九年级数学第一学期期中考试
九年级第一学期期中考试数学试卷(含参考答案)
九年级第一学期期中考试数学试卷(含参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题:本大题共10小题,每小题3分,共30分.1.在下列方程中是一元二次方程的是()A.x2-2x y+y2=0B. x2-2x=3C. x(x +3)= x2-1D. x + =02.将二次函数y= x2的图象向右平移2个单位,再向上平移1个单位,所得图象的表达式是()A.y=(x- 2)2+1B.y= (x +2)2+1C. (x- 2)2-1D.y= (x +2)2- 13.一元二次方程x2-2x +5=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断4.对于二次函数y= - (x- 2)2-3,下列说法正确的是()B A.当x >0时,y随x的增大而增大 B.当x =2时,y有最大值- 3C.图象的顶点坐标为(-2,-7)D.图象与x轴有两个交点5.用配方法解方程x2- 6x- 3=0时,原方程应变形为()A. (x +3)2=3B. (x +3)2=12C. (x- 3)2=3D. (x- 3)2=126.已知函数y=(x- 1)2+2,当函数值y随x的增大而减小时,x的取值范围是()A x <1 B. x >1 C. x >-2 D. - 2< x <47.若x1,x2是一元二次方程2x2- 9x +4=0的两根,则x1+ x2的值是()A. - 2B.2C.D. - 28.二次函数y=ax2+b x+c(a≠0)的图像如图所示,则函数值y>0时,x的取值范围是()A. x <-1B. x >3C. -1< x <3D. x <-1 或x >3第8题图第10题图9.某经济开发区,今年一月份工业产值达50亿元,第一季度总产值为175 亿元,二月、三月平均增长率是多少?若设平均每月的增长率为x,根据题意,可列方程为()A.50(1+x)2=175B.50+50(1+x)+50(1+x)2=175C.50 (1+x) +50(1+x)2= 175D.50+50(1+x)2=17510.已知二次函数y=ax2+b x+c(a≠0)的图像如图所示,对称轴为直线x=2.则下列结论中正确的是()A a bc>0 B.4a-b=0 C.9a+3b+c<0 D.5a+c>0二、填空题:本大题共5小题,每小题3分,共15分.11.方程x2= x的解是____________12.当k______时,y=( k +3)x2- k x+2是关于x的二次函数.13.抛物线y=2(x +1)2-3,的顶点坐标为________,对称轴为直线______14.已知x=1是方程x2+ax-b=0的一个根,则a-b+2023=_____15如图,一段抛物线:y=-x(x -2)(0≤x≤2),记为C1,它与x轴交于点O,A1;将C绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C6,若P(11,m)在第6段抛物线C6上,则m的值为=____三、解答题(一):本大题共3小题,第16 题10分,第17、18题7分,共24分.16.计算:用适当方法解方程:(1)(x +1)2=5x+5 (2)x2- 4x- 5=017.某次聚会上,同学们互相送照片,每人给每个同学一张照片,一共送出90张照片,问一共有多少位同学参加了聚会?18.已知抛物线y= x2- 2x- 3.(1)求抛物线与两坐标轴的交点坐标(2)求它的顶点坐标。
泰安市泰山区第一中学2023-2024学年九年级第一学期数学期中考试试题
2023-2024学年第一学期期中达标九年级数学试题2023.10注意事项1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中选择题48分,非选择题102分,满分150分,考试时间120分钟;2.选择题选出答案后,用2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效;3.数学考试不允许使用计算器,考试结束后,应将答题纸和答题卡一并交回。
第Ⅰ卷(选择题 共48分) 一、选择题(本大题共12个小题,每小题4分,共48分.) 1.反比例函数12my x-=中,当x >0时,y 随x 的增大而增大,则m 的取值范围是( ) A. m >12 B. m <2 C. m <12D. m >22.在Rt △ABC 中,∠C=90°,已知a 和A ,则下列关系式中正确的是( ) A. c =α·sinA B. c =α sinA C. c =α·cosB D. c =αcosA3.将抛物线y =﹣x 2﹣2x+3的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )A .(﹣2,2)B .(﹣1,1)C .(0,6)D .(1,﹣3)4.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限.若反比例函数y =的图象经过点B ,则k 的值是( )A .1B .2C .D .5.在Rt △ABC 中,∠C =90°,sinA =45,AC =6cm ,则BC 的长度为( ) A.6 cm B.7 cm C.8 cm D.9 cm6.某幢建筑物,从10米高的窗口A 用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直),(如图)如果抛物线的最高点M 离墙1米,离地面340米,则水流下落点B 离墙距离OB 是( )A.2米B.3米C.4米D.5米6题图7.AC是电杆AB的一根拉线,测得BC=6米,∠ACB=52°,则拉线AC的长为()A.米B.米C.6•cos52°米D.米8.关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1) B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小 D.y的最小值为﹣39.如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:≈1.732)()A.136.6米 B.86.7米 C.186.7米 D.86.6米10.如图,一次函数y1=x与二次函数y2=ax2+bx+c(a≠0)的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c(a≠0)的图象可能是( )11.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c >0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤12.某炮兵试射一枚导弹,在空中飞行后精确地击中地面目标导弹飞行的时(x秒)与高度的关系为y=ax2+bx+c(a≠0)已知导弹在第7秒与第16秒时的高度相等,则下列时间中导弹所在高度最高的是()A.第11秒B.第13秒C.第15秒D.第17秒二.填空题(本大题共5个小题,每小题4分,共20分.把答案填在题中的横线上.) 13.已知点A(4,y 1),B(2,y 2),C(-2,y 3)都在二次函数y =(x -2)2-1的图象上,则y 1, y 2 ,y 3的大小关系是________.14.如图,轮船从B 处以每小时60海里的速度沿南偏东20°方向匀速航行,在B 处观测灯塔A 位于南偏东50°方向上,轮船航行40分钟到达C 处,在C 处观测灯塔A 位于北偏东10°方向上,则C 处与灯塔A 的距离是________.15.如图,抛物线y 1=a (x+2)2-3与y 2=12(x-3)2+1交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .则以下结论: ①无论x 取何值,y 2的值总是正数;②a=1;③当x=0时,y 2-y 1=4;④2AB=3AC ;其中正确结论是 .16.若函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,则m 的值为 .17.在四边形ABCD 中,609069=︒==︒==A B D BC ,CD ∠,∠∠,,则AB= .三、解答题(本大题共9个小题,共82分,解答应写出文字说明、推理过程或演算步骤。
人教版九年级上册《数学》期中考试卷及答案【可打印】
人教版九年级上册《数学》期中考试卷及答案一、选择题:每题1分,共5分1. 若 a > b,则 a c 与 b c的大小关系是()A. a c > b cB. a c < b cC. a c = b cD. 无法确定2. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)3. 已知三角形ABC中,sinA = 1/2,cosB = √3/2,则∠C的度数是()A. 30°B. 45°C. 60°D. 90°4. 一辆汽车以每小时60公里的速度行驶,行驶了2小时后,汽车行驶的路程是()A. 120公里B. 120千米C. 120米D. 无法确定5. 下列数列中,等差数列是()A. 1, 3, 5, 7, 9B. 1, 3, 6, 10, 15C. 1, 2, 4, 8, 16D. 1, 2, 4, 7, 11二、判断题:每题1分,共5分1. 任何两个奇数的和都是偶数。
()2. 两条平行线的斜率相等。
()3. 任何数乘以0都等于0。
()4. 三角形的内角和等于180°。
()5. 两个负数相乘的结果是正数。
()三、填空题:每题1分,共5分1. 一个正方形的边长是4,它的面积是______。
2. 若 a = 3,b = 2,则 a b = ______。
3. 2的平方根是______。
4. 已知sinθ = 1/2,则θ的度数是______。
5. 下列数列的通项公式是 an = ______。
四、简答题:每题2分,共10分1. 简述等差数列和等比数列的定义。
2. 解释正弦函数和余弦函数的定义。
3. 解释勾股定理,并给出一个应用勾股定理的例子。
4. 简述平行线的性质。
5. 解释二次函数的图像特征。
五、应用题:每题2分,共10分1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时后,汽车行驶的路程是多少?2. 一个等差数列的首项是1,公差是2,求第10项的值。
九年级数学上册期中考试卷(附带有答案)
九年级数学上册期中考试卷(附带有答案)(满分:120分考试时间:120分钟)一.选择题(每题3分,共10小题)1.下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个2.已知反比例函数的图象经过点(﹣3,2),那么这个反比例函数的解析式是()A.y=B.y=﹣C.y=D.y=﹣3.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为2米,则这个坡面的坡度为()A.1:2 B.1:3 C.1:D.:14.下列说法中,正确的个数为()(1)在同圆或等圆中,弦相等则所对的弧相等(2)优弧一定比劣弧长(3)弧相等则所对的圆心角相等(4)在同圆或等圆中,圆心角相等则所对的弦相等.A.1个B.2个C.3个D.4个5.在⊙O中,弦AB等于圆的半径,则它所对应的圆心角的度数为()A.120°B.75°C.60°D.30°6.将二次函数y=﹣3x2的图象平移后,得到二次函数y=﹣3(x﹣1)2的图象,平移的方法可以是()A.向左平移1个单位长度B.向右平移1个单位长度C.向上平移1个单位长度D.向下平移1个单位长度7.在同一平面直角坐标系中,函数y=kx﹣k与y=(k<0)的图象大致是()A. B C.D.8.如图,客轮在海上以30km/h的速度由B向C航行,在B处测得灯塔A的方向角为北偏东80°,测得C处的方向角为南偏东25°,航行1小时后到达C处,在C处测得A的方向角为北偏东20°,则C到A 的距离是()A.15km B.15km C.15(+)km D.5(+3)km9.如图①,在Rt△ABC中,∠ACB=90°,∠A=30°,动点D从点A出发,沿A→C→B以1cm/s的速度匀速运动到点B,过点D作DE⊥AB于点E,图②是点D运动时,△ADE的面积y(cm2)随时间x(s)变化的关系图象,则AB的长为()A.4cm B.6cm C.8cm D.10cm10.如图,矩形ABCD中,E是BC的中点,连接AE,过点E作EF⊥AE交DC于点F,连接AF.设,下列结论:(1)△ABE∽△ECF(2)AE平分∠BAF(3)当k=1时,△ABE∽△ADF(4)tan∠EAF=k.其中结论正确的是()A.(1)(2)(3)(4) B.(1)(3)(4) C.(1)(2) D.(2)(3)二.填空题(共8小题,11--14每题3分,15--18每题4分)11.在△ABC中,(tan A﹣)2+|﹣cos B|=0,则∠C的度数为.12.若y关于x的函数y=(m﹣1)x|m+1|﹣4是二次函数,则m的值是.13.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为.(结果保留π)14.如图,平行四边形OABC的边OA在x轴上,顶点C在反比例函数y=﹣(x<0)的图象上,BC与y 轴相交于点D,且D为BC的中点,则平行四边形OABC的面积为.15.如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C,D,则tan∠ADC的值为.16.如图,抛物线y=ax2+bx+c分别交坐标轴于A(﹣2,0),B(6,0),C(0,﹣3),则﹣3<ax2+bx+c≤0的解是.17.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣t2.在飞机着陆滑行中,滑行最后的150m所用的时间是s.18.如图,A1,A2,A3,A4,…,A n在y轴上,纵坐标分别是1,2,3,4,…,n,分别过A1,A2,A3,A4,…,A n作x轴的平行线,交函数y=﹣的图象于B1B2,B3,B4,…,B n,以A1B1,A2B2,A3B3,A4B4,…,A n B n为边向下作平行四边形,其中C1,D1在x轴上,C2,D2在直线A1B1上,C3,D3在直线A2B2上,C4,D4在直线A3B3上,…,∁n,D n,在直线A n﹣1B n﹣1上,每个平行四边形的锐角都是60°,则A n B n∁n D n的面积是(用n表示)三.解答题(共7小题,共62分)19.计算:⑴﹣2cos30°+6sin245°.⑵(π﹣1)0+4sin45°﹣+|﹣3|.20.如图,已知一次函数y1=kx+b的图象与函数y2=(x>0)的图象交于A(6,﹣),B(,n)两点,与y轴交于点C.将直线AB沿y轴向上平移t个单位长度得到直线DE,DE与y轴交于点F.(1)求y1与y2的解析式(2)观察图象,直接写出y1<y2时x的取值范围(3)连接AD,CD,若△ACD的面积为6,求t的值21.无人机在实际生活中应用广泛.如图所示,小明利用无人机测量大楼的高度,无人机在空中P处,测得楼CD楼顶D处的俯角为45°,测得楼AB楼顶A处的俯角为60°.已知楼AB和楼CD之间的距离BC为100米,楼AB的高度为10米,从楼AB的A处测得楼CD的D处的仰角为30°(点A、B、C、D、P在同一平面内).(1)填空:∠APD=度,∠ADC=度(2)求楼CD的高度(结果保留根号)(3)求此时无人机距离地面BC的高度.22.如图,△ABC中,AB=AC,以AB为直径的⊙O交AC,BC分别于点E,D两点,连接ED,BE.(1)求证:DE=BD.(2)若BC=12,AB=10,求BE的长..23.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式(2)这次助力疫情防控中,该药店仅获利1760.这种消毒液每桶实际售价多少元?(3)这种消毒液每桶售价多少元时,获利最大,最大利润是多少元?24.如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,OB =OC,抛物线的对称轴为直线x=1.(1)求抛物线的解析式(2)点P为抛物线的对称轴上一点,连接AC,CP,AP,当△ACP的周长最小时,求点P的坐标(3)在(2)的情况下,在y轴上是否存在点Q,使以A,P,Q为顶点的三角形为直角三角形,若存在,直接写出点Q的坐标若不存在,请说明理由.25.【基础巩固】(1)如图1,在四边形ABCD中,对角线BD平分∠ABC,∠ADB=∠DCB,求证:BD2=BA•BC【尝试应用】(2)如图2,四边形ABCD为平行四边形,F在AD边上,AB=AF,点E在BA延长线上,连结EF,BF,CF,若∠EFB=∠DFC,BE=4,BF=5,求AD的长【拓展提高】(3)如图3,在△ABC中,D是BC上一点,连结AD,点E,F分别在AD,AC上,连结BE,CE,EF,若DE=DC,∠BEC=∠AEF,BE=12,EF=5,,求的值.参考答案一.选择题(共10小题)1.D.2.D.3.A.4.B.5.C.6.B.7.D.8.D.9.C.10.C.二.填空题(共8小题)11.75°12.﹣3.13.24π.14.8.15..16.﹣2≤x<0或4<x≤6.17.10.18.三.解答题(共11小题)19.原式=﹣2×+6×()2=﹣+6×=﹣1﹣+3=2.原式=1+4×﹣2+3=1+2﹣2+3=4.20.【解答】解:(1)将点A(6,﹣)代入y2=中∴m=﹣3∴y2=∵B(,n)在y2=中,可得n=﹣6∴B(,﹣6)将点A、B代入y1=kx+b∴解得∴y1=x﹣(2)∵一次函数与反比例函数交点为A(6,﹣),B(,﹣6)∴<x<6时,y1<y2(3)在y1=x﹣中,令x=0,则y=﹣∴C(0,﹣)∵直线AB沿y轴向上平移t个单位长度∴直线DE的解析式为y=x﹣+t∴F点坐标为(0,﹣+t)过点F作GF⊥AB于点G,连接AF直线AB与x轴交点为(,0),与y轴交点C(0,﹣)∴∠OCA=45°∵FC=t∴FG=t∵A(6,﹣),C(0,﹣)∴AC=6∵AB∥DF∴S△ACD=S△ACF∴×6×t=6∴t=2故答案为:2.21.【解答】解:(1)∵∠MP A=60°,∠NPD=45°∴∠APD=180°﹣∠MP A﹣∠NPD=75°.过点A作AE⊥CD于点E.则∠DAE=30°∴∠ADC=180°﹣90°﹣30°=60°.故答案为:75 60.(2)由题意可得AE=BC=100米,EC=AB=10米在Rt△AED中,∠DAE=30°tan30°=解得DE=∴CD=DE+EC=(+10)米.∴楼CD的高度为(+10)米.(3)过点P作PG⊥BC于点G,交AE于点F则∠PF A=∠AED=90°,FG=AB=10米∴∠P AF=∠MP A=60°∵∠ADE=60°∴∠P AF=∠ADE∵∠DAE=∠30°∴∠P AD=30°∵∠APD=75°∴∠ADP=75°∴∠ADP=∠APD则AP=AD∴△APF≌△DAE(AAS)∴PF=AE=100米∴PG=PF+FG=100+10=110(米).∴此时无人机距离地面BC的高度为110米.22.【解答】(1)证明:解法一:连接AD∵AB为⊙O的直径∴AD⊥BC∵AB=AC∴∠CAD=∠BAD∴弧DE=弧BD∴DE=BD(2)解:连接AD∵BC=12∴BD=BC=6∵AB=10∴AD===8∵S△ABC=BC•AD=AC•BE∴BE===.23.【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0)将(1,110),(3,130)代入y=kx+b得:解得:∴y与x之间的函数关系式为y=10x+100(0<x<20).(2)依题意得:(55﹣x﹣35)(10x+100)=1760整理得:x2﹣10x﹣24=0解得:x1=﹣2(不符合题意,舍去),x2=12∴55﹣x=55﹣12=43.答:这种消毒液每桶实际售价为43元.(3)售价为50元时,最大利润为2250元24.【解答】解:(1)令x=0,则y=3∴C(0,3)∴OC=3∵OB=OC∴B(3,0)∵抛物线的对称轴为直线x=1∴﹣=1∴b=﹣2a∴y=ax2﹣2ax+3将B(3,0)代入y=ax2﹣2ax+3∴9a﹣6a+3=0解得a=﹣1∴b=2∴抛物线的解析式为:y=﹣x2+2x+3.(2)∵A、B关于对称轴x=1对称∴AP=BP∴AP+CP=BP+CP≥BC∴当B、C、P三点共线时,AP+CP的值最小,此时△ACP的周长最小连接BC交对称轴x=1于点P设直线BC的解析式为y=kx+b∴解得∴y=﹣x+3∴P(1,2)(3)存在点Q,使得以A,P,Q为顶点的三角形为直角三角形,理由如下:在y=﹣x2+2x+3中,令y=0,则﹣x2+2x+3=0解得x=﹣1或x=3∴A(﹣1,0)设Q(0,t)∴AP2=8,AQ2=1+t2,PQ2=1+(t﹣2)2当∠P AQ=90°时,1+(t﹣2)2=8+1+t2解得t=﹣1∴Q(0,﹣1)当∠APQ=90°时,1+t2=8+1+(t﹣2)2解得t=3∴Q(0,3)当∠AQP=90°时,8=1+t2+1+(t﹣2)2解得t=1+或t=1﹣∴Q(0,1+)或(0,1﹣)综上所述:Q点坐标为(0,﹣1)或(0,3)或(0,1+)或(0,1﹣).25.【解答】(1)证明:∵BD平分∠ABC∴∠ABD=∠DBC∵∠ADB=∠DCB∴△ABD∽△DBC∴=∴BD2=BA•BC(2)∵四边形ABCD为平行四边形∴AD∥BC,AD=BC∴∠AFB=∠FBC,∠DFC=∠FCB∵AB=AF∴∠AFB=∠ABF∴∠ABF=∠FBC∵∠DFC=∠FCB,∠EFB=∠DFC∴∠EFB=∠FCB∴△EBF∽△FBC∴=,即=解得:BC=∴AD=(3)过点C作CM∥AD交EF的延长线于点M∵∠AEF+∠CEF+∠DEC=180°,∠BEC+∠CBE+∠BCE=180°∴∠CEF=180°﹣∠AEF﹣∠DEC,∠CBE=180°﹣∠BEC﹣∠BCE ∵DE=DC∴∠DEC=∠DCE∴∠CEF=∠CBE∵CM∥AD∴∠DEC=∠ECM∵∠DEC=∠DCE∴∠ECM=∠DCE∴△ECM∽△BCE∴==∵BE=12∴EM=8∵EF=5∴FM=8﹣5=3∵CM∥AD∴==.。
