〖含高考模拟卷15套〗云南省文山州广南县第一中学2020届高考适应性考试数学试卷含解析

合集下载

云南师范大学附属中学2020届高考适应性月考卷(四) 文科数学附答案与详解

云南师范大学附属中学2020届高考适应性月考卷(四) 文科数学附答案与详解

西南名校联盟高考适应性月考卷文科数学试卷注意事项:1. 答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2. 每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3. 考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合{}2|10A x x =->,{}|0,1,2,3B x =,则()R C A B =I ( ) A. {}2,3 B. {}0,1C. []1,1-D. ()(),11,-∞-+∞U2. 复数z 满足()12z i i ⋅-=,则z =( ) A. 1i - B. 1i + C. 1i --D. 1i -+3. 《庄子·天下篇》中有一句话:“一尺之锤,日取其半,万世不竭”.如果经过n 天,该木锤剩余的长度为n a (尺),则n a 与n 的关系为( )A. 12n n a =B. 112n n a =-C. 1n a n=D. 11n a n=-4. 若关于x 的不等式210ax ax ++≥的解集为实数集R ,则实数a 的取值范围为( ) A. []0,4 B. ()0,4 C. [)4,0-D. []4,0-5. 已知命题p :0x ∀≥,1xe ≥或sin 1x ≤,则p ∀为( )A. 0x ∃<,1xe <且sin 1x > B. 0x ∃<,1xe ≥或sin 1x ≤C. 0x ∃≥,1xe <或sin 1x > D. 0x ∃≥,1xe <且sin 1x >6. 两个红球与两个黑球随机排成一行,从左到右依次在球上标记1,2,3,4,则红球上的数字之和小于黑球上的数字之和的概率为( )A.16 B.14 C. 13D. 127. 定义在区间0,2π⎛⎫⎪⎝⎭上的函数6cos y x =的图象与5tan y x =的图象交于点P ,过P 作x 轴的垂线,垂足为1P ,直线1PP 与函数sin y x =的图象交于点2P ,则线段12P P 的长为( )A.23B.C.D.568. 某多面体的三视图如图所示,网格小正方形的边长为1,则该多面体最长棱的长为( )A.B. C. 3D. 9. 如图是函数()()sin 0,02f x A x πωϕωϕ⎛⎫=+><<⎪⎝⎭的部分图象,则34f π⎛⎫=⎪⎝⎭( )A. -2B.C. 2D.10. 已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=u u u r u u u r,O 为坐标原点,则OB 的最大值是( )A. 1B.C.1D.1l. 已知定义在R 上的函数()f x 满足()12f =,对任意的实数1x ,2x 且12x x <,()()1212f x f x x x -<-,则不等式()1f x x ->的解集为( ) A. (),2-∞- B. ()2,+∞C. ()(),11,-∞-+∞UD. ()(),22,-∞-+∞U12. 在一个半圆中有两个互切的内切半圆,由三个半圆弧围成曲边三角形,作两个内切半圆的公切线把曲边三角形分隔成两块,阿基米德发现被分隔的这两块的内切圆是同样大小的,由于其形状很像皮匠用来切割皮料的刀子,他称此为“皮匠刀定理”,如图,若2AC CB =,则阴影部分与最大半圆的面积比为( )A.1081B.2081C.49D.89二、填空题(本大题共4小题,每小题5分,共20分) 13. 已知狄利克雷函数()1,0,R x QD x x C Q∈⎧=⎨∈⎩,则()()D D x =______.14. 设l ,m 是两条不同的直线,α,β是两个不同的平面,且l α⊂,m β⊂.给出下列三个论断:①l m ⊥;②l β⊥;③αβ⊥.以其中一个论断作为条件,余下两个论断作为结论,写出一个真命题:______.(用论断序号和推出符号“⇒”作答)15. 双曲线S :()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,若以线段12F F 为直径的圆与S 的渐近线的交点恰是一个正六边形的顶点,则S 的离心率为______. 16. 已知数列{}n a满足112n a +=+134a =,则2020a =______. 三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤) 17. 已知三角形ABC,56A π=,D 在边BC 上,6CAD π∠=,2BD DC =,内角A ,B ,C 的对边分别为a ,b ,c .求a ,b ,c .18. 2019年9月24日国家统计局在庆祝中华人民共和国成立70周年活动新闻中心举办新闻发布会指出,1952年~2018年,我国GDP 从679.1亿元跃升至90.03万亿元,实际增长174倍;人均CDP 从119元提高到6.46万元,实际增长70倍.全国各族人民,砥砺奋进,顽强拼搏,实现了经济社会的跨越式发展.特别是党的十八大以来,在以习近平同志为核心的党中央坚强领导下,党和国家事业取得历史性成就、发生历史性变革,中国特色社会主义进入新时代.如图是全国2012年至2018年GDP总量y(万亿元)的折线图.注:年份代码1~7分别对应年份2012~2018.(1)由折线图看出,可用线性回归模型拟合y与年份代码t的关系,请用相关系数加以说明;(2)建立y关于t的回归方程(系数精确到0.01),预测2019年全国GDP的总量.附注:参考数据:71492.01 iiy ==∑,70.29y=,712131.99 i iit y ==∑165.15≈.参考公式:相关系数()()ni it t y y r--=∑回归方程$$y a bt=+$中斜率和截距的最小二乘估计公式分别为()()()121ni iiniit t y ybt t==--=-∑∑$,$a y bt=-$.19. 如图,楔形几何体EF ABCD-由一个三棱柱截去部分后所得,底面ADE⊥侧面ABCD,90AED∠=︒,楔面BCF是边长为2的正三角形,点F在侧面ABCD的射影是矩形ABCD的中心O,点M在CD上,且CM DM=.(1)证明:BF ⊥平面AMF ; (2)求楔形几何体EF ABCD -的体积. 20. 已知函数()1sin ln 12f x x x x =+--,()'f x 为()f x 的导数. (1)证明:()f x 在定义域上存在唯一的极大值点; (2)若存在12x x ≠,使()()12f x f x =,证明:124x x <.21. 已知椭圆C :()222210x y a b a b+=>>的一个焦点为()1F .(1)求C 的标准方程;(2)若动点M 为C 外一点,且M 到C 的两条切线相互垂直,求M 的轨迹D 的方程;(3)设C 的另一个焦点为2F ,自直线l :7x =上任意一点P 引(2)所求轨迹D 的一条切线,切点为Q ,求证:2PQ PF =.请考生在第22、23两题中任选一题作答,并用2B 铅笔在答题卡上把所选题目的题号涂黑.注意所做题目的题号必须与所涂题目的题号一致,在答题卡选答区域指定位置答题.如果多做,则按所做的第一题计分. 22.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,A ,B 是曲线段C :2x t y t=⎧⎨=-⎩(t 是参数,1122t -≤≤)的左、右端点,P 是C 上异于A ,B 的动点,过点B 作直线AP 的垂线,垂足为Q .(1)建立适当的极坐标系,写出点Q 轨迹的极坐标方程; (2)求PA PQ ⋅的最大值. 23.【选修4-5:不等式选讲】已知()()()2f x x x a a R =--∈,若关于x 的不等式()6f x >的解集为()()4,58,+∞U . (1)求a ;(2)关于x 的方程()f x b =的方程有三个相异实根1x ,2x ,3x ,求123x x x ++的取值范围.云南师大附中2020届高考适应性月考卷(四)文科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分) 1-5:BDAAD 6-10:CACBC11-12:BB【解析】1. (){}{}{}|110,1,2,30,1R C A B x x =-≤≤=I I ,故选B.2. ()()()2121111i i i z i i i i +===-+--+,故选D. 3. {}n a 是一个首项为12,公比为12的等比数列,所以12n n a =,故选A. 4. 当0a =时,不等式为10≥,恒成立,满足题意;当0a ≠时,则240a a a >⎧⎨-≤⎩,解得04a <≤,或0a ≠时,()f x 有最小值,且最小值大于或等于0,即0102a f >⎧⎪⎨⎛⎫-≥ ⎪⎪⎝⎭⎩,解得04a <≤.综上,实数a 的取值范围是[]0,4,故选A.5. 全称命题的否定为特称命题,()()()p q p q ⌝∧=⌝∨⌝,()()()p q p q ⌝∨=⌝∧⌝,故选D.6. 红球与黑球上标记数字情况用表格列举如下:共6种情况,其中红球与黑球上数字之和相等的情况有两种,其余4种情况中红球上数字之和小于黑球上数字之和与红球上数字之和大于黑球上数字之和是“对等”的,各占一半,故所求概率为2163=,故选C. 7. 如图,从6cos 5tan 02x x x π⎛⎫=<<⎪⎝⎭中解出sin x 的值为23,即为所求线段12P P 的长,故选A.8. 多面体的直观图如图所示,111AE A E ==,111112AD AA EE A D DD DC ======,11CE D E ==,1CD =13CE =,最长棱为1CE ,其长为3,故选C.9. 根据图象,可得()2sin 24x f x π⎛⎫=+⎪⎝⎭,所以332sin 424f πππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,故选B. 10. 法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO过圆心M ,且O 在BM 的延长线上时,OB 1,故选C.法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy-+=⇒+=++11≤+=+取等号条件:ay cx =,令d B O ==,则212d d ≤+,得1d ≤,故选C.1l. 设()()1F x f x x =--,则()()11F x f x x -=--,()()11110F f =--=,对任意的1x ,2x 且12x x <,()()1212f x f x x x -<-,得()()112211f x x f x x --<--,即()()12F x F x <,所以()F x 在R 上是增函数,不等式()1f x x ->即为()()11F x F ->,所以11x ->,2x >,故选B.12. 设2BC r =,则4AC r =,6AB r =,建立如图所示的坐标系,()0,0C ,()12,0O r -,(),0O r -,()2,0O r ,设()3,O a t -,()4,O b v ,则()()22222r a r a t +--=,得t =所以(3O a -,由圆O与圆3O3r a=-,解得23a r=.同理()()222r b r b v+--=,得v=O与圆4O3r b=-,解得23b r=,于是阿基米德“皮匠刀定理”得证.()()222211123222223rr r rSππππ⎛⎫⋅-⋅--⋅⋅ ⎪⎝=⎭阴影2109rπ=,所以22102099812SrrSππ==阴影大半圆,故选B.二、填空题(本大题共4小题,每小题5分,共20分)13. 1 14. ②⇒①③15. 2 16.24+【解析】13. ()0D x=或1,()()1D Dx=.14. ②⇒①③.15. tan60ba=︒=2223c aa-=,224ca=,所以2cea==.16.由题意,112na≤≤,22111122n n n na a a a++⎛⎫=-=-⎪⎝⎭221114n n n na a a a++⇒-+=--①,于是22221114n n n na a a a++++-+-=-②,②-①得()()2210n n n na a a a++-+-=,因为134a=,所以210n na a++-≠,所以2n na a+=,所以数列{}n a是周期数列,周期为2,所以202021224a a==+=.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17. 解:如图,2sinsin 32sin sin 6ABD ACD c S BD c BAD S DC b CAD b ππ∆∆∠==⇒=∠2==,①1151sin sin 2264ABC S bc A bc bc π∆====联立①,②,解得b =c =在ABC ∆中,由余弦定理,得22252cos 682266a b c bc A π=+-=+-=,所以a =18. 解:(1)由折线图中的数据和附注中参考数据得4t =,()72128ii tt=-=∑,()()777111iii iii i i tty y t y t y===--=-∑∑∑2131.994492.01163.95=-⨯=,所以163.950.99165.15r =≈,因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由70.29y =及(1)得()()()71721163.955.8628iii ii tty y btt===≈--=-∑∑$, $70.29 5.86446.85ay bt ≈-⨯==-$, 所以y 关于t 的回归方程为$46.85 5.86y t =+.将2019年对应的代码8t =代入回归方程得$46.85 5.86893.73y =+⨯=. 所以预测2019年全国GDP 总量约为93.73万亿元.19.(1)证明:如图,连接MO 交AB 于N ,连接FN ,MB . 则N 是AB 的中点,2AD NM BC ===.因为FO ⊥平面ABCD ,所以平面FMN ⊥平面ABCD ,又平面ADE ⊥平面ABCD ,所以平面//ADE 平面FMN , 根据题意,四边形ABFE 和DCFE 是全等的直角梯形, 三角形ADE 和NMF 是全等的等腰直角三角形,所以NF MF ==1OF =,在直角三角形BFN 中,NB ==所以AB =2AF =,MB =于是222AF BF AB +=,222MF BF MB +=,所以BF AF ⊥,BF MF ⊥. 因为,AF MF ⊂平面AMF ,AF MF F =I , 所以BF ⊥平面AMF .(2)解:据(1)可知,楔形几何体EF ABCD -由直三棱柱ADE NMF -和四棱锥F BCMN -组成,直三棱柱ADE NMF -的体积为ADE NMF ADE V S AN -∆=⋅12==四棱锥F BCMN -的体积为13F BCMN BCMN V S FO -=⋅12133=⨯=,所以楔形几何体EF ABCD -的体积为3ADE NMF F BCMN V V --+=. 20. 证明:(1)()11'cos 12f x x x =+-, 当2x ≥时,1102x <≤,11112x -<-≤-,()11111cos 1cos cos 102222x x x x +-≤-=-≤,“=”不能同时取到,所以()'0f x <;当02x <<时,()211''sin 02f x x x =--<,所以()'f x 在()0,2上递减, 因为()1'1cos102f =>,()11'2cos 2022f =-<,所以在定义域()0,+∞存在唯一0x ,使()0'0f x =且()01,2x ∈;当00x x <<时,()'0f x >;当0x x >时,()'0f x <,所以0x 是()f x 在定义域()0,+∞上的唯一极值点且是极大值点.(2)存在12x x ≠,使()()12f x f x =,即11122211sin ln 1sin ln 122x x x x x x +--=+--, 得()1212121sin sin ln ln 2x x x x x x ---=-. 设()sin g x x x =-,则()'1cos 0g x x =-≥,()g x 在()0,+∞上递增, 不妨设120x x >>,则()()12g x g x >,即1122sin sin x x x x ->-,1212sin sin x x x x ->-, 所以()()()()1212121211sin sin 22x x x x x x x x ---<---12ln ln x x =-,得12122ln ln x x x x -<-,121212ln ln 2x x x x x x -+<<-2<,124x x <. 21.(1)解:设()2220a b c c -=>,由题设,得c =4c a =,所以4a =,29b =, 所以C 的标准方程为221169x y +=. (2)解:设(),M m n ,切点分别为1P ,2P ,当4m ≠±时,设切线方程为()y n k x m -=-,联立方程,得()221169y n k x m x y -=-⎧⎪⎨+=⎪⎩, 消去y ,得()()()22216932161440k x k n km x n km ++-+--=,① 关于x 的方程①的判别式()()()222221324169161440k n km k n km ⎡⎤∆=--+--=⎣⎦, 化简,得()22216290m k mnk n -++-=,②关于k 的方程②的判别式()()2222244169m n m n ∆=---()224916144m n =+-,因为M 在椭圆221169x y +=外,所以221169m n +>,即229161440m n +->,所以20∆>, 关于k 的方程②有两个实根1k ,2k 分别是切线1MP ,2MP 的斜率.因为12MP MP ⊥,所以121k k =-,即229116n m-=--,化简为2225m n +=. 当4m =±时,可得3n =±,满足2225m n +=,所以M 的轨迹方程为2225x y +=.(3)证明:如图,)2F ,设0P y ⎫⎪⎪⎝⎭,2202022256812577y PQ OP Q y O ⎛⎫=+-=+ ⎪⎝=⎭-, 2222200817PF y y =+=+⎝, 所以222PQ PF =,即2PQ PF =.22.【选修4-4:坐标系与参数方程】解:(1)如图,曲线段C 即为抛物线上一段21122y x x ⎛⎫=--≤≤ ⎪⎝⎭, 端点11,24A ⎛⎫-- ⎪⎝⎭,11,24B ⎛⎫- ⎪⎝⎭, 在A 处的切线斜率为1212⎛⎫-⨯-= ⎪⎝⎭,与y 轴的交点坐标为10,4⎛⎫ ⎪⎝⎭. 因为QA QB ⊥,所以Q 的轨迹是以线段AB 为直径的圆弧(不含端点),以线段AB 的中点10,4M ⎛⎫- ⎪⎝⎭为极点,射线MB 为极轴,建立极坐标系, 则Q 点轨迹的极坐标方程为1022πρθ⎛⎫=<< ⎪⎝⎭.(2)设直线PM 与以10,4M ⎛⎫-⎪⎝⎭为圆心,12为半径的圆交于两点E ,F , 则12ME MF ==, 由相交弦定理,得PA PQ PE PF ⋅=⋅()()214ME PM MF PMPM =+⋅-=-2222211114444t t t ⎡⎤⎛⎫⎛⎫=-+-+=-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦, 当0t =,即()0,0P 时,PA PQ ⋅最大,最大值为316。

