厦门市中考复习—新定义专题
中考新定义新运算专题练习(1)
1.对于两个不相等的实数a 、b ,定义一种新的运算如下, )0(*>+-+=b a b a b a b a ,如:523232*3=-+=, 那么)4*5(*6= 。
2.对实数a .b ,定义运算☆如下:a☆b=(,0(,0b b a a b a a a b a -⎧⎪⎨⎪⎩>≠)≤≠), 例如2☆3=32-=18,计算:[2☆(﹣4)]×[(﹣4)☆(﹣2)]=3.对于不小于3的自然数n ,规定如下一种操作:<n>表示不是n 的约数的最小自然数.如<7>=2,<12>=5,等等,则<19>×<98>=4.用“”定义新运算:对于任意实数a ,b 都有ab =b 2+1,例如74=42+1=17,那么53= ,m (m 2)= .5.在有理数范围内规定一种新运算“*”,其规则为a*b =a 2-b 2,根据这个规则,求2*5的结果为 .6.用“←”与“→”定义:对于任意实数a ,b ,都有a ←b=a , a →b =b ,例如:3←2=3, 3→2=2,则(2006→2005)←(2004→2003)= .7.若(x 1,y 1)(x 2,y 2)=x 1x 2+y 1y 2,则(4,5)(6,8)= .12.对于实数a,b,定义运算“﹡”:a ﹡b=22(),).a ab a b ab ba b ⎧-≥⎪⎨-<⎪⎩(例如4﹡2,因为4>2,所以4﹡224428=-⨯=.若1x ,2x 是一元二次方程2560x x -+=的两个根,则1x ﹡2x = 13.我们把按照一定顺序排列的一列数称为数列,如1,3,9,19,33,…就是一个数列,如果一个数列从第二个数起,每一个数与它前一个数的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做这个等差数列的公差.如2,4,6,8,10就是一个等差数列,它的公差为2.如果一个数列的后一个数与前一个数的差组成的新数列是等差数列,则称这个数列为二阶等差数列.例如数列1,3,9,19,33,…,它的后一个数与前一个数的差组成的新数列是2,6,10,14,…,这是一个公差为4的等差数列,所以,数列1,3,9,19,33,…是一个二阶等差数列.那么,请问二阶等差数列1,3,7,13,…的第五个数应是 .14.在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①f (x ,y )=(y ,x ).如f (2,3)=(3,2);②g (x ,y )=(-x ,-y ),如g (2,3)=(-2,-3).按照以上变换有:f (g (2,3))=f (-2,-3)=(-3,-2),那么g (f (-6,7))等于 .14.现定义两种运算:“”,“”,对于任意两个整数a ,b ,a ⊕b=a+b-1,a ⊗b =a ×b-1,求4⊗[(6⊕8)⊕(3⊗5)]的值.15.若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”。
中考数学专题复习学案 一次函数之新定义
同时强调多思少算,训练学生准确画图,从图形语言中获取信息的方法
二、解题策略
常见思路:给什么,用什么。
关键是
①深刻理解“新定义”一一明确“新定义”的条件,原理、方法、步骤和结论;
②重视“举例”,利用“举例”检验是否理解和正确运用“新定义;归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;
(1)请判断下列各点中是平面直角坐标系中的平衡点的是:(填序号) ①A(1,2),②B(-4,4)
(2)若在第一象限中有一个平衡点N(4,m)恰好在一次函数y=-x+b(b为常数)的图象上.
①求m、b的值
②一次函数y=-x+b(b为常数)与y轴交于点C,问:在这函数图象上,是否存在点M使 ,若存在,请直接写出点M的坐标:若不存在,请说明理由.
②存在,设点M的坐标为(x.-x+8)
∵ 即 ,解得:x=±12,:点M的坐标为(12,-4)或(-12,20)
(3)没有,理由如下:
设平衡点的坐标为(n,-2),则2|n|=(2+|n|)×2,∴2|n|=4+2|n|,即0=4.
∵0≠4,
∴经过点P(0-2),且平行于x轴的直线上没有平衡点.
本题考查了长方形的周长、长方形的面积、解一元一次方程、一次函数图象上点的坐标特征、三角形的面积以及解含绝对值符号的一元一次方程,解题的关键是:(1)利用平衡点的定义逐一验证点A,B是否为平衡点:(2)①利用平衡点的定义及一次函数图象上点的坐标特征,求出m,b的为(x,-x+8),利用三角形的面积公式结合 ,可得出关于x的含绝对值符号的一元一次方程,解之即可得出x的值,再将其代入点M的坐标中即可求出结论;
2020年中考复习——新定义问题专题训练(含答案)
2020中考复习——新定义问题专题训练(二)班级:___________姓名:___________ 得分:___________ 一、选择题1. 现规定一种新运算“*”:a *b =a b ,如3*2=32=9,则(12)*3=( )A. 16B. 8C. 18D. 322. 对有理数a ,b ,规定运算如下:a※b =a +ab ,则−2※3的值为( )A. −10B. −8C. −6D. −43. 定义一种运算“※”,其规则为a ※b =√a 2+b 2,如3※4=√32+42=√25=5,根据这个规则,计算5※12的值是( )A. √13B. 13C. 5D. 64. 在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:①f(x,y)=(y,x),如f(2,3)=(3,2); ②g(x,y)=(−x,−y),如g(2,3)=(−2,−3).按照以上变换有:f(g(2,3))=f(−2,−3)=(−3,−2),那么g(f(−6,7))等于( )A. (7,6)B. (7,−6)C. (−7,6)D. (−7,−6)5. 我们约定a ⊗b =10a ×10b ,如2⊗3=102×103=105,那么3⊗8为( )A. 24B. 1024C. 1011D. 11106. 在平面直角坐标系xOy 中,点P 的坐标为(a,b),点P 的“变换点”P′的坐标定义如下:当a ≥b 时,点P′的坐标为(b,−a);当a <b 时,点P′的坐标为(a,−b),则点A(5,3),B(1,6),C(−2,4)的变换点坐标分别为( ).A. (3,−5),(1,6),(2,4)B. (3,5),(1,−6),(−2,−4)C. (3,−5),(1,−6),(−2,−4)D. (−3,5),(1,−6),(−2,−4)7. 定义运算:对于任意两个有理数a ,b ,有a ∗b =(a −1)(b +1),则计算−3∗4的值是( )A. 12B. −12C. 20D. −208. 阅读材料:对于任何实数,我们规定符号|a b cd|的意义是|a b cd|=ad −bc.按照这个规定,请你计算:当x 2−4x +4=0时,|x +12xx −12x −3|的值( )A. −9B. −1C. 5D. −5二、填空题9.定义:a∗b=a2−b,则(1∗2)∗3=____.10.定义新运算:对于任意实数a,b,都有a※b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2※5=2×(2-5)+1=2×(-3)+1=-5,则3※(-2)=(1);[(-2)※3]-[2※(-1)]的值为(2).括号(1)处填括号(2)处填11.若=a+b–c–d,则=_________.=______ .12.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,100!98!13.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为110°,那么这个“特征三角形”的最小内角的度数为________.14.设[x]表示不超x的整数中最大的整数,如:[1.99]=1,[−1.02]=−2,根据此规律计算:[−2.4]−[−0.6]=____.15.阅读理解:引入新的i,新的i满足分配律、结合律、交换律,已知i2=−1,那么(2+i)(2−i)=_______.三、解答题16.对于有理数a、b定义一种新运算,规定a☆b=a2-ab.(1)求2☆(-3)的值;(2)若(-2)☆(3☆x)=4,求x的值.17.a⊗b是新规定的这样一种运算法则:a⊗b=a2+ab,例如3⊗(-2)=32+3×(-2)=3.(1)若(−3)⊗x=5,求x的值;(2)若3⊗(2⊗x)=−4+x,求x的值.18.对于a、b定义两种新运算“∗”和“※”:a∗b=a+kb,a※b=ka+b(其中k为常数,且k≠0).若平面直角坐标系xOy中的点P(a,b),有点P的坐标为(a∗b,a※b)与之相对应,则称点P为点P的“k衍生点”例如:P(1,4)的“2衍生点”为P′(l+2×4,2×1+4),即P′(9,6).(1)点P(−1,6)的“2衍生点”P′的坐标为_____.(2)若点P的“3衍生点”P′的坐标为(5,7),求点P的坐标.19.请耐心阅读,然后解答后面的问题:上周末,小明在书城随手翻阅一本高中数学参考书时,无意中看到了几个等式:sin51°cos12°+cos51°·sin12°=sin63°,sin25°cos76°+cos25°sin76°= sin101°.一个猜想出现在他脑海里,回家后他马上用科学计算器进行验证,发现自己的猜想成立,并能推广到一般情况.其实这是大家将在高中学的一个三角函数知识.你是否和小明一样也有想法了?下面考考你,看你悟到了什么.(1)根据你的猜想填空:sin37°cos48°+cos37°sin48°=__________,sinαcosβ+cosαsinβ=__________.(2)尽管75°角不是特殊角,请你用发现的规律巧算出sin75°的值.20.阅读理解:若A,B,C为数轴上三点,点C是线段AB上一点,且点C到点A的距离是点C到点B的距离的2倍,我们就称点C是【A,B】的好点.如图1,点A 表示的数为−1,点B表示的数为2,表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:如图2,M,N为数轴上两点,点M所表示的数为−2,点N所表示的数是4.(1)数________所表示的点是【M,N】的好点;(2)如图3,A,B为数轴上两点,点A所表示的数为−20,点B所表示的数为40,现有一只电子蚂蚁P从点B出发,以每秒2个单位的速度向左运动,到达点A时停止,运动的时间为t秒.当t为何值时,点P,A和B中恰有一个点为其余两点的好点⊕21.已知A、B是⊙O上的两个定点,P是⊙O上的动点(P不与A,B重合),我们称∠APB是⊙O上关于A、B的滑动角.已知∠APB是⊙O上关于A、B的滑动角.(1)若AB是⊙O的直径,则∠APB=____;(2)若⊙O的半径是1,AB=√2,求∠APB的度数.22. 规定:求若干个相同的有理数(不等于0)的除法运算叫做除方,如2÷2÷2÷2÷2÷2,(−3)÷(−3)÷(−3)÷(−3)等.类比有理数的乘方,(−3)÷(−3)÷(−3)÷(−3)记作(−3)④”,读作“−3的圈4次方”,一般地,我们把a ÷a ÷a ÷⋯÷a ⏟n 个a(a ≠0)记作a ,读作“a 的圈n 次方”. (1)直接写出计算结果:2③=________,(−12)④=________.(2)有理数的除方可以转化为乘方幂的形式.如(−3)④=(−3)÷(−3)÷(−3)÷(−3)=(−3)×(−13)×(−13)×(−13)=(−13)×(−13)=(−13)2直接将下列的除方形式写成乘方幂的形式:(−2)④=________;5※=________. (3)计算:22018×.答案和解析1. C解:(12)∗3=(12)3=18.2. B解:根据题中的新定义得:原式=−2+(−2)×3=−2−6=−8,3. B解:∵a ※b =√a 2+b 2, ∴5※12=√52+122=13.4. C解:由题意得g(f(−6,7))=g(7,−6)=(−7,6).5. C解:∵a ⊗b =10a ×10b ∴3⊗8=103×108=1011,6. C解:∵A(5,3),5>3, ∴A′(3,−5), ∵B(1,6),1<6, ∴B′(1,−6), ∴C(−2,4),−2<4, ∴C′(−2,−4).7. D解:∵对于任意两个有理数a 、b ,有a ∗b =(a −1)(b +1) ∴−3∗4=(−3−1)(4+1)=−20.8. B解:∵x 2−4x +4=0, ∴(x −2)2=0, ∴x 1=x 2=2,由题意可得:|x +12xx −12x −3|=(x +1)(2x −3)−2x(x −1), =2x 2−3x +2x −3−2x 2+2x=x−3当x=2时,x−3=2−3=−1,9.−2解:∵a∗b=a2−b,∴(1∗2)∗3=(12−2)∗3=(−1)∗3=(−1)2−3=−2,10.(1)16(2)4解:由题意得3※(-2)=3×[3−(−2)]+1=3×(3+2)+1=3×5+1=16,故答案为16.解:由题意得(-2)※3=−2×(−2−3)+1=−2×(−5)+1=10+1=11,2※(-1)=2×(2+1)+1=2×3+1=7,[(-2)※3]-[2※(-1)]=11−7=4.11.−4解:=1+2−3−4=−4.12.9900解:∵100!=100×99×98×97×...×1,98!=98×97× (1)∴100!98!=100×99×98×…×198×97×⋯×1=100×99=9900.13. 15∘解:由题意知α=110∘, 则β=110∘÷2=55∘,则这个三角形的第三个内角的度数为180∘−110∘−55∘=15∘,14. −2解:[−2.4]−[−0.6] =−3−(−1) =−3+1 =−2,15. 5解:由题意可知:原式=22−i 2=4−(−1)=5,16. 解:(1)2※(−3) =22−2×(−3) =4+6=10;(2)(−2)※(3※x) =(−2)※(9−3x) =(−2)2−(−2)×(9−3x) =22−6x 即22−6x =4 解得:x =3.17. 解:(1)利用题中新定义化简(−3)⊗x =5得:9−3x =5,解得:x =43;(2)根据题中的新定义化简2⊗x =4+2x ,3⊗(2⊗x)=3⊗(4+2x)=9+12+6x =6x +21,3⊗(2⊗x)=−4+x ,得:6x +21=−4+x , 解得:x =−5.18. 解:(1)(11,4);(2)设点P 的坐标为:(a,b),由题意可得: {a +3b =53a +b =7, 解得,{a =2b =1,∴点P 的坐标为:(2,1).解:(1)由题意可得,点P(−1,6)的“2衍生点”P′的坐标为:[−1+2×6,2×(−1)+6],即(11,4);故答案为(11,4);19. 解:(1)sin85°,sin (α+β); (2)sin75°=sin (30°+45°) =sin30°cos45°+cos30°sin45°=12×√22+√32×√22=√2+√64. 解:(1)根据题目信息,sin37°cos48°+cos37°sin48°=sin (37°+48°)=sin85°, sinαcosβ+cosαsinβ=sin (α+β); 故答案为:sin85°,sin (α+β);20. 解:(1)2;(2)设点P 表示的数为y ,分两种情况讨论: ①P 为[A,B]的好点.由题意,得y −(−20)=2(40−y), 解得y =20,t =(40−20)÷2=10(秒); ②P 为[B,A]的好点.由题意,得40−y =2[y −(−20)], 解得y =0,t =(40−0)÷2=20(秒).综上所述,当t 为10秒或20秒时,P 、A 和B 中恰有一个点为其余两点的好点. 解:(1)设所求数为x ,由题意得 x −(−2)=2(4−x), 解得x =2. 故答案为2.21. 解:(1)90°;②连接OA ,OB ,AB , ∵⊙O 半径为1,AB =√2, ∴OA 2+OB 2=AB 2, ∴∠AOB =90°,若点P 在优弧APB ⏜上,则∠APB =12∠AOB =45°; 若点P 在劣弧AB⏜上,则∠AP′B =180°−∠APB =135°; ∴∠APB 的度数为45°或135°.解:(1)∵AB 为⊙O 的直径, ∴∠APB =90°.故答案为90°;22. 解:(1)12; 4(2)(−12)2,(15)n−2.(3)22018×22018=22018×(−12)2016=22=4解:(1)2③=2÷2÷2=12,(−12)④=(−12)÷(−12)÷(−12)÷(−12)=4.故答案为:12;4.(2)(−2)④=(−2)÷(−2)÷(−2)÷(−2) =(−2)×(−12)×(−12)×(−12)=(−12)2,5※=5÷5÷5÷⋯÷5⏟n 个5=5×15×15×⋯×15⏟n−1个15=(15)n−2.故答案为:(−12)2,(15)n−2.。
中考数学二轮复习 专题五 新定义
专题五、新定义一、考点透视:新定义往往是代数与几何的综合题。
事实上特别多问题复杂的代数问题,最终都转化成了几何问题。
著名的费马大定理亦是如此。
这类题难度较大,综合性强,题目定位:(1)区分高端,适度中上,兼顾中下;(2)多问,环环相扣;(3)新定义;现场学习;(4)借助几何直观,探究问题之间的数量和空间关系;(5)考察学生是否形成正确的数学观和知识体系。
二、解题策略:1、做第一问不要担心,只要读明白题意,基本就能解决。
不要纠结于那个新的定义名称是什么,它就是一个新同学呗,也是一个鼻子两只眼睛、哈哈。
假如定义特别长,题目一般都会举例子,这就更简单了。
2、做第二问最好能在第一问的基础上总结出一般性的规律,运用规律,解决问题。
有时题目还会考察逆向思维能力、3、第三问往往考察存在性,最值问题或者取值范围问题。
近些年考察取值范围问题比较多。
做题时一定要画图,感受图形的变化,找到临界值,进而解决问题。
注意考虑全面,不要漏解,以及是否能够取等号的问题、三、例题精讲。
一定要感受出题者的意图,以及李老师说的大的解题策略。
剩下的就是您的基本功了。
28、(昌平)关于平面直角坐标系xOy中的点P,给出如下定义:记点P到x轴的距离为,到y 轴的距离为,若,则称为点P的最大距离;若,则称为点P的最大距离、例如:点P(,)到到x轴的距离为4,到y轴的距离为3,因为3 〈4,因此点P的最大距离为、(1)①点A(2,)的最大距离为;②若点B(,)的最大距离为,则的值为;(2)若点C在直线上,且点C的最大距离为,求点C的坐标;(3)若⊙O上存在..点M,使点M的最大距离为,直截了当写出⊙O的半径r的取值范围、27、(海淀)关于⊙C与⊙C上的一点A,若平面内的点P满足:射线..AP与⊙C交于点Q(点Q能够与点P重合),且,则点P称为点A关于⊙C的“生长点"、已知点O为坐标原点,⊙O的半径为1,点A(—1,0)。
(1)若点P是点A关于⊙O的“生长点",且点P在x轴上,请写出一个符合条件的点P的坐标________;(2)若点B是点A关于⊙O的“生长点”,且满足,求点B的纵坐标t的取值范围;(3)直线与x轴交于点M,与y轴交于点N,若线段MN上存在点A关于⊙O的“生长点”,直截了当写出b的取值范围是_____________________________、25、(通州)点的“值”定义如下:若点为圆上任意一点,线段长度的最大值与最小值之差即为点的“值”,记为、特别的,当点,重合时,线段的长度为0。
中考专题复习——“新定义”问题(教案)
专题复习——“新定义”问题(教案)授课日期:2016.5.18教学目标:1、通过具体实例了解"新定义"型试题的概念及常见模式;2、通过生生交流、师生互动了解解决"新定义"型试题的思路,掌握分析"新定义"型试题的方法,并学会解决"新定义"型试题。
教学重点:"新定义"型试题三种常见模式及其分析、解决该类问题思路和方法。
教学难点:"新定义"型试题需要学生有一定的阅读理解能力,在解决过程中又往往涉及较多的知识点,综合性较强。
因此如何引导学生读题和分析问题,并且综合运用所学知识解决问题是本节课的教学难点。
教学过程:一、专题诠释所谓"新定义"型试题,是指试题在某种运算、某个基本概念或几何图形基础上或增加条件,或改编条件,或削弱条件,构造一些创意新奇、情境熟悉但又从未接触过的新概念的试题。
其特点是源于初中数学内容,但又是学生没有遇到的新信息,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型。
“新定义”型试题常常以运算模式、函数模式、几何模式等形式出现。
二、解题策略解决此类问题的常见思路:给什么,用什么。
即:正确理解新定义,并将此定义作为解题的重要依据,分析并掌握其本质,用类比的方法迅速地同化到自身的认知结构中,然后解决新的问题。
三、典例精析(一)运算模式例1 (2013•河北)定义新运算:对于任意实数a,b ,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1==-5。
