初二数学上册全等三角形综合能力测试题及答案
八年级数学上册--全等三角形测试题(含答案)
八年级数学上册--全等三角形测试题(含答案)一、选择题(每小题3分,共30分)1.如图所示,,,,AB DE AC DF AC DF =∥∥下列条件中,不能判断ABC DEF △≌△的是( )A .AB=DE B.∠B=∠E C.EF=BC D.EF ∥BC2. 如图所示,分别表示△ABC 的三边长,则下面与△一定全等的三角形是( )A BC D3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B =∠C ,下列等式不正确的是( )A .AB =AC B.∠BAE =∠CAD C.BE =DC D.AD =DE 4.在△ABC 和△A B C '''中,AB =A B '',∠B =∠B ',补充条件后仍不一定能保证△ABC ≌ △A B C ''',则补充的这个条件是( )A.BC =B C ''B.∠A =∠A 'C.AC =A C '' D.∠C =∠C ' 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等第3题图第5题图第2题图第1题图边三角形,则下列结论不一定成立的是( ) A.△ACE ≌△BCD B.△BGC ≌△AFC C.△DCG ≌△ECF D.△ADB ≌△CEA6. 要测量河两岸相对的两点的距离,先在的垂线上取两点,使,再作出的垂线,使在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是( )A.边角边B.角边角C.边边边D.边边角7.如图所示,AC =CD ,∠B =∠E =90°,AC ⊥CD ,则不正确的结论是( ) A.∠A 与∠D 互为余角 B.∠A =∠2C.△ABC ≌△CEDD.∠1=∠28.在△和△FED 中,已知∠C =∠D ,∠B =∠E ,要判定这两个三角形全等,还需要条 件( )A.AB =EDB.AB =FDC.AC =FDD.∠A =∠F9.如图所示,在△ABC 中,AB =AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ;②△BAD ≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,其中一定正确的是( )第7题图第6题图A.①②③B.②③④C.①③⑤D.①③④10. 如图所示,在△中,>,∥=,点在边上,连接,则添加下列哪一个条件后,仍无法判定△与△全等( )A.∥B.C.∠=∠D.∠=∠ 二、填空题(每小题3分,共24分)11. (2014·福州中考)如图所示,在Rt △ABC 中,∠ACB =90︒,点D ,E 分别是边AB ,AC 的中点, 延长BC 到点F ,使CF = BC .若AB =10,则EF 的长是 .12.如图所示,在△ABC 中,AB =8,AC =6,则BC 边上的中线AD 的取值范围是 . 13.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .14.如图所示,已知在等边△ABC 中,BD =CE ,AD 与BE 相交于点P ,则∠APE= 度. 15.如图所示,AB =AC ,AD =AE ,∠BAC =∠DAE ,∠1=25°,∠2=30°,则∠3= .第9题图第14题图第10题图第13题图第15题图16.如图所示,在△ABC 中,∠C =90°,AD 平分∠CAB ,BC =8 cm,BD =5cm,那么点D 到直线AB 的距离是cm.17.如图所示,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,则△ABC 的面积是 .18.如图所示,已知在△ABC 中,∠A =90°,AB =AC ,CD 平分∠ACB ,DE ⊥BC 于E ,若BC = 15 cm,则△DEB 的周长为 cm . 三、解答题(共46分)19.(6分)(2014·福州中考)如图所示,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .20.(8分)如图所示,△ABC ≌△ADE ,且∠CAD =10°,∠B =∠D =25°,∠EAB =120°,求∠DFB 和∠DGB 的度数.21.(6分)如图所示,已知AE ⊥AB ,AF ⊥AC ,AE =AB ,AF =AC .求证:(1)EC =BF ;(2)EC ⊥BF.第16题图第17题图第20题图第21题图22.(8分)如图所示,在△ABC中,∠C=90°, AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF.证明:(1)CF=EB;(2)AB=AF+2EB.第22题图23.(9分)如图所示,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.第23题图24.(9分)(2014•湖南邵阳中考)如图所示,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.第十二章全等三角形检测题参考答案1. C 解析:由AB∥DE,AC∥DF,可得∠A=∠D,添加AB=DE,可利用“SAS”判断△ABC≌△DEF;添加∠B=∠E,可利用“AAS” 判断△ABC≌△DEF;添加EF∥BC,可得∠B=∠E或∠C=∠F,可利用“AAS”或“ASA” 判断△ABC≌△DEF;而添加EF=BC,利用“SSA”无法判断△ABC≌△DEF.2. B 解析:A.与三角形有两边相等,而夹角不一定对应相等,二者不一定全等;B.与三角形有两边及其夹角相等,二者全等;C.与三角形有两边相等,但夹角不对应相等,二者不全等;D.与三角形有两角相等,但夹边不对应相等,二者不全等.故选B.3. D 解析:∵ △ABE≌△ACD,∠1=∠2,∠B=∠C,∴ AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.4. C 解析:选项A满足三角形全等的判定条件中的边角边,选项B满足三角形全等的判定条件中的角边角,选项D满足三角形全等的判定条件中的角角边,只有选项C 不满足三角形全等的条件.5. D 解析:∵ △ABC和△CDE都是等边三角形,∴ BC=AC,CE=CD,∠BCA=∠ECD=60°,∴ ∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴ 在△BCD和△ACE中,∴ △BCD≌△ACE(SAS),故A成立.∵ △BCD≌△ACE,∴ ∠DBC=∠CAE.∵ ∠BCA=∠ECD=60°,∴ ∠ACD=60°.在△BGC和△AFC中,∴ △BGC≌△AFC,故B成立.∵ △BCD≌△ACE,∴ ∠CDB=∠CEA,在△DCG和△ECF中,∴ △DCG≌△ECF,故C成立.6. B 解析:∵ BF⊥AB,DE⊥BD,∴ ∠ABC=∠BDE.又∵ CD=BC,∠ACB=∠DCE,∴ △EDC≌△ABC(ASA).故选B.7. D 解析:∵ AC⊥CD,∴ ∠1+∠2=90°.∵ ∠B=90°,∴ ∠1+∠A=90°,∴ ∠A=∠2.在△ABC和△CED中,∴ △ABC≌△CED,故选项B、C正确.∵ ∠2+∠D=90°,∴ ∠A+∠D=90°,故选项A正确.∵ AC⊥CD,∴ ∠ACD=90°,∠1+∠2=90°,故选项D错误.故选D.8. C 解析:因为∠C=∠D,∠B=∠E,所以点C与点D,点B与点E,点A与点F是对应顶点,AB 的对应边应是FE,AC的对应边应是FD,根据AAS,当AC=FD时,有△ABC≌△FED.9. D 解析:∵ AB=AC,∴ ∠ABC=∠ACB.∵ BD平分∠ABC,CE平分∠ACB,∴ ∠ABD=∠CBD=∠ACE=∠BCE.∴ ①△BCD≌△CBE(ASA);由①可得CE=BD, BE=CD,∴ ③△BDA≌△CEA(SAS);又∠EOB=∠DOC,所以④△BOE≌△COD(AAS).故选D.10. C 解析:A.∵ ∥,∴ ∠=∠.∵ ∥∴ ∠=∠.∵ ,∴ △≌△,故本选项可以证出全等.B.∵ =,∠=∠,∴ △≌△,故本选项可以证出全等.C.由∠=∠证不出△≌△,故本选项不可以证出全等.D.∵ ∠=∠,∠=∠,,∴ △≌△,故本选项可以证出全等.故选C.11.5 解析:根据三角形的中位线性质定理和全等三角形的判定与性质进行解答.∵点D,E分别是边AB,AC的中点,∴AE=CE=AC,DE是△ABC的中位线,∴DE=BC,DE∥BC.∵ CF BC ,∴DE=CF.又∵∠AED=∠ECF=90°,∴△ADE≌△EFC,∴EF=AD=AB=5.12.因为所以△BDE≌△CDA.所以在△ABE中,.13. 135° 解析:观察图形可知:△ABC≌△BDE,∴ ∠1=∠DBE.又∵ ∠DBE+∠3=90°,∴ ∠1+∠3=90°.∵ ∠2=45°,∴ ∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.14. 60 解析:∵ △ABC是等边三角形,∴ ∠ABD=∠C,AB=BC.∵ BD=CE,∴ △ABD≌△BCE,∴ ∠BAD=∠CBE.∵ ∠ABE+∠EBC=60°,∴ ∠ABE+∠BAD=60°,∴ ∠APE=∠ABE+∠BAD=60°.15. 55° 解析:在△ABD与△ACE中,∵ ∠1+∠CAD=∠CAE +∠CAD,∴ ∠1=∠CAE.又∵ AB=AC,AD=AE,∴ △ABD ≌△ACE(SAS).∴ ∠2=∠ABD.∵ ∠3=∠1+∠ABD=∠1+∠2,∠1=25°,∠2=30°,∴ ∠3=55°.16. 3 解析:如图所示,作DE⊥AB于E,因为∠C=90°,AD平分∠CAB,所以点D到直线AB的距离是DE的长.由角平分线的性质可知DE=DC.又BC=8 cm,BD=5 cm,所以DE=DC=3 cm.所以点D到直线AB的距离是3 cm.17. 31.5 解析:如图所示,作OE ⊥AC ,OF ⊥AB ,垂足分别为E 、F ,连接OA ,∵ OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC , ∴ OD =OE =OF . ∴=×OD ×BC +×OE ×AC +×OF ×AB =×OD ×(BC +AC +AB ) =×3×21=31.5.18. 15 解析:因为CD 平分∠ACB ,∠A =90°,DE ⊥BC , 所以∠ACD =∠ECD ,CD =CD ,∠DAC =∠DEC , 所以△ADC ≌△EDC ,所以AD =DE , AC =EC , 所以△DEB 的周长=BD +DE +BE =BD +AD +BE .又因为AB =AC ,所以△DEB 的周长=AB +BE =AC +BE =EC +BE =BC =15(cm ).19.分析:由已知BE =CF 证得BF =CE ,从而根据三角形全等SAS 的判定,证明△ABF ≌△DCE ,再利用全等三角形的对应角相等得出结论.证明:∵ BE =CF ,∴ BE +EF =CF +EF , 即BF =CE .又∵ AB =DC ,∠B =∠C , ∴ △ABF ≌△DCE . ∴ ∠A =∠D .点拨:一般三角形全等的判定方法有:SAS,ASA,AAS,SSS,证明三角形全等时,要根据题目已知条件灵活选用.20.分析:由△ABC ≌△ADE ,可得∠DAE =∠BAC =(∠EAB -∠CAD ),根据三角形外角性质可得∠DFB =∠FAB +∠B .因为∠FAB =∠FAC +∠CAB ,即可求得∠DFB 的度数;根据三角形外角性质可得∠DGB =∠DFB -∠D ,即可得∠DGB 的度数.第16题答图第17题答图解:∵ △ABC≌△ADE,∴ ∠DAE=∠BAC=(∠EAB-∠CAD)=,∴ ∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°, ∠DGB=∠DFB-∠D=90°-25°=65°.21. 分析:首先根据角之间的关系推出再根据边角边定理,证明△≌△,最后根据全等三角形的性质定理,得知.根据角的转换可求出.证明:(1)因为 ,所以.又因为在△与△中,,,,AE ABEAC BAFAC AF=⎧⎪∠=∠⎨⎪=⎩所以△≌△.所以.(2)因为△≌△,所以,即22. 分析:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离,即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB.(2)利用角平分线的性质证明△ADC≌△ADE,∴ AC=AE,再将线段AB进行转化.证明:(1)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴ DE=DC.又∵ BD=DF,∴ Rt△CDF≌Rt△EDB(HL),∴ CF=EB.(2)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴ △ADC≌△ADE,∴ AC=AE,∴ AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.23. 证明:∵ DB⊥AC ,CE⊥AB,∴ ∠AEC=∠ADB=90°.∴ 在△ACE与△ABD中,∴ △ACE≌△ABD(AAS),∴ AD=AE.∴ 在Rt△AEF与Rt△ADF中,,, AE AD AF AF=⎧⎨=⎩∴ Rt△AEF≌Rt△ADF(HL),∴ ∠EAF=∠DAF,∴ AF平分∠BAC.24. 分析:(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.解:(1)△ABE≌△CDF,△AFD≌△CEB.(2)选△ABE≌△CDF进行证明.∵AB∥CD,∴∠1=∠2.∵AF=CE,∴AF+EF=CE+EF, 即AE=FC,在△ABE和△CDF中,1=2,,,ABE CDF AE CF⎧⎪=⎨⎪=⎩∠∠∠∠∴△ABE≌△CDF(AAS).点拨:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS,SAS,ASA,AAS.注意:AAA,SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.第24题答图。
人教版数学八年级上册《全等三角形》单元综合检测题含答案
