圆周角与圆心角:【角的灵活转化】

合集下载

圆周角和圆心角的定理

圆周角和圆心角的定理

圆周角和圆心角的定理圆周角和圆心角的定理,听起来有点高深莫测,其实也没那么复杂。

想象一下,你在公园里散步,看到一个大圆形的花坛,花坛有棵树。

树的影子就像个小圆心,而你和花坛边缘的距离就形成了一个大圆。

圆心角就是从树的影子到花坛边缘的角度,圆周角呢,就是你站在花坛边上,看着树的影子和花坛另一边的角度。

这个小故事其实就能说明,圆心角和圆周角之间的关系。

圆心角是指从圆心出发,指向圆周上两点的角度。

嘿,这就好比你从花坛中心看着两个花朵,瞧,那两朵花的方向和它们之间的距离就构成了一个圆心角。

然后,圆周角就有点意思了,站在圆周上看向同样的两朵花,形成的角度就是圆周角。

这里面有个小秘密哦,圆心角的大小恰好是圆周角的两倍。

是不是有点儿像“家有一老如有一宝”的道理?这个关系让人觉得很亲切,不是吗?说到这里,很多人可能会想,这样的理论有什么用呢?嘿,别小看这玩意儿。

圆周角和圆心角在我们的生活中其实到处可见。

比如,你在玩转盘游戏,那个转盘就是个大圆。

你转动的时候,转盘的某一部分会被划分成一个个区域,转动的角度就是个圆心角,而转盘上的箭头指向的每个区域的角度,就是圆周角。

想想看,玩得不亦乐乎的时候,这些角度就在你身边悄悄发挥着作用。

再说了,几何图形的美,圆形就是其中之一。

它是最对称的,最完美的。

有时候在学校,老师拿出圆规,跟你讲解如何画圆,那种感觉就像是打开了一扇新世界的大门。

你会发现,几何学里藏着无数有趣的秘密。

你可以用这些知识去解锁一些谜题,或者在生活中解决实际问题。

嘿,这就是圆周角和圆心角的魅力所在。

不仅如此,想象一下,当你在街上骑自行车,转弯的时候,其实你也在无形中用到了这些知识。

你身体的转动角度和车轮转动的角度,恰恰就是那圆心角和圆周角在发挥作用。

你骑得越顺,转弯的感觉就越流畅,嘿,真是一种乐趣!还有一个值得一提的例子是,航海中的导航。

船长们利用这些几何知识,计算出正确的航向,以确保船只不会迷失方向。

海上可是一片茫茫大海,圆心角和圆周角帮助他们保持在正确的航道上,真是了不起的智慧啊。

九年级上册数学教案《圆周角与圆心角的关系》

九年级上册数学教案《圆周角与圆心角的关系》

九年级上册数学教案《圆周角与圆心角的关系》教材分析《圆周角》这节课是人教版九年级上册第二十四章第一节第四部分的内容,是在学生学习了圆、弧、弦、圆心角等概念和相关知识的基础上出现的。

圆周角与圆心角的关系,在圆的有关说理、作图、计算中,应用比较广泛。

通过对圆周角定理的探讨,培养学生严谨的思维品质。

同时,教会学生从特殊到一般的分类讨论的思维方法。

因此,本节课无论在知识上,还是方法上,都起着十分重要的作用。

所以这一节课既是对前面所学知识的延续,又是对后面研究圆与其它平面图形的桥梁。

学情分析初三学生已经具备一定的独立思考和探索能力,学生既能在探索过程中条理清晰地阐述自己的观点,又能在倾听别人意见的过程中,逐渐完善自己的想法。

因此,本节课设计了一系列探究活动,给学生提供探索与交流的空间,体现知识的形成过程。

由于学生有了自主意识及参与度的提高,因此,这节课可以给学生充分的时间讨论交流。

教学目标1、理解圆周角的概念,掌握圆周角的两个特征。

2、经历探索圆周角与圆心角及其对弧关系的过程,了解并证明圆周角定理,发展合情推理和演绎推理的能力。

3、能用圆周角定理,进行计算及证明。

教学重点探索圆周角和圆心角的关系。

教学难点感悟圆周角和圆心角定理,证明过程中的分类、转化的数学思想。

教学方法讲授法、演示法、讨论法、练习法教学过程一、创设情境如图,运动员在球门前画了一个圆,进行无人防守的射门训练。

点B对球门AC的张角与点D对球门AC的张角,哪个张角大?师:要研究这个问题,我们先研究∠ABC、∠ADC、∠AEC。

观察这几个角,你发现了什么?学生经过观察,发现几个角的顶点都在圆上,角两边都与圆相交。

圆周角定义:顶点在圆上,两边分别与圆还有一个交点,像这样的角,叫做圆周角。

二、探究新知如图,连接AO,BO,得到圆心角∠AOB。

可以发现,∠ACB与∠AOB对着同̂,分别测量图中AB̂所对的圆周角∠ACB和圆心角∠AOB的度数,它们一条弧AB之间存在什么关系呢?我们来研究这个问题。

圆心角与圆周角的定义

圆心角与圆周角的定义

圆心角与圆周角的定义
嘿,朋友们!今天咱来唠唠圆心角和圆周角呀!
咱先说说圆心角哈,你就想象一下,那圆心就像是一个班级的老大,圆心角呢,就是从这个老大这儿发出的一种特殊的“眼光”。

这“眼光”可厉害啦,它能把圆分成不同的部分呢!比如说,一个圆就像一个大蛋糕,圆心角就是切蛋糕的那一刀,把蛋糕切成了不同大小的块儿。

那圆周角又是啥呢?嘿,这圆周角啊,就像是围着圆心这个老大转的一群小伙伴。

它们虽然没有圆心角那么牛气哄哄,但也有自己的特点呢!圆周角总是和圆上的一段弧有关系,就好像小伙伴总是和特定的事情联系在一起。

你说这圆心角和圆周角之间有没有啥特别的关系呢?那当然有啦!就好像一个班级里,老大和小伙伴们之间总会有一些互动和关联嘛。

有时候,圆周角的度数会和圆心角的度数有一定的比例关系呢。

咱举个例子哈,你看那个圆,想象一下圆心角是个直角,那和它对应的圆周角会是多少度呢?嘿嘿,是不是很有意思呀!这就像是玩一个解谜游戏一样。

再想想,如果有很多个圆周角都围着同一个圆心角,那它们之间是不是也很有趣呢?就好像一群小伙伴围着老大,各自有着不同的表现。

而且啊,这圆心角和圆周角在我们生活中也有很多应用呢!比如说,在设计圆形的东西的时候,我们就得考虑到它们的角度问题,这样才能
让东西更完美呀!难道不是吗?
总之啊,圆心角和圆周角就像是圆这个奇妙世界里的两个重要角色,它们相互关联,又各有特点。

我们要好好了解它们,才能更好地理解圆的奥秘呀!所以啊,可别小瞧了它们哟!。

3.4圆周角与圆心角的关系(教案)