云南省文山州广南县第一中学校2024届高三上学期第一次省统测数学模拟试题

云南省文山州广南县第一中学校2024届高三上学期第一次省统测数学模拟试题

一、单选题二、多选题1. 在下列各组向量中,可以作为基底的一组是( )A.B.C.D.2. 在梯形中,,,且,若与交于点,则( )A.B.C.D.3. 下列函数中最小正周期不是的周期函数为( )A.B.C.D.4. 函数的最小正周期和最大值分别是( )A.B.C.D.5. 某地区一个家庭中孩子个数X 的情况如下.X 1230P每个孩子的性别是男是女的概率均为,且相互独立,则一个家庭中男孩比女孩多的概率为( )A.B.C.D.6.已知 是方程的根,是方程的根,则的值为( )A .2B .3C .6D .107. “a=0”是“直线l 1:x+ay a=0与l 2:ax (2a 3)y 1=0”垂直的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8. 已知双曲线的一个顶点是,其渐近线方程为,则双曲线的标准方程是( )A.B.C.D.9. 放射性物质在衰变中产生辐射污染逐步引起了人们的关注,已知放射性物质数量随时间的衰变公式,表示物质的初始数量,是一个具有时间量纲的数,研究放射性物质常用到半衰期,半衰期指的是放射性物质数量从初始数量到衰变成一半所需的时间,已知,右表给出了铀的三种同位素τ的取值:若铀234、铀235和铀238的半衰期分别为,,,则( )物质τ的量纲单位τ的值铀234万年35.58铀235亿年10.2铀238亿年64.75A.B.与成正比例关系C.D.云南省文山州广南县第一中学校2024届高三上学期第一次省统测数学模拟试题三、填空题四、解答题10.已知函数,则下列结论正确的是( )A.的最大值为1B.的图象关于点对称C .在上单调递增D .存在,使得对任意的都成立11. 已知,是夹角为的单位向量,,,下列结论正确的是( )A.B.C.D.在上的投影向量为12. 棱长为6的正四面体的四个顶点均在球的表面上,若点为球面上的任意一点,则的取值可以为( )A.B .3C .5D.13.已知长方体的底面是边长为的正方形,若,则该长方体的外接球的表面积为__________.14. 在四面体PABC中,平面平面ABC ,,,则该四面体的外接球的体积为___________.15. 某学校实行导师制,该制度规定每位学生必须选一位导师,每位导师至少要选一位学生,若,,三位学生要从甲,乙中选择一人做导师,则选中甲同时选中乙做导师的概率为______.16. 已知四棱锥如图所示,其中,,,,平面平面,点在线段上,,点在线段上.(1)求证:;(2)若平面与平面所成角的余弦值为,求的值.17.在正四棱柱中,O为的中点,且点E 既在平面内,又在平面内.(1)证明:;(2)若,,E 为AO 的中点,E 在底面ABCD 内的射影为H ,指出H 所在的位置(需要说明理由),并求线段的长.18. 已知等差数列的各项均为正数.若分别从下表的第一、二、三列中各取一个数,依次作为,且中任何两个数都不在同一行.第一列第二列第三列第一行4511第二行3109第三行876(1)求数列的通项公式;(2)设,数列的前项和为.求证:.19. 已知点A(-2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连接QE并延长交C于点G.证明△PQG是直角三角形.20. 某公司开发了一种产品,有一项质量指标为“长度”(记为l,单位:cm),先从中随机抽取100件,测量发现全部介于 85 cm和155 cm之间,得到如下频数分布表:分组频2922332482数已知该批产品的该项质量指标值服从正态分布,其中近似为样本平均数近似为样本方差 (同一组中的数据用该组区间的中点值作代表).(1)求;(2)公司规定:当时,产品为正品:当时,产品为次品,公司每生产一件这种产品,若是正品,则盈利90元;若是次品,则亏损30元.记为生产一件这种产品的利润,求随机变量的分布列和数学期望.参考数据:,若,则,,21. 在四棱锥中,底面,且,四边形是直角梯形,且,,,,为中点,在线段上,且.(1)求证:平面;(2)求平面与平面夹角的余弦值;(3)求点到平面的距离.。

云南省文山州广南县第一中学校2024届高三上学期第一次省统测数学模拟试题 (2)

云南省文山州广南县第一中学校2024届高三上学期第一次省统测数学模拟试题 (2)

一、单选题二、多选题1. 奇函数满足,当时,,则( )A.B.C.D.2.已知函数的图象的一个对称中心是,则函数图象的一条对称轴是( )A.B.C.D.3. 下图是2023年11月中国的10个城市地铁运营里程(单位:公里)及运营线路条数的统计图,下列判断正确的是()A .这10个城市中北京的地铁运营里程最长且运营线路条数最多B .这10个城市地铁运营里程的中位数是516公里C .这10个城市地铁运营线路条数的平均数为15.4D .这10城市地铁运营线路条数的极差是124. 已知定义域为的函数,其导函数为,且满足,,则( )A.B.C.D.5.椭圆的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线的斜率之积为,则C 的离心率为( )A.B.C.D.6. 中国古代数学名著《九章算术》中“均输”一章有如下问题:“今有竹九节,下三节容量四升,上四节容量三升.问中间二节欲均容各多少.”意思是“今有竹9节,下部分3节总容量4升,上部分4节总容量3升,且自下而上每节容积成等差数列,问中间二节容积各是多少?”按此规律,中间二节(自下而上第四节和第五节)容积之和为( )A.B.C.D.7. 设[x]表示不大于x 的最大整数, 则对任意实数x, y, 有A .[-x]=-[x]B .[x + ]=[x]C .[2x]=2[x]D.8. 函数的极小值点为( )A.B.C.D.9. 已知且满足,则以下是真命题的有( )A.B.C.D.云南省文山州广南县第一中学校2024届高三上学期第一次省统测数学模拟试题 (2)云南省文山州广南县第一中学校2024届高三上学期第一次省统测数学模拟试题 (2)三、填空题四、解答题10. 5G 技术的运营不仅提高了网络传输速度,更拓宽了网络资源的服务范围.目前,我国加速了5G 技术的融合与创新,前景美好!某手机商城统计了5个月的5G 手机销量,如下表所示:月份2020年6月2020年7月2020年8月2020年9月2020年10月月份编号12345销量/部5295185227若与线性相关,由上表数据求得线性回归方程为,则下列说法正确的是( )A .5G 手机的销量逐月增加,平均每个月增加约10台B.C.与正相关D .预计12月份该手机商城的5G 手机销量约为318部11.梯形中,,沿着翻折,使点到点处,得到三棱锥,则下列说法正确的是( )A .存在某个位置的点,使平面B.若的中点为,则异面直线与所成角的大小和平面与平面所成角的大小相等C .若平面平面,则三棱锥外接球的表面积是D .若的中点为,则必存在某个位置的点,使12.已知函数的定义域为,且满足,则( )A.B.C.既是奇函数又是偶函数D.13.若,则过点的切线方程为_________________.14. 设,为单位向量,满足,,,设,的夹角为,则的最小值为_______.15. 过正三棱锥的高的中点作平行于底面的截面,若三棱锥与三棱台的表面积之比为,则直线与底面所成角的正切值为______.16. 已知椭圆的左,右焦点分别为,,过的直线交椭圆于,两点.(1)若直线与椭圆的长轴垂直,,求椭圆的离心率;(2)若直线的斜率为1,,求椭圆的短轴与长轴的比值.17. 在中,角,,所对的边分别为,,,且.(1)求;(2)若,边上的中线的长为1,求的面积.18.已知数列满足.(1)求数列的通项公式;(2)对任意的,令,求数列的前n项和.19.已知函数.(1)常数,若函数在区间上是增函数,求的取值范围;(2)若函数在上的最大值为,求实数的值.20. 已知函数.(1)若,求函数的单调区间;(2)若,且在上,恒成立,求实数的取值范围.21.已知函数.(1)当时,求在点的切线方程;(2)若恒成立,求的取值范围.。

云南省文山州广南县第一中学校2024届高三上学期第一次省统测数学模拟试题

云南省文山州广南县第一中学校2024届高三上学期第一次省统测数学模拟试题

一、单选题二、多选题1. 若函数在上有两个不同的零点,则的取值范围是( )A.B.C.D.2. 已知,,若,则( )A.B.C .5D .103. 在中内角的对边分别为,若,,,则值是( )A.B.C.D.4. 已知为虚部单位,复数为纯虚数,则的虚部为( )A .B.C.D.5.函数的定义域为( )A.B.C.D.6.化简A.B.C.D.7.已知等差数列的前n项和为,,.若对任意且,总有恒成立,则实数的最小值为( )A .1B.C.D.8. 已知函数在区间上有且仅有4条对称轴,给出下列四个结论:①在区间上有且仅有3个不同的零点;②的最小正周期可能是;③的取值范围是;④在区间上单调递增,其中正确的命题有( )A .②③B .①③C .②④D .①②③④9. 已知函数及其导函数的定义域均为,记,且,,则( )A.B .的图象关于点对称C.D .()10. 已知α,β是空间中两个不同的平面,m ,n 是空间中两条不同的直线,则给出的下列说法中,正确的是( )A .若,,则B .若,m ∥,则C .若,则D .若,则11. 已知函数则( )A .的最小正周期为B.在上单调递增C .直线是图象的一条对称轴D.的图象可由的图象向左平移个单位长度得到云南省文山州广南县第一中学校2024届高三上学期第一次省统测数学模拟试题云南省文山州广南县第一中学校2024届高三上学期第一次省统测数学模拟试题三、填空题四、解答题12. 函数的图象经过怎样的平移可以得到函数的图象( )A .向左平行移动个单位长度B .向右平行移动个单位长度C .向左平行移动个单位长度D .向右平行移动个单位长度13. 如图,四棱锥中,底面为四边形.其中为正三角形,又.设三棱锥,三棱锥的体积分别是,三棱锥,三棱锥的外接球的表面积分别是.对于以下结论:①;②;③;④;⑤;⑥.其中正确命题的序号为______.14. 如图,位于山西省朔州市应县佛宫寺内的释迦塔,俗称应县木塔,是我国现存最高最古老的木结构塔式建筑,木塔顶部可以近似地看成一个正八棱锥,其侧面和底面的夹角大小为,则该正八棱锥的高和底面边长之比为________.(参考数据:)15. 已知角,的终边关于原点O对称,则______.16. 记的内角所对的边分别为,,,已知,且,,依次成等比数列.(1)求;(2)若,求的周长.17. 已知函数,为的导函数.(1)证明:当时,;(2)判断函数的零点个数.18.在中, ,.(1)求的长;(2)设是平面内一动点,且满足,求的取值范围.19.如图,已知圆锥的底面半径,经过旋转轴SO 的截面是等边三角形SAB ,点Q 为半圆弧AB 的中点,点P 为母线SA 的中点.(1)求此圆锥的表面积:(2)求异面直线PQ 与SO 所成角的大小.20. 在中,角所对的边分别为记的面积为,已知.(1)求角的大小;(2)若,求的最大值.21.设函数,.(1)讨论函数的单调性;(2)如果对于任意的,都有成立,试求的取值范围.。

云南省文山壮族苗族自治州2024年数学(高考)部编版模拟(自测卷)模拟试卷

云南省文山壮族苗族自治州2024年数学(高考)部编版模拟(自测卷)模拟试卷

云南省文山壮族苗族自治州2024年数学(高考)部编版模拟(自测卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题已知集合,,则()A.B.C.D.第(2)题已知圆与圆相交所得的公共弦长为,则圆的半径()A.B.C.或1D.第(3)题已知集合,,则()A.B.C.D.第(4)题已知等差数列中,与的等差中项为8,且,则()A.6B.9C.12D.18第(5)题已知等比数列满足,其前项积为,则()A.B.C.D.第(6)题已知是坐标原点,,是椭圆的左、右焦点,是椭圆在第一象限上的点,且,是的角平分线上的动点,则的最小值为()A.B.C.D.3第(7)题已知正方体以某直线为旋转轴旋转角后与自身重合,则不可能为()A.B.C.D.第(8)题复数满足(为虚数单位),则复数的共轭复数为()A.B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。

在每小题给出的四个选项中,至少有两个选项正确。

全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题已知椭圆的左、右焦点为、,点为椭圆上的点不在轴上),则下列选项中正确的是()A.椭圆的长轴长为B.椭圆的离心率C.△的周长为D.的取值范围为第(2)题若实数,满足,,,则()A.且B.的最小值为C.的最小值为7D.第(3)题已知函数,则下列判断正确的是()A.若,且,则B.若,且,则C.是偶函数D.在区间上单调递增三、填空(本题包含3个小题,每小题5分,共15分。

请按题目要求作答,并将答案填写在答题纸上对应位置) (共3题)第(1)题已知函数.若函数存在5个零点,则实数的取值范围为_________.第(2)题已知为圆上三点,且,则____________.第(3)题某学校拟开展研究性学习活动,现有四名优秀教师将对三个研究性学习小组予以指导,若每个小组至少需要一名指导教师,且每位指导教师都恰好指导一个小组,则不同的指导方案数为___________.四、解答题(本题包含5小题,共77分。