(1)求(-2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.分析:(1)按照定义新运算a⊕b=a(a-b)+1,即可求解;(2)先按照定义新运算a⊕b=a(a-b)+1,得出3⊕x,再令其小于13,得到一元一次不等式,解不等式求出x的取值范围,最后在数轴上表示即可。
初中数学中考复习专题五 新定义型
专题五新定义型【专题精讲】“新定义型”问题,主要是指在问题中定义了中学数学中没有学过的一些概念,新运算,新符号,要求学生读懂题意并结合已有知识和能力进行理解,根据新的定义进行运算,推理,迁移。
最近几年是考试热点。
“新定义型”关键要把握两点:一是掌握问题的原型特点及其解决问题的思想方法,二是根据问题背景变化,通过认真思考,合理进行思想方法的迁移。
“新定义型”问题的类型:规律题型中的新定义,运算题中的新定义,探索题中的新定义,开放题中的新定义,阅读材料题中点的新定义,等等。
【典型例题讲解】考点一规律题中的新定义例1若自然数n使得三个数的加法运算“)2++nnn”产生进位现象,则称n为“连加进位数”。
+(+()1例如:2不是“连加进位数”,因为2+3+4=9不产生进位现象;4是“连加进位数”,因为4+5+6=15产生进位现象;51是“连加进位数”,因为51+52+53=156产生进位现象。
如果从0,1,2, (99)100个自然数中任取一个数,那么取到“连加进位数”的概率是()A. 0.88B. 0.89C. 0.90D. 0.91考点二运算中的新定义定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5(1)求(-2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”。
理解(1)如图1,已知A. B 是⊙O 上两点,请在圆上找出满足条件的点C ,使△ABC 为“智慧三角形”(画出点C 的位置,保留作图痕迹);(2)如图2,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CD CF 41=,试判断AEF ∆是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy 中,⊙O 的半径为1,点Q 是直线3=y 上的一点,若在⊙O 上存在一点P ,使得OPQ ∆为“智慧三角形”,当其面积取得最小值时,直接写出此时点P 的坐标。
最新中考数学新定义题型专题复习资料
新定义型专题(一)专题诠释所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力(二)解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.(三)考点精讲考点一:规律题型中的新定义 例1.定义:a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知a 1=-13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2009= .考点二:运算题型中的新定义例2.对于两个不相等的实数a 、b ,定义一种新的运算如下,*0a ba b a b a b+=+(>)﹣,如:323*2532+==﹣,那么6*(5*4)= .例3.我们定义ab ad bc cd=-,例如2345=2×5﹣3×4=10﹣12=﹣2,若x ,y 均为整数,且满足1<14x y <3,则x+y 的值是 .考点三:探索题型中的新定义例4.定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点.如图1,PH=PJ,PI=PG,则点P就是四边形ABCD的准内点.(1)如图2,∠AFD与∠DEC的角平分线FP,EP相交于点P.求证:点P是四边形ABCD 的准内点.(2)分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必要的说明)(3)判断下列命题的真假,在括号内填“真”或“假”.①任意凸四边形一定存在准内点.()②任意凸四边形一定只有一个准内点.()③若P是任意凸四边形ABCD的准内点,则PA+PB=PC+PD或PA+PC=PB+PD.()考点四:阅读材料题型中的新定义阅读材料我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形;我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;请解决以下问题:如图,我们把满足AB=AD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;(1)写出筝形的两个性质(定义除外);(2)写出筝形的两个判定方法(定义除外),并选出一个进行证明.真题演练1.定义运算a⊗b=a(1﹣b),下列给出了关于这种运算的几点结论:①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗b)+(b⊗a)=2ab;④若a⊗b=0,则a=0.其中正确结论序号是.(把在横线上填上你认为所有正确结论的序号)2.如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线,例如平行四边形的一条对角线所在的直线就是平行四边形的一条面积等分线.(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有;(2)如图,梯形ABCD中,AB∥DC,如果延长DC到E,使CE=AB,连接AE,那么有S =S△ADE.请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不梯形ABCD写作法,保留作图痕迹);(3)如图,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.3. 如图,六边形ABCDEF 是正六边形,曲线FK 1K 2K 3K 4K 5K 6K 7……叫做“正六边形的渐开线”,其中1FK ,12K K ,23K K ,34K K ,45K K ,56K K ,……的圆心依次按点A ,B ,C ,D ,E ,F 循环,其弧长分别记为l 1,l 2,l 3,l 4,l 5,l 6,…….当AB =1时,l 2 011等于( )A.20112π B.20113π C.20114π D.20116π一、选择题1、定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则,计算2☆3的值是( )A. 56B. 15C.5D.62.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( )A 、1,2B 、1,3C 、4,2D 、4,33.(2010浙江杭州,10,3分)定义[a ,b ,c ]为函数y =a x 2+bx c +的特征数,下面给出特征数为[2m ,1﹣m ,﹣1﹣m]的函数的一些结论:①当m =﹣3时,函数图象的顶点坐标是(18,33);②当m >0时,函数图象截x 轴所得的线段长度大于32; ③当m <0时,函数在x >14时,y 随x 的增大而减小; ④当m ≠0时,函数图象经过同一个点. 其中正确的结论有( ) (第12题图)A B CD EF K 1 K 2K 3K 4K 5K 6K 74.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。
中考数学专题复习新定义问题(二)
中考数学专题复习新定义问题(二)学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、解答题1.对于平面直角坐标系xOy 中的图形W ,给出如下定义:点P 是图形W 上任意一点,若存在点Q ,使得∠OQP 是直角,则称点Q 是图形W 的“直角点”.(1)已知点A ()6,8,在点Q 1()0,8,Q 2()4,2-,Q 3()8,4中,______是点A 的“直角点”;(2)已知点()3,4B -,()4,4C ,若点Q 是线段BC 的“直角点”,求点Q 的横坐标n 的取值范围;(3)在(2)的条件下,已知点(),0D t ,()1,0E t +,以线段DE 为边在x 轴上方作正方形DEFG .若正方形DEFG 上的所有点均为线段BC 的“直角点”,直接写出t 的取值范围.2.对于平面内的点M ,如果点P ,点Q 与点M 所构成的MPQ 是边长为1的等边三角形,则称点P ,点Q 为点M 的一对“关联点”,进一步地,在MPQ 中,若顶点M ,P ,Q 按顺时针排列,则称点P ,点Q 为点M 的一对“顺关联点”;若顶点M ,P ,Q 按逆时针排列,则称点P ,点Q 为点M 的一对“逆关联点”.已知(1,0)A ,(1)在33(0,0),(0,1),(2,0),,22O B C D ⎛⎫- ⎪⎝⎭中,点A 的一对关联点是____,它们为点A的一对___关联点(填“顺”或“逆”);(2)以原点O 为圆心作半径为1的圆,已知直线:3l y x b =+.∠若点P 在∠O 上,点Q 在直线l 上,点P ,点Q 为点A 的一对关联点,求b 的值; ∠若在∠O 上存在点R ,在直线l 上存在两点()11,T x y 和()22,S x y ,其中12x x >,且点T ,点S 为点R 的一对顺关联点,求b 的取值范围.3.在平面直角坐标系xOy 中,对于图形Q 和∠P ,给出如下定义:若图形Q 上的所有的点都在∠P 的内部或∠P 的边上,则∠P 的最小值称为点P 对图形Q 的可视度.如图1,∠AOB 的度数为点O 对线段AB 的可视度. (1)已知点N (2,0),在点12(0,3)3M ,2(1,3)M ,3(2,3)M 中,对线段ON 的可视度为60º的点是______.(2)如图2,已知点A (-2,2),B (-2,-2),C (2,-2),D (2,2),E (0,4). ∠直接写出点E 对四边形ABCD 的可视度为______°;∠已知点F (a ,4),若点F 对四边形ABCD 的可视度为45°,求a 的值.4.对于平面内点P和∠G,给出如下定义:T是∠G上任意一点,点P绕点T旋转180°后得到点P',则称点P'为点P关于∠G的旋转点.下图为点P及其关于∠G的旋转点P'的示意图.在平面直角坐标系xOy中,∠O的半径为1,点P(0,-2).(1)在点A(-1,0),B(0,4),C(2,2)中,是点P关于∠O的旋转点的是;=+上存在点P关于∠O的旋转点,求b的取值范围;(2)若在直线y x b(3)若点D在∠O上,∠D的半径为1,点P关于∠D的旋转点为点P',请直接写出点P'的横坐标x P'的取值范围.5.在平面直角坐标系xOy 中,对于∠M 内的一点P ,若在∠M 外存在点P ',使得2MP MP '=,则称点P 为∠M 的二倍点.(1)当∠O 的半径为2时, ∠在1(1,0)T ,2(1,-1)T ,333(,)22-T 三个点中,是∠O 的二倍点的是 ; ∠已知一次函数2y kx k =+与y 轴的交点是(0,)A a ,若一次函数在第二象限的图象上的所有点都是∠O 的二倍点,求a 的取值范围.(2)已知点(,0)M m ,1(0,)2-B ,1(1,)2C -,∠M 的半径为2,若线段BC 上存在点P为∠M 的二倍点,直接写出m 的取值范围 .6.在平面直角坐标系xOy 中,12,,,k A A A ⋯是k 个互不相同的点,若这k 个点横坐标的不同取值有m 个,纵坐标的不同取值有n 个,p m n =+,则称p 为这k 个点的“特征值”,记为12,,,k A A A p ⋯=.如图1,点(1,1),(1,2),,123M N T M N 〈〉=+=.(1)如图2,圆C 的圆心为(0,3),半径为5,与x 轴交于A ,B 两点. ∠,T A B 〈〉=________,,,T A B C 〈〉= _________;∠直线(0)y b b =≠与圆C 交于两点D ,E ,若,,,6T A B D E 〈〉=,求b 的取值范围; (2)点128,,,A A A ⋯到点O 的距离为1或2,且这8个点构成中心对称图形,128,,,6T A A A ⋯=,若抛物线2(0)y ax bx c a =++>恰好经过128,,,A A A ⋯中的三个点,并以其中一个点为顶点,直接写出a 的所有可能取值.7.在∠ABC中,点P是∠BAC的角平分线AD上的一点,若以点P为圆心,P A为半径的∠P与∠ABC的交点不少于...4个,点P称为∠ABC关于∠BAC的“劲度点”,线段P A 的长度称为∠ABC关于∠BAC的“劲度距离”.(1)如图,在∠BAC平分线AD上的四个点1P、2P、3P、4P中,连接点A和点的线段长度是∠ABC关于∠BAC的“劲度距离”.(2)在平面直角坐标系中,已知点M(0,t),N(4,0).∠当t=5时,求出∠MON关于∠MON的“劲度距离”1d的最大值.∠如果222d≤≤内至少有一个值是∠MON关于∠MON的“劲度距离”,请直接写出t 的取值范围.8.在平面直角坐标系xOy中,若点P和点1P关于y轴对称,点1P和点2P关于直线l对称,则称点2P是点P关于y轴,直线l的完美点.(1)如图1,点(2,0)A-.∠若点B是点A关于y轴,直线1:4l x=的完美点,则点B的坐标为__________ ;∠若点(5,0)C是点A关于y轴,直线2:l x a=的完美点,则a的值为__________;(2)如图2,∠O的半径为1.若∠O上存在点M,使得点M'是点M关于y轴,直线3:l x b=的完美点,且点M'在函数2(0)y x x=>的图象上,求b的取值范围;(3)(),0E t是x轴上的动点,∠E的半径为2,若∠E上存在点N,使得点N'是点N关于y轴,直线4:32l y x=+的完美点,且点N'在y轴上,直接写出t的取值范围.9.对于平面直角坐标系xOy中的点P和图形G,给出如下定义:若在图形G上存在两个点M,N,且MN=2,使得以P,M,N为顶点的三角形为等边三角形,则称P为图形G的“正点”.已知A(2,0),B(0,23).(1)在点1C(-1,3),2C(0,0),3C(2,3)中,线段AB的“正点”是;(2)直线(1)3y k x=-+(0k≠)上存在线段AB的“正点”,求k的取值范围;(3)以(),0T t(0t<)为圆心,27为半径作∠T,若线段AB上总是存在∠T的“正点”,直接写出t 的取值范围.10.对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ),特殊地,当图形M 与图形N 有公共点时,规定d (M ,N )=0已知点()(2,00)2(30)0()2A B C D m -,,,,,,. (1)∠求d (点O ,线段AB );∠若d (线段CD ,直线AB )=1,直接写出m 的值;(2)∠O 的半径为r ,若d (∠O ,线段AB )≤1,直接写出r 的取值范围; (3)若直线3y x b =+上存在点E ,使d (E ,ABC )=1,直接写出b 的取值范围.11.对于平面直角坐标系xOy 中的一点P 和C ,给出如下的定义:若C 上存在一个点A ,连接P A ,将射线P A 绕点P 顺时针旋转90°得到射线PM ,若射线PM 与C 相交于点B ,则称P 为C 的直角点. (1)当O 的半径为1时,∠在点(0,0)D 、(1,1)E -、(2,2)F 中,O 的直角点是 .∠已知直线l :y x b =+,若直线l 上存在O 的直角点,求b 的取值范围.(2)若(,0)Q q ,Q 的半径为1,直线332y x q =-+ 上存在Q 的直角点,直接写出q 的取值范围.参考答案:1.(1)Q1,Q3;(2)4222n-≤≤+;(3)-3+21-31732t t≤≤-≤≤或【解析】【分析】(1)在平面直接坐标系中画出相关点的坐标,根据定义就可以判断出结果.(2)根据题意画出点Q的位置轨迹,观察图形,满足题意有两种情况,分别计算即可.(3)根据题意画图,并结合第二问,发现当正方形在以OB和OC为直径的圆的相交部分的时候,是不满足题意的,所以找到个边界点,即可解题【详解】解:(1)Q1,Q3,如下图:(2)∠∠OQP=90°,∠点Q在以OP为直径的圆上(O,P两点除外)如图1,以OB为直径作M,作//MH x轴,交M于点H(点H在点M左侧).∠点B的坐标为(-3,4),∠M 的半径为52,点M 的坐标为3,22⎛⎫- ⎪⎝⎭.∠35422H x =--=-.如图2,以OC 为直径作M ',作M H ''∠x 轴,交M '于点H '(点H '在点M '右侧). ∠点C 的坐标为(4,4),∠M '的半径为22,点M '的坐标为(2,2). ∠222H x '=+. ∠n 的取值范围是4222n -≤≤+. (3)正方形1的左下端点为左边界,此时13t =-.正方形2的右上端点在右边圆上,圆心坐标为()2,2 ,则满足关系式:()()22121222t +-+-=,化简得:2260t t --=,解得:121717t t =+=-(舍),. 正方形3的左端点在左边圆上,圆心坐标为3,22⎛⎫- ⎪⎝⎭,此时满足关系式:()22351222t ⎛⎫++-= ⎪⎝⎭,化简得:2+330t t -=, 解得:3432132122t t -+--==,(舍), 正方形4的右下端点在右边圆上,是右边界,143t t +==,. 综上所说:满足题意的解集是:-3+21-31732t t ≤≤-≤≤或.【点睛】本题是新定义题型的考查,能够根据题意画出相关图形,分类讨论是解题关键. 2.(1)C ,D ,逆(或D ,C ,顺);(2)∠0b =,3-或23-;∠2323b --≤≤-.【解析】【分析】(1)根据两点间距离公式,分别求出AO 、AB 、AC 、AD 、OD 的长,根据“关联点”及“顺关联点”的定义即可得答案;(2)∠根据“关联点”的定义可得1AP AQ PQ ===,可得∠QP A =60°,根据∠O 半径及点A 坐标可得OA=OP=AP ,可得∠OAP 是等边三角形,根据等边三角形点性质可得∠OAP =∠POA =60°,113,22P ⎛⎫ ⎪ ⎪⎝⎭,213,22P ⎛⎫- ⎪ ⎪⎝⎭,可得Q 1(0,0),根据∠QP A =∠POA =60°,可得PQ //OA ,即可得出点Q 的横坐标和纵坐标,即可得Q 2、Q 3坐标,把Q 1、Q 2、Q 3坐标代入直线l 解析式求出b 值即可;∠作RH ST ⊥于点H ,则32RH =,根据圆的性质分别求出b 的最大值和最小值即可得答案. 【详解】(1)∠(1,0)A ,33(0,0),(0,1),(2,0),,22O B C D ⎛⎫- ⎪⎝⎭, ∠AO =1,AB =2,AC =1,AD =1,OD=3,∠∠ACD 是等边三角形,∠C 、D 是点A 的“关联点”,∠点A 、C 、D 按顺时针排列,∠C 、D 是点A 的“顺关联点”,故答案为:C ,D ,顺(或D ,C ,逆)(2)∠如图.∠点P ,点Q 为点A 的一对“关联点”,∠APQ 为等边三角形,1AP AQ PQ ===,∠∠QP A =60°,∠以原点O 为圆心作半径为1的圆,点P 在∠O 上,OA =1,∠OA=OP=AP ,∠∠OAP 是等边三角形,∠∠OAP =∠POA =60°,113,22P ⎛⎫ ⎪ ⎪⎝⎭,213,22P ⎛⎫- ⎪ ⎪⎝⎭, ∠Q 1(0,0),∠点Q 在直线l 上,∠b 1=0,∠∠QP A =∠POA =60°,∠PQ //OA ,∠点Q 横坐标为12+1=32, ∠1AP AQ PQ ===,∠点Q 纵坐标为32±, ∠233333,,,2222Q Q ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 当233,22Q ⎛⎫ ⎪⎝⎭时,33322b +=,解得:3b =-; 当333,22Q ⎛⎫- ⎪⎝⎭时,33322b +=-,解得:23b =-. 综上所述,0b =,3-或23-.∠如图.∠点T,点S为点R的一对顺关联点,∠RTS为正三角形,1RT=,//RT x轴,点T和点S在直线:3l y x b=+上.作RH ST⊥于点H,则32RH=,当b取最大值时,111R H l⊥,1111312OH OR R H=-=-,此时11223b OH==-.当b取最小值时,222R H l⊥,2222312OH OR R H=+=+,此时222(23)23b OH=-=-+=--.综上所述,b的取值范围为2323b--≤≤-.【点睛】本题考查等边三角形点判定与性质、圆点性质及一次函数图象上点点坐标特征,正确理解“关联点”点概念是解题关键.3.