3.4圆周角与圆心角的关系(教案)
-针对解决实际问题的难点,教师可以设计一些与生活实际相关的题目,指导学生运用所学知识解决问题,如计算圆弧长度、角度等,提高学生的应用能力。同时,教师应关注学生在解决问题时的困惑,及时给予指导和帮助。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“3.4圆周角与圆心角的关系”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算圆周上角度的情况?”比如,在制作一个圆形的桌面时,如何确定桌面边缘的角度。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索圆周角与圆心角的奥秘。
教学内容具体包括:
a.圆周角定理:圆周角等于角等于其所对圆弧的一半。
c.推论:同弧所对的圆周角相等,圆心角相等。
二、核心素养目标
1.培养学生的几何直观和空间想象能力,通过观察和操作,使学生在探究圆周角与圆心角的关系过程中,形成对几何图形的认识和理解。
2.提升学生的逻辑推理和数学论证能力,引导学生运用严密的逻辑推理方法证明圆周角与圆心角的关系,培养其数学思维能力。
b.圆周角定理及推论:使学生掌握圆周角定理及其推论,并能运用这些定理解决相关问题。
c.证明方法:培养学生运用严密的逻辑推理和几何论证方法证明几何定理的能力。
举例解释:
-在讲解圆周角与圆心角的概念时,教师可以通过实物演示和图示,使学生直观地理解两者之间的关系。
-对于圆周角定理及推论的讲解,教师应通过具体例题,让学生在实际操作中体会定理的应用,加深对定理的理解。
在学生小组讨论环节,整体效果较好,学生们能够提出自己的观点并与其他同学交流。但在引导与启发环节,我感觉自己提问的技巧还有待提高。有些问题可能过于简单,没有充分激发学生的思考。未来,我将努力提高提问质量,引导学生深入探讨问题。

圆周角和圆心角的关系—知识讲解(提高)

圆周角和圆心角的关系—知识讲解(提高)

圆周角和圆心角的关系—知识解说(提升)【学习目标】1.理解圆周角的观点,认识圆周角与圆心角之间的关系;2.理解圆周角定理及推论;3.娴熟掌握圆周角的定理及其推理的灵巧运用;经过察看、比较、剖析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.【重点梳理】重点一、圆周角1.圆周角定义:像图中∠ AEB、∠ ADB、∠ ACB这样的角,它们的极点在圆上,而且两边都与圆订交的角叫做圆周角.2.圆周角定理:一条弧所对的圆周角等于它所对圆心角度数的一半.3.圆周角定理的推论:推论 1:同弧或等弧所对的圆周角相等;推论 2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.重点解说:(1)圆周角一定知足两个条件:①极点在圆上;②角的两边都和圆订交.(2)圆周角定理建立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种地点关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外面.(以下列图)重点二、圆内接四边形1.圆内接四边形定义:四边形的四个极点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆.2.圆内接四边形性质:圆内接四边形的对角互补 . 如图,四边形 ABCD是⊙ O的内接四边形,则∠ A+∠ C=180°,∠ B+∠ D=180° .BACOD重点解说:当四边形的四个极点不一样时在一个圆上时,四边形的对角是不互补.【典型例题】种类一、圆周角、圆心角、弧、弦之间的关系及应用1.已知:以下图,⊙ O中弦 AB= CD.求证: AD= BC.【思路点拨】此题主假如考察弧、弦、圆心角之间的关系,要证AD= BC,只要证AD BC 或证∠AOD=∠BOC即可.【答案与分析】证法一:如图①,∵AB = CD,∴AB CD .∴AB BD CD BD ,即AD BC ,∴AD = BC.证法二:如图②,连OA、 OB、 OC、 OD,∵ AB = CD,∴∠ AOB=∠ COD.∴∠AOB-∠ DOB=∠ COD-∠ DOB,即∠ AOD=∠ BOC,∴AD = BC.【总结升华】在同圆或等圆中,证两弦相等经常用的方法是找这两弦所对的弧相等或所对的圆心角相等,而图中没有已知的等弧和等圆心角,一定借助已知的等弦进行推理.贯通融会:【变式】以下图,已知AB 是⊙ O的直径, M、 N 分别是 AO、 BO的中点, CM⊥AB, DN⊥ AB.求证: AC BD .【答案】证法一:如上图所示,连OC、 OD,则 OC= OD,1OA,ON1OB,∵ OA=OB,且OM22∴OM= ON,而 CM⊥ AB, DN⊥ AB,∴Rt △ COM≌Rt △ DON,∴∠COM=∠ DON,∴AC BD.证法二:以下列图,连AC、 BD、 OC、 OD.∵M 是 AO的中点,且 CM⊥ AB,∴ AC =OC,同理 BD= OD,又 OC=OD.∴ AC =BD,∴AC BD.种类二、圆周角定理及应用2.( 2015?南京二模)如图, OA 、 OB 是⊙ O 的半径且 OA ⊥OB ,作 OA 的垂直均分线交⊙ O 于点C、 D ,连结 CB、 AB .求证:∠ ABC=2 ∠ CBO.【答案与分析】证明:连结OC、 AC ,如图,∵CD 垂直均分 OA ,∴ OC=AC .∴OC=AC=OA ,∴△ OAC 是等边三角形,∴∠ AOC=60 °,∴∠ ABC=∠ AOC=30°,在△ BOC 中,∠ BOC= ∠AOC+ ∠AOB=150 °,∵OB=OC ,∴∠CBO=15 °,∴∠ABC=2 ∠ CBO.【总结升华】此题考察了圆周角定理以及线段垂直均分线的性质和等边三角形的判断与性质,娴熟的掌握所学知识点是解题的重点 .贯通融会:【变式】如图, AB 是⊙ O的弦,∠ AOB= 80°则弦 AB所对的圆周角是.【答案】 40°或 140° .3. 如图, AB是⊙ O的直径, C、 D、 E 都是⊙ O上的点,则∠1+∠2=___________.【答案】 90° .【分析】如图,连结OE,则【总结升华】把圆周角转变到圆心角.贯通融会:【变式】(2015?玄武区二模)如图,四边形∠ABO=30°,则∠ D=.ABCD为⊙O的内接四边形,连结AC、 BO,已知∠ CAB=36°,【答案】 96°;提示:解:连结OC,如图,∠BOC=2∠CAB=2×36°=72°,∵OB=OC,∴∠ OBC=∠OCB,∴∠ OBC= (180°﹣∠ BOC) = (180°﹣ 72°) =54°,∴∠ ABC=∠OBA+∠OBC=30°+54°=84°,∵∠ D+∠ABC=180°,∴∠ D=180°﹣ 84°=96°.故答案为96.4.已知,如图,⊙ O上三点 A、 B、 C,∠ ACB=60°, AB=m,试求⊙ O的直径长 .【答案与分析】以下图,作⊙O的直径 AC′,连结C′ B,则∠ AC′ B=∠ C=60°又∵ AC′是⊙ O的直径,∴∠ ABC′ =90°即⊙ O的直径为.【总结升华】作出⊙ O的直径,将60°、直径与 m都转到一个直角三角形中求解 .贯通融会:【变式】如图,△ ABC内接于⊙ O,∠ C= 45°, AB=4,则⊙ O的半径为().A.2 2 B . 4C.23D.5【答案】 A.种类三、圆内接四边形及应用5.已知,如图,∠ EAD是⊙ O的内接四边形 ABCD的一个外角,而且 BD=DC.求证: AD均分∠ EAC.E DAOB C【思路点拨】如图,由圆内接四边形的性质可证得∠EAD=∠ DCB,依据等腰三角形的性质获得∠DBC=∠ DCB,依据圆周角定理可得∠ DBC=∠ DAC,因此等量代换可求得∠EAD=∠ DAC,即 AD均分∠ EAC.【答案与分析】证明:∵∠ EAD与∠ DAB互为邻补角,E D ∴∠ EAD+∠ DAB=180° .A∵四边形 ABCD是⊙ O的内接四边形,∴∠ DAB+∠ DCB=180° .O∴∠ EAD=∠ DCB.又∵∠ DBC与∠ DAC是DC所对的圆周角,B C∴∠ DBC=∠ DAC,∴∠ EAD=∠ DAC.即 AD均分∠ EAC.【总结升华】此题考察圆周角定理、圆内接四边形的性质,解题时要仔细审题,注意转变思想的合理运用 .贯通融会:【变式】如图,圆内接四边形ABCD的外角∠ABE=85°,则∠AOC的度数为() .A.150°B. 160 °C.170 °D.165 °DA OC【答案】 C.BE。