云南2020届高三下学期高考适应性月考卷(七)文科数学(含答案)z

云南2020届高三下学期高考适应性月考卷(七)文科数学(含答案)z

2020届云南高三下学期高考适应性月考卷(文科)数学(七)一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1.体育节到来,多数同学都会参加至少一个运动项目.设集合U={甲班全体同学},集合A= {参加跳高的甲班同学},集合B= {参加跳远的甲班同学},则()U A B ⋂ð)表示的是A.既参加跳高又参加跳远的甲班同学B.既不参加跳高也不参加跳远的甲班同学C.参加跳高或跳远的甲班同学D.不同时参加跳高和跳远的甲班同学2.已知复数13,z i =-+则28z= .13A i -+.13B i -- .13C i +.13D i - 3.已知平面向量,,a b rr 命题“||2||a b =r r ”是“|2||2|a b a b +=-r r r ”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.某工厂为了对40个零件进行抽样调查,将其编号为00, 01, 38, 39.现要从中选出5个,利用下面的随机数表,从第一行第3列开始,由左至右依次读取,则选出来的第5个零件编号是A.36B.16C.11D.145. 一场考试之后,甲、乙、丙三位同学被问及语文、数学、英语三个科目是否达到优秀时,甲说:有一个科目我们三个人都达到了优秀;乙说:我的英语没有达到优秀;丙说:乙达到优秀的科目比我多则可以完全确定的是A.甲同学三个科目都达到优秀B.乙同学只有一个科目达到优秀C.丙同学只有一个科目达到优秀D.三位同学都达到优秀的科目是数学6.朱世杰是元代著名的数学家,有“中世纪世界最伟大的数学家”之称.其著作《四元玉鉴》是一部成就辉煌的数学名著,受到数学史研究者的高度评价.《四元玉鉴》下卷“杂范类会”中第一问为: "今有沈香立圆球一只,径十寸,今从顶截周八寸四分,问厚几何?"大意为现有一个直径为10的球,从上面截一小部分,截面圆周长为8.4,问被截取部分几何体的高为多少.已知朱世杰是以圆周率为3来计算,则《四元玉鉴》中此题答案为(注:24.823.04=)A.0.2B.0.4C.0.6D.0.87.函数25()x xx f x e e -=+的图象大致为8.已知抛物线22(0)y px p =>的准线与椭圆22194x y +=相交的弦长为3,则p= A.1 B.2 C.3 D.49.在正四面体A-BCD 中, E. F 分别为AB, CD 的中点,则下列命题不正确的是 A. EF ⊥ABB. EF ⊥CDC.EF 与AC 所成角为4πD.EF 与BD 所成角为3π 10. 如图1,已知在算法中“\”和“mod”分别表示取商和取余数.为了验证三位数卡普雷卡尔“数字黑洞”( 即输入一个无重复数字的三位数,经过如图的有限次的重排求差计算,结果都为495).小明输入x=325,则输出的i=A.3B.4C.5D.611.已知函数2()cos ,f x x x =-1351(log 3),(log ),5a f b f ==C=31(()),5fA. a>b>cB. b>a>cC. c>b>aD. c>a>b12.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位我们来看一种简单的“特殊”状况:如图2所示,已知三个发射台分别为A, B. C 且刚好三点共线,已知AB=34海里,AC=20海里.现以AB 的中点为原点, AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线22(27)13664x y --=的左支上,若船P 上接到A 台发射的电磁波比B 台电磁波早185.2μs(已知电磁波在空气中的传播速度约为0.3km/μs.1海里=1.852km),则点P 的坐标(单位:海里)为A.903211(,)7B.135322(,7 32.(17,)3C ±D. (45,162)±二、填空题(本大题共4小题,每小题5分,共20分) 13. 曲线2(1)ln y x x =+在(1, 0)处的切线方程为_____14.已知公差不为0的等差数列{}n a 满足13,a =且1413,,a a a 成等比数列,则{}n a 的前n 项和n S =____15. 已知x, y 满足315,212,,x y x y x y +≤⎧⎪+≤⎪⎨∈⎪⎪∈⎩N N,则z=3x+2y 的最大值为____16.已知ω>14,函数()sin()4f x x ωπ=+在区间(π, 2π)上单调. 1(,1].4ω∈①②f(x)在区间(π, 2π)上单调递减;③f(x)在区间(0, π)上有零点;④f(x) 在区间(0, π)上的最大值一定为1. 以上四个结论,其中正确结论的编号是____三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分12分)华为手机作为全球手机销量第二位,一直深受消费者喜欢。

2020年高中阶段学校招生统一考试适应性考试数学试题含答案

2020年高中阶段学校招生统一考试适应性考试数学试题含答案

2020年高中阶段学校招生统一考试适应性考试数 学 试 卷全卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,共4页。

全卷满分120分,考试时间共120分钟。

答题前,请考生务必在答题卡上正确填写自己所在的学校、班级、姓名、考号。

考生作答时,须将答案写在答题卡上,在试卷、草稿纸上答题无效。

选择题每小题选出的答案须用2B 铅笔在答题卡上把对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案。

非选择题须用0.5毫米黑色墨迹签字笔在答题卡上对应题号位置作答。

作图题须画在答题卡上,可先用铅笔绘出,所得图形经过确认后,再用0.5毫米黑色墨迹签字笔描画清楚。

第I 卷(选择题 共36分)一、选择题(本大题共12个小题,每小题3分,共36分;在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡上相应的位置) 1.3-的倒数是A .3B .3-C .31-D .312.中国教育在线发布的《2019年全国研究生招生调查报告》显示,2019年全国硕士研究生报名人数强势增长,达到2900000人,2900000这个数用科学记数法表示为 A .5109.2⨯B .6109.2⨯C .7109.2⨯D .51029⨯3.下列结果等于46a 的是A .2223a a +B .2223a a ⋅C .22)3(aD .2639a a ÷4.下列图形中,是正方体的平面展开图的是A .B .C .D . 5. 如图,AB ∥CD ,点E 在CA 的延长线上. 若°50=∠BAE , 则ACD ∠的大小为 A .°120B . °130C .°140D .°1506.据统计,某住宅楼30户居民今年三月份最后7天每天实行垃圾分类的户数依次是:27,30,29,26,25,28,29,那么这组数据的中位数和众数分别是A .25,30B .25 ,29C .28,30D .28,297.菱形ABCD 的周长是20,对角线AC ,BD 相交于点O ,若6=BD ,则菱形ABCD 的面积是E DCBA第5题图A .12B .24C .48D .968.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙 购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是A .⎩⎨⎧=-=-4738x y x yB .⎩⎨⎧=-=-4738y x x yC .⎩⎨⎧=-=-4738x y y xD .⎩⎨⎧=-=-4738y x y x 9.如果关于x 的一元二次方程012)1(2=+--x x k 有两个不相等的实数根,则k 的取 值范围是A . 2<k 且1≠kB .2<k 且0≠kC . 2>kD .2-<k 10.如图,直线x y 3=经过点A ,作x AB ⊥轴于点B ,将ABO ∆绕点B 顺时针旋转︒60得到CBD ∆,若点B 的坐标为(1,0), 则点C 的坐标为 A .(3,21)B .(25,21) C .(3,23) D .(25,23) 11.如图,在正方形ABCD 中,a AB =,E 、F 分别是AB 、AD 边上的点,BF ,DE 相交于点G ,若AB AE 31=,AD AF 31=,则 四边形BCDG 的面积是A .2107aB .22417aC .243aD . 254a12.已知一次函数a ax y 3=1-,二次函数32=222-)-(-x a x y .若x >0时021≥y y 恒成立,则a 的取值范围是A. 2≤-a 或2≥a B . 2≤≤2a -且0≠a C . 2=-a D . 2=a 第II 卷(非选择题 共84分)注意事项:用0.5毫米黑色墨迹签字笔在答题卡上对应题号位置作答,在试卷上作答无效。

云南省2020届高三适应性考试数学试题(A卷)(理)

云南省2020届高三适应性考试数学试题(A卷)(理)

云南省2020届高三适应性考试数学试题(A 卷)(理)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有 一项是符合题目要求的。

1.已知集合2{|0}A x x x =+≤,{|ln(21)}B x y x ==+,则A B =( )A .1(,0]2-B .1[,0]2-C .1[0,)2D .1[1,]2--2.已知i 是虚数单位,复数2(12i)-的共轭复数虚部为( ) A .4iB .3C .4D .4-3.已知向量(3,2)=a ,(1,1)=-b ,若()λ+⊥a b b ,则实数λ=( ) A .12-B .12C .1-D .14.已知(1)n x +的展开式的各项系数和为32,则展开式中4x 的系数为( ) A .5B .10C .15D .205.已知命题:0p x ∀≥,1x e ≥或sin 1x ≤,则p ⌝为( ) A .0x ∃<,1x e <且sin 1x > B .0x ∃<,1x e ≥或sin 1x ≤ C .0x ∃≥,1x e <且sin 1x >D .0x ∃≥,1x e <或sin 1x >6.已知函数()f x 满足(1)(1)f x f x -=+,当(,1]x ∈-∞时,函数()f x 单调递减,设41lo ()g 2a f =,13lo ()g 3b f =,3lo (9)gc f =,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<7.已知一个几何体的三视图如右图所示,则该几何体的表面积为( )A.4+12π 12π+ D.4+ 8.受新冠肺炎疫情影响,某学校按上级文件指示,要求错峰放学,错峰有序吃饭。

高三年 级一层楼六个班排队,甲班必须排在前三位,且丙班、丁班必须排在一起,则这六个班排队 吃饭的不同安排方案共有( ) A .240种B .188种C .120种D .156种9.如图,在正方体1111ABCD A B C D -中,点P 在线段1BC 上运动,则下列判断中正确的是( )①平面1PB D ⊥平面1ACD ②.1A P ∥平面1ACD③异面直线1A P 与1AD 所成角的取值范围是π(0,]3④.三棱锥1D APC -的体积不变 A. ①③ B. ①②④ C. ①③④ D. ③④ 10.若函数)2,0)(sin(2)(πθπωθω<<>+=x x f 的图象过点)(,30x f ),(在 ),(π0 只有两个零点,则ω的最值情况为 A .最小值为31,最大值为34B .无最小值,最大值为34C .无最小值,最大值为37D .最小值为31,最大值为37 11.数学上有很多著名的猜想,角谷猜想就是其中之一,它是指对于任意一个正整数,如果 是奇数,则乘3加1,如果是偶数,则除以2,得到的结果再按照上述规则重复处理,最终 总能够得到1。

云南省文山州广南县第一中学高三最后一模数学试题含解析

云南省文山州广南县第一中学高三最后一模数学试题含解析

高考数学期末测试卷必考(重点基础题)含解析考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.一个几何体的三视图如图所示,则这个几何体的体积为( )A .32363π+B .836π+C .3231633π+D .16833π+ 2.执行下面的程序框图,如果输入1995m =,228n =,则计算机输出的数是( )A .58B .57C .56D .553.已知函数()222ln 02x x e f x e x x e⎧<≤=⎨+->⎩,,,存在实数123x x x <<,使得()()()123f x f x f x ==,则()12f x x 的最大值为( )A .1eB eC 2eD .21e4.已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到3次结束为止.某考生一次发球成功的概率为()01p p <<,发球次数为X ,若X 的数学期望() 1.75E X >,则p 的取值范围为( ) A .10,2⎛⎫ ⎪⎝⎭ B .70,12⎛⎫ ⎪⎝⎭ C .1,12⎛⎫ ⎪⎝⎭ D .7,112⎛⎫ ⎪⎝⎭5.某中学有高中生1500人,初中生1000人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高生和初中生中抽取一个容量为n 的样本.若样本中高中生恰有30人,则n 的值为( )A .20B .50C .40D .606.已知向量a ,b ,b =(1,且a 在b 方向上的投影为12,则a b ⋅等于( ) A .2 B .1 C .12D .0 7.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,指数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有( )A .12种B .24种C .36种D .48种8.设a ,b ,c 为正数,则“a b c +>”是“222a b c +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不修要条件9.已知ABC ∆中,角A 、B 所对的边分别是a ,b ,则“a b >”是“A B >”的( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充分必要条件10.已知空间两不同直线m 、n ,两不同平面α,β,下列命题正确的是( )A .若m α且n α,则m nB .若m β⊥且m n ⊥,则n βC .若m α⊥且m β,则αβ⊥D .若m 不垂直于α,且n ⊂α,则m 不垂直于n11.某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( )A .58厘米B .63厘米C .69厘米D .76厘米12.幻方最早起源于我国,由正整数1,2,3,……,2n 这2n 个数填入n n ⨯方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫n 阶幻方.定义()f n 为n 阶幻方对角线上所有数的和,如(3)15f =,则(10)f =( )A .55B .500C .505D .5050二、填空题:本题共4小题,每小题5分,共20分。

