3-3 测试系统的特性-动态特性2 02
合集下载
3 测试系统的基本特性 (动态识别、不失真)
![3 测试系统的基本特性 (动态识别、不失真)](https://img.taocdn.com/s3/m/4a982efcf705cc1755270949.png)
ξ
ζ = ζ = ζ = ζ = ζ = ζ =
0 .0 5 0 .1 0 0 .1 5 0 .2 5 0 .5 0 1 .0 0
3
η = ω /ω
n
位移共 振频率
ω r = ω n 1 − 2ζ
2
精确求法:
A(ω r ) 1 = 2 A(0) 2ζ 1 − 2ζ
ωn ζ
测 试 系 统 动 态 特 性 的 识 别
利用半功率法求
ζ
ω 2-ω1 ζ= 2ω n
适合阻尼比较小。
测 (二)阶跃响应法 试 系 统 阶跃响应法是以阶跃信号作为测试 动 态 系统的输入,通过对系统输出响应的测 特 试,从中计算出系统的动态特性参数。 性 的 这种方法实质上是一种瞬态响应法。即 识 别 通过研究瞬态阶段输出与输入之间的关
系找到系统的动态特性参数。
u (t )
t
y u (t ) = 1 − e
动 态 传 递 特 性 的 时 域 描 述
结论:一阶系统在单位阶跃激励下稳态输出 的理论误差为零,并且,进入稳态的时间
t→∞。但是,当t =4τ时,y(4τ)=0.982;误
差小于2%;当t =5τ时,y(5τ)=0.993,误差小 于1%。所以对于一阶系统来说,时间常数τ越小 越好。
3.3.3 测试系统动态特性参数的识别
频率响应法是以一组频率可调的标准正弦信号作为 系统的输入,通过对系统输出幅值和相位的测试,获得 系统的动态特性参数。
测 试 系 统 动 态 特 性 的 识 别
系统特性识别试验原理框图
测 试 系 统 动 态 特 性 的 识 别
一阶系统
A(ω ) =
A( ϖ) 1.0 0.8 0.6 0.4 0.2 0 0.707
测试系统的动态特性
![测试系统的动态特性](https://img.taocdn.com/s3/m/e8fa652b777f5acfa1c7aa00b52acfc788eb9f03.png)
y(t)=A0x(t)
y(t)=A0x(t- t0)
时域条件
y(t)=A0x(t-t0) Y(ω)=A0e-jωt0X(ω)
不失真测试系统条件的幅频特性和相频特性应分别满足 : A(ω)=A0=常数 φ(ω)=-t0.ω
做傅立叶变换
频域定义
A(ω)φ(ω) ω
一阶测试系统的典型输入下的响应,灵敏度为1 在单位阶跃输入下的响应 单位阶跃输入的定义为
一阶测试系统的典型输入下的响应,灵敏度为1 在单位正弦输入下的响应 设系统的输入为
THANKS
感谢观看
(四) 测试系统动态特性的测定 常用的动态标定方法有阶跃响应法和频率响应法。 阶跃响应法是以阶跃信号作为测试系统的输入,通过对系统输出响应的测试,从中计算出系统的动态特性参数。这种方法实质上是一种瞬态响应法,即通过对输出响应的过渡过程来标定系统的动态特性。 1.一阶系统动态特性参数的求取
漂移:是指测试系统在输入不变的条件下,输出随时间而变化的趋势 。
第3章、测试系统特性
测试系统的动态特性是指输入量随时间变化时,其输出随输入而变化的关系。
x(t)
h(t)
y(t)
输入量
系统特性
输出
(三)测试系统的动态特性
无论复杂度如何,把测量装置作为一个系统来看待。问题简化为处理输入量x(t)、系统传输特性h(t)和输出y(t)三者之间的关系。
相对真值:是指计量器具按精度不同分为若干等级,上一等级的指示值即为下一等级的指示值,次真值成为相对真值。
在一定条件下被测物理量客观存在的实际值,称为真值。真值是一个理想的概念。在实际测量时,由于实验方法和实验设备的不完善、周围环境的影响以及人们认识能力所限等因素,使得测量值与其真值之间不可避免地存在着差异。
第二章 测试系统的基本特性-动态特性
![第二章 测试系统的基本特性-动态特性](https://img.taocdn.com/s3/m/44312220eff9aef8941e0629.png)
练习
0
( t ) 0 . 5 cos 10 t 0 . 2 cos( 100 t 45 ) 求周期信号 x
通过传递函数为
1 H (s ) 0 .005 s 1
的装置后得到的稳态响应?