3.4圆心角与圆周角的关系(教案)

3.4圆心角与圆周角的关系(教案)
-在解决实际问题时,如测量圆内接多边形的边长或角度,教师应指导学生如何运用圆心角和圆周角定理。
2.教学难点
-理解圆心角与圆周角之间的数量关系,特别是当圆心角是直角或平角时的情况。
-在复杂的图形中识别圆心角和圆周角,并能正确应用相关定理。
-将圆心角与圆周角的理论知识应用到解决综合性几何问题中。
举例解释:
其次,在教学难点部分,我发现有些学生在处理复杂的图形时,仍然难以准确识别圆心角和圆周角。这说明我在讲解这一部分时,可能需要更多针对性地设计一些练习题,让他们在实际操作中逐步突破难点。
在实践活动环节,学生们的参与度很高,但我也注意到有些小组在讨论时可能会偏离主题。为了提高讨论的效率,我应该在分组讨论前给出更明确的指导,比如设置一些具体的问题或任务,让学生们有针对性地展开讨论。
3.重点难点解析:在讲授过程中,我会特别强调圆心角与所对弧的关系以及圆周角是圆心角的一半这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆心角和圆周角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过测量不同圆心角和对应的圆周角,验证它们之间的数量关系。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的空间观念:通过探究圆心角与圆周角的关系,使学生能够形成对圆上角度的直观感知,提高空间想象能力。
2.提升学生的逻辑推理能力:引导学生运用圆的基本性质和几何定理,推导圆心角与圆周角的关系,培养学生严谨的逻辑思维。
3.增强学生的几何直观:通过实际操作和观察,让学生感受圆心角与圆周角在实际应用中的联系,提高解决几何问题的能力。同时,培养学生运用几何知识解释生活中现象的意识。

圆周角和圆心角的关系—知识讲解(基础)

圆周角和圆心角的关系—知识讲解(基础)

圆周角和圆心角的关系--知识讲解(基础)【学习目标】1.理解圆周角的概念,了解圆周角与圆心角之间的关系;2.理解圆周角定理及推论;3.熟练掌握圆周角的定理及其推理的灵活运用;通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.【要点梳理】要点一、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.3.圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;推论2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如下图)要点二、圆内接四边形1.圆内接四边形定义:四边形的四个顶点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆.ODCBA2.圆内接四边形性质:圆内接四边形的对角互补.如图,四边形ABCD 是⊙O 的内接四边形,则∠A+∠C=180°,∠B+∠D=180°.要点诠释:当四边形的四个顶点不同时在一个圆上时,四边形的对角是不互补.【典型例题】类型一、圆周角、圆心角、弧、弦之间的关系及应用1.如图,在⊙O 中,,求∠A 的度数.【答案与解析】.【总结升华】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的圆周角相等,所对的 弦也相等. 举一反三:【变式】如图所示,正方形ABCD 内接于⊙O ,点E 在劣弧AD 上,则∠BEC 等于( )A .45°B .60°C .30°D .55° 【答案】A.∵ AB =BC =CD =DA ,∴ 90AB BC CD DA ====°, ∴ ∠BEC =45°.类型二、圆周角定理及应用2.观察下图中角的顶点与两边有何特征? 指出哪些角是圆周角?【思路点拨】根据圆周角的定义去判断,顶点在圆上,并且两边都和圆相交的角叫做圆周角. 【答案与解析】(a)∠1顶点在⊙O 内,两边与圆相交,所以∠1不是圆周角; (b)∠2顶点在圆外,两边与圆相交,所以∠2不是圆周角;(c)图中∠3、∠4、∠BAD 的顶点在圆周上,两边均与圆相交,所以∠3、∠4、∠BAD 是圆周角. (d)∠5顶点在圆上,一边与圆相交,另一边与圆不相交,所以∠5不是圆周角; (e)∠6顶点在圆上,两边与圆均不相交,由圆周角的定义知∠6不是圆周角. 【总结升华】 紧扣定义,抓住二要素,正确识别圆周角.3.(2015•台州)如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC=BC=DC . (1)若∠CBD=39°,求∠BAD 的度数; (2)求证:∠1=∠2.【答案与解析】(1)解:∵BC=DC , ∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°, ∴∠BAD=∠BAC+∠CAD=39°+39°=78°; (2)证明:∵EC=BC ,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠CBD,∴∠1=∠2.【总结升华】本题主要考查了圆周角定理和等腰三角形的性质,熟悉圆的有关性质是解决问题的关键.4.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?【思路点拨】BD=CD,因为AB=AC,所以这个△ABC是等腰三角形,要证明D是BC的中点,只要连结AD,证明AD是高或是∠BAC的平分线即可.【答案与解析】BD=CD.理由是:如图,连接AD∵AB是⊙O的直径∴∠ADB=90°即AD⊥BC又∵AC=AB,∴BD=CD.【总结升华】解题的关键是正确作出辅助线.举一反三:【变式】(2015•安顺)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()DABCOA .2B . 4C . 4D .8【答案】C.提示:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O 的直径AB 垂直于弦CD ,∴CE=DE,△OCE 为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4. 故选:C .类型三、圆内接四边形及应用5.圆内接四边形ABCD 的内角∠A :∠B :∠C=2:3:4,求∠D 的度数.【思路点拨】根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为360°,从而求得∠D 的度数. 【答案与解析】解:∵圆内接四边形的对角互补, ∴ ∠A :∠B :∠C :∠D=2:3:4:3 设∠A=2x ,则∠B=3x ,∠C=4x ,∠D=3x , ∴2x+3x+4x+3x=360°, ∴x=30°. ∴∠D=90°.【总结升华】本题考查圆内接四边形的性质和四边形的内角和为360°的运用.举一反三:【变式】如图,⊙O中,四边形ABCD是圆内接四边形,∠BOD=110°,则∠BCD的度数是().A.110°B.70°C.55°D.125°【答案】D.C。

同弧所对的圆心角和圆周角的关系

同弧所对的圆心角和圆周角的关系

同弧所对的圆心角和圆周角的关系
圆周角和圆心角的关系:一条弧所对圆周角等于它所对圆心角的一半,即圆周角定理。

圆周角是顶点在圆周上的角,圆心角是顶点在圆心上的角。

1、在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距
中有一组量相等,那么他们所对应的其余各组量都分别相等。