(1)M1,M2;(2)∠90;∠232+或232【解析】【分析】(1)结合勾股定理,等边三角形的判定和性质以及锐角三角函数求角的度数,从而作出判断;(2)∠根据等腰直角三角形的判定和性质求解;∠根据可视度的定义结合勾股定理分情况讨论求解【详解】解:(1)∠点N (2,0),点12(0,3)3M ,2(1,3)M ,3(2,3)M 中, ∠M 3N ∠x 轴,∠332tan 3ON M M N ∠==,112tan 3233ON M OM ∠=== ∠360M ∠≠︒,160M ∠=︒()222132OM =+=,()222132M N =+=∠∠2OM N 是等边三角形∠2=60OM N ∠︒ ∠对线段ON 的可视度为60º的点是M 1,M 2故答案为:M 1,M 2.(2)∠连接EA ,ED由题意可得AG =EG =2,DG =GE =2∠∠AGE 和∠EDG 均为等腰直角三角形∠∠AED =90°∠点E 对四边形ABCD 的可视度为90°故答案为:90;∠解:由题意可知,四边形ABCD是正方形,点F在直线y=4上.如图所示,点F对正方形ABCD的可视度为45°,当点F是以点D为圆心,4为半径的圆和直线y=4的交点时,过点D作DN∠EF于点N,则有DN=2,DF=4,可得NF=23.∠a=232+.当点F是以点A为圆心,4为半径的圆和直线y=4的交点时,同理可得,a=232.综上,a的值为232+或232.【点睛】本题考查解直角三角形已经图形与坐标,理解题意,利用数形结合思想解题是关键.4.(1)点B,点C;(2)222222b-≤≤+;(3)44'-≤≤px【解析】【分析】(1)根据题意结合图即可得出旋转点;(2)使直线y x b =+分别与圆相切时,求出b 的取值范围;(3)考虑全两种情况即可得出取值范围.【详解】(1)点B ,点C ;(2)由题意可知,点P 关于∠O 的旋转点形成的图形为以点G (0,2)为圆心,以2个单位长度为半径的∠G .当直线y x b =+与∠G 相切时:如图1,求得:222b =+,如图2,求得:222b =-.因为直线y x b =+上存在点P 关于∠O 的旋转点,所以,222222b -≤≤+.图1图2(3) 当∠D 的圆心在(-1,0)(1,0)时,p x ' 取最小和最大值,∴ P '的横坐标x P '的取值范围44'-≤≤p x .【点睛】此题考查了圆与一次函数图像的知识,解题的关键是能够灵活运用直线与圆相切的特点,进而求解.5.(1)∠2T ,3T ;∠2323a <≤;(2)153122m -<<-或315122m <<+ 【解析】【分析】(1)∠根据圆的二倍点的含义判断即可;∠由于圆的半径为2,根据二倍点的含义,则这些点与圆心O 的距离大于1,当直线与半径为1的圆相切时,可求得一次函数解析式中的k 值,从而可求得a 的值;当直线y =kx +2k 与y 轴的交点也是O 与y 轴的交点时,可得a 的值,根据题意最后可确定a 的取值范围; (2)当2MC <且1MB > 或<2MB 且1MC >时,才满足条件,由此可求得m 的取值范围.【详解】(1)∠∠OT 1=1,122OT '=,但此时1T '点在圆上,不合题意,故T 1不是二倍点; ∠OT 2=22112+=,22333322OT ⎛⎫⎛⎫=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,而22222OT '=>,32232OT '=>,∠2T ,3T 是二倍点.故答案为:2T ,3T∠当2x =-时,0y =,∠一次函数2y kx k =+过定点()2,0-,如图1,当一次函数2y kx k =+的图象与半径为1的O 相切时,可得33k =,则233a =.如图2当一次函数2y kx k =+的图象与y 轴的交点也是O 与y 轴的交点时,可得2a =.∠由题意可知2323a <≤. (2)当2MC <且1MB > 或<2MB 且1MC >时,线段BC 上存在点P 为∠M 的二倍点,即221(1)44114m m ⎧-+<⎪⎪⎨⎪+>⎪⎩或221(1)14144m m ⎧-+>⎪⎪⎨⎪+<⎪⎩, 解得:315122m <<+或153122m -<<-. 故答案为:153122m -<<-或315122m <<+. 【点睛】本题是一个新定义问题,涉及直线与圆的位置关系,一次函数的图象,解一元二次不等式组等知识,解题的关键是数形结合.6.(1)∠3,5;∠28b -<<且0b ≠,6b ≠;(2)1或2或14.【解析】【分析】(1)∠先写出A ,B 的坐标,然后根据题意即可求解;∠D ,E 两点都在直线(0)y b b =≠上,而A ,B 两点都在直线0y =上,因此A ,B ,D ,E 四点纵坐标不同的取值有2个,要使得,,,6T A B D E 〈〉=,则A ,B ,D ,E 四点横坐标不同的取值必须有4个,此时这四个点的横坐标均不能相同,由对称性,当6b =时,D ,E 分别为(4,6)-和(4,6),其横坐标分别与A ,B 的横坐标相同,不符合题意;由图可知,直线y b =与C 要有公共点,则28b -<<,答案可解;(2)根据题意画出图形,抛物线2(0)y ax bx c a =++>,所以0a >,抛物线开口向上,因为抛物线经过三个点,且抛物线呈对称,分析抛物线可能经过的点,进行分类讨论即可解得答案.【详解】(1)∠由图可知()()()4,0,4,0,0,3A B C -,根据题意可得:,213T A B 〈〉=+=,,,325T A B C 〈〉=+=,故答案为:3,5;∠解:D ,E 两点都在直线(0)y b b =≠上,而A ,B 两点都在直线0y =上,因此A ,B ,D ,E 四点纵坐标不同的取值有2个,要使得,,,6T A B D E 〈〉=,则A ,B ,D ,E 四点横坐标不同的取值必须有4个,于是此时这四个点的横坐标均不能相同.由对称性,当6b =时,D ,E 分别为(4,6)-和(4,6),其横坐标分别与A ,B 的横坐标相同,不符合题意;由图可知,直线y b =与C 要有公共点,则28b -<<;综上所述,b 的取值范围是28b -<<且0b ≠且6b ≠.(2)∠T <A 1,A 2,…,A 8>=6, ∠这8个点横坐标的不同取值的个数与纵坐标的不同取值的个数之和为6.∠点A 1,A 2,…A 8到点O 的距离为1或2,且这8个点构成中心对称图形,∠这8个点构成的图形如下图所示:它们的坐标分别为:A 1(-1,1),A 2(0,1),A 3(1,1),A 4(-1,0),A 5(1,0),A 6(-1,-1),A 7(0,-1),A 8(1,-1).∠抛物线y =ax 2+bx +c (a >0),∠抛物线开口向上.∠抛物线y =ax 2+bx +c (a >0)恰好经过A 1,A 2,…A 8中的三个点,并以其中一个点为顶点,∠根据抛物线为轴对称图形可得:抛物线经过A1,A3,A7或A4,A5,A7.∠抛物线经过A1,A3,A7时,11.1a b ca b cc-+=⎧⎪++=⎨⎪=-⎩解得:21abc=⎧⎪=⎨⎪=-⎩抛物线经过或A4,A5,A7时,1a b ca b cc-+=⎧⎪++=⎨⎪=-⎩解得:11abc=⎧⎪=⎨⎪=-⎩或这8个点构成的图形如下图所示:它们的坐标分别为:123214214(,),(,)4444A A--,34521432143214(,),(,),(,)444444A A A--6782142143214(,),(,),(,).444444A A A----∠抛物线y=ax2+bx+c(a>0)恰好经过A1,A2,…A8中的三个点,并以其中一个点为顶点,∠根据抛物线为轴对称图形可得:抛物线经过A1,A3,A6或A4,A2,A7.∠抛物线经过A1,A3,A6时,A6为顶点,经过A1,A3,设抛物线解析式为2214().44y x =+- 将A 3坐标代入得:142214().4444a =+- 解得:14.a =抛物线经过A 2,A 4,A 7时,A 7为顶点,经过A 2,A 4,设抛物线解析式为2214().44y x =-- 将A 4坐标代入得:21432214().4444=-- 解得:14.a =综上,a 的值为1或2或14【点睛】本题考查了二次函数的综合运用,解题的关键是进行分类讨论.7.(1)23,P P ;(2)∠22;∠52t -≤≤-或25t ≤≤.【解析】【分析】(1)以AP 为半径,以点P 为圆心作圆,观察图形,结合题意即可解答;(2)∠作∠MON 的角平分线OE ,ON 的垂直平分线PF ,OE 和PF 相交于点P ,此时∠P 过点N ,线段OP 的长度是∠MON 关于∠MON 的“劲度距离”最大值.由此求解即可;∠由题意可知圆心都在直线y =x 上,再分当t >0和t <0时两种情况求t 的取值范围即可.【详解】(1)以AP 为半径,以点P 为圆心作圆,则23P P 、符合要求.故答案为:23P P、;(2)∠作∠MON的角平分线OE,ON的垂直平分线PF,OE和PF相交于点P,此时∠P 过点N,线段OP的长度是∠MON关于∠MON的“劲度距离”最大值.易知,OE的函数表达式为y=x,PF的函数表达式为x=2,从而可得其交点坐标为P(2,2).∠1d=OP=22;∠由题意可知,圆心都在直线y=x上,∠当t>0时,当d最大为22时,圆P经过点N,此时和∠一样,点M在(0,5)处,即t=5;当d最小为2时,圆P经过点M,此时点P的纵坐标为1122OM t=,所以点P的坐标(12t,12t),再由OP=2可得22211()()(2)22t t+=,解得t=2;∠当t>0时,t的取值范围为25t≤≤.∠同理,当t<0时,t的取值范围为52t-≤≤-.综上所述t的取值范围为52t-≤≤-或25t≤≤.【点睛】本题时一次函数和圆的综合题,正确理解题意是解决问题的关键.8.(1)∠(6,0),∠3.5;(2)1524b-<≤;(3)234234t-≤≤+.【解析】【分析】(1)∠根据点坐标的轴对称变换规律即可得;∠先求出点A 关于y 轴,直线2:l x a =的完美点,再根据点C 的坐标建立方程,求解即可得;(2)先根据完美点的定义、待定系数法求出点M 所在直线的解析式为24y x b =+,再找出两个临界位置∠直线24(0)y x b y =+>与位于x 轴上方的半圆O 相切;∠直线24(0)y x b y =+>恰好经过点(1,0),分别利用相似三角形的判定与性质、一次函数的性质求出b 的值即可得;(3)如图(见解析),先确定点N '在E '上运动,再利用待定系数法求出直线1E E '的解析式,从而求出点,K E '的坐标,然后求出E '与y 轴相切时的t 值即可得出答案. 【详解】解:(1)∠(2,0)A -, ∴点A 关于y 轴对称的点坐标为(2,0),又点(2,0)关于直线1:4l x =对称坐标为(6,0),(6,0)B ∴, 故答案为:(6,0);∠(2,0)A -, ∴点A 关于y 轴对称的点坐标为(2,0),又点(2,0)关于直线2:l x a =对称坐标为(22,0)a -,点(5,0)C 是点A 关于y 轴,直线2:l x a =的完美点,225a ∴-=,解得 3.5a =,故答案为:3.5;(2)如图,设点M 关于y 轴的对称点为''M ,由完美点的定义得:点M 所在直线与点M '所在直线2(0)y x x =>平行,则设点M 所在直线的解析式为2(0)y x c y =+>,设点M '的坐标为(,2)M m m ',则(2,2)M b m m ''-,(2,2)M b m m -+,将点(2,2)M b m m -+代入2y x c =+得:2(2)2b m c m -++=,解得4c b =,则点M 所在直线的解析式为24y x b =+,因此,有两个临界位置:∠直线24(0)y x b y =+>与位于x 轴上方的半圆O 相切;∠直线24(0)y x b y =+>恰好经过点(1,0),∠直线24(0)y x b y =+>与位于x 轴上方的半圆O 相切,如图,设直线24(0)y x b y =+>与x 轴交于点B ,与y 轴交于点A ,则(0,4),(2,0),0A b B b b ->,224,2,25OA b OB b AB OA OB b ∴===+=,由圆的切线的性质得:OM AB ⊥,1OM =,在AOB 和OMB △中,90AOB OMB ABO OBM ∠=∠=︒⎧⎨∠=∠⎩, AOB OMB ∴~,OA AB OM OB ∴=,即42512b b b=, 解得54b =, ∠直线24(0)y x b y =+>恰好经过点(1,0), 将点(1,0)代入得:240b +=,解得12b =-, 点M '在函数2(0)y x x =>的图象上,不含原点(0,0)O ,b ∴的值不能取12-,则b 的取值范围为1524b -<≤;(3)如图,设点E关于y轴的对称点为1E,点1E关于直线4:32l y x=+的对称点为E',连接1E E',交直线4l于点K,则E'的半径为2,当点N在E上运动时,点N'在E'上运动,要使点N'在y轴上,则E'与y轴相切或相交即可,(,0)E t,1(,0)E t∴-,14E E l'⊥,∴设直线1E E'的解析式为33y x n=-+,将点1(,0)E t -代入得:303t n +=,解得33n t =-, 则直线1E E '的解析式为3333y x t =--, 联立333332y x t y x ⎧=--⎪⎨⎪=+⎩,解得234324t x t y ⎧--=⎪⎪⎨-+⎪=⎪⎩, 2332(,)44t t K ---+∴, 又点K 是线段1E E '的中点,2332(,)22t t E --+'∴, 当E '与y 轴相切时,2322t -=, 解得234t =+或234t =-,综上,满足条件的t 的取值范围为234234t -≤≤+.【点睛】本题考查了点坐标的轴对称变换规律、圆的切线的性质、相似三角形的判定与性质等知识点,较难的是题(2)(3),正确找出相应的临界位置是解题关键.9.(1)1C ,2C ;(2)03k <≤;(3)6243t -≤≤-或20t ≤<-【解析】【分析】(1)按照定义分别判断所给点能否与已知点构成等边三角形即可;(2)根据正点的定义,可以判断满足条件的正点连线是正六边形的两条边,结合直线(1)3y k x =-+过定点()1,3,进一步判断的范围即可; (3)根据正点的定义,画出满足题意的圆,根据图形进行计算,即可.【详解】解:过点O 作OD ∠AB ,∠2C (0,0),A (2,0),B (0,23),∠AB =22(20)(023)-+-=4,∠OD=22334OA OBAB⨯⨯==,∠在线段AB上存在存在两个点M,N,且MN=2,使得以2C,M,N为顶点的三角形为等边三角形,即:2C是线段AB的“正点”.同理:1C是线段AB的“正点”.故答案是:1C,2C;(2)如图,线段AB的“正点”在线段OC和'C D上.且六边形BCOAD'C是正六边形,∠直线(1)3y k x=-+(0k≠)过定点()1,3,是正六边形的中心坐标也是()1,3,∠直线(1)3y k x=-+(0k≠)绕着中心(1,3)旋转.又∠直线(1)3y k x=-+(0k≠)过点O和C'时,k=3,过点C和D时,k=0,∠03k<≤.(3)如下图:在∠T上取线段MN,使MN=2,往圆外作等边三角形MNE,在MN上取中点D,连接TN,ED,TD,则ED∠MN,TD∠MN,T,D,E三点共线,∠DE=22213-=,TD=()2227133-=,∠大圆的半径=3+33=43,同理:小圆半径=33-3=23,当大圆或小圆与线段AB有交点时,线段AB上存在∠T的“正点”,若大圆过点B时,则TB=43,∠AB=4,OB=23,∠OT=()()2243236-=,∠tan∠OBT=OT OBOB OA==tan∠OAB,即:∠OBT=∠OAB,∠∠ABT=∠OBT+∠ABO=∠OAB+∠ABO=90°,∠此时AB与大圆相切于点B,t=-6,若大圆过点A时,AT=43,此时,t=2-43,若小圆与线段AB相切于点C时,∠ATC=∠ABO=30°,TC=23,∠AT =TC ÷cos30°=23÷32=4,此时,t =-2, 若小圆经过B 点时,圆心与点O 重合时,t =0,综上,243t -6≤≤-或20t ≤<-.【点睛】本题是新定义题型,考查动点轨迹为圆时的综合数据处理,以及等边三角形的性质,锐角三角函数相关知识点,能够根据题意画出图形是解题关键.10.(1)∠3;∠232m =-;(2)31231r -≤≤+;(3)232232b --≤≤+【解析】【分析】(1)∠根据题意作图,由三角形的面积公式及“闭距离”的定义即可求解;∠根据题意作图,根据含30°的直角三角形的性质即可求出D 点坐标,故可求解; (2)根据题意作图,由d (∠O ,线段AB )≤1,分情况讨论即可求解;(3)根据题意作图,找到d (∠O ,线段AB )=1的点,再根据解直角三角形、一次函数的解析式求解方法求出b 的值,故可求解.【详解】(1)∠如图,作OH ∠AB ,∠()0)2023(A B -,,, ∠AO =2,BO =23,AB =()222234+= 根据三角形的面积公式可得1122AO BO AB OH ⋅=⋅ ∠OH =22334⨯= ∠d (点O ,线段AB )=3;∠∠AO =2,BO =23,AB =()222234+=∠AB =2AO ,∠∠ABO =30°如图,作HD ∠AB ,∠d (线段CD ,直线AB )=1,∠DH =1∠BD =2HD =2∠DO =BO -BD =232-∠D(232-,0)∠m=232-;Array(2)如图,OH∠AB,交∠O于M点,BI=1当d(∠O,线段AB)≤1当HM≤1时,由(1)可得OH=3∠31r≥-当BI≤1时,此时IO=BI+OB=231+∠231r≤+故若d(∠O,线段AB)≤1时,r的取值范围为31231-≤≤+;r(3)∠ d (E ,ABC )=1,如图,作CM ∠直线3y x b =+于M 点,此时CM =1设直线3y x b =+与x 轴交于K 点,则∠CKM =60°∠CK =CM ÷cos60°=233∠K (2+233,0),代入3y x b =+得232330b ⎛⎫=+⨯+ ⎪ ⎪⎝⎭ 解得b =232如图,作BG ∠直线3y x b =+于G 点,此时BG =1设直线3y x b =+与y 轴交于N 点,则∠GNB =90°-60°=30°∠BN =2BG =2∠N (0,232+),代入3y x b =+得32320b +=⨯+解得b =232+∠存在点E ,使d (E ,ABC )=1,∠b 的取值范围是232232b --≤≤+.【点睛】此题主要考查圆与几何综合,解题的关键是根据题意作图,由“闭距离”的定义及解直角三角形、圆的性质特点进行求解.11.(1)∠D ,E ;∠22b -≤≤;(2)464633q -≤≤ 【解析】【分析】(1)∠如图,由定义可得:,A B 都在O 上,且90,APB ∠=︒ 再分别画出图形,即可得到答案;∠由定义可知,如图O 的直角点,分布在以O 为圆心以2为半径的圆上或圆内,结合∠可得直线的两个极限位置,从而可得答案;(2)先求解332y x q =-+与,x y 轴的交点坐标,再求解60,ONK QNM ∠=︒=∠ 再分两种情况讨论:情况1:q >0时,结合∠画出图形求解463q =,再利用对称性得到.情况2:q <0时, 463q =-,从而可得答案. 【详解】 解:(1)∠如图,由定义可得:,A B 都在O 上,且90,APB ∠=︒当,P D 重合时,则()0,0P ,此时1,AP BP ==故D是O的直角点,如图,同理可得;()1,1E-是O的直角点,当()2,2F时,AFB∠<90,︒F∴不是O的直角点,故答案为:D,E;∠由定义可知,如图O的直角点,分布在以O为圆心以2为半径的圆上或圆内由∠可得:当直线y x b=+过()1,1E-时,11,b∴=-+2,b∴=当直线y x b=+过()1,1E'-时,11,b∴-=+2,b∴=-所以22b -≤≤;(2) 332y x q =-+, 当0x =,则3,2y q =当0,y = 则330,2x q -+= .2q x ∴= 所以直线与x 轴交点为N (,0)2q ,与y 轴的交点30,,2K q ⎛⎫ ⎪ ⎪⎝⎭32tan 3.2q OK ONK q ON∴∠=== 60,ONK QNM ∴∠=︒=∠情况1:q >0时,如图Q (半径为2)与直线332y x q =-+相切时, ∠2QM =,60QNM ∠=︒,∠26sin 603QM QN ==︒, ∠2623q ON QN ===, ∠463q =.情况2:q <0时,根据对称性,463q =-, ∠q 的取值范围为464633q -≤≤ 【点睛】 本题考查的是自定义题,同时考查了旋转的性质,圆的基本性质,圆的切线的性质定理,求解一次函数的解析式,锐角三角函数的应用,掌握数形结合的方法是解题的关键.。
中考数学新定义型专题