一阶系统在典型输入下的响应
• 脉冲响应
x(t) (t) 其拉氏变换:X(s) 1 1 t / 一阶系统的响应: y(t) e
2 2 4 2
a r c t a n ( ) a r c t a5 . 2 3 1 0 ) 9 1 9 5 0
4 o
练习
一温度传感器为一阶系统,其时 间常数τ=0.001s,求当测量频率 f=100Hz信号时的幅值误差和相位误差。
1
1 () 1
2
≤0.05
1 ( ) ≤ 2 1 0 . 1 0 8 0 . 9 5
0 .00052
1 1 1 1 1 1 1 0 . 9 8 6 8 1 . 3 2 % ( )1 ( 2 f )1 ( 2 5 0 5 . 2 3 1 0 )1
n
n 2
1 4
22 2 n n
1
2
2 n ( ) arctg 2 1 n
二阶系统的幅相频特性
1) 、ω/ω A(ω) 近似水平直线, φ(ω) =-180º 4)、当 ω=ω 时, A(ω)=1/(2ξ) , φ(ω) =-90º , 。 n>2 n, 幅值剧增,共振。
m m 1
频率响应函数是传递函数的特例。
Y ( j ) X ( j ) H ( j )
传递函数H(s)是在复数域中描述和考察系统的 特性;频率响应函数H(ω)是在频域中描述和 考察系统特性。
3.测试系统的动态特性
![3.测试系统的动态特性](https://img.taocdn.com/s3/m/ef6b381f580216fc710afd15.png)
2
e
n t
1 2
④ >1时,系统退化为两个一阶系统的串联,此时输 出无振荡,但需较长时间才能到达稳态。 ⑤ =0.6~0.8时,系统可以以较短时间(大约(5~7)/n )进入偏离稳态不到2% ~5%的范围内,且系统超调量 小于 10%。因此,二阶测试系统的阻尼比通常选择为 : =0.6~0.8。 = 0.707为最佳阻尼比。
20 L()(dB) 0
-20dB/dec
一 阶 系 统
()()
-20 -40 0.11
0
-45 -90º
0.2 1
1/
10 1
1 0.1
1/
10
1
一阶系统的时间常数越小越好。 不失真测试的频率上限fmax是由 A( ) A0 1 100% 1 100% 2 A0 误差要求决定的。 1 2fmax
2 1.8 1.6 1.4 1.2
y(t) 1
=0.2 =0.4 =0.6 =0.8
0.8 0.6 0.4 0.2 0 tp 5 10 15 t
欠阻尼二阶系统单位阶跃响应曲线
=1
y( t ) 1
e n t 1 2
sin( d t )
0 1
② 二阶系统(0< ξ <1)瞬态输出分量为振幅等于
k 0
系统的响应y(t)即为这些脉冲依次作用的结果。
若系统脉冲响应函数h(t)已知,则在上述一系列脉冲作 用下,系统在 t 时刻的响应可表示为:
y( t ) x( k ) h( t k ) x ( k ) h( t k )
k 0 k 0
第2章 测试系统的动态特性
![第2章 测试系统的动态特性](https://img.taocdn.com/s3/m/55cd567577232f60ddcca1cc.png)
(4)传递函数与系统的结构无关,不同的测试系统可 能具有相同的传递函数。
(5)H(s)的分母由系统的结构决定,分子则与输入点 的位置等外界因素有关。按n 的大小定义系统的阶次。
7
§2.3 测试系统的动态特性
传递函数:直观的反映了测试系统对不同频率成分 输入信号的扭曲情况。
A
§2.3 测试系统的动态特性
§2.3 测试系统的动态特性
案例:镗杆固有频率测量
§2.3 测试系统的动态特性
实验:悬臂梁固有频率测量
§2.3 测试系统的动态特性
案例:桥梁固频测量
原理:在桥中设置一三角形障碍物,利用汽车碍时的冲击 对桥梁进行激励,再通过应变片测量桥梁动态变形,得到桥 梁固有频率。
§2.3 测试系统的动态特性 5) 阶跃响应函数
