DSC(差示扫描量热仪)实验室教学课件..资料讲解

合集下载

DSC(差示扫描量热仪)实验室教学讲解PPT课件

DSC(差示扫描量热仪)实验室教学讲解PPT课件

-
12
热流型(Heat Flux)
在给予样品和参比品相同的功率下,测定样品和参 比品两端的温差T,然后根据热流方程,将T (温差)换算成Q(热量差)作为信号的输出。
热流型DSC
与DTA仪器十分相似,是一种定量的DTA仪器。 不同之处在于试样与参比物托架下,置一电热片, 加热器在程序控制下对加热块加热,其热量通过 电热片同时对试样和参比物加热,使之受热均匀。
-
3
热流型 DSC
• 样品热效应引起参比与样品之间的热流不平衡
Q A△ △XT
• 由于热阻的存在,参比与样品之间的温度差( △T )与热流差成一定
的比例关系。将△T 对时间积分,可得到热焓:
t
H K Tdt K = f (温度,热阻, 材料性质,…)
0
-
4
硬件部分
-
5
DSC204F1 结构
-
10
DSC 附件
为了适应千变万化的各种样品,避 免样品与坩埚材料之间的不相兼容 ,配备了多种不同材质不同特点的 坩埚。
其中的几种坩埚图示如下:
-
11
DSC的类型及其基本原理
DSC的类型:
根据所用测量方法的不同,分为:
热流型(Heat Flux) 功率补偿型(Power Compensation) 调制热流型(Modulated Heat Flux)
DSC
功 率 补 偿 型
-
16
功率补偿的原理
当试样发生热效应时,如放热,试样温度 高于参比物温度,放置在它们下面的一组 差示热电偶产生温差电势,经差热放大器 放大后送入功率补偿放大器,功率补偿放 大器自动调节补偿加热丝的电流,使试样 下面的电流减小,参比物下面的电流增大。 降低试样的温度,增高参比物的温度,使 试样与参比物之间的温差ΔT趋与零。上述 热量补偿能及时、迅速完成,使试样和参

差示扫描量热仪(DSC分析解析

差示扫描量热仪(DSC分析解析
料热历史 • 以10℃/min将温度降到预期的结晶温度Tefc以下30或50℃ • 再以10℃/min加热至熔融外推终止温度Tefm以上30或50℃测定Tm • 对比测定前后样品的重量,如发现有失重则重复以上过程 常用测试标准: ISO 11357-3-2011,ASTM E794-06(2012),ASTM D3418-12ε1、GB 19466.3-2004
q--------热流, ΔT------样品参比温差,R-------热阻
实际测试过程
• 炉体把热量传到样品端和参比端,假设传到样品端的热阻 Rs小于传到参比端的热阻Rf,一定导致传到样品端的热多 于参比端的热从而导致一个Δ T的产生。或者相同热量传 到样品端和参比端,假设样品端热容Cs小于参比端热容Cf, 一定导致样品端温度高于参比端而产生一个Δ T,这些Δ T 都是由于系统引起,不是样品热反应引起,我们称之为热 阻热容的不平衡
DSC典型综合图谱
玻璃化转 变
结晶
氧化 或分解
熔化
交联 (固化)
热流 -> 放热
温度
DSC曲线
热焓变化率, 热流率(heat flowing),
单位为毫瓦(mW)
吸收热量,样品热容增加, 基线发生位移
结晶,放出热量,放热峰; 晶体熔融,吸热,吸热峰
一般在DSC热谱图中,吸热(endothermic)效应用凸起的峰 值来表征 (热焓增加),放热(exothermic)效应用反向的峰值 表征(热焓减少)。
-4
157.77°C
-6 80
Exo Up
100
120
140
Temperature (°C)
160
180
Universal V4.3A TA Instruments

