构造法解函数不等式
灵活运用构造函数法,提升证明不等式的效率
设 0 < x1 < x 2 ,
æx
ö
2 ç 1 - 1÷
x1 2 ( x1 - x 2 )
è x2
ø
=
③ 可变形为 ln <
④,
x2
x1
x1 + x 2
+1
x2
令 t=
x1
( 0 < t < 1 ),
x2
可得 h( t ) = ln t -
2
2 ( t - 1)
,
t+1
( t - 1)
即需证
数学篇
42
首先将要证明的不等式进行移项、作差,使所有
则函数 h( x) 单调递减且 h(1) = 0 ,
1 ·h( x) > 0
所以当 x ∈ ( 0,1) 时,h( x) > 0 ,
;
1 - x2
1 ·h( x) > 0
当 x ∈ (1, +∞) 时,h( x) < 0 ,
;
1 - x2
综上所述,当 x > 0 且 x ≠ 1 时,
所以当 x > 0 时, h′(x) < 0 , h(x) 单调递减,
1
1
1
1 ö,
因为 >
,所以 hæ ö < hæ
n n+1
è n ø è n + 1ø
1 ö > n ln æ1 + 1 ö
故 (n + 1)ln æ1 +
.
nø
n + 1ø
è
è
运用函数最值法证明数列不等式时,同学们需依
构造函数法解决导数不等式问题(二)
构造函数法解决导数不等式问题(二)考点四构造F (x )=f (x )±g (x ),F (x )=f (x )g (x ),F (x )=f (x )g (x )类型的辅助函数【方法总结】(1)若F (x )=f (x )+ax n +b ,则F ′(x )=f ′(x )+nax n -1;(2)若F (x )=f (x )±g (x ),则F ′(x )=f ′(x )±g ′(x );(3)若F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )+f (x )g ′(x );(4)若F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2.由此得到结论:(1)出现f ′(x )+nax n -1形式,构造函数F (x )=f (x )+ax n +b ;(2)出现f ′(x )±g ′(x )形式,构造函数F (x )=f (x )±g (x );(3)出现f ′(x )g (x )+f (x )g ′(x )形式,构造函数F (x )=f (x )g (x );(4)出现f ′(x )g (x )-f (x )g ′(x )形式,构造函数F (x )=f (x )g (x ).【例题选讲】[例1](1)函数f (x )的定义域为R ,f (-1)=3,对任意x ∈R ,f ′(x )<3,则f (x )>3x +6的解集为()A .{x |-1<x <1}B .{x |x >-1}C .{x |x <-1}D .R答案C解析设g (x )=f (x )-(3x +6),则g ′(x )=f ′(x )-3<0,所以g (x )为减函数,又g (-1)=f (-1)-3=0,所以根据单调性可知g (x )>0的解集是{x |x <-1}.(2)定义在R 上的函数f (x )满足f (1)=1,且对∀x ∈R ,f ′(x )<12,则不等式f (log 2x )>log 2x +12的解集为________.答案(0,2)解析构造函数F (x )=f (x )-12x ,则F ′(x )=f ′(x )-12<0,∴函数F (x )在R 上是减函数.由f (1)=1,得F (1)=f (1)-12=1-12=12∴f (log 2x )>log 2x +12⇔f (log 2x )-12log 2x >12⇔F (log 2x )>F (1)⇔log 2x <1⇔0<x <2.(3)定义在R 上的可导函数f (x )满足f (1)=1,且2f ′(x )>1,当x ∈-π2,3π2时,不等式f (2cos x )>32-2sin 2x2的解集为()A B -π3,C D -π3,答案D解析令g (x )=f (x )-x 2-12,则g ′(x )=f ′(x )-12>0,∴g (x )在R 上单调递增,且g (1)=f (1)-12-12=0,∵f (2cos x )-32+2sin 2x 2=f (2cos x )-2cos x 2-12=g (2cos x ),∴f (2cos x )>32-2sin 2x2,即g (2cos x )>0,∴2cos x >1,又x ∈-π2,3π2,∴x -π3,(4)f (x )是定义在R 上的偶函数,当x ≥0时,f ′(x )>2x .若f (a -2)-f (a )≥4-4a ,则实数a 的取值范围是()A .(-∞,1]B .[1,+∞)C .(-∞,2]D .[2,+∞)答案A解析令G (x )=f (x )-x 2,则G ′(x )=f ′(x )-2x .当x ∈[0,+∞)时,G ′(x )=f ′(x )-2x >0,∴G (x )在[0,+∞)上是增函数.由f (a -2)-f (a )≥4-4a ,得f (a -2)-(a -2)2≥f (a )-a 2,即G (a -2)≥G (a ),又f (x )是定义在R 上的偶函数,知G (x )是偶函数.故|a -2|≥|a |,解得a ≤1.(5)已知f ′(x )是函数f (x )的导数,且f (-x )=f (x ),当x ≥0时,f ′(x )>3x ,则不等式f (x )-f (x -1)<3x -32的解集是()A -12,B ∞CD ∞答案D解析设g (x )=f (x )-32x 2,则g ′(x )=f ′(x )-3x .因为当x ≥0时,f ′(x )>3x ,所以当x ≥0时,g ′(x )=f ′(x )-3x >0,即g (x )在[0,+∞)上单调递增.因为f (-x )=f (x ),所以g (-x )=f (-x )-32x 2=f (x )-32x 2=g (x ),所以g (x )是偶函数.因为f (x )-f (x -1)<3x -32,所以f (x )-32x 2<f (x -1)-32(x -1)2,即g (x )<g (x -1),所以g (|x |)<g (|x -1|),则|x |<|x -1|,解得x <12.故选D .(6)设f ′(x )是奇函数f (x )(x ∈R )的导数,当x >0时,f (x )+f ′(x )·x ln x <0,则不等式(x -1)f (x )>0的解集为________.答案(0,1)解析由于函数y =f (x )为R 上的奇函数,则f (0)=0.当x >0时,f (x )+f ′(x )·x ln x <0,则f (1)<0.当x >0时,构造函数g (x )=f (x )ln x ,则g ′(x )=f ′(x )ln x +f (x )·1x =f (x )+f ′(x )·x ln xx <0,所以函数y =g (x )在区间(0,+∞)上单调递减,且g (1)=0.当0<x <1时,ln x <0,g (x )>g (1)=0,即f (x )ln x >0,此时f (x )<0;当x >1时,ln x >0,g (x )<g (1)=0,即f (x )ln x <0,此时f (x )<0.又f (1)<0,所以当x >0时,f (x )<0.由于函数y =f (x )为R 上的奇函数,当x <0时,f (x )>0.对于不等式(x -1)f (x )>0,当x <0时,x -1<0,则f (x )<0,不符合题意;当0<x <1时,x -1<0,则f (x )<0,符合题意;当x >1时,x -1>0,则f (x )>0,不符合题意.综上所述,不等式(x -1)f (x )>0的解集为(0,1).(7)(多选)定义在(0,+∞)上的函数f (x )的导函数为f ′(x ),且(x +1)f ′(x )-f (x )<x 2+2x 对任意x ∈(0,+∞)恒成立.下列结论正确的是()A.2f(2)-3f(1)>5B.若f(1)=2,x>1,则f(x)>x2+12x+12C.f(3)-2f(1)<7D.若f(1)=2,0<x<1,则f(x)>x2+12x+12解析CD答案设函数g(x)=f(x)-x2x+1,则g′(x)=(x+1)f′(x)-f(x)-(x2+2x)(x+1)2.因为(x+1)f′(x)-f(x)<x2+2x对任意x∈(0,+∞)恒成立,所以g′(x)<0,故g(x)在(0,+∞)上单调递减,从而g(1)>g(2)>g(3),整理得2f(2)-3f(1)<5,f(3)-2f(1)<7,故A错误,C正确.当0<x<1时,若f(1)=2,因为g(x)在(0,+∞)上单调递减,所以g(x)>g(1)=12,即f(x)-x2x+1>12,即f(x)>x2+12x+12,故D正确,从而B不正确.即结论正确的是CD.(8)已知函数f(x),对∀x∈R,都有f(-x)+f(x)=x2,在(0,+∞)上,f′(x)<x,若f(4-m)-f(m)≥8-4m,则实数m的取值范围为()A.[-2,2]B.[2,+∞)C.[0,+∞)D.(-∞,-2]∪[2,+∞)答案B解析因为对∀x∈R,都有f(-x)+f(x)=x2,所以f(0)=0,设g(x)=f(x)-12x2,则g(-x)=f(-x)-12x2,所以g(x)+g(-x)=f(x)-12x2+f(-x)-12x2=0,又g(0)=f(0)-0=0,所以g(x)为奇函数,且f(x)=g(x)+12x2,所以f(4-m)-f(m)=g(4-m)+12(4-m)2-g(m)+12m2=g(4-m)-g(m)+8-4m≥8-4m,则g(4-m)-g(m)≥0,即g(4-m)≥g(m).当x>0时,g′(x)=f′(x)-x<0,所以g(x)在(0,+∞)上为减函数,又g(x)为奇函数,所以4-m≤m,解得m≥2.(9)已知函数y=f(x)是R上的可导函数,当x≠0时,有f′(x)+f(x)x >0,则函数F(x)=xf(x)+1x的零点个数是()A.0B.1C.2D.3答案B解析依题意,记g(x)=xf(x),则g′(x)=xf′(x)+f(x),g(0)=0,当x>0时,g′(x)=x[f′(x)+f(x)x]>0,g(x)是增函数,g(x)>0;当x<0时,g′(x)=x[f′(x)+f(x)x]<0,g(x)是减函数,g(x)>0.在同一坐标系内画出函数y=g(x)与y=-1x的大致图象,结合图象可知,它们共有1个公共点,因此函数F(x)=xf(x)+1x的零点个数是1.(10)函数f(x)满足x2f′(x)+2xf(x)=e xx,f(2)=e28,当x>0时,f(x)的极值状态是___________.答案没有极大值也没有极小值解析因为x2f′(x)+2xf(x)=e x x,关键因为等式右边函数的原函数不容易找出,因此把等式左边函数的原函数找出来,设h (x )=x 2f (x ),则h ′(x )=e x x ,且h (2)=e 22,因为x 2f ′(x )+2xf (x )=e x x ,则f ′(x )=e x -2h (x )x 3,判断f (x )的极值状态就是判断f ′(x )的正负,设g (x )=e x -2h (x ),则g ′(x )=e x -2h ′(x )=e x -2·e xx =e x ·x -2x ,这里涉及二阶导,g (x )在x =2处取得最小值0,因此g (x )≥0,则f ′(x )≥0,故f (x )没有极大值也没有极小值(有难度,但不失为好题目).【对点训练】1.已知函数f (x )的定义域为R ,f (-1)=2,且对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为()A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)1.答案B解析由f (x )>2x +4,得f (x )-2x -4>0.设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2.因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增.又F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,故选B .2.已知函数f (x )(x ∈R )满足f (1)=1,f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为.2.答案{x |x <-1或x >1}解析设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减,∴x 2>1,即不等式的解集为{x |x <-1或x >1}.3.已知定义域为R 的函数f (x )的导数为f ′(x ),且满足f ′(x )<2x ,f (2)=3,则不等式f (x )>x 2-1的解集是()A .(-∞,-1)B .(-1,+∞)C .(2,+∞)D .(-∞,2)3.答案D解析令g (x )=f (x )-x 2,则g ′(x )=f ′(x )-2x <0,即函数g (x )在R 上单调递减.又不等式f (x )>x 2-1可化为f (x )-x 2>-1,而g (2)=f (2)-22=3-4=-1,所以不等式可化为g (x )>g (2),故不等式的解集为(-∞,2).故选D .4.定义在(0,+∞)上的函数f (x )满足x 2f ′(x )+1>0,f (1)=4,则不等式f (x )>1x +3的解集为________.4.解析(1,+∞)答案由x 2f ′(x )+1>0得f ′(x )+1x 2>0,构造函数g (x )=f (x )-1x -3,则g ′(x )=f ′(x )+1x2>0,即g (x )在(0,+∞)上是增函数.又f (1)=4,则g (1)=f (1)-1-3=0,从而g (x )>0的解集为(1,+∞),即f (x )>1x+3的解集为(1,+∞).5.设f (x )为R 上的奇函数,当x ≥0时,f ′(x )-cos x <0,则不等式f (x )<sin x 的解集为.5.答案(0,+∞)解析令φ(x )=f (x )-sin x ,∴当x ≥0时,φ′(x )=f ′(x )-cos x <0,∴φ(x )在[0,+∞)上单调递减,又f (x )为R 上的奇函数,∴φ(x )为R 上的奇函数,∴φ(x )在(-∞,0]上单调递减,故φ(x )在R上单调递减且φ(0)=0,不等式f (x )<sin x 可化为f (x )-sin x <0,即φ(x )<0,即φ(x )<φ(0),故x >0,∴原不等式的解集为(0,+∞).6.设f (x )和g (x )分别是定义在R 上的奇函数和偶函数,f ′(x ),g ′(x )分别为其导数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是()A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)6.