第二章第二章测试系统的特性测试系统的特性机械工程测试技术基础机械工程测试技术基础第二章第二章测试系统的特性测试系统的特性机械工程测试技术基础机械工程测试技术基础23测试系统的动态特性输入系统特性输出无论复杂度如何把测量装置作为一个系统来看待无论复杂度如何把测量装置作为一个系统来看待
第二章 测试系统的特性
则线性系统的频响函数为:
H(
j)
Y () X ()
bm ( an (
j)m j)n
bm1( j)m1 b1( j) b0 an1( j)n1 a1( j) a0
以 s j 代入(1)式,也可以得到频响函 数,说明频率响应函数是传递函数的特例。
Y () X ()H ()
物理意义是频率响应函数是在正弦信号的激励下, 测量装置达到稳态后输出和输入之间的关系。
H(j)一般为复数,写成实部和虚部的形式:
(5)H(s)的分母由系统的结构决定,分子则与输入点 的位置等外界因素有关。按n 的大小定义系统的阶次。
7
§2.3 测试系统的动态特性
传递函数:直观的反映了测试系统对不同频率成分 输入信号的扭曲情况。
A
§2.3 测试系统的动态特性
§2.3 测试系统的动态特性
案例:镗杆固有频率测量
§2.3 测试系统的动态特性
实验:悬臂梁固有频率测量
§2.3 测试系统的动态特性
案例:桥梁固频测量
原理:在桥中设置一三角形障碍物,利用汽车碍时的冲击 对桥梁进行激励,再通过应变片测量桥梁动态变形,得到桥 梁固有频率。
§2.3 测试系统的动态特性 5) 阶跃响应函数
第二章第二章测试系统的特性测试系统的特性机械工程测试技术基础机械工程测试技术基础第二章第二章测试系统的特性测试系统的特性机械工程测试技术基础机械工程测试技术基础23测试系统的动态特性输入系统特性输出无论复杂度如何把测量装置作为一个系统来看待无论复杂度如何把测量装置作为一个系统来看待
第二章 测试系统的特性
则线性系统的频响函数为:
H(
j)
Y () X ()
bm ( an (
j)m j)n
bm1( j)m1 b1( j) b0 an1( j)n1 a1( j) a0
以 s j 代入(1)式,也可以得到频响函 数,说明频率响应函数是传递函数的特例。
Y () X ()H ()
物理意义是频率响应函数是在正弦信号的激励下, 测量装置达到稳态后输出和输入之间的关系。
H(j)一般为复数,写成实部和虚部的形式:
第三章测试系统特性3-动态特性
![第三章测试系统特性3-动态特性](https://img.taocdn.com/s3/m/57a33def856a561252d36f8f.png)
2)传递函数
3)频率响应函数 4)阶跃响应函数等
航海学院
传感器与测试技术
第3章 测试系统的特性
1、动态特性的数学描述
1)线性微分方程 微分方程是最基本的数学模型,求解微分方程, 就可得到系统的动态特性。
对于一个复杂的测试系统和复杂的测试信号,
求解微分方程比较困难,甚至成为不可能。为此, 根据数学理论,不求解微分方程,而应用拉普拉斯 变换求出传递函数、频率响应函数等来描述动态特 性。
dy(t ) y (t ) Sx(t ) dt
取S=1
1 H ( s) s 1
H ( j ) 1 j 1
A( )
1 1 ( )
2
() arctg( )
航海学院
传感器与测试技术
第3章 测试系统的特性
幅 频 和 相 频 曲 线
伯 德 图
H ( j) Y ( j) / X ( j) 或 H () Y () / X ()
当系统的初始条件为零时,对微分方程进行傅 立叶变换,可得频率响应函数为
Y ( j ) bm ( j ) m bm1 ( j ) m1 b1 ( j ) b0 H ( j ) X ( j ) an ( j ) n an 1 ( j ) n 1 a1 ( j ) a0
频率响应特性
模A()反映了线性时不变系统在正弦信号激励 下,其稳态输出与输入的幅值比随频率的变化, 称为系统的幅频特性; 幅角()反映了稳态输出与输入的相位差随频 率的变化,称为系统的相频特性。
航海学院
传感器与测试技术