DSC课件

DSC课件
基本热流 热阻不平衡 热容不平衡 加热速率不平衡
标准DSC的单 项热流方程
To技术提供的额外项
T0及高级T0技术对DSC测量的改进:
1 1 dTs T dT q T0 Cr Cs Cr R R Rr d d r s
T0不需假设(Q200/Q100 DSC):
0 157.0 157.0
T
-2
156.5 -4
156.5
Slope due to thermal lag
156.0 5.2
Exo Up
156.0 5.3 5.4 5.5 5.6 5.7 5.8
Time (min)
Reference Temperature (°C)
SampleTemperature (°C)
1, 传感器绝对对称,Tfs = Tfr, Rs = Rr = R
传统量热仪内部示意图
Sample
Platinum Alloy PRT Sensor
Reference Sample
Platinum Resistance Heater Heat Sink
Furnace
Thermocouples
功率补偿型 DSC
精确的温度控制和测量 更快的响应时间和冷却速度 高分辨率
DSC: 典型 DSC 转变
氧化 或分解
热流 -> 放热
熔化 玻璃化转 变
结晶 交联 (固化)
温度
1、DSC的基本原理
热流型(Heat Flux) 在给予样品和参比品相同的功率下,测定样品和参比品两端的 温差T,然后根据热流方程,将T(温差)换算成Q(热量差) 作为信号的输出。 功率补偿型(Power Compensation) 在样品和参比品始终保持相同温度的条件下,测定为满足此条 件样品和参比品两端所需的能量差,并直接作为信号Q(热量 差)输出。 调制热流型(Modulated Heat Flux) 在传统热流型DSC线性变温基础上,叠加一个正弦震荡温度程序, 最后效果是可随热容变化同时测量热流量,利用傅立叶变换将 热流量即时分解成热容成分动力学成分。

差示扫描量热仪(DSC课件

差示扫描量热仪(DSC课件
为,可以评估聚合物的热稳定性。
在DSC曲线上,聚合物的热分解表现为一个明显的质 量损失峰。通过分析峰的位置和形状,可以了解聚合
物的热稳定性及其影响因素。
合金的熔点和结晶温度
合金是由两种或多种金属或非金属元素组成的混合物。合 金的熔点和结晶温度对其加工、使用和回收等过程具有重 要影响。
DSC可以用于研究合金的熔点和结晶温度。通过在程序控 温下对合金进行加热和冷却,观察其相变行为,可以测量 合金的熔点和结晶温度。
02
放置样品和参比物于样 品架上,确保样品和参 比物重量相等。
03
开始实验,记录实验数 据。
04
实验结束后,关闭仪器 电源,取出样品和参比 物。
实验后处理
数据处理
对实验数据进行处理和分析,提取所需的信息 。
仪器清洁
对仪器进行清洁和维护,确保仪器性能稳定和 延长使用寿命。
结果报告
根据实验结果编写报告,并给出相应的结论和建议。
确保仪器各部件连接牢固,特别是电源线和信号 线。
3
记录使用情况
每次使用后,应记录仪器使用情况,包括实验参 数、样品信息等,以便于后续数据分析。
常见故障排除
温度不上升
检查加热元件是否正常 工作,加热电源是否正 常供电。
温度波动大
检查恒温水浴是否正常 工作,水路是否畅通。
曲线漂移
检查仪器接地是否良好 ,周围是否存在干扰源 。
多功能化
未来的DSC将集成多种测量技术,如热重分析、红外光谱等,实现多 参数同时测量,提高实验效率和准确性。
环保节能
随着环保意识的提高,DSC将采用更加节能和环保的设计,如采用低 能耗的加热元件和传感器,降低实验过程中的能耗和排放。
2023 WORK SUMMARY

差示扫描量热仪(DSC教材

差示扫描量热仪(DSC教材

0
156.70°C 28.54J/g
Heat Flow (W/g)
-2
-4
157.77°C
-6 80
Exo Up
100
120
140
160
180
Universal V4.3A TA Instruments
Temperature (°C)
高分子聚合物熔融温度范围较为宽广,在整个熔融过程中可能伴有复杂 的熔融/重结晶/晶型调整过程,高分子的熔点通常取峰值温度
应用实例:混合物和共聚物的定性检测
1
1
0
2
PE
Heat Flow (W/g)
PP
3
-1
-2
PP+PE
-3 20
Exo Up
40
60
80
100
120
140
160
180
200
Temperature (°C)
Universal V4.3A TA Instruments
在聚丙烯与聚乙烯共混物中它们各自保持了自身的熔 融特性,因此呈现出PP与PE的熔点
应用:监控产品质量
0.0
-0.5
H44°C
––––––– ––––
DSC-PP.001 DSC--共聚PP.001
-1.5
-2.0
167.04°C
-2.5 20
Exo Up
40
60
80
100
120
140
160
180
200
Temperature (°C)
Universal V4.3A TA Instruments
-0.7
1.0