2、在同圆或等圆中,成正比的弧所对的圆周角等同于它面元的圆心角的`一半(圆周
角与圆心角在弦的同侧)。

3、圆周角的度数等于它所对的弧度数的一半。

4、直径面元的圆周角就是直角;90度的圆周角面元的弦就是直径。

5、圆心角计算公式:θ=(l/2πr)×°=°l/πr=l/r(弧度)。

即为圆心角的度数等同于它面元的弧的度数;圆周角的度数等同于它面元的弧的度数
的一半。

九年级数学圆周角和圆心角知识点

九年级数学圆周角和圆心角知识点

九年级数学圆周角和圆心角知识点引言:数学作为一门博大精深的学科,其中的几何知识在我们的日常生活中无处不在。

而在九年级数学学习中,圆周角和圆心角是我们必须理解和掌握的重要概念之一。

本文将深入探讨九年级数学中的圆周角和圆心角知识点,希望能够为同学们的学习提供一些帮助。

一、圆周角圆周角是指一个图形所对的圆的圆周上的一部分,以弧所对的角叫做圆周角。

我们可以通过弧所对的圆心角来计算圆周角的大小。

假设圆的半径为r,圆弧对应的圆心角为θ(弧度制),那么圆周角的度数就是θ的度数。

例如,当θ为π/2时(即90度),圆周角也是90度。

圆周角的度数取决于其对应的圆心角的度数大小,换言之,圆周角可以看作是圆心角对应弧的一种度数表示。

二、圆心角圆心角是指圆周上任意两点连线与定点所夹的角,定点即为圆心。

通过圆心角的大小,我们可以判断出对应弧的长短和角的大小。

圆周上的所有圆心角的和等于360度,这是因为360度对应于一整个圆周。

根据圆心角的大小,我们可以将其分为三类:锐角、直角和钝角。

如果一个圆心角的度数小于90度,则称之为锐角;如果一个圆心角的度数等于90度,则称之为直角;如果一个圆心角的度数大于90度但小于180度,则称之为钝角。

三、圆周角和圆心角的关系圆周角和圆心角有着密切的联系。

首先,同一个圆弧所对应的圆心角和圆周角的度数相等。

这是因为,圆周角可以看作是圆心角对应的弧的度数表示。

其次,同一个圆的圆周角之和等于360度。

这是由圆心角之和等于360度所决定的。

另外,当两个圆心角的度数相等时,它们所对应的圆周角的度数也是相等的。

四、常见的圆周角和圆心角问题在九年级数学学习中,我们经常会遇到一些与圆周角和圆心角相关的问题。

下面我们来讨论一些常见的问题类型。

问题类型一:已知圆心角的度数,求圆周角的度数。

根据前文的介绍,我们可以直接通过圆心角的度数来确定圆周角的度数。

例如,当圆心角的度数为120度时,对应的圆周角的度数也为120度。

圆周角与圆心角、弧的关系

圆周角与圆心角、弧的关系

(教案)圆周角与圆心角、弧的关系一、知识讲解:1.圆周角与圆心角的的概念:顶点在圆上,同时两边都和圆相交的角叫做圆周角。

2.在同圆或等圆中,假如两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。

3.一条弧所对的圆周角等于这条弧所对的圆心角的一半。

4.直径所对的圆周角是90度,90度的圆周角所对的弦是直径。

5.圆的内接四边形对角之和是180度。

6.弧的度数确实是圆心角的度数。

解题思路:1.已知圆周角,能够利用圆周角求出圆心角2.已知圆心角,能够利用圆心角求出圆周角3.已知直径和弧度,能够求出圆周角与圆心角1.圆周角与圆心角的定义顶点在圆上,同时两边都和圆相交的角叫做圆周角。

注意圆周角定义的两个差不多特点:(1)顶点在圆上;(2)两边都和圆相交。

二、教学内容【1】圆心角:顶点在圆心的角。

利用两个错误的图形来强调圆周角定义的两个差不多特点:练习:判断下列各图形中的是不是圆周角,并说明理由.【2】明白得圆周角定理的证明一条弧所对的圆周角的度数等于这条弧所对的圆心角度数的一半。

已知:⊙O中,弧BC所对的圆周角是∠BAC,圆心角是∠BOC,求证:∠BAC= 1/2∠BOC.分析:通过图形的演示指导学生进一步去查找圆心O与∠BAC的关系本题有三种情形:(1)圆心O在∠BAC的一边上 O(2)圆心O在∠BAC的内部(3)圆心O在∠BAC的外部 B D C●假如圆心O在∠BAC的边AB上,只要利用三角形内角和定理的推论和等腰三角形的性质即可证明●假如圆心O在∠BAC的内部或外部,那么只要作出直径AD,将那个角转化为上述情形的两个角的和或差即可证明:圆心O在∠BAC的一条边上 AOA=OC==>∠C=∠BAC∠BOC=∠BAC+∠C O==>∠BAC=1/2∠BOC. B C【3】圆周角与圆心角的关系(1).在同圆或等圆中,假如两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。

3.3_圆周角和圆心角的关系(2)

3.3_圆周角和圆心角的关系(2)
∵∠AOC是△ABO的外角, ∴∠AOC=∠B+∠A. ∵OA=OB, ∴∠A=∠B. ∴∠AOC=2∠B.

C
老师期望: 你可要理 解并掌握 这个模型.

O
B

1 ∠ABC = ∠AOC. 2
你能写出这个命题吗?
一条弧所对的圆周角等于 它所对的圆心角的一半.
圆周角和圆心角的关系

演示
如果圆心不在圆周角的一边上,结果会怎样? 2.当圆心(O)在圆周角(∠ABC)的内部时,圆周角 ∠ABC与圆心角∠AOC的大小关系会怎样?
条件:圆周角与圆心角对同一条弧。 结论:圆周角是圆心角的一半。

老师提示:圆周角定理是承上启下的知识点,要予以重视.
思考与巩固
1.如图,在⊙O中,∠BOC=50°,求∠A的大小.
1 解: ∠A= ∠BOC=25°. 2
A B C

O
练习、在下列各图中, ∠α 1= 150° ,∠α 2= 60°,
C 返回
D
B
总结:圆周角定理:
一条弧所对的圆周角等于它所对的 圆心角的一半.
推论1: 同弧或等弧所对的圆周角相等; 同圆或等圆中,相等的圆周角所对的弧也相等。 推论2 半圆(或直径)所对的圆周角是直角; 90度的圆周角所对的弦是直径。
推论3: 圆内接四边形对角互补。 对角互补的四边形内接于圆。
探究:直径或半圆所对的圆周角的度数 1、探究半圆或直径所对的圆周角等于多少度? 2、90°的圆周角所对的弦是否是直径? 线段AB是⊙O的直径,点C是 ⊙O上任意一点(除点A、B), 那么,∠ACB就是直径AB所对的圆 周角.想想看,∠ACB会是怎么样 的角?为什么呢?
3.3 圆周角和圆心角 的关系

圆周角和圆心角的关系ppt课件

圆周角和圆心角的关系ppt课件
50°,则∠EBC+∠ADC 的度数为 _______.
-18-
3.4 圆周角和圆心角的关系
解析:如解析图,连接 AB,DE,则∠ABE=∠ADE. ∵ 所对的圆心角的度数为 50°,∴∠ABE= ∠ADE =25°. ∵ 点 A,B,C,D 在 ⊙O 上 ,∴四边形 ABCD 是圆内接四边形, ∴∠ABC+∠ADC=180°, ∴∠ABE+∠EBC+∠ADC=180°, ∴∠EBC+∠ADC=180°-∠ABE=180°-25°=155°. 答案:155° 题型解法:本题考查了圆周角定理和圆内接四边形的 性质,作出辅助线构建圆内接四边形是解题的关键.
-10-
3.4 圆周角和圆心角的关系
■考点四 圆内接四边形
定义
四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个 圆叫做四边形的外接圆
推论 圆内接四边形的对角互补
拓展 圆内接四边形的任何外角等于内对角
注意 并不是所有的四边形都存在外接圆,只有对角互补的四边形才存在外接圆
-11-
3.4 圆周角和圆心角的关系
A. 20° B. 40°
C. 50° D. 70°
-7-
3.4 圆周角和圆心角的关系
3. 如图,已知△ABC 的三个顶点都在同一圆上,且 AC=6,BC=8,AB=10, 则该圆的半径长是 ________.
(第 3 题图)
(第 4 题图)
4. 如图,AB=BC,∠ABC =120°,AD 为 ⊙O 的直径 ,AD=6,那么 AB 的
值为 ______.
-8-
3.4 圆周角和圆心角的关系
5. 如图,AB=AC,AB 是直径,求证:BC=2DE. (第 5 题图)