第3章 测试系统的特性
频率响应特性的图形描述: 直观地反映了测试系统对不同频率成分输入信号 的扭曲情况——输出与输入的差异。
第第三章 测试系统的基本特性
![第第三章 测试系统的基本特性](https://img.taocdn.com/s3/m/f3b8b5d0e87101f69f3195d1.png)
第三章 测试系统的基本特性
线性 y
线性 y
非线性y
x
x
x
不失真
在 x(t)基本不随时间变化的静态测量中,测试系统的线性关系
总是希望的,但不是必需的,因为静态非线性校正较容易。在 动态测试中,则力求测试系统是线性系统。一是因为目前对线 性系统能够做比较完善的数学处理与分析,二是因为动态测试 中的非线性校正非常困难。
当测试装置的输入信号有一增量△x,引起输出信号发 生相应变化△y时,定义 S=△y/△x
y
△y △x
x
第三章 测试系统的基本特性
★ 对于理想的定常线性系统 S y y b0
x x a0
★ 灵敏度的量纲取决于输入输出量的单位。当二者相 同时,常用“放大倍数”或“增益”代表灵敏度。
★ 鉴别力阈:又称为死区,即对器具的 响应而言,被测量的最小变化值。
第三章 测试系统的基本特性
二、线性系统及其主要性质 在实际测试工作中,把测试系统在一定条件下,看 成为一个线性系统,具有重要的现实意义。 如果测试装置的输入量x(t)和输出量y(t)之间的关系 可用线性常微分方程来描述,即:
d an bm
n y(t) dt n d m x(t)
dt m
an1
d
a0
这是理想状态下定常线性系统输入输出关系,即单 调的线性比例关系。然而,实际的测量装置并不是理 想的线性系统,定度曲线不是直线。通常是采用“最小 二乘法”拟合的直线来确定线性关系。用实验方法,确 定出定度曲线,由定度曲线的特征指标,即可描述测 量系统的静态特性。
第三章 测试系统的基本特性
静态特性主要有线性度、灵敏度、回程误差三项。
★ 分辨力:即能够肯定区分的指示器示值 的最邻近值。一般规定: 数字装置:最后一位变化一个字的大小 模拟装置:指示标尺分度值的一半。
测试系统动态特性
![测试系统动态特性](https://img.taocdn.com/s3/m/01341af5c67da26925c52cc58bd63186bdeb926f.png)
高效数据处理
采用高效的数据处理算法和架构,确保测试数据的准确性和实时性。
提高测试系统的稳定性
冗余设计
关键部件采用冗余设计,提高系统的可靠性和稳定性。
自适应调整
根据测试过程中的实际情况,自动调整系统的参数和性能, 确保测试结果的准确性。
故障诊断与恢复
具备故障诊断和恢复功能,能够在系统出现故障时快速定位 并恢复。
降低测试系统的噪声
噪声抑制技术
采用先进的噪声抑制技术,降低测试系统内部和外部噪声的影响。
滤波算法
应用合适的滤波算法对测试数据进行处理,去除噪声干扰,提高测 试结果的准确性。
环境控制
对测试环境进行严格的控制,减少环境因素对测试结果的干扰。
06 结论
研究成果总结
测试系统的动态特性对于确 保其稳定性和可靠性至关重
激振试验的优点在于可以人为控制激励信号的频率、幅值和波形等参数, 以便于对系统的不同动态特性进深入研究。
激振试验的局限性在于它只能模拟特定条件下的动态特性,无法完全模拟 实际运行中的复杂情况。
振动台试验
01
振动台试验是一种利用振动台 模拟实际运行中的振动环境, 对测试对象进行振动试验的方 法。
02
测试系统动态特性
目 录
• 引言 • 测试系统动态特性概述 • 测试系统动态特性分析方法 • 测试系统动态特性测试技术 • 测试系统动态特性优化与改进 • 结论
01 引言
目的和背景
确定测试系统的性能指标
通过对测试系统的动态特性进行评估,可以了解测试系统的性能指标,如响应时间、稳定性、可 靠性等。
动态特性对于故障诊断和预测具有重要意义
通过对测试系统的动态特性进行分析,可以及时发现系统潜在的问题和故障,并对其进行诊断和预测。 这对于预防故障发生、减少系统维护成本和提高系统可靠性具有重要意义。