差示扫描量热法(DSC)的基本原理及应用ppt课件

差示扫描量热法(DSC)的基本原理及应用ppt课件
Calorimetry)
❖定义:在程序控制温度下,测量输给物 质与参比物的功率差与温度的一种技术。
❖ 分类:根据所用测量方法的不同 ✓1. 功率补偿型DSC ✓2. 热流型DSC
精选2021版课件
1
6.4.1
基本原理
❖DTA存在的两个缺点:
➢1)试样在产生热效应时,升温速率是非 线性的,从而使校正系数K值变化,难以 进行定量;
精选2021版课件
22
2.温度校正(横坐标校正)
DSC的温度是用高纯物质的熔点或相变 温度进行校核的
高纯物质常用高纯铟,另外有KNO3、Sn、 Pb等。
精选2021版课件
23
1965,ICTA推荐了标定仪器的标准物质
精选2021版课件
24
✓ 试样坩埚和支持器之间的热阻会使试样坩埚温度 落后于试样坩埚支持器热电偶处的温度。这种热 滞后可以通过测定高纯物质的DSC曲线的办法求 出。高纯物质熔融DSC峰前沿斜率为:
18
精选2021版课件
19
6.4.3 DSC曲线峰面积的确定及仪器 校正
➢ 不管是DTA还是DSC对试样进行测定的过程中, 试样发生热效应后,其导热系数、密度、比热 等性质都会有变化。使曲线难以回到原来的基 线,形成各种峰形。如何正确选取不同峰形的 峰面积,对定量分析来说是十分重要的。
➢ DSC是动态量热技术,对DSC仪器重要的校正 就是温度校正和量热校正。
精选2021版课件
10
如已二酸的固-液相变,其起始温度随着Φ 升高而下降的。
精选2021版课件
11
在DSC定量测定中,最主要的热力学参数是热焓。 一般认为Φ对热焓值的影响是很小的,但是在实际中并 不都是这样。
精选2021版课件

差示扫描量热仪(DSC分析解析

差示扫描量热仪(DSC分析解析

应用实例:混合物和共聚物的定量检测
Sample: PP:PE=4.00:6.65 Size: 10.6500 mg
DSC
File: J:...\Thermo data\标样\DSC\DSC-PP PE.001 Operator: Jenner Run Date: 21-Dec-2009 18:03 Instrument: DSC Q200 V23.5 Build 72
-0.7
1.0
-0.8
-0.9
0.5 70
Exo Up
-1.0 90 110
Temperature (°C)
Universal V3.8A TA Instruments
[ ––––– · ] Heat Flow (mW)
Heat Capacity (J/g/°C)
测量、报道玻璃化转变
• • 玻璃化转变永远是一个温度范围。 与玻璃化转变相关的分子运动是有温度依赖性的。因此,Tg随着 加热速率或者测试频率(MDSC, DMA等)的增加而提高。 • 当需要报道玻璃化温度时候,一定要说明测试方法(DSC、DMA
等等)、实验条件(加热速率、样品尺寸等等)以及Tg是如何确
定的(1/2Cp的中点,或者是拐点,或者是求导后的峰值)。
玻璃化转变分析
聚苯乙烯 9.67mg 10°C/min
玻璃化转变分析
聚苯乙烯 9.67mg 10°C/min
玻璃化转变是可逆的
玻璃化转变温度测定的推荐程序
• 样品用量10~15毫克 • 以20℃/min加热至Tg以上30或50℃ • 以最快速度或20℃/min将温度降到Tg以下30或50℃
DSC的基础公式
假设: 1, 传感器绝对对称,Tfs = Tfr, Rs = Rr = R 2, 样品和参比端的热容相等Cpr=Cps 3, 样品和参比的加热速率永远相同 4, 样品盘及参比盘的质量(热容)相等 5, 样品盘、参比盘与传感器之间没有热阻或者热阻相等