人教版数学八年级上学期《全等三角形》单元测试(考试时间:90分钟试卷满分:120分)一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°4.如图,△AEB≌△DFC,AE⊥BC,DF⊥BC,垂足分别为E、F,∠B=25°,则∠D等于()A.80°B.65°C.48°D.28°第3题第4题第5题5.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.1cm B.2cm C.3cm6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°第6题7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC, 第7题A.①②B.①③④C.①②③④8.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF的长是()A.2B.3C.5D.79.根据下列已知条件,能画出唯一△ABC的是()第8题A.AB=3,BC=4,AC=7B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=410.如图,∠ADB=∠ACB=90°,AC与BD交于点O,且AC=BD.有下列结论:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD.其中正确的是()A.①②③④B.①②③C.①②④D.②③④第10题11.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.则下列各组条件中,能证明这两个三角形全等的是()A.①②④B.④⑤⑥C.②④⑤D.②③⑤12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6第12题二.填空题(共4小题)13.如图,AB=AC,小雨认为再增加一个条件,就能保证△ABD≌△ACD,小雨想增加的条件是.第13题第14题14.如图,C在线段AF上,BC⊥AF,AB=10,BC=6,若△ABC≌△FED,且△EDF面积为24,则△FED的周长是.15.如图,测量河两岸相对两点A、B的距离,在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,此时测得DE的长为12m,那么AB长m.第15题第16题16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB的距离为.三.解答题(共8小题)17.如图,已知△ABC≌△CDA,指出它们的对应顶点、对应边和对应角.第17题18.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.第18题19.已知△ABC≌△DEF,△ABC的周长是30,AB=8,AC=13,求EF的长.20.已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P.求证:PM=PN.第20题20.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.第21题22.如图,△ABE和△ACD中,给出以下四个论断:(1)AD=AE;(2)AB=AC;(3)AM=AN;(4)AD⊥DC,AE⊥BE.请你以其中三个论断为已知,剩下的一个作为要证明的结论,并写出证明过程.第22题23.如图,已知M是AB的中点,AC∥MD,AC=MD,试说明下面结论成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.第23题24.如图,在△ABC中,AD⊥DE,BE⊥DE,AC,BC分别平分∠BAD,∠ABE,点C在线段DE上,求证:AB=AD+BE.第24题参考答案一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两只眼睛下面的嘴巴不能完全重合,故本选项错误;B、两个正方形的边长不相等,不能完全重合,故本选项错误;C、圆内两条相交的线段不能完全重合,故本选项错误;D、两个图形能够完全重合,故本选项正确.故选:D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【分析】根据全等三角形的性质得到∠DEB=∠DEC=90°,∠ABD=∠DBC=∠C,根据三角形内角和定理计算即可.【解答】解:∵△EDB≌△EDC,∴∠DEB=∠DEC=90°,∵△ADB≌△EDB≌△EDC,∴∠ABD=∠DBC=∠C,∠BAD=∠DEB=90°,∴∠C=30°,故选:D.4.如图,△AEB≌△DFC,AE⊥BC,DF⊥BC,垂足分别为E、F,∠B=25°,则∠D等于()A.80°B.65°C.48°D.28°【分析】依据直角三角形两锐角互余,即可得到∠A的度数,再根据全等三角形的对应角相等,即可得到结论.【解答】解:∵AE⊥BC,∠B=25°,∴Rt△ABE中,∠A=65°,又∵△AEB≌△DFC,∴∠D=∠A=65°,故选:B.5.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.1cm B.2cm C.3cm D.4cm【分析】由△ABC≌△EBD,可得AB=BE=4cm,BC=BD=7cm,根据EC=BC﹣BE计算即可;【解答】解:∵△ABC≌△EBD,∴AB=BE=4cm,BC=BD=7cm,∴EC=BC﹣BE=7﹣4=3cm,故选:C.6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°【分析】根据全等三角形的性质求出∠D和∠E,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△ADE,∠B=40°,∠C=75°,∴∠B=∠D=40°,∠E=∠C=75°,∴∠EAD=180°﹣∠D﹣∠E=65°,故选:A.7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,A.①②B.①③④C.①②③④D.①③【分析】根据全等三角形的对应边相等,全等三角形的对应角相等可得AC=AF,EF=CB,∠EAF=∠BAC,再利用等式的性质可得∠EAB=∠F AC.【解答】解:∵△ABC≌△AEF,∴AC=AF,EF=CB,∠EAF=∠BAC,∴∠EAF﹣∠BAF=∠BAC﹣∠BAF,∴∠EAB=∠F AC,正确的是①③④,故选:B.8.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF的长是()A.2B.3C.5D.7【分析】根据全等三角形的对应边相等得到EF=BC=7,计算即可.【解答】解:∵△ABC≌△DEF,∴BC=EF,又BC=7,∴EF=7,∵EC=5,∵CF=EF﹣EC=7﹣5=2.故选:A.9.根据下列已知条件,能画出唯一△ABC的是()A.AB=3,BC=4,AC=7B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=4【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【解答】解:A、3+4=7,不符合三角形三边关系定理,即不能画出三角形,故本选项错误;B、根据AB=4,BC=3,∠A=30°不能画出唯一三角形,故本选项错误;C、∠A=30°,AB=3,∠B=45°,能画出唯一△ABC,故此选项正确;D、∠C=90°,AB=4,不能画出唯一三角形,故本选项错误;故选:C.10.如图,∠ADB=∠ACB=90°,AC与BD交于点O,且AC=BD.有下列结论:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD.其中正确的是()A.①②③④B.①②③C.①②④D.②③④【分析】由已知条件,得到三角形全等,得到结论,对每一个式子进行验证从而确定正确的式子.【解答】解:∵在Rt△ADB和Rt△BCA中AB=ABAC=BD∴Rt△ADB≌Rt△BCA(HL)∴AD=BC,∴①正确;∠DAB=∠CBA,∠DBA=∠CAB∴∠DBC=∠CAD,∴②正确;在△AOD和△BOC中∠ADO=∠BCO∠DOA=∠COBAD=BC∴△AOD≌△BOC(AAS)∴AO=BO,∴③正确;∵∠CDO+∠DCO+∠COD=180°,∠CDO=∠DCO,∠OAB+∠OBA+∠AOB=180°,∠OAB=∠OBA∠COD=∠AOB∴∠DCO=∠OAB∴AB∥CD,∴④正确;所以以上结论都正确,故选:A.11.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.则下列各组条件中,能证明这两个三角形全等的是()A.①②④B.④⑤⑥C.②④⑤D.②③⑤【分析】根据全等三角形的判定定理,选择合适组合条件即可.【解答】解:A、符合SSA,不能判定两三角形全等;B、符合AAA,不能判定两三角形全等;C、符合AAS,能判定两三角形全等;D、符合SSA,不能判定两三角形全等;故选:C.12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6【分析】根据角平分线的性质定理得出CD=DE,代入求出即可.【解答】解:如图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故选:A.二.填空题(共4小题)13.如图,AB=AC,小雨认为再增加一个条件,就能保证△ABD≌△ACD,小雨想增加的条件是BD=CD.【分析】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是:BD=CD,理由是:∵在△ABD和△ACD中AB=ACAD=ADAC=CD∴△ABD≌△ACD(SSS),故答案为:BD=CD14.如图,C在线段AF上,BC⊥AF,AB=10,BC=6,若△ABC≌△FED,且△EDF面积为24,则△FED的周长是24.【分析】直接利用全等三角形的性质得出对应边相等进而得出答案.【解答】解:∵△ABC≌△FED,BC⊥AF,∴∠EDF=∠ACB=90°,∵AB=10,BC=6,∴AC==8,∴DE=BC=6,AC=DF=8,EF=AB=10,∴△FED的周长是:6+8+10=24.故答案为:24.15.如图,测量河两岸相对两点A、B的距离,在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,此时测得DE的长为12m,那么AB长12m.【分析】直接利用全等三角形的判定方法得出△ABC≌△EDC(AAS),进而得出答案.【解答】解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,又∵直线BF与AE交于点C,∴∠ACB=∠ECD(对顶角相等),在△ABC和△EDC中∠ABC=∠EDC∠BCA=∠DCECB=CD∴△ABC≌△EDC(AAS),∴AB=ED=12m,故答案为:12.16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB的距离为3.【分析】首先过D作DE⊥AB,再根据角的平分线上的点到角的两边的距离相等可得ED=DC,进而可得答案.【解答】解:过D作DE⊥AB,∵BC=5,BD=2,∴CD=5﹣2=3,∵AD为角平分线,∴CD=DE=3,故答案为:3三.解答题(共8小题)17.如图,已知△ABC≌△CDA,指出它们的对应顶点、对应边和对应角.【分析】根据全等三角形对应顶点的字母写在对应位置上即可写出它们的对应顶点、对应边和对应角.【解答】解:∵△ABC≌△CDA,∴点B和点D是对应点,点A和点C是对应点,AB与CD是对应边,BC与DA是对应边,AC与CA是对应边,∠B和∠D是对应角,∠BAC和∠DCA是对应角,∠BCA和∠DAC是对应角.18.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.【分析】根据全等三角形对应角相等可得∠AED=∠ACB,∠D=∠B,再根据邻补角的定义求出∠ACF,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵△ABC≌△ADE,∴∠AED=∠ACB=105°,∠D=∠B=30°,∴∠ACF=180°﹣∠ACB=180°﹣105°=75°,由三角形的内角和定理得,∠1+∠D=∠CAD+∠ACF,∴∠1+30°=15°+75°,解得∠1=60°.19.已知△ABC≌△DEF,△ABC的周长是30,AB=8,AC=13,求EF 的长.【分析】先求出BC的长,再根据全等三角形对应边相等可得EF=BC.【解答】解:∵△ABC的周长是30,AB=8,AC=13,∴BC=30﹣8﹣13=9,∵△ABC≌△DEF,∴EF=BC=9.20.已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P.求证:PM=PN.【分析】连接OP,由“HL”可证Rt△ON≌Rt△OMP,可得PM=ON.【解答】证明:如图,连接OP,∵AN⊥OB,BM⊥OA,∴∠ANO=∠BMO=90°,∵OP=OP,OM=ON,∴Rt△ONP≌Rt△OMP(HL)∴PM=PN.21.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.【分析】过点D作DE⊥AB于点E,先根据比例求出CD的长度.再根据角平分线上的点到角的两边的距离相等可得DE =CD .【解答】解:如图,过点D 作DE ⊥AB 于点E ,∵BD :DC =2:1,BC =7.8cm ,∴CD =×7.8=2.6cm , ∵AD 平分∠BAC ,∴DE =CD =2.6cm ,即D 到AB 的距离2.6cm .22.如图,△ABE 和△ACD 中,给出以下四个论断:(1)AD =AE ;(2)AB =AC ;(3)AM =AN ;(4)AD ⊥DC ,AE ⊥BE .请你以其中三个论断为已知,剩下的一个作为要证明的结论,并写出证明过程.【分析】可以取AD =AE ,AB =AC ,AD ⊥DC ,AE ⊥BE 得到AM =AN :由AD ⊥DC ,AE ⊥BE 得到∠ADC =∠AEB =90°,则根据“HL ”可判断Rt △ADC ≌Rt △AEB ,得到∠C =∠B ,然后根据“ASA ”判断△AMC ≌△ANB ,所以AM =AN .【解答】解:若AD =AE ,AB =AC ,AD ⊥DC ,AE ⊥BE ,则AM =AN .理由如下:∵AD ⊥DC ,AE ⊥BE ,∴∠ADC =∠AEB =90°,在Rt △ADC 和Rt △AEB 中 AD=AEAC=AB,∴Rt △ADC ≌Rt △AEB (HL )∴∠C =∠B ,211在△AMC和△ANB中∠C=∠BAC=AB∠MAC=∠NAB,∴△AMC≌△ANB(ASA),∴AM=AN.23.如图,已知M是AB的中点,AC∥MD,AC=MD,试说明下面结论成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.【分析】(1)由平行线的性质证得∠A=∠DMB,由线段中点的定义证得AM=MB,则结合已知条件,根据全等三角形的判定定理SAS证得结论;(2)由(1)中的全等三角形的对应边相等得到CM=DB,由对应角相等推知同位角∠CMA=∠DBM,则CM∥DB.【解答】(1)证明∵AC∥MD,∴∠A=∠DMB,∵M是AB的中点,∴AM=MB,∴在△AMC与△MBD中,AC=MD∠A=∠DMBAB=MB∴△AMC≌△MBD(SAS);(2)∵由(1)知,△AMC≌△MBD,∴CM=DB.∴∠CMA=∠DBM,∴CM∥DB.24.如图,在△ABC中,AD⊥DE,BE⊥DE,AC,BC分别平分∠BAD,∠ABE,点C在线段DE上,求证:AB=AD+BE.【分析】过点C作CF⊥AB于F,由“AAS”可证△ADC≌△AFC,△CBE≌△CBF,可得AD=AF,BE=BF,即可得结论.【解答】解:如图,过点C作CF⊥AB于F,∵AC,BC分别平分∠BAD,∠ABE,∴∠DAC=∠F AC,∠FBC=∠EBC,∵∠ADC=∠AFC=90°,∠DAC=∠F AC,AC=AC,∴△ADC≌△AFC(AAS),∴AD=AF,∵∠CFB=∠CEB=90°,∠FBC=∠EBC,BC=BC,∴△CBE≌△CBF(AAS),∴BE=BF,∴AB=AF+BF=AD+BE.。
人教版八年级数学上册 第12章 《全等三角形》 综合测试卷(含答案)