测试系统特性(第2讲)
![测试系统特性(第2讲)](https://img.taocdn.com/s3/m/8355b96b7375a417866f8fac.png)
输出关系是一条理想的直线,斜率
为常数。
但是实际测试系统并非是理想定常线性系统,输入、输出曲线并不是理想的直线 ,式实际上变成
测试系统的静态特性就是在静态测量情况下描述实际测试装置与理想定常线性系 统的接近程度。下面用定量指标来研究实际测试系统的静态特性。
• 动态特性:当被测量随时间迅速变化时, 输出量与输入量之间的关系称为动态特 性,可以用微分方程表示。
3、系统特性的划分:
静态特性:当被测量不随时间变化或变化缓慢时,输出量
测 试
与输入量之间的关系称为静态特性,可以用代数方程 表示。
在式(1.1)描述的线性系统中,当系统的输入
(常数),即输
系
入信号的幅值不随时间变化或其随时间变化的周期远远大于测试
统
时间时,式(1.1)变成:
概
念
也就是说,理想线性系统其输出与输入之间是呈单调、线性比例的关系,即输入、
测试系统的动态特性是指输入量随时间变化时,其输 出随输入而变化的关系。一般地,在所考虑的测量范 围内,测试系统都可以认为是线性系统,因此就可以 用式(1.1)这一定常线性系统微分方程来描述测试系统 以及和输入x(t)、输出y(t)之间的关系,通过拉普拉斯 变换建立其相应的“传递函数”,该传递函数就能描 述测试装置的固有动态特性,通过傅里叶变换建立其 相应的“频率响应函数”,以此来描述测试系统的特 性。
• 传递函数
• 定义系统的传递函数H(s)为输出量和输入量的拉普拉斯变换之比,即
• • 式中s是复变量,即s =σ+jω。
• 传递函数是一种对系统特性的解析描述。它包含了瞬态、稳态时间响 应和频率响应的全部信息。传递函数有一下几个特点:
• (1)H(s)描述了系统本身的动态特性,而与输入量x(t)及系统的初
(优选)第三测试系统的基本特性
![(优选)第三测试系统的基本特性](https://img.taocdn.com/s3/m/ad22db3102d276a200292ec4.png)
★ 分辨力:即能够肯定区分的指示器示 值的最邻近值。一般规定:
数字装置:最后一位变化一个字的大小 模拟装置:指示标尺分度值的一半。
三、回程误差(也称滞后或变差) 测试装置在输入量由小到大再由大到小的测试过程中, 对于同一输入量所得输出量不一致的程度。
y A
hmax
x 回程误差: 以hmax与测量系统满量程输出值A的百分 比表示, 即(hmax/A)×100%。
统的材料、元件、部件的特性并非都是非常稳定的。但
在工程中,通常以足够的精确度把时变线性系统当作时
不变线性系统来处理。
线性时不变系统具有以下主要性质: 1、叠加性
若 x1(t) y1(t) x2 (t) y2 (t)
则 [x1(t) x2 (t)] [ y1(t) y2 (t)]
即符合叠加原理:作用于线性系统的各个输入所产生 的输出是互不影响的。总输出等于所有单个输入作用时 的输出相叠加。
四、其他表征测试系统的指标
1、精确度 准确度:反映测量结果中系统误差的影响。 精密度:反映测量结果中随机误差的影响。 精确度:反映测量结果中系统误差和随机误差的综合 影响,即反映测量的总误差。作为技术指标,常用相对 误差和引用误差来表示。
es小,er大
es大,er小
es小,er小
2、漂移 漂移——指测量装置的测量特性随时间的缓慢变化。 在规定条件下,对一个恒定的输入在规定时间内的输
静态特性主要有线性度、灵敏度、回程误差三项。
一、线性度
定度曲线与理想直线的接近程度。以定度曲线与拟合
直线的最大偏差B同标称范围A的百分比表示。
y
线性度 = B/A×100%
A
B
实用中对非线性定度曲线的处理:
测试系统的动态特性
![测试系统的动态特性](https://img.taocdn.com/s3/m/3dcfc8a5f46527d3240ce0f1.png)