DSC课件

DSC课件

To
Tp Time
Actual Heat Flux Data
Sample: Indium +2°C/min Size: 1.7900 mg Comment: Multiple Heating and Cooling Rates 157.5
DSC
File: \\...\TA\Data\DSC\Shick\Indium 5.018 Operator: Caulfield Run Date: 08-Sep-2006 16:51 Instrument: DSC Q1000 V9.6 Build 290 157.5
Q-Series DSC
Base Surface Constantan Wire Chromel Wire Chromel Wire
Tf
Rs Ts Cs
To
RrTBiblioteka CrThe Tzero thermocouple provides an objective reference point so that those factors previously assumed can be directly measured.
Thermal Capacitance Imbalance
Q-Series DSC Schematic
Sample & Reference Platforms
Tzero™ Thermocouple
Q-Series Heat Flow Measurement
Sample Platform Chromel Area Detector Reference Platform Constantan Body Thin Wall Tube

差示扫描量热仪(DSC

差示扫描量热仪(DSC
• 当样品发生变化如熔融,提供给样品的热量都用来维持 样品的熔融,参比端温度仍按照炉体升温,参比端温度 会高于样品端温度从而形成了温度差。把这种温度差的 变化转变为热流差再以曲线记录下来,就形成了DSC的 原始数据。
实用文档
DSC的基础公式
假设:
1, 传感器绝对对称,Tfs = Tfr, Rs = Rr = R 2, 样品和参比端的热容相等Cpr=Cps 3, 样品和参比的加热速率永远相同 4, 样品盘及参比盘的质量(热容)相等 5, 样品盘、参比盘与传感器之间没有热阻或者热阻相等
实用文档
应用
• 测量熔融温度、玻璃化转变、氧化诱导时间(温度) • 测相变热焓及结晶度、测研究结晶动力学 • 测化学反应热焓、研究固化反应及反应动力学 • 表征聚合物相容性
实用文档
DSC典型综合图谱
玻璃化转 变
结晶
氧化 或分解
熔化
交联 (固化)
热流 -> 放热
温度
实用文档
DSC曲线
热焓变化率, 热流率(heat flowing),
实用文档
热阻抗的不平 衡部分
热容量的不平 衡部分
实用文档
加热速率的不平 衡部分
▪ 如上因素,我们需要测量仪器整个温度范围内,样品端和参比端 热阻和热容随温度变化的数值。并且要把这些不平衡因素消除。 我们把这种测量称之为T0校正,其实叫热阻热容测量更准确。
实用文档
第二章 DSC在高分子材料的应用
q--------热流, ΔT------样品参比温差,R-------热阻
实用文档
实际测试过程
• 炉体把热量传到样品端和参比端,假设传到样品端的热阻 Rs小于传到参比端的热阻Rf,一定导致传到样品端的热多 于参比端的热从而导致一个ΔT的产生。或者相同热量传 到样品端和参比端,假设样品端热容Cs小于参比端热容 Cf,一定导致样品端温度高于参比端而产生一个ΔT,这些 ΔT都是由于系统引起,不是样品热反应引起,我们称之 为热阻热容的不平衡