人教版数学八年级上册第12章全等三角形综合测试卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.已知△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的长为()A.3 B.4C.5 D.3或4或52.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中错误的是() A.BE=ECB.BC=EFC.AC=DFD.△ABC≌△DEF3.如图,点D在△ABC的BC边上,DE与AC交于点F,若∠1=∠2=∠3,AE=AC,则() A.△ABD≌△AFEB.△AFE≌△ADCC.△AFE≌△DFCD.△ABC≌△ADE4. 如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直,若AD=8,则点P到BC的距离是()A.8 B.6C.4 D.25.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠EC.EF=BC D.EF∥BC6.如图,已知AB=DC,AD=BC,E,F是DB上两点且BF=DE,若∠AEB=100°,∠ADB=30°,则∠BCF=() A.150°B.40°C.80°D.70°7. 如图,CE⊥AB,DF⊥AB,垂足分别为E,F,AC∥DB,且AC=BD,那么Rt△AEC≌Rt△BFD的理由是() A.SSS B.AASC.SAS D.HL8. 如图,已知线段AB=18 m,MA⊥AB于点A,MA=6 m,射线BD⊥AB于点B,P点从B点沿BA向A点运动,每秒走1 m,Q点从B点沿BD向D运动,每秒走2 m,P,Q同时从B出发,则出发x s后,在线段MA上有一点C,使得△CAP与△PBQ全等,则x的值为()A.4 B.6C.4或9 D.6或99. 如图3,AB∥DE,CD=BF,若要使△ABC≌△EDF,还需补充的条件可以是()A.∠B=∠E B.AC=EFC.AB=ED D.不用补充条件10.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是() A.相等B.不相等C.互余或相等 D. 互补或相等第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.若△ABC≌△EFG,且∠B=60°,∠FGE-∠E=56°,则∠A=________度.12.如图,点B在AE上,且∠CAB=∠DAB,若要使△ABC≌△ABD,可补充的条件是_______________.(写出一个即可)13.如图,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=_________.14.如图,AD,A′D′分别是锐角三角形ABC和锐角三角形A′B′C′中BC,B′C′边上的高,且AB=A′B′,AD=A′D′,若使△ABC≌△A′B′C′,请你补充一个条件______________.(填写一个你认为适当的条件即可)15.如图,B,C,D在同一直线上,∠B=∠D=90°,AB=CD,BC=DE,则△ACE的形状为__________.16.如图为4×4的正方形网格,图中的线段均为格点线段(线段的端点为格点),则∠1+∠2+∠3+∠4+∠5的度数为_________.17. 如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带第__ ______块去配,其依据是三角形全等判定定理__ _______.18.如图,已知P(3,3),点B,A分别在x轴正半轴和y轴正半轴上,∠APB=90°,则OA+OB=___________.三.解答题(共7小题,66分)19.(8分) 如图,点B,E,C,F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.20.(8分) 如图,AB=DC,AD=BC,DE=BF.求证:BE=DF.21.(8分) 如图,已知AB=DC,∠ABC=∠DCB,E为AC,BD的交点.(1)求证:△ABC≌△DCB;(2)BE=5 cm,求CE的长.22.(10分) 如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.23.(10分) 如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠CDB的度数.24.(10分) 如图,在△ABC中,D是BC的中点,过D点的直线GF,交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连接EG,EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.25.(12分) 问题背景:如图①,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°. E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是__ _;探索延伸:如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立?并说明理由.参考答案:1-5BADCC 6-10DBBCD11. 3212. AC=AD,∠C=∠D(答案不唯一)13. 55°14. CD =C′D′(答案不唯一) 15. 等腰直角三角形 16. 225° 17.③ ASA 18. 619. 解:∵BE =CF,∴BE+EC=CF+EC, 即BC=EF在△ABC 和△DEF 中, ⎩⎪⎨⎪⎧AB =DE , AC =DF , BC=EF ,∴△ABC ≌△DEF(SSS), ∴∠B =∠DEF ,∴AB ∥DE20. 解:连接BD.∵AD =BC ,AB =CD ,BD =BD , ∴△ABD ≌△CDB(SSS),∴∠ADB =∠DBC ,∴180°-∠ADB =180°-∠DBC ,∴∠BDE =∠DBF , 在△BDE 和△DBF 中,DE =BF ,∠BDE =∠DBF ,BD=BD , ∴△BDE ≌△DBF(SAS), ∴BE =DF21. 解:(1) 在△ABC 和△DCB 中, ⎩⎪⎨⎪⎧AB =DC , ∠ABC =∠DCB , BC=BC ,∴△ABC ≌△DCB(SAS)(2)∵△ABC ≌△DCB ,∴∠A =∠D , 在△ABE 和△ACE 中, ⎩⎪⎨⎪⎧∠A =∠D , ∠AEB =∠DEC , AB =DC ,∴△ABE ≌△DCE(AAS) ∴CE =BE =5 cm22. 解:(1)∵AC =AD ,∴∠ACD =∠ADC ,又∵∠BCD =∠EDC =90°,∴∠ACB =∠ADE ,在△ABC 和△AED 中,⎩⎪⎨⎪⎧BC =ED ,∠ACB =∠ADE ,AC =AD ,∴△ABC ≌△AED(SAS) (2)当∠B =140°时,∠E =140°, 又∵∠BCD =∠EDC =90°,∴在五边形ABCDE 中,∠BAE =540°-140°×2-90°×2=80° 23. (1)证明:在△ABE 和△CBD 中, ⎩⎪⎨⎪⎧AB =CB ,∠ABE =∠CBD =90°,BE =BD ,∴△ABE ≌△CBD(SAS);(2)解:∵在△ABC 中,AB =CB ,∠ABC =90°, ∴∠BAC =∠ACB =45°, 又∵△ABE ≌△CBD , ∴∠AEB =∠CDB , ∵∠AEB 为△AEC 的外角,∴∠AEB =∠ACB +∠CAE =45°+30°=75°, ∴∠CDB =75°.24. 解:(1)∵D 是BC 的中点,∴BD =DC ,又AC ∥BG ,∴∠DBG =∠DCF ,∠BGD =∠CFD ,∴△BGD ≌△CFD , ∴BG =CF (2)BE +CF >EF ,理由如下:由(1)得△BGD ≌△CFD ,∴GD =DF , 又ED ⊥GF ,∴∠EDG =∠EDF ,ED =ED , ∴△EDG ≌△EDF ,∴EG =EF ,在△EBG 中BE +BG >EG , ∴BE +CF >EF25. 解:问题背景:EF =BE +DF 探索延伸:EF =BE +DF 仍然成立.理由:延长FD 到点G ,使DG =BE ,连接AG ,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°,∴∠B =∠ADG , 可证△ABE ≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,可证△AEF≌△AGF(SAS),∴EF=GF.∵GF=DG+DF=BE+DF,∴EF=BE+DF。
八年级上册数学《全等三角形》单元综合测试卷含答案
∵AB⊥BC,AE平分∠BAD,
∴Rt△AEF≌Rt△AEB,
∴BE=EF,AB=AF,∠AEF=∠AEB;
而点E是BC的中点,
∴EC=EF=BE,所以③错误;
∴Rt△EFD≌Rt△ECD,
∴DC=DF,∠FDE=∠CDE,所以②正确;
∴AD=AF+FD=AB+DC,所以④正确;
13.如图所示的方格中,∠1+∠2+∠3=_____度.
14.如图,已知 ,若 ,则 的值为______.
15.如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC≌△FED;
16.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A=________.
∴∠AED=∠AEF+∠FED= ∠BEC=90°,所以①正确.
A. B. C. D.
11.如图所示,已知 ,那么添加下列一个条件后,仍无法判定 ≌ 的是()
A. B.
C. D.
12.如图,在 格的正方形网格中,与△ABC有一条公共边且全等(不与△ABC重
合) 格点三角形(顶点在格点上的三角形)共有( )
A.5个B.6 个C.7个D.8 个
二、填空题(共6小题,总分18分)
10.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE③DE=BE④AD=AB+CD,四个结论中成立的是()
A. B. C. D.
【答案】A
【解析】
【分析】
过E作EF⊥AD于F,易证得Rt△AEF≌Rt△AEB,得到BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,得到EC=EF=BE,则可证得Rt△EFD≌Rt△ECD,得到DC=DF,∠FDE=∠CDE,也可得到AD=AF+FD=AB+DC,∠AED=∠AEF+∠FED= ∠BEC=90°,即可判断出正确的结论.
人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案
人教版八年级数学上册《第十二章全等三角形》测试题-附含答案班级:姓名:得分:总分:150分时间:120分钟一.选择题(共12小题)1.下列各图形中不是全等形的是()A.B.C.D.【解答】解:观察发现B、C、D选项的两个图形都可以完全重合∴是全等图形A选项中两组图画不可能完全重合∴不是全等形.故选:A.2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形【解答】解:A、所有的等边三角形都是全等三角形错误;B、全等三角形是指面积相等的三角形错误;C、周长相等的三角形是全等三角形错误;D、全等三角形是指形状相同大小相等的三角形正确.故选:D.3.如图AB与CD交于点O已知△AOD≌△COB∠A=40°∠COB=115°则∠B的度数为()A.25°B.30°C.35°D.40°【解答】解:∵△AOD≌△COB∴∠C=∠A=40°由三角形内角和定理可知∠B=180°﹣∠BOC﹣∠C=25°故选:A.4.已知△ABC的六个元素如图所示则甲、乙、丙三个三角形中与△ABC全等的是()A.甲、乙B.乙、丙C.只有乙D.只有丙【解答】解:已知△ABC中∠B=50°∠C=58°∠A=72°BC=a AB=c AC=b∠C=58°图甲:只有一条边和AB相等没有其它条件不符合三角形全等的判定定理即和△ABC不全等;图乙:只有两个角对应相等还有一条边对应相等符合三角形全等的判定定理(AAS)即和△ABC全等;图丙:符合SAS定理能推出两三角形全等;故选:B.5.如图已知MB=ND∠MBA=∠NDC下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN【解答】解:A、∠M=∠N符合ASA能判定△ABM≌△CDN故A选项不符合题意;B、AB=CD符合SAS能判定△ABM≌△CDN故B选项不符合题意;C、根据条件AM=CN MB=ND∠MBA=∠NDC不能判定△ABM≌△CDN故C选项符合题意;D、AM∥CN得出∠MAB=∠NCD符合AAS能判定△ABM≌△CDN故D选项不符合题意.故选:C.6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4)你认为将其中的哪一块带去就能配一块与原来大小一样的三角形玻璃?应该带()去.A .第1块B .第2块C .第3块D .第4块【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素 所以不能带它们去 只有第2块有完整的两角及夹边 符合ASA 满足题目要求的条件 是符合题意的.故选:B .7.如图是一个平分角的仪器 其中AB =AD BC =DC 将点A 放在角的顶点 AB 和AD 沿着角的两边放下 沿AC 画一条射线 这条射线就是角的平分线 在这个操作过程中 运用了三角形全等的判定方法是( )A .SSSB .SASC .ASAD .AAS【解答】解:在△ADC 和△ABC 中{AD =AB DC =BC AC =AC∴△ADC ≌△ABC (SSS )∴∠DAC =∠BAC∴AC 就是∠DAB 的平分线.故选:A .8.如图 点A 、D 、C 、E 在同一条直线上 AB ∥EF AB =EF ∠B =∠F AE =10 AC =7 则CD 的长为( )A .5.5B .4C .4.5D .3 【解答】解:∵AB ∥EF∴∠A =∠E在△ABC 和△EFD 中{∠A =∠E AB =EF ∠B =∠F∴△ABC ≌△EFD (ASA )∴AC =ED =7∴AD =AE ﹣ED =10﹣7=3∴CD =AC ﹣AD =7﹣3=4.故选:B .9.如图 ∠B =∠C =90° M 是BC 的中点 DM 平分∠ADC且∠ADC =110° 则∠MAB =( )A .30°B .35°C .45°D .60° 【解答】解:作MN ⊥AD 于N∵∠B =∠C =90°∴AB ∥CD∴∠DAB =180°﹣∠ADC =70°∵DM 平分∠ADC MN ⊥AD MC ⊥CD∴MN =MC∵M 是BC 的中点∴MC=MB∴MN=MB又MN⊥AD MB⊥AB∴∠MAB=12∠DAB=35°故选:B.10.如图AB=AD AE平分∠BAD点C在AE上则图中全等三角形有()A.2对B.3对C.4对D.5对【解答】解:∵AE平分∠BAD∴∠BAE=∠CAE在△ABC和△ADC中{AB=AD∠BAC=∠DAC AC=AC∴△DAC≌△BAC(SAS)∴BC=CD;在△ABE和△ADE中{AB=AD∠BAE=∠DAE AE=AE∴△DAE≌△BAE(SAS)∴BE=ED;在△BEC和△DEC中{BC=DC EC=EC EB=ED∴△BEC≌△DEC(SSS)故选:B.11.如图直线a、b、c表示三条公路现要建一个货物中转站要求它到三条公路的距离相等则可供选择的地址有()A.一处B.两处C.三处D.四处【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点过点P作PE⊥AB PD⊥BC PF⊥AC∴PE=PF PF=PD∴PE=PF=PD∴点P到△ABC的三边的距离相等∴△ABC两条外角平分线的交点到其三边的距离也相等满足这条件的点有3个;综上到三条公路的距离相等的点有4个∴可供选择的地址有4个.故选:D.12.如图AD是△ABC的角平分线DF⊥AB垂足为F DE=DG△ADG和△AED的面积分别为60和35 则△EDF的面积为()A .25B .5.5C .7.5D .12.5【解答】解:如图 过点D 作DH ⊥AC 于H∵AD 是△ABC 的角平分线 DF ⊥AB∴DF =DH在Rt △ADF 和Rt △ADH 中 {AD =AD DF =DH∴Rt △ADF ≌Rt △ADH (HL )∴S Rt △ADF =S Rt △ADH在Rt △DEF 和Rt △DGH 中 {DE =DG DF =DH∴Rt △DEF ≌Rt △DGH (HL )∴S Rt △DEF =S Rt △DGH∵△ADG 和△AED 的面积分别为60和35∴35+S Rt △DEF =60﹣S Rt △DGH∴S Rt △DEF =252.