初中数学知识点精讲精析-圆周角和圆心角的关系

初中数学知识点精讲精析-圆周角和圆心角的关系

3·3圆周角和圆心角的关系要点精讲1.圆周角定义:圆周角(angle in a circular segment):顶点在圆上,并且角的两边和圆相交的角.两个特征:(1)角的顶点在圆上;(2)两边在圆内的部分是圆的两条弦.2.圆周角定理:同弧所对的圆周角相等,所对的圆周角都等于它所对的圆心角的一半.注意:(1)定理的条件是同一条弧所对的圆周角和圆心角,结论是圆周角等于圆心角的一半.(2)不能丢掉“一条弧所对的”而简单说成“圆周角等于圆心角的一半”.在同圆或等圆中,同弧或等弧所对的圆周角相等.注意:(1)“同弧”指“同一个圆”.(2)“等弧”指“在同圆或等圆中”.(3)“同弧或等弧”不能改为“同弦或等弦”.3.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.注意:这一推论应用非常广泛,一般地,如果题目的已知条件中有直径时,往往作出直径上的圆周角——直角:如果需要直角或证明垂直时,往往作出直径即可解决问题.4.反证法:注意:用反证法证明命题的一般步骤:(1)假设命题的结论不成立;(2)从这个假设出发,经过推理论证,得出矛盾.(3)山矛盾判定假设不正确,从而肯定命题的结论正确.5.圆内角与圆外角:我们把顶点在圆内(两边自然和圆相交)的角叫圆内角(如图1.顶点在圆外并且两边都和圆相交的角叫圆外角(如图2).定理:圆内角的度数,等于它所对弧的度数与它的对顶角所对弧的度数之和的一半.圆外角的度数,等于它的两边所夹两条弧的度数的差的一半.典型例题1.已知:⊙O中,所对的圆周角是∠ABC,圆心角是∠AOC.求证:∠ABC=12 AOC.【解析】证明:∠AOC是△ABO的外角,∴∠AOC=∠ABO+∠BAO.∵OA=OB,∴∠ABO=∠BAO.∴∠AOC=2∠ABO.即∠ABC=12∠AOC.如果∠ABC的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?如图(1),点O在∠ABC内部时,只要作出直径BD,将这个角转化为上述情况的两个角的和即可证出.由刚才的结论可知:∠ABD=12∠AOD,∠CBD=12∠COD,∴∠ABD+∠CBD=12(∠AOD+∠COD),即∠ABC=12∠AOC.在图(2)中,当点O在∠ABC外部时,仍然是作出直径BD,将这个角转化成上述情形的两个角的差即可.由前面的结果,有∠ABD=12∠AOD,∠CBD=12∠COD.∴∠ABD-∠CBD=12(∠AOD-∠COD),即∠ABC=12∠AOC.2.如图示,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?[分析]由于AB是⊙O的直径,故连接AD.由推论直径所对的圆周角是直角,便可得AD⊥BC,又因为△ABC中,AC=AB,所以由等腰三角形的二线合一,可证得BD=CD.【解析】BD=CD.理由是:连结AD.∵AB是⊙O的直径,∴∠ADB=90°.即AD⊥BC.又∵AC=AB,∴BD=CD.3.为什么有些电影院的坐位排列(横排)呈圆弧形?说一说这种设计的合理性.【解析】有些电影院的坐位排列呈圆弧形,这样设计的理由是尽量保证同排的观众视角相等.4.如下图,哪个角与∠BAC相等?【解析】∠BDC=∠BAC.5. 如下图,⊙O的直径AB=10 cm,C为⊙O上的一点,∠ABC=30°,求AC的长.【解析】∵AB为⊙O的直径.∴ACB=90°.又∵∠ABC=30°, ∴AC=21AB=21×10=5(cm). 6.小明想用直角尺检查某些工件是否恰好为半圆形,根据下图,你能判断哪个是半圆形?为什么?【解析】图(2)是半圆形、理由是:90°的圆周角所对的弦是直径.7.船在航行过程中,船长常常通过测定角度来确定是否会遇到暗礁,如下图,A 、B 表示灯塔,暗礁分布在经过A 、B 两点的一个圆形区域内,C 表示一个危险临界点,∠ACB 就是“危险角”.当船与两个灯塔的夹角大于“危险角”时,就有可能触礁;当船与两个灯塔的夹角小于“危险角”时,就能避免触礁.(1)当船与两个灯塔的夹角∠α大于“危险角”时,船位于哪个区域?为什么? (2)当船与两个灯塔的夹角∠α小于“危险角”时,船位于哪个区域?为什么? 分析:这是一个有实际背景的问题,由题意可知:“危险角” ∠ACB 实际上就是圆周角,船P 与两个灯塔的夹角为∠α,P 有可能在⊙O 外,P 有可能在⊙O 内,当∠α>∠C 时,船位于暗礁区域内;当∠α<∠C 时,船位于暗礁区域外,我们可采用反证法进行论证. 【解析】(1)当船与两个灯塔的夹角∠α大于“危险角” ∠C 时,船位于暗礁区域内(即⊙O 内),理由是:连结BE ,假设船在(⊙O 上,则有∠α=∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 上;假设船在⊙O 外,则有∠α<∠AEB ,即∠α<∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 外.因此.船只能位于⊙O 内.(2)当船与两个灯塔的夹角∠α小于“危险角”∠C时,船位于暗礁区域外(即⊙O 外).理由是:假设船在⊙O上,则有∠α=∠C,这与∠α<∠C矛盾,所以船不可能在⊙O上;假设船在⊙O内,则有∠α>∠AEB,即∠α>∠C.这与∠α<∠C矛盾,所以船不可能在⊙O内,因此,船只能位于⊙O外.8.如图,已知在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D.求BC、AD和BD的长.分析:由AB为直径,知∠ACB=90°,又AC、AB已知,可由勾股定理求BC.又∠ADB=90°,AD=DB,由勾股定理可求AD、BD.【解析】∵AB为直径,∴∠ACB=∠ADB=90°,又∵AB=10cm,AC=6cm,又∵CD是∠ACB的平分线,∠ACD=∠DCB,∴AD=DB.在 Rt∠ADB中,9.已知AB是⊙O的直径,AE是弦,C是的中点,CD⊥AB于D,交AE于F,CB交AE于G.求证:CF=FG.分析:如图7—107,要证CF=FG,只需证∠FCG=∠FGC.由已知,∠FCG与∠B互余.如果连结AC,∠ACB=90°.∠FGC与∠CAG互余.【解析】证明:连结AC,∵AB为直径,∴∠ACB=90°,∠FGC=90°-∠CAE.又∵CD⊥AB于D,∠FCG=90°-∠B,∴∠FGC=∠FCG.因此,CF=FG.10.如图,AB 是⊙O 的直径. ABCDO(1)若OD ∥AC ,与 的大小有什么关系?为什么?(2)把(1)中的条件和结论交换一下,还能成立吗?说明理由. 【解析】(1)=延长DO 交⊙O 于E . ∵AC ∥OD , ∴=. ∵∠1=∠2, ∴=. ∴=.(2)仍成立,延长DO 交⊙O 于点E ,连结AD . ∵=,=, ∴=. ∴∠3=∠D . ∴AC ∥OD .11.如图,⊙O 上三点A 、B 、C ,AB =AC ,∠ABC 的平分线交⊙O 于点E ,∠ACB 的平分线交⊙O 于点F ,BE 和CF 相交于点D ,四边形AFDE 是菱形吗?验证你的结论. AB CDEFO【解析】四边形AFDE 是菱形.证明:∵∠ABC=∠ACB, ∠ABE=∠EBC=∠ACF=∠FCB. 又∠FAB ,∠FCB 是同弧上的圆周角, ∴∠FAB=∠FCB ,同理∠EAC=∠EBC. 有∠FAB=∠ABE=∠EAC=∠ACF.∴AF ∥ED ,AE ∥FD 且AF=AE. ∴四边形AFDE 是菱形.12.如图是一大型圆形工件被埋在土里而露出地表的部分.为推测它的半径,小亮同学谈了他的做法:先量取弦AB 的长,再量中点到AB 的距离CD 的长,就能求出这个圆形工件的半径.你认为他的做法合理吗?如不合理,说明理由;如合理,请你给出具体的数值,求出半径,与同伴交流.BDCDEO1 23CABD【解析】小亮的做法合理.取AB=8 m ,CD=2 m, 设圆形工件半径为r, ∴r 2=(r -2)2+42. 得r=5(m).13.如图,现需测量一井盖(圆形)的直径,但只有一把角尺(尺的两边互相垂直,一边有刻度,且两边长度都长于井盖的半径),请配合图形,用文字说明测量方案,写出测量的步骤.(要求写出两种测量方案)【解析】方案1:使角尺顶点在圆上,角尺两边与圆两交点连接就是圆的直径,用刻度尺量出直径.方案2:任画圆的一条弦,用尺量出弦的中点,利用角尺过弦中点做弦的垂线,垂线与圆的两交点间的线段为圆的直径.14.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD . (1)P 是上一点(不与C 、D 重合),求证:∠CPD =∠COB .(2)点P ′在劣弧CD 上(不与C 、D 重合)时,∠CP ′D 与∠COB 有什么数量关系?请证明你的结论.BA CDOP【解析】(1)证明:连结OD, ∵AB 是直径,AB ⊥CD, ∴=.∴∠COB=∠DOB=21∠COD. 又∵∠CPD=21∠COD, ∴∠CPD=∠COB. (2)∠CP ′D 与∠COB 的数量关系是:∠CP ′D+∠COB=180°.证明:∵∠CPD+∠CP ′D=180°,∠COB=∠CPD, ∴∠CP ′D+∠COB=180°15.(9分)已知,如图20,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC,过点C 作直线CD ⊥AB 于D(AD<DB),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙O 于点F,连接AF 与直线CD 交于点G.(1)求证:AC 2=AG ·AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.AB CD OEGF【解析】(1)证明:连接CB ,∵AB 是直径,CD ⊥AB , ∴∠ACB =∠ADC =90°. ∴Rt △CAD ∽Rt △BAC . ∴得∠ACD =∠ABC . ∵∠ABC =∠AFC , ∴∠ACD =∠AFC . ∴△ACG ∽△ACF . ∴ACAF AG AC. ∴AC 2=AG ·AF . (2)当点E 是AD (点A 除外)上任意一点,上述结论仍成立 ①当点E 与点D 重合时,F 与G 重合, 有AG =AF ,∵CD ⊥AB ,∴=, AC =AF . ∴AC 2=AG ·AF .②当点E 与点D 不重合时(不含点A )时,证明类似①.。