差示扫描量热法DSC测试方法PPT演示课件

差示扫描量热法DSC测试方法PPT演示课件
上海CDR-34P型
•6
三、DSC曲线及其影响因素
典型的差示扫描量热(DSC) 曲线以热流率(dH/dt)为纵 坐标、以温度(T)为横坐 标,即dH/dt-t(或T)曲线。 曲线离开基线的位移即代表 样品吸热或放热的速率 (mJ·s-1),而曲线中峰或 谷包围的面积即代表热量的 变化。 因而差示扫描量热法可以直 接测量样品在发生物理或化 学变化时的热效应。
•14
•4
补偿回路: 试样吸、放热与参比物产 生温差时及时进行功率补 偿,使ΔT→0,并记录补偿 的情况,即维持ΔT→0所 需要的能量差ΔW。
反应或转变热:
•5
DSC仪器(上海CDR-34P型) 同时兼备热流型和功补型的特点。
(1)保留均温块结构,以保持基线稳定和高灵敏度。 (2)配置功率补偿器,以便获得高分辨率。
典型的DSC曲线
•7
1.试样与参比物 试样:除气体外,固态,液态样品都可测定。 装样:尽量使样品薄而匀地平铺与坩埚底部,以 减少试样与器皿间的热阻。 坩埚:高聚物一般使用铝坩埚,使用温度低于 500℃, 参比物:必须具有热惰性,热容量和导热率应和 样品匹配。一般为Al2O3,样品量少时可放一空坩 埚。
•8
2.主要影响因素
(1) 样品 样品量:一般用量为5---10mg (10---20mg) 样品量少,分辨率高,但灵敏度低,峰温偏低。 样品量多,分辨率低,但灵敏度高,峰温偏高。
•9
(2) 升,降温速度 一般的升,降温速度范围为5----20 ℃/min
最常用的为10 ℃/min
不同升降温速度测得的数据不具 可比性用惰性气体,如N2,Ar,He等 主要是防止加热时样品的氧化, 减少挥发物对仪器的腐蚀. 必要时也可以压缩空气为气氛, 测定样品的氧化反应。

差示扫描量热仪(DSC

差示扫描量热仪(DSC
差示扫描量热仪(DSC)
目录
CONTENTS
• DSC基本原理 • DSC实验操作 • DSC实验结果解读 • DSC实验中的问题与解决方案 • DSC实验的未来发展与展望
01 DSC基本原理
CHAPTER
定义与工作原理
定义
差示扫描量热仪(DSC)是一种用于测量物质在加热或冷却过程中热流变化的 仪器。
热量误差
检查仪器热流传感器是否 正常工作,定期进行热量 校准。
实验重复性差
确保实验操作一致性,控 制实验条件如气氛、样品 量等。
数据解读的注意事项
01
解读数据时应结合实验条件和样品特性,避免误判。
02
对于异常数据点,需进行核实和排除,避免影响数 据整体分析。
03
数据处理时应采用合适的数学方法和软件工具,确 保数据准确性和可靠性。
时间。
DSC与其他仪器的联用
DSC-FTIR联用
将DSC与FTIR光谱仪联用,同时获取样品的热学和化学信息,为 材料研究提供更全面的数据。
DSC-SEM联用
将DSC与扫描电子显微镜联用,观察样品在加热过程中的微观结构 和形貌变化。
DSC-NMR联用
将DSC与核磁共振谱仪联用,研究样品在加热过程中的分子结构和 动态行为。
05 DSC实验的未来发展与展望
CHAPTER
新技术与新方பைடு நூலகம்的应用
纳米技术
01
利用纳米技术制造更小、更灵敏的传感器,提高DSC的检测极
限和分辨率。
人工智能与机器学习
02
通过人工智能和机器学习算法对DSC数据进行深度分析,提高
实验结果的准确性和可靠性。
微流控技术
03
结合微流控技术,实现样品的高效处理和快速分析,缩短实验

差示扫描量热法DSC的基本原理及应用 ppt课件

差示扫描量热法DSC的基本原理及应用 ppt课件

❖为了克服差热缺点,发展了DSC。该法 对试样产生的热效应能及时得到应有的 补偿,使得试样与参比物之间无温差、 无热交换,试样升温速度始终跟随炉温 线性升温,保证了校正系数K值恒定。 测量灵敏度和精度大有提高。
2020/12/15
7
1.功率补偿型DSC测量的基本原理
2020/12/15
8
功率补偿型DSC仪器的主要特点
980℃ 亚稳态高岭土 1200℃ γ-Al2O3
2020/12/15
45
➢热分析的联用技术,包括各种热分 析技术本身的同时联用,
如:TG-DTA,TG-DSC等。
➢热分析与其它分析技术的联用,如: TG-MS、TG-GC、TG-IR等。
2020/12/15
46
ICTA将热分析联用技术分为三类: ✓ 同时联用技术 ✓ 串接联用技术 ✓ 间歇联用技术
对干带静电的粉状试样,由于粉末颗粒 间的静电引力使粉状形成聚集体,也会 引起熔融热焓变大。
2020/12/15
21
3)试样的几何形状
在高聚物的研究中,发现试样几何形状 的影响十分明显。对于高聚物,为了获 得比较精确的峰温值,应该增大试样与 试样盘的接触面积,减少试样的厚度并 采用慢的升温速率。
2020/12/15
应易进行,可得到更尖锐的峰形和
较准确的峰温。只能折衷选择最佳 量。
2020/12/15
50
2020/12/15
51
根据物理或化学过程中所产生的重量和能量的变化 情况,TG和DTA对反应过程可作出大致的判断:
2020/12/15
52
2020测升/12/1试温5 条速件率:10K试/样mi量n,10气.1氛mg:,空参气比物:A12O3,53