故选:D .二.填空题(共4小题)13.已知△ABC ≌△DEF ∠A =60° ∠F =50° 点B 的对应顶点是点E则∠B 的度数是 70° .【解答】解:∵△ABC ≌△DEF ∠A =60° ∠F =50°∴∠D =∠A =60° ∠C =∠F =50°∴∠B =∠E =70°.故答案为:70°.14.如图BD=CF FD⊥BC于点D DE⊥AB于点E BE=CD若∠AFD=145°则∠EDF=55°.【解答】解:∵FD⊥BC于点D DE⊥AB于点E∴∠BED=∠FDC=90°∵BE=CD BD=CF∴Rt△BED≌Rt△CDF(HL)∴∠BDE=∠CFD∵∠AFD=145°∴∠DFC=35°∴∠BDE=35°∴∠EDF=90°﹣35°=55°故答案为55°.15.如图△ABC中∠C=90°AD平分∠BAC AB=5 CD=2 则△ABD的面积是5.【解答】解:∵∠C=90°AD平分∠BAC∴点D到AB的距离=CD=2∴△ABD的面积是5×2÷2=5.故答案为:5.16.如图四边形ABCD中AB=AD AC=6 ∠DAB=∠DCB=90°则四边形ABCD的面积为18.【解答】解:∵AD=AD且∠DAB=90°∴将△ACD绕点A逆时针旋转90°AD与AB重合得到△ABE.∴∠ABE=∠D AC=AE.根据四边形内角和360°可得∠D+∠ABC=180°∴∠ABE+∠ABC=180°.∴C、B、E三点共线.∴△ACE是等腰直角三角形.∵四边形ABCD面积=△ACE面积=12×AC2=12×62=18;故答案为:18.三.解答题(共20小题)17.如图所示△ABE≌△ACD∠B=70°∠AEB=75°求∠CAE的度数.解:∵△ABE≌△ACD∴∠C=∠B=70°∴∠CAE=∠AEB﹣∠C=5°.18.如图已知∠1=∠2 ∠3=∠4 求证:BC=BD.证明:∵∠ABD+∠4=180°∠ABC+∠3=180°且∠3=∠4∴∠ABD=∠ABC在△ADB和△ACB中∴△ADB≌△ACB(ASA)∴BD=BC.19.如图AB=AD AC=AE∠CAE=∠BAD.求证:∠B=∠D.证明:∵∠CAE=∠BAD∴∠CAE+∠EAB=∠BAD+∠EAB∴∠BAC=∠DAE在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴∠B=∠D.20.如图点B、F、C、E在直线l上(F、C之间不能直接测量)点A、D在l异侧测得AB=DE AB ∥DE∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m BF=3m求FC的长度.(1)证明:∵AB∥DE∴∠ABC=∠DEF在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF∴BC=EF∴BF+FC=EC+FC∴BF=EC∵BE=10m BF=3m∴FC=10﹣3﹣3=4m.21.某段河流的两岸是平行的数学兴趣小组在老师带领下不用涉水过河就测得河的宽度他们是这样做的:①在河流的一条岸边B点选对岸正对的一棵树A;②沿河岸直走20m有一树C继续前行20m到达D处;③从D处沿河岸垂直的方向行走当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.(1)解:河的宽度是5m;(2)证明:由作法知BC=DC∠ABC=∠EDC=90°在Rt△ABC和Rt△EDC中∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.22.如图AD为△ABC的高E为AC上一点BE交AD于F且有BF =AC FD=CD.求证:(1)△BFD≌△ACD;(2)BE⊥AC.证明:(1)∵AD为△ABC的边BC上的高∴△BDF和△ADC为直角三角形.∴∠BDF=∠ADC=90°.在Rt△BFD和Rt△ACD中∴Rt△△BFD≌Rt△ACD(HL);(2)∵△BDF≌△ADC∴∠DBF=∠DAC.∵∠AFE与∠BFD是对顶角∴∠BDF=∠AEF=90°∴BE⊥AC.23.如图①点A E F C在同一条直线上且AE=CF过点E F分别作DE⊥AC BF⊥AC垂足分别为E F AB=CD.(1)若EF与BD相交于点G则EG与FG相等吗?请说明理由;(2)若将图①中△DEC沿AC移动到如图②所示的位置其余条件不变则(1)中的结论是否仍成立?不必说明理由.解:(1)EG=FG理由如下:∵AE=CF∴AE+EF=CF+EF即AF=CE∵DE⊥AC BF⊥AC∴∠AFB=∠CED=90°在Rt△ABF和Rt△CDE中∴Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG;(2)(1)中的结论仍成立理由如下:同(1)得:Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG.24.【阅读理解】课外兴趣小组活动时老师提出了如下问题:如图1 △ABC中若AB=8 AC=6 求BC边上的中线AD的取值范围.小明在组内经过合作交流得到了如下的解决方法:延长AD到点E使DE=AD请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是CA.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2 已知:CD=AB∠BDA=∠BAD AE是△ABD的中线求证:∠C=∠BAE.(1)解:∵在△ADC和△EDB中∴△ADC≌△EDB(SAS)故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB∴BE=AC=6 AE=2AD∵在△ABE中AB=8 由三角形三边关系定理得:8﹣6<2AD<8+6∴1<AD<7故答案为:C.(3)证明:如图延长AE到F使EF=AE连接DF∵AE是△ABD的中线∴BE=ED在△ABE与△FDE中∴△ABE≌△FDE(SAS)∴AB=DF∠BAE=∠EFD∵∠ADB是△ADC的外角∴∠DAC+∠ACD=∠ADB=∠BAD∴∠BAE+∠EAD=∠BAD∠BAE=∠EFD ∴∠EFD+∠EAD=∠DAC+∠ACD∴∠ADF=∠ADC∵AB=DC∴DF=DC在△ADF与△ADC中∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.。
人教版数学八年级上册第十二章《全等三角形》测试题含答案
人教版数学八年级上册第十二章《全等三角形》测试题一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.参考答案及试题解析一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积, ∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE 的面积=a ×a=a 2, ∴四边形EMCN 的面积=a 2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠ECF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EB C=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.。
数学八年级上册《全等三角形》单元综合测试含答案
∴①正确;
②∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ABD+∠DBC=45°.
∴∠ACE+∠DBC=45°,
∴②正确;
∵△ABD≌△ACE,
∴∠ABD=∠ACE.
∵∠CAB=90°,
∴∠ABD+∠AFB=90°,
∴∠ACE+∠AFB=90°.
∵∠DFC=∠AFB,
∴∠ACE+∠DFC=90°,
A. AB=ACB.∠BAE=∠CADC. BE=DCD. AD=DE
【答案】D
【解析】
试题分析:根据△ABE≌△ACD可得:AB=AC,∠BAE=∠CAD,BE=DC.
考点:三角形全等 应用
9.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()
考点:全等三角形的判定.
6.点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB边上的任意一点,则下列选项正确的是( )
A.PQ≤5B.PQ<5C.PQ≥5D.PQ>5
【答案】C
【解析】
【分析】
根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.
【详解】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,
A. SASB. ASAC. AASD. SSS
【答案】D
【解析】
试题解析:在△ADC和△ABC中,
,
∴△ADC≌△ABC(SSS),
∴∠DAC=∠BAC,
即∠QAE=∠PAE.
故选D.
【此处有视频,请去附件查看】
4.如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为( )
八年级上册数学《全等三角形》单元综合检测题(含答案)
∴添加AB=DE,可由SAS证明△ABC≌△DEF;添加∠BCA=∠F,可由ASA证明△ABC≌△DEF;添加∠A=∠D,可由AAS证明△ABC≌△DEF;等等.
12.等边三角形ABC的边长为6,在AC,BC边上各取一点E、F,连接AF,BE相交于点P,若AE=CF,则∠APB=______.
A. B. C. D.
3.如图,△ABC≌△ADE,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC 度数为()
A.40°B.45°C.35°D.25°
4.如图,△ABC≌△BAD,如果AB=6cm,BD=5cm,AD=4cm,那么BC=()
A. 4cmB. 5cmC. 6cmD.无法确定
11.如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件___,使△ABC≌△DEF.
【答案】AB=DE(答案不唯一)
【解析】
【分析】
可选择利用AAS或SAS进行全等的判定,答案不唯一,写出一个符合条件的即可.
【详解】∵BE=CF,
∴BC=EF.
∵AB∥DE,
∴∠B=∠DEF.
(1)用含有t的代数式表示线段PC的长度;
(2)若点Q的运动速度与点P的运动速度相等,经过1秒后△BPD与△CQP是否全等,请说明理由;
(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
参考答案
一、选择题
1.下列叙述中错误的是()
A.能够完全重合的图形称为全等图形
13.如图,在四边形ABCD中,∠A=90°,AD=8.对角线BD⊥CD,P是BC边上一动点,连结PD.若∠ADB=∠C,则PD长的最小值为_______.
人教版八年级数学上册第十二章《全等三角形》测试带答案解析
人教版八年级数学上册第十二章《全等三角形》测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在ABC 中,90C ∠=︒,AD 是BAC ∠的角平分线,若3CD =,8AB =,则ABD △的面积是( )A .12B .10C .8D .62.小华在复习用尺规作一个角等于已知角的过程中,回顾了作图的过程,他发现OCD 与'''O C D 全等,请你说明小华得到全等的依据是( )A .SSSB .SASC .ASAD .AAS 3.如图,OB 平分∠AOC ,D 、E 、F 分别是射线OA 、射线OB 、射线OC 上的点,D 、E 、F 与O 点都不重合,连接ED 、EF 若添加下列条件中的某一个.就能使DOE ≅FOE ,你认为要添加的那个条件是( )A .OD =OEB .OE =OFC .∠ODE =∠OED D .∠ODE =∠OFE 4D E BC,,12110,60AD AE BE CD BAE ==∠=∠∠=︒=︒,则BAC ∠的度数为( )A .90°B .80°C .70°D .60°5.如图,在Rt ABC 中,90ACB ∠=︒,按以下步骤作图:①以B 为圆心,任意长为半径作弧,分别交BA 、BC 于M 、N 两点;②分别以M 、N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作射线BP ,交边AC 于D 点,若5,3AB BC ==,则线段CD 的长为( )A .32B .53C .43D .856.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分BAC ∠的是( )A .图2B .图1与图2C .图1与图3D .图2与图37.如图,在△ABC 中,∠A =90°,BE 是△ABC 的角平分线,ED ⊥BC 于点D ,CD =4,△CDE 周长为12,则AC 的长是( )8.如图,点E 是△ABC 内一点,∠AEB =90°,AE 平分∠BAC ,D 是边AB 的中点,延长线段DE 交边BC 于点F ,若AB =6,EF =1,则线段AC 的长为( )A .7B .8C .9D .109.如图,AI 、BI 、CI 分别平分BAC ∠、ABC ∠、ACB ∠,ID BC ⊥,ABC 的周长为18,3ID =,则ABC 的面积为( )A .18B .30C .24D .2710.数学课上老师布置了“测量锥形瓶内部底面的内径”的探究任务,善思小组想到了以下方案:如图,用螺丝钉将两根小棒AD ,BC 的中点O 固定,只要测得C ,D 之间的距离,就可知道内径AB 的长度.此方案依据的数学定理或基本事实是( )A .边角边B .三角形中位线定理C .边边边D .全等三角形的对应角相等11.如图,△ABC 中,∠ABC 、∠FCA 的角平分线BP 、CP 交于点P ,延长BA 、BC ,PM ⊥BE 于M ,PN ⊥BF 于N ,则下列结论:①AP 平分∠EAC ;②2180ABC APC ∠+∠=︒;③2BAC BPC ∠=∠;④PAC MAP NCP S S S ∆∆∆=+.其中正确结论的个数是( )A .1个B .2个C .3个D .4个12.如图,在四边形ABCD 中,AD ∥BC .若∠DAB 的角平分线AE 交CD 于E ,连接BE ,且BE 边平分∠ABC ,得到如下结论:①∠AEB =90°;②BC +AD =AB ;③BE =12CD ;④BC =CE ;⑤若AB =x ,则BE 的取值范围为0<BE <x ,那么以上结论正确的是( )A .①②③B .②③④C .①④⑤D .①②⑤二、填空题13.如图,ABC DCB △≌△,若AB =4cm ,BC =6cm ,AC =5cm ,则DC =________cm .14.嘉淇为了测量建筑物墙壁AB 的高度,采用了如图所示的方法:①把一根足够长的竹竿AC 的顶端对齐建筑物顶端A ,末端落在地面C 处;②把竹竿顶端沿AB 下滑至点D ,使DB =_____,此时竹竿末端落在地面E 处;③测得EB 的长度,就是AB 的高度.以上测量方法直接利用了全等三角形的判定方法 _____(用字母表示).15.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 的长是_____.16.如图,任意画一个60BAC ∠=︒的ABC ,再分别作ABC 的两条角平分线BE 和CD ,BE 和CD 交于点P ,连结AP .有以下结论:①AP 平分BAC ∠;②PD PE =;③BD CE BC =+;④PBD PCE PBC S S S +=.其中正确的序号是_____.三、解答题17.如图,点E 、F 在线段BC 上,//AB CD ,A D ∠=∠,BE CF =,证明:AE DF =.18.