河北省石家庄市第二十五中学2024届九年级上学期期中考试数学试卷(含解析)
2023-2024学年度第一学期期中素质调研大联考九年级数学冀教版考试时间:120分钟,满分120分一、选择题(本大题共16个小题,共38分,1-6题各3分;7-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 方程的解是()A. B. C. D.【答案】C解析:解:可得故选C.2. 如图,点A,B,C均在上,连接OA、OC,当时,的度数是()A. B. C. D.【答案】A解析:∵,,∴,∴,∴,故选:A.3. 若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A. B. C. D.解析:解:该扇形的弧长=.故选C.4. 用公式法解方程,正确的是( )A. B. C. D.【答案】A解析:解:∵,,,∴,∴,故选:A.5. 小丽和小强在阳光下行走,小强身高1.6米,他的影长2.0米,小强比小丽高10,此刻小丽的影长是()A. 米B. 米C. 米D. 米【答案】D解析:∵小强身高1.6米,小强比小丽高10,∴小丽的身高为1.5米设小丽的影长为x米,由题意得,解得:.故选:D.6. 点,,都在反比例函数的图象上,若,则,,的大小关系是()A. B. C. D.解析:解:反比例函数的图象分布在第二、四象限,在每一象限随的增大而增大,而,点在第四象限,、点在第二象限,.即.故选:A.7. 如图,在由小正方形组成的网格中,以点O为位似中心,把缩小到原来的倍,则点A的对应点为()A. 点DB. 点EC. 点FD. 点G【答案】A解析:解:如图所示,连接并延长到使得,则点是点A的对应点,即点A的对应点为D点,故选A.8. 某种服装,平均每天可销售50件,每件利润40元.若每件降价5元,则每天多售10件.如果要在扩大销量的同时,使每天的总利润达到2100元,每件应降价多少元?若设每件应降价元,则可列方程得()A. B.C. D.【答案】A解析:解:设每件服装应降价x元,根据题意,得:故选:A.9. 如图,某梯子长15米,斜靠在竖直的墙面上,当梯子与水平地面所成角为时,梯子顶端靠在墙面上的点A处,底端落在水平地面的点B处,现将梯子底端向墙面靠近,使梯子与地面所成角为,已知,则梯子顶端上升了()A. 1米B. 2米C. 3米D. 4米【答案】C解析:如图,在中,,,∴,;在中,,,∴,∴梯子顶端上升高度,故选:C.10. 如图,四边形是的内接四边形,是的直径,连接,若,则的度数是()A. B. C. D.【答案】B解析:解:∵四边形是的内接四边形,∴,∴∵,∴∴∴故选:B.11. 若是关于x的一元二次方程的一个根,则另一个根是()A B. C. D. 【答案】B解析:解:设关于x的一元二次方程的另一个根为,则,解得,故选:.12. 在某次同学聚会上,每两人都互赠了一件礼物,所有人共送了份礼物,设有x人参加这次聚会,则列出方程正确的是()A. B.C. D.【答案】A解析:解:∵每两人都互赠了一件礼物,∴每个人有件礼物,故可列方程:故选:A13. 如图,半圆O的直径为10,点C、D在圆弧上,连接,两弦相交于点E.若,则阴影部分面积为()A. B. C. D.【答案】B解析:连接、,是直径,,,,的度数为,,.故选:B.14. 某班在统计全班人的体重时,算出中位数与平均数都是千克,但后来发现在计算时,将其中一名学生的体重千克错写成了千克,经重新计算后,正确的中位数为千克,正确的平均数为千克,那么()A. B. C. D. 无法判断【答案】A解析:解:原数据中在中位数的右边,新数据中也在中位数的右边,所以中位数不变,新数据比原数据少了,而数据的个数没有变化,所以正确平均数,则,故选:.15. 如图,在中,是的直径,,,M是上一动点,则的最小值是()A. B. C. D.【答案】D解析:解:如图,作点C关于的对称点,连接与相交于点M,此时,点M为的最小值时的位置,即点M与点O重合由垂径定理,,∴,∵,为直径,∴为直径,即∴的最小值是故选:D.16. 某种玻璃原材料需在环境保存,取出后匀速加热至高温,之后停止加热,玻璃制品温度会逐渐降低至室温(),加热和降温过程中可以对玻璃进行加工,且玻璃加工的温度要求不低于,玻璃温度y()与时间的函数图象如下,降温阶段y与x成反比例函数关系,根据图象信息,以下判断正确的是()A. 玻璃加热速度为B. 玻璃温度下降时,y与x的函数关系式为C. 能够对玻璃进行加工时长为D. 玻璃从降至室温需要的时间为【答案】B解析:解:由图像得,设,将点代入可得,,,解得:,,∴,故A错误,B正确,当时,,解得,故D错误,当时,,,解得:,,故加工时长为:,故C错误,故选:B.二、填空题(本大题共3个小题,共10分,17小题2分,18-19小题各4分,每空2分,把答案写在题中横线上)17. 已知方程可以配方成的形式,那么可以配方成_______.【答案】##解析:解:,,,,,,,,,,.故答案为: .18. 如图,在中,,将绕点A逆时针旋转得到,使点C落在边上,(1)旋转角的度数是________.(2)线段扫过部分的面积为_________;(结果保留)【答案】①. ②.解析:解:(1)∵,,∴,∴旋转角的度数,故答案为:;(2)∵,,,∴,∵旋转角为,∴,∴线段所扫过部分的面积是.故答案为:.19. 如图,点E在边上,连接,将矩形沿着折叠,使点D恰好落在边上的F处,;(1)__________;(2)若,则_______;【答案】①. ##②. ##解析:(1)∵∴设,,∵将矩形沿着折叠,∴,,∴,∵,∴,∴;故答案为:;(2)∵,∴由(1)可得,解得∴,,∴,故答案为:.三、解答题(本大题共7个小题.共72分,解答应写出文字说明、证明过程或演算步骤.)20. 某厂生产A,B两种产品.其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线图:A,B产品单价变化统计表第一次第二次第三次A产品单价(元/件)65.26.5B产品单价(元/件)3.543并求得A产品三次单价的平均数和方差::.(1)补全图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了____%;(2)求B产品三次单价的方差,并比较哪种产品的单价波动小:(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1.求m的值.【答案】(1)见解析,25%;(2)B产品单价波动小;(3)25.详解】解:(1)如图所示(2),.∵,∴B产品的单价波动小.(3)第四次调价后,对于A产品,这四次单价的中位数为;对于B产品,∵m>0,∴第四次单价大于3.又∵,∴第四次单价小于4.∴,∴m=25.考点:统计概率,中位数,方差,平均数,和差倍分,降低或提高的百分率21. 已知关于x的方程.(1)求证:无论m取何值,这个方程总有实数根;(2)若等腰的一腰长,另两边b、c恰好是这个方程的两个根.求的周长.【答案】(1)见解析(2)14【小问1详解】证明:∵,∴无论m取何值,这个方程总有实数根;【小问2详解】解:∵等腰的一腰长,∴方程有一个根为6,将代入原方程,得:,解得:,∴原方程为,解得:.∵2、6、6能组成三角形,∴该三角形的周长为.22. 如图,在四边形中,连接,其中,,,,,,(1)求的长;(2)求的长;(3)求的大小;【答案】(1);(2);(3);【小问1详解】解:∵,∴,∵,,,∴,解得:;【小问2详解】解:∵,∴,∵,,,∴,解得:;【小问3详解】解:∵,∴,,∵,∴.23. 如图,某无人机兴趣小组在操场上开展活动,此时无人机在离地面30米的D处,无人机测得操控者A 的俯角为30°,测得教学楼BC顶端点C处的俯角为45°.又经过人工测量测得操控者A和教学楼BC之间的距离为57米.求教学楼BC的高度.(点A,B,C,D都在同一平面上,结果保留根号)【答案】教学楼BC的高度为米解析:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F,如图所示:则四边形BCFE是矩形,由题意得:AB=57米,DE=30米,∠DAE=30°,∠DCF=45°,在Rt△ADE中,∠AED=90°,∴tan∠DAE=,∴AE===(米),∴BE=AB﹣AE=米,∵四边形BCFE是矩形,∴CF=BE=米,在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°,∴DF=CF=米,∴BC=EF=30﹣57+30=米,答:教学楼BC的高度为米.24. 如图,一次函数与反比例函数的相交于A,B两点,且点A的坐标为.点B的横坐标为;(1)求反比例函数和一次函数的解析式;(2)当时,根据图像直接写出x的取值范围;(3)连接,求的面积;【答案】(1),(2)或(3)【小问1详解】解:把点,代入反比例函数得:,∴,∵B的横坐标为,把代入,得,∴将代入一次函数,得:,∴,∴;【小问2详解】解:当时,由函数图像可得:或;【小问3详解】解:设AB交y轴于点C,当时,,∴,∴.25. 如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.(1)求证:DE=DB:(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;(3)若BD=6,DF=4,求AD的长【答案】(1)见解析;(2)2(3)9解析:(1)证明:∵AD平分∠BAC,BE平分∠ABD,∴∠1=∠2,∠3=∠4,∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,∴DB=DE;(2)解:连接CD,如图,∵∠BAC=90°,∴BC为直径,∴∠BDC=90°,∵∠1=∠2,∴DB=BC,∴△DBC为等腰直角三角形,∴BC=BD=4,∴△ABC外接圆的半径为2;(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,∴△DBF∽△ADB,∴=,即=,∴AD=9.26. 如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm 的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.【答案】(1)10-15;(2)t=或t=;(3)t=2.5;最小值为解析:(1)∵在Rt△ABC中,∠ACB=90°,AC=5,∠BAC=60°,∴,由题意知,,,由BM=BN得解得:(2)①当△MBN∽△ABC时,∴,即,解得:②当△NBM∽△ABC时,∴,即,解得:.∴当或时,△MBN与△ABC相似.(3)过M作MD⊥BC于点D,可得:,设四边形ACNM的面积为y,∴.∴根据二次函数的性质可知,当时,y的值最小.此时,。
广东省东莞市可园中学2024-2025学年九年级上学期期中考试数学试卷(含答案)
2024-2025学年第一学期期中质量自查初三年级数学试题一、选择题(本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个选项是符合要求的)1.下列方程是一元二次方程的是( )A. B. C. D.2.下面各组图形中,不是相似图形的是A. B. C. D.3.一元二次方程配方后化为( )A. B. C. D.4.一元二次方程的根的情况是( )A.没有实数根 B.只有一个实数根C.有两个相等的实数根 D.有两个不相等的实数根5.在我市组织的一次青少年足球比赛预赛中,每两队之间都要进行一场比赛,共要比赛28场,则参赛队个数是( )A.7B.8C.12D.146.把抛物线的图象向右平移2个单位,再向上平移3个单位,所得函数解析式为( )A. B. C. D.7.下列对抛物线描述不正确的是( )A.开口向下B.有最大值C.对称轴是直线D.顶点坐标为8.已知抛物线与轴的一个交点为,则代数式的值为( )A.2022B.2023C.2024D.20259.如图,在中,对角线,相交于点,点为的中点,交于点.若,则的长为()230x y ++=2320x -=217x x+=530x +=242x x +=2(2)6x +=2(2)6x -=2(2)6x +=-2(2)2x +=-220x x +-=2y x =2(2)3y x =-+2(2)3y x =++2(3)2y x =--2(3)2y x =-+22(3)1y x =-+-y 3x =-(3,1)-221y x x =--x (,0)m 222024m m -+ABCD □AC BD O E OC //EF AB BC F 4AB =EFA.B.1C.D.210.根据表格中二次函数的自变量与函数值的对应值,可以判断方程的一个解的范围是( )00.51 1.5213.57A. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分)11.一元二次方程的解是________.12.二次函数的图象与轴的交点坐标为________.13.设,是一元二次方程的两个实数根,若,则的值为________.14.若点,在函数的图象上,则________(用“<”、“>”或者“=”连接).15.如图,为测量学校旗杆高度,小艺同学在脚下水平放置一平面镜,然后向后退,直到她刚好在镜子中看到旗杆的顶端,已知小艺的眼睛离地面高度为1.6米,同时量得小艺与镜子的水平距离为2米,镜子与旗杆的水平距离为10米.则旗杆的高度为________米.16.如图,抛物线与轴交于点,对称轴为直线.结合图象分析下列结论:①;②;③;④一元二次方程的两根分别为,.其中正确的结论有________.(请填序号)三、解答题(本大题共9小题,满分72分.解答写出必要的文字说明、证明过程或计算步骤)12432y ax bx c =++x y 20ax bx c ++=x x 2y ax bx c=++1-0.5-00.5x <<0.51x <<1 1.5x << 1.52x <<22024x x =22y x =-+y 1x 2x 260x x m -+=12x =2x ()13,A y ()25,B y 241y x x =-++1y 2y 2(0)y ax bx c a =++≠x (3,0)1x =0abc <420a b c ++>20a c +<20cx bx a ++=113x =21x =-17.(本题满分4分)解方程:18.(本题满分4分)已知二次函数的图象以为顶点,且过点,求该函数的关系式.19.(本小题满分6分)如图,在等腰中,AD 是顶角的角平分线,BE 是腰AC 边上的高,垂足为点.求证:.20.(本小题满分6分)已知二次函数,(1)补全表格,并在平面直角坐标系中用描点法画出该二次函数的图象;012343(2)当________时,随的增大而减小;(3)当时,的取值范围是________;(4)根据图象回答:当时,的取值范围是________.21.(本小题满分8分)已知关于的一元二次方程(为常数).(1)当时,求出该一元二次方程实数根;(2)若,是这个一元二次方程两根,且,的值.22.(本小题满分10分)根据以下素材,探索完成任务.素材1随着数字技术、新能源、新材料等不断突破,我国制造业发展迎来重大机遇.某工厂一车间借助2230x x +-=(1,4)A -(2,5)B -ABC △BAC ∠E ACD BCE △△∽243y x x =-+x ⋯⋯y⋯1-⋯x y x 0y >x 03x <…y x 22(1)10x a x a -++-=a 2a =1x 2x 1x 2x a智能化,对某款车型的零部件进行一体化加工,生产效率提升,该零件4月份生产100个,6月份生产144个.素材2该厂生产的零件成本为30元/个,销售一段时间后发现,当零件售价为40元/个时,月销售量为600个,若在此基础上售价每上涨1元,则月销售量将减少10个.问题解决任务1该车间4月份到6月份生产数量的平均增长率;任务2为使月销售利润达到10000元,而且尽可能让车企得到实惠,则该零件的实际售价应定为多少元?23.(本小题满分10分)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点,在轴上,球网与轴的水平距离,,击球点在轴上.若选择扣球,羽毛球的飞行高度与水平距离近似满足一次函数关系:若选择吊球,羽毛球的飞行高度与水平距离近似满足二次函数关系.(1)求点的坐标和的值;(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到点的距离更近,请通过计算判断应选择哪种击球方式.)24.(本小题满分12分)如图,拋物线与轴交于点,与轴交于点,为线段上的一个动点,过点作轴的垂线,交直线于点,交该抛物线于点.(1)求直线的表达式;(2)若的面积取得最大值,求出这个最大值;(3)当以,,为顶点的三角形与相似时,求点的坐标.A C x AB y 3OA m =2CA m =P y ()y m ()x m 0.4 2.8y x =-+()y m ()x m 2(1) 3.2y a x =-+P aC 1.414≈2410233y x x =-++x A y B C OA C x AB D E AB ABE △B E D CDA △C25.(本小题满分12分)已知关于的一元二次方程有实数根.(1)求的值;(2)先作的图象关于轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线与变化后的图象有公共点时,求的最大值和最小值.x ()221(1)102x m x m -+++=m ()221(1)12y x m x m =-+++x 2()y x n n m =+…24n n -2024-2025学年度第一学期初三期中数学教学质量自查参考答案一、选择题(本大题共10个小题,每小题3分,共30分.)题号12345678910答案BCADBADDBB二、填空题(本大题共6小题,每小题3分,共18分.)题号111213141516答案4>8①②④三、解答题(本大题共9小题,共72分.)17.(4分)解1:,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1分,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分,解得:,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分解2:,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1分,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分解得:,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分18.