答案D解析令h (x )=f (x )g (x ),当x <0时,h ′(x )=f ′(x )g (x )+f (x )g ′(x )>0,则h (x )在(-∞,0)上单调递增,又f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以h (x )为奇函数,所以h (x )在(0,+∞)上单调递增.又由g (-3)=0,可得h (-3)=-h (3)=0,所以当x <-3或0<x <3时,h (x )<0,故选D .7.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时,有()A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )7.解析C答案令F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0,所以F (x )在R 上单调递减.又a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ).又f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).8.设函数f (x )在R 上存在导数f ′(x ),对任意x ∈R ,都有f (-x )+f (x )=x 2,在(0,+∞)上f ′(x )<x ,若f (2-m )+f (-m )-m 2+2m -2≥0,则实数m 的取值范围为__________.8.答案[1,+∞)解析令g (x )=f (x )-x 22,则g (-x )+g (x )=0,g (x )是R 上的奇函数.又当x ∈(0,+∞)时,g ′(x )=f ′(x )-x <0,所以g (x )在(0,+∞)上单调递减,所以g (x )是R 上的单调减函数.原不等式等价于g (2-m )+g (-m )≥0,g (2-m )≥-g (-m )=g (m ),所以2-m ≤m ,m ≥1.9.已知f (x )是定义在R 上的减函数,其导函数f ′(x )满足f (x )f ′(x )+x <1,则下列结论正确的是()A .对于任意x ∈R ,f (x )<0B .对于任意x ∈R ,f (x )>0C .当且仅当x ∈(-∞,1),f (x )<0D .当且仅当x ∈(1,+∞),f (x )>09.答案B解析∵f (x )f ′(x )+x <1,f (x )是定义在R 上的减函数,f ′(x )<0,∴f (x )+xf ′(x )>f ′(x ),∴f (x )+(x -1)f ′(x )>0,∴[(x -1)f (x )]′>0,∴函数y =(x -1)f (x )在R 上单调递增,而x =1时,y =0,则x <1时,y <0,故f (x )>0.x >1时,x -1>0,y >0,故f (x )>0,∴f (x )>0对任意x ∈R 成立,故选B .10.已知y =f (x )为R 上的可导函数,当x ≠0时,f ′(x )+f (x )x >0,若g (x )=f (x )+1x,则函数g (x )的零点个数为()A .1B .2C .0D .0或210.答案C 解析令h (x )=xf (x ),因为当x ≠0时,xf ′(x )+f (x )x>0,所以h ′(x )x >0,因此当x >0时,h ′(x )>0,当x <0时,h ′(x )<0,又h (0)=0,易知当x ≠0时,h (x )>0,又g (x )=h (x )+1x,所以g (x )≠0,故函数g (x )的零点个数为0考点五构造具体函数关系式【方法总结】这类题型需要根据题意构造具体的函数关系式,通过具体的关系式去解决不等式及求值问题.【例题选讲】[例1](1)(2020·全国Ⅰ)若2a +log 2a =4b +2log 4b ,则()A .a >2bB .a <2bC .a >b 2D .a <b 2答案B解析由指数和对数的运算性质得2a +log 2a =4b +2log 4b =22b +log 2b .令f (x )=2x +log 2x ,则f (x )在(0,+∞)上单调递增.又∵22b +log 2b <22b +log 2b +1=22b +log 2(2b ),∴2a +log 2a <22b +log 2(2b ),即f (a )<f (2b ),∴a <2b .故选B .(2)已知α,β∈-π2,π2,且αsin α-βsin β>0,则下列结论正确的是()A .α>βB .α2>β2C .α<βD .α+β>0答案B解析构造函数f (x )=x sin x ,则f ′(x )=sin x +x cos x .当x ∈0,π2时,f ′(x )≥0,f (x )是增函数,当x ∈-π2,f ′(x )<0,f (x )是减函数,又f (x )为偶函数,∴αsin α-βsin β>0⇔αsin α>βsin β⇔f (α)>f (β)⇔f (|α|)>f (|β|)⇔|α|>|β|⇔α2>β2,故选B .(3)(多选)若0<x 1<x 2<1,则()A .x 1+ln x 2>x 2+ln x 1B .x 1+ln x 2<x 2+ln x 1C .12e x x >21e x x D .12e x x <21e x x 答案AC解析令f (x )=x -ln x ,∴f ′(x )=1-1x =x -1x,当0<x <1时,f ′(x )<0,∴f (x )在(0,1)上单调递减.∵0<x 1<x 2<1,∴f (x 2)<f (x 1),即x 2-ln x 2<x 1-ln x 1,即x 1+ln x 2>x 2+ln x 1.设g (x )=e xx ,则g ′(x )=x e x -e x x 2=e x (x -1)x 2.当0<x <1时,g ′(x )<0,即g (x )在(0,1)上单调递减,∵0<x 1<x 2<1,∴g (x 2)<g (x 1),即22e x x <11e x x ,∴12e x x >21e x x ,故选AC .A .(a +1)a +2>(a +2)a+1B .log a (a +1)>log a +1(a +2)C .log a (a +1)<a +1a D .log a +1(a +2)<a +2a +1答案ABD解析若A 成立,则(a +1)a +2>(a +2)a +1,两边取自然对数,得(a +2)ln(a +1)>(a +1)ln(a+2),因为a ≥2,所以ln(a +1)a +1>ln(a +2)a +2.令f (x )=ln xx ,则x ≥3,f ′(x )=1-ln x x 2<0,故f (x )在[3,+∞)上单调递减,所以ln(a +1)a +1>ln(a +2)a +2,故A 成立;若B 成立,则log a (a +1)>log a +1(a +2),即ln(a +1)ln a >ln(a +2)ln(a +1),设g (x )=ln(x +1)ln x ,x ≥2,则g ′(x )=ln x x +1-ln(x +1)x (ln x )2=x ln x -(x +1)ln(x +1)x ·(x +1)(ln x )2,令h (x )=x ln x ,x ≥2,则h ′(x )=ln x +1>0,故h (x )在[2,+∞)上单调递增,所以x ln x -(x +1)ln(x +1)<0,所以g ′(x )<0,故g (x )在[2,+∞)上单调递减,所以ln(a +1)ln a >ln(a +2)ln(a +1),故B 成立;若C 成立,则log a (a +1)<a +1a ,即ln(a +1)a +1<ln a a ,由A 知f (x )=ln xx 在[2,e)上单调递增,在(e ,+∞)上单调递减,取a =2,故C 不成立;若D 成立,则log a +1(a +2)<a +2a +1,即ln(a +2)a +2<ln(a +1)a +1,由A 知D 成立.故选ABD .(6)(2021·全国乙)设a =2ln1.01,b =ln1.02,c =1.04-1,则()A .a <b <cB .b <c <aC .b <a <cD .c <a <b答案B 解析b -c =ln1.02- 1.04+1,设f (x )=ln(x +1)-1+2x +1,则b -c =f (0.02),f ′(x )=1x +1-221+2x=1+2x -(x +1)(x +1)1+2x,当x >0时,x +1=(x +1)2>1+2x ,故当x >0时,f ′(x )=1+2x -(x +1)(x +1)1+2x<0,所以f (x )在(0,+∞)上单调递减,所以f (0.02)<f (0)=0,即b <c .a -c =2ln 1.01- 1.04+1,设g (x )=2ln(x +1)-1+4x +1,则a -c =g (0.01),g ′(x )=2x +1-421+4x =2[1+4x -(x +1)](x +1)1+4x,当0<x <2时,4x +1=2x +2x +1>x 2+2x +1=(x +1)2=x +1,故当0<x <2时,g ′(x )>0,所以g (x )在(0,2)上单调递增,所以g (0.01)>g (0)=0,故c <a ,从而有b <c <a ,故选B .(7)已知函数f (x )的定义域为(0,+∞),导函数为f ′(x ),若xf ′(x )-f (x )=x ln x ,且=1e ,则()A .f 0B .f (x )在x =1e 处取得极大值C .0<f (1)<1D .f (x )在(0,+∞)上单调递增答案ACD解析由题知函数f (x )的定义域为(0,+∞),导函数为f ′(x ),xf ′(x )-f (x )=x ln x ,即满足xf ′(x )-f (x )x 2=ln x x .因为f (x )x ′=xf ′(x )-f (x )x 2,所以f (x )x ′=ln x x ,所以可设f (x )x =12ln 2x +b (b 为常数),所以f (x )=12x ln 2x +bx .因为=12·1e ln 21e +b e =1e ,解得b =12,所以f (x )=12ln 2x +12x ,所以f (1)=12,满足0<f (1)<1,所以C 正确;因为f ′(x )=12ln 2x +ln x +12=12(ln x +1)2≥0,且仅有f 0,所以B 错误,A ,D 正确.故选ACD .【对点训练】1.若a =ln 22,b =ln 33,c =ln 66,则()A .a <b <cB .c <b <aC .c <a <bD .b <a <c1.答案C解析设f (x )=ln xx ,则f ′(x )=1-ln x x2,所以f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,即有f (6)<f (4)<f (3),所以ln 66<ln 44=ln 22<ln 33,故c <a <b .2.设a ,b >0,则“a >b ”是“a a >b b ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.答案D解析因为a ,b >0,由a a >b b 可得a ln a >b ln b .设函数f (x )=x ln x ,则f ′(x )=ln x +1,由f ′(x )>0可得x >1e ,所以函数f (x )=x ln x a >b 不一定有a ln a >b ln b ,即a a >b b ,所以充分性不成立;当a a >b b ,即a ln a >b ln b 时,不一定有a >b ,所以必要性不成立,所以“a >b ”是“a a >b b ”的既不充分也不必要条件,故选D .3.已知0<x 1<x 2<1,则()A .ln x 1x 2>ln x 2x 1B .ln x 1x 2<ln x 2x 1C .x 2ln x 1>x 1ln x 2D .x 2ln x 1<x 1ln x 23.答案D解析设f (x )=x ln x ,则f ′(x )=ln x +1,由f ′(x )>0,得x >1e,所以函数f (x )调递增;由f ′(x )<0,得0<x <1e f (x )f (x )在(0,1)上不单调,所以f (x 1)与f (x 2)的大小无法确定,从而排除A ,B ;设g (x )=ln xx ,则g ′(x )=1-ln x x 2,由g ′(x )>0,得0<x <e,即函数g (x )在(0,e)上单调递增,故函数g (x )在(0,1)上单调递增,所以g (x 1)<g (x 2),即ln x 1x 1<ln x 2x 2,所以x 2ln x 1<x 1ln x 2.故选D .4.已知a >b >0,a b =b a ,有如下四个结论:(1)b <e ;(2)b >e ;(3)存在a ,b 满足a ·b <e 2;(4)存在a ,b 满足a ·b >e 2,则正确结论的序号是()A .(1)(3)B .(2)(3)C .(1)(4)D .(2)(4)4.答案C解析由a b =b a 两边取对数得b ln a =a ln b ⇒ln a a =ln b b .对于y =ln xx,由图象易知当b <e<a 时,才可能满足题意.故(1)正确,(2)错误;另外,由a b =b a ,令a =4,b =2,则a >e ,b <e ,ab =8>e 2,故(4)正确,(3)错误.因此,选C .5.设x ,y ,z 为正数,且2x =3y =5z ,则()A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z5.答案D解析令2x =3y =5z =t (t >1),两边取对数得x =log 2t =ln t ln 2,y =log 3t =ln t ln 3,z =log 5t =ln tln 5,从而2x =2ln 2ln t ,3y =3ln 3ln t ,5z =5ln 5ln t .由t >1知,要比较三者大小,只需比较2ln 2,3ln 3,5ln 5的大小.又2ln 2=4ln 4,e<3<4<5,由y =ln x x 在(e ,+∞)上单调递减可知,ln 33>ln 44>ln 55,从而3ln 3<4ln 4<5ln 5,3y <2x <5z ,故选D .6.已知a <5且a e 5=5e a ,b <4且b e 4=4e b ,c <3且c e 3=3e c ,则()A .c <b <a B .b <c <a C .a <c <bD .a <b <c6.答案D解析方法一由已知e 55=e a a ,e 44=e bb,e 33=e c c ,设f (x )=e xx ,则f ′(x )=(x -1)e x x 2,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以f (3)<f (4)<f (5),f (c )<f (b )<f (a ),所以a <b <c .方法二设e x=e 55x ,①,e x =e 44x ,②,e x=e 33x ,③,a ,b ,c 依次为方程①②③的根,结合图象,方程的根可以看作两个图象的交点的横坐标,∵e 55>e 44>e 33,由图可知a <b <c.7.若0<x 1<x 2<a ,都有x 2ln x 1-x 1ln x 2≤x 1-x 2成立,则a 的最大值为()A .12B .1C .eD .2e7.