示波器上显示的方波信号可能存在以下三种状态:图9探头欠补偿、过补偿、匹配状态的波形3.3 谐振效应在使用探头测量信号上升沿时;把示波器的时基范围调小;一般能看到在上升沿的过冲部分存在振铃现象;即探头带来的谐振效应..图10探头带来的振铃效应探头不仅存在阻抗以及寄生电容;还存在寄生电感特别是在测试高频信号时..探头是由导线和地线组成的;通常导线及地线越长;电感值就越大..探头上的寄生电感和寄生电容容易形成谐振回路;在输入信号的激励下;在某些频率上产生高频减幅谐振;从而出现振铃现象..图11振铃现象的产生如下图所示;探头的输入阻抗会在特定频率fx处达到最小值..图12探头输入阻抗此时探头的寄生电感、寄生电容以及待测信号源构成谐振回路;出现谐振效应;谐振频率为:其中;Lcon为探头寄生电感;Cin为输入电容..如果谐振频率刚好落在探头带宽范围之内;则在测试此频率的信号时会出现谐振现象..为了降低这种效应;使用者往往使用最短的地线;从而减小探头的Lcon寄生电感;使得fresonance 谐振频率最大化;从而超出示波器探头的带宽范围;也就进一步有效避免了谐振效应..探头地线的长度严重影响谐振效应;以下图片充分说明了地线长短对波形上升沿测量的影响..图13不同长短的底线的谐振效应由图示可知;地线越短;谐振效应越小;上升沿引起的振铃现象越不明显;此时的测量精度也就越高..所以;在测试环境允许的情况下;尽可能地使用更短的地线..3.4 浮地测量问题测量差分信号时;我们往往面临以下3种选择:使用两个通道CH1、CH2;分别测试差分信号两端;然后相减;图14使用两个单端探头测量差分电压使用差分探头测试;图15使用差分探头测量差分电压直接使用单端探头浮地测量;图16使用浮地的方法测量差分信号第1种方法需要两个通道及探头之间的完全一致性..即便如此;两个通道上产生的不同噪声也会对测量结果造成影响;此种方法测试的CMRR共模抑制比很差;不作推荐..第2种方法是最值得推荐的方法;使用差分探头具有高CMRR在示波器探头综述上有记载;测得数值精确..然而;差分探头往往价格昂贵;并非所有客户愿意花重金采购..因而就有了第3种方法;使用单端探头对差分信号直接进行浮地测量..差分信号两端一正一负;如果要使用单端探头进行探测;往往将单端探头的地端与差分信号的负端相接..而单端探头接上示波器后;探头地线会与示波器电源地线共地;从而将差分信号的负端拉至地;对原始差分信号有影响..因此;有人想到浮地测量的方法;即将示波器电源地线剪断;使示波器浮地..浮地测量在电源测试中可能会造成触电危险;因为有些差分电压的负端高达负的上百上千伏..在测试过程中;如果人手不小心触碰到示波器其他通道的BNC接地壳;则会触电因此;浮地测量不是推荐的测量方法..图17浮地测量带来触电危险除了以上3种常见测量方法之外;还可以使用通道隔离的示波器;或者使用隔离电源对示波器供电的方法..在此就不作详述了..3.5 其他品牌探头兼容性问题我们在日常使用示波器时经常出现原始匹配探头丢失或损坏的情况..此时;能够解决问题的办法通常是拿手头上其他品牌的探头临时配合示波器使用..很多人不了解具体情况;插上示波器探头就开始测试;这样往往测得的数值存在很大偏差;是不可取的并非不同品牌示波器和探头不能配合使用;实际上;目前市面上绝大多数品牌示波器的无源探头均具备统一的BNC接口;可以与其他品牌示波器配合使用..但是在正式测量之前;有几点需要注意..首先;一般示波器无法自动识别其他品牌探头的衰减比衰减因子;所以在与其他品牌探头一起使用时;需要在示波器上手动设置探头衰减比;这样才能防止测量值偏差10几倍甚至上千倍的错误..其次;不同品牌的示波器和探头之间同样存在不匹配问题;即前面所述探头补偿问题..所以;在测试之前;需要对探头进行补偿..此外;不同厂家的有源探头包括有源单端、有源差分、部分电流探头等甚至部分无源探头设计为独特接口标准..针对此类探头;有时可采用不同的转换接头使用;如R&S为有源探头提供的BNC转N型的RT-ZA9转接头等..而大多数不具备转接头的探头则无法与其他品牌示波器通用..-----------------------------------完------------------------------------------。
示波器探头使用
Page 57
怎样把有源探头物理连接到不同类型的电路板形状 上?