中考数学新定义型专题1.解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题.例如,原问题是“若矩形的两边长分别为3和4,求矩形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若矩形的周长为14,且一边长为3,求另一边的长”;也可以是“若矩形的周长为14,求矩形面积的最大值”,等等.(1)设A =3x x -2-xx +2,B =x 2-4x ,求A 与B 的积;(2)提出(1)的一个“逆向”问题,并解答这个问题.2. 设关于x 的一次函数11b x a y +=与22b x a y +=,则称函数)()(2211b x a n b x a m y +++=(其中1=+nm )为此两个函数的生成函数.(1)当x=1时,求函数1+=x y 与x y 2=的生成函数的值;(2)若函数11b x a y +=与22b x a y +=的图象的交点为P ,判断点P 是否在此两个函数的生成函数的图象上,并说明理由.3.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角.例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,它有一个旋转角为90°.(1)判断下列命题的真假(在相应括号内填上“真”或“假”): ①等腰梯形是旋转对称图形,它有一个旋转角为180°.( ) ② 矩形是旋转对称图形,它有一个旋转角为180°.( )(2)填空:下列图形中,是旋转对称图形,且有一个旋转角为120°的是 .(写出所有正确结论的序号):①正三角形;②正方形;③正六边形;④正八边形 . (3)写出两个多边形...,它们都是旋转对称图形,都有一个旋转角为72°,并且分别满足下列条件: ①是轴对称图形,但不是中心对称图形; ②既是轴对称图形,又是中心对称图形.4.四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图l ,点P 为四边形ABCD 对角线AC 所在直线上的一点,PD=PB ,PA≠PC,则点P为四边形ABCD 的准等距点.(1)如图2,画出菱形ABCD 的一个准等距点.(2)如图3,作出四边形ABCD 的一个准等距点(尺规作图,).(3)如图4,在四边形ABCD 中,P 是AC 上的点,PA≠PC,延长BP 交CD 于点E ,延长DP 交BC 于点F ,且∠CDF=∠CBE,CE=CF .求证:点P 是四边形AB CD 的准等距点.(4)试研究四边形的准等距点个数的情况(说出相应四边形的特征及准等距点的个数,不必证明).5.按右图所示的流程,输入一个数据x ,根据y 与x 的关系式就输出一个数据y ,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大。
中考数学难题突破专题--新定义问题
中考数学难题突破专题--新定义问题所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近 年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力.解决“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其解决问题的思想方法;二是根据问题情境的变化,通过认真思考,合理进行思想方法的迁移.类型1 新法则、新运算型例题1、 我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ).在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n )=p q.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F (12)=34. (1)如果一个正整数m 是另外一个正整数n 的平方,我们称正整数m 是完全平方数,求证:对任意一个完全平方数m ,总有F (m )=1;(2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”;(3)在(2)所得的“吉祥数”中,求F (t )的最大值. 例题分层分析(1)对任意一个完全平方数m ,设m =n 2(n 为正整数),找出m 的最佳分解为________,所以F (m )=________=________;(2)设交换t 的个位上的数与十位上的数得到的新数为t ′,则t ′=________,根据“吉祥数”的定义确定出x 与y 的关系式为________,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F (t )的最大值即可.解题方法点析此类问题在于读懂新定义,然后仿照范例进行运算,细心研读定义,细致观察范例是解题的关键. 类型2 新定义几何概念型例题2、如图Z3-1,将△ABC纸片沿中位线EH折叠,使点A的对称点D落在BC边上,再将纸片分别沿等腰△BED 和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.图Z3-1(1)将▱ABCD纸片按图Z3-2①的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段________,________;S矩形AEFG∶S▱ABCD=________.(2)▱ABCD纸片还可以按图Z3-2②的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长.(3)如图Z3-2③,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出AD,BC的长.图Z3-2例题分层分析(1)观察图形直接得到操作形成的折痕,根据矩形和平行四边形的面积公式与折叠的轴对称性质可得S矩形AEFG∶S▱ABCD =________;(2)由矩形的性质和勾股定理可求得FH=________,再由折叠的轴对称性质可知HD=________,FC=______,∠AHE=12______,∠CFG=12________,从而可得∠________=∠________,再证得△AEH≌△CGF,可得________,进而求得AD的长;(3)根据叠合矩形定义,画出叠合正方形,然后再求AD,BC的长.解题方法点析解决此类问题的关键在于仔细研读几何新概念,将新的几何问题转化为已知的三角形、四边形或圆的问题,从而解决问题.对于几何新概念弄清楚条件和结论是至关重要的.专 题 训 练1. 定义[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y =[x ]的图象如图Z 3-3所示,则方程[x ]=12x 2的解为( )图Z 3-3A .0或 2B .0或2C .1或- 2D .2或- 22. 对于实数a ,b ,定义符号min{a ,b },其意义为:当a ≥b 时,min{a ,b }=b :当a <b 时,min{a ,b }=a .例如min{2,-1}=-1.若关于x 的函数y =min{2x -1,-x +3},则该函数的最大值为( )A.23 B .1 C.43 D .533. 在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P (x ,y ),我们把点P ′(1x ,1y )称为点P 的“倒影点”.直线y =-x +1上有两点A ,B ,它们的倒影点A ′,B ′均在反比例函数y =kx的图象上.若AB =2 2,则k =________.4. 经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图Z 3-4,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为________.图Z 3-45. 对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a -b .例如:5⊗2=2×5-2=8,(-3)⊗4=2×(-3)-4=-10.(1)若3⊗x =-2011,求x 的值; (2)若x ⊗3<5,求x 的取值范围.6. 定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形. (1)如图Z 3-5①,等腰直角四边形ABCD 中,AB =BC ,∠ABC =90°. ①若AB =CD =1,AB ∥CD ,求对角线BD 的长. ②若AC ⊥BD ,求证:AD =CD .(2)如图Z 3-5②,在矩形ABCD 中,AB =5,BC =9,点P 是对角线BD 上一点,且BP =2PD ,过点P 作直线分别交边AD ,BC 于点E ,F ,使四边形ABFE 是等腰直角四边形.求AE 的长.图Z 3-57. 有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图Z 3-6①,在半对角四边形ABCD 中,∠B =12∠D ,∠C =12∠A ,求∠B 与∠C 的度数之和;(2)如图Z 3-6②,锐角三角形ABC 内接于⊙O ,若边AB 上存在一点D ,使得BD =BO ,∠OBA 的平分线交OA 于点E ,连结DE 并延长交AC 于点F ,∠AFE =2∠EAF ,求证:四边形DBCF 是半对角四边形;(3)如图Z 3-6③,在(2)的条件下,过点D 作DG ⊥OB 于点H ,交BC 于点G ,当DH =BG 时,求△BGH 与△ABC 的面积之比.图Z 3-6参考答案类型1 新法则、新运算型 例1 【例题分层分析】 (1)m =n ×n nn 1(2)10y +x y =x +4解:(1)证明:对任意一个完全平方数m , 设m =n 2(n 为正整数),∵|n -n |=0,∴n ×n 是m 的最佳分解, ∴对任意一个完全平方数m ,总有F (m )=nn=1.(2)设交换t 的个位上的数与十位上的数得到的新数为t ′,则t ′=10y +x , ∵t 是“吉祥数”,∴t ′-t =(10y +x )-(10x +y )=9(y -x )=36, ∴y =x +4,∵1≤x ≤y ≤9,x ,y 为自然数,∴满足“吉祥数”的为15,26,37,48,59.(3)F (15)=35,F (26)=213,F (37)=137,F (48)=68=34,F (59)=159.∵34>35>213>137>159,∴所有“吉祥数”中,F (t )的最大值是34.类型2 新定义几何概念型 例2 【例题分层分析】 (1)1∶2(2)13 HN FN ∠AHF ∠CFH AHE CFG FC =AH 解:(1)AE ,GF ;1∶2.提示:由折叠的性质,得AD =2AG . ∵S 矩形AEFG =AE ·AG ,S ▱ABCD =AE ·AD , ∴S 矩形AEFG ∶S ▱ABCD =AE·AGAE·AD=1∶2.(2)∵四边形EFGH 是叠合矩形,∴∠FEH =90°, ∴FH =EF 2+EH 2=52+122=13.由折叠的性质可知,HD =HN ,FC =FN ,∠AHE =12∠AHF ,∠CFG =12∠CFH .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∠A =∠C ,∴∠AHF =∠CFH ,∴∠AHE =∠CFG . ∵EH =FG ,∴△AEH ≌△CGF ,∴FC =AH , ∴AD =AH +HD =FC +HN =FN +HN =FH =13. (3)本题有以下两种基本折法,如图①,图②.①按图①的折法的解法:由折叠的性质可知,AD =BF ,BE =AE =4,CH =DH =5,FG =CG . ∵四边形EBGH 是叠合正方形,∴HG =BG =4, ∴CG =3,∴FG =CG =3,∴BF =BG -FG =1,BC =BG +CG =4+3=7, ∴AD =1,BC =7. ②按图②的折法的解法: 设AD =x .由折叠的性质可知,AE =EM =BE =4,MH =AD =x ,DN =HN ,HG =CG ,FC =FH . 由DN =HN ,HG =CG ,则GN =12CD =5.∵四边形EFGN 是叠合正方形, ∴EF =FG =GN =5,∴MF =BF =3, ∴FC =FH =x +3.∵∠B =∠EFG =∠CGF =90°,∴∠BEF +∠BFE =∠BFE +∠CFG =90°, ∴∠BEF =∠CFG ,∴△GFC ∽△BEF , ∴FG BE =FC EF ,即54=x +35,解得x =134, ∴AD =134,BC =BF +FC =3+134+3=374.专题训练1.A [解析] 由函数图象可知,当-2≤x <-1时,y =-2,即有[x ]=-2,此时方程无解;当-1≤x <0时,y =-1,即有[x ]=-1,此时方程无解;当0≤x <1时,y =0,即有[x ]=0,此时方程为0=12x 2,解得x =0;当1≤x<2时,y =1,即有[x ]=1,此时方程为1=12x 2,解得x =2或x =-2(不在x 的取值范围内,舍去).综上可知,方程[x ]=12x 2的解为0或 2.2.D [解析] 当2x -1≥-x +3时,x ≥43,y =min {2x -1,-x +3}=-x +3,最大值为53.当2x -1<-x +3时,x <43,y =min {2x -1,-x +3}=2x -1,y 的值都小于53.综上,该函数的最大值为53.3.-43 [解析] A ,B 两点在直线y =-x +1上,设A (a ,-a +1),B (b ,-b +1),∴AB 2=(a -b )2+(-a +1+b -1)2=2(a -b )2=(2 2)2,∴(a -b )2=4,∴a -b =±2.A ,B 两点的“倒影点”分别为A ′(1a ,11-a ),B ′(1b ,11-b). ∵点A ′,B ′均在反比例函数y =k x 的图象上,∴1a ·11-a =k =1b ·11-b ,∴a (1-a )=b (1-b ),变形得(a -b )(1-a -b )=0,∵a -b =±2,∴1-a -b =0.由⎩⎪⎨⎪⎧a -b =2,1-a -b =0解得⎩⎪⎨⎪⎧a =32,b =-12,∴k =1a ·11-a =23×(-2)=-43;由⎩⎪⎨⎪⎧a -b =-2,1-a -b =0解得⎩⎪⎨⎪⎧a =-12,b =32,∴k =1a ·11-a =(-2)×23=-43.综上,k =-43.4.113°或92° [解析] ∵△CBD 和△ABC 相似, ∴∠BCD =∠A =46°.设∠ACB =x ,则∠ACD =x -46°.∵△ACD 是等腰三角形,又∠ADC >∠BCD ,∴∠ADC >∠A ,即AC ≠CD . ①若AC =AD ,则∠ACD =∠ADC =x -46°, ∵46°+x -46°+x -46°=180°, ∴x =113°.②若AD =CD ,则∠ACD =∠A , 即46°=x -46°, ∴x =92°.综上所述,∠ACB 的度数为113°或92°. 5.解:(1)根据题意,得2×3-x =-2011, 解这个方程,得x =2017. (2)根据题意,得2x -3<5, 解得x <4,即x 的取值范围是x <4.6.解:(1)①∵AB =CD =1且AB ∥CD ,∴四边形ABCD 是平行四边形, 又∵AB =BC ,∴四边形ABCD 是菱形. ∵∠ABC =90°,∴四边形ABCD 是正方形, ∴BD =AC =12+12= 2. ②证明:如图①中,连结AC ,BD . ∵AB =BC ,AC ⊥BD ,∴∠ABD =∠CBD , ∵BD =BD ,∴△ABD ≌△CBD ,∴AD =CD .(2)若EF ⊥BC ,则AE ≠EF ,BF ≠EF ,∴四边形ABFE 不表示等腰直角四边形,故不符合条件. 若EF 与BC 不垂直,①当AE =AB 时,如图②,此时四边形ABFE 是等腰直角四边形,∴AE =AB =5.②当BF =AB 时,如图③,此时四边形ABFE 是等腰直角四边形,∴BF =AB =5,∵DE ∥BF ,BP =2PD ,∴BF ∶DE =2∶1,∴DE =2.5,∴AE =9-2.5=6.5.综上所述,满足条件的AE 的长为5或6.5.7.解:(1)在半对角四边形ABCD 中,∠B =12∠D ,∠C =12∠A ,∵∠A +∠B +∠C +∠D =360°,∴3∠B +3∠C =360°,∴∠B +∠C =120°, 即∠B 与∠C 的度数之和为120°. (2)证明:在△BED 和△BEO 中, ⎩⎪⎨⎪⎧BD =BO ,∠EBD =∠EBO,BE =BE ,∴△BED ≌△BEO (SAS ), ∴∠BDE =∠BOE .又∵∠BCF =12∠BOE ,∴∠BCF =12∠BDE .如图,连结OC ,设∠EAF =α,则∠AFE =2α,∴∠EFC =180°-∠AFE =180°-2α. ∵OA =OC ,∴∠OAC =∠OCA =α, ∴∠AOC =180°-2α, ∴∠ABC =12∠AOC =12∠EFC ,∴四边形DBCF 是半对角四边形. (3)如图,作OM ⊥BC 交BC 于点M . ∵四边形DBCF 是半对角四边形,∴∠ABC +∠ACB =120°,∴∠BAC =60°,∴∠BOC =2∠BAC =120°. ∵OB =OC ,∴∠OBC =∠OCB =30°, ∴BC =2BM =3BO =3BD . ∵DG ⊥OB ,∴∠HGB =∠BAC =60°.∵∠DBG =∠CBA ,∴△DBG ∽△CBA , ∴△DBG的面积△ABC的面积=(BD BC )2=13.∵DH =BG ,BG =2HG , ∴DG =3HG , ∴△BHG的面积△BDG的面积=13,∴△BHG的面积△ABC的面积=19.。
中考数学知识点专题分类复习:第42讲新概念新定义
中考数学知识点专题分类复习:第42讲新概念新定义【知识巩固】(一)专题诠释所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力(二)解题策略和解法精讲“新定义型专题”关键要把握两点:1.是掌握问题原型的特点及其问题解决的思想方法;2.是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.【典例解析】典例一、规律题型中的新定义(2016·黑龙江龙东·3分)如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC 的顶点C的坐标为.【考点】翻折变换(折叠问题);等边三角形的性质;坐标与图形变化-平移.【分析】据轴对称判断出点A变换后在x轴上方,然后求出点A纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可.【解答】解:解:∵△ABC是等边三角形AB=3﹣1=2,∴点C到x轴的距离为1+2×=+1,横坐标为2,∴A(2,+1),第2016次变换后的三角形在x轴上方,点A的纵坐标为+1,横坐标为2-2016×1=-2014,所以,点A的对应点A′的坐标是(-2014,+1)故答案为:(-2014,+1).典例二、运算题型中的新定义(2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.【考点】C6:解一元一次不等式;2C:实数的运算;86:解一元一次方程.【分析】(1)根据新定义列出关于x的方程,解之可得;(2)根据新定义列出关于x的一元一次不等式,解之可得.【解答】解:(1)根据题意,得:2×3﹣x=﹣2011,解得:x=2017;(2)根据题意,得:2x﹣3<5,解得:x<4.【变式训练】(2017甘肃天水)定义一种新的运算:x*y=,如:3*1==,则(2*3)*2= 2.【考点】1G:有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(2*3)*2=()*2=4*2==2,故答案为:2典例三、探索题型中的新定义(2017齐齐哈尔)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为113°或92°.【考点】S7:相似三角形的性质;KH:等腰三角形的性质.【分析】由△ACD是等腰三角形,∠ADC>∠BCD,推出∠ADC>∠A,即AC≠CD,分两种情形讨论①当AC=AD时,②当DA=DC时,分别求解即可.【解答】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°,∵△ACD是等腰三角形,∵∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD,①当AC=AD时,∠ACD=∠ADC==67°,∴∠ACB=67°+46°=113°,②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°,故答案为113°或92°.典例四、开放题型中的新定义(2017深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=2.【考点】4F:平方差公式;2C:实数的运算.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:2【变式训练】(2017张家界)阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似.