(4分)解:顶点设抛物线解析式为,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1分将点代入,得,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分解得,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分19.(6分)证明:是等腰的顶角的角平分线,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1分,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分是腰边上的高,120,2024x x ==(0,2)22131x x ++=+2(1)4x +=12x +=±11x =23x =-(3)(1)0x x +-=30x +=10x -=11x =23x =- (1,4)-2(1)4y a x =--(2,5)B -945a -=1a =2(1)4y x ∴=--AD ABC △BAC ∠AD BC ∴⊥90ADC ︒∴∠=BE AC,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分20.(6分)解:(1)补全表格,并在平面直角坐标系中用描点法画出该二次函数的图象;0123433(2)当时,随的增大而减小;(3)当时,的取值范围是;(4)根据图象回答:当时,的取值范围是.(每空,画图各1分,共6分)21.(8分)解:(1)把代入一元二次方程得,∙∙∙∙∙∙1分则,解得,;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分(2),是一元二次方程两根,,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分,90BEC ︒∴∠=90ADC BEC ︒∴∠=∠=ACD BCE ∠=∠ ACD BCE ∴△△∽x ⋯⋯y⋯1-⋯x 2<y x 0y >x 13x x <>或03x <…y 13y -……2a =22(1)10x a x a -++-=22310x x -+=(21)(1)0x x --=112x =21x =1x 2x 22(1)10x a x a -++-=1212a x x +∴+=1212a x x -=1x 2x,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分解得(负值舍去),.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分.22.(10分)解:(1)设该车间4月份到6月份生产数量的平均增长率为,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1分根据题意得:,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分解得:,(不符合题意,舍去).∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分答:该车间4月份到6月份生产数量的平均增长率为;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分(2)设该零件的实际售价应定为元,则每个的销售利润为元,月销售量为个.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分根据题意得:,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分整理得:,解得:,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分又要尽可能让车企得到实惠,答:该零件的实际售价应定为50元.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分23.(10分)解:(1)在中,令得,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1分点的坐标为;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分把代入得:,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分解得:,的值是;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分(2),,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分,22212x x ∴+=()2121225x x x x ∴+-=2112522a a +-⎛⎫∴-⨯= ⎪⎝⎭13a =-25a =5a ∴=x 2100(1)114x +=10.220%x ==2 2.2x =-20%y (30)y -60010(40)(100010)y y --=-(30)(100010)10000y y --=213040000y y -+=150y =280y = 50y ∴=0.4 2.8y x =-+0x = 2.8y =∴P (0,2,8)(0,2.8)P 2(1) 3.2y a x =-+ 3.2 2.8a +=0.4a =-a ∴0.4-3OA m = 2CA m =5OC m ∴=(5,0)C ∴在中,令得,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分在中,令得(舍去)或,8分,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分选择吊球方式,球的落地点到点的距离更近.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分24.(12分)解:(1)令,则,或,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1分令,则,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分设直线的解析式为,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分,解得:,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分(2)由(1)可得的解析式为轴设,的面积为∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分0.4 2.8y x =-+0y =7x =20.4(1) 3.2y x =--+0y=1x =-1 3.83x =+≈|75||3.835|->- ∴C 0y =24102033x x -++-12x ∴=-3x =(3,0)A ∴0x =2y =(0,2)B ∴AB y kx b =+230b k b =⎧∴⎨+=⎩232k b ⎧=-⎪⎨⎪=⎩223y x ∴=-+AB 223y x ∴=-+DE x ⊥ 2,23D m m ⎛⎫-+ ⎪⎝⎭2410,2(03)33E m m m m ⎛⎫-++≤≤ ⎪⎝⎭ABE △y2410222333DE m m m ⎛⎫∴=-++--+ ⎪⎝⎭2443m m =-+12BED AED y S S DE OA ∴=+=⋅△△2144323m m ⎛⎫=-+⋅ ⎪⎝⎭226m m =-+239222m ⎛⎫=--+⎪⎝⎭的面积最大值为∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分(3),,是直角三角形,设,①如图1,当时,,,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分(舍去)或,;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分②如图2,当时,过点作轴,垂足为点,,,,,,,,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙11分(舍去)或,ABE ∴△92ADC BDE ∠=∠ 90ACD ∠=︒BED ∴△(,0)C t 90BED ∠=︒//BE AC (,2)E t ∴24102233t t ∴-++=0t ∴=52t =5,02C ⎛⎫∴ ⎪⎝⎭90EBD ∠=︒E EQ y ⊥Q 90BAO ABO ∠+∠=︒ 90ABO QBE ∠+∠=︒QBE BAO ∴∠=∠ABO BEQ ∴△△∽AO BOBQ EQ∴=32BQ t ∴=3,22E t t ⎛⎫∴+ ⎪⎝⎭2341022233t t t ∴+=-++0t ∴=118t =;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分综上所述:点的坐标为或;25.(12分)解:(1)对于一元二次方程,,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1分∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分方程有实数根,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分(2)由(1)可知,图象如图所示:平移后的解析式为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分(不化一般式不扣分)11,08C ⎛⎫∴ ⎪⎝⎭C 11,08⎛⎫ ⎪⎝⎭5,02⎛⎫ ⎪⎝⎭()221(1)102x m x m -+++=1a =2(1)b m =+()2112c m =+24b ac ∆=-()2222(1)2121(1)m m m m m =+-+=-+-=-- 2(1)0m ∴--…1m ∴=2221(1)y x x x =-+=-22(2)242y x x x --++=---(3)由消去得到,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分由题意,,,,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分令,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙11分时,的值最小,最小值为,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分时,的值最大,最大值为21,的最大值为21,最小值为.2242y x n y x x =+⎧⎨=---⎩y 2620x x n +++=0∆...36480n ∴--...7n ∴...n m ...1m =17n ∴ (22)4(2)4y n n n '=-=--2n ∴-y '4-7n =y '24n n ∴-4-。
山东省济宁市微山县2023-2024学年九年级上学期期中数学试题(含答案)
2023—2024学年度第一学期期中考试九年级数学试题注意事项:1.本试卷共6页,满分100分,考试时间为120分钟.2.答题前,考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置.3.答选择题时,必须使用2B 铅笔把答题卡上相应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.4.答非选择题时,必须使用0.5毫米黑色签字笔在答题卡上书写.务必在题号所指示的答题区域内作答.5.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.在回收、绿色包装、节水、低碳四个标志图案中,属于中心对称图形的是()A .B .C .D .2.下列方程是一元二次方程的是( )A .B .C .D .3.一元二次方程的根的情况是( )A .没有实数根B .有两个不相等的实数根C .有两个相等的实数根D .无法确定4.将抛物线向右平移2个单位长度,再向下平移3个单位长度,所得抛物线解析式为,则代数式的值为( )A .B .2C .4D .65.2021年某市GDP 约为115亿元,如果以后每年按相同的增长率增长,2023年该市GDP 约达135亿元.若设每年增长率为x ,则所列方程为( )A .B .C .D .6.如图,在中,,,将此三角形绕点B 沿逆时针方向旋转后得到,若点恰好落在线段AC 上,AB ,交于点D ,则等于()2x x=20ax bx c ++=1xy =11x x+=2321x x x -=+2y x bx c =++221y x x =-+b c -2-()1151151135x ++=()1151135x +=()21151135x +=()()211511151135x x +++=ABC △90ABC ∠=︒50C ∠=︒A BC ''△C 'A C ''A BD '∠A .B .C .D .7.一次函数和二次函数(k 是常数,且)在同一平面直角坐标系中的图象可能是()A .B .C .D .8.已知抛物线,,,是抛物线上三点,则,,的大小关系是( )A .B .C .D .9.如图,在平面直角坐标系中,的一条直角边OB 在x 轴上,点A 的坐标为;中,,,连接BC ,点M 是BC 中点,连接AM .将以点O 为旋转中心按顺时针方向旋转,在旋转过程中,线段AM 的最小值是()A .3B .C .D .210.如图所示是抛物线的部分图象,其顶点坐标为,且与x 轴的一个交点在点和之间,则下列结论:①;②;③;④一元二次方程有实数根.65︒70︒75︒80︒y kx k =+244y kx x =-++0k ≠()2230y ax ax a =-+>()11,A y -()22,B y ()34,C y 1y 2y 3y 123y y y <<213y y y <<312y y y <<231y y y <<Rt AOB △()6,4-Rt COD △90COD ∠=︒OD =30D ∠=︒Rt COD △4-2-()20y ax bx c a =++≠()1,n ()3,0()4,00a b c -+<30a c +>()24b a c n =-21ax bx c n ++=+其中正确的结论个数是( )A .①②B .①③C .②③D .②④二、填空题:本大题共5小题,每小题3分,共15分.11.已知函数为二次函数,则m 的值为________.12.已知a 是方程的一个根,则代数式的值是________.13.若点关于原点的对称点,那么________.14.如图,已知抛物线与x 轴交于A ,B 两点,顶点M 的纵坐标为,现将抛物线向右平移3个单位长度得到抛物线,则阴影部分的面积是________.15.如图,在直角坐标系中,线段是将绕着点逆时针旋转一定角度后得到的的一部分,则点A 的对应点的坐标是________.()1321m y m xx -=-+-2310110x x --=2261a a -+(),1P m ()2,Q n -m n +=2y mx nx c =++2-2111y m x n x c =++11B C ABC △()3,2D -111A B C △1A三、解答题:本大题共7题,满分55分.解答应写出文字说明、证明过程或推演过程.16.(本小题3分)用公式法解方程:.17.(本小题3分)用适当的方法解方程.18.(本小题4分)已知函数.(1)若这个函数是关于x 的一次函数,求m 的值.(2)若这个函数是关于x 的二次函数,求m 的取值范围.19.(本小题6分)已知如图1,图形A 是一个正方形,图形B 由三个图形A 构成,请用图形A 与B 拼接出符合要求的图形(每次拼接图形A 与B 只能使用一次),并分别画在指定的网格中.图1(1)在网格甲中画出:拼得图形是中心对称图形但不是轴对称图形;(2)在网格乙中画出:拼得图形是轴对称图形但不是中心对称图形;(3)在网格丙中画出:拼得图形既是轴对称图形又是中心对称图形.20.(本小题6分)已知二次函数的图象与x 轴两交点为、.(1)填空:________;(2)求代数式的值.21.(本小题6分)已知关于x 的一元二次方程,其中a ,b ,c 分别为三220x x --=()24520x x +=+()()2111y m x m x m =-+---233y x x =+-()1,0x ()2,0x 12x x +=1221x x x x +()()220b c x ax b c +-+-=ABC △边的长.(1)已知是方程的根,求证:是等腰三角形;(2)如果是直角三角形,其中,请你判断方程的根的情况,并说明理由.22.(本小题8分)某商家销售一种进价为10元/件的玩具.经调查发现,该玩具每天的销售量y (件)与销售单价x (元)满足下表:x 101112131415y400390380370360350设销售这种玩具每天的利润为w (元).(1)求w 与x 之间的函数关系式;(2)若销售单价不低于30元,且每天至少销售60件时,求此时w 的最大值.23.(本小题8分)阅读与理解图1是边长分别为m 和的两个正方形纸片ABCD 和EFCG 叠放在一起的图形(点F ,G 分别在BC ,CD 上).操作与证明(1)将图1中的正方形ABCD 固定,将正方形EFCG 绕点C 按顺时针方向旋转,连接BF ,DG ,如图2所示.猜想:线段BF 与DG 之间的大小关系,并证明你的猜想;(2)若将图1中的正方形EFCG 绕点C 按顺时针方向任意旋转一个角度,连接BF ,DG ,如图3所示.那么(1)中的结论还是否成立吗?请说明理由.操作与发现根据上面的操作过程发现,当为________度时,线段BF 的最大值是________;当为________度时,线段BF 的最小值是________?图1图2图324.(本小题11分)如图,抛物线交x 轴于A ,B 两点,交y 轴于点C ,直线经过点B ,C 两点.1x =ABC △ABC △90B ∠=︒()n m n >45︒()0360αα︒≤≤︒αα243y ax x =+-3y x =-备用图(1)求抛物线的解析式;(2)D 是直线BC 上方抛物线的一动点,当面积取最大值时,求点D 的坐标;(3)连接AC ,将绕点A 旋转一周,在旋转的过程中,点C ,B 的对应点分别为,,直线分别与直线BC 交于点E ,交y 轴于点F .那么在的整个旋转过程中,是否存在恰当的位置,使是以CE 为腰的等腰三角形?若存在,请求出所有符合条件的点E 的坐标;若不存在,请说明理由.2023—2024学年度第一学期期中考试九年级数学试题参考答案说明:解答题各小题只给出了一种解法及评分标准.其他解法,只要步骤合理,解答正确,均应给出相应的分数.一、选择题:每小题3分,满分30分1-5:DABAC6-10:DABDC二、填空题:本题共5小题,每题3分,共15分11.; 12.2023; 13.1; 14.6; 15..三、解答题:本题共7小题,共55分.要写出必要的文字说明或演算步骤.16.解:(1),,,,,所以,;3分17.解:,DBC △ABC △C 'B 'AC 'ABC △CEF △1-()2,32220x x --=1a =2b =-2c =-()()22412120∆=--⨯⨯-=>1x ===11x =+21x =()()2454x x +=+,,或,所以,.3分18.解:(1)由题意得:且,解得:且,∴,∴当时,这个函数是关于x 的一次函数;2分(2)由题意得:,解得:,∴当,这个函数是关于x 的二次函数.4分19.(答案不唯一,每正确画出一个符合条件的图形得2分,满分6分)6分20.(1);2分(2)由题意知,,是一元二次方程的两个根,∴,.∴6分21.(1)证明:∵是一元二次方程的根,∴.∴.∴是等腰三角形;3分(2)解:方程有两个相等的实数根,理由如下:∵是直角三角形,其中,∴.∴,∴方程有两个相等的实数根6分()()24540x x +-+=()()4450x x ++-=40x +=450x +-=14x =-21x =10m -=10m -≠1m =±1m ≠1m =-1m =-10m -≠1m ≠±1m ≠±3-1x 2x 2330x x +-=123x x +=-123x x =-()()()222212121212211212232353x x x x x x x x x x x x x x +---⨯-++====--1x =()()220b c x ax b c +-+-=()()20b c a b c +-+-=a b =ABC △ABC △90B ∠=︒222b a c =+()()()2222244440a b c b c a b c ∆=--+-=-+=22.