力科单端探头实例, 其中带有接地使用的软 引线和信号输入使用的 直触针 这种技术保证了以最 小电容和电感实现可靠 接触
Page 58
可互换探头触针
每种触针都可以用于信号 或接地连接
普通触针 尖触针
Page 59
灵活间距的信号和接地路径使用的设备
Page 14
为什么担心示波器探头?
探头从环境中拾取的噪声会增加到信号中。这是尽量缩短信
号引线和地线的另一个原因。 解决方法:尽量减小地线的长度
Page 15
选择适当的示波器探头 •无源探头
•有源探头 •差分探头
Page 16
基本探头类型
无源探头
没有有源器件,如放大器 它只由无源部件组成 通过使用有源器件,如晶体管或FET,能够实现更宽的带宽、更高的阻
器可以设置的最大灵敏度。 配套的通道精度有限,严重限制着“抑制” (减)去A和B “公共”信号的能力
线路 电压
1W 并联
示波器保持安全接 地
负荷电路
在下述情况下,通道“A” – 通道“B”是不够的: 共模电压 >> 被测电压
Page 45
示波器差分测量: “A” - “B”
“A” – “B”的局限性
4 inches
100 10 1
10 nH
1
10
100
1G
10 G
Frequency (MHz)
在探头中增加引线时,会产 生谐振,特别是在较高频率 时。
Page 9
地线长度也很重要 (低频时的常见缺陷)
使用10无源探 头测量的脉冲 A: 没有地线 B: 50 cm地线 C: 10 cm地线 D: BNC直接电 缆连接 (真实信号形状)
示波器探头简述
示波器探头简述在电子测量中,常常要用到示波器对被测信号进行测量,被测信号是由示波器的探头引入到示波器的测量电路中的,探头性能对测量结果影响很大,尤其是对频率特性的影响尤为明显。
在许多实验室和维修车间,探头的特性和性能却常常被人们忽视。
因此有必要对这方面的知识进行介绍,以便使用者根据自己的需要合理地选用示波器探头。
示波器的探头是接在示波器外部的输入电路部件,其基本作用是从被测电路中探测信号和提高示波器的输入阻抗,测量时要能够从被测电路中汲取最小的能量并把它以最大的逼真度输送到测量仪器中去,它是用来建立被测电路和测量仪器之间相互连接的导体。
探头的分类方法很多,按功能分为电压探头和电流探头;按电路原理分为无源探头和有源探头。
1.电压探头1.1无源电压探头无源电压探头是最常用的一类探头。
最简单无源电压探头可以是两根普通的导线或同轴电缆。
两根普通导线构成的无源电压探头,由于未加屏蔽,会感应干扰信号,同时由于导线分布参数对频率特性有影响,因此,它只使用于低频、低灵敏度的示波器中。
同轴电缆构成的无源电压探头可以抑制外界干扰信号,也具有较宽的工作频带, 但它必须在匹配的情况下才能正常工作。
同轴电缆的特性阻抗一般都不大,例如为50Ω射频探头或75Ω,因此只适合于被测信号源抗阻及示波器输入阻抗都是低阻抗的情况。
如果被测信号源阻抗和电缆的特性阻抗不匹配,信号在电缆中会多次反射而产生严重失真。
普通同轴电缆的损耗小,这种反射的影响较大。
为减少这种失真,可给电缆串入一个电阻以达到临界阻尼。
现在采用较多的更好的办法是使用特制的大损耗的电缆来引入被测信号,此种电缆的芯线虽具有较高的电阻率(其总电阻的典型数值大约是400Ω) ,但其阻值仍远远小于示波器输入阻抗,因此其对被测信号的损耗可忽略,仍可组成传输系数为1的直通无源电压探头。
但电缆的分布电容、分布电阻和示波器的输入电容组成RC 低同滤波器,使得此探头的频率上限很难超过15MHz 。
【很全】示波器探头知识全解析
【很全】示波器探头知识全解析作为一名专业的电源设计及测试工程师,我们每天都在使用各种不同的数字示波器进行相关电气信号量的量测。