差示扫描量热仪(DSC)PPT课件

差示扫描量热仪(DSC)PPT课件

DSC应用:熔融温度(熔点)的测定
是否所有物质都有熔点? 什么是熔点?
• 熔点是晶体将其物态由固态转变(熔化)为液态的过程中 固液共存状的温度。
• 结晶聚合物如尼龙、聚乙烯、聚丙烯、聚甲醛等材料.
熔融与结晶
表征熔融的四个参数: 1.吸热峰峰值 2.初始熔融温度 3.吸热峰面积 4.熔融结束温度
应用实例:熔融温度及热焓测试
金属铟的熔点,其DSC曲线近似一条垂直线,其熔点通常取外推起始温度,吸 收峰的面积为热焓
Sample: DSC-cal0224-In Size: 3.9900 mg
DSC
Method: ASTM E794-06
Comment: Nitrogen purging gas:50ml/min;Type of sample pan:Al
- higher viscosity
- more brittle
- lower enthalpy
Glass Transition is Detectable by DSC Because of a Step-Change in Heat Capacity
-0.6 -0.7 -0.8 -0.9
0.5 70
2
File: J:...\CAL\201202\DSC-In20120224‘ Operator: IR Run Date: 24-Feb-2012 13:30 Instrument: DSC Q200 V23.5 Build 72
Heat Flow (W/g)
0
156.70°C
28.54J/g
-2
• 当样品发生变化如熔融,提供给样品的热量都用来维持 样品的熔融,参比端温度仍按照炉体升温,参比端温度 会高于样品端温度从而形成了温度差。把这种温度差的 变化转变为热流差再以曲线记录下来,就形成了DSC的 原始数据。

第二章热分析方法DSCppt课件

第二章热分析方法DSCppt课件

S
R
1
23
4 5
6
图3-3 热流型DSC示意图 1.鏮铜盘;2.热电偶结点;3.镍铬板; 4.镍铝丝;5.镍铬丝;6.加热块
S
iS
R。 Rb
R
iR
R
Rg
Rg
图3-4 热流型DSC等效回路示意图
三.影响因素[2,3]
差示扫描量热法的影响因素与差热分析基本上相类 似,由于它用于定量测定,因此实验因素的影响显 得更为重要,其主要的影响因素大致有下列几方面: 实验条件 程序升温速率和所通气体的性质。气体 性质涉及气体的氧化还原性、惰性、热导性和气体 处于静态还是动态。 试样特性 试样用量、粒度、装填情况、试样的稀 释和试样的热历史条件等。 参比物特性 参比物用量、参比物的热历史条件。 为了从DSC曲线获得正确而可靠的定量数据,掌握 和了解这些影响因素是十分必要的。
161.33
372.68
2.试样特性的影响 (1)试样用量 试样用量是一个不可忽视的因素。通常用量不宜 过多,因为过多会使试样内部传热慢、温度递度 大,导致峰形扩大和分辨力下降。 例如试样用量对NH4NO3的相变温度和相变热焓 的影响。研究表明,随着试样用量的增大, NH4NO3的相变峰温和相变热焓稍有升高,见表 3-6。
表3-6 试样用量对NH4NO3相变温度和热焓的影响
试样用量 相变 mg
峰温 Tm( K)
标准 偏差
2
328.517 0.2166
5
Ⅳ-Ⅲ 328.946 0.3736
8
329.069 0.5040
2
40-Ⅰ 405.092 0.6532
8
405.028 0.5765
相变热焓 kJ/mol

DSC(差示扫描量热仪)实验室教学课件..