答案B解析ln x 1x 1-ln x 2x 2≤1x 2-1x 1,即ln x 1x 1+1x 1≤ln x 2x 2+1x 2,令f (x )=ln x x +1x,则f (x )在(0,a )上为增函数,所以f ′(x )≥0在(0,a )上恒成立,f ′(x )=-ln xx 2,令f ′(x )=0,解得x =1,所以f (x )在(0,1)上为增函数,在(1,+∞)上为减函数,所以a ≤1,所以a 的最大值为1,选B .8.下列四个命题:①ln 5<5ln 2;②ln π>πe;③;④3eln 2>42.其中真命题的个数是()A .1B .2C .3D .48.答案B解析构造函数f (x )=ln xx ,则f ′(x )=1-ln x x 2,当x ∈(0,e)时,f ′(x )>0,f (x )单调递增;当x ∈(e ,+∞)时,f ′(x )<0,f (x )单调递减.①ln 5<5ln 2⇒2ln 5<5ln 2⇒ln 55<ln 22,又2<5<e ,故错误.②ln π>πe ⇒2ln π>πe ⇒ln ππ>12e=ln e e ,又e>π>e ,故正确.③⇒11ln 2<ln 11=2ln 11⇒ln 22=ln 44<ln 1111,又4>11>e ,故正确.④3eln 2>42⇒322eln 2>2×322⇒3232ln 22>ln e e ,显然错误.因此选B .A .0<a <b <1B .b <a <0C .1<a <bD .a =b 10.答案ABD 解析因为实数a ,b 满足2a +3a =3b +2b ,所以设f (x )=2x +3x ,g (x )=3x +2x ,在同一平面直角坐标系中作出f (x )与g (x )的图象如图所示.由图象可知:①当x <0时,f (x )<g (x ),所以当2a +3a =3b +2b 时,b <a <0,故B 正确;②当x =0或1时,f (x )=g (x ),所以当2a +3a =3b +2b 时,a =b =0或a =b =1,故D 正确;③当0<x <1时,f (x )>g (x ),所以当2a +3a =3b +2b 时,0<a <b <1,故A 正确;④当x >1时,f (x )<g (x ),所以当2a +3a =3b +2b 时,1<b <a ,故C 错误.故选ABD .11.已知函数f (x )=e x x -ax ,x ∈(0,+∞),当x 2>x 1时,不等式f (x 1)x 2<f (x 2)x 1恒成立,则实数a 的取值范围为()A .(-∞,e]B .(-∞,e)C ∞D ∞,e 211.答案D 解析因为x ∈(0,+∞),所以x 1f (x 1)<x 2f (x 2),即函数g (x )=xf (x )=e x -ax 2在x ∈(0,+∞)上是单调增函数,则g ′(x )=e x -2ax ≥0在x ∈(0,+∞)上恒成立,所以2a ≤e x x在x ∈(0,+∞)上恒成立.令m (x )=e x x ,则m ′(x )=(x -1)e x x 2,当x ∈(0,1)时,m ′(x )<0,m (x )单调递减,当x ∈(1,+∞)时,m ′(x )>0,m (x )单调递增,所以2a ≤m (x )min =m (1)=e ,所以a ≤e 2.故选D .12.设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (e)=1e,则下列结论正确的是()A .f (x )在(0,+∞)单调递增B .f (x )在(0,+∞)单调递减C .f (x )在(0,+∞)上有极大值D .f (x )在(0,+∞)上有极小值12.答案B 解析由x 2f ′(x )+xf (x )=ln x ,得xf ′(x )+f (x )=ln x x ,构造F ′(x )=xf ′(x )+f (x )=ln x x ,F (x )=xf (x )=ln 2x 2+m ,当x =e 时,xf (x )=ln 2x 2+m ,又e f (e)=ln 2e 2+m ,所以m =12,所以f (x )=ln 2x +12x,所以f ′(x )=-(ln x -1)22x 2≤0,f (x )在(0,+∞)单调递减,选B .13.(多选)下列不等式中恒成立的有()A .ln(x +1)≥x x +1,x >-1B .ln x x >0C .e x ≥x +1D .cos x ≥1-12x 213.答案ACD 解析A 选项,因为x >-1,令t =x +1>0,f (t )=ln t +1t -1,则f ′(t )=1t -1t 2=t -1t2,所以当0<t <1时,f ′(t )=t -1t 2<0,即f (t )单调递减;当t >1时,f ′(t )=t -1t 2>0,即f (t )单调递增,所以f (t )min =f (1)=0,即f (t )=ln t +1t -1≥0,即ln t ≥t -1t,即ln(x +1)≥x x +1,x >-1恒成立,故A 正确;B 选项,令f (x )=ln x x >0,则f ′(x )=1x -=2x -x 2-12x 2=-(x -1)22x 2≤0显然恒成立,所以f (x )=ln x x >0上单调递减,又f (1)=0,所以当x ∈(0,1)时,f (x )>f (1)=0,即ln x B 错;C 选项,令f (x )=e x -x -1,则f ′(x )=e x -1,当x >0时,f ′(x )=e x -1>0,所以f (x )单调递增;当x <0时,f ′(x )=e x -1<0,所以f (x )单调递减,则f (x )≥f (0)=0,即e x ≥x +1恒成立,故C 正确;D 选项,令f (x )=cos x -1+12x 2,则f ′(x )=-sin x +x ,令h (x )=f ′(x )=-sin x +x ,则h ′(x )=-cos x +1≥0恒成立,即函数f ′(x )=-sin x +x 单调递增,又f ′(0)=0,所以当x >0时,f ′(x )>0,即f (x )=cos x -1+12x 2单调递增;当x <0时,f ′(x )<0,即f (x )=cos x -1+122单调递减,所以f (x )min =f (0)=0,因此cos x ≥1-12x 2恒成立,故D 正确.。
第二节构造函数求极值最值解函数不等式问题(原卷版)
第二节 构造函数法求极值、最值及求解函数不等式考点梳理1、多元归一构造法:(1)对于形如()()f m g n =的问题,令()()t f m g n ==,确定n m -关于t 的函数关系式,构造函数并利用导数求解;(2)对于形如()b f a 的函数,令=b t a,构造函数(t)f 求解. 2、“同构法”构造新函数:对于等式左右两边结构特征相同的问题可利用“同构法”构造新函数求解(主要是“指数”“对数”同构型函数问题),其常见形式有:(1)积型:e ln a a b b ≤的三种构造形式:①()ln e ln e a b a b ≤型,构建函数()e x f x x =; ①e ln e ln a a b b ≤型,构建函数()ln f x x x =;①()ln ln ln ln a a b b +≤+型,构建函数()ln f x x x =+.(2)商型:e ln a b a b≤的三种构造形式为: ①ln e e ln a ba b ≤型,构建函数()e x f x x=; ①e lne ln a a b b≤型,构建函数()ln x f x x =; ①()ln ln ln ln a a b b -≤-型,构建函数()ln f x x x =-.(3)已知()f x 和()f x '的关系式,适当构造新函数求解函数不等式或比较大小问题,常见类型有: ①()()'xfx f x +型,构造函数()()x xf x g = ①()()'xfx f x -型,构造函数()()x x f x g =()0≠x ①()()'xfx nf x +型,构造函数())(x f x x g n = ①()()'xfx nf x -型,构造函数()n x x f x g )(= ①()()'fx f x -型,构造函数()x e )(x f x g = ①()()'fx f x +型,构造函数())(x f e x g x = ①()()'f x kf x +型,构造函数())(x f e x g kx =⑧()()cos sin f x x f x x '+型,构造函数()()cos f x g x x =.重难点题型突破一、多元归一构造法例1、(2023·广东湛江·统考二模)对于两个函数()1e t h t -=,12t ⎛⎫> ⎪⎝⎭与()()ln 212g t t =-+,12t ⎛⎫> ⎪⎝⎭若这两个函数值相等时对应的自变量分别为1t ,2t ,则21t t -的最小值为( )A .1-B .ln2-C .1ln3-D .12ln2-二、“同构法”构造新函数例2、(2022·四川遂宁市·高三模拟)若()()e 1ln 0,0x a x ax a x ≥-+>>,则a 的最大值为()A .e4 B .e2 C .e D .2e点睛:对于等式左右两边结构特征相同的问题可利用“同构法”构造新函数求解:(1)x 化为ln e x 是“指”“对”同构型函数的常用变形技巧,注意掌握;(2)构造函数、参变分离,转化为恒成立问题求解.三、已知()f x 和()f x '的关系式,适当构造新函数问题求解函数不等式或比较大小问题 例3、(2023·山东淄博二模)已知定义在R 上的函数()f x 的导函数为()f x ',若()e x f x '<,且()22e 2f =+,则不等式()ln 2f x x >+的解集是( )A .()0,2B .()20,eC .()2e ,+∞D .()2,+∞例4、(2023·山东菏泽二模)已知函数()f x 是定义在R 上的可导函数, 其导函数记为()f x ',若对于任意实数x ,有()()f x f x '>,且()01f =,则不等式()e x f x <的解集为( )A .(),0∞-B .()0,∞+C .()4e -∞,D .()4e +∞,。
构造函数解不等式 一等奖创新教案
构造函数解不等式一等奖创新教案构造函数解不等式一、目标基础1.1地位和作用:函数思想是中学数学重要的解题思想和方法,也是中学数学核心素养的重要方面,数学解题中,可根据题目的结构特征,抓住自变量,构造合理的函数,利用导数研究函数的单调性、极值、最值,进一步研究函数的零点,达到比较实数的大小、研究函数、方程、不等式的目的。
1.2教学重、难点:教学重点:导数的运算法则的逆应用,合理构造函数。
教学难点:根据外形结构特征与求导法则的结构特征进行合理构造。
突破方法:通过复习导数的四则运算,根据求导结果构造函数,通过例题及变式总结构造函数技巧,引导学生来突破重难点。
1.3学生情况分析:授课对象是我校高二学生,他们已经学习了导数公式、导数的运算法则以及函数的单调性与导数的关系等。
学生已经能够熟练已知函数求导函数,但是已知导函数及导函数的一部分来构造原函数比较困难。
高二学生正处于思维逐步地从感性到理性思维过渡,并由正向逻辑思维发展到逆向思维的关键时期,故而整个教学环节通过例题、变式引导学生积极思考,培养学生逆向思维等多方面的能力。
根据上述结构与内容分析,立足学生的认知水平,制定如下教学目标:二、教学目标:(1).通过复习导数的四则运算,导函数构造原函数,了解构造函数的情况。
(2).通过思考、运算培养学生观察、分析、比较能力,通过问题变式体会类比、从特殊到一般的数学思想方法。
(3).通过正用导数的四则运算,体会导函数的逆应用,使学生理解构造原函数的原理,从而激发学生学习数学的兴趣。
三、学法和教法:3.1学法:(1)自主学习:引导学生主动参与数学活动。
合作学习:引导学生分组讨论,合作交流,(3)探究学习:引导学生发挥主观能动性,主动探索新知。
3.2教法:集体讨论法;合作探究法;直观演示法。
3.3教具:电脑、多媒体。
四、教学过程:1.回顾:导数的运算公式设计思路:通过学生熟悉的导数运算公式引入,使学生对构造函数不陌生,激发学生的思考。
高中数学解题方法-----构造函数法证明导数不等式的八种方法
高中数学解题方法构造函数法证明不等式的八种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
以下介绍构造函数法证明不等式的八种方法:1.移项法构造函数 2、作差法构造函数证明3、换元法构造函数证明4、从条件特征入手构造函数证明5、主元法构造函数6、构造二阶导数函数证明导数的单调性7.对数法构造函数(选用于幂指数函数不等式)8.构造形似函数1.移项法构造函数【例1】 已知函数x x x f −+=)1ln()(,求证:当1−>x 时,恒有x x x ≤+≤+−)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(−+++=x x x g ,从其导数入手即可证明。
【解】1111)(+−=−+=′x x x x f ∴当01<<−x 时,0)(>′x f ,即)(x f 在)0,1(−∈x 上为增函数当0>x 时,0)(<′x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(−,单调递减区间),0(+∞于是函数()f x 在),1(+∞−上的最大值为0)0()(max ==f x f ,因此,当1−>x 时,0)0()(=≤f x f ,即0)1ln(≤−+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(−+++=x x x g , 22)1()1(111)(+=+−+=′x x x x x g 则 当0)(,),0(;0)(,)0,1(>′+∞∈<′−∈x g x x g x 时当时 ,即)(x g 在)0,1(−∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞−上的最小值为0)0()(min ==g x g ,∴当1−>x 时,0)0()(=≥g x g ,即0111)1ln(≥−+++x x ∴111)1ln(+−≥+x x ,综上可知,当x x x x ≤+≤−+−>)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证.2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F −=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。
第09讲:拓展二:构造函数法解决导数不等式问题(解析版)-备战2025年高考新结构数学一轮复习精讲练
目录
类型一:构造 F (x) xn f (x) 或 F (x)
f
(x) xn
(
n
Z
,且 n 0 )型 ................ 2
类型二:构造 F (x) enx f (x) 或 F (x)
f (x) enx
(
n
Z
,且 n 0 )型 ................6
类型五:根据不等式(求解目标)构造具体函数 ............................18