北师大版九年级数学下册第三章圆3.4《圆周角和圆心角的关系(1)》说课稿

北师大版九年级数学下册第三章圆3.4《圆周角和圆心角的关系(1)》说课稿

圆周角和圆心角的关系(1)(说课稿)3.3 圆周角和圆心角的关系一、教材分析(一)教学内容今天我说课的内容是义务教育课程标准北师大版实验教科书九年级(下)第三章《圆》第3节《圆周角和圆心角的关系》第一课时||。

(二)地位和作用本节课是学生在掌握圆心角的概念以及圆心角、弧、弦的关系的基础上进行学习的||,既是前面圆有关性质的延续||,又是下一节课证明圆周角定理推论的理论依据||。

本节课所渗透的学习内容和学习方法||,在学生今后的学习中应用广泛||,是本章重点内容之一||。

(三)教学目标根据新课程标准的要求以及九年级学生的认知结构与心理特征||,我从以下三方面确定教学目标:知识与技能——理解圆周角的概念和圆周角定理以及证明||。

过程与方法——经历探索圆周角与圆心角的关系的过程||,体会分类、归纳、转化的数学思想方法||。

情感态度与价值观——在推理证明的过程中获得正确的学习方法;在合作交流中培养团结协作的精神;在自主探究中体会成功的喜悦||。

(四)教学重点和难点根据新课程的理念||,经历过程带给学习的能力||,比具体的结果更重要||,结合本课内容||,我认为本节课的教学重点是:经历探索“圆周角与圆心角的关系”的过程||,理解掌握圆周角定理||,难点是:利用化归思想推导证明圆周角定理||。

二、教法学法分析(一)教学方法根据新课程理念的要求||,教师应该是数学学习的组织者、引导者与合作者||,结合本节课的内容及学生的实际情况||,在教法上我主要采用“探究合作||,启发引导”的方法||,同时以多媒体演示为辅助||,使学习的主要内容不是教师直接传授给学生||,而是以问题的形式不断呈现出来||,由学生自己去发现||,然后内化为自己知识结构的一部分||,这样既能唤起学生学习的欲望||,又调动学生学习的积极性和主动性||。

(二)学生学法在学法上||,学生主要采用动手实践、自主探索与合作交流相结合的学习方法||,在教师的引导下从直观感知上升到理性思考||,从自己的实践中获取知识||。

圆心角与圆周角(教案)

圆心角与圆周角(教案)
5.培养学生合作交流意识,通过小组讨论、分享解题思路,提高团队协作能力。
三、教学难点与重点
1.教学重点
-理解圆心角的概念,掌握圆心角的度数计算方法;
-掌握圆周角的概念,了解圆周角与圆心角的关系;
-学会运用圆心角与圆周角的性质解决实际问题。
举例解释:
(1)圆心角的度数计算:通过实例让学生明白圆心角的度数是以圆心为顶点的角所对的圆弧的度数,例如,一个圆心角所对的圆弧为1/4圆周长,则该圆心角为90°。
1.培养学生空间观念,理解圆心角与圆周角的概念,提高对图形的认识和分析能力;
2.培养学生逻辑推理能力,通过探索圆心角与圆周角之间的关系,掌握推理方法,增强解决问题的逻辑思维;
3.培养学生数学抽象素养,将实际问题抽象为数学模型,运用圆心角与圆周角知识解决具体问题;
4.培养学生数学运算能力,熟练运用圆心角与圆周角的性质进行计算,提高运算速度和准确性;
3.重点难点解析:在讲授过程中,我会特别强调圆心角的度数计算和圆周角与圆心角的关系这两个重点。对于难点部分,我会通过实际例题和图形比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆心角与圆周角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用量角器和圆形纸片来实际测量圆心角和圆周角。
圆心角与圆周角(教案)
一、教学内容
本节课选自八年级数学下册第五章“圆”,围绕“圆心角与圆周角”的相关概念进行深入探讨。主要内容如下:
1.圆心角的概念及其度数计算;
2.圆周角的概念及其与圆心角的关系;
3.探究在同圆或等圆中,圆心角、圆周角的大小关系;
4.应用圆心角与圆周角解决实际问题。

人教版数学九年级圆心角和圆周角关系定理的理解和解题运用

人教版数学九年级圆心角和圆周角关系定理的理解和解题运用

人教版数学九年级圆心角与圆周角关系定理的理解与解题运用一、知识解读1、圆周角与圆心角的关系:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半。