DSC(差示扫描量热仪)实验室教学课件..

动态零位平衡原理
样品与参比物温度,不论样品是吸热还是放热, 两者的温度差都趋向零。 ⊿T=0
dQs dQr dH W dt dt dt dQs --单位时间给样品的热量 dt dQr --单位时间给参比物的热量 dt dH --热焓变化率 dt
DSC 测定的是维持样品与参 比物处于相同温度所需要 的能量差⊿W( dH ),反映 dT 了样品热焓的变化。
热流型 DSC
• 样品热效应引起参比与样品之间的热流不平衡
△T Q A △X
• 由于热阻的存在,参比与样品之间的温度差( △T )与热流差成一定 的比例关系。将△T 对时间积分,可得到热焓:
H K T dt
0
t
K = f (温度,热阻, 材料性质,…)
硬件部分
DSC204F1 结构
重要热分析技术:
差热分析(DTA=Differential Thermal Analysis) 差示扫描量热法(DSC) 热重分析(TGA=Thermogravimetric Analysis) 逸出气体分析(EGA=Evolved Gas Analysis) 热机械分析(TMA=Thermomechanical Analysis) 动态热机械分析仪(DMA=Dynamic Mechanical Analysis) 热光分析(TOA=Thermooptical Analysis) 化学发光(TCL=Thermochemiluminescence)
特点
精更高 确快分 的的辨 温响率 度应 控时 制间 和和 测冷 量却 速 度
DSC 仪器校正 - 基本概念
温度校正
热电偶测量温度与样品实际温度之间存在一定偏离 其偏离程度取决于:
• 坩埚导热性能 • 气氛的导热性能 • 热电偶的老化程度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
制冷方式:
空气制冷~室温 机械制冷~- 85℃ 液氮制冷~-180 ℃
气体出口
空气冷却 保护气氛 参比 样品 热流传感器 炉腔 吹扫气氛
机械冷却
液氮 / 气氮冷却
差热曲线峰的形成
DSC的前身是差热分析DTA
记录的是温差信号 峰面积没有热焓意义
DSC vs DTA
• 工作原理差别
DTA 只能测试△T信号,无法建立△H与△T之间的联系
其中的几种坩埚图示如下:
DSC的类型及其基本原理
DSC的类型:
根据所用测量方法的不同,分为:
热流型(Heat Flux) 功率补偿型(Power Compensation) 调制热流型(Modulated Heat Flux)
热流型(Heat Flux)
在给予样品和参比品相同的功率下,测定样品和参 比品两端的温差T,然后根据热流方程,将T (温差)换算成Q(热量差)作为信号的输出。
热流型DSC
与DTA仪器十分相似,是一种定量的DTA仪器。 不同之处在于试样与参比物托架下,置一电热片, 加热器在程序控制下对加热块加热,其热量通过 电热片同时对试样和参比物加热,使之受热均匀。
特点:
基线稳定 高灵敏度
热流式 DSC - 工作原理
假设: 1, 传感器绝对对称,Tfs = Tfr, Rs = Rr = R 2, 样品和参比端的热容相等Cpr-Cps 3, 样品和参比的加热速率永远相同 4, 样品盘及参比盘的质量(热容)相等 5, 样品盘、参比盘与传感器之间没有热阻或热 阻相等
功 率 补 偿 型
DSC
功率补偿的原理
当试样发生热效应时,如放热,试样温度高 于参比物温度,放置在它们下面的一组差 示热电偶产生温差电势,经差热放大器放 大后送入功率补偿放大器,功率补偿放大 器自动调节补偿加热丝的电流,使试样下 面的电流减小,参比物下面的电流增大。 降低试样的温度,增高参比物的温度,使 试样与参比物之间的温差ΔT趋与零。上述 热量补偿能及时、迅速完成,使试样和参 比物的温度始终维持相同。
了样品热焓的变d化T 。
功率补偿型DSC仪器的主要特点