新课标2020届高中招生适应性考试(含答案) 数学测试卷.docx

新课标2020届高中招生适应性考试(含答案) 数学测试卷.docx

新课标2020届高中招生适应性考试(含答案)数学测试卷注意事项:1.本试卷满分120分,考试时间120分钟.2.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.3.答选择题时,必须使用2B铅笔将答题卡上对应的答案标号涂黑,如需改动,用橡皮擦擦干净,再选涂其它答案标号;答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上;所有题目必须在答题卡上作答,在试卷上答题无效.4.不允许使用计算器进行运算,凡无精确度要求的题目,结果均保留准确值.5.凡作图题或辅助线均用签字笔画图.第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,请将正确选项的字母填涂在答题卡上相应的位置.1.﹣3的相反数是A.3 B.﹣3 C.D.﹣2.下列计算正确的是A.a3+a3=2a3B.a3•a2=a6C.a6÷a2=a3D.(a3)2=a53.根据市统计局发布的统计数据显示,2018年全市生产总值为138000000000元,按可比价格计算,比上年增长7.3%,数据138000000000元用科学记数法表示为A.1.38×1010元B.1.38×1011元C.1.38×1012元D.0.138×1012元4.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为A.85°B.75°C.60°D.30°5.由五个大小相同的正方体组成的几何体如图所示,那么它的主视图是A.B.C. D.6.如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是A.75°B.70°C.65°D.35°7.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:某同学分析上表后得出如下结论:(1)甲、乙两班学生的成绩平均成绩相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动比乙班大.上述结论中,正确的是A.①②B.②③C.①③D.①②③8.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是A.B.C.D.9.若正多边形的一个外角是60︒,则该正多边形的内角和为A.360︒B.540︒C.720︒D.900︒10.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AEG=58°,则∠GHC等于A.112°B.110°C.108°D.106°11.如图,AB是圆锥的母线,BC为底面半径,已知BC=6cm,圆锥的侧面积为15πcm2,则sin∠ABC的值为A.B.C .D .12.如图,△ABC 是等边三角形,△ABD 是等腰直角三角形,∠BAD =90°,AE ⊥BD 于点E ,连CD 分别交AE ,AB 于点F ,G ,过点A 作AH ⊥CD 交BD 于点H .则下列结论:①∠ADC =15°;②AF =AG ;③AH =DF ;④△AFG ∽△CBG ;⑤AF =(﹣1)EF .其中正确结论的个数为 A .5 B .4C .3D .2第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.请将正确答案直接填在答题卡上相应的位置上).13.分解因式:3x 2﹣27= .14.数据5,5,4,2,3,7,6的中位数是 . 15.如图,在△ABC 和△DEF 中,点B ,F ,C ,E 在同一直线上,BF=CE ,AB ∥DE ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是 (只需写一个,不添加辅助线).16.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y (千米)与时间t (分钟)的关系如图所示,则上午8:45小明离家的距离是 千米.17.如图,在△ABC 中,AC=BC=2,AB=1,将它沿AB 翻折 得到△ABD ,点P 、E 、F 分别为线段AB 、AD 、DB 的任意点, 则PE +PF 的最小值是 .18. 如图,过原点的直线交双曲线xy 33于A 、B 以AB 为边的等边三角形ABC 交x 轴于D ,D 是AC 中点, 19. 则C 点坐标为 .三、解答题:本大题共8小题,共66分.请把解答过程写在答题卡上相应的位置上.19.(6分)计算:|﹣2|﹣+23﹣(1﹣π)0.20.(6)解不等式组:,并在数轴上表示其解集.21.(8分)设x1,x2是关于x的方程x2-4x+k+1=0的两个实数根,是否存在实数k,使得x1x2>x1+x2成立?请说明理由.22.(8分)如图,在数学活动课上,小丽为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.已知旗杆与教学楼的距离BD=9m,请你帮她求出旗杆的高度(结果保留根号).23.(9分)杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,杨老师一共调查了名学生,其中C类女生有名,D类男生有名;(2)补全上面的条形统计图和扇形统计图;(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.24.(9分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件? 25.(9分)如图,在△ABC 中,∠ACB=90°,AC=BC ,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,连结DE 交BC 于点F ,连接BE .(1)求证:△ACD ≌△BCE ;(2)当AD=1,DB=3时,求CF 的长.26.(11分)如图,在平面直角坐标系中,直线y =x +2与x 轴交于点A ,与y 轴交于点C ,抛物线y =x 2+bx +c 经过A 、C 两点,与x 轴的另一交点为点B .(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点;①连接BC 、CD ,设直线BD 交线段AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2,求的最大值;②过点D 作DF ⊥AC ,垂足为点F ,连接CD ,是否存在点D ,使得△CDF 与△ABC 相似,若存在,直接写出点D 的横坐标;若不存在,请说明理由.121212S S九年级数学试题答案及评分意见一、选择题 AABB CBDB CDBB 二、填空题13.3(x +3)(x ﹣3);14.5;15.AB=ED ;16.1.5;17.415;18.)3,33( . 三、19.(6分)计算:|﹣2|﹣+23﹣(1﹣π)0.解:原式=2﹣3+8﹣1…………………………………4分=6.…………………………………6分20.(6)解不等式组:,并在数轴上表示其解集.解:解不等式①,得:x ≤2;…………………………………1分 解不等式②,得:x >1,…………………………………2分 ∴不等式组的解集为:1<x ≤2.…………………………………4分 将其表示在数轴上,如图所示.…………………………………6分21.解:不存在.………………………………………………………………1分理由:由题意得Δ=16-4(k +1)≥0,解得k ≤3. ………………………………4分 ∵x 1,x 2是一元二次方程的两个实数根,∴x 1+x 2=4,x 1x 2=k +1,……………5分 由x 1x 2>x 1+x 2得k +1>4,∴k >3,………………………………7分 ∴不存在实数k 使得x 1x 2>x 1+x 2成立………………………………8分 22.解:在Rt △ACF 中, ∵tan ∠ACF=,∴tan30°=,∴=,∴AF=3m ,…………………………………3分在Rt △BCD 中,∵∠BCD=45°,∴BD=CD=9m ,……………………6分 ∴AB=AD +BD=3+9(m ).…………………………………8分23.解:(1)20、2、1;…………………………………3分(2)补全图形如下:……………………………………………………………………5分(3)因为A类的3人中,女生有2人,所以所选的同学恰好是一位女同学的概率为.…………………………………9分24.解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.………1分根据题意,得,=,…………………………………2分解得x=40.经检验,x=40是原方程的解.…………………………………3分答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;…………………4分(2)甲乙两种商品的销售量为=50.…………………………………5分设甲种商品按原销售单价销售a件,则(60﹣40)a+(60×0.7﹣40)(50﹣a)+(88﹣48)×50≥2460,……………………7分解得a≥20.…………………………………8分答:甲种商品按原销售单价至少销售20件.…………………………………9分25.(9分)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=1,DB=3时,求CF的长.解:(1)由题意可知:CD=CE ,∠DCE=90°,…………………………………2分 ∵∠ACB=90°,∴∠ACD=∠ACB ﹣∠DCB , ∠BCE=∠DCE ﹣∠DCB ,∴∠ACD=∠BCE ,…………………………………4分 在△ACD 与△BCE 中,∴△ACD ≌△BCE (SAS )…………………………………5分 (2)过C 作CG ꓕAB 于G ,…………………………………6分 ∵在△ABC 中,∠ACB=90°,AC=BC ,AD=1,DB=3, ∴CG=2,DG=1∴CD=CE=5,BC=22,…………………………………7分 易证△ECF 相似于△BCE , 可得ECCFBC EC =, 可得425=CF …………………………………9分 26.…………………………………3分G(2)①如图,令y =0, ∴-12x 2-32x +2=0, ∴x 1=-4,x 2=1, ∴B (1,0),过D 作DM ⊥x 轴交AC 于M ,过B 作BN ⊥x 轴交于AC 于N , ∴DM ∥BN , ∴△DME ∽△BNE , ∴12S DE DMS BE BN==, 设D (a ,-12a 2-32a +2), ∴M (a ,12a +2), ∵B (1.0), ∴N (1,52), ∴22121214225552a a S DM =(a )S BN--==-++; ∴当a =2时,12S S 的最大值是45;…………………………………7分(3))825,23();2,3(21--D D …………………………………11分11数学试卷第页,共5页。

云南省文山州广南县第一中学校2024届高三上学期第一次省统测数学模拟试题(3)

云南省文山州广南县第一中学校2024届高三上学期第一次省统测数学模拟试题(3)

一、单选题二、多选题1. 设,,,则( )A.B.C.D.2. 已知函数的定义域为,值域为,则的取值范围是( )A.B.C.D.3. 设双曲线的左、右顶点分别为,,点C在双曲线上,的三个内角分别用,,表示,若,则双曲线的离心率为( )A.B.C .2D.4. 在的展开式中,的系数为( )A.B.C.D.5. 总体由编号为01,02,,49,50的50个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,则选出的第4个个体的编号为附:第6行至第9行的随机数表2748 6198 7164 4148 7086 2888 8519 16207477 0111 1630 2404 2979 7991 9683 51253211 4919 7306 4916 7677 8733 9974 67322635 7900 3370 9160 1620 3882 7757 4950A .3B .19C .38D .206.的展开式中的系数为A.B.C.D.7. 设,,,则( )A.B.C.D.8. 设函数,则( )A .是奇函数,且在(0,+∞)单调递增B .是奇函数,且在(0,+∞)单调递减C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减9. 已知定义在R上的奇函数满足:,则( )A.B.C.D.10. 下列说法正确的是( )A .系统抽样在起始部分抽样时不能采用简单随机抽样;B .标准差描述了一组数据围绕平均数波动的大小,标准差越大,数据的离散程度就越大;C .用相关系数判断线性相关强度,当越接近于1,变量的线性相关程度越强;D .相对样本点的随机误差是.云南省文山州广南县第一中学校2024届高三上学期第一次省统测数学模拟试题(3)云南省文山州广南县第一中学校2024届高三上学期第一次省统测数学模拟试题(3)三、填空题四、解答题11. 已知符号函数下列说法正确的是( )A .函数是奇函数( )B.对任意的C .函数的值域为D.对任意的12.已知直线与圆总有两个不同的交点为坐标原点,则( )A .直线过定点B.C .当时,D .当时,的最小值为13. 已知点P 是直线:和:(m,,)的交点,点Q 是圆C:上的动点,则的最大值是__________.14. 命题“存在x ∈R ,使得x 2+2x+5=0”的否定是15.函数的最小正周期为______________.16. 已知函数.(1)讨论函数的单调区间;(2)当时,求证:.17. 已知,且(1)证明:(2)若恒成立,求的取值范围18. 在钝角中,角,,所对的边分别是,,,且.(1)求的值.(2)若的外接圆半径为,,求的面积.19. 已知函数,.(1)求的单调区间;(2)当时,,求的取值范围;(3)证明:,且.20. 已知等差数列,首项,其前项和为,点在斜率为1的直线上.(1)求数列的通项公式;(2)若为数列的前项和,求证:.21.在中,内角所对的边分别为,且.(I )求角;(II)若,求的面积.。

云南省文山州广南县第一中学2025届高考数学倒计时模拟卷含解析

云南省文山州广南县第一中学2025届高考数学倒计时模拟卷含解析

云南省文山州广南县第一中学2025届高考数学倒计时模拟卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.过抛物线()220y px p =>的焦点F 的直线与抛物线交于A 、B 两点,且2AF FB =,抛物线的准线l 与x 轴交于C ,ACF ∆的面积为AB =( )A .6B .9C .D .2.“”αβ≠是”cos cos αβ≠的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.正三棱柱111ABC A B C -中,1AA =,D 是BC 的中点,则异面直线AD 与1A C 所成的角为( ) A .6π B .4π C .3π D .2π 4.把函数2()sin f x x =的图象向右平移12π个单位,得到函数()g x 的图象.给出下列四个命题 ①()g x 的值域为(0,1]②()g x 的一个对称轴是12x π=③()g x 的一个对称中心是1,32π⎛⎫ ⎪⎝⎭ ④()g x 存在两条互相垂直的切线其中正确的命题个数是( )A .1B .2C .3D .45.设i 是虚数单位,复数1i i +=( ) A .1i -+ B .-1i -C .1i +D .1i -6的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为43π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为( )A .212-B .212+C .612-D .312- 7.某校8位学生的本次月考成绩恰好都比上一次的月考成绩高出50分,则以该8位学生这两次的月考成绩各自组成样本,则这两个样本不变的数字特征是( )A .方差B .中位数C .众数D .平均数 8.若点位于由曲线与围成的封闭区域内(包括边界),则的取值范围是( ) A . B . C . D .9.i 是虚数单位,若17(,)2i a bi a b R i +=+∈-,则乘积ab 的值是( ) A .-15 B .-3 C .3 D .1510.已知,x y 满足001x y x y x -⎧⎪+⎨⎪⎩,则32y x --的取值范围为( ) A .3,42⎡⎤⎢⎥⎣⎦ B .(1,2] C .(,0][2,)-∞+∞ D .(,1)[2,)-∞⋃+∞11.做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X 的期望为( )A .B .C .1D .212.已知函数13log ,0()1,03x x x f x a x >⎧⎪⎪=⎨⎛⎫⎪⋅≤ ⎪⎪⎝⎭⎩,若关于x 的方程[()]0f f x =有且只有一个实数根,则实数a 的取值范围是( )A .(,0)(0,1)-∞ B .(,0)(1,)-∞⋃+∞ C .(,0)-∞ D .(0,1)(1,)⋃+∞二、填空题:本题共4小题,每小题5分,共20分。

2024届云南省文山州第一中学数学高三上期末考试模拟试题含解析

2024届云南省文山州第一中学数学高三上期末考试模拟试题含解析

2024届云南省文山州第一中学数学高三上期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在ABC 中,3AB =,2AC =,60BAC ∠=︒,点D ,E 分别在线段AB ,CD 上,且2BD AD =,2CE ED =,则BE AB ⋅=( ). A .3- B .6-C .4D .92.记集合(){}22,16A x y xy =+≤和集合(){},4,0,0B x y x y x y =+≤≥≥表示的平面区域分别是1Ω和2Ω,若在区域1Ω内任取一点,则该点落在区域2Ω的概率为( ) A .14πB .1πC .12πD .24ππ- 3.设a b c ,,为非零实数,且a c b c >>,,则( ) A .a b c +> B .2ab c >C .a b2c +> D .112a b c+> 4.中,如果,则的形状是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形5.已知(,)a bi a b R +∈是11ii +-的共轭复数,则a b +=( ) A .1-B .12- C .12D .16.已知定义在R 上的函数||()21x m f x -=-(m 为实数)为偶函数,记()0.5log 3a f =,()2log 5b f =,(2)c f m =+则a ,b ,c 的大小关系为( ) A .a b c <<B .a c b <<C .c a b <<D .c b a <<7.已知b a bc a 0.2121()2,log 0.2,===,则,,a b c 的大小关系是( ) A .a b c <<B .c a b <<C .a c b <<D .b c a <<8.35(1)(2)x y --的展开式中,满足2m n +=的m nx y 的系数之和为( )A .640B .416C .406D .236-9.设()f x 是定义在实数集R 上的函数,满足条件()1y f x =+是偶函数,且当1x ≥时,()112xf x ⎛⎫=- ⎪⎝⎭,则()3log 2a f =,31log2b f ⎛⎫=- ⎪⎝⎭,()3c f =的大小关系是( ) A .a b c >>B .b c a >>C .b a c >>D .c b a >>10.已知||3a =,||2b =,若()a ab ⊥-,则向量a b +在向量b 方向的投影为( ) A .12B .72C .12-D .72-11.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为( )A 3B .36C 3D 2312.已知函数()2cos (0)3f x x πωω⎛⎫=-> ⎪⎝⎭在,32ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围( ) A .2,23⎡⎤⎢⎥⎣⎦B .20,3⎛⎤ ⎥⎝⎦C .2,13⎡⎤⎢⎥⎣⎦D .(0,2]二、填空题:本题共4小题,每小题5分,共20分。