如图,在△ABC 中,点D 在边BC 上,CD =AB ,DE ∥AB ,∠DCE =∠A .求证:DE =BC .19.如图,点E ,F 在线段AD 上,AB ∥CD ,B C ∠=∠,BE CF =.求证:AF DE =.20.如图,ABC 中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且BE CF ∥.(1)求证:BDE △≌CDF ;(2)若15AE =,8AF =,试求DE 的长.21.如图,已知ABC 中,2C B ∠=∠.(1)请用基本尺规作图:作∠BAC 的角平分线交BC 于点D ,在AB 上取一点E ,使AE =AC ,连接DE .(不写作法,不下结论,保留作图痕迹);(2)在(1)所作的图形中,求证:AB AC CD =+.请完成下面的证明过程:证明:∵AD 平分BAC ∠,∴DAC ∠=______,在EAD 与CAD 中AE AC EAD DAC AD AD =⎧⎪∠=∠⎨⎪=⎩∴()SAS EAD CAD ≌△△,∴______C =∠,DE CD =,AE =AC ,∵AED BDE ∠=∠+______,且2C B ∠=∠,∴B BDE=,∠=∠,∴BE DE∴BE=______,=+.∵AB AE BE=+,∴AB AC CD22.如图,在△ABC和△DCB中,∠A=∠D,AC和DB相交于点O,OA=OD.(1)AB=DC;(2)△ABC≌△DCB.23.如图,已知△ABC≌△DEF,AF=5cm.(1)求CD的长.(2)AB与DE平行吗?为什么?解:(1)∵△ABC≌△DEF(已知),∴AC=DF(),∴AC﹣FC=DF﹣FC(等式性质)即=∵AF=5cm∴=5cm(2)∵△ABC≌△DEF(已知)∴∠A=()∴AB()24.在△ABC中,AB=BC,∠ABC=90°,点D为BC上一点,BF⊥AD于点E,交AC于点F,连接DF.(1)如图①,当AD平分∠BAC时,①AB与AF相等吗?为什么?②判断DF与AC的位置关系,并说明理由;(2)如图②,当点D为BC的中点时,试说明:∠FDC=∠ADB.25.如图1,在△ABC中,∠BAC=90°,AB=AC,点D在边AC上,CD⊥DE,且CD =DE,连接BE,取BE的中点F,连接DF.(1)请直接写出∠ADF的度数及线段AD与DF的数量关系;(2)将图1中的△CDE绕点C按逆时针旋转,①如图2,(1)中∠ADF的度数及线段AD与DF的数量关系是否仍然成立?请说明理由;②如图3,连接AF,若AC=3,CD=1,求S△ADF的取值范围.参考答案:1.A【分析】过点D 作DE ⊥AB 于E ,根据角平分线上的点到角的两边的距离相等可得DE =CD =2,然后根据三角形的面积公式求解即可.【详解】解:如图,过点D 作DE ⊥AB 于E ,∵AD 是∠BAC 的角平分线,90C ∠=︒,CD =3,∴DE =CD =3,∵AB =8,∴△ABD 的面积118312.22AB DE =⋅=⨯⨯= 故选A.【点睛】本题主要考查角了平分线的性质,掌握角平分线上的点到角两边的距离相等是解答本题的关键.2.A【分析】利用全等三角形的判定定理即可求解.【详解】解:在OCD ∆和O C D '''∆中, OD O D OC O C DC D C '''''=⎧'⎪=⎨⎪=⎩,()OCD O C D SSS '''∴∆≅∆.故选:A .【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.3.D【分析】根据OB 平分∠AOC 得∠AOB =∠BOC ,又因为OE 是公共边,根据全等三角形的判断即可得出结果.【详解】解:∵OB 平分∠AOC∴∠AOB =∠BOC当△DOE ≌△FOE 时,可得以下结论:OD =OF ,DE =EF ,∠ODE =∠OFE ,∠OED =∠OEF .A 答案中OD 与OE 不是△DOE ≌△FOE 的对应边,A 不正确;B 答案中OE 与OF 不是△DOE ≌△FOE 的对应边,B 不正确;C 答案中,∠ODE 与∠OED 不是△DOE ≌△FOE 的对应角,C 不正确;D 答案中,若∠ODE =∠OFE ,在△DOE 和△FOE 中,DOE FOE OE OEODE OFE =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△DOE ≌△FOE (AAS )∴D 答案正确.故选:D .【点睛】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键.4.B【分析】先证明BD =CE ,然后证明△ADB ≌△AEC ,∠ADE =∠AED =70°,得到∠BAD =∠CAE ,根据三角形内角和定理求出∠DAE =40°,从而求出∠BAD 的度数即可得到答案.【详解】解:∵BE =CD ,∴BE -DE =CD -DE ,即BD =CE ,∵∠1=∠2=110°,AD =AE ,∴△ADB ≌△AEC (SAS ),∠ADE =∠AED =70°,∴∠BAD =∠CAE ,∠DAE =180°-∠ADE -∠AED =40°,∵∠BAE =60°,∴∠BAD =∠CAE =20°,∴∠BAC =80°,故选B .【点睛】本题主要考查了全等三角形的性质与判定,邻补角互补,三角形内角和定理,熟知全等三角形的性质与判定条件是解题的关键.5.A【分析】利用基本作图得BD平分∠ABC,过D点作DE⊥AB于E,如图,根据角平分线的性质得到则DE=DC,再利用勾股定理计算出AC=4,然后利用面积法得到12•DE×5+12•CD×3=12×3×4,最后解方程即可.【详解】解:由作法得BD平分∠ABC,过D点作DE⊥AB于E,如图,则DE=DC,在Rt△ABC中,AC BC222253=4,∵S△ABD+S△BCD=S△ABC,∴12•DE×5+12•CD×3=12×3×4,即5CD+3CD=12,∴CD=32,故选:A.【点睛】本题考查了基本作图:作解平分线,角平分线的性质,勾股定理,熟练掌握基本作图(作已知角的角平分线),角平分线的性质是解题的关键.6.C【分析】利用基本作图可对图1和图2进行判断;利用基本作图和全等三角形的判定与性质、角平分线性质定理的逆定理对图3进行判断.【详解】在图1中,利用基本作图可判断AD平分∠BAC;在图2中,利用基本作图得到D点为BC的中点,则AD为BC边上的中线;在图3中,根据作法可知:AE =AF ,AM =AN ,在△AMF 和△ANE 中,AF AE MAF NAE AM AN =⎧⎪∠=∠⎨⎪=⎩,∴△AMF ≌△ANE (SAS ),∴∠AMD =∠AND ,∵AE =AF ,AM =AN ,∴ME =NF ,在△MDE 和△NDF 中,MDE NDF AMD AND ME NF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△MDE ≌△NDF (AAS ),MDE NDF S S ∴=△△所以D 点到AM 和AN 的距离相等,∴AD 平分∠BAC .综上,能判断射线AD 平分∠BAC 的是图1和图3.故选:C .【点睛】本题考查了作图-基本作图,全等三角形的判定与性质,角平分线的判定,解决本题的关键是掌握角平分线的作法.7.B【分析】根据角平分线的性质得到AE =DE ,根据三角形的周长公式计算,得到答案.【详解】解:∵BE 是△ABC 的角平分线,ED ⊥BC ,∠A =90°,∴AE =DE ,∵△CDE 的周长为12,CD =4,∴DE +EC =8,∴AC =AE +EC =8,故选:B .【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.B【分析】延长BE 交AC 于H ,证明HAE BAE ∆≅∆,根据全等三角形的性质求出AH ,根据三角形中位线定理解答即可.【详解】解:延长BE 交AC 于H , AE 平分BAC ∠,HAE BAE ∴∠=∠,在HAE ∆和BAE ∆中,HAE BAE AE AEAEH AEB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()HAE BAE ASA ∴∆≅∆,6AH AB ∴==,HE BE =,HE BE =,AD DB =,//DF AC ∴,HE BE =,22HC EF ∴==,8AC AH HC ∴=+=,故选:B .【点睛】本题考查的是全等三角形的判定和性质、三角形中位线定理,掌握全等三角形的判定定理和性质定理是解题的关键.9.D【分析】过I 点作IE ⊥AB 于点E ,IF ⊥AC 于点F ,如图,利用角平分线的性质得到IE =IF =ID =3,然后根据三角形面积公式得到ABC IAB IBC IAC S S S S =++△△△△,据此即可求得.【详解】解:过I 点作IE ⊥AB 于点E ,IF ⊥AC 于点F ,如图,∵AI ,BI ,CI 分别平分∠BAC ,∠ABC ,∠ACB ,∴IE =IF =ID =3,∴ABC IAB IBC IAC S S S S =++△△△△111333222AB BC AC =⨯⨯+⨯⨯+⨯⨯ 3()2AB BC AC =++ 3182=⨯ 27=故选:D .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形的面积.10.A【分析】根据O 是AD 与BC 的中点,得到OA =OD ,OB =OC ,根据∠AOB =∠DOC ,推出△AOB ≌△DOC ,是SAS .【详解】∵O 是AD 与BC 的中点,∴OA =OD ,OB =OC ,∵∠AOB =∠DOC ,∴△AOB ≌△DOC (SAS).故选A .【点睛】本题考查了测量原理,解决此类问题的关键是根据测量方法和工具推导测量原理.11.D【分析】过点P 作PD ⊥AC 于D ,根据角平分线的判定定理和性质定理判断①;证明Rt △P AM ≌Rt △P AD ,根据全等三角形的性质得出∠APM =∠APD ,同理得出∠CPD =∠CPN ,可判断②;根据三角形的外角性质判断③;根据全等三角形的性质判断④.【详解】解:①过点P 作PD ⊥AC 于D ,∵PB 平分∠ABC ,PC 平分∠FCA ,PM ⊥BE ,PN ⊥BF ,PD ⊥AC ,∴PM =PN ,PN =PD ,∴PM =PN =PD ,∴AP 平分∠EAC ,故①正确;②∵PM ⊥AB ,PN ⊥BC ,∴∠ABC +90°+∠MPN +90°=360°,∴∠ABC +∠MPN =180°,在Rt △P AM 和Rt △P AD 中,PM PD PA PA=⎧⎨=⎩, ∴Rt △P AM ≌Rt △P AD (HL ),∴∠APM =∠APD ,同理:Rt △PCD ≌Rt △PCN (HL ),∴∠CPD =∠CPN ,∴∠MPN =2∠APC ,∴∠ABC +2∠APC =180°,②正确;③∵PC 平分∠FCA ,BP 平分∠ABC ,∴∠ACF =∠ABC +∠BAC =2∠PCN ,∠PCN =12∠ABC +∠BPC , ∴()1122PCN ABC BPC ABC BAC ∠=∠+∠=∠+∠ ∴∠BAC =2∠BPC ,③正确;④由②可知Rt △P AM ≌Rt △P AD (HL ),Rt △PCD ≌Rt △PCN (HL )∴S △APD =S △APM ,S △CPD =S △CPN ,∴S △APM +S △CPN =S △APC ,故④正确,故选:D【点睛】本题考查的是角平分线的性质、全等三角形的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.12.D【分析】根据两直线平行,同旁内角互补可得∠ABC +∠BAD =180°,又BE 、AE 都是角平分线,可以推出∠ABE +∠BAE =90°,从而得到∠AEB =90°,然后延长AE 交BC 的延长线于点F ,先证明△ABE 与△FBE 全等,再根据全等三角形对应边相等得到AE =EF ,然后证明△AED 与△FEC 全等,从而可以证明①②⑤正确,AB 与CD 不一定相等,所以③④不正确.【详解】解:∵AD ∥BC ,∴∠ABC +∠BAD =180°,∵AE 、BE 分别是∠BAD 与∠ABC 的平分线,∴∠BAE =12∠BAD ,∠ABE =12∠ABC ,∴∠BAE +∠ABE =12(∠BAD +∠ABC )=90°,∴∠AEB =180°﹣(∠BAE +∠ABE )=180°﹣90°=90°,故①小题正确;如图,延长AE 交BC 延长线于F ,∵∠AEB =90°,∴BE ⊥AF ,∵BE 平分∠ABC ,∴∠ABE =∠FBE ,在△ABE 与△FBE 中,90ABE FBE BE BEAEB FEB ∠∠⎧⎪⎨⎪∠∠︒⎩==== , ∴△ABE ≌△FBE (ASA ),∴AB =BF ,AE =FE ,∵AD ∥BC ,∴∠EAD =∠F ,在△ADE 与△FCE 中,EAD F AE FE AED FEC ∠∠⎧⎪⎨⎪∠∠⎩=== ,∴△ADE ≌△FCE (ASA ),∴AD =CF ,∴AB =BF =BC +CF =BC +AD ,故②小题正确;∵△ADE ≌△FCE ,∴CE =DE ,即点E 为CD 的中点,∵BE 与CE 不一定相等∴BE 与12CD 不一定相等,故③小题错误;若AD =BC ,则CE 是Rt △BEF 斜边上的中线,则BC =CE ,∵AD 与BC 不一定相等,∴BC 与CE 不一定相等,故④小题错误;∵BF =AB =x ,BE ⊥EF ,∴BE 的取值范围为0<BE <x ,故⑤小题正确.综上所述,正确的有①②⑤.故选:D .【点睛】本题主要考查了全等三角形的判定及性质,平行线的性质,角平分线的定义,证明BE ⊥AF 并作出辅助线是解题的关键,本题难度较大,对同学们的能力要求较高. 13.4【分析】由ABC DCB △≌△,可得AB =DC ,已知AB =4cm ,即可得DC 的长度,做题时要找准对应边.【详解】解:∵ABC DCB △≌△,∴AB =DC =4cm .故答案为4.【点睛】本题考查了全等三角形的性质,题中条件虽多但找到相应关系即可得解,不需要用到所有条件,关键是找准对应边.14. CB ##BC HL【分析】根据题意,将AB 的长度转化为EB 的长度,证明Rt Rt ABC EBD ≌即可求解.【详解】解:由③可得将AB 的长度转化为EB 的长度,证明Rt Rt ABC EBD ≌,故把竹竿顶端沿AB 下滑至点D ,使DB =CB ,证明90,,ABC EBD AC ED DB CB ∠=∠=︒==,∴Rt Rt ABC EBD ≌(HL )故答案为:CB ,HL .【点睛】本题考查了HL 证明三角形全等,全等三角形的性质,掌握HL 的性质与判定是解题的关键.15.3【分析】根据角平分线上的点到角的两边距离相等可得DE =DF ,再根据三角形的面积公式列式计算即可得解.【详解】解:过D 作DF ⊥AC 于F ,∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∴S △ABC =12AB ×DE +12AC ×DF =12×4×2+12AC ×2=7,解得AC =3.故答案为:3.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键. 16.①②③④【分析】首先由三角形内角和定理和角平分线得出PBC PCB ∠+∠的度数,再由三角形内角和定理可求出120BPC ∠=︒可知120DPE ∠=︒,过点P 作PF AB ⊥,PG AC ⊥,PH BC ⊥,由角平分线的性质可知AP 是BAC ∠的平分线,由此判断①;由全等三角形的判定定理可得出PFD PGE ≌,由此判断②;由三角形全等的判定定理可得出BHP BFP ≌,CHP CGP ≌,然后根据全等三角形推出BC BD CE =+,由此判断③,根据全等可得PBD S 、PCE S 和PBC S 的关系,由此判断④,由此即可解答本题.