1、两个基本还原
① f (x)g(x) f (x)g(x) [ f (x)g(x)]
②
f (x)g(x) f (x)g(x) [g( x)]2
[ f (x) ] g(x)
2、类型一:构造可导积函数
(x) x2
f
(x)
[
f
(x) ] x
高频考点 2:
xf
(x) 2 x3
f
(x)
[
f
(x x2
)
]
③
f (x) sin x sin 2
f (x) cos x x
[ f (x) ] sin x
⑥
f (x) cos x cos2
f (x) sin x x
[ f (x) ] cos x
高频考点
所以 g e g 2 ,即 e2 f
e 22
f
2 ,所以
f e
4
f 2
e2 ,A 选项错误;
g 3 g 1 ,即 32 f 3 12 f 1 ,所以 9 f 3 f 1 ,B 选项错误;
g 2 g 3 ,即 22 f 2 3 2 f 3 ,所以 4 f 2 9 f 3 ,C 选项错误;
构造函数证明不等式的八种方法
构造函数证明不等式的八种方法下面将介绍构造函数证明不等式的八种常见方法:1.特殊赋值法:这种方法通过为变量赋特殊的值来构造函数,使得不等式成立。
例如,对于不等式a^2>b^2,可以构造函数f(x)=x^2,当a=2,b=1时,即f(2)>f(1),从而得到a^2>b^22.梯度法:这种方法通过构造一个变化率为正(或负)的函数来推导出不等式。
例如对于不等式a^2>b^2,可以构造函数f(x)=(x-a)^2-(x-b)^2,当x>(a+b)/2时,即f'(x)>0,从而得到a^2>b^23.极值法:这种方法通过构造一个函数的极大值(或极小值)来证明不等式。
例如对于不等式a^2>b^2,可以构造函数f(x)=x^2-b^2,当x=a时,f(x)>0,从而得到a^2>b^24.差的平方法:这种方法通过构造一个差的平方形式的函数来证明不等式。
例如对于不等式a^2>b^2,可以构造函数f(x)=(x+a)^2-(x+b)^2,当x>(a+b)/2时,即f(x)>0,从而得到a^2>b^25.相似形式法:这种方法通过构造一个与要证明的不等式形式相似的函数来证明不等式。
例如对于不等式(a+b)^4 > 8(ab)^2,可以构造函数f(x) = (x+1)^4- 8(x-1)^2,令x = ab,当x > 1时,即f(x) > 0,从而得到(a+b)^4 > 8(ab)^26.中值定理法:这种方法通过应用中值定理来证明不等式。
例如对于不等式f(a)>f(b),可以构造函数g(x)=f(x)-f(b),当a>b时,存在c∈(b,a),使得g'(c)>0,从而得到f(a)>f(b)。
7.逼近法:这种方法通过构造一个逼近函数序列来证明不等式。
例如对于不等式a > b,可以构造一个逼近函数序列f_n(x) = (a+x)^n - (b+x)^n,当n 趋近于正无穷时,即lim(n→∞)(a+x)^n - (b+x)^n = ∞,从而得到a > b。
构造函数法证明不等式的八种方法
构造函数法证明不等式的八种方法一、构造函数法是一种常用的数学证明方法,通过巧妙地构造函数,并对其性质进行分析,可以证明各种数学不等式。
下面就列举八种常用的构造函数法证明不等式的方法。
1.构造平方函数法:对于形如x^2≥0的不等式,可以构造f(x)=x^2,然后通过分析f(x)的性质,来证明不等式的成立。
2.构造递增函数法:对于形如a≥b的不等式,可以构造f(x)=x,然后通过分析f(x)的性质,来证明不等式的成立。
3.构造递减函数法:对于形如a≤b的不等式,可以构造f(x)=-x,然后通过分析f(x)的性质,来证明不等式的成立。
4.构造两个函数之差法:对于形如a-b≥0的不等式,可以构造f(x)=x^2和g(x)=(x-a)(x-b),然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
5. 构造函数的和法:对于形如(a+b)^2≥0的不等式,可以构造f(x)=x^2和g(x)=a^2+b^2+2ab,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
6.构造函数的积法:对于形如(a·b)^2≥0的不等式,可以构造f(x)=x^2和g(x)=a^2·b^2,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
7.构造函数的倒数法:对于形如1/(a·b)≥0的不等式,可以构造f(x)=1/x和g(x)=a·b,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
8.构造指数函数法:对于形如e^x≥1的不等式,可以构造f(x)=e^x 和g(x)=1,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
以上就是八种常用的构造函数法证明不等式的方法。
在实际证明过程中,需要注意选择合适的函数,并结合函数的性质进行分析,以确定不等式的成立情况。
此外,还需要注意构造的函数在给定范围内是否满足所要求的性质,以确保证明的正确性。
利用导数证明不等式——构造法证明不等式
利用导数证明不等式——构造法证明不等式构造法又称作图法,是一种利用几何图形来论证不等式的方法。
这种方法通常比较直观,易于理解和应用。
本文将利用导数和构造法相结合的方法来证明一些不等式。
首先,我们将考虑最简单的一类不等式,即严格单调递增函数和递增不等式。
假设函数f(x)在区间[a,b]上是单调递增的,即对于任意的x1,x2属于[a,b],且x1<x2,有f(x1)<f(x2)。
现证明对于任意的x1,x2属于[a,b],且x1<x2,有f'(x1)<f'(x2)。
证明:根据导数的定义,函数f(x)在点x1到x2之间的平均变化率即为[f(x2)-f(x1)]/[x2-x1]。
由于f(x)是单调递增函数,所以f(x2)>f(x1),且x2-x1>0。
因此,平均变化率[f(x2)-f(x1)]/[x2-x1]大于0。
根据拉格朗日中值定理,存在一个c属于(x1,x2),使得f'(c)=[f(x2)-f(x1)]/[x2-x1]。
由于f'(c)>0,所以f'(x1)<f'(x2)。
接下来,我们将应用构造法来证明一些不等式。
以求解函数的最值为例,说明构造法证明不等式的基本思路。
假设我们要证明不等式f(x)>=k,其中k是常数。
首先,我们可以在坐标系中画出函数f(x)的图像。
然后尝试找到这个函数的极值点,并计算这些极值点处函数的取值。
如果我们发现函数在一些极值点处的取值大于k,那么我们可以断定不等式f(x)>=k是成立的。
举例说明,假设我们要证明函数f(x)=x^2>=0对于所有的实数x成立。
我们可以考虑函数g(x)=x^2-k(k>0),并尝试找到g(x)的极值点。
由于g(x)=x^2-k是一个二次函数,它的顶点坐标即为极值点。
顶点的横坐标为x=0,纵坐标为y=-k。
因此,函数g(x)的图像是一个开口向上的抛物线,它的顶点在y轴的负半轴上,纵坐标小于0。
第7讲 构造函数解不等式(学生版)2023年高考数学重难突破之导数、数列(全国通用)
第七讲构造函数法解决导数不等式思维导图——知识梳理脑洞(常见考法):浮光掠影,抑或醍醐灌顶考法一加减法模型构造函数思维导图-----方法梳理1.对于不等式()k x f >'()0≠k ,构造函数()()bkx x f x g +-=2.形如(x)g(x)f >或(x)g(x)f <的函数不等式,(1).可以构造函数)(-)(x g x f x F =)(,然后求)(x F 的最大值和最小值;(2).如果(x)0g >,我们也可以构造函数()(x)(x)f G xg =,求()G x 的最值.,且为且当A .c a b >>B .c b a >>C .a b c >>D .a c b>>围观(典型例题):一叶障目,抑或胸有成竹例1.(2021·四川广元市·高三三模)已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()2()0xf x f x '->,(3)1f -=,则不等式()19f x x x <的解集是()A.(,3)(0,3)-∞- B.()3,3-C.(3,0)(0,3)-⋃D.(,3)(3,)-∞-⋃+∞例2.(2022·广东·华南师大附中高三阶段练习)设函数()f x '是奇函数()(R)f x x ∈的导函数,(1)0f -=,当0x >时,()()0xf x f x '->,则使得()0f x >成立的x 取值范围是()A .(,1)(1,)-∞-+∞ B .(1,0)(0,1)-⋃C .(,1)(0,1)-∞-⋃D .(1,0)(1,+)-⋃∞例3.(2022·西藏昌都市第四高级中学一模(理))已知函数()f x 是定义在−∞,∪,+∞的奇函数,当()0x ∈+∞,时,()()xf x f x '<,则不等式()()()52+25<0f x x f --的解集为()A .()()33-∞-⋃+∞,,B .()()3003-⋃,,C .()()3007-⋃,,D .−∞,−∪,套路(举一反三):手足无措,抑或从容不迫1.(2021·安徽高二月考(理))设函数()f x 是定义在()0,∞+上的可导函数,其导函数为()'f x ,且有()()2'f x xf x >,则不等式()()()24202120212f x x f ->-的解集为()A .()2021,2023B .()0,2022C .()0,2020D .()2022,+∞2.(2020·广州市育才中学高二月考)函数()f x 的导数为()'f x ,对任意的正数x 都有()()2'f x xf x >成立,则()A .()()9243f f >B .()()9243f f <C .()()9243f f =D .()92f 与()43f 的大小不确定3.(2015新课标Ⅱ)设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=当0x >时,'()()xf x f x -0<,则使得f (x )>0成立的x 的取值范围是()A .()(),10,1-∞- B .()()1,01,-+∞ C .()(),11,0-∞-- D .()()0,11,+∞ 题型二:构造()()nx F x e f x =或()()nxf x F x e =(n Z ∈,且0n ≠)型思维导图-----方法梳理类型一:构造可导积函数1])([)]()(['=+'x f e x nf x f e nx nx 高频考点1:])([)]()(['=+'x f e x f x f e x x 类型二:构造可商函数①])([)()('=-'nxnx ex f e x nf x f 高频考点1:])([)()('=-'xx ex f e x f x f 围观(典型例题):一叶障目,抑或胸有成竹例1.(2021·内蒙古锡林郭勒盟)设函数()'f x 是函数()f x 的导函数,x R ∀∈,()()0f x f x '+>,且(1)2f =,则不等式12()x f x e ->的解集为()A.(1,)+∞B.(2,)+∞C.(,1)-∞D.(,2)-∞例2.(2022·陕西榆林·三模)已知()f x 是定义在R 上的函数,()'f x 是()f x 的导函数,且()()1f x f x '+>,(1)2f =,则下列结论一定成立的是()A .12(2)f +<e eB .1(2)f +<e eC .12(2)f +>e eD .1(2)f +>e e例3.(2021·赤峰二中高三月考)定义在R 上的函数()f x 满足()()1f x f x >-',()06f =,则不等式()51x f x e>+(e 为自然对数的底数)的解集为()A.()0,∞+B.()5,+∞C.()(),05,-∞⋃+∞D.(),0-∞套路(举一反三):手足无措,抑或从容不迫1.(2020·贵州贵阳·高三月考(理))已知()f x '是函数()f x 的导数,且满足()()0f x f x '+>对[]0,1x ∈恒成立,A ,B 是锐角三角形的两个内角,则下列不等式一定成立的是()A .()()sin sin sin sin e eB A f A f B <B .()()sin sin sin sin e e B A f A f B >C .()()sin cos cos sin e e B Af A f B <D .()()sin cos cos sin e e B Af A f B >2.(2022·宁夏·平罗中学高三阶段练习(文))设()f x 是定义在R 上的函数,其导函数为()f x ',若()()1f x f x '+>,()02018f =,则不等式()e e 2017x x f x >+(其中e 为自然对数的底数)的解集为()A .(),0∞-B .()(),02017,-∞⋃+∞C .()2017,+∞D .()0,∞+3.(2022·陕西渭南·高二期末(理))已知定义在R 上的函数()f x 的导函数为()f x ',对任意R x ∈满足()()0f x f x '+<,则下列结论一定正确的是()A .()()23e 2e 3f f >B .()()23e 2e 3f f <C .()()32e 2e 3f f >D .()()32e 2e 3f f <围观(典型例题):一叶障目,抑或胸有成竹例1.(2021·全国高三)定义在R 上的函数()f x 的导函数为()f x ',若对任意实数x ,有()()f x f x '>,且()2022f x +为奇函数,则不等式()20220xf x e +<的解集是()A.(),0-∞B.−∞,l BC.()0,∞+D.()2022,+∞例2.(2020·吉林高三月考(理))已知定义在R 上的可导函数()f x 的导函数为'()f x ,满足'()()f x f x <,且(2)f x +为偶函数,(4)1f =,则不等式()x f x e <的解集为()A .(,0)-∞B .(0,)+∞C .()4,e-∞D .()4,e +∞例3.(河南省多校联盟2022)已知函数()f x 的导函数为()f x ',若对任意的R x ∈,都有()()2f x f x >'+,且()12022f =,则不等式()12020e 2x f x --<的解集为()A .()0,∞+B .1,e ⎛⎫-∞ ⎪⎝⎭C .()1,+∞D .(),1-∞例4.(2021·全国高三)已知定义在R 上的函数()f x 的导函数为()'f x ,且满足()()0f x f x '->,2021(2021)f e =,则不等式31(ln )3f x x <的解集为()A.6063(,)e +∞B.2021(0,)e C.2021(,)e +∞D.6063(0,)e 套路(举一反三):手足无措,抑或从容不迫1.(2022·湖北·襄阳五中高三开学考试)设()f x '是定义在R 上的连续的函数()f x 的导函数,()()2e 0xf x f x '-+<(e 为自然对数的底数),且()224e f =,则不等式()2e x f x x >的解集为()A .()()2,02,-+∞B .()e,+∞C .()2,+∞D .()(),22,∞∞--⋃+2.