解:(1)根据题意,有:,化简,得:,根据,解得:,即函数关系为:;4分(2)根据题意有:,解得:,将化为顶点式为:,∵,,∴当时,函数值最大,最大为:.答:此时W 的最大值为4000元.8分23.解:操作与证明:(1).∵正方形EFCG 绕点C 按顺时针方向旋转,∴.∵四边形ABCD 和四边形EFCG 是正方形,∴,.∴.∴.3分(2).∵正方形EFCG 绕点C 按顺时针方向旋转,∴.∵四边形ABCD 和四边形EFCG 是正方形,∴,.∴.∴.6分猜想与发现:当为时,线段AD 的长度最大,等于;当为(或)时,线段AD 的长度最小,等于8分24.解:(1)∵直线经过点B ,C 两点,当时,,∴,当时,,∴.把点代入,得:,解得,∴;3分10500y x =-+()()()101050010W y x x x =⨯-=-+⨯-2106005000W x x =-+-1050000y x x =-+≥⎧⎨>⎩050x <≤()2106005000050W x x x =-+-<≤105006030y x x =-+≥⎧⎨≥⎩3044x ≤≤2106005000W x x =-+-()210304000W x =--+100-<3044x ≤≤30x =4000W =BF DG =45︒45BCF DCG ∠=∠=︒CB CD =CF CG =BCF DCG △≌△BF DG =BF DG =αBCF DCG α∠=∠=CB CD =CF CG =BCF DCG △≌△BF DG =α180︒m n +α0︒360︒m n -3y x =-0x =3y =-()0,3C -0y =3x =()3,0B ()3,0B 243y ax x =-+09123a =-+1a =-243y x x =-+-(2)设点D 的坐标为,过点D 作轴,交BC 于点E ,则点E 的坐标为,∴,∴.∴当时,的面积取最大值.此时.∴7分(3)设直线AC 的解析式为,则,联立直线BC 和直线AC ,得:,解得:,∴,由勾股定理得:,,,()()2,4303m m m m -+-<<DE y ∥(),3m m -()224333DE m m m m m =-+---=-+()()221332732228DBCB C S m m x x m ⎛⎫=-+-=--+⎪⎝⎭△32m =DBC S △233343224y ⎛⎫=-+⨯-= ⎪⎝⎭33,24D ⎛⎫⎪⎝⎭()1y k x =-()0,F k -()13y k x y x ⎧=-⎨=-⎩3121k x k k y k -⎧=⎪⎪-⎨⎪=-⎪-⎩32,11k k E k k -⎛⎫-⎪--⎝⎭22232311k k EC k k -⎛⎫⎛⎫=+-+ ⎪ ⎪--⎝⎭⎝⎭2223211k k EF k k k -⎛⎫⎛⎫=+-+ ⎪ ⎪--⎝⎭⎝⎭()223FC k =-+若,即,解得或当时,,当,若,即,解得或,当时,,当时,此时,不合题意,故舍去,综上,M 的坐标为或或或.11分FC EC =()222323311k k k k k -⎛⎫⎛⎫-+=+-+ ⎪ ⎪--⎝⎭⎝⎭1k =1k =-1k =+(12E --1k =(12E +-EC EF =2222323231111k k k k k k k k k --⎛⎫⎛⎫⎛⎫⎛⎫+-+=+-+ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭1k =-3k =1k =-()2,1E -3k =()0,3E -0EC EF ==()3,0()2,1-(12--(12-。
山东省青岛第五十九中学2024-2025学年九年级上学期期中考试数学试卷(无答案)
2024-2025学年度第一学期期中阶段性质量检测九年级数学试题(考试时间:120分钟:满分:120分)温馨提示:1.答卷前,考生务必将自已的姓名、准考证号等信息填写在答题卡和答题纸上。
2.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
或写在答题纸上.如需改动,用橡皮擦干净后,再选涂其他标号。
写在本试卷上无效。
3.回答第II卷时,将答案写在答题纸上.写在本试卷上无效。
第I卷(共54分)一、选择题(每小题3分,每题只有一个正确选项,共30分)1.下列方程中是一元二次方程的是()A.B.C.D.2.下列各组中的四条线段(单位:)成比例的是()A.3,6,5,4 B.3,4,6,9 C.1,5,2,3 D.2,4,5,103.四张看上去无差别的卡片上分别印有正方形、正五边形、正六边形和圆,现将印有图形的一面朝下,混合均匀后从中随机抽取两张,则抽到的卡片上印有的图形都是中心对称图形的概率为()A.B.C.D.4.下列说法正确的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.一组邻边相等的平行四边形是矩形C.菱形有四条对称轴D.对角线相等且互相垂直平分的四边形是正方形5.为执行“均衡教育”政策,某区2022年投入教育经费2500万元,预计到2024年底三年累计投入1.2亿元.若投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.B.C.D.6.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中相似的是()A.B.C.D.7.如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E作,点F,G为垂足,若,则FG的长为()22(1)3(1)x x+=+2340ax x++=21440x x+-=2(2)5x x x+=-cm1413123422500(1) 1.2x+=225002500(1)2500(1)12000x x++++=22500(1)12000x+=25002500(1)2500(12)12000x x++++=ABC△EF BD EG AC⊥⊥,1024AC BD==,A .5B .6.5C .10D .128.如图,张老汉想用长为75米的棚栏,再借助房屋的外墙(外墙足够长)围成一个面积为720平方米的矩形羊圈ABCD ,并在边CD 上留一个5米宽的门(门用其他材料),设AB 的长为x 米,则下面所列方程正确的是( )A .B .C .D .9.如图所示,E 、F 分别是正方形ABCD 的边CD ,AD 上的点,且,AE ,BF 相交于点O ,下列结论①;②;③;④中,错误的有( )A .1个B .2个C .3个D .4个10.如图,在正方形ABCD 中有一个小正方形EFGH ,其中点E ,F 分别在边AB ,BC 上,点G 在线段DF 上.若正方形ABCD 的面积为16,,则正方形EFGH 的面积为( )A.B .C .5D .25二、填空题(每小题3分,每题只有一个正确选项,共24分)11.一元二次方程的二次项系数是________,一次项系数是________,常数项是________.12.在一个不透明的口袋中,装有若干个红球和8个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.4,则估计盒子中大约(75)720x x -=(802)720x x -=(752)720x x -=(80)720x x -=CE DF =AE BF =AE BF ⊥AO OE =AOB DEOF S S =△四边形1BE =52543(2)5x x -=有红球________个.13.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点.若,则四边形ABOM 的周长为________.14.一个主持人站在舞台的黄金分割点处最自然得体,如果舞台AB 长为20米,一个主持人现在站在A 处,则他应至少再走________米才最理想.15.某学习小组同学在元旦互相赠贺年卡一张,全组共赠贺年卡90张,设这个小组共有同学x 个,根据题中的条件,列出关于x 的方程为:________________.16.小亮希望测量出电线杆AB 的高度,他在电线杆旁的点D 处立一标杆,标杆的影子DE 与电线杆的影子BE 部分重叠(即点E 、C 、A 在一直线上),量得米.则电线杆AB 的高为________米.17.如图,矩形ABCD 中,,F 为对角线AC 的中点,交BC 于E .则线段EF 的长为________________.18.如图,在平面直角坐标系中,点的坐标为,以为直角边作,并使,再以为直角边作,并使,再以为直角边作,并使…按此规律进行下去,则点的坐标为________.第II 卷(共6分)19.(本小题满分4分)513AB AC ==,215DB ED CD ==,.48AB BC ==,EF AC ⊥1A (1,0)1OA 12Rt OA A △1260A OA ∠=︒2OA 23Rt OA A △2360A OA ∠=︒3OA 34Rt OA A △3460A OA ∠=︒2024A用圆规、直尺作图,不写作法,但要保留作图痕迹,如图,是一块三角形余料,工人师傅要把它加工成一个菱形零件,使点A 为菱形的一个顶点,一组邻边分别在BA 、AC 上,另一个顶点在BC 上,试协助工人师傅用尺规画出这个菱形.结论:20.(本小题满分12分,每小题3分)解方程(1)(公式法)(2)(配方法)(3)(4)21.(本小题满分6分)随着《黑神话:悟空》这款融合了中国传统文化精髓与现代游戏技术的力作横空出世,不仅激发了玩家对神话故事的无限遐想,更意外地点燃了公众对山西这片古老士地的热情.游戏中精心选取的27处山西实景,如同一幅幅生动的历史画卷,引领我们穿越时空,感受五千年文明的深厚底蕴.某旅游公司推出“跟着悟空游山西”二日游路线.小明家、小米家利用双休日出去旅游.每次出游只能选一条路线.“跟着悟空游山西”二日游推荐路线A 、临汾线:小西天、广胜寺、铁佛寺B 、长治线:观音堂、紫庆寺C 、朔州线:尝福寺、应县木塔D 、晋中线:平遥镇国寺、平遥双林寺(1)小米家这周想选A 路线,小明家选不到A 路线的概率是多少?(2)如果小明家相约小米家一起出去旅游,两个家庭都从上面四条路线中选一条路线去游玩,请用树状图或列表的方法求出两家选取同一条路线的概率.22.(本小题满分6分)已知关于x 的一元二次方程有两个实数根.(1)求k 的取值范围:(2)若,求k 的值.23.(本小题满分8分)已知:如图,的对角线AC ,BD 交于点O ,分别过点A ,B 作连接CE 交BD 于点F .ABC △21683x x +=22450x x --=223(1)1x x -=-2750x -=24280x x k --+=12,x x 22121124x x x x +=-ABCD Y AE BD BE AC ∥,∥(1)求证:;(2)当满足什么条件时,四边形OAEB 为菱形?请说明理由.24.(本小题满分8分)2023年亚运会在杭州顺利举行,亚运会吉祥物“江南忆”公仔爆红.据统计“江南忆”公仔在某电商平台8月份的销售量是5万件,10月份的销售量是7.2万件.(1)若该平台8月份到10月份的月平均增长率都相同,求月平均增长率是多少?(2)市场调查发现,某一间店铺“江南忆”公仔的进价为每件40元,若售价为每件80元,每天能销售20件,售价每降价2元,每天可多售出8件,为了推广宣传,商家决定降价促销,同时尽量减少库存,若使销售该公仔每天获利1400元,则每件售价应降低多少元?25.(本小题满分10分)(1)【问题呈现】如图1,和都是等边三角形,连接BD ,CE .请直接写出BD 和CE 的数量关系.(2)【类比探究】如图2,和都是等腰直角三角形,.连接BD ,CE .请直接写出的值.(3)【拓展提升】如图3,和都是直角三角形,,且,连接BD ,CE .图1图2 图3①求的值;②延长CE 交BD 于点F ,交AB 于点G .若,求B P 的长.26.(本小题满分12分)已知:如图,在中,.点P 从点B 出发,沿BC 向点C 匀速运动,速度为;过点P 作,交AC 于点D .同时,点Q 从点A 出发,沿AB 向点B 匀速运动,BEF OCF ≌△△ABC ∠ABC △ADE △ABC △ADE △90ABC ADE ∠=∠=︒BD CEABC △ADE △90ABC ADB ∠=∠=︒34AB AD BC DE ==BD CE1,64BG AB CG ==Rt ABC △903cm 4cm C AC BC ∠=︒==,,1cm/s PD AB ∥速度为;当一个点停止运动时,另一个点也停止运动,连接PQ .设运动时间为t (s )(),解答下列问题:(1)当t 为何值时,四边形ADPQ 为平行四边形?(2)当t 为何值时,;(3)在运动过程中,是否存在某一时刻t ,使?若不存在,请说明理由,若存在,求出t 的值;(4)当t 为何值时,为等腰三角形?请直接写出答案.2cm/s 025t <<.PQ PD ⊥:1:10PQB ABC S S =△△PBQ △。
广东省韶关市翁源县2024-2025学年九年级上学期11月期中考试数学试题(含答案)
2024-2025学年度第一学期期中考试九年级数学注意事项:1.全卷共6页,满分为120分,考试用时为120分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号,用2B 铅笔把对应的号码的标号涂黑.3.在答题卡上完成作答,答案写在试卷上无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .2.关于的一元二次方程的二次项系数、一次项系数、常数项分别是( )A .1,2,5B .C .D .3.已知和关于原点对称,则的值为( )A .B .1C .D .54.二次函数的图象顶点坐标是( )A .B .C .D .5.将抛物线先向下平移1个单位长度,再向右平移3个单位长度,所得到的抛物线为( )A .B .C .D .6.如图,已知点,将线段绕点按顺时针方向旋转,旋转后点的对应点坐标为( )A .B .C .D .7.如图,已知一菜园为长10米,宽7米的矩形,为了方便浇水和施肥,修建了同样宽的四条互相垂直的“井”x 2250x x -+-=1,2,5--1,2,5-1,2,5-(),2A a ()3,B b a b +5-1-23(1)2y x =-+-()1,2-()1,2-()1,2()1,2--22y x =+2(3)1y x =++2(3)3y x =-+2(3)3y x =++2(3)1y x =-+()1,2P PO O 90︒P ()1,2-()2,1-()2,1-()2,1字形道路,余下的部分种青菜,已知种植青菜的面积为54平方米,设小路的宽为米,则根据题意列出的方程是( )A .B .C .D .8.关于的一元二次方程的一个根是1,则的值为( )A .1或B .C .1D .9.设是抛物线上的三点,则的大小关系为( )A .B .C .D .10.如图,在正方形中,点的坐标分别是,点在抛物线的图象上,则的值是( )A .B.C .D .二、填空题:本大题共5小题,每小题3分,共15分.11.若方程是关于的一元二次方程,则的取值范围是_______.12.若二次函数与轴只有1个交点,则_______.13.数学课堂上,为探究旋转的性质,同学们进行了如下操作:如图所示,将一个三角形硬纸板,放置在一张白纸上,描出硬纸板的形状,并用图钉固定点,将三角形硬纸板绕点顺时针旋转一定角度后,再描出形状得到,经测量,则_______.x ()()1027254x x --=()()10754x x --=()()107254x x --=()()1027254x x +-=x ()22120a x x a -++-=a 2-2-1-()()()1233,,2,,2,A y B y C y --22y x x c =--+123,,y y y 321y y y >>123y y y >>132y y y >>213y y y >>ABCD A C 、()()1,17,3-、D 21y x bx =+-b 32-3212-12()2230a x x -+-=x a 22y x x m =-+x m =ABC △A A ADE △50,15BAC CAD ∠=︒∠=︒CAE ∠=14.设是方程的两个实数根,则的值为_______.15.如图,在中,,将绕点逆时针旋转得到,当点的对应点恰好落在边上时,则的长为_______三、解答题(一):本大题共3小题,每小题7分,共21分.16.(7分)解方程:17.(7分)如图,在平面直角坐标系中,点的坐标分别为.(1)画出关于点的中心对称图形;(2)将绕点顺时针方向旋转后得,画出.18.(7分)如图,是二次函数的图象.12,x x 23210x x --=1212x x x x --ABC △3,1AB AC ==ABC △C 90︒CDE △A D AB AE ()330x x x --+=A B C 、、()()()1,1,2,3,4,2ABC △O 111A B C △111A B C △O 90︒222A B C △222A B C △2y ax bx c =++(1)求二次函数解析式;(2)根据图象直接写出关于的不等式的解集.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)如图,四边形为矩形,,将对角线绕点逆时针旋转得,作交于点.(1)证明:;(2)连接,求的长.20.(9分)乐昌马蹄是广东韶关的特产,韶关乐昌有着“马蹄之乡”的美称.乐昌马蹄以个头大、清甜多汁、爽脆无渣为特点而闻名全国,畅销国内外.某农产品商以每斤5元的价格收购乐昌马蹄,若按每斤10元出售,平均每天可售出100斤.市场调查反映:如果每斤降价1元,每天销售量相应增加50斤.(1)若该农产品商想要日销售利润达到600元,测每斤马蹄应降低多少元?(2)日销售利润能否达到700元?如果能,请计算出每斤马蹄降价多少元;如果不能,请说明理由.21.(9分)为解方程,我们可以将视为一个整体,然后设,则原方程化为,解此方程得.当时,.当时,原方程的解为.以上方法叫做换元法解方程,达到了降次的目的,体现了转化思想.根据以上阅读材料内容,解决下列问题,并写出解答过程.(1)请用上述方法解方程:.x 20ax bx c ++>ABCD 3,4AB BC ==AC A 90︒AF FE AD ⊥AD E ABC AEF △≌△DF DF ()()22237360x x ---+=23x -23x t -=2760t t -+=121,6t t ==1t =231,2x x -=∴=±6t =236, 3.x x -=∴=±∴12342,2,3,3x x x x ==-==-42540x x -+=(2)已知实数满足,求的值.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22.(13分)如图,直线与抛物线相交于和.(1)求抛物线的解析式;(2)点是线段上的动点,过点作轴,交抛物线于点.是否存在这样的点,使线段的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)轴上是否存在点,使得为等腰三角形?若存在,求出点的坐标;若不存在,请说明理由.23.(14分)【阅读理解】半角模型是指有公共顶点,锐角等于较大角的一半,且组成这个较大角的两边相等.通过旋转或截长补短,将角的倍分关系转化为角的相等关系,并进一步构成全等三角形,用以解决线段关系、角度、面积等问题,【初步探究】如图1,在正方形中,点分别在边上,连接.若,将绕点顺时针旋转,点与点重合,得到.易证:.(1)根据以上信息,填空:(1)_______°;(2)线段之间满足的数量关系为_______;【迁移探究】(2)如图2,在正方形中,若点在射线上,点在射线上,,猜想线段之间的数量关系,请证明你的结论;【拓展探索】(3)如图3,已知正方形的边长为,连接分别交于点,若点恰好为线段的三等分点,且,求线段的长.,x y ()()2222222222150x y x y +-+-=22x y +2y x =-()220y ax bx a =++≠()1,1A -(),2B m C AB C CD x ⊥D C CD x M ABM △M ABCD ,E F ,BC CD ,,AE AF EF 45EAF ∠=︒ADF △A 90︒D B ABG △AEF AEG △≌△EAG ∠=BE EF DF 、、ABCD E CB F DC 45EAF ∠=︒BE EF DF 、、ABCD 45EAF ∠=︒BD AE AF 、M N 、M BD BM DM <MN2024-2025学年度第一学期期中考试九年级数学参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.1-5CBADD 6-10CABDB二、填空题:本大题共5小题,每小题3分,共15分.11. 