1.试样和参比物分别具有独立的加热器和传感器。 整个仪器由两套控制电路进行监控。一套控制温 度,使试样和参比物以预定的速率升温,另一套 用来补偿二者之间的温度差。
2.无论试样产生任何热效应,试样和参比物都处 于动态零位平衡状态,即二者之间的温度差T等 于0。
Q Q s Q r T sR s T f s T rR T f r r T s T fR s T r T f rT sR T r R T
功率补偿型(Power
Compensation)
在样品和参比品始终保持相同温度的条件下,测 定为满足此条件样品和参比品两端所需的能量差 ,并直接作为信号Q(热量差)输出。
DSC(差示扫描量热仪)实验室教 学课件..
DSC 原理
在程序温度(升/降/恒温及其组合)过程中,测量样品与参考物 之间的热流差,以表征所有与热效应有关的物理变化化学变化。
应用:
• 玻璃化转变 • 熔融、结晶 • 熔融热、结晶热 • 共熔温度、纯度 • 物质鉴别 • 多晶型
• 相容性 • 热稳定性、氧化稳定性 • 反应动力学 • 热力学函数 • 液相、固相比例 • 比热
只有采用多点拟合法才能实现准确的温度校正
灵敏度校正
• 适用仪器:DSC,STA(DSC-TG联用)
灵敏度校正
仪器
参比热电偶与样品热电偶之间的信号差
灵敏度校正:灵敏度系数μV/mW 实际物理意义上的热效应(热焓)
μV*s/mg mW*s/mg
J/g
校正方法:多点拟合法、比热法
灵敏度校正
• 多点拟合法(热焓校正)
热流型 DSC
• 样品热效应引起参比与样品之间的热流不平衡
Q A△ △XT
• 由于热阻的存在,参比与样品之间的温度差( △T )与热流差成一定 的比例关系。将△T 对时间积分,可得到热焓:
t
H K Tdt K = f (温度,热阻, 材料性质,…)
0
硬件部分
DSC204F1 结构
气体:
两路吹扫气,一路保护气 可实现气体的自由切换
DSC
测试△T信号,并建立△H与△T之间的联系
Q A△△XT
t
H K Tdt
0
DSC vs DTA
• 传感器的结构差别 DSC 传感器
DTA/SDTA 传感器
DSC传感器类型
t
m
t – 传感器,响应速度最快,具有非常理想的峰分离能力 m – 传感器,灵敏度为普通传感器的十几倍
DSC 附件
为了适应千变万化的各种样品,避 免样品与坩埚材料之间的不相兼容 ,配备了多种不同材质不同特点的 坩埚。
动态零位平衡原理
样品与参比物温度,不论样品是吸热还是放热, 两者的温度差都趋向零。 ⊿T=0
W dQ s dQ r dH
dt
dt
dt
dQ s --单位时间给样品的热量 dt
dQ r --单位时间给参比物的热量 dt
dH
--热焓变化率
dt
DSC测定的是维持样品与参
比物处于相同温度所需要
的能量差⊿W( dH ),反映
➢ 这是DSC和DTA技术最本质的区别。
特点
精更高 确快分 的的辨 温响率 度应 控时 制间 和和 测冷 量却
速 度
DSC 仪器校正 - 基本概念
温度校正
热电偶测量温度与样品实际温度之间存在一定偏离 其偏离程度取决于:
• 坩埚导热性能 • 气氛的导热性能 • 热电偶的老化程度
温度校正 • 多点拟合法 • 测试多个不同熔点的标准物质,将实测熔点(DSC, DTA, cDTA...)与相应理论熔点作比较,得到温度校正 曲线(△T~T) 。
• 测试多个不同熔点的标准物质,将熔融实测信号μV*s/mg与 熔融热焓mW*s/mg作比较,得到温度校正曲线(μV/mW~T )。
灵敏度校正
• 比热法(热流校正)
• 使用比热标样,以“样品+修正”模式(基线扣除模式)进 行动态升温测试,使用各温度下的DSC相对信号高度(单位 μv/mg)与Cp *HR(单位mW/mg)进行比较计算,得到灵敏 度曲线:
DSC /(uV/mg) 放热
0.50
0.45
0.40
0.35
0.30
0.25
0
10
温度 /℃ 500
400
300
200
Sapphire
样品称重:85.06mg
100
升温速率:10K/min
相关文档
最新文档