(2022·陕西·宝鸡市渭滨区教研室高二期末(理))已知()f x 是定义在R 上的函数,其导函数为()f x ',且不等式()()f x f x '>恒成立,则下列不等式成立的是()A .e (1)(2)f f >B .()()e 10f f -<C .()()e 21f f ->-D .()()2e 11f f ->3.(2022·江西省信丰中学高二阶段练习(文))若定义在R 上的函数()f x 的导函数()f x '为,且满足()()f x f x '>,则(2017)f 与e (2016)f ⋅的大小关系为()A .(2017)f <e (2016)f ⋅B .(2017)f =e (2016)f ⋅C .(2017)f >e (2016)f ⋅D .不能确定4.(2022·江苏·涟水县第一中学高三阶段练习)()f x 是定义在R 上的函数,()f x '是()f x 的导函数,已知()()f x f x '>,且(1)e f =,则不等式()2525e 0x f x --->的解集为()A .(),3-∞-B .(),2-∞-C .()2,+∞D .()3,+∞5.(2021·江苏高二月考)已知定义在R 上的函数()f x 的导函数为()f x ',满足()()0f x f x '->,若()()2211x ax e f ax ef x +>-恒成立,则实数a 的取值范围为___________.2.(2022·吉林·长岭县第三中学高三阶段练习)已知奇函数()f x 的定义域为,00,22ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭,其导函数是'()f x .当0,2x π⎛⎫∈ ⎪⎝⎭时,'()sin ()cos 0f x x f x x -<,则关于x 的不等式()2sin 6f x f x π⎛⎫< ⎪⎝⎭的解集为()A .,0,266πππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .,,2662ππππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭C .,00,66ππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭ D .,0,662πππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭3.(2022·湖北·高二阶段练习)奇函数()f x 定义域为()(),00,ππ-⋃,其导函数是()f x '.当0πx <<时,有()()sin cos 0f x x f x x '-<,则关于x 的不等式()2sin 4f x f x π⎛⎫< ⎪⎝⎭的解集为()A .(4π,π)B .,,44ππππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .,00,44ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭D . ,0,44πππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭4.(2021·甘肃省武威第二中学高二期中(理))对任意0,2x π⎛⎫∈ ⎪⎝⎭,不等式()()sin cos x f x x f x ⋅⋅'<恒成立,则下列不等式错误的是()A .234f f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>B .()2cos113f f π⎛⎫⋅ ⎪⎝⎭>C .()2cos114f f π⎛⎫⋅ ⎪⎝⎭<D .6426f f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<op上的奇函数,且套路(举一反三):手足无措,抑或从容不迫。
构造函数法证明不等式的八种方法冷世平整理
构造函数法证明不等式的八种方法冷世平整理1.构造多项式函数法:通过构造一个多项式函数来证明不等式。
例如,要证明当$x>0$时,$x^3+x^2+x+1>0$,我们可以构造多项式$f(x)=x^3+x^2+x+1$,然后证明$f(x)$的系数全为正数,从而得到结论。
2. 构造变形函数法:通过构造一个特定的变形函数来证明不等式。
例如,要证明当$x>0$时,$x+\frac{1}{x}>2$,我们可以构造变形函数$f(x)=x+\frac{1}{x}-2$,然后证明$f(x)$的取值范围为正数,从而得到结论。
3. 构造反函数法:通过构造一个特定的反函数来证明不等式。
例如,要证明当$x>0$时,$\frac{1}{x}+\frac{1}{1-x}>2$,我们可以构造反函数$f(x)=\frac{1}{x}+\frac{1}{1-x}-2$,然后证明$f(x)$的取值范围为正数,从而得到结论。
4. 构造积分函数法:通过构造一个特定的积分函数来证明不等式。
例如,要证明当$x>0$时,$\int_{0}^{x}\sqrt{t}dt<x$,我们可以构造积分函数$f(x)=\int_{0}^{x}\sqrt{t}dt-x$,然后证明$f(x)$的取值范围为负数,从而得到结论。
5. 构造递推函数法:通过构造一个特定的递推函数来证明不等式。
例如,要证明$n$个正实数的算术平均数大于等于它们的几何平均数,我们可以构造递推函数$f(n)=\frac{a_1+a_2+\dots+a_n}{n}-\sqrt[n]{a_1a_2\dots a_n}$,然后证明$f(n)$关于$n$的递推关系为非负数,从而得到结论。
6. 构造交换函数法:通过构造一个特定的交换函数来证明不等式。
例如,要证明当$x,y,z>0$时,$(x+y)(y+z)(z+x)\geq 8xyz$,我们可以构造交换函数$f(x,y,z)=(x+y)(y+z)(z+x)-8xyz$,然后证明$f(x,y,z)$在$x,y,z$的任意交换下都保持不变或增加,从而得到结论。
构造法解不等式问题
构造法解不等式问题构造法是解不等式问题的一种常用方法。
它的基本思路是通过构造一些特定的实数或算式,来判断不等式的取值范围。
下面以一些具体例子来说明构造法解不等式问题的步骤。
例1:解不等式x^2 - 5x < 6。
步骤1:将不等式转化为等式,即x^2 - 5x = 6。
步骤2:将等式左边变形,得到x^2 - 5x - 6 = 0。
步骤3:因为不等式是小于号,所以我们需要找到x^2 - 5x - 6 < 0的解。
步骤4:构造因式分解,得到(x - 6)(x + 1) < 0。
步骤5:画出x轴上的数线,并在-1和6的位置上标记。
步骤6:根据不等式的符号,将数线分割成三个区间:(-∞, -1),(-1, 6),(6, +∞)。
步骤7:选取区间中的一个数,代入原不等式进行计算判断。
例如选取区间(-2, -1)中的数-1.5,代入原不等式得到(-1.5 - 6)(-1.5 + 1) < 0,判断结果为真。
步骤8:根据不等式的取值范围,确定原不等式的解为(-∞, -1) U (6, +∞)。
例2:解不等式|2x - 1| < 3。
步骤1:将不等式转化为等式,即|2x - 1| = 3。
步骤2:根据绝对值的定义,得到两个等式:2x - 1 = 3 和 2x - 1 = -3。
步骤3:解两个等式,得到x = 2 和 x = -1。
步骤4:根据两个等式的解,将数轴分成三个区间:(-∞, -1),(-1, 2),(2, +∞)。
步骤5:选取区间中的一个数,代入原不等式进行计算判断。
例如选取区间(-2, -1)中的数-1.5,代入原不等式得到|2(-1.5) - 1| < 3,判断结果为真。
步骤6:根据不等式的取值范围,确定原不等式的解为(-∞, -1) U (2, +∞)。
构造法是一种直观且易于理解的方法,但在复杂的不等式问题中可能需要较多的计算和判断。
在实践中可以配合其他方法来求解不等式问题,例如代入法、辅助变量法等。
构造函数法证明不等式的八种方法
构造函数法证明不等式的八种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
以下介绍构造函数法证明不等式的八种方法:一、移项法构造函数【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。
【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。
构造函数法证明不等式的八种方法.doc
构造函数法证明不等式的八种方法.doc构造函数法是一种证明不等式的有效方法。
构造函数法是通过构造函数来证明不等式的真实性。
构造函数是函数的一种特殊形式,它是根据不等式中的条件和限制而构造出来的函数。
构造函数法的基本思路是,通过构造函数将原不等式转化为更容易证明的形式,进而通过对构造函数的研究来证明原不等式的真实性。
本文将介绍构造函数法证明不等式的八种方法。
一、线性函数法线性函数法是基于线性函数的构造函数法,它是构造函数法中最简单的方法之一。
线性函数法的思路是,构造一个线性函数,使得该函数在不等式限制下达到最大值或最小值。
例如,证明如下不等式:$$\frac{a}{b+1}+\frac{b}{c+1}+\frac{c}{a+1}\geq\frac{3}{2}$$将不等式两边都乘以$2(b+1)(c+1)(a+1)$得:$$2a(c+1)(b+1)+2b(a+1)(c+1)+2c(b+1)(a+1)\geq 3(a+1)(b+1)(c+1)$$此时,可以构造如下的线性函数$f(x,y,z)$:容易发现,$f(x,y,z)$在限制条件$x,y,z\geq 0$,$xy+yz+zx=3$下,达到最大值$\frac{3}{2}$。
因此,原不等式成立。
二、对数函数法对数函数法是基于对数函数的构造函数法,它常用于证明形如$a^x+b^y+c^z\geq k$的不等式,其中$a,b,c,x,y,z,k$均为正实数。
对数函数法的思路是,构造一个对数函数,使得该函数满足$g(x,y,z)\leq\ln(a^x+b^y+c^z)$,进而证明$g(x,y,z)\leq\ln k$,从而得到原不等式的证明。
例如,证明如下不等式:考虑构造如下的对数函数:$$g(x)=\ln\left(\frac{4a^3x+6}{5a^2x+2ax+5}\right)-\frac{3}{4}\ln x$$不难证明,$g(x)$在$x\geq 1$时单调递减且$g(1)=0$,因此$g(x)\leq 0$。
构造函数法求解不等式问题
构造函数法求解不等式问题步骤一:根据不等式的形式,构造函数。
根据不等式的形式,我们可以构造一个合适的函数,该函数满足不等式的性质。
根据不等式的类型,我们可以构造线性函数、二次函数、指数函数等。
构造的函数应当包含不等式的解集,因此我们需要考虑函数值的正负、函数的增减性质等。
步骤二:找出函数的零点和关键点。
找到函数的零点和关键点对于确定函数的性质和解集至关重要。
函数的零点是指函数等于零的点,而关键点是函数的最值点和拐点。
步骤三:利用函数的性质来确定不等式的解集。
根据函数的图像和性质,利用函数的增减性质和函数值的正负来确定不等式的解集。
通过观察函数的图像,我们可以确定不等式的解集是一个区间,或者是两个区间的并集。
以下为几个实例,展示了如何使用构造函数法求解不等式问题。
实例一:$x^2-3x-4<0$首先,我们构造函数$f(x) = x^2 - 3x - 4$。
然后,我们需要找出函数$f(x)$的零点和关键点。
通过求解方程$f(x) = 0$,我们可以得到$x = -1$和$x = 4$是函数的零点,而$x = \frac{3}{2}$是函数的关键点。
接下来,我们观察函数的图像。
通过求导函数$f'(x)$,我们可以确定函数$f(x)$在$x < -1$时是递减的,在$-1 < x < \frac{3}{2}$时是递增的,而在$x > \frac{3}{2}$时又是递减的。
根据函数$f(x)$的性质和函数值的正负,我们可以得出不等式的解集是$x \in (-1, \frac{3}{2})$。
实例二:$2^x-8<0$首先,我们构造函数$f(x)=2^x-8$。
然后,我们需要找出函数$f(x)$的零点和关键点。
通过求解方程$f(x)=0$,我们可以得到$x=3$是函数的零点,而$x=0$是函数的关键点。
接下来,我们观察函数的图像。
由于指数函数$2^x$是递增的,函数$f(x)$在$x>0$时是递增的,而在$x<0$时是递减的。
构造函数法证明不等式
构造函数法证明不等式要证明一个不等式,一种常见的方法是使用构造函数法。
构造函数法是通过构造一个满足不等式的函数来证明不等式的正确性。
下面我们来具体说明如何使用构造函数证明一个不等式。
首先,我们需要明确待证明的不等式是什么。
假设我们需要证明的不等式是:f(x) \leq g(x)\]其中,f(x)和g(x)是关于x的函数。
接下来,我们需要构造一个满足不等式的函数h(x)。
我们的目标是证明h(x)满足:f(x) \leq h(x) \leq g(x)\]通过这个中间函数h(x),我们可以将不等式分解成两个更简单的不等式。
为了构造适当的函数h(x),我们可以考虑函数的性质,例如导数、零点、拐点等。
以下是几种常见的构造函数的方法:1. 加减常数法: 可以通过给f(x)或g(x)加减一个适当的常数来构造函数h(x),使得f(x) \leq h(x) \leq g(x)。
例如,如果我们想证明 x^2 \leq x^3,我们可以通过构造一个函数h(x) = x^2 + 1来证明。
显然,对于任意的x,x^2 + 1 \geq x^2,并且x^2 + 1 \leq x^3(因为x^2 \leq x^3对于所有的x成立)。
2. 乘除法: 可以通过乘以或者除以一个适当的函数来构造函数h(x)。
例如,如果我们想证明 x^2\leq x^4,我们可以通过构造一个函数h(x)= \frac{1}{x^2}来证明。
当 x>0时,显然x^2 \leq \frac{1}{x^2},而当 0\leq x \leq 1时, x^4 \geq x^2、因此,对于所有的x,\frac{1}{x^2} \geq x^2\leq x^43.对函数取导数:如果我们可以找到f(x)和g(x)的导数,并证明导数的关系成立,则可以通过证明导数的关系来证明原始函数的关系。
例如,如果我们想证明 x \leq e^x,我们可以比较两个函数的斜率。
我们知道导数表达式 d/dx(x) = 1 小于 d/dx(e^x) = e^x。
利用构造法解答双变量函数不等式问
思路探寻
双变量函数不等式问题较为复杂,其难度一般较大,对同学们的运算能力和分析能力有较高的要求.解答此类问题,往往要将不等式进行适当的变形,合理处理双变量,将问题转化为简单的函数最值问题或者不等式问题来求解.而构造法是求解此类问题的重要方法.运用构造法,
题,1.对不等式进行适当的变形.式子作差、移项;变量消元或换元,子;
2.根据不等式的结构特征,一侧为0,不等式的两侧均含有变量,造成两个函数式;
3.根据函数单调性的定义,
4.根据函数的单调性,立使不等式恒成立的关系式;
5.式求得参数的取值范围.