2020届云南省名校高考适应性月考统一考试数学(文)试题Word版含解析

2020届云南省名校高考适应性月考统一考试数学(文)试题Word版含解析

2020届云南省名校高考适应性月考统一考试数学(文)试题一、单选题1.已知全集{}U 0,1,2,3,4,=,若{}A 0,2,3=,{}B 2,3,4=,则()()U UA B ⋂=痧( )A.∅B.{}1C.{}0,2D.{}1,4【答案】B【解析】因为全集{}U 0,1,2,3,4,=,所以{}14U A ,=ð,{}01U B =,ð, 因此()(){}1U UA B ⋂=痧,选B.2.已知复数z 满足(1+i )z =2,则|z |等于()A .12B .2C .2D 【答案】D【解析】根据方程解出21iz =+,再化简1z i =-,最后求z . 【详解】解析:因为()1i 2z +=,所以()()()21i 21i 1i 1i 1i z -===-++-,所以z =,选D . 【点睛】本题考查了复数的计算,属于简单题型.3.某学校为了解1000名新生的近视情况,将这些学生编号为000,001,002,…,999,从这些新生中用系统抽样的方法抽取100名学生进行检查,若036号学生被抽到,则下面4名学生中被抽到的是() A .008号学生 B .200号学生C .616号学生D .815号学生【答案】C【解析】根据已知条件可知,1000人抽取100人,那么分成100组,每组10人,那么组距就是10,根据条件可知编号的末尾都是6,即可得到答案. 【详解】解析:由题意得抽样间隔为100010100=,因为036号学生被抽到,所以被抽中的初始编号为006号,之后被抽到的编号均是10的整数倍与6的和,选C .【点睛】本题考查了系统抽样,属于简单题型.4.设a =0.60.6,b =log 0.61.5,c =1.50.6,则a ,b ,c 的大小关系是() A .a <b <c B .a <c <bC .b <a <cD .b <c <a【答案】C【解析】这是三个不同类型的数字,所以和中间值0和1比较大小,从而得到,,a b c 的大小关系. 【详解】解析:因为0.6000.60.61a <=<<,0.60.6log 1.5log 10b =<<,0.601.5 1.51c =>>,所以b a c <<,选C . 【点睛】本题考查了指数和对数比较大小,一般同类型的数按单调性比较大小,或是和中间值0,1比较大小.5.若平面单位向量a r ,b r ,c r不共线且两两所成角相等,则a b c ++r r r =()A B .3C .0D .1【答案】C【解析】首先判断向量两两所成的角为120o ,再根据a b c ++=rrr.【详解】解析:设向量,a b rr 两两所成的角为θ ,则平面不共线向量a r ,b r ,c r 的位置关系只有一种,即两两所成的角为120o ,所以120θ=o .a b c ++===r r r 当120θ=o时,0a b c ++=r r,选C .【点睛】本题考查了向量数量积的运算,本题的关键是确定向量两两所成的角是120o ,意在考查向量数量积求模的基本知识.6.cos 285°=()A B C D 【答案】A【解析】首先根据诱导公式()cos 285cos 27015sin15=+=oo oo,再化为两角差的计算公式()sin15sin 4530=-o o o 计算结果.【详解】解析:()()1cos 285cos 27015sin15sin 4530sin 45cos30cos 45sin 302︒=︒+︒=︒=︒-︒=︒︒-︒︒A .【点睛】本题考查了诱导公式以及两角差的正弦公式,意在考查转化与化归和计算能力. 7.棱长为4的正方体的所有棱与球O 相切,则球的半径为()A .B .C .D .42【答案】C【解析】当球与正方体的棱相切时,即球的直径是正方体的面对角线,根据棱长为4,可求得球的半径. 【详解】解析:球和正方体的所有棱相切,则该球的直径为正方体的面对角线的长,即2R =R =C .【点睛】本题考查了球与正方体的组合体,意在考查空间想象能力,当球与正方体的面相切时,球的直径是正方体的棱长,球与正方体的棱相切时,球的直径是正方体的面对角线,当正方体的顶点都在球面时,球的直径是正方体的对角线.8.函数()2cos f x x x =⋅在22ππ⎡⎤-⎢⎥⎣⎦,的图象大致是()n n A. B.C. D.【答案】C【解析】分析:利用函数的奇偶性,排除选项,再取特殊值判断即可. 详解:由于()()f x f x -=, 故函数为偶函数,排除,A B 两个选项. 当0,2x π⎛⎫∈ ⎪⎝⎭时,()22cos sin f x x x x x -'=,令22cos sin 0x x x x -=,可得tan 2x x =,方程的解4x π>,即函数的极大值点4x π>,排除D.故选C :.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的周期性,判断图象的循环往复; (5)从函数的特征点,排除不合要求的图象. 9.为计算11111123499100S =-+-++-…,设计了下面的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+ 【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由11111123499100S =-+-+⋯+-得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入2i i =+,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.10.锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC BC ⋅u u r u u u r,且AB =2,BC =3,则sin sin AB=()A .1B .12C .2D .2【答案】A1cos sin 2B ac B =,求得tan B =,再结合余弦定理求b , 最后根据正弦定理可知sin sin A aB b=. 【详解】1cos sin 2B ac B =,得tan B =ABC 为锐角三角形,且22sin cos 1B B +=,所以1cos 3B =.由余弦定理2222cos b a c ac B=+-,得3b =.所以sin 1sin A a B b==,选A . 【点睛】本题考查了解三角形的综合运用,涉及三角形的面积公式,以及正余弦定理,意在考查转化与化归的能力,以及熟练掌握公式和运用的能力.11.古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两定点距离的比为常数k (k >0,k ≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,设A (﹣3,0),B (3,0),动点M 满足MA MB ||||=2,则动点M 的轨迹方程为()A .(x ﹣5)2+y 2=16B .x 2+(y ﹣5)2=9C .(x +5)2+y 2=16D .x 2+(y +5)2=9【答案】A【解析】首先设(),M x y ,代入两点间的距离求MA 和MB ,最后整理方程. 【详解】解析:设(),M x y ,由2MA MB=,得()()2222343x y x y ++=-+,可得:(x +3)2+y 2=4(x ﹣3)2+4y 2, 即x 2﹣10x +y 2+9=0整理得()22516x y -+=,故动点M 的轨迹方程为()22516x y -+=.选A . 【点睛】本题考查了轨迹方程的求解方法,其中属于直接法,一般轨迹方程的求解有1.直接法,2.代入法,3.定义法,4.参数法.12.(2016新课标全国Ⅱ理科)已知F 1,F 2是双曲线E :22221x y a b -=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为AB .32CD .2【答案】A【解析】试题分析:由已知可得,故选A.【考点】1、双曲线及其方程;2、双曲线的离心率.【方法点晴】本题考查双曲线及其方程、双曲线的离心率.,涉及方程思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 由已知可得,利用双曲线的定义和双曲线的通径公式,可以降低计算量,提高解题速度.二、填空题13.曲线y =x 2+lnx 在点(1,1)处的切线方程为_____.【答案】320x y --=【解析】首先求1x =处的导数,再根据切线公式()()000y y f x x x '-=-求切线方程. 【详解】 解析:12y x x'=+,在点(1,1)处的切线斜率为3,所以切线方程为320x y --=. 【点睛】本题考查了导数的几何意义求切线方程,属于简单题型.14.已知正项等比数列{a n }中,a 2•a 3=a 4,若S 3=31,则a n =_____ 【答案】15n -【解析】首先根据条件234a a a =求首项,再根据331S =求公比,最后代入11n n a a q -=.【详解】解析:由234·a a a =得123111·a q a q a q =,所以11a =. 又因为12331a a a ++=,即2131q q ++=,所以5q =或6q =-(舍去),所以15n n a -=.【点睛】本题考查了等比数列通项公式的计算,属于简单题型.15.函数()23s 4f x in x =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________. 【答案】1 【解析】【详解】 化简三角函数的解析式,可得()22311cos cos 44f x x x x x =--=-++=2(cos 1x -+, 由[0,]2x π∈,可得cos [0,1]x ∈,当cos x =时,函数()f x 取得最大值1.16.棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E ,F ,G 分别是AB ,AD ,B 1C 1的中点那么正方体内过E ,F ,G 的截面面积为_____【答案】的正六边形,从而计算截面的面积. 【详解】如图,分析正方体结构可以得知,的正六边形,算得面积为. 【点睛】本题考查了立体几何中的截面问题,意在考查空间想象能力和计算求解能力.三、解答题17.某公司结合公司的实际情况针对调休安排展开问卷调查,提出了A ,B ,C 三种放假方案,调查结果如下:(1)在所有参与调查的人中,用分层抽样的方法抽取n 个人,已知从“支持A 方案”的人中抽取了6人,求n 的值;(2)在“支持B 方案”的人中,用分层抽样的方法抽取5人看作一个总体,从这5人中任意选取2人,求恰好有1人在35岁以上(含35岁)的概率. 【答案】(1)40n (2)25【解析】(1)支持A 方案的共有30人,抽取6人,可知抽样比是15,再根据总人数和抽样比计算n ;(2)由条件可知5人中,35岁以下的有4人,35岁以上(含35岁)的有1人,将这5人分别标记,利用列举法分别写出所有的基本事件的个数和满足条件的基本事件的个数,求概率. 【详解】解:(1)根据分层抽样按比例抽取,得6=10+20204080101040n+++++,解得40n =.(2)35岁以下:540=450⨯(人), 35岁以上(含35岁):510=150⨯(人). 设将35岁以下的4人标记为1,2,3,4,35岁以上(含35岁)的1人记为a ,则所有基 本事件为(1,2),(1,3),(1,4),(1,a ),(2,3),(2,4),(2,a ),(3,4),(3,a ), (4,a ),共10个.其中满足条件的有()1a ,,()2a ,,()3a ,,()4a ,4个,故42105P ==. 【点睛】本题考查了分层抽样和古典概型,在概率的计算中,找出所有的基本事件以及满足条件的基本事件的个数,这是关键.18.在等差数列{a n }中,公差不为0,a 7,a 8,a 10成等比数列,且a 4=﹣4. (1)求数列{a n }的通项公式;(2)当数列{a n }的前n 项和S n 取得最小值时,求n 的值.【答案】(1)212n a n =-()n *∈N .(2)当5n =或6时,n S 取得最小值30-【解析】设等差数列的首项和公差分别是1a 和d ,代入2871044a a a a ⎧=⎨=-⎩,得到1a 和d ,计算通项公式;(2)根据(1)可得211n S n n =-,*n N ∈,利用二次函数的对称性求得函数的最值.【详解】解:(1)设公差为d ,则有()()()1211134,769,a d a d a d a d +=-⎧⎪⎨+=++⎪⎩解得110,2.a d =-⎧⎨=⎩ 所以()*212n a n n N =-∈.(2)()22102121112111224nn n S n n n -+-⎛⎫==-=--⎪⎝⎭, 所以当5n =或6时,n S 取得最小值30-.【点睛】本题考查了等差数列的基本内容,以及等差数列前n 项和的最大值的问题,一般等差数列前n 项和的最大值可以利用n S 直接求解,也可利用当10,0a d ><时,当满足10n n a a +≥⎧⎨≤⎩时,n S 最大,当10,0a d <>时,当满足10n n a a +≤⎧⎨≥⎩时,n S 最小.19.如图,在△ABC 中,∠B =90°,AB =BC =2,P 为AB 边上一动点,PD ∥BC 交AC 于点D ,现将△PDA 沿PD 翻折至△PDA 1,E 是A 1C 的中点.(1)若P 为AB 的中点,证明:DE ∥平面PBA 1.(2)若平面PDA 1⊥平面PDA ,且DE ⊥平面CBA 1,求四棱锥A 1﹣PBCD 的体积. 【答案】(1)详见解析(2)12【解析】(1)根据线面平行的判定定理可知,需证明线线平行,取1A B 的中点F ,连接,EF PF ,可证明四边形PDEF 是平行四边形,可证明//DE PF ,(2)根据面面垂直,可证明1A P⊥平面PBDC ,那么113PBDC V S A P =⨯⋅.【详解】(1)证明:令1A B 的中点为F ,连接EF ,PF .因为P 为AB 的中点且//PD BC , 所以PD 是ABC △的中位线,所以//PD BC ,12PD BC =. 因为E 是1A C 的中点,且F 为1A B 的中点,所以EF 是1A BC V 的中位线,所以//EF BC ,且12EF BC =,于是有PD EF ,所以四边形PDEF 为平行四边形,所以//DE PF , 又DE ⊄平面1PBA ,PF ⊂平面1PBA所以有//DE 平面1PBA .(2)解:因为DE ⊥平面1CBA ,所以1DE A C ⊥. 又因为E 是1A C 的中点,所以1A D DC DA ==, 即D 是AC 的中点.由//PD BC 可得,P 是AB 的中点.因为在ABC △中,90B ∠=︒,//PD BC ,PDA V 沿PD 翻折至1PDA V ,且平面1PDA ⊥平面PDA , 利用面面垂直的性质可得1PA ⊥平面PBCD , 所以111131·13322A PBCD PBCD V S A P -==⨯⨯=四棱锥四边形. 【点睛】本题考查了线面平行的判断定理和面面垂直的性质定理,以及锥体的体积公式,意在考查定理的熟练掌握,和转化与化归的能力.20.已知点M (x ,y )满足=(1)求点M 的轨迹E 的方程;(2)设过点N (﹣1,0)的直线l 与曲线E 交于A ,B 两点,若△OAB 的面积为23(O 为坐标原点).求直线l 的方程.【答案】(1)2212x y +=(2)10x y -+=或10x y ++=【解析】(1)根据几何意义可知,点M 满足动点M 到定点()()1,0,1,0-的距离和为2>,所以点M 满足椭圆的定义,写出轨迹方程;(2)首先分直线l 与x 轴垂直和x 轴不垂直两种情况讨论,当斜率存在时,()1y k x =+与椭圆方程联立,设交点()11,A x y ,()22,B x y ,根据条件可知1212123S y y =⨯⨯-= 43=,利用根与系数的关系求k ,即得直线l 的方程. 【详解】解:(1)由已知,动点M 到点()1,0P -,()1,0Q的距离之和为且PQ <M 的轨迹为椭圆.而a =1c =,所以1b =,所以动点M 的轨迹E 的方程为2212x y +=.(2)当直线l 与x轴垂直时,1,A ⎛- ⎝⎭,B ⎛- ⎝⎭,此时AB =则112OAB S ==V ,不满足条件. 当直线l 与x 轴不垂直时,设直线l 的方程为()1y k x =+,由()221,12y k x x y ⎧=+⎪⎨+=⎪⎩得()2222124220k x k x k +++-=, 所以2122412k x x k +=-+,21222212k x x k-=+. 而121211·22OAB S ON y y y y =-=-V , 由23OABS =V 得1243y y -=.12y y -=又所以()22222441612912k k k k +=++,则4220k k +-=,所以1k =±,所以直线l 的方程为10x y -+=或10x y ++=. 【点睛】本题考查了定义法求曲线方程和直线与圆锥曲线的位置关系的综合问题,意在考查转化与化归和逻辑推理和计算能力的考查, 直线与椭圆相交时,时常把两个曲线方程联立,消去x 或y 建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. 21.已知函数f (x )=ax ﹣cosx ,a ≠0.(1)若函数f (x )为单调函数,求a 的取值范围; (2)若x ∈[0,2π],求:当a ≥23π时,函数f (x )仅有一个零点.【答案】(1)1a ≤-或1a ≥(2)详见解析【解析】(1)首先求函数的导数,()sin f x a x '=+,当函数单调递增时()0f x '≥恒成立,当函数单调递减时,()0f x '≤恒成立;(2)根据(1)可知当1a ≥时,函数单调递增,根据零点存在性定理可知只有一个交点,当01a <<时,可得函数存在两个极值点,1233,22x x ππππ<<<<,根据单调性可判断,()111cos f x ax x =-是极大值,()222cos f x ax x =-是极小值,因为()010f =-<,()10f x >,若函数只有一个零点,只需满足()20f x >,即可求得a 的取值范围. 【详解】(1)解:由()cos f x ax x =-,可得()sin f x a x =+',x R ∈. 因为1sin 1x -≤≤,所以当1a ≥时,()sin 0f x a x '=+≥,()f x 为R 上的单调增函数; 当1a ≤-时,()sin 0f x a x '=+≤,()f x 为R 上的单调减函数. 综上,若函数()f x 为单调函数,则1a ≤-或1a ≥.(2)证明:当1a ≥时,由(1)可知()f x 为R 上的单调增函数. 又()01f =-,022a f ππ⎛⎫=>⎪⎝⎭ 所以函数()f x 在π0,2⎛⎫ ⎪⎝⎭有且仅有一个零点,满足题意. 当01a <<时,令()sin 0f x a x '=+=,则sin x a =-.由于02πx ≤≤,所以1sin 1x -≤≤, 从而必有1x ,[]20,2πx ∈,使1sin x a =-,且2sin x a =-. 不妨设12x x <,且有13ππ2x <<,23π2π2x <<, 所以当()10,x x ∈时,()sin 0f x a x '=+>,()f x 为增函数; 当()12,x x x ∈时,()sin 0f x a x '=+<,()f x 为减函数; 当()2,2πx x ∈时,()sin 0f x a x '=+>,()f x 为增函数.从而函数()f x 的极大值为()111cos f x ax x =-,极小值为()222cos f x ax x =-. 因为13ππ2x <<,所以1cos 0x <,从而极大值()111cos 0f x ax x =->. 又()01f =-,要使函数()f x 仅有一个零点,则极小值()222cos 0f x ax x =->, 所以()22222cos 0f x ax x ax ax =-==>,即a >.21x <,23π2π2x <<, 所以当23πa ≥时,函数()f x 仅有一个零点. 【点睛】本题考查了利用函数的单调性和零点问题求参数的取值范围,利用导数研究函数的单调性,极值和最值,以及零点存在的问题,考查学生逻辑推理和转化的思想,本题的第二问是一个证明题,可转化为已知函数有一个零点求参数的取值范围.22.在直角坐标系xOy 中,曲线C的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.直线l 的极坐标方程为ρcosθρsinθ=3. (1)求直线l 的直角坐标方程;(2)求曲线C 上的点到直线l 距离的最大值. 【答案】(1)30x +-=(2【解析】(1)根据转化公式可知cos ,sin x y ρθρθ==,代入求得直线的直角坐标方程;(2)设曲线上的任意一点的坐标为),sin θθ,代入点到直线的距离d =,利用三角函数的范围求得d 的最大值. 【详解】解:(1)直线l的直角坐标方程为30x -=.(2)设曲线C上点的坐标为),sinθθ,则曲线C上的点到直线l的距离d==sin14πθ⎛⎫+=-⎪⎝⎭时,d取得最大值,所以maxd=【点睛】本题考查了直线的极坐标方程和直角坐标方程的转化,以及考查坐标变换和点到直线的距离公式,利用三角函数求函数的最值,属于简单题型.23.已知a,b,c,d为正数,且满足abcd=1,证明:(1)(a+b)(b+c)(c+d)(d+a)≥16;(2)22221111a b c dab bc cd ad+++≤+++.【答案】(1)详见解析(2)详见解析【解析】(1)利用基本不等式,a b+≥,b c+≥,c d+≥,d a+≥四个式子相乘即可得到正确结果;(2)首先等式左边变形为1111abcd cd ad ab bcab bc cd ad⎛⎫+++=+++⎪⎝⎭,再利用基本不等式证明.【详解】证明:(1)因为a b c d,,,为正数,所以a b+≥b c+≥,c d+≥d a+≥(当且仅当a b c d===时等号同时成立),所以()()()()16a b b c c d d a abcd++++≥=.又1abcd=,所以()()()()16a b b c c d d a++++≥(当且仅当a=b=c=d时等号成立).(2)因为1abcd=,所以11111111abcd cd ad ab bcab bc cd ad ab bc cd ad⎛⎫+++=+++=+++⎪⎝⎭.又()()()()()22222222222222222a b c d a b b c c d d a ab bc cd da+++=+++++++≥+++(当且仅当a b c d===时等号成立),所以()2222111122a b c dab bc cd ad⎛⎫+++≥+++⎪⎝⎭,即22221111a b c d ab bc cd ad+++≤+++(当且仅当a =b =c =d 时等号成立). 【点睛】本题考查了不等式的证明,重点考查了基本不等式的应用,意在考查等价转化思想和逻辑推理能力.。