【详解】∵BE ,CD 分别是ABC ∠和ACB ∠的平分线,60BAC ∠=︒, ∴11(180)(18060)6022BA B C PBC PC ︒-∠=︒+∠-︒=∠=︒, ∴()180********BPC PBC PCB ∠=︒-∠+∠=︒-︒=︒,∴120DPE ∠=︒,过点P 作PF AB ⊥于F 点,PG ⊥AC 于G 点,PH ⊥BC 于H 点,∵BE ,CD 分别是ABC ∠和ACB ∠的平分线,PF AB ⊥,PG AC ⊥,PH BC ⊥, ∴PF PH PG ==,∴AP 平分BAC ∠,故①正确;由①可知:PF PH PG ==,∵60BAC ∠=︒,90AFP AGP ∠=∠=︒,∴120FPG ∠=︒,∵120DPE ∠=︒,∴DPF DPE EPF FPG EPF EPG ∠=∠-∠=∠-∠=∠,∴PFD PGE ASA ≌(), ∴PD PE =,故②正确;又∵BP BP =,PF PH =,∴()Rt BHP Rt BFP HL ≌,同理:Rt CHP Rt CGP ≌,∴BH BD DF =+,CH CE GE =-,两式相加得:+=++BH CH BD DF CE GE -,∵PFD PGE ASA ≌(), ∴DF GE =,∴BD CE BC =+,故③正确;∵PF PH PG ==,∴PBD △,PCE ,PBC △,的高相等,∵BD CE BC =+,∴PBD PCE PBC S S S +=,故④正确;故答案是:①②③④.【点睛】本题主要考查全等三角形的判定和性质定理,角平分线的性质定理以及四边形内角为360°等知识,添加辅助线,构造全等三角形,是解题的关键.17.见解析【分析】利用AAS 证明△ABE ≌△DCF ,即可得到结论.【详解】证明:∵//AB CD ,∴∠B =∠C ,∵A D ∠=∠,BE CF =,∴△ABE ≌△DCF (AAS ),∴AE DF =.【点睛】此题考查全等三角形的判定及性质,熟记全等三角形的判定定理是解题的关键.18.证明见解析【分析】利用角边角证明△CDE ≌△ABC ,即可证明DE =BC .【详解】证明:∵DE ∥AB ,∴∠EDC =∠B .又∵CD =AB ,∠DCE =∠A ,∴△CDE ≌△ABC (ASA).∴DE =BC .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定是本题的关键.19.见详解【分析】由题意易得A D ∠=∠,然后可证ABE DCF △≌△,进而问题可求证.【详解】证明:∵AB ∥CD ,∴A D ∠=∠,∵B C ∠=∠,BE CF =,∴ABE DCF △≌△(AAS ),∴AE DF =,∵,AF AE EF DE DF EF =-=-,∴AF DE =.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.20.(1)见解析; (2)72;【分析】(1)根据两直线平行内错角相等;全等三角形的判定(角角边);即可证明;(2)由(1)结论计算线段差即可解答;(1)证明:∵BE ∥CF ,∴∠BED =∠CFD ,∵∠BDE =∠CDF ,BD =CD ,∴△BDE ≌△CDF (AAS );(2)解:由(1)结论可得DE =DF ,∵EF =AE -AF =15-8=7,∴DE =72; 【点睛】本题考查了平行线的性质,全等三角形的判定(AAS )和性质;掌握全等三角形的判定和性质是解题关键.21.(1)见详解(2)∠DAE ,∠AED ,∠B ,CD【分析】(1)利用尺规作出角平分线及相等的线段,然后连接即可;(2)先证明()EAD CAD SAS ≌,再结合AED BDE ∠=∠+∠B ,且2C B ∠=∠,即可得到结论.【详解】(1)解:如图所示即为所求;(2)证明:∵AD 平分BAC ∠,∴DAC ∠=∠DAE ,在EAD 与CAD 中,AE AC EAD DAC AD AD =⎧⎪∠=∠⎨⎪=⎩∴()EAD CAD SAS ≌,∴∠AED C =∠,DE CD =,AE =AC ,∵AED BDE ∠=∠+∠B ,且2C B ∠=∠,∴B BDE ∠=∠,∴BE DE =,∴BE =CD ,∵AB AE BE =+,∴AB AC CD =+.故答案是:∠DAE ,∠AED ,∠B ,CD .【点睛】本题主要考查尺规作图—基本作图,全等三角形的判定和性质,三角形外角的性质,熟练掌握全等三角形的判定和性质,是解题的关键.22.(1)证明见解析;(2)证明见解析【分析】(1)证明△ABO ≌△DCO (ASA ),即可得到结论;(2)由△ABO ≌△DCO ,得到OB =OC ,又OA =OD ,得到BD =AC ,又由∠A =∠D ,即可证得结论.【详解】(1)证明:在△ABO 与△DCO 中,A D OA ODAOB DOC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABO ≌△DCO (ASA )∴AB =DC ;(2)证明:∵△ABO ≌△DCO ,∴OB =OC ,∵OA =OD ,∴OB +OD =OC +OA ,∴BD =AC ,在△ABC 与△DCB 中,AC BD A D AB DC =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DCB (SAS ).【点睛】此题考查了全等三角形的判定和性质,熟练掌握并灵活选择全等三角形的判定方法是解题的关键.23.(1)全等三角形对应边相等,AF ,CD ,CD ;(2)∠D ,全等三角形对应角相等,DE ,内错角相等,两直线平行.【分析】(1)根据△ABC ≌△DEF ,AF =5cm,可以得到CD =AF ,从而可以得到CD 的长;(2)根据△ABC ≌△DEF ,可以得到∠A =∠D ,从而可以得到AB 与DE 平行.【详解】解:(1)∵△ABC ≌△DEF (已知),∴AC =DF (全等三角形对应边相等),∴AC ﹣FC =DF ﹣FC (等式性质)即AF =CD ,∵AF =5cm∴CD =5cm ;(2)∵△ABC ≌△DEF (已知)∴∠A =∠D (全等三角形对应角相等)∴AB DE (内错角相等,两直线平行).故答案为:(1)全等三角形对应边相等,AF ,CD ,CD ;(2)∠D ,全等三角形对应角相等,DE ,内错角相等,两直线平行.【点睛】本题考查全等三角形的性质和平行线的判定,解答本题的关键是明确题意,利用数形结合的思想解答.24.(1)①AB AF =,理由见解析;②DF AC ⊥,理由见解析;(2)见解析【分析】(1)①SAS 证明AEF AEB △≌△,即可推出AB AF =;②根据AD 垂直平分BF 可得BD DF =,进而SSS 证明ADF ADB ≌,可得90DFA DBA ∠=∠=︒,即可求解.(2)过点C 作CG BC ⊥,交BF 的延长线于点G ,ASA 证明ABD BCG △≌△,可得DB CG =,进而证明△FCG ≌FCD ()SAS ,得出FDC FGC ∠=∠,根据同角的余角相等,可得G ADB ∠=∠,等量代换可得∠FDC =∠ADB .(1)①AB AF=,理由如下,AD平分∠BAC,FAD BAE∴∠=∠,BF⊥AD,AEB AEF∠=∠∴,又AE AE=,∴AEF AEB△≌△,∴AB AF=;②DF AC⊥,理由如下,AEF AEB△≌△,EF EB∴=,又AD FB⊥,DF DB∴=,在ADF△与ADB中AD ADAF ABDF DB=⎧⎪=⎨⎪=⎩,∴ADF△≌ADB()SSS,90ABC∠=︒,∴90DFA DBA∠=∠=︒,即DF AC⊥;(2)过点C作CG BC⊥,交BF的延长线于点G,如图,90GCB DBA∴∠=∠=︒,BF AD⊥,90ABC∠=︒,∴90,90 GBD ADB ADB DAB∠+∠=︒∠+∠=︒,GBD DAB∴∠=∠,又AB BC=,∴ABD BCG △≌△()ASA ,DB CG ∴=,点D 为BC 的中点,BD CD ∴=12BC =, CG CD ∴=, ,90AB AC ABC =∠=︒,45ACB ∴∠=︒,45FCB FCG ∴∠=∠=︒,在△FCG 与FCD 中,CG CD GCF DCF CF CF =⎧⎪∠=∠⎨⎪=⎩,∴△FCG ≌FCD ()SAS ,FDC FGC ∴∠=∠,,CG CB AD BF ⊥⊥,FBD ADB FBD G ∴∠+∠=∠+∠,G ADB ∴∠=∠,∴∠FDC =∠ADB .【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键. 25.(1)∠ADF =45°,ADDF ;(2)①成立,理由见解析;②1≤S △ADF ≤4.【分析】(1)延长DF 交AB 于H ,连接AF ,先证明△DEF ≌△HBF ,得BH =CD ,再证明△ADH 为等腰直角三角形,利用三线合一及等腰直角三角形边的关系即可得到结论;(2)①过B 作DE 的平行线交DF 延长线于H ,连接AH 、AF ,先证明△DEF ≌△HBF ,延长ED 交BC 于M ,再证明∠ACD =∠ABH ,得△ACD ≌△ABH ,得AD =AH ,等量代换可得∠DAH =90°,即△ADH 为等腰直角三角形,利用三线合一及等腰直角三角形边的关系即可得到结论;②先确定D 点的轨迹,求出AD 的最大值和最小值,代入S △ADF =214AD 求解即可.【详解】(1)解:∠ADF =45°,AD ,理由如下:延长DF 交AB 于H ,连接AF ,∵∠EDC =∠BAC =90°,∴DE ∥AB ,∴∠ABF =∠FED ,∵F 是BE 中点,∴BF =EF ,又∠BFH =∠DFE ,∴△DEF ≌△HBF ,∴BH =DE ,HF =FD ,∵DE =CD ,AB =AC ,∴BH =CD ,AH =AD ,∴△ADH 为等腰直角三角形,∴∠ADF =45°,又HF =FD ,∴AF ⊥DH ,∴∠F AD =∠ADF =45°,即△ADF 为等腰直角三角形,(2)解:①结论仍然成立,∠ADF=45°,AD DF,理由如下:过B作DE的平行线交DF延长线于H,连接AH、AF,如图所示,则∠FED=∠FBH,∠FHB=∠EFD,∵F是BE中点,∴BF=EF,∴△DEF≌△HBF,∴BH=DE,HF=FD,∵DE=CD,∴BH=CD,延长ED交BC于M,∵BH∥EM,∠EDC=90°,∴∠HBC+∠DCB=∠DMC+∠DCB=90°,又∵AB=AC,∠BAC=90°,∴∠ABC=45°,∴∠HBA+∠DCB=45°,∵∠ACD+∠DCB=45°,∴∠HBA=∠ACD,∴△ACD≌△ABH,∴AD=AH,∠BAH=∠CAD,∴∠CAD+∠DAB=∠BAH+∠DAB=90°,即∠HAD=90°,∴∠ADH=45°,∵HF=DF,∴AF⊥DF,即△ADF为等腰直角三角形,②由①知,S△ADF=12DF2=14AD2,由旋转知,当A、C、D共线时,且D在A、C之间时,AD取最小值为3-1=2,当A、C、D共线时,且C在A、D之间时,AD取最大值为3+1=4,∴1≤S△ADF≤4.【点睛】本题考查了等腰直角三角形性质及判定、全等三角形判定及性质、勾股定理等知识点.构造全等三角形及将面积的最值转化为线段的最值是解题关键.遇到题干中有“中点”时,采用平行线构造出对顶三角形全等是常用辅助线.。
八年级数学上册 全等三角形综合测试卷(word含答案)
八年级数学上册全等三角形综合测试卷(word含答案)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm.-【答案】10310【解析】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,分三种情况讨论:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP-;最小,最小值为10310③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;-(cm).综上所述,PA的最小值为10310-.故答案为:10310点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.【答案】AD的中点【解析】【分析】【详解】分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.详解:如图,过AD作C点的对称点C′,根据轴对称的性质可得:PC=PC′,CD=C′D∵四边形ABCD是矩形∴AB=CD∴△ABP≌△DC′P∴AP=PD即P为AD的中点.故答案为P为AB的中点.点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.3.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P有_____个.【答案】4【解析】【分析】由A点坐标可得OA=22,∠AOP=45°,分别讨论OA为腰和底边,求出点P在x轴正半轴和负半轴时,△APO是等腰三角形的P点坐标即可.【详解】(1)当点P在x轴正半轴上,①如图,以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,当∠AOP为顶角时,OA=OP=22,当∠OAP为顶角时,AO=AP,∴OPA=∠AOP=45°,∴∠OAP=90°,∴OP=2OA=4,∴P的坐标是(4,0)或(22,0).②以OA为底边时,∵点A的坐标是(2,2),∴∠AOP=45°,∵AP=OP,∴∠OAP=∠AOP=45°,∴∠OPA=90°,∴OP=2,∴P点坐标为(2,0).(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA =22,∴OA =OP =22,∴P 的坐标是(﹣22,0).综上所述:P 的坐标是(2,0)或(4,0)或(22,0)或(﹣22,0).故答案为:4.【点睛】此题主要考查等腰三角形的判定及坐标与图形性质的综合运用,注意分类讨论思想的运用是解题关键.4.如图,ABC ∆中,90BAC ∠=︒,AD BC ⊥,ABC ∠的平分线BE 交AD 于点F ,AG 平分DAC ∠.给出下列结论:①BAD C ∠=∠;②EBC C ∠=∠;③AE AF =;④//FG AC ;⑤EF FG =.其中正确的结论是______.【答案】①③④【解析】【分析】①根据等角的余角相等即可得到结果,故①正确;②如果∠EBC=∠C ,则∠C=12∠ABC ,由于∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;③由BE 、AG 分别是∠ABC 、∠DAC 的平分线,得到∠ABF=∠EBD .由于∠AFE=∠BAD+∠FBA ,∠AEB=∠C+∠EBD ,得到∠AFE=∠AEB ,可得③正确;④连接EG ,先证明△ABN ≌△GBN ,得到AN=GN ,证出△ANE ≌△GNF ,得∠NAE=∠NGF ,进而得到GF ∥AE ,故④正确;⑤由AE=AF ,AE=FG ,而△AEF 不一定是等边三角形,得到EF 不一定等于AE ,于是EF 不一定等于FG ,故⑤错误.【详解】∵∠BAC=90°,AD ⊥BC ,∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°,∴∠ABC=∠DAC ,∠BAD=∠C ,故①正确;若∠EBC=∠C ,则∠C=12∠ABC , ∵∠BAC=90°, 那么∠C=30°,但∠C 不一定等于30°,故②错误;∵BE 、AG 分别是∠ABC 、∠DAC 的平分线,∴∠ABF=∠EBD ,∵∠AFE=∠BAD+∠ABF ,∠AEB=∠C+∠EBD ,又∵∠BAD=∠C ,∴∠AFE=∠AEF ,∴AF=AE ,故③正确;∵AG 是∠DAC 的平分线,AF=AE ,∴AN ⊥BE ,FN=EN ,在△ABN 与△GBN 中,∵90ABN GBN BN BN ANB GNB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABN ≌△GBN (ASA ),∴AN=GN ,又∵FN=EN ,∠ANE=∠GNF ,∴△ANE ≌△GNF (SAS ),∴∠NAE=∠NGF ,∴GF ∥AE ,即GF ∥AC ,故④正确;∵AE=AF ,AE=FG ,而△AEF 不一定是等边三角形,∴EF 不一定等于AE ,∴EF 不一定等于FG ,故⑤错误.