例如计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=﹣i,i4=1;(2)计算:(1+i)×(3﹣4i);(3)计算:i+i2+i3+ (i2017)【考点】2C:实数的运算.【分析】(1)把i2=﹣1代入求出即可;(2)根据多项式乘以多项式的计算法则进行计算,再把i2=﹣1代入求出即可;(3)先根据复数的定义计算,再合并即可求解.【解答】解:(1)i3=i2•i=﹣i,i4=(i2)2=(﹣1)2=1.故答案为:﹣i,1;(2)(1+i)×(3﹣4i)=3﹣4i+3i﹣4i2=3﹣i+4=7﹣i;(3)i+i2+i3+…+i2017=i﹣1﹣i+1+…+i=i.典例五、阅读材料题型中的新定义(2017湖北荆州)规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程x2+2x﹣8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③若关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax2﹣6ax+c与x轴的公共点的坐标是(2,0)和(4,0);④若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程.上述结论中正确的有()A.①② B.③④ C.②③ D.②④【考点】G6:反比例函数图象上点的坐标特征;AA:根的判别式;AB:根与系数的关系;HA:抛物线与x轴的交点.【分析】①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设x2=2x1,得到x1•x2=2x12=2,得到当x1=1时,x2=2,当x1=﹣1时,x2=﹣2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y=的图象上,得到mn=4,然后解方程mx2+5x+n=0即可得到正确的结论;【解答】解:①由x2﹣2x﹣8=0,得(x﹣4)(x+2)=0,解得x1=4,x2=﹣2,∵x1≠2x2,或x2≠2x1,∴方程x2﹣2x﹣8=0不是倍根方程.故①错误;②关于x的方程x2+ax+2=0是倍根方程,∴设x2=2x1,∴x1•x2=2x12=2,∴x1=±1,当x1=1时,x2=2,当x1=﹣1时,x2=﹣2,∴x1+x2=﹣a=±3,∴a=±3,故②正确;③关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,∴x2=2x1,∵抛物线y=ax2﹣6ax+c的对称轴是直线x=3,∴抛物线y=ax2﹣6ax+c与x轴的交点的坐标是(2,0)和(4,0),故③正确;④∵点(m,n)在反比例函数y=的图象上,∴mn=4,解mx2+5x+n=0得x1=﹣,x2=﹣,∴x2=4x1,∴关于x的方程mx2+5x+n=0不是倍根方程;故选C.【变式训练】(2017湖北随州)在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=﹣x 2﹣x+2与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为y=﹣x+,点A的坐标为(﹣2,2),点B的坐标为(1,0);(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由梦想直线的定义可求得其解析式,联立梦想直线与抛物线解析式可求得A、B的坐标;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求得ON的长,可求得N点坐标;(3)当AC为平行四边形的一边时,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,可证△EFH≌△ACK,可求得DF的长,则可求得F点的横坐标,从而可求得F点坐标,由HE的长可求得E点坐标;当AC为平行四边形的对角线时,设E(﹣1,t),由A、C的坐标可表示出AC中点,从而可表示出F点的坐标,代入直线AB的解析式可求得t的值,可求得E、F的坐标.【解答】解:(1)∵抛物线y=﹣x2﹣x+2,∴其梦想直线的解析式为y=﹣x+,联立梦想直线与抛物线解析式可得,解得或,∴A(﹣2,2),B(1,0),故答案为:y=﹣x+;(﹣2,2);(1,0);(2)如图1,过A作AD⊥y轴于点D,在y=﹣x2﹣x+2中,令y=0可求得x=﹣3或x=1,∴C(﹣3,0),且A(﹣2,2),∴AC==,由翻折的性质可知AN=AC=,∵△AMN为梦想三角形,∴N点在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN===3,∵OD=2,∴ON=2﹣3或ON=2+3,∴N点坐标为(0,2﹣3)或(0,2+3);(3)①当AC为平行四边形的边时,如图2,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中∴△ACK≌△EFH(AAS),∴FH=CK=1,HE=AK=2,∵抛物线对称轴为x=﹣1,∴F点的横坐标为0或﹣2,∵点F在直线AB上,∴当F点横坐标为0时,则F(0,),此时点E在直线AB下方,∴E到y轴的距离为EH﹣OF=2﹣=,即E点纵坐标为﹣,∴E(﹣1,﹣);当F点的横坐标为﹣2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵C(﹣3,0),且A(﹣2,2),∴线段AC的中点坐标为(﹣2.5,),设E(﹣1,t),F(x,y),则x﹣1=2×(﹣2.5),y+t=2,∴x=﹣4,y=2﹣t,代入直线AB解析式可得2﹣t=﹣×(﹣4)+,解得t=﹣,∴E(﹣1,﹣),F(﹣4,);综上可知存在满足条件的点F,此时E(﹣1,﹣)、F(0,)或E(﹣1,﹣)、F(﹣4,).【能力检测】1.(2016·山东省德州市·4分)如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为(21008,21009).【考点】一次函数图象上点的坐标特征.【专题】规律型;一次函数及其应用.【分析】写出部分A n点的坐标,根据坐标的变化找出变化规律“A2n+1((﹣2)n,2(﹣2)n)(n为自然数)”,依此规律即可得出结论.【解答】解:观察,发现规律:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,∴A2n+1((﹣2)n,2(﹣2)n)(n为自然数).∵2017=1008×2+1,∴A2017的坐标为((﹣2)1008,2(﹣2)1008)=(21008,21009).故答案为:(21008,21009).【点评】本题考查了一次函数图象上点的坐标特征以及规律型中坐标的变化,解题的关键是找出变化规律“A2n+1((﹣2)n,2(﹣2)n)(n为自然数)”.本题属于基础题,难度不大,解决该题型题目时,写出部分A n点的坐标,根据坐标的变化找出变化规律是关键.2.(2016·黑龙江齐齐哈尔·3分)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC 分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OC n B n的对角线交点的坐标为(﹣,).【考点】位似变换;坐标与图形性质;矩形的性质.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得B n的坐标,然后根据矩形的性质即可求得对角线交点的坐标.【解答】解:∵在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,∴矩形A1OC1B1与矩形AOCB是位似图形,点B与点B1是对应点,∵OA=2,OC=1.∵点B的坐标为(﹣2,1),∴点B1的坐标为(﹣2×,1×),∵将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,∴B2(﹣2××,1××),∴B n(﹣2×,1×),∵矩形A n OC n B n的对角线交点(﹣2××,1××),即(﹣,),故答案为:(﹣,).3.(2016·山东省菏泽市·3分)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=﹣1.【考点】二次函数图象与几何变换;抛物线与x轴的交点.【专题】规律型.【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果.【解答】解:∵y=﹣x(x﹣2)(0≤x≤2),∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,﹣1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);C6顶点坐标为(11,﹣1),A6(12,0);∴m=﹣1.故答案为:﹣1.【点评】本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标.4.2017湖南岳阳)已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k 为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对 B.只有1对 C.只有2对 D.有2对或3对【分析】根据“友好点”的定义知,函数y1图象上点A(a,﹣)关于原点的对称点B(a,﹣)一定位于直线y2上,即方程ka2﹣(k+1)a+1=0 有解,整理方程得(a﹣1)(ka﹣1)=0,据此可得答案.【解答】解:设A(a,﹣),由题意知,点A关于原点的对称点B((a,﹣),)在直线y2=kx+1+k上,则=﹣ak+1+k,整理,得:ka2﹣(k+1)a+1=0 ①,即(a﹣1)(ka﹣1)=0,∴a﹣1=0或ka﹣1=0,则a=1或ka﹣1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.【点评】本题主要考查直线和双曲线上点的坐标特征及关于原点对称的点的坐标,将“友好点”的定义,根据关于原点对称的点的坐标特征转化为方程的问题求解是解题的关键.。
中考数学全面突破《新定义及阅读理解型问题》练习题含答案
题型4 新定义及阅读理解型问题题型解读1.考查题型:①新定义计算型;②阅读理解型;③新定义与阅读理解结合题. 2.考查内容:①新定义下的实数运算;②涉及“新定义”的阅读理解及材料分析;③与函数、多边形、圆结合,通过材料或定义进行相关证明或计算.3.在做此类题型时,首先要理解新定义的运算方式,提升从材料阅读中提取信息的能力,结合已知条件中的推理方法,学以致用,便可得以解决.1.对于实数a,b,定义一种新运算“⊗”为:a⊗b=1a-b2,这里等式右边是实数运算.例如:1⊗3=11-32=-18,则方程x⊗(-2)=2x-4-1的解是( )A. x=4B. x=5C. x=6D. x=72.对于实数a、b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b;如max{4,-2}=4,max{3,3}=3.若关于x 的函数为y=max{x+3,-x+1},则该函数的最小值是( )A. 0B. 2C. 3D. 43.我们根据指数运算,得出了一种新的运算,下表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 212=-1.其中正确的是( )A . ①②B . ①③C . ②③D . ①②③4.设a ,b 是实数,定义关于@的一种运算如下:a@b =(a +b)2-(a -b)2,则下列结论:( )①若a@b =0,则a =0或b =0; ②a@(b +c)=a@b +a@c ;③不存在实数a ,b ,满足a@b =a 2+5b 2;④设a ,b 是矩形的长和宽,若该矩形的周长固定,则当a =b 时,a@b 的值最大.其中正确的是( )A . ②③④B . ①③④C . ①②④D . ①②③5.对于实数a ,b ,定义运算“*”:a*b =⎩⎪⎨⎪⎧a 2-ab (a ≥b )a -b (a<b ),例如:因为 4>2,所以4*2=42-4×2=8,则(-3)*(-2)=________. 6.规定:log a b(a>0,a ≠1,b>0)表示a ,b 之间的一种运算.现有如下的运算法则:log a a n=n ,log N M =log a Mlog a N(a>0,a ≠1,N>0,N ≠1,M>0),例如:log 223=3,log 25=log 105log 102,则log 1001000=________.第7题图7.实数a ,n ,m ,b 满足a<n<m<b ,这四个数在数轴上对应的点分别是A ,N ,M ,B(如图).若AM 2=BM ·AB ,BN 2=AN ·AB ,则称m 为a ,b 的“黄金大数”,n 为a ,b 的“黄金小数”,当b -a =2时,a ,b 的黄金大数与黄金小数之差m -n =________.8.请阅读下列材料,并完成相应的任务: 阿基米德折弦定理阿基米德(Archimedes ,公元前287~公元前212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al -Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理.阿基米德折弦定理:如图①,AB 和BC 是⊙O 的两条弦(即折线ABC 是圆的一条折弦),BC>AB ,M 是ABC ︵的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD.下面是运用“截长法”证明CD =AB +BD 的部分证明过程. 证明:如图②,在CB 上截取CG =AB ,连接MA ,MB ,MC 和MG. ∵M 是ABC ︵的中点, ∴MA =MC. …图① 图②任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图③,已知等边△ABC 内接于⊙O ,AB =2,D 为AC ︵上一点,∠ABD =45°,AE ⊥BD 于点E ,则△BDC 的周长是________.图③9.如果三角形三边的长a 、b 、c 满足a +b +c3=b ,那么我们就把这样的三角形叫做“匀称三角形”.如:三边长分别为1,1,1或3,5,7,…的三角形都是“匀称三角形”.(1)如图①,已知两条线段的长分别为a 、c(a<c),用直尺和圆规作一个最短边、最长边的长分别为a 、c 的“匀称三角形”(不写作法,保留作图痕迹); (2)如图②,△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作⊙O 的切线交AB 延长线于点E ,交AC 于点F.若BE CF =53,判断△AEF 是否为“匀称三角形”?请说明理由.10.我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q(p ,q 是正整数,且p ≤q),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并规定:F(n)=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=34. (1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数.求证:对任意一个完全平方数m ,总有F(m)=1;(2)如果一个两位正整数t ,t =10x +y(1≤x ≤y ≤9,x ,y 是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”.求所有“吉祥数”中F(t)的最大值.11.已知点P(x 0,y 0)和直线y =kx +b ,则点P 到直线y =kx +b 的距离d 可用公式d =|kx 0-y 0+b|1+k2计算. 例如:求点P(-1,2)到直线y =3x +7的距离. 解:因为直线y =3x +7,其中k =3,b =7, 所以点P(-1,2)到直线y =3x +7的距离为d =|kx 0-y 0+b|1+k2=|3×(-1)-2+7|1+32=210=105. 根据以上材料,解答下列问题:(1)求点P(1,-1)到直线y=x-1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=3x+9的位置关系并说明理由;(3)已知直线y=-2x+4与y=-2x-6平行,求这两条直线之间的距离.12.【图形定义】如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.【探究证明】(1)请在图①和图②中选择其中一个证明:“叠弦三角形”(即△AOP)是等边三角形;(2)如图②,求证:∠OAB=∠OAE′.【归纳猜想】(3)图①、图②中“叠弦角”的度数分别为__________,__________;(4)图中,“叠弦三角形”__________等边三角形(填“是”或“不是”);(5)图中,“叠弦角”的度数为__________(用含n的式子表示).13.若抛物线L :y =ax 2+bx +c(a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系.此时直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”.(1)若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值;(2)若某“路线”L 的顶点在反比例函数y =6x 的图象上,它的“带线”l 的解析式为y =2x -4,求此“路线”L 的解析式;(3)当常数k 满足12≤k ≤2时,求抛物线L :y =ax 2+(3k 2-2k +1)x +k 的“带线”l 与x 轴,y 轴所围成的三角形面积的取值范围.1. B【解析】根据题意a⊗b=1a-b2,则x⊗(-2)=1x-(-2)2=1x-4,又∵x⊗(-2)=2x-4-1,∴1x-4=2x-4-1,解得x=5,经检验x=5是原方程的根,∴原方程x⊗(-2)=2x-4-1的解是x=5.2. B【解析】当x+3≥-x+1时,max{x+3,-x+1}=x+3,此时x ≥-1,∴y≥2;当x+3<-x+1时,max{x+3,-x+1}=-x+1,此时x<-1,∴y>2.综上y的最小值为2.3. B【解析】①∵24=16,∴log216=4,故①正确;②∵52=25,∴log525=2,故②不正确;③∵2-1=12,∴log212=-1,故③正确.4. C【解析】∵a@b=(a+b)2-(a-b)2,若a@b=0,则(a+b)2-(a-b)2=0,∴(a+b)2=(a-b)2, ∴a+b=±(a-b),∴a=0或b=0,∴①正确;∵a@b=(a+b)2-(a-b)2,∴a@(b+c)=[a+(b+c)]2-[a-(b+c)]2=[a+(b +c)+a-(b+c)][a+(b+c)-(a-b-c)]=4ab+4ac,∵a@b+a@c=(a+b)2-(a-b)2+(a+c)2-(a-c)2=a2+2ab+b2-a2+2ab-b2+a2+2ac+c2-a2+2ac-c2=4ab+4ac,∴a@(b+c)=a@b+a@c,∴②正确;∵a@b=(a+b)2-(a -b)2=a2+2ab+b2-a2+2ab-b2=4ab,当a=b=0时,满足a@b=a2+5b2,∴③错误;若矩形的周长固定,设为2c,则2c=2a+2b,b=c-a,a@b=(a+b)2-(a-b)2=4ab=4a(c-a)=-4(a-12c)2+c2,∴当a=12c时,4ab有最大值是c2,即a=b时,a@b的值最大,∴④正确.综上,正确结论有①②④.5. -1 【解析】根据新定义,当a<b 时,a*b =a -b 列出常规运算,进行计算便可.∵-3<-2,∴由定义可知,原式=-3-(-2)=-1.6. 32 【解析】根据新运算法则,得log 1001000=log 101000log 10100=log 10103log 10102=32.7. 25-4 【解析】设AN =y ,MN =x ,由题意可知:AM 2=BM ·AB ,∴(x +y)2=2(2-x -y),解得x +y =5-1(取正),又BN 2=AN ·AB ,∴(2-y)2=2y ,解得y =3-5(y <2),∴m -n =MN =x =5-1-(3-5)=25-4,故填25-4.8. 解:(1)又∵∠A =∠C ,CG =AB. ∴△MBA ≌△MGC(SAS ), ∴MB =MG. 