云南2020届高三下学期高考适应性月考卷(七)文科数学(含答案)

云南2020届高三下学期高考适应性月考卷(七)文科数学(含答案)

2020届云南高三下学期高考适应性月考卷(文科)数学(七)一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1.体育节到来,多数同学都会参加至少一个运动项目.设集合U={甲班全体同学},集合A= {参加跳高的甲班同学},集合B= {参加跳远的甲班同学},则()U A B ⋂ð)表示的是A.既参加跳高又参加跳远的甲班同学B.既不参加跳高也不参加跳远的甲班同学C.参加跳高或跳远的甲班同学D.不同时参加跳高和跳远的甲班同学2.已知复数13,z i =-+则28z= .13A i -+.13B i -- .13C i +.13D i - 3.已知平面向量,,a b rr 命题“||2||a b =r r ”是“|2||2|a b a b +=-r r r ”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.某工厂为了对40个零件进行抽样调查,将其编号为00, 01, 38, 39.现要从中选出5个,利用下面的随机数表,从第一行第3列开始,由左至右依次读取,则选出来的第5个零件编号是A.36B.16C.11D.145. 一场考试之后,甲、乙、丙三位同学被问及语文、数学、英语三个科目是否达到优秀时,甲说:有一个科目我们三个人都达到了优秀;乙说:我的英语没有达到优秀;丙说:乙达到优秀的科目比我多则可以完全确定的是A.甲同学三个科目都达到优秀B.乙同学只有一个科目达到优秀C.丙同学只有一个科目达到优秀D.三位同学都达到优秀的科目是数学6.朱世杰是元代著名的数学家,有“中世纪世界最伟大的数学家”之称.其著作《四元玉鉴》是一部成就辉煌的数学名著,受到数学史研究者的高度评价.《四元玉鉴》下卷“杂范类会”中第一问为: "今有沈香立圆球一只,径十寸,今从顶截周八寸四分,问厚几何?"大意为现有一个直径为10的球,从上面截一小部分,截面圆周长为8.4,问被截取部分几何体的高为多少.已知朱世杰是以圆周率为3来计算,则《四元玉鉴》中此题答案为(注:24.823.04=)A.0.2B.0.4C.0.6D.0.87.函数25()x xx f x e e -=+的图象大致为8.已知抛物线22(0)y px p =>的准线与椭圆22194x y +=相交的弦长为3,则p= A.1 B.2 C.3 D.49.在正四面体A-BCD 中, E. F 分别为AB, CD 的中点,则下列命题不正确的是 A. EF ⊥ABB. EF ⊥CDC.EF 与AC 所成角为4πD.EF 与BD 所成角为3π 10. 如图1,已知在算法中“\”和“mod”分别表示取商和取余数.为了验证三位数卡普雷卡尔“数字黑洞”( 即输入一个无重复数字的三位数,经过如图的有限次的重排求差计算,结果都为495).小明输入x=325,则输出的i=A.3B.4C.5D.611.已知函数2()cos ,f x x x =-1351(log 3),(log ),5a f b f ==C=31(()),5fA. a>b>cB. b>a>cC. c>b>aD. c>a>b12.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位我们来看一种简单的“特殊”状况:如图2所示,已知三个发射台分别为A, B. C 且刚好三点共线,已知AB=34海里,AC=20海里.现以AB 的中点为原点, AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线22(27)13664x y --=的左支上,若船P 上接到A 台发射的电磁波比B 台电磁波早185.2μs(已知电磁波在空气中的传播速度约为0.3km/μs.1海里=1.852km),则点P 的坐标(单位:海里)为A.903211(,)7B.135322(,7 32.(17,)3C ±D. (45,162)±二、填空题(本大题共4小题,每小题5分,共20分) 13. 曲线2(1)ln y x x =+在(1, 0)处的切线方程为_____14.已知公差不为0的等差数列{}n a 满足13,a =且1413,,a a a 成等比数列,则{}n a 的前n 项和n S =____15. 已知x, y 满足315,212,,x y x y x y +≤⎧⎪+≤⎪⎨∈⎪⎪∈⎩N N,则z=3x+2y 的最大值为____16.已知ω>14,函数()sin()4f x x ωπ=+在区间(π, 2π)上单调. 1(,1].4ω∈①②f(x)在区间(π, 2π)上单调递减;③f(x)在区间(0, π)上有零点;④f(x) 在区间(0, π)上的最大值一定为1. 以上四个结论,其中正确结论的编号是____三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分12分)华为手机作为全球手机销量第二位,一直深受消费者喜欢。

2020届云南省高三适应性考试数学(文)试题(A卷)(解析版)

2020届云南省高三适应性考试数学(文)试题(A卷)(解析版)