在理解关系定理的内涵时,要理清如下几点:①定理的使用范围:必须在同圆中,这是一种情况;第二是必须在等圆中。

否则,不能乱用定理。

②理解好两种等量关系一是同弧所对的圆周角相等,二是等弧所对的圆周角相等。

这是寻找角相等的基本方向。

③确定准圆周角的度数大小一是同弧所对的圆周角相等,且等于这条弧所对圆心角的一半。

二是等弧所对的圆周角相等,且等于这条弧所对圆心角的一半。

④理解好“一半”的意义在这里,有两层意义:一是当同弧或等弧所对的圆周角与圆心角度数不知道时,满足如下等量关系: 设所对的圆周角是∠1,所对的圆心角是∠2,则∠1=21∠2,或∠2=2∠1, 二是当同弧或等弧所对的圆周角与圆心角度数知道时,满足如下等量关系: 设所对的圆周角是∠1=x °,所对的圆心角是∠2=y °,则x=21 y °,或y=2 x °, 2、推论在同圆或等圆中,半圆所对的圆周角是直角;直径所对的圆周角是直角;90°的圆周角所对的弦是直径。

二、考点剖析考点1、直接用定理例1、如图1所示,⊙O 中,弦AB DC ,的延长线相交于点P ,如果120AOD ∠=o ,25BDC ∠=o ,那么P ∠= .方法解读:∠AOD 、∠ABD 是同一条弧,AD 弧上的圆心角和圆周角,根据定理就能求∠ABD 的度数; ∠ABD 是三角形PBD 的一个外角,所以,∠ABD=∠BDC+∠P ;这样,就把所求与已知联系起来了。

解:因为,∠AOD 、∠ABD 是同一条弧,AD 弧上的圆心角和圆周角,所以,∠ABD=21∠AOD=21×120°=60°, 因为,∠ABD 是三角形PBD 的一个外角,所以,∠ABD=∠BDC+∠P ,因为,∠BDC=25°,所以,∠P=60°-25°=35°。

北师大版九年级数学下册《圆——圆周角和圆心角的关系》教学PPT课件(6篇)

北师大版九年级数学下册《圆——圆周角和圆心角的关系》教学PPT课件(6篇)

D
O2
O1
E
B
F
新知探究
【跟踪训练】
1.圆内接四边形ABCD中,∠A, ∠B, ∠C的度数之比是
135°
1:2:3,则这个四边形最大角的度数是_________.
D
A
2.四边形ABCD内接于圆,AD∥BC,AB+CD=AD+BC ,
25
若AD=4,BC=6,则四边形ABCD的面积为_______.
A
A
O
O
BB
C
C
课堂小测
3. 如图,点B,C在⊙O上,且BO=BC,则圆周角∠BAC等于( D )
A
A.60°
B.50°
C.40°
D.30°
O
B
C
课堂小测
4 . 如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E.若
∠AOD=60°,则∠DBC的度数为( A)
A.30°
B.40°
C.50°
B
D.60°
D
C
OC垂直平分AD
(1)OC与AD的位置关系是__________________;
A
平行
(2)OC与BD的位置关系是___________;
4
(3)若OC=2cm,则BD=______cm.
O1
O
B
新知探究
4.如图,△ABC的顶点均在⊙O上, AB=4, ∠C=30°,求⊙O的直径.
解:连接AO并延长交⊙O于点E,
3 . 当圆心(O)在圆周角(∠ABC)的外部时,圆周角∠ABC与圆
心角∠AOC的大小关系会怎样?
提示:能否也转化为1的情况?
A
C
过点B作直径BD.由1可得:

圆周角和圆心角的关系—知识讲解(基础)

圆周角和圆心角的关系—知识讲解(基础)

圆周角和圆心角的关系--知识讲解(基础)【学习目标】1 •理解圆周角的概念,了解圆周角与圆心角之间的关系;2 •理解圆周角定理及推论;3 •熟练掌握圆周角的定理及其推理的灵活运用;通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.【要点梳理】要点一、圆周角1. 圆周角定义:像图中/ AEB / ADB / ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2. 圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半3. 圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;推论2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交(2)圆周角定理成立的前提条件是在同圆或等圆中(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周要点二、圆内接四边形1.圆内接四边形定义:四边形的四个顶点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆2.圆内接四边形性质:圆内接四边形的对角互补•如图,四边形ABCD是O 0的内接四边形,则/ A+Z C=180°, / B+Z D=180°D要点诠释:当四边形的四个顶点不同时在一个圆上时,四边形的对角是不互补【典型例题】类型一、圆周角、圆心角、弧、弦之间的关系及应用C^1・如图,在O 0中 , _ ;i| ',求/ A的度数.【答案与解析】v AB =腮:.AB =腮•債养【总结升华】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的圆周角相等,所对的弦也相等.举一反三:【变式】如图所示,正方形ABCD内接于O 0,点E在劣弧AD上,则/ BEC等于()A . 45°B . 60°C . 30°D . 55【答案】A.AB = BC= CD= DAAB =BC =CD 二DA =90°,/ BEC= 45°.类型二、圆周角定理及应用C"2.观察下图中角的顶点与两边有何特征?指出哪些角是圆周角?(C) (d)【思路点拨】根据圆周角的定义去判断,顶点在圆上,并且两边都和圆相交的角叫做圆周角•【答案与解析】⑻/1顶点在O O内,两边与圆相交,所以/ 1不是圆周角;(b) / 2顶点在圆外,两边与圆相交,所以/ 2不是圆周角;(c) 图中/ 3、/ 4、/ BAD的顶点在圆周上,两边均与圆相交,所以/ 3、/ 4、/ BAD是圆周角.(d) / 5顶点在圆上,一边与圆相交,另一边与圆不相交,所以/ 5不是圆周角;(e) / 6顶点在圆上,两边与圆均不相交,由圆周角的定义知/ 6不是圆周角.【总结升华】紧扣定义,抓住二要素,正确识别圆周角.3. (2015?台州)如图,四边形ABCD内接于O O,点E在对角线AC上,EC=BC=DC .(1)若/ CBD=39 °,求/ BAD 的度数;(2 )求证:/ 1 = / 2 .【答案与解析】(1)解:T BC=DC ,•••/ CBD= / CDB=39 °•••/ BAC= / CDB=39 ° / CAD= / CBD=39 °• / BAD= / BAC+ / CAD=39 °+39°=78 °(2)证明:T EC=BC ,:丄 CEB= / CBE ,而/ CEB= / 2+ / BAE ,/ CBE= / 1 + Z CBD ,•••/ 2+Z BAE= / 1 + / CBD ,•••/ BAE= / CBD ,•••/ 仁/2.【总结升华】 本题主要考查了圆周角定理和等腰三角形的性质,熟悉圆的有关性质是解决问题的关键.BD 是O 0的弦,延长BD 到C ,使AC=AB BD 与CD 的大小有什么关系?【思路点拨】BD=CD 因为AB=AC 所以这个厶ABC 是等腰三角形,要证明 D 是BC 的中点,只要连结 AD,证明AD 是高或是/ BAC 的平分线即可.【答案与解析】BD=CD.理由是:如图,连接 AD•/ AB 是O 0的直径•••/ ADB=90 即 ADL BC 又••• AC=AB • BD=CD.【总结升华】 解题的关键是正确作出辅助线 举一反三:【变式】(2015?安顺)如图,O O 的直径AB 垂直于弦CD ,垂足为E ,/ A=22.5 ° OC=4 , CD 的长为( ).如图,AB 是O 0的直径,为什么?【思路点拨】 根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为 得/ D 的度数.【答案与解析】 解:•••圆内接四边形的对角互补,••• / A: / B:/ C:/ D=2:3:4 : 3设/ A=2x ,则/ B=3x ,/ C=4x,/ D=3x,• 2x+3x+4x+3x=360 ° ,• x=30°• / D=90° .【总结升华】本题考查圆内接四边形的性质和四边形的内角和为提示:T/ A=22.5°,• / BOC=/A=45 ,TOO 的直径AB 垂直于弦CD• C E=DE △ OCE 为等腰直角三角形,• C E= :OC=2 匚,2• CD=2CE=4 匚.故选:C.类型三、圆内接四边形及应用5 •圆内接四边形 ABCD 勺内角/ A : / B:Z C=2:3:4,求/ D 的度数.360 °,从而求 360°的运用. B . 4【答案】C.举一反三:【变式】如图,O O中,四边形ABCD是圆内接四边形,/ BOD=110,则/ BCD的度数是()A.110 °B.70 °C.55 °D.125 °【答案】D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习:
1 已知:如图,△ABC的AB边是⊙O的直径,另两边BC和AC分别交⊙O于D,E两点,DF⊥AB,交AB于F,交BE于G,交AC的延长线于H.求证:DF2=HF·GF.