又∵MD ⊥BC , ∴BD =GD ,∴CD =CG +GD =AB +BD. (2)2+2 2.【解法提示】折线BDC 为⊙O 的一条折弦,由题意知A 为BDC ︵中点,由材料中折弦定理易得BE =DE +CD ,在Rt △ABE 中可得BE =2,所以△BCD 周长为BC +CD +DE +BE =2+2 2.9. 解:(1)作图如解图①.第9题解图①(2)△AEF 是“匀称三角形”. 理由如下:如解图②,第9题解图②连接AD 、OD , ∵AB 是⊙O 直径, ∴AD ⊥BC , ∵AB =AC , ∴D 是BC 中点, ∵O 是AB 中点, ∴OD 是△ABC 的中位线, ∴OD ∥AC.∵DF 切⊙O 于D 点, ∴OD ⊥DF , ∴EF ⊥AF ,过点B 作BG ⊥EF 于点G ,易证Rt △BDG ≌Rt △CDF(AAS ), ∴BG =CF , ∵BE CF =53, ∴BE BG =53, ∵BG ∥AF(或Rt △BEG ∽Rt △AEF), ∴BE BG =AE AF =53.在Rt △AEF 中,设AE =5k ,则AF =3k , 由勾股定理得,EF =4k ,∴AF +EF +AE 3=3k +4k +5k 3=4k =EF ,∴△AEF 是“匀称三角形”.10. (1)证明:∵m 是一个完全平方数,∴m =p ×q ,当p =q 时,p ×q 就是m 的最佳分解, ∴F(m)=p q =pp=1.(2)解:由题意得,(10y +x)-(10x +y)=18, 得y =x +2(y ≤9),∴t =10x +y =10x +x +2=11x +2(1≤x ≤7),则所有的“吉祥数”为:13,24,35,46,57,68,79共7个, ∵13=1×13,24=1×24=2×12=3×8=4×6,35=1×35=5×7,46=1×46=2×23,57=1×57,68=1×68=2×34=4×17,79=1×79,∴F(13)=113,F(24)=46=23,F(35)=57,F(46)=223,F(57)=157,F(68)=417,F(79)=179, ∴“吉祥数”中F(t)的最大值为:F(35)=57.11. 解:(1)∵直线y =x -1,其中k =1,b =-1, ∴点P(1,-1)到直线y =x -1的距离为: d =|kx 0-y 0+b|1+k 2=|1-(-1)-1|1+12=12=22. (2)相切.理由如下:∵直线y =3x +9,其中k =3,b =9,∴圆心Q(0,5)到直线y =3x +9的距离为d =|kx 0-y 0+b|1+k 2=|3×0-5+9|1+(3)2=42=2, 又∵⊙Q 的半径r 为2,∴⊙Q 与直线y =3x +9的位置关系为相切. (3)在直线y =-2x +4上任意取一点P , 当x =0时,y =4, ∴P(0,4),∵直线y =-2x -6,其中k =-2,b =-6,∴点P(0,4)到直线y =-2x -6的距离为d =|kx 0-y 0+b|1+k 2=|-2×0-4-6|1+(-2)2=105=25, ∴这两条直线之间的距离为2 5. 12. (1)选择图①.证明:依题意得∠DAD ′=60°,∠PAO =60°.∵∠DAP =∠DAD ′-∠PAD ′=60°-∠PAD ′,∠D ′AO =∠PAO -∠PAD ′=60°-∠PAD ′,∴∠DAP =∠D ′AO. ∵∠D =∠D ′,AD =AD ′, ∴△DAP ≌△D ′AO(ASA ), ∴AP =AO ,又∵∠PAO=60°,∴△AOP是等边三角形.选择图②.证明:依题意得∠EAE′=60°,∠PAO=60°. ∵∠EAP=∠EAE′-∠PAE′=60°-∠PAE′,∠E′AO=∠PAO-∠PAE′=60°-∠PAE′,∴∠EAP=∠E′AO(ASA).∵∠E=∠E′,AE=AE′,∴△EAP≌△E′AO,∴AP=AO,又∵∠PAO=60°,∴△AOP是等边三角形.第12题解图(2)证明:如解图,连接AC,AD′,CD′.∵AE′=AB,∠E′=∠B=180°×(5-2)=108°,E′D′=BC,5∴△AE′D′≌△ABC(SAS),∴AD′=AC,∠AD′E′=∠ACB,∴∠AD′C=∠ACD′,∴∠OD ′C =∠OCD ′, ∴OC =OD ′,∴BC -OC =E ′D ′-OD ′,即BO =E ′O. ∵AB =AE ′,∠B =∠E ′, ∴△ABO ≌△AE ′O(SAS ), ∴∠OAB =∠OAE ′. (3)15°,24°.【解法提示】∵由(1)得,在图①中,△AOP 是等边三角形, ∴∠DAP +∠OAB =90°-60°=30°, 在△OAB 和△OAD ′中,⎩⎪⎨⎪⎧OA =OA BA =D ′A, ∴△ABO ≌△AD ′O(HL ), ∴∠OAB =∠D ′AO , 由(1)知∠D ′AO =∠DAP , ∴∠OAB =∠DAP , ∴∠OAB =12×30°=15°;∵由(1)得,在图②中,△PAO 为等边三角形, ∴∠PAE +∠BAO =∠EAB -∠PAO , ∵∠EAB =15×180°×(5-2)=108°,∴∠PAE +∠BAO =48°, 同理可证得∠OAB =∠PAE ,∴∠OAB =12×48°=24°.(4)是.【解法提示】由(1)(2)可知,“叠弦”AO 所在的直线绕点A 逆时针旋转60°后,AO =AP ,且∠PAO =60°,故△AOP 是等边三角形.(5)60°-180°n(n ≥3).【解法提示】由(1)(2)(3)可知,“叠弦角”的度数为正n 边形的内角度数减去60°之后再除以2,即∠OAB =180°(n -2)n-60°2,化简得∠OAB =60°-180°n(n ≥3).13. 解:(1)由题意得n =1, ∴抛物线y =x 2-2x +1=(x -1)2,顶点为Q(1,0),将(1,0)代入y =mx +1,得m =-1, ∴m =-1,n =1.(2)由题意设“路线”L 的解析式为y =a(x -h)2+k , ∵顶点Q 的坐标在y =6x 和y =2x -4上,∴⎩⎪⎨⎪⎧k =6hk =2h -4, 解得h =-1或3,∴顶点Q 的坐标为(-1,-6)或(3,2), ∴y =a(x +1)2-6或y =a(x -3)2+2, 又∵“路线”L 过P(0,-4),代入解得a =2(顶点为(-1,-6)), a =-23(顶点为(3,2)),∴y =2(x +1)2-6或y =-23(x -3)2+2,即y =2x 2+4x -4或y =-23x 2+4x -4.(3)由题可知抛物线顶点坐标为(-3k 2-2k +12a ,4ak -(3k 2-2k +1)24a ),设带线l :y =px +k ,代入顶点坐标得p =3k 2-2k +12,∴y =3k 2-2k +12x +k ,令y =0,则带线l 交x 轴于点(-2k3k 2-2k +1,0),令x =0,则带线l 交y轴于点(0,k),∵k ≥12>0,∴3k 2-2k +1=3(k -13)2+23>0,∴带线l 与坐标轴围成三角形面积为S =12·2k 3k 2-2k +1·k =k 23k 2-2k +1=11k 2-2·1k+3,令t =1k ,∵12≤k ≤2,∴12≤t ≤2, ∴S =1t 2-2t +3,∴1S=t 2-2t +3=(t -1)2+2, 故当t =2时,(1S )max =3;当t =1时,(1S )min =2.∴13≤S ≤12.。
中考专题复习之新定义题
2017年中考专题复习之——新定义题一.选择题共2小题1.连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图扇形、菱形、直角梯形、红十字图标中“直径”最小的是A.B.C. D.2.对平面上任意一点a,b,定义f,g两种变换:fa,b=a,﹣b.如f1,2=1,﹣2;ga,b=b,a.如g1,2=2,1.据此得gf5,﹣9=A.5,﹣9 B.﹣9,﹣5 C.5,9 D.9,5二.填空题共2小题3.我们把四边形两条对角线中点的连线段称为奇异中位线.现有两个全等三角形,边长分别为3cm,4cm,5cm.将这两个三角形相等的边重合拼成凸四边形,如果凸四边形的奇异中位线的长不为0,那么奇异中位线的长是cm.4.在△ABC中,P是AB上的动点P异于A,B,过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有条.三.解答题共16小题5.定义:对于实数a,符号a表示不大于a的最大整数.例如:=5,5=5,﹣π=﹣4.1如果a=﹣3,则a的取值范围为;2如果=4,求满足条件的所有正整数x.6.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.1写出你所学过的特殊四边形中是勾股四边形的两种图形的名称, ;2如图,已知格点小正方形的顶点O0,0,A3,0,B0,4,请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB.7.我们定义:有一组对角相等而另一对角不相等的凸四边形叫做“等对角四边形”.已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求对角线AC的长.8.提出问题:1如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH;类比探究:2如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG 于点O,探究线段EF与HG的数量关系,并说明理由;综合运用:3在2问条件下,HF∥GE,如图3所示,已知BE=EC=2,EO=2FO,求图中阴影部分的面积.9.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.1请你在图1中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;若两种方法分得的三角形成3对全等三角形,则视为同一种2△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并直接写出x所有可能的值;3如图2,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.10.通过锐角三角比的学习,我们已经知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长比与角的大小之间可以相互转化.类似的我们可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对sad.如图在△ABC 中,AB=AC,顶角A的正对记作sadA,这时sadA=.我们容易知道一个角的大小与这个角的正对值也是互相唯一确定的.根据上述角的正对定义,解下列问题:1sad60°=;sad90°=.2对于0°<A<180°,∠A的正对值sadA的取值范围是.3试求sad36°的值.11.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.1如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;2如图2,在12×16的网格图上每个小正方形的边长为1有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;3四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.12.对x,y定义一种新运算T,规定:Tx,y=其中a、b均为非零常数,这里等式右边是通常的四则运算,例如:T0,1==b.1已知T1,﹣1=﹣,T4,2=1.①求a,b的值;②若关于m的不等式组恰好有5个整数解,求实数p的取值范围;2若Tx,y=Ty,x对任意实数x,y都成立这里Tx,y和Ty,x均有意义,则a,b 应满足怎样的关系式13.探究发现如图1,△ABC是等边三角形,∠AEF=60°,EF交等边三角形外角平分线CF所在的直线于点F,当点E是BC的中点时,有AE=EF成立;数学思考某数学兴趣小组在探究AE、EF的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E是直线BC上B,C除外任意一点时其它条件不变,结论AE=EF仍然成立.假如你是该兴趣小组中的一员,请你从“点E是线段BC上的任意一点”;“点E是线段BC延长线上的任意一点”;“点E是线段BC反向延长线上的任意一点”三种情况中,任选一种情况,在备用图1中画出图形,并证明AE=EF.拓展应用当点E在线段BC的延长线上时,若CE=BC,在备用图2中画出图形,并运用上述结论求出S△ABC :S△AEF的值.14.如图1,P为∠MON平分线OC上一点,以P为顶点的∠APB两边分别与射线OM和ON交于A、B两点,如果∠APB在绕点P旋转时始终满足OAOB=OP2,我们就把∠APB叫做∠MON的关联角.1如图2,P为∠MON平分线OC上一点,过P作PB⊥ON于B,AP⊥OC于P,那么∠APB ∠MON的关联角填“是”或“不是”.2①如图3,如果∠MON=60°,OP=2,∠APB是∠MON的关联角,连接AB,求△AOB的面积和∠APB的度数;②如果∠MON=α°0°<α°<90°,OP=m,∠APB是∠MON的关联角,直接用含有α和m的代数式表示△AOB的面积.3如图4,点C是函数y=x>0图象上一个动点,过点C的直线CD分别交x 轴和y轴于A,B两点,且满足BC=2CA,直接写出∠AOB的关联角∠APB的顶点P的坐标.15.如图1,抛物线y=ax2+bx+ca>0的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的距离称为碟高.1抛物线y=x2对应的碟宽为;抛物线y=4x2对应的碟宽为;抛物线y=ax 2a >0对应的碟宽为 ;抛物线y=ax ﹣22+3a >0对应的碟宽为 ;2抛物线y=ax 2﹣4ax ﹣a >0对应的碟宽为6,且在x 轴上,求a 的值; 3将抛物线y=a n x 2+b n x+c n a n >0的对应准蝶形记为F n n=1,2,3…,定义F 1,F 2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.若F n 与F n ﹣1的相似比为,且F n 的碟顶是F n ﹣1的碟宽的中点,现将2中求得的抛物线记为y 1,其对应的准蝶形记为F 1.①求抛物线y 2的表达式;②若F 1的碟高为h 1,F 2的碟高为h 2,…F n 的碟高为h n ,则h n = ,F n 的碟宽右端点横坐标为 ;F 1,F 2,…,F n 的碟宽右端点是否在一条直线上若是,直接写出该直线的表达式;若不是,请说明理由.16.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.1请用直尺和圆规画一个“好玩三角形”;2如图在Rt△ABC中,∠C=90°,tanA=,求证:△ABC是“好玩三角形”;3如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.当β=45°时,若△APQ是“好玩三角形”,试求的值.17.对于平面直角坐标系xOy中的点P和⊙C,给出如下的定义:若⊙C上存在两个点A、B,使得∠APB=60°,则称P为⊙C的关联点.已知点D,,E0,﹣2,F2,0.1当⊙O的半径为1时,①在点D、E、F中,⊙O的关联点是.②过点F作直线l交y轴正半轴于点G,使∠GFO=30°,若直线l上的点Pm,n 是⊙O的关联点,求m的取值范围;2若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.18.问题探究1如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;2如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ 的长;问题解决3有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°若存在,请求出符合条件的DM的长,若不存在,请说明理由.19.某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车上、下车的时间忽略不计,两车速度均为200米/分.探究:设行驶寸间为t分.1当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2米与t分的函数关系式,并求出当两车相距的路程是400米时t的值;2t为何值时,1号车第三次恰好经过景点C并直接写出这一段时间内它与2号车相遇过的次数.发现:如图2,游客甲在BC上的一点K不与点B,C重合处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多含候车时间决策:己知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA上一点P 不与点D,A重合时,刚好与2号车迎面相遇.1他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由:2设PA=s0<s<800米.若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择20.问题情境如图1,在△ABC中,AB=AC,点P为边BC上的任一点,过点P 作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.结论运用如图2,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;迁移拓展图3是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且ADCE=DEBC,AB=8,AD=3,BD=7;M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.2017年04月14日马赛的初中数学组卷参考答案与试题解析一.选择题共2小题1.2013常德连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图扇形、菱形、直角梯形、红十字图标中“直径”最小的是A.B.C. D.分析先找出每个图形的“直径”,再根据所学的定理求出其长度,最后进行比较即可.解答解:连接BC,则BC为这个几何图形的直径,过O作OM⊥BC于M,∵OB=OC,∴∠BOM=∠BOC=60°,∴∠OBM=30°,∵OB=2,OM⊥BC,∴OM=OB=1,由勾股定理得:BM=,∴由垂径定理得:BC=2;连接AC、BD,则BD为这个图形的直径,∵四边形ABCD是菱形,∴AC⊥BD,BD平分∠ABC,∵∠ABC=60°,∴∠ABO=30°,∴AO=AB=1,由勾股定理得:BO=,∴BD=2BO=2;连接BD,则BD为这个图形的直径,由勾股定理得:BD==2;连接BD,则BD为这个图形的直径,由勾股定理得:BD==,∵2>>2,∴选项A、B、D错误,选项C正确;故选C.点评本题考查了菱形性质,勾股定理,含30度角的直角三角形性质,扇形性质等知识点的应用,主要考查学生的理解能力和推理能力.2.2013乌鲁木齐对平面上任意一点a,b,定义f,g两种变换:fa,b=a,﹣b.如f1,2=1,﹣2;ga,b=b,a.如g1,2=2,1.据此得gf5,﹣9=A.5,﹣9 B.﹣9,﹣5 C.5,9 D.9,5分析根据两种变换的规则,先计算f5,﹣9=5,9,再计算g5,9即可.解答解:gf5,﹣9=g5,9=9,5.故选D.点评本题考查了点的坐标,理解新定义的变化规则是解题的关键.二.填空题共2小题3.2014杨浦区二模我们把四边形两条对角线中点的连线段称为奇异中位线.现有两个全等三角形,边长分别为3cm,4cm,5cm.将这两个三角形相等的边重合拼成凸四边形,如果凸四边形的奇异中位线的长不为0,那么奇异中位线的长是cm.分析首先利用勾股定理的逆定理得出边长分别为3cm,4cm,5cm的三角形是直角三角形,然后将这两个直角三角形相等的边重合拼成凸四边形,如果凸四边形的奇异中位线的长不为0,那么只有一种情况,画出图形,根据正弦函数的定义求出OA,由中点的定义得出AM,再根据OM=AM﹣OA即可求解.解答解:∵32+42=9+16=25=52,∴边长分别为3cm,4cm,5cm的三角形是直角三角形.如图,将两个全等的直角△ABC与△DEF的斜边AC与DF重合,拼成凸四边形ABCE,AC与BE交于点O,M为AC的中点.∵△ABC≌△DEF,∴AB=AE=3cm,∠BAC=∠EDF,∴BO=OE,AO⊥BE.在Rt△AOB中,∵∠AOB=90°,∴OA=ABcos∠BAO=3×=,∵AM=AC=,∴OM=AM﹣OA=﹣=.即奇异中位线的长是cm.故答案为.