2020届云南省高三适应性考试数学(文)试题(A 卷)一、单选题1. 若集合A ={x |-3<x <3},B ={x |(x +4)(x -2)>0},则A ∩B =( ) A .{x |-3<x <2} B .{x |2<x <3} C .{x |-3<x <-2} D .{x |x <-4或x >-3} 【答案】B【解析】{}{|33|4A B x x x x ⋂=-<<⋂<-或}{}2|23x x x >=<<,故选B . 2.已知i 为虚数单位,若复数z 满足2(1i)3(1i)z -=++,则复数z 的共轭复数z =( ) A .15i 22-+ B .1522i - C .15i - D .15i -+【答案】B【解析】由复数的运算法则计算出z ,即可得出共轭复数. 【详解】2(1i)3(1i)32z i -=++=+,23213235215111222i i i i i zi ii i , 1522z i ∴=-. 故选:B. 【点睛】本题考查复数的运算及共轭复数的求法,属于基础题. 3.已知0.2log 7a =,90.2b =,ln 25c =,则( ) A .c a b << B .a c b <<C .b a c <<D .a b c <<【答案】D【解析】根据对数函数、指数函数的单调性以及借用中间值0,1比较可得结果. 【详解】由题可知:0.20.2log 7log 10=<=a ,9000.20.21<=<=b , 由ln2ln1>,所以ln 2ln105551=>==c故a b c<<故选:D【点睛】本题考查对数式、指数式之间比较大小,比较大小常用:作差比较法、作商比较法、函数单调性,同时借用特殊值0,1进行比较,属基础题.4.唐狩猎纹高足银杯如图1所示,银杯经锤揲成型,圆唇侈口,直壁深腹,腹下部略收,下承外撇高足.纹样则采用堑刻工艺,鱼子地纹,杯腹上部饰一道凸弦纹,下部阴刻一道弦纹,高足中部有“算盘珠”式节.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R,酒杯内壁表面积为2143Rπ.设酒杯上面部分(圆柱)的体积为1V,下面部分(半球)的体积为2V,则12VV的值是= ()A.1 B.32C.2 D.3【答案】C【解析】设圆柱的高为h,表示出表面积可得43h R=,再分别表示出12,V V即可.【详解】设酒杯上部分圆柱的高为h,则酒杯内壁表面积221144223S R Rh Rπππ=⨯+=,则43h R=,23143V R h Rππ∴==,321423V Rπ=⨯,122VV∴=.故选:C.【点睛】本题考查圆柱、球体积及表面积的公式,需熟记公式,属于基础题.5.执行如图所示的程序框图,则输出的S的值为()A .16B .32C .64D .1024【答案】C 【解析】0111n S ,==⨯=;1122n S ==⨯=,;2248n S ==⨯=,;38864n S ==⨯=,.6.已知实数,x y 满足不等式组2034802x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,则目标函数2z x y =-的最大值为( ) A .2- B .2C .4-D .4【答案】D【解析】画出可行域,然后作出目标函数的一条等值线20x y -=,通过平移等值线找到目标函数取最大值的最优解,可得结果.【详解】 如图由2z x y =-,令0z =,则目标函数的一条等值线为20x y -=当该等值线经过点()2,0A 时,目标函数有最大值 所以max 2204z =⨯-= 故选:D 【点睛】本题考查线性规划的问题,此种类型的问题,常看几步:(1)画出可行域;(2)根据线性的和非线性的理解z 的含义,然后简单计算,属基础题.7.在ABC 中,点D 在线段BC 上,2BD DC =,若AD AB AC λμ=+(λ,R μ∈),则μλ=( ) A .12B .2C .13D .23【答案】B【解析】根据平面向量的线性运算求解即可. 【详解】∵2212()3333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+, AD AB AC λμ=+(λ,R μ∈),所以12033AB AC λμ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.又因为AB 与AC 不共线,所以103λ-=且203μ-=,所以13λ=,23μ=,所以2μλ=. 故选:B 【点睛】本题主要考查了平面向量的线性运算,需要将所求的向量表达成所给的基底向量,属于基础题.8.函数2()cos sin(1)31x f x x =⋅-+的图象大致为( ) A . B .C .D .【答案】C【解析】根据函数的奇偶性以及取特殊值,对比图像可得结果. 【详解】方法一:由题可知函数()f x 的定义域为R ,因为23113131x x x --=++, 所以()f x -=3113cos()sin()cos sin()()3113x xx xx x f x -----⋅=⋅=-++, 所以函数()f x 为奇函数,故可排除选项A 、B . 又cos10>,2sin(1)31-=+1sin 02>, 所以1(1)cos1sin02f =⨯>,故排除选项D .故选C . 方法二:因为1(1)cos1sin()02f -=⨯-<,1(1)cos1sin 02f =⨯>,所以观察各选项中的图象可知C 符合题意, 故选:C . 【点睛】本题考查给出解析式判断函数大致图像,对这种问题,常常考虑:函数定义域、奇偶性、单调性、特殊值、最值等,属基础题.9.已知函数()3cos()(0)f x x x ωωω=+π+>的最小正周期为π,则下列说法错误的是( )A .函数()f x 的图象关于点5(,0)12π-对称 B .函数()f x 的图象关于直线3x π=对称C .将函数()f x 的图象向右平移12π个单位长度后所得函数的图象关于原点对称D .函数()f x 在区间5(,)36ππ上单调递减 【答案】C【解析】根据三角恒等变换得()3sin cos 2sin()6f x x x x ωωωπ-=-,再由函数()f x 的最小正周期公式,求得函数()2sin(2)6f x x π=-.运用整体代换法逐一求函数的对称中心,对称轴,图象的平移,以及函数的单调区间判断得选项.【详解】由题可得()cos 2sin()6f x x x x ωωωπ=-=-,因为函数()f x 的最小正周期为π,所以2ππω=,解得2ω=,所以()2sin(2)6f x x π=-.令2()6x k k Z ππ-=∈,解得()212k x k Z ππ=+∈,所以函数()f x 的图象的对称中心为(,0)()212k k ππ+∈Z , 当1k =-时,对称中心为5(,0)12π-,故A 正确; 令2()62x k k Z πππ-=+∈,解得()23k x k Z ππ=+∈,所以函数()f x 的图象的对称轴方程为()23k x k Z ππ=+∈, 当0k =时,对称轴方程为3x π=,故B 正确;将函数()f x 的图象向右平移12π个单位长度后可得函数2sin[2()]126y x ππ=--=2sin(2)3x π-的图象, 所以函数2sin(2)3y x π=-不是奇函数,其图象不关于原点对称,故C 错误;由3222()262k x k k ππππ+<-<π+∈Z ,可得3k x ππ+<<5()6k k ππ+∈Z ,所以函数()f x 的单调递减区间为5(,)()36k k k πππ+π+∈Z ,当0k =时,单调递减区间为5(,)36ππ,故D 正确.故选:C . 【点睛】本题考查三角函数的恒等变换,正弦型函数的对称中心、对称轴、单调性、图象的平移,属于中档题.10.设各项均为正数的数列{}n a 的前n 项和为n S ,若数列{}n a 满足12=a ,*142()n n n a a S n +=-∈N ,则20212020a a -=( )A .3B .3-C .13-D .13【答案】A【解析】通过n n a S ,之间的关系,可得24n n a a +-=,然后对n 分奇数和偶数,根据等差数列的通项公式可得结果. 【详解】因为*142()n n n a a S n +=-∈N ,12=a ,所以令1n =,可得12142a a a =-,解得2=3a , 由142n n n a a S +=-,可得12142n n n a a S +++=-, 上述两式相减可得121()4n n n n a a a a +++-=,因为数列{}n a 的各项均为正数,所以24n n a a +-=,所以当n 为奇数时,数列{}n a 是首项为2,公差为4的等差数列, 当n 为偶数时,数列{}n a 是首项为3,公差为4的等差数列,所以2,21,n n n a n n ⎧=⎨-⎩为奇数为偶数,所以2021202022021(220201)3a a -=⨯-⨯-=, 故选:A . 【点睛】本题考查n n a S ,之间的关系,熟练掌握11,2,1n n n S S n a a n --≥⎧=⎨=⎩,重在计算和理解,属中档题.11.已知抛物线2:2C y px =(0)p >的焦点到准线的距离为1,若抛物线C 上存在关于直线:20l x y --=对称的不同两点P 和Q ,则线段PQ 的中点坐标为( ) A .()1,1- B .()2,0C .13,22⎛⎫-⎪⎝⎭ D .()1,1【答案】A【解析】求得曲线2:2C y x =,设点()11,P x y ,()22,Q x y ,代入曲线方程,求出122PQ k y y =+,又由P ,Q 关于直线l 对称得出1PQ k =-,进而求出线段PQ 的中点坐标. 【详解】解:因为焦点到准线的距离为p ,则1p =, 所以22y x =.设点()11,P x y ,()22,Q x y .则21122222y x y x ⎧=⎨=⎩,则()()()1212122y y y y x x -+=-, 122PQ k y y ∴=+,又P ,Q 关于直线l 对称.1PQ k ∴=-,即122y y +=-,1212y y +∴=-, 又PQ ∵的中点一定在直线l 上,12122122x x y y ++∴=+=. ∴线段PQ 的中点坐标为()1,1-.故选:A. 【点睛】本题考查直线与抛物线的位置关系,属于基础题.12.已知函数()|2|2f x x =-+,()ln g x ax x =-,若对0(0,e)x ∀∈,12,(0,)x x e ∃∈,使得012()()()f x g x g x ==,其中12x x ≠,则实数a 的取值范围是( ) A .5[,e)eB .1(,)e eC .1[1,e)e +D .15[1,]e e+【答案】A【解析】根据题意解出函数()|2|2f x x =-+的值域,再分析函数()ln g x ax x =-的特征,由已知条件可知其必须在区间(0,)e 先减后增,结合函数()|2|2f x x =-+的值域即可得到关于a 的不等式组,即可解得. 【详解】因为()|2|2f x x =-+,所以当0(0,e)x ∈时,0()[2,4)f x ∈. 由()ln g x ax x =-,可得1()g x a x '=-=1ax x-,当0a ≤时,()0g x '<,所以函数()g x 在(0,)e 上单调递减,不符合题意,所以0a >.令()0g x '=,可得1(0,e)x a=∈,则函数()g x 在1(0,)a上单调递减,在1[,e)a 上单调递增,因为对0(0,e)x ∀∈,12,(0,)x x e ∃∈,使得012()()()f x g x g x ==,其中12x x ≠,所以1()2()4g a g e ⎧<⎪⎨⎪≥⎩且1(0,)e a ∈,解得5a e e ≤<,所以实数a 的取值范围是5[,e)e.故选:A . 【点睛】本题考查了利用导数求解参数的范围,属于中档题目,解题关键有三处:一是分析求解函数()y f x =的值域;二是根据条件分析函数()y g x =的单调特征;三是根据其单调性及方程根的个数确定出关于a 的不等式组.二、填空题 13.若函数1()ln 1f x x =-,则(2)f =__________. 【答案】3ln 2【解析】令121x =-,可得32x =,代入可得答案. 【详解】 令121x =-,可得32x =,所以3(2)=ln 2f .故答案为:3ln 2.【点睛】本题考查求函数值,整体代入是解决此类问题的常用方法,属于基础题.14.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2cos A sin B =sin A +2sin C .则B =______; 【答案】23π【解析】由已知利用两角和的正弦函数公式可得sin 2sin cos 0A A B +=,结合sin 0A ≠,可求得1cos 2B =-,结合范围(0,)B π∈,可求B 的值.【详解】 解:2cos sin sin 2sin sin 2sin()sin 2sin cos 2sin cos A B A C A A B A A B B A =+=++=++, sin 2sin cos 0A A B ∴+=,sin 0A ≠,12cos 0B ∴+=,解得1cos 2B =-, (0,)B π∈,23B π∴=. 故答案为:23π【点睛】本题考查两角和的正弦公式的应用,属于基础题.15.设12(,0),(,0)F c F c -分别是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,若直线x c =与双曲线C 的两条渐近线分别交于点M ,N ,且160MF N ∠=︒,则双曲线C 的离心率为__________.【解析】焦点为12(,0),(,0)F c F c -的双曲线2222:1(0,0)x y C a b a b-=>>,与直线x c =交于点M ,N 即有2||bcMN a =,又160MF N ∠=︒知tan 302b a︒=结合222+=a b c 即可求离心率 【详解】根据题意,得2||bcMN a=,又1=60MF N ∠︒可得2243a b = ∴由222+=a b c 知:2273a c =,即3c a有双曲线C【点睛】本题考查求双曲线的离心率,由过焦点的定直线与双曲线渐近线交点与另一焦点构成的定角求双曲线离心率,注意渐近线性质及参数,,a b c 关系的应用 16.已知R λ∈,函数10()lg 0x x f x x x ⎧+<⎪=⎨>⎪⎩,,,2()414g x x x λ=-++.若关于x 的方程[()]f g x λ=有8个解,则λ的取值范围为__________. 【答案】2(0)5,.【解析】令g (x )=t ,则方程f (t )=λ的解有4个,根据图象可知,0<λ<1. 且4个解分别为t 1=﹣1﹣λ,t 2=﹣1+λ,t 3=10λ,41()10t λ= 则x 2﹣4x+1+4λ=﹣1﹣λ,x 2﹣4x+1+4λ=﹣1+λ, x 2﹣4x+1+4λ=10λ,x 2﹣4x+1+4λ=1()10λ均有两个不相等的实根,则△1>0,且△2>0,且△3>0,40>即16﹣4(2+5λ)>0且16﹣4(2+3λ)>0,解得0<λ<25, 当0<λ<25时,△3=16﹣4(1+4λ﹣10λ)>0即3﹣4λ+10λ>0恒成立, 同理40>也恒成立;故λ的取值范围为(0,25). 故答案为(0,25). 点睛:本题考查分段函数的应用,考查数形结合的思想方法,方程解的问题转化为函数图象的交点问题,由二次方程的判别式得到解决,本题有一定的难度.通常方程解的问题有三类解决方法,其一直接研究函数和x 轴的交点个数问题;其二可以变量分离,转化为常函数和函数的交点个数问题;其三转化为两个初等函数的交点问题.三、解答题17.已知数列{}n a 满足:()*12111,2,22,n n n a a a a a n n N -+===+≥∈,数列{}nb 满足111=2, =2n n n n b a b a b ++.(1)求数列{}n a 的通项n a ,并求证:数列n b n ⎧⎫⎨⎬⎩⎭为等比数列 ; (2)求数列{}n b 的通项公式及其前n 项和n S .【答案】(1)n a n =,证明过程见详解;(2)2n n b n =⋅,1(1)22+=-⋅+n n S n .【解析】(1)由()*1122,n n n a a a n n -+=+≥∈N可得{}na 为等差数列,把11,1ad ==代入等差数列的通项公式即可得n a ;把n a n = 代入整理,构造新等比数列,利用等比数列的定义即可求证n b n ⎧⎫⎨⎬⎩⎭是等比数列; (2)先求n b n ⎧⎫⎨⎬⎩⎭的通项公式,即可n b ,根据错位相减法,即可求得前n 项和n S . 【详解】 (1)()*1122,n n n a a a n n N -+=+≥∈,∴{}n a 是等差数列 又121,2a a ==()111n a n n ∴=+-⋅=证明:n a n =()121n n nb n b +∴=+121n n b bn n+∴=⋅+ ∴n b n ⎧⎫⎨⎬⎩⎭是以121b = 为首项,2q为公比的等比数列.(2)由上可知1222,n n nn b b n n-∴=⨯=⋅ 1231222322n n S n =⨯+⨯+⨯++⋅——①234121222322n n S n +=⨯+⨯+⨯++⋅——②①-②得:123122222n n n S n +-=++++-⋅化简得:1(1)22+=-⋅+n n S n【点睛】本题考查等差数列和等比数列的定义及通项公式的求法,以及利用定义证明等比数列,是基础题.18.某校为了有效地加强高中生自主管理能力,推出了一系列措施,其中自习课时间的自主管理作为重点项目,学校有关处室制定了“高中生自习课时间自主管理方案”.现准备对该“方案”进行调查,并根据调查结果决定是否启用该“方案”,调查人员分别在各个年级随机抽取若干学生对该“方案”进行评分,并将评分分成[)30,40,[)40,50,⋅⋅⋅⋅⋅⋅,[]90,100七组,绘制成如图所示的频率分布直方图.相关规则为①采用百分制评分,[)60,80内认定为对该“方案”满意,不低于80分认定为对该“方案”非常满意,60分以下认定为对该“方案”不满意;②学生对“方案”的满意率不低于80%即可启用该“方案”;③用样本的频率代替概率.(1)从该校学生中随机抽取1人,求被抽取的这位同学非常满意该“方案”的概率,并根据频率分布直方图求学生对该“方案”评分的中位数.(2)根据所学统计知识,判断该校是否启用该“方案”,说明理由. 【答案】(1)325,中位数66(2)该校不应启用该“方案”.见解析 【解析】(1)计算概率得到答案,设中位数为0x ,则()00.020.060.240.03600.5x +++⨯-=,解得答案.(2)计算评分在[]60,100的频率为0.680.80<,得到答案. 【详解】(1)根据频率分布直方图,被调查者非常满意的频率是()30.010.0021025+⨯=, 设中位数为0x ,根据中位数将频率分布直方图的左右两边分成面积相等的两部分可知,()00.020.060.240.03600.5x +++⨯-=,解得066x =.(2)根据题意,60分或以上被认定为满意或非常满意, 在频率分布直方图中,评分在[]60,100的频率为()0.0300.0260.010.002100.680.80+++⨯=<, 根据相关规则,该校不应启用该“方案”. 【点睛】本题考查了频率分布直方图,概率的计算,意在考查学生的计算能力和应用能力. 19.如图,三棱锥A BCD -中,侧面ABD △是边长为2的正三角形,22AC CD ==,平面ABD ⊥平面BCD ,把平面ACD 沿CD 旋转至平面PCD 的位置,记点A 旋转后对应的点为P (不在平面BCD 内),M 、N 分别是BD 、CD 的中点.(1)求证:CD MN ⊥;(2)求三棱锥C APD -的体积的最大值. 【答案】(1)证明见解析;(2)58. 【解析】(1)连接AM 、MC ,利用面面垂直的性质定理得出AM ⊥平面BCD ,可得出AM MC ⊥,利用勾股定理计算出1MC =,推导出BCD 是以BCD ∠为直角的直角三角形,再由中位线的性质得出//MN BC ,由此可得出MN CD ⊥;(2)由ACD △的面积为定值,可知当平面PCD ⊥平面ACD 时,三棱锥P ACD -的体积最大,连接PN 、AN ,推导出PN平面ACD ,计算出AN 、PN 以及ACD△的面积,然后利用锥体的体积公式可求得结果. 【详解】(1)如图,连接AM 、MC ,因为AB AD =,M 是BD 的中点,所以AM BD ⊥,又平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,AM ⊂平面ABD , 所以AM ⊥平面BCD ,MC ⊂平面BCD ,所以AM MC ⊥.因为ABD △为边长为2的正三角形,所以3AM =, 又2AC =,所以由勾股定理可得221MC AC AM -=,又1MC MD MB ===,MCB MBC ∴∠=∠,MCD MDC ∠=∠,180MBC MDC BCD ∠+∠+∠=,则2180BCD ∠=,90BCD ∴∠=,所以BCD 为直角三角形,且BC CD ⊥,又M 、N 分别是BD 、CD 的中点,所以//MN BC ,所以MN CD ⊥; (2)如图,连接AN 、PN ,因为三棱锥C APD -与三棱锥P ACD -为同一个三棱锥,且ACD △的面积为定值, 所以当三棱锥P ACD -的体积最大时,则平面PCD ⊥平面ACD ,AC AD =,则PC PD =,N 为CD 的中点,则PN CD ⊥,平面PCD ⊥平面ACD ,平面PCD平面ACD CD =,PN ⊂平面PCD ,PN ∴⊥平面ACD ,此时点P 到平面ACD 的距离为2215PN AN AC CN ==-=, 在ACD △中,因为2AC AD ==,1CD =,所以111515122ACD S CD AN =⋅=⨯=△, 所以P ACD V -的最大值为111515533428ACD S PN ⋅=⨯⨯=△, 所以三棱锥C APD -的体积的最大值为58. 【点睛】本题考查利用线面垂直证明线线垂直,同时也考查了利用等体积法计算三棱锥体积的最值,考查推理能力与计算能力,属于中等题.20.已知曲线()ln f x ax b x =-在点1x =处的切线方程为(1)1y e x =-+,其中e 为自然对数的底数.(1)求函数()f x 的单调区间;(2)若在区间(1,4)内,存在x 使得不等式()f x mx <成立,求实数m 的取值范围. 【答案】(1)函数()f x 的单调递减区间为1(0,)e,单调递增区间为1(,)e+∞;(2)1(,)e e-+∞.【解析】(1)函数()f x 求导,()bf x a x'=-,利用切线方程求得a e =,1b =,得到()ln f x ex x =-,再得到函数单调区间.(2)存在x 使得不等式()f x mx <成立等价于()f x m x <,构造()()(0)f xg x x x=>,求得min ()g x m <得解 【详解】(1)由题可得函数()f x 的定义域为(0,)+∞,()bf x a x'=-,则(1)e 1f a b '=-=-, 又(1)e f a ==,所以1b =,所以()ln f x ex x =-,1()f x e x'=-,当()0f x '>,即1e 0x ->时,解得1x e>; 当()0f x '<,即1e 0x -<时,结合0x >,解得10x e<<, 所以函数()f x 的单调递减区间为1(0,)e,单调递增区间为1(,)e+∞. (2)由(1)可知()e ln (0)f x x x x =->,由()f x mx <,可得()f x m x<, 令()()(0)f x g x x x=>,则ln ()e (0)xg x x x =->, 因为在区间(1,4)内,存在x 使得不等式()f x mx <成立,所以当(1,4)x ∈时,min ()g x m <. 易得2ln 1()x g x x -=',令()0g x '=,可得x e =, 当[1,4]x ∈时,()g x ,()g x '的变化情况如下表:由表可知min 1()e e g x =-,所以1e em >-,故实数m 的取值范围为1(,)e e -+∞.【点睛】本题考查导数几何意义及利用导数解不等式能成立问题求解参数,属于基础题.21.已知椭圆2222:1(0)C bb x a a y +>>=的离心率e =,且椭圆C 过点P .(1)求椭圆C 的标准方程;(2)设点Q 是椭圆C 与x 轴正半轴的交点,斜率不为0的直线l 与椭圆C 交于不同的两点D ,E ,若9QD QE k k ⋅=,问直线DE 是否恒过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.【答案】(1)2213y x +=;(2)存在,直线DE 过定点(2,0). 【解析】(1)已知椭圆离心率有3ab ,又椭圆C过点P ,代入椭圆方程即可求,a b ,即可得椭圆方程;(2) 设直线DE 为x ty m =+,1122(,),(,)D x y E x y ,由题意联立方程即可得12y y +、12y y ,结合9QD QE k k ⋅=即可求m ,从而可确定是否过定点 【详解】(1)设椭圆C 的焦距为2c,由c e a ==,即2223c a =∴22213b ac a a 22-==,有3a b ,又椭圆C过点P2231b +=,解得1a b ⎧=⎪⎨=⎪⎩∴椭圆C 的标准方程为2213y x +=(2)由题可设直线DE 的方程为x ty m =+,由2213x ty m y x =+⎧⎪⎨+=⎪⎩,消去x ,整理可得222(13)6330t y mty m +++-=, 设1122(,),(,)D x y E x y ,则2121222633,1313mt m y y y y t t-+=-=++ 由题意,可得(1,0)Q ,有12121212911(1)(1)QD QE y y y y k k x x x x ⋅=⋅==---- ∴2212121212129(1)(1)9(1)(1)99(1)()9(1)y y x x ty m ty m t y y m t y y m =--=+-+-=+-++-,且1m ≠(直线不过(1,0)点)即222(91)(1)183(1)(13)0t m mt m t -+-+-+=, 整理可得240m -=,解得2m = 故直线DE 过定点(2,0) 【点睛】本题考查了椭圆,根据离心率及过定点求椭圆方程,由直线与椭圆有两交点,且两交点与椭圆上一点所得的两直线斜率之积为定值,判断直线是否过定点问题22.曲线1C 的极坐标方程为r ρ=(常数0r >),曲线2C 的参数方程为()22131t x t y t -⎧=⎪+⎪⎨⎪=⎪+⎩(t 为参数).(1)求曲线1C 的直角坐标方程和2C 的普通方程;(2)若曲线1C ,2C 有两个不同的公共点,求实数r 的取值范围.【答案】(1)1C :222x y r +=,2C :()2100x y y +-=≠;(2)11,522⎛⎫⎛⎫+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭ 【解析】(1)根据直角坐标与极坐标关系及题目条件cos sin x y r ρθρθρ=⎧⎪=⎨⎪=⎩得曲线1C 的直角坐标方程,利用消元法消去t 可得2C 的普通方程;(2)若曲线1C ,2C 有两个不同的公共点,法一:方程联立利用根与系数关系,利用判别式解出即可求实数r 的取值范围;法二:数形结合可得圆心到直线距离小于半径,解出即可求实数r 的取值范围. 【详解】(1)方法一:由cos sin x y r ρθρθρ=⎧⎪=⎨⎪=⎩得:222x y r +=.由()22131t x t y t -⎧=⎪+⎪⎨⎪=⎪+⎩得:21x y +=,即()2100x y y +-=≠. ∴曲线1C 的直角坐标方程为:222x y r +=,2C 的普通方程为:()2100x y y +-=≠.方法二:由cos sin x y r ρθρθρ=⎧⎪=⎨⎪=⎩得:222x y r +=.由()221t x t -=+得:2212x t x +=-;由31y t =+得:3y t y -=. ∴22312x y x y+-=-.整理得2C 的普通方程为:()2100x y y +-=≠.∴曲线1C 的直角坐标方程为:222x y r +=,2C 的普通方程为:()2100x y y +-=≠.(2)方法一:由22221x y x y r+=⎧⎨+=⎩消y 得:225410x x r -+-=.由曲线1C ,2C 有两个不同的公共点得:22040r ∆=->,0r >解得:5r >. 又当圆1C :222x y r +=过点1,02⎛⎫ ⎪⎝⎭时,有12r =,且曲线2C 表示不过点1,02⎛⎫ ⎪⎝⎭的直线. ∴12r ≠.∴实数r 的取值范围为11,22⎫⎛⎫+∞⎪ ⎪⎪⎝⎭⎝⎭.方法二:圆心()0,0到直线210x y +-=的距离为:d =由曲线1C ,2C 有两个不同的公共点得:d r <,即r >. 又当圆1C :222x y r +=过点1,02⎛⎫ ⎪⎝⎭时,有12r =,且曲线2C 表示不过点1,02⎛⎫ ⎪⎝⎭的直线. ∴12r ≠.∴实数r 的取值范围为11,522⎛⎫⎛⎫+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题考查直角坐标与极坐标的互化、参数方程与普通方程的互化、直线与圆的位置关系,解题的关键是熟记直角坐标与极坐标的互化关系,直线与圆的位置关系可借助二次方程判别式或距离关系求解,属于中等题. 23.已知函数()|2||3|f x x ax =++-. (1)当3a =时,求不等式()6f x <的解集;(2)若12x ∀≥,不等式2()3f x x x ≤++恒成立,求实数a 的取值范围.【答案】(1)17(,)24-;(2)7[,4]2.【解析】(1)利用分类讨论的方式解绝对值不等式,3a =即可将区间分为2x <-、21x -≤≤、1x >,并分别求得对应解集,最后求并即为不等式()6f x <的解集;(2)由12x ∀≥上2()3f x x x ≤++恒成立,化简得24x a x x x-+≤≤+,利用函数的单调性、基本不等式即可求参数a 的范围 【详解】(1)当3a =时,()|2|3|1|f x x x =++-,不等式()6f x <为|2|3|1|6x x ++-< ①当2x <-时,不等式可化为2336x x --+-<,即45x -<,无解; ②当21x -≤≤时,不等式可化为2336x x ++-<,即21x -<,解得112x -<≤; ③当1x >时,不等式可化为2336x x ++-<,即47x <,解得714x <<, 综上,可得1724x -<<,故不等式()6f x <的解集为17(,)24- (2)当12x ≥时,不等式2()3f x x x ≤++,即22|3|3x ax x x ++-≤++,整理得2|3|1ax x -≤+,即22131x ax x --≤-≤+即2224x ax x -+≤≤+,因为12x ≥,所以分离参数可得24a x x a x x ⎧≥-+⎪⎪⎨⎪≤+⎪⎩显然函数2()g x x x =-+在1[,)2+∞上单调递减,所以17()()22g x g ≤=,而函数4()4h x x x =+≥=,当且仅当4x x=,即2x =时取等号,所以实数a 的取值范围为7[,4]2【点睛】本题考查了绝对值不等式的解法、利用不等式恒成立求参数范围;应用分类讨论的方式求绝对值不等式的解集,利用区间内不等式恒成立,结合函数单调性和基本不等式求参数范围。