下面举例说明.
例1.已知函数f ()x =x ln x ,g ()x (1)求函数f ()x 在éëêùû
ú1e 2,1(2)若对b >a >0,总有m [g ()b -成立,求实数m 的取值范围.
解:(1)f ()x min =-1
e
,f ()x max =0.((2)由题意可得m []g ()b -g ()a >f mg ()b -f ()b >mg ()a -f ()a ,
令h ()x =mg ()x -f ()x =
m 2
x 2-x ∵b >a >0,∴h ()x 在()0,+∞即h ′()x =mx -ln x -1≥0在()0,+∞上恒成立,
分离参数得m ≥ln x +1x
在()0,+∞上恒成立,令ϕ()x =ln x +1x
,ϕ()x max
=ϕ()1=1
,∴m 的取值范围为[)1,+∞.
:
1
刘建祖
48
思路探寻。
构造函数法证明不等式的八种方法
导数之构造函数法证明不等式 1、移项法构造函数 【例1】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有【解】1111)(+-=-+='x xx x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f +=求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 【解】设)()()(x f x g x F -=,即x x x x F ln 2132)(23--=, 则xx x x F 12)(2--='=x x x x )12)(1(2++-当1>x 时,)(x F '=xx x x )12)(1(2++-从而)(x F 在),1(∞+上为增函数,∴061)1()(>=>F x F∴当1>x 时 0)()(>-x f x g ,即)()(x g x f <, 故在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方。
专题05 构造函数证明不等式(学生版) -2025年高考数学压轴大题必杀技系列导数
专题5 构造函数证明不等式函数与导数一直是高考中的热点与难点, 利用导数证明不等式在近几年高考中出现的频率比较高.求解此类问题关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的.(一) 把证明()f x k >转化为证明()min f x k>此类问题一般简单的题目可以直接求出()f x 的最小值,复杂一点的题目是()f x 有最小值,但无法具体确定,这种情况下一般是先把()f x 的最小值转化为关于极值点的一个函数,再根据极值点所在范围,确定最小值所在范围【例1】(2024届黑龙江省哈尔滨市三中学校高三下学期第五次模拟)已知函数()()21ln f x a x x x =+--(a ÎR ).(1)讨论()f x 的单调性;(2)当102a <£时,求证:()1212f x a a³-+.【解析】(1)由题意可知,函数2()(1)ln f x a x x x =+--的定义域为(0,)+¥,导数1(1)(21)()2(1)1x ax f x a x x x+-¢=+--=,当0a £时,,()0x Î+¥,()0f x ¢<;当0a >时,1(0,)2x a Î,()0f x ¢<;1(,),()02x f x a¢Î+¥>;综上,当0a £时,函数()f x 在区间(0,)+¥上单调递减;当0a >时,函数()f x 在区间1(0,2a 上单调递减,在区间1(,)2a+¥上单调递增.(2)由(1)可知,当102a <£时,函数()f x 在区间1(0,)2a 上单调递减,在区间1(,)2a+¥上单调递增.所以函数211111()()(1)ln()1ln(2)22224f x f a a a a a a a a³=+--=+-+,要证1()212f x a a ³-+,需证111ln(2)2142a a a a a+-+³-+,即需证11ln(2)0,(0,]42a a a a +-³Î恒成立.令1()ln(2)4g a a a a =+-,则()2222111()1044a g a a aa -=--+=-£¢,所以函数()g a 在区间1(0,2单调递减,故111()()00222g a g ³=+-=,所以11ln(2)0,(0,]42a a a a +-³Î恒成立,所以当102a <£时,1()212f x a a³-+.【例2】(2024届重庆市南开中学高三上学期第一次质量检测)已知函数()()sin ln 1f x x x =-+.(1)求证:当π1,2x æöÎ-ç÷èø时,()0f x ³;(2)求证:()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L .【解析】(1)证明:因为()()sin ln 1f x x x =-+,则()0sin 0ln10f =-=,()1cos 1f x x x =-+¢,当(]1,0x Î-时,cos 1x £,111x ³+,()0f x ¢£,函数()f x 单调递减,则()()00f x f ³=成立;当π0,2x æöÎç÷èø时,令()1cos 1p x x x =-+,则()()21sin 1p x x x ¢=-+,因为函数()211y x =+、sin y x =-在π0,2æöç÷èø上均为减函数,所以,函数()p x ¢在π0,2æöç÷èø上为减函数,因为()010p ¢=>,2π1102π12p æö¢=-<ç÷èøæö+ç÷èø,所以存在π0,2x æöÎç÷èø,使得()00p x ¢=,且当00x x <<时,()0p x ¢>,此时函数()f x ¢单调递增,当0π2x x <<时,()0p x ¢<,此时函数()f x ¢单调递减,而()00f ¢=,所以()00f x ¢>,又因为π02f æö¢<ç÷èø,所以存在10π,2x x æöÎç÷èø,使得()10f x ¢=,当10x x <<时,()0f x ¢>,此时函数()f x 单调递增,当1π2x x <<时,()0f x ¢<,此时函数()f x 单调递减,因为π1e 2+<,所以,ππ1ln 11ln e 022f æöæö=-+>-=ç÷ç÷èøèø,所以,对任意的π0,2x æöÎç÷èø时,()0f x >成立,综上,()0f x ³对任意的π1,2x æöÎ-ç÷èø恒成立.(2)证明:由(1),对任意的n *ÎN ,11022n <£,则111sin ln 10222f n n n æöæö=-+>ç÷ç÷èøèø,即1121sinln 1ln 222n n n n +æö>+=ç÷èø,对任意的n *ÎN ,()()()()22122221221022*******n n n n n n n n n n n +-+++-==>+++,所以,2122221n n n n ++>+,则2122ln ln 221n n n n ++>+,所以111135721sin sin sin sinln ln ln ln 24622462n n n +++++>+++L ,从而可得111146822sin sin sin sinln ln ln ln 246235721n n n +++++>++++L ,上述两个不等式相加可得11112sin sin sin sin 2462n æö++++ç÷èøL ()3456782122ln ln ln ln ln ln ln ln ln 1234567221n n n n n ++>++++++++=++L ,所以,()11111sin sin sin sinln 124622n n ++++>+L ,又由(1),因为1102n -<-<,则111121sin ln 1sin ln022222n f n n n n n -æöæöæö-=---=-->ç÷ç÷ç÷èøèøèø,可得1212sinln ln 2221n nn n n -<-=-,当2n ³且n *ÎN 时,()()()()()()22222122110212221222122n n n n n n n n n n n -----==-<------,所以,2212122n n n n -<--,即221ln ln 2122n n n n -<--,所以,当2n ³时,1111462sin sin sin sinln 2ln ln ln 24623521nn n ++++<++++-L L ,从而有11113521sin sin sin sinln 2ln ln ln 24622422n n n -++++<++++-L L ,上述两个不等式相加得:11112sin sin sin sin 2462n æö++++ç÷èøL 3456782122ln 2ln ln ln ln ln ln ln ln 2ln 2ln 2345672221n nn n n -<+++++++++=+--L ,所以,11111sin sin sin sinln 2ln 24622n n ++++<+L ,当1n =时,1111sin ln ln 2sin 02222f æöæö-=--=->ç÷ç÷èøèø,即1sin ln 22<,所以,对任意的n *ÎN ,11111sin sin sin sinln ln 224622n n ++++<+L ,因此,()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L . (二) 把证明()()f x g x > 转化为证明()()0f xg x ->此类问题是证明不等式中最基本的一类问题,把两个函数通过作差转化为一个函数,再利用导数研究该函数的性质,通过函数性质证明该不等式.【例3】(2024届西省榆林市第十中学高三下学期一模)已知函数()()e 11xf x a x =+--,其中a ÎR .(1)讨论函数()f x 的单调性;(2)当2a =时,证明:()ln cos f x x x x >-.【解析】(1)()()e 11x f x a x =+--Q ,()e 1x f x a \=¢+-,当1a ³时,()e 10xf x a =+->¢,函数()f x 在R 上单调递增;当1a <时,由()e 10xf x a =+->¢,得()ln 1x a >-,函数()f x 在区间()()ln 1,a ¥-+上单调递增,由()e 10xf x a =+-<¢,得()ln 1x a <-,函数()f x 在区间()(),ln 1a -¥-上单调递减.综上,当1a ³时,()f x 在R 上单调递增,无减区间.当1a <时,()f x 在()()ln 1,a ¥-+上单调递增,在()(),ln 1a -¥-上单调递减.(2)Q 当2a =时,()e 1xf x x =+-,\要证()ln cos f x x x x >-,即证()e cos 1ln 0,0,x x x x x x ++-->Î+¥,①当01x <£时,e cos 10x x x ++->Q ,ln 0x x £,e cos 1ln 0x x x x x \++-->;②当1x >时,令()e cos 1ln xg x x x x x =++--,则()e sin ln x g x x x =--¢,设()()h x g x ¢=,则()1e cos xh x x x=¢--,1x >Q ,e e 2x \>>,110x-<-<,1cos 1x -£-£,()0h x ¢\>,()h x \在()1,+¥上单调递增,()()1e sin100h x h \>=-->,即()0g x ¢>,()g x \在()1,+¥上单调递增,()()1e cos10g x g \>=+>,即e cos 1ln 0x x x x x ++-->.综上,当2a =时,()ln cos f x x x x >-. (三) 把证明()()f x g x > 转化为证明()()min maxf xg x >有时候把证明()()f x g x > 转化为证明()()0f x g x ->后,可能会出现()()f x g x -的导函数很复杂,很难根据导函数研究()()f x g x -的最值,而()f x 的最小值及()g x 的最大值都比较容易求,可考虑利用证明()()min max f x g x >的方法证明原不等式,但要注意这种方法有局限性,因为()()f x g x >未必有()()min max f x g x >.【例4】(2024届广东省部分学校高三上学期第二次联考)已知函数()()e 0xf x ax a =¹.(1)讨论()f x 的单调性;(2)当24e a ³时,证明:()()1ln 01f x x x x -+>+.【解析】(1)由题意可得()()1e xf x a x +¢=.则0a >时,由()0f x ¢>,得1x >-,由()0f x ¢<,得1x <-,则()f x 在(),1-¥-上单调递减,在()1,-+¥上单调递增;当a<0时,由()0f x ¢<,得1x >-,由()0f x ¢>,得1x <-,则()f x 在(),1-¥-上单调递增,在()1,-+¥上单调递减.(2)因为0x >,所以e 01x x x >+.因为24e a ³,所以()()2e 4e 1ln 1ln 11xx ax x x x x x x x --+³-+++.要证()()1ln 01f x x x x -+>+,即证()24e 1ln 01x x x x x --+>+,即证()224e ln 1x x x x ->+.设()()224e 1x g x x -=+,则()()()234e 11x x g x x --¢=+.当()0,1x Î时,()0g x ¢<,当()1,x Î+¥时,()0g x ¢>,则()g x 在()0,1上单调递减,在()1,+¥上单调递增.故()()min 11eg x g ==.设()ln x h x x =,则()21ln xh x x-¢=.当()0,e x Î时,()0h x ¢>,当()e,x Î+¥时,()0h x ¢<,则()h x 在()0,e 上单调递增,在()e,+¥上单调递减.故()()max 1e eh x h ==.因为()()min max g x h x =,且两个最值的取等条件不同,所以()224e ln 1x x x x ->+,即当24e a ³时,()()1ln 01f x x x x -+>+.(四) 把证明()()f xg x >转化为证明()()()(),f xh x h x g x >>若直接证明()()f x g x >比较困难,有时可利用导数中的常见不等式如ln 1,e +1x x x x £-³构造一个中间函数()h x ,或利用不等式的性质通过放缩构造一个中间函数()h x ,再通过证明()()()(),f x h x h x g x >>来证明原不等式.【例5】已知函数()sin 2cos xf x x=+在区间()0,a 上单调.(1)求a 的最大值;(2)证明:当0x >时,()31e xf x +<.