12.1 13. 14. 15三、解答题(一):本大题共3小题,每小题7分,共21分.解答要求写出文字说明、证明过程或演算步骤.16.解:.解得:.(方法不唯一,酌情给分)17.解:(1)如图所示:即为所求.(2)如图所示:即为所求.18.解:(1)设二次函数解析式为:2a ≠35︒1-()()330x x x -+-=()()130x x +-=121,3x x =-=111A B C △111A B C △()()()240y a x x a =+-≠把点代入得:解得:(2).四、解答题(二):本大题共3小题,每小题9分,共27分.解答要求写出文字说明、证明过程或演算步骤.19.(1)证明:四边形为矩形绕点逆时针旋转得,,,在和中.(2)解:四边形为矩形,,,在中,根据勾股定理得:20.解:(1)设每斤马蹄降价元根据题意得解得答:若该农商想要日销售利润达到600元,则每斤马蹄应降低1元或2元.(2)日销售利润不能达到700元.理由如下:设每斤马蹄降价元则化简得方程无实数根日销售利润不能达到700元.()0,484a -=12a =-24x -<< ABCD 90B BAD ∴∠=∠=︒90BAD CAD ∴∠+∠=︒AC A 90︒AF,90BC EF CAF ∴=∠=︒90EAF CAD ∴∠+∠=︒BAD EAF∴∠=∠FE AD ⊥ 90AEF ∴∠=︒B AEF∴∠=∠ABC △AEF △BAD EAF B AEFAC AF ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABC AEF ∴△≌△ ABCD 4AD BC ∴==ABC AEF △≌△3,4AB AE BC EF ∴====431DE AD AE ∴=-=-=FE AD ⊥ 90DEF ∴∠=︒Rt DEF △DF ===x ()()10510050600x x --+=111,2x x ==a ()()10510050700a a --+=2340a a -+=2(3)4470=--⨯=-<△∴∴21.解:(1)设则原方程化为:解得:当时当时原方程的解为:(2)设则原方程化为:解得:,,.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.解答要求写出文字说明、证明过程或演算步骤.22.解:(1)把代入直线得,,在抛物线上,,解得,抛物线的解析式为.(2)存在.理由如下:设动点的坐标为,则点的坐标为,点是线段上的动点,当时,线段有最大值且为.(3)存在.设点①当时,2y x=2540y y -+=121,4y y ==1y =2,1,1x x =∴=±4y =2,4,2x x =∴=±∴12341,1,2,2x x x x ==-==-2222w x y=+22150w w --=125,3w w ==-22220x y +≥ 22225x y ∴+=2252x y ∴+= (),2B m 2y x =-4m =()4,2B ∴()()1,14,6A B - 、22y ax bx =++2116422a b a b ++=-⎧∴⎨++=⎩14a b =⎧⎨=-⎩∴242y x x =-+C (),2n n -D ()2,42n n n -+()()2242PC n n n ∴=---+254n n =-+-25924n ⎛⎫=--+ ⎪⎝⎭ C AB 14n ∴≤≤∴52n =PC 94(),0M c AB AM =解得:或.②当时,解得:或.③当时,解得:,综上所述,为等腰三角形时,点的坐标为或或或或23.(1)①45 ②.(2)解:.证明如下:如图在上截取,连接,和中,,,,即,,,在和中,,2222(14)(12)(1)(10)c -+--=-+--121,1c c =+=+)1,0M ∴+()1,0M +AB BM =2222(14)(12)(4)(20)c -+--=-+-124,4c c =+=)4,0 M ∴+()4,0M +AM BM =2222(1)(10)(4)(20)c c -+--=-+-3c =()3,0M ∴∴ABM △M )1,0+()1,0+)4,0+()4,0+()3,0BE DF EF +=BE EF DF +=DC DH BE =AH ABE △ADH △,AB AD ABE D BE DH =⎧⎪∠=∠⎨⎪=⎩()SAS ABE ADH ∴△≌△,AE AH BAE DAH ∴=∠=∠90BAE BAH BAH DAH ∴∠+∠=∠+∠=︒90EAH BAD ∠=∠=︒45EAF ∠=︒ 45EAF FAH ∴∠=∠=︒EAF △HAF △AE AH EAF HAF AF AF =⎧⎪∠=∠⎨⎪=⎩,,,,(3)将绕点顺时针旋转得到,连接,由旋转可得,,又,,,设,则,在中,,,解得,;()SAS EAF HAF ∴△≌△EF HF ∴=DF DH HF =+ DF BE EF ∴=+ADN △A 90︒ABK △KM 90AB AD ADC ==∠=︒6BD ∴==12,43BM BD DM BD BM ∴===-=,90ADN ABK KAN ∠=︒△≌△,,45AK AN BK DN ABK ADB ∴==∠=∠=︒90KBM ABK ABD ∴∠=∠+∠=︒90,45KAN MAN ∠=︒∠=︒45KAM MAN ∴∠=∠=︒AM AM = AMK AMN ∴△≌△KM MN ∴=∴MK MN x ==4BK DN x ==-Rt BMK △222BK BM MK +=222(4)2x x ∴-+=2.5x = 2.5MN ∴=。
江西省九江市修水县2024届九年级上学期期中考试数学试卷(含答案)
2023—2024学年度上学期其中考试试题卷九年级数学说明:1.全卷满分120分,考试时间120分钟.2.请将答案写在答题卡上,否则不给分.一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列关于x的方程中,一定是一元二次方程的为()A.B.C.D.2.下列说法中错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.对角线互相垂直的四边形是菱形D.有一组邻边相等的矩形是正方形3.如图,在中,点在边上,过点作,交于点.若,,则的值是()A.B.C.D.第3题图4.某校举办文艺会演,在主持人选拔环节中,有一名男同学和三名女同学表现优异.若从以上四名同学中随机抽取两名同学担任主持人,则刚好抽中一名男同学和一名女同学的概率是()A.B.C.D.5.如图,四边形是正方形,延长到点,使,则的度数是()A.B.C.D.第5题图6.两千多年前,我国学者墨子和他的学生做了小孔成像的实验.他们的做法是:在一间黑暗屋子里的一面墙上开一个小孔,小孔对面的墙上就会出现外面景物的倒像.小宇在学习了小孔成像的原理后,利用如图所示装置来观察小孔成像的现象.已知一根点燃的蜡烛距小孔(P)20cm,光屏在距小孔30cm处,小宇测得蜡烛的火焰高度为4cm,则光屏上火焰所成像的高度为()A.8cm B.6cm C.5cm D.4cm第6题图二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程配方后得,则的值是______.8.已知,若,则______.9.一个不透明的布袋中装有红色、蓝色、白色球共60个,这些球除颜色外其他完全相同.小明通过多次摸球试验后发现,摸到红色球的频率稳定在,则布袋中红色球可能有______个.10.如图,和是以点为位似中心的位似图形,相似比为,则和的面积比是______.11.已知关于x的一元二次方程的两个实数根分别为,则的值为______.12.在菱形中,,点在上,.若点是菱形四条边上异于点的一点,,则的长为______.三、(本大题共5小题,每小题6分,共30分)13.解方程:(1);(2).14.已知关于x的方程,当该方程的一个根为时,求m的值及方程的另一个根.15.为了落实“双减”政策,弘扬非遗(非物质文化遗产)传统文化,某校拟组织课外兴趣班的同学参观以下项目:A(修水陶艺),B(修水采茶戏),C(九江山歌),D(德安潘公戏).小明和小涵随机报名参观其中一项.(1)“小明参观九江山歌”这一事件是______;(请将正确答案的序号填写在横线上)①必然事件;②不可能事件;③随机事件.(2)请用列表或画树状图的方法,求小明和小涵参观的项目都是修水的非物质文化遗产的概率.16.如图,在矩形中,分别是的中点,请仅用无刻度的直尺按下列要求作图.(1)在图1中,作出的边上的中线;(2)在图2中,以为边作一个菱形.图1图217.台风“杜苏芮”牵动着全国人民的心.某单位开展了“一方有难,八方支援”赈灾捐款活动,第一天收到捐款3000元,第三天收到捐款4320元.(1)如果第二天、第三天收到的捐款的增长率相同,求捐款的增长率.(2)按照(1)中收到的捐款的增长速度,第四天该单位能收到多少捐款?四、(本大题共3小题,每小题8分,共24分)18.如图,,交于点,且.(1)求的长.(2)求证:.19.如图,在中,,为的中线,,,连接.(1)求证:四边形为菱形.(2)连接,若,,求的长.20.如图,在中,,为的中点,四边形是平行四边形,相交于点.(1)求证:四边形是矩形.(2)若,,求的长.五、(本大题共2小题,每小题9分,共18分)21.已知关于x的方程.(1)求证:无论取何实数值,方程总有实数根.(2)若等腰三角形的一边长,另两边长恰好是这个方程的两个根,求的周长.22.如图,,,是边上一点,且.(1)求证:.(2)若,求的长.(3)当时,请写出线段之间的数量关系,并说明理由.六、(本大题共12分)23.将正方形与正方形按图1所示方式放置,点在同一条直线上,点在边上,,连接.(1)线段的关系为______.(2)将正方形绕点顺时针旋转一个锐角后,如图2,(1)中的结论是否仍然成立?请说明理由.(3)在正方形绕点顺时针旋转一周的过程中,是否存在的时刻?若存在,请直接写出此时AE 的长;若不存在,请说明理由.图1图22023—2024学年度上学期期中考试九年级数学参考答案1.C2.C3.A4.A5.D6.B7.18.209.910.11.212.13.解:(1),配方得.∴或.∴.(2),.因式分解得.∴.14.解:将代入原方程,得,∴.∴方程为.由根与系数的关系可知,∴方程的另一个根为1.∴的值为,方程的另一个根为1.15.解:(1)③(2)根据题意,列表如下:A B C DABCD由表可知,共有16种等可能的结果,其中小明和小涵参观的项目都是修水的非物质文化遗产的结果有4种.∴(小明和小涵参观的项目都是修水的非物质文化遗产).16.解:(1)如图1,即为所求.(2)如图2,四边形即为所求.图1图217.解:(1)设捐款的增长率为,根据题意可列方程.解得(不合题意,舍去).因此,捐款的增长率为20%.(2).因此,第四天该单位能收到5184元捐款.18.(1)解:∵,∴.∵,∴易得.∴.∴.(2)证明:∵,,∴.∵,∴.19.(1)证明:∵,,∴四边形为平行四边形.∵,为的中线,∴.∴四边形为菱形.(2)解:连接,交于点,如图.∵四边形为菱形,,∴,,.∵,∴.∴.∴.∴.20.(1)证明:∵四边形是平行四边形,∴.∵为的中点,∴.∴四边形是平行四边形.∵,为的中点,∴.∴平行四边形是矩形.(2)解:∵四边形是矩形,∴.∵,,∴是等边三角形.∴.∵,∴.21.(1)证明:∵,∴无论取何值,方程总有实数根.(2)解:①若为底边长,则为腰长,则.∴,解得.此时原方程化为,∴,即.此时的三边长为6,2,2,不能构成三角形,故舍去.②若为腰长,则中一个为腰长,不妨设,代入方程得,∴.则原方程化为,,∴,即.此时的三边长为6,6,2,能构成三角形.综上所述,的三边长为6,6,2.∴周长为.22.(1)证明:∵,∴.∵,∴.∴.∴.∴.(2)解:在中,∵,∴.∵,∴.由(1)得,∴.∴.∴.(3)解:线段之间的数量关系是.理由:过点作于点.∵,∴.∵,,∴∴.同理可得,∴.∴.23.解:(1)(2)结论仍然成立.理由如下:如图,设交于点.∵四边形和四边形是正方形,∴.∴,即.∴.∴,.∵,∴.∴,即.∴.∴(1)中的结论仍然成立.(3)存在的时刻,此时或.提示:①如图,当点旋转到线段上时,过点作于点.∵,,.∴是等腰直角三角形.∴.在中,,∴.∴.②如图,当点旋转到线段的延长线上时,过点作于点,则.∵,∴.∴是等腰直角三角形.∴.在中,,∴.∴.∵,∴.综上所述,的长为或.。
湖北省荆州市2024-2025学年九年级上学期11月期中考试数学试题(含答案)
2024~2025学年度上学期学情监测九年级数学试题(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔。
一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1.中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标,其文字上方的图案是中心对称图形的是( )A.B. C. D.2.一元二次方程根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.两根互为相反数3.如图,紫荆花绕它的旋转中心,按下列角度旋转,能与其自身重合的是( )A. 60°B. 120°C. 144°D. 180°4.如图,是的直径,,则的度数是( )A. 30°B. 40°C. 50°D. 60°5.若是方程的一个根,则的值为( )A. 2024B. C. D. 10156.用配方法解方程时,配方正确的是()2210x x --=AB O e 30CDB ∠=︒ABC ∠x m =2210090x x --=2246m m -+2012-1003-2840x x --=A. B. C. D.7.函数和函数(a 是常数,且)在同一平面直角坐标系中的图象可能是( )A.B. C. D.8.小聪以二次函数的图象为模型设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )A. B. C. D.9.如图,小程爸爸用一段长的铁丝网围成一个一边靠墙(墙长)的矩形鸭舍,其面积为,在鸭舍侧面中间位置留一个宽的门(由其它材料制成),则的长为( )A. 8m 或5mB. 4m 或2.5mC. 8mD. 5m 10.如图,开口向上的抛物线()与x 轴交于点,其对称轴为直线,结合图象给出下列结论:①;②;③当时,y 随x 的增大而减小;④当时,关于x 的一元二次方程有两个不相等的实数根.其中正确的结论是( )A.①③④ B.②③④ C.②③ D.①②④二、填空题(共5题,每题3分,共15分)11.在平面直角坐标系中,点关于原点对称的点的坐标是______.12.抛物线向左平移2个单位长度,向下平移1个单位长度后的图象解析式为______.13.如图,是的直径,弦于点E ,,,则的长为______cm.()2412x -=()2420x -=()2868x -=()2860x -=y ax a =+221y ax x =--+0a ≠()292616y x =-+8cm AB =4cm DE =CE 13cm 12cm 15cm 9cm12m 6m 220m 1m BC 2y ax bx c =++0a ≠()4,01x =a c b +>20a b +=0x <m a b c >++2ax bx c m ++=()2,3-()2234y x =-+AB O e CD AB ⊥16cm CD =4cm BE =OC14.已知关于x 的方程,若等腰三角形的一边长,另外两边长b ,c 恰好是这个方程的两个根,则这个三角形的周长为______.15.如图,的半径为2,圆心M 的坐标为,点P 是上的任意一点,,且,与x 轴分别交于A ,B 两点,若点A ,点B 关于原点O 对称,则的最小值为______.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(6分)解方程:(1),(2).17.(6分)已知二次函数.(1)写出该函数图象的开口方向;(2)求出该函数图象的对称轴和顶点坐标;(3)当x 满足什么条件时,y 随x 增大而减小?18.(6分)如图,在平面直角坐标系中,已知点,,.(1)画出关于原点O 成中心对称的;(2)画出绕点逆时针旋转90°后得到的.19.(8分)已知关于x 的一元二次方程有两个不相等的实数根.(1)求m 的取值范围;(2)若该方程的两个实数根分别为,,且,求m 的值.20.(8分)如图,已知抛物线和直线相交于点和.()23230x k x k -+++=4a =M e ()3,4M e PA PB ⊥PA PB AB 2240x x --=23100x x --=247y x x =-+-()2,0A ()1,1B ()4,2C ABC △111A B C △ABC △()0,1Q -222A B C △()222110x m x m -++-=1x 2x 22124x x +=21y x bx c =-++21522y x =+()1,A m -(),4B n(1)求m 和n 的值;(2)求抛物线的解析式;(3)结合图象直接写出满足的x 的取值范围.21.(8分)如图,为的直径,点C ,D 为直径同侧圆上的点,且点D 为的中点,过点D 作于点E ,交于点G ,延长,交于点F .图① 图②(1)如图①,若,求证:;(2)如图②,若,,求的半径.22.(10分)我市某镇是全国著名的蓝莓产地,某蓝莓基地近几年不断改良种植技术,产量明显增加,2022年的产量是5000千克,2024年的产量达到7200千克。
辽宁省鞍山市铁西区2024-2025学年九年级上学期期中测试数学试题(含答案)