点评本题考查了勾股定理的逆定理,图形的拼组,等腰三角形的性质,锐角三角函数的定义,难度适中.根据题目要求画出符合题意的图形是解题的关键.4.2013淄博在△ABC中,P是AB上的动点P异于A,B,过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有 3 条.分析根据相似三角形的判定方法分别利用平行线以及垂直平分线的性质得出对应角相等即可得出.解答解:当PD∥BC时,△APD∽△ABC,当PE∥AC时,△BPE∽△BAC,连接PC,∵∠A=36°,AB=AC,点P在AC的垂直平分线上,∴AP=PC,∠ABC=∠ACB=72°,∴∠ACP=∠PAC=36°,∴∠PCB=36°,∴∠B=∠B,∠PCB=∠A,∴△CPB∽△ACB,故过点P的△ABC的相似线最多有3条.故答案为:3.点评此题主要考查了相似三角形的判定,正确掌握相似三角形的判定方法作出辅助线是解题关键.三.解答题共16小题5.定义:对于实数a,符号a表示不大于a的最大整数.例如:=5,5=5,﹣π=﹣4.1如果a=﹣3,则a的取值范围为﹣3≤a<﹣2 ;2如果=4,求满足条件的所有正整数x.分析1根据a=﹣3,得出﹣3≤a<﹣2,求出a的解即可;2根据题意得出4≤<5,求出x的取值范围,从而得出满足条件的所有正整数的解.解答解:1∵a=﹣3,∴a的取值范围是﹣3≤a<﹣2;2根据题意得:4≤<5,解得:7≤x<9.则满足条件的所有正整数为7,8.点评此题考查了一元一次不等式组的应用,解题的关键是根据题意列出不等式组,求出不等式的解.6.2010秋无锡校级期末我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.1写出你所学过的特殊四边形中是勾股四边形的两种图形的名称矩形, 正方形;2如图,已知格点小正方形的顶点O0,0,A3,0,B0,4,请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB.分析1根据定义和特殊四边形的性质,则有矩形或正方形或直角梯形;2根据要求和图形,分析知该四边形即为矩形,画图即可.解答解:1矩形、正方形;2根据要求和图形,则该四边形即为矩形,根据上述定义可知只要有一个角为直角的四边形就是勾股四边形,∵∠BOA为直角,∴点M在点3,4时四边形OAMB为勾股四边形,∴点M横纵坐标分别为3,4,由勾股定理知AM2+AO2=OM2∴OM=5∵由勾股定理得AB也为5,∴对角线相等,∴OA,OB为勾股边且对角线相等的勾股四边形OAMB,点M坐标还有3,4,4,3.点评此题考查了学生对新定义的理解以及特殊四边形的性质.7.2016厦门模拟我们定义:有一组对角相等而另一对角不相等的凸四边形叫做“等对角四边形”.已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求对角线AC的长.分析分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用含30°角的直角三角形的性质求出AE,得出DE,再用三角函数求出CD,由勾股定理求出AC;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,先求出AM、DM,再由矩形的性质得出DN=BM=3,BN=DM=2,求出CN、BC,根据勾股定理求出AC即可.解答解:分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图1所示:∵∠ABC=90°,∠DAB=60°,AB=5,∴∠E=30°,∴AE=2AB=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC===2;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图2所示:则∠AMD=90°,四边形BNDM是矩形,∵∠DAB=60°,∴∠ADM=30°,∴AM=AD=2,∴DM=2∴BM=AB﹣AM=5﹣2=3,∵四边形BNDM是矩形,∴DN=BM=3,BN=DM=2,∵∠BCD=60°,∴CN=,∴BC=CN+BN=3,∴AC==2;综上所述:AC的长为2或2.点评此题考查了新定义、四边形内角和定理、勾股定理、矩形的判定与性质等知识,需要进行分类讨论,通过作辅助线运用三角函数和勾股定理才能得出结果.8.2014衢州提出问题:1如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH;类比探究:2如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG 于点O,探究线段EF与HG的数量关系,并说明理由;综合运用:3在2问条件下,HF∥GE,如图3所示,已知BE=EC=2,EO=2FO,求图中阴影部分的面积.分析1由正方形的性质得AB=DA,∠ABE=90°=∠DAH.所以∠HAO+∠OAD=90°,又知∠ADO+∠OAD=90°,所以∠HAO=∠ADO,于是△ABE≌△DAH,可得AE=DH;2EF=GH.将FE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH.根据1的结论得AM=DN,所以EF=GH;3易得△AHF∽△CGE,所以,由EC=2得AF=1,过F作FP⊥BC 于P,根据勾股定理得EF=,因为FH∥EG,所以,根据2①知EF=GH,所以FO=HO,再求得三角形FOH与三角形EOG的面积相加即可.解答解:1∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAH.∴∠HAO+∠OAD=90°.∵AE⊥DH,∴∠ADO+∠OAD=90°.∴∠HAO=∠ADO.∴△ABE≌△DAHASA,∴AE=DH.2EF=GH.将FE平移到AM处,则AM∥EF,AM=EF.将GH平移到DN处,则DN∥GH,DN=GH.∵EF⊥GH,∴AM⊥DN,根据1的结论得AM=DN,所以EF=GH;3∵四边形ABCD是正方形,∴AB∥CD∴∠AHO=∠CGO∵FH∥EG∴∠FHO=∠EGO∴∠AHF=∠CGE∴△AHF∽△CGE∴∵EC=2∴AF=1过F作FP⊥BC于P,根据勾股定理得EF=,∵FH∥EG,∴根据2知EF=GH,∴FO=HO.∴,,∴阴影部分面积为.点评本题考查了三角形的综合知识.用到全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等综合性较强,难度较大.9.2016秋宜兴市校级期中定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.1请你在图1中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;若两种方法分得的三角形成3对全等三角形,则视为同一种2△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并直接写出x所有可能的值;3如图2,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.分析145°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和°,再以°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;2用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C在同一直线上,易得2种三角形ABC,根据图形易得x 的值;3因为∠C=2∠B,作∠C的角平分线,则可得第一个等腰三角形.而后借用圆规,以边长画弧,根据交点,寻找是否存在三分线,易得如图4图形为三分线.则可根据外角等于内角之和及腰相等等情况列出等量关系,解方程可知三分线的长.解答解:1如图所示:2如图所示:①当AD=AE时,∵2x+x=30°+30°,∴x=20°;②当AD=DE时,∵30°+30°+2x+x=180°,∴x=40°;3如图所示,CD、AE就是所求的三分线.设∠B=α,则∠DCB=∠DCA=∠EAC=α,∠ADE=∠AED=2α,此时△AEC∽△BDC,△ACD∽△ABC,设AE=AD=x,BD=CD=y,∵△AEC∽△BDC,∴x:y=2:3,①∵△ACD∽△ABC,∴2:x=x+y:2,②由①和②解得或舍去,∴AE=,CD=,即三分线的长分别为和.点评此题是相似形的综合题,主要考查了三角形内角、外角间的关系及等腰三角形知识,掌握相似三角形的判定与性质,根据成比例的线段联立方程解决问题.10.2014宝山区一模通过锐角三角比的学习,我们已经知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长比与角的大小之间可以相互转化.类似的我们可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对sad.如图在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=.我们容易知道一个角的大小与这个角的正对值也是互相唯一确定的.根据上述角的正对定义,解下列问题:1sad60°= 1 ;sad90°=.2对于0°<A<180°,∠A的正对值sadA的取值范围是0<sadA<2 .3试求sad36°的值.分析1根据等腰三角形的性质,求出底角的度数,判断出三角形为等边三角形,再根据正对的定义解答进而得出sad90°的值;2求出0度和180度时等腰三角形底和腰的比即可;3作出等腰△ABC,构造等腰三角形BCD,根据正对的定义解答.解答解:1根据正对定义,当顶角为60°时,等腰三角形底角为60°,则三角形为等边三角形,则sad60°==1.根据正对定义,当顶角为90°时,等腰三角形底角为45°,则三角形为等腰直角三角形,则sad90°==故答案为:1,.2当∠A接近0°时,sadA接近0,当∠A接近180°时,等腰三角形的底接近于腰的二倍,故sadA接近2.于是sadA的取值范围是0<sadA<2.故答案为:0<sadA<2.3如图所示:已知:∠A=36°,AB=AC,BC=BD,∴∠A=∠CBD=36°,∠ABC=∠C=72°,∴△BCD∽△ABC,∴=,∴=,解得:BC=CD,∴sad36°==.点评本题考查了解直角三角形:利用三角函数的定义和相似三角形的判定与性质,根据题意得出BC与CD的关系是解题关键.11.2013宁波若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.1如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;2如图2,在12×16的网格图上每个小正方形的边长为1有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;3四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.分析1要证明BD是四边形ABCD的和谐线,只需要证明△ABD和△BDC是等腰三角形就可以;2根据扇形的性质弧上的点到顶点的距离相等,只要D在中点时构成的四边形ABDC就是和谐四边形;连接BC,在△BAC外作一个以AC为腰的等腰三角形ACD,构成的四边形ABCD就是和谐四边形,3由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图4,图5,图6三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠BCD的度数.解答解:1∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADB=∠DBC.∵∠BAD=120°,∴∠ABC=60°.∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠ABD=∠ADB,∴△ADB是等腰三角形.在△BCD中,∠C=75°,∠DBC=30°,∴∠BDC=∠C=75°,∴△BCD为等腰三角形,∴BD是梯形ABCD的和谐线;2由题意作图为:图2,图33∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形.∵AB=AD=BC,如图4,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠BAC=∠BCA=60°.∵∠BAD=90°,∴∠CAD=30°,∴∠ACD=∠ADC=75°,∴∠BCD=60°+75°=135°.如图5,当AD=CD时,∴AB=AD=BC=CD.∵∠BAD=90°,∴四边形ABCD是正方形,∴∠BCD=90°如图6,当AC=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,∵AC=CD.CE⊥AD,∴AE=AD,∠ACE=∠DCE.∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形.∴BF=AE.∵AB=AD=BC,∴BF=BC,∴∠BCF=30°.∵AB=BC,∴∠ACB=∠BAC.∵AB∥CE,∴∠BAC=∠ACE,∴∠ACB=∠ACE=∠BCF=15°,∴∠BCD=15°×3=45°.点评本题是一道四边形的综合试题,考查了和谐四边形的性质的运用,和谐四边形的判定,等边三角形的性质的运用,正方形的性质的运用,30°的直角三角形的性质的运用.解答如图6这种情况容易忽略,解答时合理运用分类讨论思想是关键.12.对x,y定义一种新运算T,规定:Tx,y=其中a、b均为非零常数,这里等式右边是通常的四则运算,例如:T0,1==b.1已知T1,﹣1=﹣,T4,2=1.①求a,b的值;②若关于m的不等式组恰好有5个整数解,求实数p的取值范围;2若Tx,y=Ty,x对任意实数x,y都成立这里Tx,y和Ty,x均有意义,则a,b应满足怎样的关系式分析1①已知两对值代入T中计算求出a与b的值;②根据题中新定义化简已知不等式,根据不等式组恰好有5个整数解,求出p的范围即可;2由Tx,y=Ty,x列出关系式,整理后即可确定出a与b的关系式.解答解:1①根据题意得:T1,﹣1==﹣,即a﹣b=﹣1,①T=4,2==1,即2a+b=7,②联立①②,解得:a=2,b=3;②根据题意得:,由①得:m≥﹣;由②得:m<,∴不等式组的解集为﹣≤m<,∵不等式组恰好有5个整数解,即m=0,1,2,3,4.∴4<≤5,解得:﹣≤p<﹣11;2由Tx,y=Ty,x,得到=,整理得:x2﹣y22b﹣a=0,∵Tx,y=Ty,x对任意实数x,y都成立,∴2b﹣a=0,即a=2b.点评此题考查了分式的混合运算,解二元一次方程组,以及一元一次不等式组的整数解,弄清题中的新定义是解本题的关键.13.2014东营探究发现如图1,△ABC是等边三角形,∠AEF=60°,EF交等边三角形外角平分线CF所在的直线于点F,当点E是BC的中点时,有AE=EF 成立;数学思考某数学兴趣小组在探究AE、EF的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E是直线BC上B,C除外任意一点时其它条件不变,结论AE=EF仍然成立.假如你是该兴趣小组中的一员,请你从“点E是线段BC上的任意一点”;“点E是线段BC延长线上的任意一点”;“点E是线段BC反向延长线上的任意一点”三种情况中,任选一种情况,在备用图1中画出图形,并证明。
中考数学专题复习新定义阅读理解题(三)
中考数学专题复习新定义阅读理解题(三)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.对于任意一个三位正整数,十位上的数字减去个位上的数字之差恰好等于百位上的数字,则称这个三位数为“极差数”.例如:对于三位数451,5-1=4,则451是“极差数”;对于三位数110,1-0=1,则110是“极差数”.(1)求证:任意一个“极差数”一定能被11整除;(2)在一个“极差数”首位之前添加其十位的数字得到一个新的四位数M,在一个“极差能被12整除,求满足条件的数”末位之后添加数字1得到一个新的四位数N,若M N“极差数”.2.一个正整数的各位数字都相同,我们称这样的数为“称心数”,如5,44,666,2222,…对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和记为S(n),如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和S(123)=213+321+132=666,是一个“称心数”.(1)计算:S(432),S(617),并判断是否为“称心数”;(2)若“相异数”n=100+10p+q(其中正整数p,q满足1≤p≤9,1≤q≤9),且S(n)为最大的三位“称心数”,求n的值.3.材料:对任意一个n位正整数M(n≥3),若M与它的十位数字的p倍的差能被整数q整除,则称这个数为“p阶q级数”,例如:712是“5阶7级数”,因为712517-⨯=101;712也是“12阶10级数”,因为71212110-⨯=70.(1)若415是“5阶k级数”,且k<300,求k的最大值;(2)若一个四位数M的百位数字比个位数字大2,十位数字为1,且M既是“4阶13级数”又是“6阶5级数”,求这个四位数M.参考答案:1.(1)证明见解析;(2)满足条件的“极差数”有671或143或275.【解析】【分析】(1)设任意一个“极差数”的百位数字是a ,十位数字是b ,个位数字是c ,根据条件式子100a +10b +c =11(10b +9c ),即可求证;(2)设任意一个“极差数”的百位数字是a ,十位数字是b ,个位数字是c ,由题意可得M =1000b +100a +10b +c ,N =1000a +100b +10c +1,再根据M −N 能被12整除,可求满足条件的“极差数”.【详解】解:(1)证明:设任意一个“极差数”的百位数字是a ,十位数字是b ,个位数字是c , ∵a =b −c ,∵100a +10b +c =100b −100c +10b +c =110b −99c =11(10b −9c ),∵100a +10b +c 能被11整除,∵任意一个“极差数”一定能被11整除;(2)设任意一个“极差数”的百位数字是a ,十位数字是b ,个位数字是c ,则M =1000b +100a +10b +c ,N =1000a +100b +10c +1,则M −N =−900a +910b −9c −1=−900(b −c )+910b −9c −1=10b +891c −1,M−N 能被12整除,当c =1时,b =1,a =0(舍去);当c =1时,b =7,a =6;当c =3时,b =4,a =1;当c =5时,b =1,a =−4(舍去);当c =5时,b =7,a =2;当c =7时,b =4,a =−3(舍去).故满足条件的“极差数”有671或143或275.【点睛】本题考查了分解因式的实际运用,学生的阅读理解能力以及知识的迁移能力,解题的关键是理解“极差数”的定义.2.(432)999S =,是“称心数”;(617)1554S =,不是“称心数”;(2)n 的值为162或153或135或126.【解析】【分析】(1)根据“称心数”和“相异数”的定义即可判断;(2)根据“称心数”和“相异数”的定义可得()999S n =且19p q ++=,由此即可得出答案.【详解】(1)由题意得:(432)342234423999S =++=,(617)1677166711554S =++=,则(432)S 是“称心数”,(617)S 不是“称心数”;(2)∵“相异数”10010n p q =++(其中正整数p ,q 满足19,19p q ≤≤≤≤),n ∴是一个三位数,且百位数字为1,十位数字为p ,个位数字为q ,1p q ∴≠≠,又()S n 为最大的三位“称心数”,()999S n ∴=,19p q ∴++=,∵p 、q 的所有可能取值为62p q =⎧⎨=⎩或53p q =⎧⎨=⎩或35p q =⎧⎨=⎩或26p q =⎧⎨=⎩, n ∴的值为162或153或135或126.【点睛】本题考查了有理数的加法运算、二元一次方程的应用,理解“称心数”和“相异数”的定义是解题关键.3.(1)k 的最大值为205;(2)满足要求的M 为8311或6816.【解析】【分析】(1)根据材料中给出的“p 阶q 级数”的含义及k 的取值范围即可得出答案.(2)先设未知数表示出M ,然后根据M 既是“4阶13级数”又是“6阶5级数”列出式子并结合整除规律即可解答.【详解】(1)∵415是“5阶k 级数”,所以41551410k k -⨯=为整数, ∵k <300,∵k 的最大值为205.(2)设M 为千位数字为x ,个位数字为y ,则百位数字为y+2,∵M =1000x+100(y+2)+10+y ,(0≤y≤7)∵M 既是“4阶13级数”又是“6阶5级数”, ∵4113M -⨯与615M -⨯均为整数, ∵M ﹣4是13的整数倍,M ﹣6是5的整数倍,∵y =6或1,当y =1时,M ﹣4=1000x+307,413M -=100030713x +=77x+24﹣513x +, ∵x =8,∵M =8311.当y =6时,M ﹣4=1000x+812413M -=100081213x +=77x+63﹣713x +, ∵x =6,∵M =6816.综上所述,满足要求的M 为8311或6816.【点睛】本题以新定义的形式考查了二元一次不定方程的应用、数的整除规律.读懂材料、正确理解“p 阶q 级数”的含义是解答本题的关键.。