【解析】 (1)由已知得,22cos (2cos )sin sin 2cos 1()(2cos )(2cos )x x x x x f x x x +++¢==++,要使函数()f x 在区间(0,)a 上单调,可知在区间(0,)a 上单调递增,令()0f x ¢>,得2cos 10x +>,即1cos 2x >-,解得22(2,2)33x k k p pp p Î-++,(k Z Î),当0k =时满足题意,此时,在区间2(0,3p 上是单调递增的,故a 的最在值为23p.(2)当0x >时,要证明()31e xf x +<,即证明e 1()3x f x -<,而1xe x ->,故需要证明e 1()33x xf x -<<.先证:e 133x x -<,(0x >)记()e 1x F x x =--,()e 1x F x ¢=-Q ,,()0x Î+¥时,()0F x ¢>,所以()F x 在(0,)+¥上递增,\()e 1xF x x =--(0)0F >=,故1xe x ->,即e133xx -<.再证:()3x f x <,(0x >)令1()()3G x f x x =-,则sin 1(),2cos 3x G x x x =-+则()()()()222cos 12cos 1132cos 32cos x x G x x x ¢--+=-=++,故对于0x ">,都有()0¢<G x ,因而()G x 在(0,)¥+上递减,对于0x ">,都有()(0)0G x G <=,因此对于0x ">,都有()3xf x <.所以e 1()33x x f x -<<成立,即e 1()3x f x -<成立,故原不等式成立.(五) 改变不等式结构,重新构造函数证明不等式此类问题要先对待证不等式进行重组整合,适当变形,找到其等价的不等式,观察其结构,根据结构构造函数.常见的变形方法有:①去分母,把分数不等式转化为整式不等式;②两边取对数,把指数型不等式转化为对数型不等式;③不等式为()()()()f x h x g x h x >类型,且()()0h x >或<0的解集比较容易确定,可考虑两边同时除以()h x ;④不等式中含有,有时为了一次求导后不再含有对数符号,可考虑不等式两边同时除以x ;⑤通过换元把复杂的不等式转化为简单不等式.【例6】(2024届河南省创新发展联盟5月月考)已知函数1e 1()ln x af x x x x-=--.(1)讨论()f x 的单调性;(2)当52a ³时,证明:()11()ln e 1ln x f x x x x x -++->-.【解析】(1)函数1e 1()ln x af x x x x -=--的定义域为(0,)+¥,求导得11222e (1)11(1)(e 1)()x x a x x a f x x x x x -----=-+=¢,若0a £,则1e 10x a --<,且当()0,1x Î时,()0f x ¢>,当()1,x ¥Î+时,()0f x ¢<,即函数()f x 在(0,1)上递增,在(1,)+¥上递减;若0a >,令1e 10x a --=,解得1ln x a =-,若1ln 0a -£,即e a ³,则1e 10x a --³恒成立,当()0,1x Î时,()0f x ¢<,当()1,x ¥Î+时,()0f x ¢>,即函数()f x 在(0,1)上递减,在(1,)+¥上递增;若01ln 1a <-<,即1e a <<,则当()()0,1ln 1,x a ¥Î-È+时,()0f x ¢>,当()1ln ,1x a Î-时,()0f x ¢<,即函数()f x 在(0,1ln ),(1,)a -+¥上递增,在(1ln ,1)a -上递减;ln x x若1ln 1a -=,即1a =,则()0f x ¢³在()0,¥+上恒成立,函数()f x 在(0,)+¥上递增;若1ln 1a ->,即01a <<,则当()()0,11ln ,x a ¥ÎÈ-+时,()0f x ¢>,当(1,1ln )x a Î-时,()0f x ¢<,即函数()f x 在(0,1),(1ln ,)a -+¥上递增,在(1,1ln )a -上递减,所以当0a £时,()f x 的递增区间为()0,1,递减区间为()1,¥+;当01a <<时,()f x 的递增区间为()0,1和()1ln ,a ¥-+,递减区间为()1,1ln a -;当1a =时,()f x 的递增区间为()0,¥+,无递减区间;当1e a <<时,()f x 的递增区间为()0,1ln a -和()1,¥+,递减区间为()1ln ,1a -;当e a ³时,()f x 的递增区间为()1,¥+,递减区间为()0,1.(2)要证()()11ln e 1ln x f x x x x x -++->-,需证()11e e ln 10x x a x x x --+-->,而15e ,02x a x -³>,即有()()1111e 5e e ln 1e ln 12x x x x a x x x x x x----+--³+--,则只需证明()115e e ln 102x x x x x --+-->,即证15e ln 12x x x x -æö+->ç÷èø,即证()215ln 12e x x x x -+->,令()()5ln 12h x x x =+-,则()ln h x x ¢=,当()0,1x Î时,()0h x ¢<,当()1,x ¥Î+时,()0h x ¢>,即函数()h x 在(0,1)上单调递减,在(1,)+¥上单调递增,则()min 3()12h x h ==,令()21(0)e x x x x j -=>,则()()12ex x x x j --¢=,当()0,2x Î时,()0x j ¢>,当()2,x ¥Î+时,()0x j ¢<,函数()j x 在(0,2)上单调递增,在(2,)+¥上单调递减,则()max min 43()2()e 2x h x j j ==<=,从而()215ln 12e x x x x -+->,即()11()ln e 1ln x f x x x x x -++->-成立.(六) 通过减元法构造函数证明不等式对于多变量不等式 ,一般处理策略为消元或是把一个看作变量其他看作常量;当都不能处理的时候,通过变形,再换元产生一个新变量,从而构造新变量的函数.【例7】(2024届江西省南昌市高三三模)定义:若变量,0x y >,且满足:1mmx y a b æöæö+=ç÷ç÷èøèø,其中,0,Z a b m >Î,称y 是关于的“m 型函数”.(1)当2,1a b ==时,求y 关于x 的“2型函数”在点æççè处的切线方程;(2)若y 是关于x 的“1-型函数”,(i )求x y +的最小值:(ii )求证:()1111n n n nn n n n nx ya b+++æö+³+ç÷èø,()N n *Î.【解析】(1)解:当2,1a b ==时,可得12214x y æö=-ç÷èø,则122111242x y x -æöæö=-×-ç÷¢ç÷èøèø,所以1x y =¢=,所求切线方程为1)y x =-,即40x +-=.(2)解:由y 是关于x 的“1-型函数”,可得111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,(i)因为2()()a b ay bx x y x y a b a b x y x y æö+=++=+++³++=ç÷èø,当且仅当2ay x x y ì=ïíï+î即x a y b ì=ïí=ïî时取得最小值.(ii )由111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,则()()x a y b ab --=,且x a >,y b >,可设x a at -=,by b t-=,其中(0,)t Î+¥,于是11[(1)]1(1)1nnnnnn n n x y a t b a t b t t éùæöæö+=+++=+++ç÷ç÷êúèøèøëû,记1()(1)1nnnnh t a t b t æö=+++ç÷èø,可得()()()11112111111n n n nn nn n n na t b h t na t nb t t t t a ---++éù+æöæöæö=+++-=-êúç÷ç÷ç÷èøèøèøêëû¢ú,由()0h t ¢=,得1n n b t a +æö=ç÷èø,记10n n b t a +æö=ç÷èø,当00t t <<时()0h t ¢<,当0t t >时,()0h t ¢>,则()()11min0001()1111nnn nnn n n n n n n b a h t h t a t b a b t a b ++éùéùæöæöæöêúêú==+++=+++ç÷ç÷ç÷êúêúèøèøèøëûëû111111111111n n n nn n n n n n n nn n n n n n n n n n a b a b a b a a b b b a ++++++++++æöæöæöæö=+×++×=+++ç÷ç÷ç÷ç÷èøèøèøèø111n n n nn n a b+++æö=+ç÷èø,所以()1111n n n nn n n n nx ya b+++æö+³+ç÷èø.(七) 与极值点或零点有关的多变量不等式的证明此类问题通常是给出函数的零点或极值点12,x x 或123,,x x x ,与证明与12,x x 或123,,x x x 有关的不等式,求解时要有意识的利用方程思想代入消元(若i x 是()f x 的零点,则()0i f x =,若i x 是()f x 的极值点,则()0i f x ¢=,),减少变量个数.【例8】(2024届湖南娄底市高三下学期高考考前仿真联考)已知函数()2e 2ln x af x a x x x =--.(1)当1a =时,讨论函数()f x 的单调性;(2)若22e a >,(i )证明:函数()f x 有三个不同的极值点;(ii )记函数()f x 三个极值点分别为123,,x x x ,且123x x x <<,证明:()()()23131e a f x f x a x x æö-<--ç÷èø.【解析】(1)函数()f x 的定义域为(0,)+¥,当1a =时,()2e 2ln xf x x x x=--,则()422323e e 21e 2(2)(e 2(2))x xx x x x x x x f x x x x x x x x -----¢=+-=+=,令e (0)x y x x =->,则e 10(0)x y x ¢=->>,所以e x y x =-在(0,)+¥上递增,所以0e e 01x y x =->-=,所以当2x >时,()0f x ¢>,当02x <<时,()0f x ¢<,所以()f x 在(0,2)上递减,在(2,)+¥上递增;(2)(i )因为,()0x Î+¥,且()233(2e 2(2)(e ))x xa a x f x x x x a x x x -¢=+--=-,(2)0f ¢=,由e 0xax -=,得e xa x=(,()0x Î+¥),令()(0)x e g x x x =>,则2(e 1)()(0)x x g x x x-¢=>,当01x <<时,()0g x ¢<,当1x >时,()0g x ¢>,所以()g x 在(0,1)上递减,在(1,)+¥上递增,所以min ()(1)e g x g ==,当2e (2)e 2a g >=>时,e xa x=在(0,1)和(2,)+¥上各有一个实数根,分别记为13,x x ,则1301,2x x <<>,设22x =,当10x x <<或23x x x <<时,()0f x ¢<,当12x x x <<或3x x >时,()0f x ¢>,所以()f x 在()10,x 和()23,x x 上递减,在()12,x x 和3(,)x +¥上递增,所以函数()f x 在(0,)+¥上有三个不同的极值点,(ii )由(i )1301,2x x <<>,所以13,x x 是方程e x ax =的两个不相等的实数根,即11e x ax =,33e xax =,所以11111211111e 221()ln ln ln x a a af x a x a x a x x x x x x æö=--=--=-+ç÷èø,同理3331()ln f x a x x æö=-+ç÷èø,所以()()313131313111ln ln a x a x f x f x x x x x x x æöæö-+++ç÷ç÷-èøèø=--31313111ln ln a x x x x x x æö-+--ç÷èø=-13331131ln x x x a x x x x x æö--+ç÷èø=-,由11e x ax =,33e x ax =,得3331113311e e ln ln ln ln e e e x x x x x x x a x x x a-====-,所以()()1331331313113131313131ln 11x x x x x a a x x f x f x x x x x x a x x x x x x x x æöæö---+-+-ç÷ç÷-æöèøèø===-ç÷---èø,因为2e ,2a æöÎ+¥ç÷èø,所以要证()()()23131e a f x f x a x x æö-<--ç÷èø,只要证()()23131e f x f x a a x x -<--,即证23111e a a a x x æö-<-ç÷èø,即证31111e a x x -<-,即证311e a x x <,只需证13e ax x <,即31e e xx <×,即311ex x -<,由(i )可得1301,2x x <<>,所以3110e e 1x --<<<,根据(i )中结论可知函数e ()=xg x x在(0,1)上递减,所以要证311ex x -<,即证311()(e )x g x g -<,因为3113e e x x a x x ==,所以13()()g x g x =,所以只要证313()(e )x g x g -<,即1333e 13e e e xx x x --<,得13e 3e e x x -<,即3131e ln x x --<,得313e 01ln xx ---<,令1()1ln e(2)xh x x x -=-->,则111e 1()e (2)x x x h x x x x---¢=-+=>,令1()e 1(2)x u x x x -=->,则1()(1)e 0(2)x u x x x -¢=-<>,所以()u x 在(2,)+¥上递减,所以2()(2)10eu x u <=-<,所以()0h x ¢<,所以()h x 在(2,)+¥上递减,所以1()(2)1ln 20e h x h <=--<,所以得证.(八) 与数列前n 项和有关的不等式的证明此类问题一般先由已知条件及导数得出一个不等式,再把该不等式中的自变量依次用1,2,3,L ,n 代换,然后用叠加法证明.【例9】(2024届重庆市九龙坡区高三下学期5月质量抽测)已知函数()213ln 22f x x x ax =+-+,()0a >.(1)当[)1,x ¥Î+时,函数()0f x ³恒成立,求实数a 的最大值;(2)当2a =时,若()()120f x f x +=,且12x x ¹,求证:122x x +>;(3)求证:对任意*N n Î,都有()2112ln 1ni i n n i =-æö++>ç÷èøå.