九年级数学学情调查(十一月)2024(本试卷共23道题 满分120分 考试时间120分钟)考生注意:所有试题必须在答题卡指定区域内作答,在本试卷上作答无效第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知关于x 的一元二次方程的一个根是,则m 的值为( )A .1B .-2C .-1D .32.在平行四边形ABCD 中,AB ,BC 的长分别等于一元二次方程两根之和与两根之积,则对角线AC 长的取值范图是( )A .AC >1B .1<AC <5C .5<AC <19D .AC >5或<93.二次函数的图象如图所示,对称轴是直线,则过点和点的直线一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.将抛物线平移得到抛物线,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向下平移2个单位D .先向右平移1个单位,再向上平移2个单位5.观察表格,估算一元二次方程的近似解:1.4 1.5 1.6 1.7 1.8-0.44-0.25-0.040.190.44由此可确定一元二次方程的一个近似解x 的范围是( )A .B .C .D .6.随着我国航天领域的快速发展,从“天宫一号”发射升空,到天和核心舱归位,我国正式迈入了“空间站时代”.下面是有关我国航天领域的图标,其图标既是轴对称图形又是中心对称图形的是( )2520x x m +-=1x =27120x x -+=2y ax bx c =++1x =-(,2)M c a b -()24,N b ac a b c --+23y x =-23(1)2y x =---210x x --=x21x x --210x x --=1.4 1.5x << 1.5 1.6x << 1.6 1.7x << 1.7 1.8x <<A .B .C .D .7.如图,在△ABC 中,∠B =40°,将△ABC 绕点A 逆时针旋转得到△ADE ,点D 恰好落在BC 的延长线上,则旋转角的度数为( )A .100°B .90°C .80°D .70°8.如图,正方形ABCD 中,E 为AD 边上一点,连接BE ,将BE 绕点E 逆时针旋转90°得到EF .连接DF 、BF ,若∠DFE =,则∠CBF 一定等于( )A .B .C .D.9.如图,△ABC 和△CDE 两个全等的直角三角形,∠B =∠CDE =90°,连结AD 交CE 于点F .若,则的值为( )A .B .C .D .10.如图,在矩形ABCD 中,AB =4,延长CD 到点E ,连接BE 交AD 于点G ,点F 为BE 的中点,连接CE ,以点C 为圆心,CF 长为半径的圆弧经过点G ,连接CG ,若BE =10,则DG 的长为( )α45α- α903a - 12α12AB BC =DF AF13122523A .4B .5C .6D .3第二部分 非选择题二、填空题(本题共6小题,每小题3分,共15分)11.若a 是一元二次方程的一个根,则的值是 .12.2023年德尔塔(Delta )是一种全球流行的新冠病毒变异毒株,其传染性极强.某地有1人感染了德尔塔,因为没有及时隔离治疗,经过两轮传染后,一共有169人感染了德尔塔病毒,那每轮传染中平均一个人传染了 个人;如果不及时控制,照这样的传染速度,经过三轮传染后,一共有 人感染德尔塔病毒.13.下列命题:①若时,一元二次方程一定有实数根;②若方程有两个不相等的实数根,则方程也一定有两个不相等实数根;③若二次函数,当取时,函数值相等,则当x 取时函数值为0;④若,则二次函数图象与坐标轴的公共点的个数是2或3,其中正确结论的个数是 (填序号)14.如图所示,△ABC 中,∠C =90°,AC =8cm ,BC =6cm ,点D 从B 点开始沿BC 向B 点以1cm /s 的速度移动,点E 从C 点开始沿 CA 边向A 点以2cm /s 速度移动,如果D 、E 分别从B 、A 同时出发,那么 秒后,线段DE 将△ABC 分成面积1:2的两部分.15.如图,在△ABC 中,∠BAC =120°,AB =2,AC =4,将BC 绕点C 顺时针旋转120°得到CD ,则线段AD 的长度是.250x x +-=23310a a +-b a c =+20ax bx c ++=20ax bx c ++=20cx bx a ++=2y ax c =+()1212,x x x x ≠12x x +240b ac ->2y ax bx c =++三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分)解下列方程:(1);(2).17.(8分)如图所示,某市公园有一块长方形绿地长20,宽16,在绿地中开辟三条等宽的道路后,剩余绿地的面积为224,求道路的宽x 是多少米?18.(8分)如图,在矩形ABCD 中,AB =2AD ,∠DAB 的平分线交CD 于E .F 为BC 的中点,连结AE ,AF ,分别交BD 于点G , H .连结EF .(1)求证:BD =2EF ;(2)当EF =6时,求GH 的长.19.(8分)“弗里热”(Phryge )是2024年巴黎奥运会和残奥会吉祥物,是法国传统的弗里古亚帽的拟人化形象,在《蓝精灵》动画片中,蓝精灵戴的便是弗里吉亚帽.吉祥物“弗里热”小钥匙扣广受欢迎,成为热销商品,某商家以每套40元的价格购进一批“弗里热”小钥匙扣.当该商品每套的售价是50元时,每天可售出200套,若每套的售价每提高2元,则每天少卖4套.(1)设“弗里热”小钥匙扣每套的售价定为x 元,求该商品销售量y 与x之间的函数关系式.22125x x -+=257311x x x ++=+m m 2m(2)每天销售所获的利润W 能否恰好达到3000元?请说明理由.20.(8分)如图,鞍钢博物馆广场边,有两个高炉模型,小明同学用自制的直角三角形纸板ADE 量高炉的高度BF .他调整自己的位置,设法使斜边AE 持水平,AE 的延长线交BF 于C ,并且边AD 与点B 在同一直线上,已知纸板的两条直角边AD =40cm .DE =20cm .测得边AE 离地面的高度AG =1.5,CD =20.求高炉的高BF .21.(8分)如图,钢球从斜面顶端由静止开始沿斜面滚下,速度每秒增加1.5.(1)写出滚动的距离s (单位:)关于滚动的时间t (单位:)的函数解析式.(提示:本题中,距离=平均速度×时间t ,,其中,是开始时的速度,是t 秒时的速度.)(2)如果斜面的长是3,钢球从斜面顶端滚到底端用多长时间?22.(12分)如图,在Rt△ABC 中,∠ABC =90°,把边CB绕点C 旋转到CF .(1)若AB =.BC .当点F 落在BC 的垂直平分线上时,请直接写出以A 、B 、C 、F 为顶点的四边形的面积 .(2)如图1,连接AF ,当点F 在AC 的垂直平分线上时,若BC =2AB =4,求F 到AC 的距离;(3)如图2,连接FB 交AC 于点D ,当AC ⊥BF 时,BC 的垂直平分线分别交BC 、AC 、CF 于E 、H 、M ,交BF 的延长线于G .判断:BE 、GM 、MC 三条线段的关系,并给予证明.m m m m s v 02t v v v +=0v t v m图1 图223.(13分)已知y 关于x 的一次函数.当时,我们称一次函数为“原函数”,一次函数“原函数”的“相关函数”,“原函数”的图象记为直线,它的“相关函数”的图象记为直线.例如:“原函数”的“相关函数”为.(1)直接写出“相关函数”的“原函数”表达式;(2)请说明:直线,直线与x 轴的交点是同一个点;(3)若“原函数”的表达式为,点A 在直线上,点B 在直线上,轴,AB =2,求点A 的坐标;(4)“原函数”的表达式为.①点在直线上,点在直线上,若,求t 的取值范围;②若直线,直线与y 轴围成的图形面积为12,点E 在直线上,过E 作轴交直线于点F ,过E 作轴交直线于点H ,过F 作轴交直线于点G ,连接GH .设点E 的横坐标为,四边形 EFGH 的周长为C .直接写出C 关于a的函数表达式.y kx b =+0,0k b >>y kx b =+y kx b =--1l 2l 2y x =+2y x =--213y x =--1l 2l 112y x =+1l 2l AB y ∥2y mx m =+(),C C t y 1l ()2,D D t y -2l 0D C y y <<1l 2l 1l EF y ∥2l EH x ∥2l FG x ∥1l (0)a a >九年级数学质量测试(十一月)2024答案及评分标准说明:1.此答案仅供参考,阅卷之前请做答案.2.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、单项选择题(每题只有一个选项正确.每小题3分,共30分)1.D2.C3.C4.C5.C6.B7.A8.B9.C 10.D二、填空题(每小题3分,共15分)11.512.12 2197 13.①③ 14.2或4 15.三、解答题(8道题共75分)16.(10分)解:(1)..…………………………5分(2).整理,得...…………………………5分17.(8分)解:依题意可列…………………………3分……………………………………5分(含)………………………………7分答:道路的宽是2米.…………………………8分18.(8分)(1)证明:∵四边形ABCD 是矩形,AB =2AD,22125x x -+=2(1)25x -=15x -=±126,4x x ==-257311x x x ++=+224x x +=2215x x ++=2(1)5x +=1x +=121,1x x =-=-(202)(16)224x x --=226480x x -+=12224,x x ==∴CD //AB ,AB =CD =2AD ,AD =BC ,∴∠DEA =∠BAE∵AE 平分∠DAB∴∠DAE =∠BAE ,∴∠DEA =∠DAE ,∴DE =AD∵CD =2AD∴CD =2DE .∴DE =CE∵F 为BC 的中点,∴EF 是△BCD 的中位线,∴BD =2EF ;…………………………………4分(2)解:由(1)知,BD =2EF ,∵EF =6∴BD =12∵AB =CD =2AD =2DE ,AD =BC ,F 为BC 的中点,∴.在矩形ABCD 中,CD //AB ,AD //BC ,∴△DEG ∽△BAG ,△FBH ∽△ADH ,,.∴DG =4,BH =4∴GH =BD -DG -BH =4……………………………………………………8分19.(8分)解:(1)根据题意:.∴y 与x 之间的函数关系式:;…………………………4分(2)根据题意得:.整理得:.∵.∴方程有两个不相等的实数根,∴每天销售所获的利润W 能达到3000元.………………………………8元20.(8分)…………………………………………8分21.(8分)解:(1)由已知得11,22DE BP AB AD ==11,22DE DG BH BF AB BG DH AD ∴====11,122122DG BH DG BH ∴==--50200423002x y x -=-⨯=-+2300y x =-+(40)(2300)3000x x --+=219075000x x -+=2Δ(190)41750061000=--⨯⨯=>11.5m 00 1.5 1.5t v v at t t=+=+=,即………………………………4分(2)把代入中,得(舍去)即钢球从斜面顶端滚到底端用.答:钢球从斜面顶端滚到底端用.……………………………………8分22.(12分)解:(12分解:(2)如图1,过点F作FG⊥AC于G,∵FA=FC,∴CG=AG=AC∵∠ABC=90°,∴∴.∵CF=BC=4..∴点F到AC;……………………6分(2)BE+GM=MC…………………………7分证明:如图2,延长EG至K.使KG=AB.连接AK.∵AB⊥BC,EG⊥CB.∴EG∥AB,∴四边形ABKG是平行四边形,∴AK=BC,∠AKG=∠ABD.∵FC=CB∴∠FCD=∠ACB∵∠ABC=∠BGE=90°.∴∠BAC+∠ACB=90°.∵∠BDC=90°,∴∠ACB+∠EBG=90°,∴∠BAC=∠EBG.∵AB=BE∴△ABC≌△BEG(ASA)∴AC=BG.1.5t3t224tv vv+∴===233244tv v ts vt t t t+∴==⋅=⋅=234s t=3s=234s t=2t=2t=-2s2s12AC===CG=FG∴===∴AK =AC .∴∠AKC =∠ACK同理可得,∠ABD =∠ACB∴∠ABD =∠FCD∴∠AKG =∠FCD .∴∠AKC -∠AKG =∠ACK -∠FCD .∴∠MKC =∠MCK .∴CM =KM =CK +GM =BE +GM …………………………………12分图1 图223.解:(1);……………………………………1分(2)在“原函数”中,令.则.∴直线与x 轴交点为在它的“相关函数”,令,则∴直线与x 轴交点为∴直线,直线与x 轴的交点为同一个点;…………………………4分(3)∵“原函数”的表达式为∴它的“相关函数”表达式为.令∴.∴直线与直线的交点为∵点A 在直线上.213y x =+y kx b =+0kx b +=b x k =-1l ,0b k ⎛⎫- ⎪⎝⎭y kx b =--0kx b --=bx k =-2l ,0b k ⎛⎫- ⎪⎝⎭1l 2l 112y x =+112y x =--111122x x +=--2x =-1l 2l (2,0)-1l∴设,如图1,当时,点A 在点B 上方∵AB ∥y 轴.∴∴点,,当时,点A 在点B 的下方,A (-4,-1)综上所述,点A 的坐标为A (0,1)或A (-4,-1);………………………………8分(4)①∵“原函数”为.∴它的“相关函数“为.令..∴直线与直线交点为(-2,0);如图2,∵点C 在直线上,点D 在直线,且.,且,,.,∴t 的取值范围为.……………………11分1,12A a a ⎛⎫+ ⎪⎝⎭2a >-A B x x a==1,12B a a ⎛⎫-- ⎪⎝⎭1111222a a ∴+++=0a ∴=(0,1),A ∴2a <-2y mx m =+2y mx m =--20mx m +=2x ∴=-1l 2l 1l 2l 0D C y y <<222t t -<-⎧∴⎨>-⎩20t ∴-<<2,(2)2c D y mt m y m t m =+=--- D Cy y <(2)22m t m mt m ∴---<+22mt m ∴>-20m > 1t ∴>-10t -<<②如图3,直线与直线交点为Q (-2,0),∴OQ =2,OM =ON =2m ,∴MN =4m ,,∴m =3,∴“原函数“表达式为.它的“相关函数”表达式为,轴交于点F ,,∵EH ∥x 轴,,,,..∵FG ∥x 轴,,.1l 2l 1122MN OQ ∴⋅=142122m ∴⨯⨯=36y x =+36y x =--(,36)E a a ∴+EF y ∥2l (,36),F a a ∴--36(36)612EF a a a ∴=+---=+36E H y y a ∴==+3636a x ∴+=--4x a ∴=--(4,36)H a a ∴--+(4)24EH a a a ∴=---=+36G F y y a ∴==--3636a x ∴--=+4x a ∴=--(4,36)G a a ∴----.又∵轴,轴,∴FG∥EH,∴四边形EFGH为平行四边形,. (13)分(4)2 4.FG a a a∴=---=+2 4.FG EH a∴==+//FG x//EH x2()2(61224)1632 C EF FG a a a∴=+=+++=+。
江苏省宿迁市沭阳县2023届九年级上学期期中考试数学试卷(含解析)
2022~2023学年度第一学期期中九年级数学(时间:120分钟总分:150分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题纸相应位置上)1. 下列方程中是一元二次方程的是()A. B. C. D.答案:C解析:解:A、该方程中未知数的最高次数是1,不是一元二次方程,故本选项不符合题意;B、该方程中含两个有未知数.不是一元二次方程,故本选项不符合题意;C、该方程符合一元二次方程的定义,故本选项符合题意;D、该方程中分母中含有未知数.不属于整式方程,故本选项不符合题意;故选:.2. 下列说法正确的是( )A. 相等的圆周角所对的弧相等B. 相等的弦所对的弧相等C. 平分弦的直径一定垂直于弦D. 任意三角形一定有一个外接圆答案:D解析:解:A、在等圆或同圆中,相等的圆周角所对的弧相等,故A不符合题意;B、在等圆或同圆中,相等的弦所对的圆周角相等或互补,故B不符合题意;C、根据垂径定理知,平分弦(不是直径)的直径一定垂直于弦,故C不符合题意;D、任意三角形一定有一个外接圆,故D符合题意;故选D.3. 已知一组数据:4,3,4,5,6,则这组数据的极差是( )A. 1B. 2C. 3D. 4答案:C解析:这组数据的极差是,故选:C.4. 如图,点,,在⊙O上,,则的度数为()A. B. C. D.答案:B解析:解:,由圆周角定理得:,故选:B.5. 一元二次方程配方后可变形为( )A. B. C. D.答案:C解析:解:变形为:,配方得:,即;故选:C.6. 新能汽车节能、环保,越来越受消费者喜爱,各种品牌相继投放市场,我国新能汽车近几年销量全球第一,2020年销量为50.7万辆,销量逐年增加,到2022年销量为125.6万辆.设年平均增长率为,可列方程为( )A. B.C. D.答案:A解析:解:设年平均增长率为,可列方程为:故选:A7. 如图,P是⊙O外任意一点,PA、PB分别与⊙O相切与点A、B,OP与⊙O相交于点M.则点M是△PAB的( )A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点答案:C解析:解:∵PA、PB分别与⊙O相切与点A、B,∴∠APO=∠BPO,PA=PB,∴AB⊥OP,连接OA,AM,则∠OAP=90°,∴∠PAM+∠OAM=∠BAM+∠AMO=90°,∵OA=OM,∴∠OAM=∠AMO,∴∠PAM=∠BAM,则点M是△PAB的三个角的角平分线的交点,故选C.8. 如图,中,,,,点从点出发,沿运动到点停止,过点作射线的垂线,垂足为Q,点Q运动的路径长为( )A. B. C. D.答案:B解析:解:∵,∴点Q在以为直径的上运动,运动路径为,连接,∵,∴,∴,∴的长为,故选B.二、填空题(本大题共10小题,每小题3分,本大题共30分.不需要写出解答过程,只需把答案直接填写在答题纸相应位置上)9. 一元二次方程x2=5x的解为______.答案:,解析:x2=5x移项,得分解因式,得:∴,故答案为:,.10. 甲、乙两名射击运动员在一次训练中,每人各打10发子弹,根据命中环数求得方差分别是,则_______运动员的成绩比较稳定.答案:甲解析:∵,∴.∴甲的成绩比较稳定11. 如图,AB是直径,弦CD交AB于点E,连接AC,AD.若,则______°答案:62解析:解:连接,∵AB是的直径,∴,,,故答案为:6212. 已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为,则它的母线长为___________.答案:12解析:解:∵圆锥的底面半径是4,∴圆锥的底面圆周长为,∴侧面展开后所得的扇形的弧长是,∵侧面展开后所得的扇形的圆心角为∴侧面展开后所得的扇形的半径为:∵圆锥的母线就是侧面展开后所得的扇形的半径,∴圆锥的母线长度为12,故答案为:12.13. 如图,与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角的大小为_____度.答案:144解析:解:五边形ABCDE是正五边形,.AB、DE与相切,,,故答案为144.14. 过内一点P的最长弦长为,最短弦长为,则的长为______.答案:解析:解:如图,直径经过点,过作交于、,连接,,,,,;故答案:.15. 小明在与同学的嬉闹中把校服划坏了,划坏的图形恰好是一个直角三角形,这个直角三角形的两条边长分别是5和12,妈妈打算用一个圆形图案把它盖住缝补好,则妈妈用的圆形图案所在圆的半径最小值为___________.答案:6或6.5解析:解:由勾股定理可知:①当直角三角形的斜边长为:12;因此这个直角三角形的外接圆半径为6,②当两条直角边长为5和12,则直角三角形的斜边长为:;因此这个直角三角形的外接圆半径为6.5综上所述:这个外接圆的半径为6或6.5故答案为:6或6.516. 已知,则的值为___________.答案:2解析:解:或或∵∴.故答案为2.17. 如图,△ABC中,∠C=90°,AC=6,AB=10,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为__.答案:解析:过点O作OE⊥AB于点E,OF⊥BC于点F.∵AB、BC是⊙O的切线,∴点E、F是切点,∴OE、OF是⊙O的半径;∴OE=OF;在△ABC中,∠C=90°,AC=6,AB=10,∴由勾股定理,得BC=8;又∵D是BC边的中点,∴S△ABD=S△ACD,又∵S△ABD=S△ABO+S△BOD,∴AB•OE+BD•OF=CD•AC,即10×OE+4×OE=4×6,解得OE=,∴⊙O的半径是.18. 如图,在矩形中,,,为矩形的对角线的交点,以为圆心,半径为1作,为上的一个动点,连接、,则面积的最大值为___________.答案:14.5解析:当P点移动到过点P的直线平行于且与相切时,面积的最大,如图,∵过点P的直线是的切线,∴垂直于切线,延长交于M,则,∵在矩形中,,,∴,∴,∵,,∴,∴,∵,,,∴,∴,∴的最大面积,故答案为:.三、解答题(本大题共10题,共96分.请在答题纸指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.画图痕迹用黑色签字笔加粗加黑)19. 解方程:(1);(2).答案:(1),(2),小问1解析:解:∴或解得:,小问2解析:解:∴,20. 已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.答案:(1)k≤;(2)k=﹣1.解析:(1)∵关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根,∴△≥0,即[﹣(2k﹣1)]2﹣4×1×(k2+k﹣1)=﹣8k+5≥0,解得k≤;(2)由根与系数的关系可得x1+x2=2k﹣1,x1x2=k2+k﹣1,∴x12+x22=(x1+x2)2﹣2x1x2=(2k﹣1)2﹣2(k2+k﹣1)=2k2﹣6k+3,∵x12+x22=11,∴2k2﹣6k+3=11,解得k=4,或k=﹣1,∵k≤,∴k=4(舍去),∴k=﹣1.21. 如图,在10×10的正方形网格中(每个小正方形的边长都为1个单位),的三个顶点都在格点上.(1)建立如图所示的直角坐标系,请在图中标出的外接圆的圆心的位置,并填写:①圆心的坐标:(_______,_______);②的半径为_______.