中考复习25题新定义题型
中考题号复习:25题题型分析:1. 交点类问题:**点(联立解析式,运用韦达定理)2. 两个函数关系类问题:**函数(会运用到交点和最值,二次函数与x 轴交点的分布区间)3. 单个函数的性质:**函数,**点,**数(增减性、最值、斜率公式、弦长公式、点到直线的距离公式)公式分类1. 斜率公式:()()2211,,,y x B y x A 2121x x y y k --=2. 弦长公式:()()2211,,,y x B y x A 在直线b kx y +=上2121x x k AB -+=3. 点到直线的距离公式:()00,y x A 到直线b kx y +=的距离2001kb y kx d ++-=4. 二次函数最值求解5. 一元二次方程根区间分布情况一、交点类问题1. 运用联立解析式和韦达定理例1 在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点称为“梦之点”.例如点)1,1(--,)0,0(,)2,2(,…都是“梦之点”.显然,这样的“梦之点”有无数个.(1)若点P (2,m )是反比例函数ny x=(n 为常数,n ≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数31y kx s =+-(k ,s 是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,说明理由;(3)若二次函数21y ax bx =++(a ,b 是常数,a >0)的图象上存在两个不同的“梦之点”A 11(,)x x ,B 22(,)x x ,且满足2-<1x <2,12x x -=2,令4815722+-=b b t ,试求t 的取值范围.“诚信点”在平面直角坐标系中,如果点P 的纵坐标是横坐标的二倍,则称点P 是“诚信点”。
例如点())22,2(),4,2(,2,1--,…都是“诚信点”,显然“诚信点”有无数个。
(1)若点P (6,m )是反比例函数xny =(n 为常数,0≠n )的图像上的“诚信点”,求这个反比例函数的解析式;(2)函数q p q px y ,(2+=为常数)的图像上存在“诚信点”吗?若存在,请求出“诚信点”的坐标。
中考数学复习:新定义题型
新定义题类型一新运算型:252书签。
=-1.其中正确的是( )A. ①②B. ①③ C. ②③ D.①②③2. 阅读材料:设错误!=(x1,y1),错误!未定义书签。
=(x2,y2),如果错误!∥错误!,则x1·y2=x2·y1.根据该材料填空:已知错误!未定义书签。
=(2,3),错误!=(4,m),且错误!未定义书签。
∥错误!未定义书签。
,则m=________.3.对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1.因此,min{-错误!,-错误!未定义书签。
}=________;若min{(x-1)2,x2}=1,则x=______.4. 阅读理解题:定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部.它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2-i)+(5+3i)=(2+5)+(-1+3)i=7+2i;(1+i)×(2-i)=1×2-i+2×i-i2=2+(-1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=________,i4=________;(2)计算:(1+i)×(3-4i);(3)计算:i+i2+i3+…+i2017.类型二新概念型5. 已知点A在函数y1=-错误!(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上,若A,B两点关于原点对称,则称点A、B为函数y,y2图象上的一对“友好点”.1请问这两个函数图象上的“友好点”对数的情况为( )A. 有1对或2对 B. 只有1对C.只有2对D. 有2对或3对6. 新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m-2]的一次函数是正比例函数,则关于x的方程错误!+错误!=1的解为________.7.在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=-错误!未定义书签。
中考数学复习提分专练:新定义问题(有答案)
2021届中考数学复习提分专练:新定义问题一、单选题1.龙在电脑中设置了一个运算程序:输入数a ,加“⊗”键,再输入数b ,得到运算222a b ab a b =⊗+.若23a b =-=,,则输出的值为( ).A.9-B.12-C.24-D.62.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知9046A BD CF ∠=︒==,,,则正方形ADOF 的边长是( )AB .2CD .4二、填空题3.规定一种运算:*ab a b a b =+,计算()2*3-的值__________.4.如图,分别以等边三角形的每个顶点为圆心、以边长为半径.在另两个顶点间作一段圆弧.三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a ,则勒洛三角形的周长为 .5.如图,在四边形ABCD 中,,AB CB AD CD ==,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD 的对角线,AC BD 相交于点O .以点B 为圆心,BO 长为半径画弧,分别交,AB BC 于点,E F .若301ABD ACD AD ∠=∠=︒=,,则EF 的长为_________(结果保留π).三、解答题6.定义:a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知113a =-, (1)2a 是1a 的差倒数,求2a ;(2)3a 是2a 的差倒数,求3a ;(3)4a 是3a 的差倒数,…,依次类推1n a +是n a 的差倒数,直接写出2019a .7.我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”.(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究:如图①,在等邻角四边形ABCD 中,DAB ABC ∠=∠,,AD BC 的中垂线恰好交于AB 边上一点P ,连接,AC BD ,试探究AC 与BD 的数量关系,并说明理由;(3)应用拓展:如图②,在Rt ABC △与Rt ABD △中,90C D ∠=∠=︒,3BC BD ==,5AB =,将Rt ABD △绕着点A 顺时针旋转角(0)BAC αα︒<∠<∠,得到Rt ''AB D △(如图③),当凸四边形'AD BC 为等邻角四边形时,求出它的面积.8.定义:一条对角线垂直平分另一条对角线的四边形叫做筝形,如图,筝形ABCD 的对角线,AC BD 相交于点O ,且AC 垂直平分BD .(1)请结合图形,写出筝形两种不同类型的性质:性质1: ;性质2: .(2)若//AB CD ,求证:四边形ABCD 为菱形.9.定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.(1)判断:一个内角为120°的菱形 等距四边形.(填“是”或“不是”)(2)如图,在5×5的网格图中有A B 、两点,请在答题卷给出的两个网格图上各找出C D 、两个格点,使得以A B C D 、、、为顶点的四边形为互不全等的“等距四边形”,画出相应的“等距四边形”,并写出该等距四边形的端点均为非等距点的对角线长.端点均为非等距点的对角线长为 端点均为非等距点的对角线长为(3)如图,已知ABE △与CDE △都是等腰直角三角形,90AEB DEC ∠=∠=︒,连结AD AC BC ,,,若四边形ABCD 是以A 为等距点的等距四边形,求BCD ∠的度数.参考答案1.答案:C由222a b ab a b ⊗=+得22(2)32(2)3(2)3-⊗=⨯-⨯+-⨯计算,得(2)32(2)943-⊗=⨯-⨯+⨯计算得(2)324-⊗=-故选C.2.答案:B设正方形ADOF 的边长为x ,由题意得:46BE BD CE CF ====,,10BC BE CE BD CF ∴=+=+=,在Rt ABC △中,222AC AB BC =+,即222(6)(4)10x x +++=,整理得,210240x x +-=,解得:2x =,或12x =-(舍去), 2x ∴=,即正方形ADOF 的边长是2;故选:B .3.答案:6 根据新定义得到2(3)2(3)2(3)⨯-+*-=-,再分别进行分子与分母,然后进行除法运算即可. 解答:解:2(3)62(3)62(3)1⨯--*-===+--. 故答案为6.4.答案:πa如图.ABC △是等边三角形, 60,A B C ∴∠=∠=∠=°,AB BC CA a ===AB ∴的长=BC 的长=CA 的长=60ππ,1803a a = ∴勒洛三角形的周长为π3π3a a ⨯=.5.答案:π2本题考查垂直平分线的性质、等腰三角形的性质、特殊角的三角函数值、全等三角形的判定及性质、弧长公式.,,AD CD AB CB BD ==∴是线段AC 的垂直平分线.在Rt AOD中,30,1,cos301DAC ACD AD AO AD ∠=∠==∴=⋅=︒︒又在Rt AOB中,330,tan 302AO ABD OB ∠=∴︒==︒=.在Rt AOB 和Rt COB 中,AB CB =,Rt Rt (HL),OB OB AOB COB ABD =∴≅∴∠=30CBD ∠=︒,即360ππ260,1802EF ABC l ⋅∠=︒∴==,即EF 的长为π2. 6.答案:(1)解:根据题意,得21131441()33a ===--. (2)根据题意,得311431144a ===-. (3)由12341311,,4,34143a a a a =-====--,…,知每3个数循环一次 20193673÷=,20194a ∴=.7.答案:(1)矩形(2)AC BD =.理由如下:如图①,连接,PD PC .PE 是AD 的中垂线,PF 是BC 的垂线,,PA PD PC PB ∴==,PAD PDA PBC PCB ∴∠=∠∠=∠,2DPB PAD ∴∠=∠,2APC PBC ∠=∠而PAD PBC ∠=∠,APC DPB ∴∠=∠(SAS)APC DPB ∴≅△△,AC BD ∴=(3)(I ) 如图②,当''AD B D BC ∠=∠时,延长'AD ,CB 交于E ,'','ED B EBD EB ED ∴∠=∠∴=设'EB ED x ==由勾股定理可得'4AC AD ==在Rt ACE △中,222AC CE AE +=2224(3)(4)x x ∴++=+,解得 4.5x =过点'D 作'D F CE ⊥于点F ,'90EFD C ∴∠=∠=︒又,'E E ED F EAC ∠=∠∴△△''D F ED AC AE ∴=,即' 4.544 4.5D F =+,解得36'17D F =. 114(3 4.5)1522ACE S AC EC ∴=⨯=⨯⨯+=△, '113681' 4.5221717BD E S BE D F =⨯=⨯⨯=△, ''81415101717ACE BD E ACBD S S S ∴=-=-=四边形△△ (II )如图③,当'90D BC ACB ∠=∠=︒时,过点'D 作'D E AC ⊥于点E .∴四边形'ECBD 是矩形.'3ED BC ∴==.在Rt 'AED △中,222''AE ED AD +=AE ∴=='11'322AED S AE ED ∴=⨯==△'(4312ECBD S CE CB =⨯=⨯=-矩形''1212AED ECBD ACBD S S S ∴=+=-=矩形四边形△'8.答案:(1)由筝形的定义得:对角线互相垂直,即AC BD ⊥,是轴对称图形,对称轴为直线AC .故答案为对角线互相垂直,是轴对称图形.(2)证明:AC 垂直平分BD ,AB AD ∴=,BO DO =,BC DC =,//AB CD ,ABO ODC ∠=∠,在ABO △和CDO △中,ABO ODC BO DO AOB COD ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA AOB COD ∴≅△△,AB CD ∴=,AB CD BC AD ∴===,∴四边形ABCD 为菱形.9.答案:(1)是(2)(3)解:连接BD∵ABE △与CDE △都是等腰直角三角形∴,DE EC AE EB ==,DEC BEC AEB BEC ∠+∠=∠+∠即 AEC DEB ∠=∠∴AEC BED ≅△△∴AC BD = ∵四边形ABCD 是以A 为等距点的等距四边形∴AD AB AC ==∴AD AB BD ==∴ABD △是等边三角形∴60DAB ∠=︒∴ 604515DAE DAB EAB ∠=∠-∠=︒-︒=︒∵,,AD AC DE EC AE AE ===∴AED AEC ≅△△∴15CAE DAE ∠=∠=︒∴30DAC CAE DAE ∠=∠+∠=︒, 30BAC BAE CAE ∠=∠-∠=︒ ∵,AB AC AC AD == ∴18030752ACB ︒-︒∠==︒,18030752ACD ︒-︒∠==︒ ∴7575150BCD ACB ACD ∠=∠+∠=︒+︒=︒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
厦门市中考复习——新定义型专题
(一)专题诠释
所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力
(二)解题策略和解法精讲
“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;
的差倒数是
1
112
=--,-1的差倒数是
111(1)2=--.已知a 1=-13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2009= .
考点二:运算题型中的新定义
例 2.(2011毕节地区)对于两个不相等的实数a 、b ,定义一种新的运算如下,
*0a b a b a b
=
+(>)
﹣,如:3*2== 那么6*(5*4)= .
例3.(2010重庆江津区)我们定义ab
ad bc cd
=-,例如错误!未指定书签。
2345=2×5
﹣3×4=10﹣12=﹣2,若x ,y 均为整数,且满足1<错误!未指定书签。
14
x
y <3,则x+y 的值是 .
考点三:探索题型中的新定义
例4.(2009 台州)定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫
凸四边形的准内点.如图1,PH=PJ ,PI=PG ,则点P 就是四边形ABCD 的准内点.
(1)如图2,∠AFD 与∠DEC 的角平分线FP ,EP 相交于点P .求证:点P 是四边形ABCD 的准内点.
(2)分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必
要的说明)
(3)判断下列命题的真假,在括号内填“真”或“假”.
①任意凸四边形一定存在准内点.()
②任意凸四边形一定只有一个准内点.()
③若P是任意凸四边形ABCD的准内点,则PA+PB=PC+PD或PA+PC=PB+PD.()考点四:开放题型中的新定义
例5.(2011浙江台州)如果点P(x,y)的坐标满足x+y=xy,那么称点P为和谐点.请写出一个和谐点的坐标:.
考点五:阅读材料题型中的新定义
(2010广东佛山)阅读材料
我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形;
我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;
请解决以下问题:
如图,我们把满足AB=AD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;
(1)写出筝形的两个性质(定义除外);
(2)写出筝形的两个判定方法(定义除外),并选出一个进行证明.
练习部分
一、选择题
1、(2011山东菏泽)定义一种运算☆,其规则为a ☆b =1a +1
b 错误!未找到引用源。
错误!
未找到引用源。
,根据这个规则,计算2☆3的值是( ) A.
56 B. 1
5
C.5
D.6 2.(2011滨州)在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小
九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A 、1,2 B 、1,3 C 、4,2 D 、4,3 3.(2010浙江杭州)定义[a ,b ,c ]为函数y =a x 2+bx c +的特征数,下面给出特征数为[2m ,1﹣m ,﹣1﹣m]的函数的一些结论: ①当m =﹣3时,函数图象的顶点坐标是(18
,
33
); ②当m >0时,函数图象截x 轴所得的线段长度大于3
2
错误!未找到引用源。
; ③当m <0时,函数在x >
1
4
错误!未找到引用源。
时,y 随x 的增大而减小; ④当m≠0时,函数图象经过同一个点. 其中正确的结论有( )
A 、①②③④
B 、①②④
C 、①③④
D 、②④
错误!未指定书签。
二、填空题
4.(2011甘肃兰州,26,9分)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。
类似的,可以在等腰三角形中建立边角之间的联系。
我们定义:等腰三角形中底边与腰的比叫做顶角的
正对(sad ).如图①在△ABC 中,AB =AC ,顶角A 的正对记作sadA ,这时sadA BC
AB
==
底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题: (1)sad60°= .(2)对于0°<A <180°,∠A 的正对值sadA 的取值范围是 .
(3)如图②,已知sinA 3
5
=
,其中∠A 为锐角,试求sadA 的值.
A
A
B
C
C
B
图①
图②
5、(2011贵港)若记y =f (x )=22
1x x +,其中f (1)表示当x =1时y 的值,即f (1)=22111+=1
2;
f (12)表示当x =12时y 的值,即f (1
2)=2
211122512
f ==+()(
)();…;则f (1)+f (2)+f (22111212512
f ==+()()())+f (3)+f (13)+…+f (2011)+f (12011)= 。
三、解答题
6.(2011浙江绍兴)在平面直角坐标系中.过一点分別作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如.图中过点P 分別作x 轴,y 轴的垂线.与坐标轴围成矩形OAPB 的周长与面积相等,则点P 是和谐点. (1)判断点M (l ,2),N (4,4)是否为和谐点,并说明理由;
(2)若和谐点P (a ,3)在直线y=﹣x+b (b 为常数)上,求a ,b 的值.
7.(2009山东济宁)阅读材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数111(0)y k x b k =+≠的图象为直线1l ,一次函数222(0)y k x b k =+≠的图象为直线2l ,若12k k =,且12b b ≠,我们就称直线1l 与直线2l 互相平行.
解答下面的问题:(1)求过点(1,4)P 且与已知直线21y x =--平行的直线l 的函数表达式,并画出直线l 的图象;(2)设直线l 分别与y 轴、x 轴交于点A 、B ,如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式.
x。