X
s 1
– K b0 静态灵敏度 a0
– a1 时间常数
a0
在工程实际中,一个忽略了质量的 单自由度振动系统,在施于A点的 外力f(t)作用下,其运动方程为
一阶系统的微分方程通式为:
dy( t ) y( t ) Kx( t )
dt
K b0 a0
a1
a0
一阶系统的传递函数为:sY( s ) Y( s ) KX( s )
• 描述系统动态特性更为广泛的函数是传递函数。
• 传递函数的定义:x(t)、y(t)及其各阶导数的初始值为零, 系统输出信号的拉普拉斯变换(拉氏变换)与输入信号的拉 氏变换之比,记为 H (s)
H(s) Y (s) X (s)
式中Y (s) 为输出信号的拉氏变换 Y (s) y(t)estdt 0 X (s) 为输入信号的拉氏变换 X (s) x(t)estdt 0 s j, 0, 复频率
环节的串联和并联
• 串联:
n
H(S) Hi(S)
i 1
• 并联:
n
H(S) Hi(S) i 1
2.3.5 常见测试系统
• 系统阶次由输出量最高微分阶次确定。最常见的测 试系统可概括为零阶系统、一阶系统、二阶系统。
• 零阶系统(Zero-order system)
– 数学表述
a0 y b0 x
Y2 (s) X (s)
A( )
Y1( ) X ( )
Y2 (s) X (s)
H ( j ) A( ) Y2 (s)
X (s)
稳态过程频响函 瞬态过程传递函
数
数
重要结论
• 频响函数的含义是一系统对输入与输出皆为正 弦信号传递关系的描述。它反映了系统稳态输 出与输入之间的关系,也称为正弦传递函数。
第3讲 测试系统及其基本特性(动态2)
![第3讲 测试系统及其基本特性(动态2)](https://img.taocdn.com/s3/m/2dc3a4ddb9f3f90f76c61bce.png)
1 幅频特性: A(ω ) = 1 + (ωτ ) 2 相频特性:ϕ (ω ) = − arctan ωτ
由上两式可知系统的对数幅频特性与对数相频特性分别为: 对数幅频特性: 低频渐近线为 : 高频渐近线为: 对数相频特性:
L(ω ) = −20 log 1 + (ωτ ) 2
0dB -20dB/dec
K
∞
式中,KΔτ=t,t<kΔτ时,h(t - kΔτ)=0。 当Δτ→0时,
0.8)ωn,ζ = 0.65 ~ 0.7。此时,ϕ (ω)与ω /ωn近似成
线性关系,系统响应速度较快且误差较小。
最佳阻尼比: ζ = 0.707 工程实际中一般要求 ζ = 0.4 ~ 0.8
二阶系统的幅值误差:
A(ω ) − A0 × 100% γ= A0 ⎡ ⎤ 1 ⎢ = − 1⎥ × 100% ⎢ ⎥ 2 2 2 ⎣ 1 − (ω ωn ) + (2ζω ωn ) ⎦
[
]
1.5.4 测试装置对任意输入的响应
系统对任意输入的响应 任何输入信号x(t)都可用众多相邻接的、持续时间为Δτ 的矩形波信号来逼近。若Δτ足够小(比测量系统任意时间 常数,任意振荡周期都小),则该矩形波信号可以视为强 度为x(τ)Δτ的脉冲信号,所有脉冲的和记为:
∑ [x(kΔτ )Δτ ]δ (t − kΔτ )
F (t )
受力分析
dt
dy( t ) d 2 y( t ) F (t ) − C − Ky ( t ) = m dt dt 2
A0ω n22 Y ( s) G ( ( t)) = C dy( t )= Ky( t ) = m d y( t ) s F − F ( s) − 2 s + 2ζω n sdt 2ω n 2 + dt
第3章:测试系统的基本特性
![第3章:测试系统的基本特性](https://img.taocdn.com/s3/m/a1784cf6aef8941ea76e0588.png)
3.3 测试系统的动态特性 实验:悬臂梁固有频率测量
3.3 测试系统的动态特性 案例:桥梁固频测量