与这些示波器相配的探头种类也非常多,包括无源探头(包括高压探头,传输线探头)、有源探头(包括有源单端探头、有源差分探头等),电流探头、光探头等。
每种探头各有其优缺点,因而各有其适用的场合。
其中,有源探头因具有带宽高,输入电容小,地环路小等优点从而被广泛使用在高速数字量测领域,但有源探头的价位高,动态范围小,静电敏感,校准麻烦,因此,每个工程师使用示波器的入门级探头通常是无源探头。
最常见的500Mhz的无源电压探头适用于一般的电路测量和快速诊断,可以满足大多数的低速数字信号、TV、电源和其它的一些典型的示波器应用。
本文我们将集中讨论无源电压探头的模型和参数设定以及使用校准原理。
10倍无源探头的模型以及输入负载设定图1. 探头原理图图1是工程师常用的10倍无源电压探头的原理图,其中,Rp (9 MΩ)和Cp位于探头尖端内,Rp为探头输入阻抗, Cp为探头输入电容, R1 (1 MΩ)表示示波器的输入阻抗,C1表示示波器的输入电容和同轴电缆等效电容以及探头补偿箱电容的组合值。
为了精确地测量,两个RC时间常量(RpCp和R1C1)必须相等;任何不平衡都会带来测量波形的失真,从来引起使一些参数如上升时间、幅度的测量结果不准确。
因此,在测量前需要校准示波器的探头的工作以保证测量结果的准确性。
从探头的信号模型我们可以分析,对于信号的DC 量测,输入容性Cp和C1等效为开路。
信号通过Rp和R1进行分压,最终示波器的输入为:Vout=[R1/Rp+R1]*Vin=1/10* Vin示波器输入信号衰减为待测输入信号的1/10。
对于较高频率的输入信号,容抗对于信号的影响会大于阻抗。
例如,一个标准的1MΩ~10pF的无源电压探头,输入信号的频率为100MHz,此时,探头输入容抗为Xc(Cp)=1/(2×π×f×C)=159Ω,容抗远远小于9MΩ的探头阻抗,信号电流更多的会通过输入电容提供的低阻回路,9MΩ阻抗的高阻回路等效为旁路。
示波器探头基础知识培训
TekProbeTM 探头接口
TekProbeTM 探头接口
基于BNC的探头接口形式 泰克在80年代中期发明 提供有源探头的供电 提供探头倍率的自动识别 提供探头类型的自动识别 提供工程单位的显示 理论上最好的BNC系统的带宽是4GHz
C2 = low frequency compensation. Scope input C varies.
系统的带宽
系统的上升时间 tr(10%~90%) tr(System)=√tr(scope)2+tr(probe)2
系统的带宽
BW(-3dB)
1
BW(SYSTEM)=
√(1
)2 + ( 1
f0 =
1
2 p (RC||RP)(CC+CP)
NOTE: Vcc is an AC Ground
探头对被测点的影响
例如:Rc=10K Re=10 Cc= 100pF
Rp=1M Cp=20pF
原电路增益和截止频率: 增益= 1000 截止频率 = 1/2 *p*10k *100pF=160KHz
等效阻抗
标准附件
与各种电路连接的附件
探头附件
泰克的无源探头家族
1X无源探头 - P6101B 通用无源探头-10X,1 MΩ 输入阻抗
P3010 • P6103B • P6109B • P6111B • P6112 • P6114B • P6117 高性能无源探头- 10X读出,10 MΩ 输入阻抗
探测小尺寸电路
当今的小 尺寸/表面 贴封电路 已经非常 普及
各种探头附件应 对小尺寸电路
各种探头附件应对小尺寸电路
无源探头选型考虑的因素
示波器_探头
信号的上升时间有影响.