(2)将绕点逆时针旋转得到,画出图形,并求线段扫过的图形的面积.答案:(1)图见解析;①,;②(2)图见解析;线段扫过的图形的面积为小问1解析:解:如图所示,点即为所求,①圆心的坐标:,②的半径为:;故答案为:①,;②小问2解析:解:如图即为所求图形,∵由勾股定理得:,,∵将绕点逆时针旋转得到,∴的面积等于的面积,∴线段扫过的图形的面积.22. 某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上学生人数.答案:(1)样本容量为50;(2)平均数为14(岁);中位数为14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为720人.解析:解:(1)样本容量为6÷12%=50;(2)14岁的人数为50×28%=14、16岁的人数为50﹣(6+10+14+18)=2,则这组数据的平均数为=14(岁),中位数为=14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为1800×=720人.23. 如图,内接于⊙O,交⊙O于点D,交于点E,交⊙O于点F,连接.(1)求证:;(2)若⊙O的半径为3,,求的长(结果保留π).答案:(1)证明见解析;(2)小问1解析:证明:∵,,∴四边形为平行四边形,∴,∵,∴,∴.小问2解析:解:连接,如图,由(1)得,∵,∴,∴的长.24. 如图,四边形中,,,,连接,以点B为圆心,长为半径作,交于点E.(1)试判断与的位置关系,并说明理由;(2)若,,求图中阴影部分的面积.答案:(1)相切,理由见解析;(2)解析:解:(1)过点B作BF⊥CD,∵AD∥BC,∴∠ADB=∠CBD,∵CB=CD,∴∠CBD=∠CDB,∴∠ADB=∠CDB,又BD=BD,∠BAD=∠BFD=90°,∴△ABD≌△FBD(AAS),∴BF=BA,则点F在圆B上,∴CD与圆B相切;(2)∵∠BCD=60°,CB=CD,∴△BCD是等边三角形,∴∠CBD=60°∵BF⊥CD,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=,∴AD=DF==2,∴阴影部分的面积=S△ABD-S扇形ABE==.25. 安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:(1)求与之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?答案:(1);(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.解析:解:(1)设一次函数解析式为:,根据图象可知:当,;当,;∴,解得:,∴与之间的函数关系式为;(2)由题意得:,整理得:,解得:.,∵让顾客得到更大的实惠,∴.答:商贸公司要想获利2090元,这种干果每千克应降价9元.26. 如图是某蔬菜基地搭建一座圆弧型蔬菜棚,跨度AB=3.2米,拱高CD=0.8米(C为AB的中点,D为弧AB的中点).(1)求该圆弧所在圆的半径;(2)在距蔬菜棚的一端0.4米处竖立支撑杆EF,求支撑杆EF的高度.答案:(1)2米;(2)0.4米解析:解:(1)设弧AB所在的圆心为O,D为弧AB的中点,CD⊥AB于C,延长DC经过O点,则BC=AB=1.6(米),设⊙O的半径为R,在Rt△OBC中,OB2=OC2+CB2,∴R2=(R﹣0.8)2+1.62,解得R=2,即该圆弧所在圆的半径为2米;(2)过O作OH⊥FE于H,则OH=CE=1.6﹣0.4=1.2=(米),OF=2米,在Rt△OHF中,HF=(米),∵HE=OC=OD﹣CD=2﹣0.8=1.2(米),∴EF=HF﹣HE=1.6﹣1.2=0.4(米),即支撑杆EF的高度为0.4米.27. 如图1,在矩形中,,,点以/的速度从点向点运动,点以/的速度从点向点运动.点、同时出发,运动时间为秒(),是的外接圆.(1)当时,的半径是___________,与直线的位置关系是___________;(2)在点从点向点运动过程中,①圆心的运动路径长是___________;②当与直线相切时,求的值.(3)连接,交于点,如图2,当时,求的值.答案:(1),相离(2)①,②(3)小问1解析:解:如图,过点作于,交于,∵四边形是矩形,∴,,∴的直径是,,当时,,,∵,,∴,,∴,∴的半径为,∵,是的中点,∴,∴是的中位线,∴,∴,∵,∴与直线的位置关系是相离;故答案为:;相离小问2解析:解:①如图,∵、运动的速度与、的比相等,∴圆心在对角线上,由图可知,和两点在时在点重合,当时,直径为对角线,是的中点,∴,由勾股定理,可得:,∴,∴圆心的运动路径长是;故答案为:②如图,当与相切时,设切点为,连接并延长交于,则,,则,,∴,∴,在中,,∵,∴,解得:,∴的值为;小问3解析:解:如图,过作,交的延长线于点,连接,∵,,∴,∵,,∴,∵,∴,∴,∵,∴,∵,∴,∴,即,解得:(舍去),,∴.28. 问题提出:(1)如图,是的弦,点C是上的一点,在直线上方找一点D,使得,画出,画图的依据是___________;问题探究(2)如图,是的弦,直线l与相切于点M,点是直线l上异于点M的任意一点,请在图中画出图形,试判断,的大小关系;并说明理由;问题解决:(3)沭阳某小区游乐园的平面图如图3所示,场所物业人员想在线段上的点N处安装监控装置,用来监控边上的段,为了让监控效果达到最佳,必须要求最大.已知,米,米,问在线段上是否存在一点N,使得最大,若存在,请求出此时的长,如果不存在,请说明理由.答案:(1)同弧所对的圆周角相等(2),见解析(3)小问1解析:如图1:依据:同弧所对的圆周角相等.故答案为:同弧所对的圆周角相等.小问2解析:.理由如下:如图2,设交于点,连接,∵是的外角,∴.∵,∴.小问3解析:如图3中,当经过A,B的与相切于时,的值最大作于,交于,连接,,.设,∵,,∴,∵,,,∴,,∴,∵,∴.解得:(不符合题意,舍去),,∴,∴.。
九年级上学期数学期中考试卷及答案精选全文
可编辑修改精选全文完整版第一学期期中考试九年级数学试题1. 计算()23-的结果是()A.3B.3- C.3±2. 若P(x;-3)与点Q(4;y)关于原点对称;则x+y=()A、7B、-7C、1D、-13. 下列二次根式是最简二次根式的是()4. 一元二次方程22350xx++=的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断5. 用配方法解方程0142=++xx;则配方正确的是()A、3)2(2=+x B、5)2(2-=+xC、3)2(2-=+x D、3)4(2=+x6. 如图;AB、AC都是圆O的弦;OM⊥AB;ON⊥AC;垂足分别为M、N;如果MN=3;那么BC=(). A. 4 B.5 C. 6 D.7二、填空题(共8小题;每小题3分;满分24分)7. 2-x在实数范围内有意义;则x的取值范围是.8. 221x-=的二次项系数是 ;一次项系数是 ;常数项是 .9. 一只蚂蚁沿图中所示的折线由A点爬到了C点;则蚂蚁一共爬行了______cm.(图中小方格边长代表1cm)NMOCBA10. 关于x 的一元二次方程04)2(22=-+-+m mx x m 有一根为0;则m= . 11. 对于任意不相等的两个数a;b;定义一种运算*如下:ba b a b a -+=*;如523232*3=-+=;那么)5(*3-= .12. 有4个命题:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弦是通过圆心的弦;④在同圆或等圆中;相等的两条弦所对的弧是等弧;其中真命题是_________。
13. 有两个完全重合的矩形;将其中一个始终保持不动;另一个矩形绕其对称中心O 按逆时针方向进行旋转;每次均旋转22.5︒;第.2.次.旋转后得到图①;第.4.次.旋转后得到图②…;则第20次旋转后得到的图形与图①~图④中相同的是____. (填写序号)14. 等腰三角形两边的长分别为方程02092=+-x x 的两根;则三角形的周长是 .三、解答题(共4小题;每小题6分;共24分) 15. 解方程:x(x-2)+x-2=016. 计算:0)15(282218-+--图① 图② 图③ 图④ OOOO17. 下面两个网格图均是4×4正方形网格;请分别在两个网格图中选取两个白色的单位正方形并涂黑;使整个网格图满足下列要求. 18. 如图;大正方形的边长515+;小正为方形的边长为515-;求图中的阴影部分的面积.四、(本大题共2小题;每小题8分;共16分)19. 数学课上;小军把一个菱形通过旋转且每次旋转120°后得到甲的图案。
湖北省武汉市汉阳区2024届九年级上学期期中考试数学试卷(含答案)
2023-2024学年度第一学期期中考试九年级数学试卷一、选择题(每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑。
1.一元二次方程的二次项系数、一次项系数和常数项表述正确的是()A.3,6,1 B.3,1,6 C.,6,D.3,0,12.抛物线的顶点坐标为()A.B.C.D.3.不解方程,判别一元二次方程的根的情况正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定.4.一元二次方程用配方法解,配方结果正确的是()A.B.C.D.5.抛物线可以由抛物线平移得到,则下列平移过程正确的是()A.先向左平移1个单位,再向上平移1个单位B.先向左平移1个单位,再向下平移1个单位C.先向右平移1个单位,再向上平移1个单位D.先向右平移1个单位,再向下平移1个单位6.如图,点A的坐标为,点B的坐标为,菱形ABCD的对角线交于坐标原点O,则C、D两点的坐标分别为()A.B.C.D.7.二次函数的象所示,则一次函数的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在中.直径AB与弦CD相交丁点P.连接AC、AD、BD,若.则的度数为()A.B.C.D.9.如图,西数和(a是常量,且)在同一平面直角坐标系中的图象可能是()A.B.C.D.10.我们定义:若点A在某一个函数的图象上,且,点A的横纵坐标相等,我们称点A为这个函数的“好点”.若关于x的二次函数对于任意的常数t恒有两个“好点”、则a的取值范围为()A.B.C.D.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请直接填写在答题卡指定的位置。
11.钟表的指针在不停地转动,从3时到5时,时针转动了_________度.12.如果2是关于x的方程的一个根,这个方程的另一实数根为_________.13.小明设计了一个魔术盒,当任意实数对进入其中时,会得个新的实数,如把放入其中,就会得到.现将放入其中,得到实数4,则m为_________.14.如图,OA是的半径,BC是的弦,于点D,于A,交OC的延长线于点E.若,则线段AE的长为_________.15.设二次函数(,m,k是实数),现有以下四个结论:①抛物线与x轴交点横坐标分别为、;②当时,函数y的最小值为;③当时,直线(n为不为0的任意实数)与抛物线总有两个不同的交点;④当时,只有在时才能保证抛物线与y轴交点在负半轴,16.如图,菱形ABCD的边,高,F是边CD上一动点,将四边形AEFD沿直线EF折叠,A点的对应点为P,当CP的长度最小时,CF的长为_________.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形。
浙江省温州市乐清市山海联盟2024-2025学年上学期九年级期中考试数学试卷[含答案]
乐清市山海联盟2024学年第一学期九年级期中考试数学试卷【注意事项】本试卷分试题卷和答题卷两部分,满分100分.考试时间共90分钟.一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.若⊙O 的半径为6,点P 在⊙O 内,则OP 的长可能是( )A .5B .6C .7D .82.抛物线257y x x =-+与y 轴的交点坐标是( )A .()7,0B .()5,0-C .()0,7D .()0,5-3.某班从4名男生和2名女生中任选1人参加演讲比赛,则选中男生的概率是( )A .12B .13C .14D .234.将抛物线23y x =向左平移1个单位长度,平移后抛物线的解析式为( )A .()231y x =+B .()231y x =-C .231y x =+D .231y x =-5.如图,四边形ABCD 是O e 的内接四边形,其中100A Ð=°,则C Ð的度数为( )A .120°B .100°C .80°D .50°6.一条排水管的截面如图所示, 已知排水管的半径5OB =, 水面宽8AB =, 则截面圆心O 到水面的距离OC 是( )A .4B .3C .2D .17.若()14,A y -,()22,B y -,()31,C y 为二次函数245y x x =--+图象上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y <<B .321y y y <<C .312y y y <<D .213y y y <<8.如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,把Rt △ABC 绕着点A 逆时针旋转,使点C 落在AB 边的C ′上,C'B 的长度是( )A .1B .32C .2D .529.如图,⊙O 是ABC V 的外接圆,边BC 的垂直平分线与 AC 相交于D 点,若74B Ð=°,46C Ð=°,则 AD 的度数为( )A .23°B .28°C .30°D .37°10.已知抛物线()2212y x mx m =--££经过点(),A p t 和点()2,B p t +,则t 的最小值是( )A .3-B .1-C .0D .1二、填空题(本大题有6小题,每小题3分,共18分)11.抛物线2(2)3y x =-+的顶点坐标为.12.若扇形的圆心角为30°,半径为6,则扇形的面积为 .13.在一个不透明的盒子中装有红球和白球共20个,这些球除颜色外无其它差别,随机从盒子中摸出一个球,记下球的颜色后,放回并摇匀.通过大量的实验后发现摸出白球的频率稳定在0.4,则盒子中白球大约有个.14.如图,正五边形ABCDE 内接于O e ,P 为 DE 上的一点(点P 不与点D 重合),则CPD Ð= °.15.二次函数2(0)y ax bx c a =++¹的部分对应值如下表:x (3)-2-0135…y…708-9-5-7…则二次函数2y ax bx c =++在2x =时,y =.16.如图,AB 为O e 的直径,且26AB =,点C 为O e 上半圆的一点,CE AB ^于点E ,OCE Ð的角平分线交O e 于点D ,弦10AC =,那么ACD V 的面积是.三、解答题(本题共有6小题,共52分,解答时需要写出必要的文字说明、演算步骤或证明过程)17.如图,已知函数2y x bx c =-++图象经过点()1,0A -,B (0,3)(1)求b ,c 的值;(2)在图中画出这个函数的图象;(不必列表)(3)观察图像,当03x ££时,函数值y 的取值范围是 .18.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明“.小李同学购买了“二十四节气”主题邮票,他将A (小雪)、B (寒露)、C (秋分)、D (立秋)四张纪念邮票(除正面不同外,其余均相同)背面朝上洗匀.(1)小李从中随机抽取一张邮票,抽中是B (寒露)的概率是 .(2)小李先从中随机抽取一张邮票,记下内容后,正面朝下放回,重新洗匀后再随机抽取一张邮票.请用树状图或列表的办法求小李两次抽取的邮票中至少有一张是D (立秋)的概率.19.如图是由小正方形组成的88´网格.每个小正方形的顶点叫做格点,请用一把无刻度直尺及圆规借助网格根据要求作图,要求保留作图痕迹.(1)仅用一把无刻度直尺画出ABC V 的外心点O .并用圆规面出外接圆O e ;(2)仅用一把无刻度直尺画弦BD ,使得BD 平分ABC Ð.20.如图,AB 是O e 的直径,弦CD 交AB 于点E .连接AC AD 、.已知35BAC Ð=°.(1)求D Ð的度数;(2)若点C 为 ACD 的中点,求CEB Ð的度数.21.如图,某跳水运动员进行10米跳台跳水训练,水面边缘点C 的坐标为3,102æö--ç÷èø.运动员(将运动员看成一点)在空中运动的路线是经过原点O 的抛物线.在跳某个规定动作时,运动员在空中最高处A 点的坐标为51,4æöç÷èø,正常情况下,运动员在距水面高度5米以前,必须完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误.(1)求运动员在空中运动时对应抛物线的解析式并求出入水处B 点的坐标;(2)若运动员在空中调整好入水姿势时,恰好距点C 的水平距离为5米,问该运动员此次跳水会不会失误?通过计算说明理由.22.如图1,ABC V 内接于O e ,10AB AC ==,12BC =,点E 为 AC 上一点,点F 为 CE的中点,连结BF 并延长与AE 交于点G ,连AF ,CF .(1)求证:AFC AFG Ð=Ð.(2)如图2,当BG 经过圆心O 时,①求FG 的长;②记AFG V ,BFC △的面积分别为12,S S .则12:S S = .1.A【详解】点在圆内,点到圆心的距离小于半径,又因为圆的半径为6,所以OP 的长小于6,因为5<6,所以选项A 符合题意,故选A 2.C【分析】根据题意,求0x =时的函数值即可.本题考查了抛物线与y 轴的交点,熟练掌握求交点的基本方法是解题的关键.【详解】解:根据题意,当0x =时,0077y =-+=,故抛物线与y 轴的交点坐标为()0,7.故选:C .3.D【分析】根据简单地概率公式计算解答即可.本题考查了简单地概率公式计算概率,熟练掌握公式是解题的关键.【详解】解:根据题意,得选中男生的概率是:42423=+.故选:D .4.A【分析】本题考查了抛物线的平移,根据平移规律:左加右减,上加下减,即可求解,掌握抛物线的平移规律是解题的关键.【详解】解:∵抛物线23y x =向左平移1个单位长度,∴平移后抛物线的解析式为()231y x =+,故选:A .5.C【分析】本题主要考查了圆内接四边形的性质,根据圆内接四边形的对角互补,列式计算即可,熟练掌握圆内接四边形的性质是解决此题的关键.【详解】∵四边形ABCD 为圆内接四边形,∴180A C Ð+Ð=°,∵100A Ð=°,∴180********C A Ð=°-Ð=°-°=°,故选:C .6.B【分析】根据垂径定理求出BC ,根据勾股定理求出OC 即可.【详解】解: ∵OC 是圆心O 到水面的距离∴OC AB ^, ∴142BC AC AB ===,在Rt OCB V 中,由勾股定理得:3OC =, 故选:B .【点睛】本题考查了勾股定理和垂径定理的应用;由垂径定理求出BC 是解决问题的关键.7.C【分析】二次函数抛物线向下,且对称轴为x =2ba- =−2.根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【详解】∵二次函数y =−x 2−4x +5=−(x +2)2+9,∴该二次函数的抛物线开口向下,且对称轴为:x =−2.∵点 A(−4,y 1) , B(-2,y 2) , C(1,y 3) 都在二次函数y =−x 2−4x +5的图象上,而三点横坐标离对称轴x =−2的距离按由远到近为:(1,y 3)、(−4,y 1)、(−2,y 2),∴y 3<y 1<y 2.故选C .【点睛】此题主要考查二次函数图象上点的坐标特征,关键是根据函数关系式,找出对称轴.8.A【分析】首先由勾股定理求出AB =5,再由旋转的性质得出4AC AC ¢==,从而可求出BC ¢的长.【详解】解:在Rt △ABC 中,∠C =90°,AC =4,BC =3,∴222AB AC BC =+∴5AB ===由旋转的性质得,4AC AC ¢==∴541C B AB AC ¢¢=-=-= 故选:A .【点睛】此题主要考查了旋转的性质和勾股定理的运用,运用勾股定理求出AB =5是解答此题的关键.9.B【分析】连接OA 、OB 、OC ,利用三角形的内角和定理、圆周角定理求出120BOC Ð=°,92AOB Ð=°,再由垂直平分线的性质,得到120BOD Ð=°,即可求出答案.