【解析】(1)当1x ³时,()213ln 022f x x x ax =+-+³恒成立,即ln 1322x a x x x £++恒成立,只需min ln 1322x a x xx æö£++ç÷èø即可,令()ln 1322x g x x x x =++,1x ³,则()22221ln 132ln 1222x x x g x x x x ---=-¢+=,令()22ln 1h x x x =--,1x ³,则()22222x h x x x x=¢-=-,当1x ³时,()0h x ¢³恒成立,()h x 在[)1,x ¥Î+单调递增,所以()()10h x h ³=,所以()0g x ¢³在[)1,x ¥Î+恒成立,()g x 在[)1,x ¥Î+单调递增,所以()()min 12g x g ==,所以2a £,即实数a 的最大值为2.(2)当2a =时,()213ln 222f x x x x =+-+,0x >,所以()()21120x f x x x x-=+=¢-³,()f x 在()0,x ¥Î+上单调递增,又()10f =,()()120f x f x +=且12x x ¹,不妨设1201x x <<<,要证122x x +>,即证明212x x >-,因为()f x 在()0,x ¥Î+上单调递增,即证()()212f x f x >-,因为()()120f x f x +=,即证()()1120f x f x +-<,设()()()()()()2213132ln 2ln 22222222F x f x f x x x x x x x =+-=+-++-+---+()()()2ln 221ln 221x x x x x x x x éùéù=-+-+=---+ëûëû,01x <<,令()2t x x =-,则01t <<,则()ln 1t t t j =-+,()111tt t t j -=-=¢,由01t <<可得()0t j ¢>,()t j 在()0,1单调递增,所以()()10t j j <=,即()()()20F x f x f x =+-<,所以()()1120f x f x +-<成立,所以122x x +>.(3)由(2)可知当2a =时,()f x 在()1,¥+单调递增,且()()10f x f >=,由213ln 2022x x x +-+>得22ln 430x x x +-+>,即()22ln 21x x +->,令1n x n +=,则2112ln 21n n n n ++æö+->ç÷èø,即2112ln 1n n n n +-æö+>ç÷èø,所以22112ln 111-æö+>ç÷èø,23122ln 122-æö+>ç÷èø,24132ln 133-æö+>ç÷èø,…,2112ln 1n n n n +-æö+>ç÷èø,相加得()2112ln 1ni i n n i =-æö++>ç÷èøå.(九)通过同构函数把复杂不等式化为简单不等式此类问题通常是构造一个函数()f x ,把所证不等式转化为()()()()f g x f h x >,再根据()f x 的单调性转化为证明一个较简单的不等式.【例10】(2024届广东省广州市高中毕业班冲刺训练二)已知函数()e axf x x =(0a >).(1)求()f x 在区间[]1,1-上的最大值与最小值;(2)当1a ³时,求证:()ln 1f x x x ³++.【解析】(1)解:()()e 1axf x ax =+¢(0x >)(0a >),令()0f x ¢=,则1x a =-,当01a <£时,11a-£-,所以()0f x ¢³在区间[]1,1-上恒成立,()f x 在区间[]1,1-上单调递增,所以()()min 1e a f x f -=-=-,()()max 1e af x f ==.当1a >时,111a -<-<,则当11,x a éöÎ--÷êëø时,()0f x ¢<,()f x 在区间11,a éö--÷êëø上单调递减;当1,1x a æùÎ-çúèû时,()0f x ¢>,()f x 在区间1,1a æù-çúèû上单调递增,所以()min 11e f x f a a æö=-=-ç÷èø,而()1e 0a f --=-<,()1e 0a f =>.所以()()max 1e af x f ==综上所述,当01a <£时,()min e a f x -=-,()max e af x =;当1a >时,所以()min 1ef x a =-,()max e af x =.(2)因为0x >,1a ³,所以e e ax x x x ³,欲证e ln 1ax x x x ³++,只需证明e ln 1x x x x ³++,只需证明ln ln e e e e ln 1x x x x x x x x x +==³++,因此构造函数()e 1x h x x =--(x ÎR ),()e 1xh x ¢=-,当(),0x Î-¥时,()0h x ¢<,()h x 在(),0¥-上单调递减;当()0,x Î+¥时,()0h x ¢>,()h x 在()0,¥+上单调递增:所以()()00h x h ³=,所以e 1x x ³+,所以e ln 1x x x x ³++,因此()ln 1f x x x ³++.【例1】(2024届内蒙古呼和浩特市高三第二次质量监测)对于函数()f x ,若实数0x 满足()00f x x =,则0x 称为()f x 的不动点.已知函数()()e 2e 0x xf x x a x -=-+³.(1)当1a =-时,求证()0f x ³;(2)当0a =时,求函数()f x 的不动点的个数;(3)设*N n Î,()ln 1n +>+L .【解析】(1)当1a =-时,有()()e 2e 0x xf x x x -=--³,所以()1e 2e x x f x =+-¢()0x ³,所以()1e 220e x x f x =+-³=¢当且仅当1e e xx=,e 1x=,即0x =时,等号成立,所以当[)0,x Î+¥时,()0f x ¢³,()f x 单调递增,所以()()()min 00f x f x f ³==,所以()0f x ³得证.(2)当0a =时,()()e 20xf x x x =-³,根据题意可知:方程e 2x x x -=()0x ³解的个数即为函数()f x 的不动点的个数,化e 2x x x -=()0x ³为e 30x x -=()0x ³,令()e 3xg x x =-()0x ³,所以函数()g x 的零点个数,即为函数()f x 的不动点的个数,()e 3x g x ¢=-()0x ³,令()0g x ¢=,即e 3x =,解得ln 3x =,x[)0,ln 3ln 3()ln 3,¥+()g x ¢-+()g x 单调递减33ln 3-单调递增因为()010g =>,()ln 333ln 30g =-<,所以()g x 在[)0,ln 3上有唯一一个零点,又()555e 15215170g =->-=>,所以()g x 在()ln 3,¥+上有唯一一个零点,综上所述,函数()f x 有两个不动点.(3)由(1)知,()e 2e 0,0,x xx x ¥--->Î+,令ln ,1x s s =>,则12ln 0s s s --->,即12ln ,1s s s s->>,设*N s n =Î,则满足1s >,>1ln 1n æö>+ç÷èø,()1ln ln 1ln n n n n +æö>=+-ç÷èø,()ln 2ln1ln 3ln 2ln(1)ln ln 1n n n >-+-+++-=+L L ,即()ln 1n >+L .【例2】(2024届四川省自贡市高三第三次诊断性考试)已知函数1()1ln (0)f x a x a x=++>(1)求函数()f x 的单调区间;(2)函数()f x 有唯一零点1x ,函数2()sin e ag x x x =--在R 上的零点为2x .证明:12x x <.【解析】(1)函数1()1ln (0)f x a x a x=++>的定义域为()0,¥+,且2211()a ax f x x x x -¢=-+=,所以当10x a<<时()0f x ¢<,当1x a >时()0f x ¢>,所以()f x 的单调递减区间为10,a æöç÷èø,单调递增区间为1,a æö+¥ç÷èø;(2)法一:由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即1ln 10f a a a a æö=-++=ç÷èø,令()ln 1x x x x j =-++,则()ln x x j ¢=-,当1x >时,()()0,x x j j ¢<单调递减,当01x <<时,()()0,x x j j ¢>单调递增,因为44e 2.753.144127>=>,55e 3243256<=<,所以()433ln 344ln 27ln e ln 270j =-+=-=->,()544ln 455ln 256ln e ln 2560j =-+=-=-<,当01x <<时()()1ln 10x x x j =-+>,当x ®+¥时()x j ®-¥,所以()x j 在()3,4上存在唯一零点,所以33a <<,即11143a <<,令()2e sin h x x x x -=+-,则()22e cos 10h x x x -=-+-<¢,所以()h x 在()0,¥+上单调递减,故22113113111sin sin sin 03e333333h h a æöæö>=+->+-=>ç÷ç÷èøèø,所以211e sin a a a->-,又()2222sin e 0g x x x a -=--=,所以2221111sin e sin sin x x a x x a a--=>-=-,令()sin F x x x =-,则()1cos 0F x x =-³¢,所以()F x 在()0,¥+上单调递增,又()()21>F x F x ,所以21x x >.法二:因为0a >,由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即()()1111111111ln 1ln 10ln 10f x a x x x x x x x =++=++=Þ++=,设211()ln 1,0,0e e h x x x h h æöæö=++><ç÷ç÷èøèø,而()h x 在()0,¥+上单调递增,所以1211,e e x æöÎç÷èø,()1cos 0g x x ¢=-≥,所以()g x 在R 上单调递增,又12(0)0,0e ag x =-<\>,令22211()sin ,()1cos 0e e x x x x x x x j j ¢=--=-+>,所以()j x 在()0,¥+上单调递增,所以()111sin 0e e x j j æö\<=-<ç÷èø,而()222212211sin sin 0e e a g x x x x x x =--=--=,()()11122211221111sin sin e e g x x x g x x x x x x x \=--<=--\<.【例3】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()lng x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a->,且211x a <<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x xx x xxx x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例4】(2024届天津市滨海新区高考模拟检测)已知函数()ln a xf x x+=,其中a 为实数.(1)当1a =时,①求函数()f x 的图象在e x =(e 为自然对数的底数)处的切线方程;②若对任意的x D Î,均有()()m x n x £,则称()m x 为()n x 在区间D 上的下界函数,()n x 为()m x 在区间D 上的上界函数.若()1kg x x =+,且()g x 为()f x 在[)1,+¥上的下界函数,求实数k 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构造法解函数不等式
作者:余建国
来源:《新高考·高二数学》2015年第12期
什么是函数不等式?先看一个问题.
例1 已知定义在R上的函数f(x)满足f(2)=1,且f(x)的导函数f'(x)>x1,则不等式f(x)
我们并不知道问题中的函数f(x)的解析式,只知道它满足两个条件:①f(2)=1,②导函数.f'(x)>x-l,求解不等式f(x)
g'(x)=f'(x) -x+1.由条件②知,g'(x)>o,所以g(x)在(-∞,+∞)上为增函数.又由条件①,知g(2)=f(2)-1/2×4+2-1=0,故由g(x)
由此可见,解此类函数不等式的步骤是:
Sl结合题设中的导数条件和所要求解的函数不等式,构造一个新函数;
S2确定新函数的导数符号,以确定新函数的单调性;
S3利用新函数的单调性及图象中的特殊点,得到函数不等式的解集.
例2 函数f(x)的定义域是R,f(o)=2,对任意x∈R,f(x)+f'(x)>1,则不等式ex·f(x)>ex+1的解集为__________.
解析记函数g(x)=ex·f(x)-ex1,则g'(x)=ex(f(x)+f'(x)-1).
因为对任意x∈R,f(x)+'(x)>1,所以g '(x)>0恒成立,所以g(x)在(-∞,+∞)上为增函数,因为g(0)=f(o)-11=0,所以不等式ex·f(x)>ex+1,即g(x)>g(0)的解集是x>o,所以不等式e·f(x)>ex+1的解集为(o,+∞).
评析最简单的构造函数方法是“g(x)一左边-右边”,这样目标就是解不等式g(x)>o.
例3 已知f(x),g(x)(g,(x)≠0)分别是定义在R上的奇函数和偶函数,当x
解析
当x
由f(-3) =0,得h(-3)=-h(3)=0.
由h(x)3.
不等式的解集为(-3,0)∪(3,+∞).
评析对照导数条件f'(x)g(x)
例4 己知定义在R上的可导函数f(x)的导函数为f'(x),满足f'(x)
解析因为f(x+2)为偶函数,所以f(x+2)的图象关于直线x=o对称,所以f(x)的图象关于直线x=2对称,所以f(0)=f(4)=1.
因为f'(x)
因为
不等式f(x)
评析导数条件“f'(x)
例5 已知函数y=f(x)对于任意的x满足f'(x)cosx+f(x)sinx>0(其中'(x)是函数f (x)的导函数),则下列不等式不一定成立的是
()
解析设故B正确.A,C同理.故选D.
评析导数条件中的“+”未必是两个函数的积的导数,本题中,(cosx)'=-slnx,所以,我们仍然是构造商函数.
例6 已知函数f(x)满足x>o时,有则下列结论一定成立的是
()
解析由f'(x)=2X²,得f(x)=2/3x³+C.
当x>o时,由f'(x)=2x²>得
评析关键是确定常数C的取值范围.导数条件f'(x)>变形为xf'(x)-f(x)>o,这样就
能联想到构造什么样的新函数了.
小结联系已知导数条件和要求解的函数不等式,构造辅助函数是求解这类问题的常用方法.构造方法无非是两个函数的和、差、积和商,通过研究辅助函数的单调性、奇偶性等性质得到
函数不等式的解.特别注意函数ex、Inx,前者的导数永远不变,后者的导数变成多项式,弄清楚它们的结构特点,有助于我们联想得更快、更准.。