探头阻抗比信号源阻抗充分大的时,探头对信号振幅的影响是可以
忽略的.
探头尖电容,也归为及输入电容,其有拉长信号上升时间的作用.这
是由于要有时间给探头输入电容进行从10%到90%电平的充电 .tr=2.2R信号源xC探头
高阻抗,低电容探头是使探头对信号源负载减到最小最好的 选择.另外探头负载作用也可以通过尽可能的选择的阻抗小 的信号测试点的方法进一步减小.
0.4 pF/100 k
1X Passive 100 pF/1 M
100
1k
10k
100k
1M
10M
100M
1G
frequency
10G
第十四页,共三十七页。
充分利用示波器的测量能力要求有一个(yī 匹 ɡè) 配示波器的探头
由于示波器测量应用及需求的广泛性, 正确(zhèngquè)的选择探头,应遵循示波 器制造商对探头选择的建议.因为不同的示波器设计有不同带宽;上升时间;灵 敏度及输入阻抗的考虑
Z0 Passive Active
.25 Equivalent Gates .5 Equivalent Gates
第十三页,共三十七页。
探头(tàn tóu)输入阻抗
100M
10M 1M 100k 10k
1k
100
10
1
10X Passive 11 pF/10 M
Z0
0.15 pF/500
Active
kv10x集成测量环境探头是仪器高阻低负载高压差分测量小信号差分测量直接读出电流数值uv安培和瓦高性能无源探头匹配示波器ampswattsvolts率mw探头的类型电压探头逻辑探头电流探头传感器有源有源有源acdc探头类逻辑触发字识别逻辑分析光信号温度信号振动信号典型的探头1xpassiveprobe10xpassiveprobez0passiveprobeactiveprobe15mhz100mhz500mhzghz750mhzghz23ns35ns700ps120ps40ps46ns100ps100pf13pf015pfpf04pftypebandwidthrisetimeinput大多数无源探头设计为普通的示波器的应用称为衰减探头带宽的典型带宽从不到100mhz延伸到500mhz高的动态范围衰减倍数1x10x更高带宽的无源探头被称为50探头z0探头或分压探头
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
示波器探头基础知识
示波器探头原理---示波器探头工作原理
示波器探头不仅仅是把测试信号判定以示波器输入端的一段导线,而且是测量系统的重要组成部分。
探头有很多种类型号各有其特性,以适应各种不同的专门工作的需要,其中一类称为有源探头,探头内包含有源电子元件可以提供放大能力,不含有源元件的探头称为无源探头,其中只包含无源元件如电阻和电容。
这种探头通常对输入信号进行衰减。
我们将首先集中讨论通用无源探头,说明共主要技术指标以及探头对被测电路和被测信号的影响,接着简单介绍几种专用探头及其附近。
屏蔽
示波器探头的一个重要任务是确保只有希望观测的信号才在示波器上出现,如果我们仅仅使用一普通导线来代替探头,那么它的作用就好象是一根天线,可以从无线电台、荧光灯,电机、50或60Hz的电源的交流声甚至当地业余无线电爱好者那里接收到很多不希望的干扰信号,这类噪声甚至还能注入到被测电路中去所以我们首先需要的是屏蔽的电缆,示波器探头的屏蔽电缆通过探头尖端的接地线和被测电路连接,从而保证了很好的屏蔽。
一.探头构造图:
4. 一个探头,就算它只是简单的一条电线,它也可能是一个很复杂的电路。