原理:在桥中设置一三角形障碍物,利用汽车碍时的冲击对桥梁进 行激励,再通过应变片测量桥梁动态变形,得到桥梁固有频率。
3.3 测试系统的动态特性
2、阶跃响应函数
若系统输入信号为单位阶跃信号,即x(t)=u(t), 则X(s)=1/s,此时Y(s)=H(s)/s
3)如果输入和系统特性已知,则可以推断和估计系统的 输出量。(预测)
3.1 概述
二、对测试装置的基本要求
理想的测试系统应该具有单值的、确定的输入-输 出关系。对于每一输入量都应该只有单一的输出量与之 对应。知道其中一个量就可以确定另一个量。其中以输 出和输入成线性关系最佳。
线性 y
线性 y
非线性y
3.3 测试系统的动态特性
一、描述动态特性的方法
测试系统动态特性描述了输出y和输入x之间的关系 ➢在时域内常用微分方程表示;
a2
d
2 y(t) dt 2
a1
dy(t) dt
a0
y(t)
x(t)
参数a0、 a1和a2由系统结构与参数决定, x(t)是输入,y(t)是输出。
➢在频域内可用传递函数或频率响应函数表示。
➢若输入为正弦信号,则稳态输出亦为同频率正弦信号 (频率保持性); ➢输出信号幅值和相位角通常不等于输入信号的幅值和 相位角,其变化均是输入信号频率的函数,并通过
幅频特性A(ω) :反映输出与输入的幅值之比; 相频特性φ(ω):反映输出与输入的相位差;
绝大多数的信号均可以进行傅里叶分解,因此。。。
特征:测量滞后
阶跃响应
频率特性
3 测试系统的基本特性 (静态、动态频域)
![3 测试系统的基本特性 (静态、动态频域)](https://img.taocdn.com/s3/m/a26ba2e9998fcc22bcd10d49.png)
hexia, 2007-1-10
灵敏度的表示方法:
量纲相同,则称为“增益”或“放大系数”
测 试 系 统 的 静 态 传 递 特 性
量纲不同,用每单位输入引起的输出变化表示 注意:装置的灵敏度越高,测量范围就越窄(在同等 输出范围的情况下),就越容易受外界干扰的影响, 即装置的稳定性越差。
灵敏阈(分辨力):引起仪器示值可察觉的输
测 试 系 统 概 述 测试系统是执行测试任务的传感器、仪器 和设备的总称。
简单测试系统(光电池)
V
h1
复杂测试系统(轴承缺陷检测)
测 试 系 统 概 述 加速度计 带通滤波器 包络检波器
幻灯片 3 h1 在测控系统中,进入测控电路的除了传感器输出的测量信号外,还往往有各种噪声。而传感器的输出信号一般又很微弱,将测量信号从含有噪声 的信号中分离出来是测控电路的一项重要任务。为了便于区别信号与噪声,往往给测量信号赋予一定特征,这就是调制的主要功用。在信号调制 中常以一个高频正弦信号作为载波信号。一个正弦信号有幅值、频率、相位三个参数,可以对这三个参数进行调制,分别称为调幅、调频和调 相。 当轴承元件表面有局部损伤类故障时,会对轴承系统产生周期性的脉冲激励。由于脉冲力是一宽带信号,其中必有一部分能量落在压电加速度计 的谐振范围内,引起加速度计的谐振(共振)。把传感器拾取的信号放大,然后经过中心频率等于加速度计谐振频率的带通滤波器滤波,再经包络 检波器的检波,就得到与脉冲冲击发生频率(即轴承元件的故障特征频率)相同的低频信号。对此信号进行频谱分析,可以很容易诊断轴承故障发 生的部位
若xtyt则kxtkyt叠加特性和比例特性可统一表示为若x1ty1tx2ty2t则x1tx2ty1ty2t测试系统概述c微分特性系统对原输入信号的微分等于原输出信号的微分即若xtyt则xtyt当初始条件为零时系统对原输入信号的积若xtyt则xtdtytdtd积分特性分等于原输出信号的积分即测试系统概述e频率保持性线性系统的稳态输出yt将只有和输入频率相同的频率成分即nxtxjwiieiti1n则ytyjwit?iiiei1若系统的输入为某一频率的谐波信号则系统的稳态输出将为同一频率的谐波信号即若xtacostx则ytbcosty线性系统的主要特性特别是符合叠加原理和频率保持性在测试工作中具有重要作用