故答案为:①③④.【点睛】本题主要考查等腰三角形的判定和性质定理,全等三角形的判定和性质定理,直角三角形的性质定理,掌握掌握上述定理,是解题的关键.5.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形(1)如图,在ABC ∆中,25,105A ABC ∠=︒∠=︒,过B 作一直线交AC 于D ,若BD 把ABC ∆分割成两个等腰三角形,则BDA ∠的度数是______.(2)已知在ABC ∆中,AB AC =,过顶点和顶点对边上一点的直线,把ABC ∆分割成两个等腰三角形,则A ∠的最小度数为________.【答案】130︒ 1807︒⎛⎫ ⎪⎝⎭【解析】【分析】(1)由题意得:DA=DB ,结合25A ∠=︒,即可得到答案;(2)根据题意,分4种情况讨论,①当BD=AD ,CD=AD ,②当AD=BD ,AC=CD ,③AB=AC ,当AD=BD=BC ,④当AD=BD ,CD=BC ,分别求出A ∠的度数,即可得到答案.【详解】(1)由题意得:当DA=BA ,BD=BA 时,不符合题意,当DA=DB 时,则∠ABD=∠A=25°,∴∠BDA=180°-25°×2=130°.故答案为:130°;(2)①如图1,∵AB=AC ,当BD=AD ,CD=AD ,∴∠B=∠C=∠BAD=∠CAD ,∵∠BAC+∠B+∠C=180°,∴4∠B=180°,∴∠BAC=90°.②如图2,∵AB=AC ,当AD=BD ,AC=CD ,∴∠B=∠C=∠BAD ,∠CAD=∠CDA ,∵∠CDA=∠B+∠BAD=2∠B ,∴∠BAC=3∠B ,∵∠BAC+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°,∴∠BAC=108°.③如图3,∵AB=AC ,当AD=BD=BC ,∴∠ABC=∠C ,∠BAC=∠ABD ,∠BDC=∠C ,∵∠BDC=∠A+∠ABD=2∠BAC ,∴∠ABC=∠C=2∠BAC ,∵∠BAC+∠ABC+∠C=180°,∴5∠BAC=180°,∴∠BAC=36°.④如图4,∵AB=AC ,当AD=BD ,CD=BC ,∴∠ABC=∠C ,∠BAC=∠ABD ,∠CDB=∠CBD ,∵∠BDC=∠BAC+∠ABD=2∠BAC ,∴∠ABC=∠C=3∠BAC ,∵∠BAC+∠ABC+∠C=180°,∴7∠BAC=180°,∴∠BAC=180()7︒ . 综上所述,∠A 的最小度数为:180()7︒. 故答案是:180()7︒.【点睛】本题主要考查等腰三角形的性质定理以及三角形内角和定理与外角的性质,根据等腰三角形的性质,分类讨论,是解题的关键.6.如图,在ABC ∆和DBC ∆中,40A ∠=,2AB AC ==,140BDC ∠=,BD CD =,以点D 为顶点作70MDN ∠=,两边分别交,AB AC 于点,M N ,连接MN ,则AMN ∆的周长为_______.【答案】4【解析】【分析】延长AB至F,使BF=CN,连接DF,通过证明△BDF≌△CDN,及△DMN≌△DMF,从而得出MN=MF,△AMN的周长等于AB+AC的长.【详解】延长AB至F,使BF=CN,连接DF.∵BD=CD,且∠BDC=140°,∴∠BCD=∠DBC=20°.∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠DBA=∠DCA=90°.在Rt△BDF和Rt△CND中,∵BF=CN,∠DBA=∠DCA,DB=DC,∴△BDF≌△CDN,∴∠BDF=∠CDN,DF=DN.∵∠MDN=70°,∴∠BDM+∠CDN=70°,∴∠BDM+∠BDF=70°,∴∠FDM=70°=∠MDN.∵DF=DN,∠FDM=∠MDN,DM=DM,∴△DMN≌△DMF,∴MN=MF,∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=4.故答案为:4.【点睛】本题主要利用等腰三角形的性质来证明三角形全等,构造全等三角形是解答本题的关键.7.等腰三角形一边长等于4,一边长等于9,它的周长是__.【答案】22【解析】【分析】等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;【详解】解:因为4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22.故答案为22.【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.8.如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,第n个等腰三角形的底角的度数是_____度.【答案】1752n - 【解析】【分析】先根据∠B =30°,AB =A 1B 求出∠BA 1C 的度数,在由A 1A 2=A 1D 根据内角和外角的关系求出∠DA 2A 1的度数,同理求出∠EA 3A 2=754,∠FA 4A 3=758,即可得到第n 个等腰三角形的底角的度数=1752n . 【详解】∵在△ABA 1中,∠B =30°,AB =A 1B ,∴∠BA 1C =1802B ︒-∠=75°, ∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角, ∴∠DA 2A 1=12∠BA 1C =12×75°=37.5°; 同理可得,∠EA 3A 2=754,∠FA 4A 3=758, ∴第n 个等腰三角形的底角的度数=1752n . 故答案为1752n -. 【点睛】 此题考查等腰三角形的性质,利用等边对等角求出等腰三角形底角的度数.9.如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,Q 为BC 延长线上一点,当AP =CQ 时,PQ 交AC 于D ,则DE 的长为______.【答案】1 2【解析】过点Q作AD的延长线的垂线于点F.因为△ABC是等边三角形,所以∠A=∠ACB=60°.因为∠ACB=∠QCF,所以∠QCF=60°.因为PE⊥AC,QF⊥AC,所以∠AEP=∠CFQ=90°,又因为AP=CQ,所以△AEP≌△CFQ,所以AE=CF,PE=QC.同理可证,△DEP≌△DFQ,所以DE=DF.所以AC=AE+DE+CD=DE+CD+CF=DE+DF=2DE,所以DE=12AC=12.故答案为1 2 .10.如图,在△ABC中,AB=AC,AB边的垂直平分线DE交AC于点D.已知△BDC的周长为14,BC=6,则AB=___.【答案】8【解析】试题分析:根据线段垂直平分线的性质,可知AD=BD,然后根据△BDC的周长为BC+CD+BD=14,可得AC+BC=14,再由BC=6可得AC=8,即AB=8.故答案为8.点睛:此题主要考查了线段的垂直平分线的性质,解题时,先利用线段的垂直平分线求出BD=AD ,然后根据三角形的周长互相代换,即可其解.二、八年级数学轴对称三角形选择题(难)11.如图所示,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A 、B .下列结论中不一定成立的是( ).A .PA PB =B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP【答案】D【解析】【分析】 根据角平分线上的点到角的两边距离相等可得出PA=PB ,再利用“HL ”证明△AOP 和△BOP 全等,可得出APO BPO ∠=∠,OA=OB ,即可得出答案.【详解】解:∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥∴PA PB =,选项A 正确;在△AOP 和△BOP 中,PO PO PA PB =⎧⎨=⎩, ∴AOP BOP ≅∴APO BPO ∠=∠,OA=OB ,选项B ,C 正确;由等腰三角形三线合一的性质,OP 垂直平分AB ,AB 不一定垂直平分OP ,选项D 错误. 故选:D .【点睛】本题考查的知识点是角平分线的性质以及垂直平分线的性质,熟记性质定理是解此题的关键.12.点A 的坐标是(2,2),若点P 在x 轴或y 轴上且△APO 是等腰三角形,这样的点P 共有( )个A .6B .7C .8D .9 【答案】C【解析】【分析】根据等腰三角形的性质,要使△AOP 是等腰三角形,可以分两种情况考虑:当OA 是底边时,作OA的垂直平分线,和坐标轴出现2个交点;当OA是腰时,则分别以点O、点A为圆心,OA为半径画弧,和坐标轴出现6个交点,这样的点P共8个.【详解】如图,分两种情况进行讨论:当OA是底边时,作OA的垂直平分线,和坐标轴的交点有2个;当OA是腰时,以点O为圆心,OA为半径画弧,和坐标轴有4个交点;以点A为圆心,OA为半径画弧,和坐标轴出现2个交点;∴满足条件的点P共有8个,故选:C.【点睛】本题考查了等腰三角形的定义,坐标与图形的性质,解题的关键是根据OA为腰或底两种情况分类讨论,运用数形结合的思想进行解决.13.如图,在△ABC中,分别以点A和点B为圆心,大于12AB的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点D,连接AD,若△ADC的周长为14,BC=8,则AC 的长为A.5 B.6 C.7 D.8【答案】A【解析】【分析】根据题意可得MN是直线AB的中点,所以可得AD=BD,BC=BD+CD,而△ADC为AC+CD+AD=14,即AC+CD+BD=14,因此可得AC+BC=14,已知BC即可求出AC.【详解】根据题意可得MN 是直线AB 的中点AD BD ∴=ADC 的周长为14AC CD AD ++=14AC CD BD ++=∴BC BD CD =+14AC BC =∴+已知8BD =6AC ∴= ,故选B 【点睛】本题主要考查几何中的等量替换,关键在于MN 是直线AB 的中点,这样所有的问题就解决了.14.如图,已知:30MON ∠=︒,点1A 、2A 、3A …在射线ON 上,点1B 、2B 、3B …在射线OM 上,112A B A △、223A B A △、334A B A △…均为等边三角形,若112OA =,则667A B A 的边长为( )A .6B .12C .16D .32【答案】C【解析】【分析】 先根据等边三角形的各边相等且各角为60°得:∠B 1A 1A 2=60°,A 1B 1=A 1A 2,再利用外角定理求∠OB 1A 1=30°,则∠MON=∠OB 1A 1,由等角对等边得:B 1A 1=OA 1=12,得出△A 1B 1A 2的边长为12,再依次同理得出:△A 2B 2A 3的边长为1,△A 3B 3A 4的边长为2,△A 4B 4A 5的边长为:22=4,△A 5B 5A 6的边长为:23=8,则△A 6B 6A 7的边长为:24=16.【详解】解:∵△A 1B 1A 2为等边三角形,∴∠B 1A 1A 2=60°,A 1B 1=A 1A 2,∵∠MON=30°,∴∠OB 1A 1=60°-30°=30°,∴∠MON=∠OB 1A 1,∴B 1A 1=OA 1=12, ∴△A 1B 1A 2的边长为12, 同理得:∠OB 2A 2=30°, ∴OA 2=A 2B 2=OA 1+A 1A 2=12+12=1, ∴△A 2B 2A 3的边长为1, 同理可得:△A 3B 3A 4的边长为2,△A 4B 4A 5的边长为:22=4,△A 5B 5A 6的边长为:23=8,则△A 6B 6A 7的边长为:24=16.故选:C .【点睛】本题考查等边三角形的性质和外角定理,运用类比的思想,依次求出各等边三角形的边长,解题关键是总结规律,得出结论.15.如图,△ABC 中,AB =AC ,且∠ABC =60°,D 为△ABC 内一点 ,且DA =DB ,E 为△ABC 外一点,BE =AB ,且∠EBD =∠CBD ,连DE ,CE. 下列结论:①∠DAC =∠DBC ;②BE ⊥AC ;③∠DEB =30°. 其中正确的是( )A .①...B .①③...C .② ...D .①②③【答案】B【解析】【分析】 连接DC,证ACD BCD DAC DBC ∠∠≅=得出①,再证BED BCD ≅,得出BED BCD 30∠∠==︒;其它两个条件运用假设成立推出答案即可.【详解】解:证明:连接DC ,∵△ABC 是等边三角形,∴AB=BC=AC ,∠ACB=60°,∵DB=DA ,DC=DC ,在△ACD与△BCD中,AB BC DB DA DC DC=⎧⎪=⎨⎪=⎩,∴△ACD≌△BCD (SSS),由此得出结论①正确;∴∠BCD=∠ACD=130 2ACB∠=︒∵BE=AB,∴BE=BC,∵∠DBE=∠DBC,BD=BD,在△BED与△BCD中,BE BCDBE DBCBD BD=⎧⎪∠=∠⎨⎪=⎩,∴△BED≌△BCD (SAS),∴∠DEB=∠BCD=30°.由此得出结论③正确;∵EC∥AD,∴∠DAC=∠ECA,∵∠DBE=∠DBC,∠DAC=∠DBC,∴设∠ECA=∠DBC=∠DBE=∠1,∵BE=BA,∴BE=BC,∴∠BCE=∠BEC=60°+∠1,在△BCE中三角和为180°,∴2∠1+2(60°+∠1)=180°∴∠1=15°,∴∠CBE=30,这时BE是AC边上的中垂线,结论②才正确.因此若要结论②正确,需要添加条件EC∥AD.故答案为:B.【点睛】本题考查的知识点主要是全等三角形的判定与性质以及等边三角形的性质,通过已知条件作出恰当的辅助线是解题的关键点.16.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为()A.130°B.120°C.110°D.100°【答案】B【解析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案:如图,作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.作DA延长线AH.∵∠BAD=120°,∴∠HAA′=60°.∴∠AA′M+∠A″=∠HAA′=60°.∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°.故选B.17.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,在直线AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有()A.6个B.5个C.4个D.3个【答案】C【解析】【分析】根据等腰三角形的判定定理即可得到结论.【详解】解:根据题意,∵△PAB为等腰三角形,∴可分为:PA=PB,PA=AB,PB=AB三种情况,如图所示:∴符合条件的点P共有4个;故选择:C.【点睛】本题考查了等腰三角形的判定来解决实际问题,其关键是根据等腰三角形的判定定理解答.18.如图,∠AOB=30º,∠AOB 内有一定点P,且OP=12,在OA 上有一动点Q,OB 上有一动点R。
人教版八年级数学上册 第12章 全等三角形 单元综合测试(配套练习附答案)
故答案为:70°.
【点睛】本题主要考查全等三角形的性质和三角形内角和和外角性质,解决本题的关键是要熟练掌握全等三角形的性质和三角形的内角和和外角性质.
12.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=________.
【答案】7
【解析】
分析】
先过点P作PF⊥AB于G,由于∠ABC和∠ACB的外角平分线BP,CP交于P,根据角平分线的性质可得PF=PG=PE=2,根据 ,可得 ,解得BC=2,再根据△ABC的周长为11,可得AC+AB=11-2=9,继而可得 = =7.