a)对于DC 信号( 0 Hz 频率),探头作为一对导线与一系列电阻,就向一个终端电阻一样。
b) AC 信号的特性变化是因为:电线具有分布电感(L),电线具有分布电容(C)。
分布电感反作用于AC信号,在信号频率增加时,阻止AC信号通过。
分布电容反作用于AC信号,在信号频率增加时,减小 AC信号电流通过的阻抗。
这些反作用元件(L 和 C )的交互作用,与电阻元件(R)一起,成为随信号频率不同而变化的探头阻抗。
示波器选型(探头技术指标参数的意义)
自从示波器问世以来,它一直是最重要,最常见的电子测试仪器之一,由于电子技术的发展,示波器的功能在不断上升完善,其它性能和价格也是五花八门主,其探头也是从单一到复杂。
一。
频宽
和示波器一们,探头也具有其允许的有限带宽。
如果我们使用一台100MHz 的示波器和一个100MHz的探头,那么它们组合起来的响应就小于100MHz,探头的电容和示波器的输入电容相加,这就减小了系统的带宽,加大了显示的上升时间tr见第一章1.3节上升时间。
使用1.3节的公式
tr(ns)=350/BW(MHz)
如果示波器和探头各自均为100MHz带宽,其上升时间均为tr=3.5ns 。
则有效系统上升时间就由下式给出:
trsystem=sqr(t2rscope+t2rprobe)
=sqr(3.52+3.52)ns
=sqr(24.5)2ns
=4.95ns
根据4.95ns的系统上升时间求得,系统带宽为350/4.95MHz=70.7MHz。
从上述的计算可以看出,探头本身的频宽要比示波器高。
二.示波器探头最大输入电压
多数通用10:1探头的构造使这些探头适合于最大输入电压为峰值400V或500V的情况下使用,所以这些探头可以用于信号电平高达数百伏的广泛的应用场合,对于需要测量更高电压的场面合,我们推荐使用电压额定值更高的100:1探头。
三.FET示波器探头
这是一种可在高频下使用的有源探头,其使用频率可达650MHz。
其输入电容可低达1.4pF,因此特别适合于在具有很高源阻抗的电路中测量快速瞬变,或者其它要求探头负载效应最小的场合。
由于采用有源设计方案,所以FET探头也可用于1:1的情况,仍具有极低的输入电容。
电流示波器探头
顾名思义,使用这种探头时示波器上显示的是导体中的电流而不是其上的电压。
在这种探头的头上装有一个电流感应变压器,使用时只要把探头卡到电缆导线上而无需切断电路,探头获得的信号首先变换成电压,再经过比例变换后送到示波器的端,这时示波器显示的单位为A/格或mA/格。
探头的频率范围可达70MHz以上。
使用电流探头以后,具有数学处理能力的示波器就可以通过将电压波形和电流波形相乘来进行功率的测量。
1.探头使用过程中遇到的问题解决方法及匹配事宜
首先是带宽,这个通常会在探头上写明,多少MHz。
如果探头的带宽不够,示波器的带宽再高也是无用,瓶颈效应。
另外就是探头的阻抗匹配。
一般示波器的输入阻拦是1MΩ300Mhz以上的示波器通常是50Ω,此时只需将DP-25标示值x2即可。
即x20→x40;x50→x100;x200→x400。
探头在使用之前应该先对其阻抗匹配部分进行调节。
通常在探头的靠近示波器一端有一个可调电容,有一些探头在靠近探针一端也具有可调电容。
它们是用来调节示波器探头的阻抗匹配的。
如阻抗不匹配的话,测量到的波形将会变形。
调节示波器探头阻抗匹配的方法如下:首先将示波器的输入选择打GND上,然后调节Y轴位移旋钮使扫描线出现在示波器的中间。
检查这时的扫描线是否水平(即是否跟示波器的水平中线重合),如果不是,则需要调节水平平衡旋钮(通常模拟示波器有这个调节端子,在小孔中,需要用螺丝刀伸进去调节。