云南省文山州广南县第一中学校2024届高三上学期第一次省统测数学模拟试题(高频考点版)

云南省文山州广南县第一中学校2024届高三上学期第一次省统测数学模拟试题(高频考点版)

一、单选题二、多选题1. 若且,则的终边所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限2. 已知抛物线的焦点为F ,过原点O作斜率为的直线交C 于点A ,取OA 的中点B ,过点B 作斜率为的直线l 交x 轴于点D,则( )A .1B .2C .4D .与k 值有关3. 设、、是三条不同的直线,、、是三个不同的平面,给出下列四个命题:①若,,,,,则;②若,,则;③若,是两条异面直线,,,,且,则;④若,,,,,则.其中正确命题的序号是( )A .①③B .①④C .②③D .②④4. 已知正四棱台的上、下底面边长分别为1和2,P是上底面的边界上一点.若的最小值为,则该正四棱台的体积为( )A.B .3C.D .15. 已知,是函数(,)相邻的两个零点,若函数在上的最大值为1,则的取值范围是( )A.B.C.D.6. “的展开式中的系数为80”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.天气预报说,在今后的三天中,每一天下雨的概率均为,用数字0,1,2,3表示下雨,数字4,5,6,7,8,9表示不下雨,由计算机产生如下20组随机数:977,864,191,925,271,932,812,458,569,683,431,257,394,027,556,488,730,113,537,908.由此估计今后三天中至少有一天下雨的概率为( )A .0.6B .0.7C .0.75D .0.88.已知正项等比数列满足,若存在、,使得,则的最小值为( )A.B.C.D.9. 如图,将一副三角板拼成平面四边形,将等腰直角沿向上翻折,得三棱锥,设,点分别为棱的中点,为线段上的动点,下列说法正确的是( )云南省文山州广南县第一中学校2024届高三上学期第一次省统测数学模拟试题(高频考点版)云南省文山州广南县第一中学校2024届高三上学期第一次省统测数学模拟试题(高频考点版)三、填空题四、解答题A.不存在某个位置,使B.存在某个位置,使C.当三棱锥体积取得最大值时,AD 与平面ABC成角的正弦值为D .当时,的最小值为10.已知等差数列的前项和为,则( )A .的最小值为1B .的最小值为1C.为递增数列D .为递减数列11. 对于直线.以下说法正确的有( )A.的充要条件是B.当时,C.直线一定经过点D .点到直线的距离的最大值为512. 下列结论正确的有( )A .相关系数越接近1,变量,相关性越强B.若随机变量,满足,则C.相关指数越小,残差平方和越大,即模型的拟合效果越差D.设随机变量服从二项分布,则13. 陀螺是中国民间最早的娱乐工具之一,它可以近似地视为由一个圆锥和一个圆柱组合而成的几何体,如图1是一种木陀螺,其直观图如图2所示,分别为圆柱上、下底面圆的圆心,为圆锥的顶点,若底面圆的半径为,,则圆柱的外接球的表面积与圆锥的侧面积的比值是______.14.函数的反函数是________15. 已知,且,则______.16. 已知抛物线:经过点,焦点为F ,PF =2,过点的直线与抛物线有两个不同的交点,,且直线交轴于,直线交轴于.(1)求抛物线C 的方程(2)求直线的斜率的取值范围;(3)设为原点,,,求证:为定值.17. 已知函数.(1)若,求的图像在处的切线方程;(2)若恰有两个极值点,,且.①求a的取值范围;②求证:.18. 已知椭圆的长轴长是短轴长的倍,且右焦点为.(1)求椭圆的标准方程;(2)直线交椭圆于,两点,若线段中点的横坐标为.求直线的方程.19. 已知球内接正四棱锥的高为相交于,球的表面积为,若为中点.(1)求证:平面;(2)求二面角的余弦值.20. 已知函数(1)讨论的单调性;(2)设,若方程有三个不同的解,求a的取值范围.21. 如图,在正三棱柱中,点在边上,.(1)求证:平面;(2)如果点是的中点,求证:平面.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A. 2 12
B. 2 4
3 C. 4 D. 3
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
13.三棱锥 A BCD 的所有顶点都在球 O 的表面上,AB 平面 BCD, BC CD, AB 1, BC 2,CD 3,
则球 O 的表面积为__________.
14.设全集U {1, 2,3, , 20} ,非空集合 A , B 满足以下条件: ① AB U , A B ; ②若 x A, y B ,则 x y A 且 xy B
求证:平面 PBC 平面 DEBC ;求三棱锥 P EBC 的体积. 21.(12 分)如图,在直三棱柱 ABC A1B1C1 中, AA1 AB AC 2, AB AC, M 是棱 BC 的中点,点 P 在线段 A1B 上.
若 P 是线段 A1B 的中点,求直线 MP 与直线 AC 所成角的大小若 N 是 CC1
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。
17.(12 分)在极坐标系中,已知曲线 C1 : 2cos 和曲线 C2 : cos 3 ,以极点 O 为坐标原点,
极轴为 x 轴非负半轴建立平面直角坐标系.求曲线 C1 和曲线 C2 的直角坐标方程;若点 P 是曲线 C1 上一动
点,过点 P 作线段 OP 的垂线交曲线 C2 于点 Q ,求线段 PQ 长度的最小值.
18.(12 分)在 ABC 中,内角 A, B,C 的对边分别为 a,b, c ,已知 b 3
2, cos A
6 ,B A
3
2 .求 a
的值;求 cos 2C 的值.
19.(12 分)已知 a, b 为正实数,函数 f (x) | x a | | x 2b | .求函数 f (x) 的最大值;若函数 f (x) 的最 大值为 1,求 a2 4b2 的最小值. 20.(12 分)如图,在四边形 ABDE 中, AB / /DE , AB BE ,点 C 在 AB 上,且 AB CD , AC BC CD 2 ,现将 ACD 沿 CD 折起,使点 A 到达点 P 的位置,且 PE 2 2 .
x2 a2
y2 3
1(a
3) 的左、右焦点分别为 F1 , F2 ,过左焦点 F1 的直线 l 与椭圆的一个交
点为 M ,右焦点 F2 关于直线 l 的对称点为 P ,若 F1MP 为正三角形,且其面积为 3 ,则该椭圆的离心
率为( )
3
21
3
A. 2 B. 2 C. 2 D. 3
12.某几何体的三视图如图所示,则它的表面积为( )
云南省文山州广南县第一中学 2020 届高考适应性考试数学试卷
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目 要求的。
1.已知函数
f
(
x)
e
x
1 ex
,x
0
的图像上存在两个点关于 y 轴对称,则实数 m
的取值范围为(

x2 m, x 0
1( a b 0 )的左,右焦点分别为 F1 , F2 ,以 F2 为圆心的圆过椭圆 C

中心,且与 C 在第一象限交于点 P ,若直线 PF1 恰好与圆 F2 相切于点 P ,则 C 的离心率为( )
3 1
2
5 1
A. 3 1 B. 2 C. 2 D. 2
8.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,
13
17
19
25
A. 3 升 B. 6 升 C. 9 升 D. 12 升
5.7 人乘坐 2 辆汽车,每辆汽车最多坐 4 人,则不同的乘车方法有( ) A.35 种B.50 种C.60 种D.70 种
6.等差数列 中的 、 是函数
的两个极值点,则
()
A.
B.5 C.
D.
7.已知椭圆 C

x2 a2
y2 b2
上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽 3 丈,
长 4 丈,上棱长 2 丈,高 2 丈,问:它的体积是多少?”(已知 1 丈为 10 尺)该锲体的三视图如图所示, 则该锲体的体积为( )
A.12000 立方尺
B.11000 立方尺
C.10000 立方尺 D.9000 立方尺
数学史上的一个伟大成就,在“杨辉三角”中,第 n 行的所有数字之和为 2n1 ,若去除所有为 1 的项,依次
构成数列 2,3,3,4,6,4,5,10,10,5,…,则此数列的前 15 项和为( )
A.110 B.114 C.124 D.125 4.《九章算术》中的“竹九节”问题:现有一根 9 节的竹子,自上而下各节的容积成等差数列,上面 4 节的 容积共 3 升,下面 3 节的容积共 4 升,现自上而下取第 1,3,9 节,则这 3 节的容积之和为( )
当 7 A时,1______ B (填 或),此时 B 中元素个数为______.
15.在极坐标系中,直线
π 3
R
被圆
2a sin
a
0 所截弦长为 2
3 ,则 a _______.
16.如图,已知正六边形 ABCDEF 的边长为 a ,点 G 为 CD 的中点,则 AE GF __________.
A. (1, ) B. (2, ) C. (1, 2) D. (0,1)
x 2y 0
2.设
x,y
满足约束条件
x
y
0
,则z x y 的最大值是 (
)
y 4 0
A. 4 B.0 C.8 D.12
3.里出现了如图所示的表,即杨辉三角,这是
9.如图,四棱锥 P ABCD 的底面为矩形,矩形的四个顶点 A , B , C , D 在球 O 的同一个大圆上,
且球的表面积为16 ,点 P 在球面上,则四棱锥 P ABCD 体积的最大值为( )
A.8
8 B. 3
16 C.16 D. 3
10.函数
的图像是( )
A.
B.
C.
D.
11.已知椭圆 O :
7 的中点,直线 A1B 与平面 PMN 所成角的正弦值为 7 ,求线段 BP 的长度.
22.(10 分)在直角坐标系中,以原点为极点, x 轴的正半轴为极轴,以相同的长度单位建立极坐标系,
相关文档
最新文档