【详解】如图,
过点P作PF⊥AB于G,
因为∠ABC和∠ACB的外角平分线BP,CP交于P,
【点睛】本题主要考查全等图形的定义,解决本题的关键是要熟练掌握全等图形的定义.
2.如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是( )
A. 3B. -3C. 2D. -2
【答案】A
【解析】
【分析】
过点D作DE⊥AB于E,由于AD是∠OAB的平分线,根据角平分线上的点到角两边的距离相等可得:DE=OD=3,即点D到AB的距离是3.
【答案】16
【解析】
四边形FBCD周长=BC+AC+DF;当 时,四边形FBCD周长最小为5+6+5=16
三、解答题(共52分)
17.如图,已知 ,用尺规过点 作直线 ,使得 .(保留作图痕迹,不写做法)
【答案】见解析
人教版八年级上册数学《全等三角形》单元综合检测卷(含答案)
选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.
故选C.
考点:全等三角形的判定.
4.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为()
A 8B. 9C. 10D. 11
【答案】C
人教版数学八年级上学期
《全等三角形》单元测试
时间:90分钟总分:100
一.选择题(本大题共8小题,共24.0分)
1.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为( )
A.1个B.2个C.3个D.4个
A.1个B.2个C.3个D.4个
【答案】D
【解析】
【分析】
根据周角 定义先求出∠BPC的度数,再根据对称性得到△BPC为等腰三角形,∠PBC即可求出;根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.
【详解】根据题意, ,
∴∠A=∠2,故B正确;
∴∠A+∠D=90°,故A正确;
在△ABC和△CED中,
,
∴△ABC≌△CED(AAS),故C正确;
故选D.
【点睛】本题考查了全等三角形的判定与性质,等角的余角相等的性质,熟练掌握三角形全等的判定方法并确定出全等的条件∠A=∠2是解题的关键.
6.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=42°,则∠P的度数为( )
初二数学上册全等三角形综合能力测试题及答案
初二数学全等三角形演习题【1 】一.填空题1.如图1所示,两个三角形全等,个中已知某些边的长度和某些角的度数,•则x=_______.(1) (2)2.如图2所示,在△ABC和△DEF中,AB=DE,∠B=∠E,要使△ABC≌△DEF,•须要填补的一个前提是____________.3.把“两个邻角的角等分线互相垂直”写成“假如……,那么……”的情势为_______________.4.在△ABC和△A′B′C中,∠A=∠A′,CD与C′D′分离为AB边和A′B ′边上的中线,再从以下三个前提:①AB=A′B′;②AC=A′C′;③CD=C′D ′中任取两个为题设,另一个作为结论,请写出一个准确的命题:________(用题序号写).5.如图3所示,△ABC中,∠C=90°,AD等分∠CAB,BC=8cm,BD=•5cm,则D点到直线AB的距离是______cm.(3) (4)6.如图4所示,将一副七巧板拼成一只小动物,则∠AOB=•_______.7.如图5所示,P.Q是△ABC的边BC上的两点,且BP=PQ=QC=•AP=AQ,则∠BAC的大小等于__________.(5) (6) (7)8.已知等腰△ABC中,AB=AC,D为BC边上一点,贯穿连接AD,若△ACD•和△ABD都是等腰三角形,则∠C的度数是________.9.如图6所示,梯形ABCD中,AD∥BC,∠C=90°,且AB=AD,•贯穿连接BD,过A点作BD的垂线,交BC于E,假如EC=3cm,CD=4cm,则梯形ABCD•的面积是_______cm.10.如图7所示,△ABC.△ADE与△EFG都是等边三角形,D•和G分离为AC和AE的中点,若AB=4时,则图形ABCDEFG外围的周长是________.二.选择题11.如图8所示,在∠AOB的双方截取AO=BO,CO=DO,贯穿连接AD.BC交于点P,考核下列结论,个中准确的是()①△AOD≌△BOC ②△APC≌△BPD ③点P在∠AOB的等分线上A.只有①B.只有②C.只有①②D.①②③12.下列断定准确的是()A.有双方和个中一边的对角对应相等的两个三角形全等B.有双方对应相等且有一角为30°的两个等腰三角形全等(8)C.有一角和一边相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等13.假如两个三角形的两条边和个中一边上的高对应相等,那么这两个三角形的第三边所对的角的关系是()A.相等B.互余C.互补或相等D.不相等14.如图9所示,鄙人面图形中,每个大正方形网格都是由边长为1的小正方形构成,则图中暗影部分面积最大的是()(9)15.将五边形纸片ABCDE按如图10所示方法折叠,折痕为AF,点E.D分离落在E′,D′,已知∠AFC=76°,则∠CFD′等于()A.31°B.28°C.24°D.22°(10) (11) (12)16.如图11所示,在菱形ABCD中,E.F分离是AB.AC的中点,假如EF=2,那么ABCD的周长是()A.4 B.8 C.12 D.1617.如图12所示,在锐角△ABC中,点D.E分离是边AC.BC的中点,且DA=DE,那么下列结论错误的是()A.∠1=∠2 B.∠1=∠3 C.∠B=∠C D.∠3=∠B18.如图13所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是()A.1+2B.1+22C.2-2D.2-1(13) (14) (15) 19.如图14所示中的4×4的正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+•∠7=()A.245°B.300°C.315°D.330°20.已知:如图15所示,CD⊥AB,BE⊥AC,垂足分离为D.E,BE.CD•订交于点O,∠1=∠2,图中全等的三角形共有()A.1对B.2对C.3对D.4对三.解答题21.(9分)如图所示,有一池塘,要测量池塘两头A.B的距离,请用结构全等三角形的办法,设计一个测量计划(画出图形),并解释测量步折衷根据.22.(9分)如图所示,已知∠1=∠2,∠C=∠D,求证:AC=BD.23.(9分)如图所示,D.E分离为△ABC的边AB.AC上点,•BE与CD订交于点O.现有四个前提:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个前提作为题设,余下作结论,写一个准确的命题:命题的前提是_______和_______,命题的结论是_______和________(均填序号)(2)证实你写的命题.24.(10分)如图所示,△ABC为等边三角形,BD为中线,延伸BC至E,•使DE=BD.求证:CE=12 BC.25.(11分)如图①所示,把一张矩形纸片ABCD沿对角线BD折叠,将重合部分△BFD剪去,得到△ABF和△EDF.①(1)断定△ABF与△EDF是否全等?并加以证实;(2)把△ABF与△EDF不重合地拼在一路,可拼成特别三角形和特别四边形,将下列拼图(图②)按请求填补完全.②26.(12分))如图(1)所示,OP是∠MON的等分线,•请你应用该图形画一对以OP地点直线为对称轴的全等三角形.请你参考这个作全等三角形办法,解答下列问题:(1)如图(2),在△ABC中,∠ACB=90°,∠B=60°,AC.CE分离是∠BAC,∠BCA的等分线交于F,试断定FE与FD之间的数目关系.(2)如图(3),在△ABC中,若∠ACB≠90°,而(1)中其他前提不变,请问(1)中所得的结论是否仍然成立?若成立,请证实;若不成立,解释来由.1.60°2.BC=EF或∠D=∠A或∠C=∠F3.假如作两个邻补角的角等分线,那么这两条角等分线互相垂直4.假如①②,那么③5.36.135°7.120°8.36°或45°9.26 10.15 11.D 12.D 13.C 14.D15.B 16.D 17.D 18.B 19.C 20.D21.在平地任找一点O,连OA.OB,延伸AO至C使CO=AO,延BO至D,使DO=•BO,•则CD=AB,根据是△AOB≌△COD(SAS),图形略.22.证△ACB≌△BDA即可.23.(1)前提①.③结论②.④,(2)证实略24.略25.(1)△ABF≌△EDF,证实略(2)如图:26.(1)FE=FD(2)(1)中的结论FE=FD仍然成立.在AC上截取AG=AE,贯穿连接FG.证△AEF≌△AGF得∠AFE=∠AFG,FE=FG.由∠B=60°,AD.CE分离是∠BAC,∠BCA的等分线得∠DAC+∠ECA=60°.所以∠AFE=∠CFD=∠AFG=60°,所以∠CFG=60°.由∠BCE=∠ACE及FC为公共边.可证△CFG≌△CFD,所以FG=FD,所以FE=FD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学上册全等三角形综合能力测试题及答案
初二数学全等三角形练习题
一、填空题
1.如图1所示,两个三角形全等,其中已知某些边的长度和某些角的度数,•则x=_______.
(1)
(2)
2.如图2所示,在△ABC和△DEF中,AB=DE,∠B=∠E,要使△ABC≌△DEF,•需要补充的
一个条件是____________.
3.把“两个邻角的角平分线互相垂直”写成“如果……,那么……”的形式为
_______________.
4.在△ABC和△A′B′C中,∠A=∠A′,CD与C′D′分别为AB边和A′B•′边上的中线,
再从以下三个条件:①AB=A′B′;②AC=A′
C′;③CD=C′D•′中任取两个为题设,另一
个作为结论,请写出一个正确的命题:
________(用题序号写).
5.如图3所示,△ABC中,∠C=90°,AD平分
ABCD•的面积是_______cm.
10.如图7所示,△ABC、△ADE与△EFG都是等边三角形,D•和G分别为AC和AE的中点,若AB=4时,则图形ABCDEFG外围的周长是________.
二、选择题
11.如图8所示,在∠AOB的两边截取AO=BO,CO=DO,连结AD、BC交于点P,考察下列结论,其中正确的是()
①△AOD≌△BOC ②△APC≌△BPD ③点P 在∠AOB的平分线上
A.只有① B.只有②
C.只有①② D.①②③
12.下列判断正确的是()
A.有两边和其中一边的对角对应相等的两个三角形全等
B.有两边对应相等且有一角为30°的两个等腰三角形全等 (8)
C.有一角和一边相等的两个直角三角形全等
D.有两角和一边对应相等的两个三角形全
等
13.如果两个三角形的两条边和其中一边上的高对应相等,那么这两个三角形的第三边所对
的角的关系是()
A.相等 B.互余 C.互补或相等D.不相等
14.如图9所示,在下面图形中,每个大正方形网格都是由边长为1的小正方形组成,则图中阴影部分面积最大的是()
(9) 15.将五边形纸片ABCDE按如图10所示方式折叠,折痕为AF,点E、D分别落在E′,D′,已知∠AFC=76°,则∠CFD′等于()
A.31°B.28°C.24°D.22°
(10) (11) (12)
16.如图11所示,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么ABCD的
周长是()
A.4 B.8 C.12 D.16
17.如图12所示,在锐角△ABC中,点D、E分别是边AC、BC的中点,且DA=DE,那么下列
结论错误的是()
A.∠1=∠2 B.∠1=∠3 C.∠B=
∠C D.∠3=∠B
18.如图13所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长
是()
A.1+2B.1+2
C.2-2
2
D2-1
(13)
(14) (15)
19.如图14所示中的4×4的正方形网格中,∠
1+∠2+∠3+∠4+∠5+∠6+•∠7=()
A.245° B.300° C.315°D.330°
20.已知:如图15所示,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD•相交于点O,∠1=
∠2,图中全等的三角形共有()
A.1对 B.2对 C.3对D.4对
三、解答题
21.(9分)如图所示,有一池塘,要测量池塘两端A、B的距离,请用构造全等三角形的方
法,设计一个测量方案(画出图形),并说明
测量步骤和依据.
22.(9分)如图所示,已知∠1=∠2,∠C=∠D,求证:AC=BD.
23.(9分)如图所示,D、E分别为△ABC的边AB、AC上点,•BE与CD相交于点O.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;
④BE=CD.
(1)请你选出两个条件作为题设,余下作结论,写一个正确的命题:命题的条件是
_______和_______,命题的结论是
_______和________(均填序号)
(2)证明你写的命题.
24.(10分)如图所示,△ABC为等边三角形,BD为中线,延长BC至E,•使DE=BD.
BC.
求证:CE=1
2
25.(11分)如图①所示,把一张矩形纸片ABCD 沿对角线BD折叠,将重合部分△BFD剪去,得到△ABF和△EDF.
①
(1)判断△ABF与△EDF是否全等?并加以证明;
(2)把△ABF与△EDF不重合地拼在一起,可拼成特殊三角形和特殊四边形,将下列拼图(图②)按要求补充完整.
②
26.(12分))如图(1)所示,OP是∠MON的平分线,•请你利用该图形画一对以OP所在直
线为对称轴的全等三角形.
请你参考这个作全等三角形方法,解答下列问题:
(1)如图(2),在△ABC中,∠ACB=90°,∠B=60°,AC、CE分别是∠BAC,∠BCA的
平分线交于F,试判断FE与FD之间的数量
关系.
(2)如图(3),在△ABC中,若∠ACB ≠90°,而(1)中其他条件不变,请问(1)中所得的结论是否仍然成立?若成立,请证
明;若不成立,说明理由.
1.60° 2.BC=EF或∠D=∠A或∠C=∠F 3.如果作两个邻补角的角平分线,那么这两条角平分线互相垂直
4.如果①②,那么③ 5.3
6.135° 7.120° 8.36°或45°
9.26 10.15 11.D 12.D 13.C 14.D 15.B 16.D 17.D 18.B 19.C 20.D 21.在平地任找一点O,连OA、OB,延长AO至C使CO=AO,延BO至D,使DO=•BO,
•则CD=AB,依据是△AOB≌△COD(SAS),
图形略.
22.证△ACB≌△BDA即可.
23.(1)条件①、③结论②、④,(2)证明略
24.略
25.(1)△ABF≌△EDF,证明略
(2)如图:
26.(1)FE=FD
(2)(1)中的结论FE=FD仍然成立.
在AC上截取AG=AE,连结FG.
证△AEF≌△AGF得∠AFE=∠AFG,FE=FG.
由∠B=60°,AD、CE分别是∠BAC,∠BCA的平分线
得∠DAC+∠ECA=60°.
所以∠AFE=∠CFD=∠AFG=60°,所以∠CFG=60°.
由∠BCE=∠ACE及FC为公共边.
可证△CFG≌△CFD,
所以FG=FD,所以FE=FD.。