数字示波器不用调节)。
然后,再将示波器的输入选择打到直流耦合上,并将示波器探头接在示波器的测试信号输出端上(一般示波器都带有这输出端子,通常
是1KHz的方波信号),然后调节扫描时间旋钮,使波形能够显示2个周期左右。
调节Y轴增益旋钮,使波形的峰-峰值在1/2屏幕宽度左右。
然后观察方波的上、下两边,看是否水平。
如果出现过冲、倾斜等现象,则说明需要调节探头上的匹配电容。
用小螺丝刀调节之,直到上下两边的波形都水平,没有过冲为止。
当然,可能由于示波器探头质量的问题,可能调不到完全无失真的效果,这时只能调到最佳效果了。
另外就是示波器上还有一个选择量程的小开关:X10和X1。
当选择X1档时,信号是没经衰减进入示波器的。
而选择X10档时,信号是经过衰减到1/10再到示波器的。
因此,当使用示波器的X10档时,应该将示波器上的读数扩大10倍(有些示波器,在示波器端可选择X10档,以配合探头使用,这样在示波器端也设置为X10档后,直接读数即可)。
当我们要测量较高电压时,就可以利用探头的X10档功能,将较高电压衰减后进入示波器。
另外,X10档的输入阻抗比X1档要高得多,所以在测试驱动能力较弱的信号波形时,把探头打到X10档可更好的测量。
但要注意,在不确信号电压高低时,也应当先用X10档测一下,确认电压不是过高后再选用正确有量程档测量,养成这样的习惯是很有必要的,不然,哪天万一因为这样损坏了示波器,要后悔就来不及了。
经常有人提问,为什么用示波器看不到晶振引脚上的波形?一个可能的原因就是因为使用的是探头的X1档,这时相当于一个很重的负载(一个示波器探头使用×1档具有上百pF的电容)并联在晶振电路中,导致电路停振了。
正确的方法应该是使用探头的X10档。
这是使用中应当注意的,即或不停振,也有可能因过度改变振荡条件而看不到真实的波形了。
示波器探头在使用时,要保证地线夹子可靠的接了地(被测系统的地,非真正的大地),不然测量时,就会看到一个很大的50Hz的信号,这是因为示波器的地线没连好,而感应到空间中的50Hz工频市电而产生的。
如果你发现示波器上出现了一个幅度很强的50Hz信号(我国市电频率为50Hz,国外有60Hz的),这时你就要注意下看是否是探头的地线没连好。
由于示波器探头经常使用,可能会导致地线断路。
检测方法是:将示波器调节到合适的扫描频率和Y轴增益,然后用手触摸探头中间的探针,这时应该能看到波形,通常是一个50Hz的信号。
如果这时没有波形,可以检查是否是探头中间的信号线是否已经损坏。
然后,将示
波器探头的地线夹子夹到探头的探针(或者是钩子)上,再去用手触摸探头的探针,这时应该看不到刚刚的信号(或者幅度很微弱),这就说明探头的地线是好的,否则地线已经损坏。
通常是连接夹子那条线断路,通常重新焊上即可,必要时可更换,注意连接夹子的地线不要太长,否则容易引入干扰,尤其是在高频小信号环境下。
示波器探头的地线夹子应该要靠近测量点,尤其是测量频率较高、幅度较小的信号时。
因为长长的地线,会形成一个环,它就像一个线圈,会感应到空间的电磁场。
另外系统中的地线中电流较大时,也会在地线上产生压降,所以示波器探头的地线应该连接到靠近被测试点附近的地上。
高压建议使用有源差分探头。
可将任意间的两点浮接信号,转换成对地的信号,以供应示波器、电表、或计算机使用。
差分探头测量的是〝差动信号〞而一般示波器探棒测量的是〝对地信号〞因此当两点间有任一点〝非地〞时,示波探棒就不能使用,如果冒然使用,将有危险发生。