2.如图,⊙O的半径OD,OE分别垂直于弦AB和AC,连结DE交AB,AC于F,G.求证:AF2=AG2=DF·GE.
3.如图,△ABC内接于圆,D是AB上一点,AD=AC,E是AC延长线上一点,AE=AB,连接DE交圆于F,延长ED交圆于G.求证:AF=AG.
2 如图7-28,以等腰△ABC的边AB为直径的半圆,分别交AC、BC于点D、E,若AB=10, ∠OAE=30O,则DE=______。
3 在锐角△ABC中,∠A=50O,若点O为外心,则∠BOC=_____;若点I为内心,则∠BIC=______;若点H为垂心,则∠BHC=________.
4 若△ABC内接于⊙O,∠A=nO,则∠BOC=_______.
4.已知:如图,⊙O的两条直径AB⊥CD,E是OD的中点,连结AE,并延长交⊙O于M,连结CM,交AB于F.求证:OB=3OF.
5已知:如图,△ABC是等边三角形,以AC为直径作圆交BC于D,作DE⊥AC交圆于E.
(1)求证:△ADE是等边三角形;(2)求S△ABC∶S△ADE.
综合:
1已知:如图,半径都是5cm的两等圆⊙O1和⊙O2相交于点A,B,过A作⊙O1的直径AC与⊙O2交于点D,且AD∶DC=3∶2,E为DC的中点.
(1)求 的度数;(2)求CE的长;(3)求证:DA、DC的长是方程 的两个实数根。
弧与角的转化:弧到角
例题讲解:1一条弦把圆分成 两部分,那么这条弦所对的圆周角的度数为。
2、如图, , 上的一点,则 。
练习:1.圆周角是24°,则它所对的弧是________
2 在⊙O中,∠AOB=84°,则弦AB所对的圆周角是________
角到弧,弧到角(圆内角的转化)
例图7-24,(1)∠ =_______;(2)∠ =_______。
5如图7-29,已知AB和CD是⊙O相交的两条直径,连AD、CB,那么 和 的关系是( )
(A) = (B) > (C) < (D) =2
6 如图7-30,在⊙O中,弦AC、BD交于点E,且 ,若∠BEC=130O,则ห้องสมุดไป่ตู้ACD的度数为___________
几种常见图形:换角
平行线 内接四边形 等腰 弧中点
4.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.
(1)P是 上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系, 并说明理由.
(2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB有什么数量关系?请证明你的结论.
5、⊙O中,AB是直径,AC是弦,点B在AC上,且OD=5,∠ADO和 的度数都等于60°,求CD和BD的长。
6、在△ABC中,∠BAC与∠ABC角平分线AE、BE相交于点E,延长AE交△ABC的外接圆于点D,连结BD、CD、CE,且∠BDA=60°,
(1)求证:△BDE是等边三角形;
(2)若∠BDC=120°,猜想BDCE是怎样的四边形?并证明你的猜想。
7、如图7-43,已知在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC,AD和BD的长.
11、如图, 为 的直径, 交 于点 , 交 于点 .(1)求 的度数;(2)求证: .
几何证明:三角形形似的换角;换边
例.如图,已知△ABC内接于半径为R的⊙O,A为锐角.求证: =2R
例已知:如图,在△ABC中,AD,BD分别平分∠BAC和∠ABC,延长AD交△ABC的外接圆于E,连接BE.求证:BE=DE.
7 如图, 内接于⊙OAD是⊙O的直径, ,则 ______.
复杂图形边角关系及求值:主要弄清变的关系最好用X体现数量;角与角之间的等量互余关系
常用方法:三角形相似,角RT三角形。同时注意问题的转化
计算求值:
例:如图,△ABC中,AD是∠BAC的平分线,延长AD交△ABC的外接圆于E,已知AB=a,BD=b,BE=c.求AE的长.(三角形形似)
(1)求证:AC⊥BE;(2)求AB的长.
2如图,已知P是 直径AB延长线上的一点,直线PCD交 于C、D两点,弦 于点H,CF交AB于点E。
(1)求证: ;。
的半径为2,求弦CF的长。
3 如图, 为锐角,且关于 的方程 有两个相等的实数根,D是劣弧 上任意一点,(点D不与点A、C重合),DE平分 ,交AC于F。
例设⊙O的半径为1,直径AB⊥直径CD,E是OB的中点,弦CF过E点(如图),求EF的长
1.如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.
2.如图,A、B、C、D四点都在⊙O上,AD是⊙O的直径,且AD=6cm,若∠ABC=∠CAD,求弦AC的长.
3.如图,AB为半圆O的直径,弦AD、BC相交于点P,若CD=3,AB=4,求tan∠BPD的值.
8、如图7-44,AB为⊙O的直径,弦AC=3cm,BC=4cm,CD⊥AB,垂足为D.求AD、BD和CD的长.
9.以△ABC的BC边为直径的半圆,交AB于D,交AC于E,EF⊥BC于F,AB=8cm,AE=2cm,BF∶FC=5∶1(如图).求CE的长.
10.如图,在⊙O中,BC,DF为直径,A,E为⊙O上的点,AB=AC,EF= DF.求∠ABD+∠CBE的值
4.如图4,A、B、C、D四个点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等 的角有________对相似三角形________
5、AD是⊙O直径,∠A=240,∠CBD=250,求∠E
6.在半径为R的圆中有一条长度为R的弦,则该弦所对的圆周角的度数是____________
1 2
1.如图1,四边形ABCD的四个顶点都在⊙O上,且AD∥BC,对角线AC与BC相交于点E,那么图中有_________对全等三角形;________对相似比不等于1的相似三角形.
2.已知,如图2,∠BAC的对角∠BAD=100°,则∠BOC=_______度.
3.如图3,AB是半圆O的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O 到CD 的距离OE=______.
例如图7-25,在△ABC中,∠C是直角,∠A=32O18 ,以点C为圆心、BC为半径作圆,交AB于点D,交AC于点E,则 的度数是______。
例7-26,点O是△ABC的外心,已知∠ACB=100O,则劣弧 所对的∠AOB=______度。
练训练:
1图7-27,AB是⊙O的直径,CD与AB相交于点E, ∠ACD=60O, ∠ADC=50O,则∠AEC=______度。
圆周角与圆心角:【角的灵活转化】
圆中角的灵活:通常为弧到角,及RT三角形,等腰三角形,圆内接四边形综合角的转化
做好几何的问题一定找清:角的关系;变的关系
基本图形:
重要结论:1:圆一周360度
2:直径所对圆周角90度
圆中角的转化思想方法:圆内角的转化(圆周角定理,等腰三角形,等量转化)
圆外角转的圆的,再圆内角的转化(圆内接四边形,切线,RT三角形)
相关文档
最新文档