【详解】解:如图,连接OA 、OB 、OC ,∵74ABC Ð=°,46ACB Ð=°,∴180744660BAC Ð=°-°-°=°,∴2260120BOC BAC Ð=Ð=´°=°,224692AOB ACB Ð=Ð=´°=°,∵OD 垂直平分边BC ,∴1(360120)1202BOD COD Ð=Ð=°-°=°,∴1209228AOD BOD AOB Ð=Ð-Ð=°-°=°,∴ AD 的度数为28°.故选:B .【点睛】本题考查了圆周角定理,三角形的内角和定理,垂直平分线的性质,解题的关键是熟练掌握所学的知识,正确的求出所需角的度数.10.A【分析】本题考查了二次函数的对称性和增减性,根据抛物线的对称轴以及对称轴公式确定1p m +=,即可得到1p m =-,由抛物线()2212y x mx m =--££经过点(),A p t 和点()2,B p t +得到()()22221211t p mp m m m m ==--=--+-,结合12m -££即可确定t 的最小值.【详解】解:∵抛物线22y x mx =-,∴抛物线的对称轴为直线221mx m -=-=´,∵抛物线()2212y x mx m =--££经过点(),A p t 和点()2,B p t +,∴点(),A p t 和点()2,B p t +关于对称轴对称,22t p mp =-,∴22p p m ++=,即1p m +=,∴1p m =-,∴()()221211t m m m m =---=-+,∵12m -££,∴2m =时,t 有最小值为:413-+=-.故选:A .11.(2,3)【分析】本题主要考查了二次函数的顶点式,根据形如2()y a x h k =-+的抛物线的顶点坐标是(,)h k 解答即可.【详解】解:抛物线2(2)3y x =-+的顶点坐标是(2,3).故答案为:(2,3).12.3p【分析】本题主要考查了求扇形的面积,根据扇形的面积公式计算即可.2360扇p =n R S ,其中n是圆心角的度数,R 是扇形的半径.【详解】∵30,6n R =°=,∴22306==3360360n R S p p p ´=扇.故答案为:3p .13.8【分析】直接用总数乘以频率即可得到答案.【详解】解:白球大约有200.48´=(个),故答案为:8.【点睛】本题考查频率估计概率,当进行大量重复试验时,频率可近似等于概率.14.36【分析】连接OC ,OD ,求出COD Ð的度数,再根据圆周角定理即可解决问题.【详解】解:如图,连接OC ,OD ,∵多边形ABCDE 是正五边形,∴360725COD °Ð==°,∴11723622CPD COD Ð=Ð=´°=°,∴CPD Ð的度数为36°.故答案为:36.【点睛】本题考查正多边形和圆,圆周角定理等知识.解题的关键是掌握中心角和圆周角定理.15.8-【分析】根据表格可知,3x =-和5x =的函数值相等,可以得到抛物线的对称轴,再利用抛物线的对称性,找到表格中与2x =关于对称轴对称的x 对应的函数值,即为所求.【详解】解:由表格可知,3x =-和5x =的函数值相等,∴抛物线的对称轴为:3512x -+==,∴2x =与0x =的函数值相等,即:当2x =时,y =8-;故答案为:8-.【点睛】本题考查二次函数的对称性.通过表格确定二次函数的对称轴,是解题的关键.16.85【分析】设AB ,CD 的交点为F ,连接OD ,证明CFE DFO V V ∽,继而得到OD AB ^,利用勾股定理,三角函数,计算,AF CE 的长,结合()1·2ACD ACF ADF S S S AF CE OD =+=+V V V ,计算解答即可.【详解】解:设AB ,CD 的交点为F ,连接OD ,∵ OD OC =,∴ODC OCD Ð=Ð;∵OCE Ð的角平分线交O e 于点D ,∴CEF OCD Ð=Ð;∴CEF ODC Ð=Ð;∵CFE DFO Ð=Ð,∴ODC OCD Ð=Ð;∴CFE DFO V V ∽,∴,EF CE CEF DOF FO DO=Ð=Ð,∵CE AB ^,∴OD AB ^,∵AB 为O e 的直径,∴90ACB Ð=°,∵26AB =, 10AC =,∴113,242OA OD AB BC =====,∴512sin ,cos 1313AC BC ABC ABC AB AB Ð==Ð==,∴120288sin ,cos 1313CE BC ABC BE BC ABC =Ð==Ð=g g ,∴5013AE AB BE =-=,∴11913OE AO AE =-=,∴120289EF CE EO DO CE ==+,∴12011984028913221EF =´=,∴1690221AF AE EF =+=,∴()1·2ACD ACF ADF S S S AF CE OD =+=+V V V 1169028985222113=´´=..【点睛】本题考查了圆的性质,三角形相似的判定和性质,勾股定理,三角函数,等腰三角形的判定和性质,熟练掌握性质,活用相似和三角函数是解题的关键.17.(1)b 的值为2,c 的值为3(2)见解析(3)04y ££【分析】(1)利用待定系数法依次解答即可;(2)根据列表,描点,连线画图象即可.(3)利用数形结合思想,根据函数的增减性,最值解答即可.【详解】(1)解:∵函数2y x bx c =-++图象经过点()1,0A -,B (0,3),∴103b c c --+=ìí=î,解得23b c =ìí=î,∴b 的值为2,c 的值为3.(2)解:由(1)得函数解析式为223y x x =-++,画图象如下:.(3)解:由(1)得函数解析式为()222314y x x x =-++=--+,∵抛物线开口向下,∴函数有最大值,且当1x =时,取得最大值,最大值为4,当0x =时,3y =,当3x =时,0y =,∴04y ££.【点睛】本题考查了待定系数法求解析式,数形结合思想,二次函数的增减性应用,二次函数的最值应用,熟练掌握二次函数的增减性应用,二次函数的最值应用是解题的关键.18.(1)14(2)716【分析】本题主要考查了概率公式,画树状图求概率,(1)根据概率公式计算;(2)画出树状图,确定所有可能出现的结果,符合题意的结果,再根据概率公式得出答案.【详解】(1)解:一共有4张邮票,符合题意的有1张,所以,抽中B 的概率是14.故答案为:14;(2)画树状图如下:一共有16种可能出现的结果,每种结果出现的可能性相同,符合题意的有7种,所以两次抽取邮票中至少有一张是D 的概率是716.19.(1)详见解析(2)详见解析【分析】本题主要考查了作图−应用与设计作图,角平分线的性质,垂直平分线的性质,垂径定理的推论,圆周角定理,三角形的外接圆与外心等知识,(1)画出BC的垂直平分线与AB的垂直平分线,两线交点O,以OC为半径作圆O即可得解;e于点D,连接BD即可(2)作AC所在矩形的对角线交于一点,过圆心和这点作射线交O得解;解题的关键是理解题意,灵活运用所学知识解决问题.【详解】(1)如图,∵BC的垂直平分线与AB的垂直平分线,两线交点O,∴点O到三角形三顶点的距离相等,e和点O即为所求;∴以OC为半径作的O(2)如图,∵矩形对角线的交点平分每一条对角线,∴过圆心和这点的射线必平分弦AC所对的 AC,∴=,AD CDÐ=Ð,∴ABD CBDÐ,∴BD平分ABC∴弦BD即为所求.20.(1)55°(2)105°【分析】本题主要考查了圆周角定理,等腰三角形的性质,三角形外角的性质,对于(1),根据圆周角定理求出BOC Ð,进而求出AOC Ð,再根据圆周角定理求出答案即可;对于(2),先根据“弧,弦,圆心角”之间的关系得AC CD =,即可求出ACD Ð,再根据三角形外角的性质得出答案.【详解】(1)如图所示,连接OC ,∵35BAC Ð=°,∴2=70BOC BAC Ð=а,∴18070110AOC Ð=°-°=°,∴1552D AOC Ð=Ð=°;(2)∵点C 是 ACD 的中点,∴ AC CD=,∴AC CD =,∴180270ACD D Ð=°-Ð=°.∵CEB Ð是ACE △的外角,∴3570105CEB CAE ACE Ð=Ð+Ð=°+°=°.21.(1)()255144y x =--+;()4,10B -(2)本次跳水失误,见解析【分析】(1)设抛物线的解析式为()2514y a x =-+,把原点坐标代入解析式,确定a 值,结合函数值计算即可;(2)根据3,102C æö--ç÷èø,运动员在空中调整好入水姿势时,恰好距点C 的水平距离为5米,则此时该点的横坐标为37522-=米,计算对应的纵坐标,结合标准判断即可.本题考查了待定系数法,抛物线的应用,熟练掌握待定系数法,性质是解题的关键.【详解】(1)解:根据题意,设抛物线的解析式为()2514y a x =-+,把原点坐标代入解析式,得504a +=,解得54a =-,故抛物线的解析式为()255144y x =--+;∵水面边缘点C 的坐标为3,102æö--ç÷èø,C ,B 在一条直线上,∴点B 的纵坐标为10-,根据题意,得()25510144x -=--+,解得124,2x x ==-(舍去),故点()4,10B -.(2)解:根据3,102C æö--ç÷èø,运动员在空中调整好入水姿势时,恰好距点C 的水平距离为5米,则此时该点的横坐标为37522-=米,当72x =时,2575105142416y æö=--+=-ç÷èø,由()105551051<616---=,根据运动员在距水面高度5米以前,必须完成规定的翻腾、打开动作,并调整好入水姿势,故本次跳水失误.22.(1)见解析(2)①72;②12【分析】(1)根据圆的内接四边形的性质,等腰三角形的性质,圆周角的性质,平角的定义,证明AFC AFG Ð=Ð即可.(2)①先证明()ASA AFC AFG V V ≌,得FG FC =,在利用垂径定理,勾股定理,计算FC 的长即可;②根据前面解答,得21171221222S BC FC ==´´=g ,过点A 作AK BF ^于点K ,利用勾股定理,圆周角定理,三角形的面积公式,求得112FG AK S =g ,再计算12:S S 即可.【详解】(1)证明:∵四边形ABCF 内接于O e ,∴180AFC ABC Ð=°-Ð;∵AB AC =,∴ACB ABC Ð=Ð;∵ACB AFB Ð=Ð,∴AFB ABC Ð=Ð;∴180180AFB ABC °-Ð=°-Ð;∵180AFB AFG °-Ð=Ð,∴AFC AFG Ð=Ð.(2)①解:∵点F 为 CE的中点,∴FAC FAG Ð=Ð.∵FAC FAG AF AF AFC AFG Ð=Ðìï=íïÐ=Ðî,∴()ASA AFC AFG V V ≌,∴FG FC =,设BC 的中点为H ,连接AH ,∵10AB AC ==,12BC =,∴162BH CH BC ===,AH BC ^,∴点O 一定AH上,8AH =,设O e 的半径为x ,则,8OB x OH x ==-,根据勾股定理,得()22268x x =+-,解得254x =,故252BF =,∵BF 是直径,∴90BCF Ð=°,∴72FC ==,∴72FG =.②解:根据前面解答,得21171221222S BC FC ==´´=g ,过点A 作AK BF ^于点K ,∵BF 是直径,252BF =,10AB =,∴90BAF Ð=°,∴152AF ==,∴6AB AF AK BF ==g ,∴11172162222S FG AK ==´´=g ,∴12211:2122:S S ==.【点睛】本题考查了圆周角定理,垂径定理,勾股定理,三角形全等的判定和性质,熟练掌握圆的性质,勾股定理,垂径定理是解题的关键.。
内蒙古鄂尔多斯市东胜区第一中学2023届九年级上学期期中考试数学试卷(含解析)
东胜一中初三年级2022-2023学年第一学期期中试题(数学)一.选择题(共13小题)1.在下列四个图案中,既是轴对称图形,又是中心对称图形是( )A.B.C.D.解析:解:A、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,也是中心对称图形,故此选项正确;B、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,也不是中心对称图形,故此选项错误.C、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180°不能与原图形重合,不是中心对称图形,故此选项错误;D、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:A.2.将抛物线y=﹣2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( )A.y=﹣2(x+2)2+3B.y=﹣2(x﹣2)2+3C.y=﹣2(x﹣2)2﹣3D.y=﹣2(x+2)2﹣3解析:解:将抛物线y=﹣2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的解析式为y=﹣2(x﹣2)2+3,故选:B.3.直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是( )A.0个B.1个C.2个D.1个或2个解析:解:∵直线y=x+a不经过第二象限,∴a≤0,当a=0时,关于x的方程ax2+2x+1=0是一元一次方程,解为x=﹣,当a<0时,关于x的方程ax2+2x+1=0是一元二次方程,∵Δ=22﹣4a>0,∴方程有两个不相等的实数根.故选:D.4.已知二次函数y=ax2+bx+c,其函数值y与自变量x之间的部分对应值如表所示:x…01234y…﹣4﹣10﹣1﹣4点A(x1,y1),B(x2,y2)在函数的图象上,当1<x1<2,3<x2<4时,y1与y2的大小关系正确的是( )A.y1>y2B.y1<y2C.y1⩾y2D.y1⩽y2解析:解:设该二次函数的解析式为y=ax2+bx+c(a≠0),∵x=0时y=﹣4;x=1时y=﹣1;x=2时y=0,∴,解得,,∴此抛物线的解析式为:y=x2+4x﹣4,∴抛物线开口向下,对称轴x=﹣2,对称轴越近值越小,∴可知抛物线顶点为(﹣2,8),∵1<x1<2,3<x2<4,∴y1<y2.故选:B.5.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=100C.200+2003x=1000D.200[1+(1+x)+(1+x)2]=1000解析:解:∵该超市一月份的营业额为200万元,且平均每月增长率为x,∴该超市二月份的营业额为200(1+x)万元,三月份的营业额为200(1+x)2万元,又∵第一季度的总营业额共1000万元,∴200+200(1+x)+200(1+x)2=1000,即200[1+(1+x)+(1+x)2]=1000.故选:D.6.下列命题中,真命题的个数是( )①经过三点一定可以作圆;②平分弦的直径必定垂直于这条弦;③在同圆或等圆中,相等的圆心角所对的弧相等;④三角形的外心到三角形三边的距离相等.A.4个B.3个C.2个D.1个解析:解:①过不在同一直线上的三点一定可以作一个圆,错误;②平分弦(不是直径)的直径垂直于弦,故错误,③同圆或等圆中,相等的圆心角所对的弧相等,正确;④三角形的外心到三角形的三个顶点的距离相等,错误;真命题有1个,故选:D.7.已知二次函数y=ax2+2ax+1(其中x是自变量),当x≥1时,y随x的增大而增大,且﹣3≤x≤2时,y的最大值为9,则a的值为( )A.﹣1B.C.1D.﹣8解析:解:∵二次函数y=ax2+2ax+1=a(x+1)2﹣a+1(其中x是自变量),∴该函数的对称轴为直线x=﹣1,∵当x≥1时,y随x的增大而增大,∴a>0,又∵当﹣3≤x≤2时,y的最大值为9,∴x=2时,y=9,即9=a(2+1)2﹣a+1,解得,a=﹣1,故选:C.8.函数y=ax2﹣2x+1和y=ax+a(a是常数,且a≠0)在同一平面直角坐标系中的图象可能是( )A.B.C.D.解析:解:A、由一次函数y=ax+a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下,故选项错误;B、由一次函数y=ax+a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下,故选项错误;C、由一次函数y=ax+a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,故选项正确;D、由一次函数y=ax+a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的对称轴x=﹣<0,故选项错误.故选:C.9.如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连结CD.若点D与圆心O不重合,∠BAC=24°,则∠DCA的度数为( )A.40°B.41°C.42°D.43°解析:解:如图,连接BC,∵AB是直径,∴∠ACB=90°,∴∠BAC+∠B=90°,∵∠BAC=24°,∴∠B=90°﹣∠BAC=90°﹣24°=66°,根据翻折的性质,弧AC所对的圆周角为∠B,所对的圆周角为∠ADC,∴∠ADC+∠B=180°,∵∠ADC+∠CDB=180°,∴∠B=∠CDB=66°,∴∠DCA=∠CDB﹣∠BAC=66°﹣24°=42°.故选:C.10.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4cm,CD⊥AB,垂足为点D,动点M从点A 出发沿AB方向以cm/s的速度匀速运动到点B,同时动点N从点C出发沿射线DC方向以1cm/s的速度匀速运动.当点M停止运动时,点N也随之停止,连接MN.设运动时间为ts,△MND的面积为Scm2,则下列图象能大致反映S与t之间函数关系的是( )A.B.C.D.解析:解:∵∠ACB=90°,∠A=30°,AB=4,∴∠B=60°,BC=AB=2,AC=BC=6,∵CD⊥AB,∴CD=AC=3,AD=CD=3,BD=BC=,∴当M在AD上时,0≤t≤3,MD=AD﹣AM=3﹣t,DN=DC+CN=3+t,∴S=MD•DN=(3﹣t)(3+t)=﹣t2+,当M在BD上时,3<t≤4,MD=AM﹣AD=t﹣3,∴S=MD•DN=(t﹣3)(3+t)=t2﹣,故选:B.二.填空题(共6小题)11.已知函数y=(m+2)-2是关于x的二次函数.满足条件的m= ﹣3或2 .解析:解:由题意得:m2+m﹣4=2且m+2≠0,∴m=﹣3或m=2且m≠﹣2,∴m=﹣3或2,故答案为:﹣3或2.12.已知关于x的方程k2x2+2(k﹣1)x+1=0有两个实数根,则k的取值范围是k≤且k≠0解析:解:根据题意得k≠0且Δ=4(k﹣1)2﹣4k2≥0,解得k≤且k≠0.13.在同一个平面直角坐标系xOy中,二次函数y1=a1x2,y2=a2x2,y3=a3x2的图象如图所示,则a1,a2,a3的大小关系为 a3>a2>a1 (用“>”连接).解析:解:∵二次函数y1=a1x2的开口最大,二次函数y3=a3x2的开口最小,∴a3>a2>a1,故答案为:a3>a2>a1.14.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣(x﹣4)2+3,由此可知铅球推出的距离是 10 m.解析:解:令函数式y=﹣(x﹣4)2+3中,y=0,0=﹣(x﹣4)2+3,解得x1=10,x2=﹣2(舍去),即铅球推出的距离是10m.故答案为:10.15.如图,二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=﹣1,下列结论:①abc<0;②2a﹣b=0;③3a<﹣c;④若m为任意实数,则有a﹣bm≤am2+b;⑤若图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),则2x1﹣x2=5.其中结论正确的是②③⑤解析:解:∵抛物线开口向下,∴a<0,∵抛物线对称轴在y轴左侧,∴b<0,∵抛物线与x轴交点在y轴上方,∴c>0,∴abc>0,①错误.∵﹣=﹣1,∴b=2a,∴2a﹣b=0,②正确.由图象可得x=1时,y<0,∴a+b+c<0,∴3a+c<0,∴3a<﹣c,③正确.∵抛物线开口向下,对称轴为直线x=﹣1,∴当x=﹣1时,y取最大值,∴a﹣b+c≥am2+bm+c,∴a﹣bm≥am2+b,④错误.若图象经过点(﹣3,﹣2),由抛物线对称性可得图象经过(1,﹣2),∵|x1|<|x2|,∴x1=1,x2=﹣3为方程ax2+bx+c+2=0的两根,∴2x1﹣x2=﹣5,⑤正确.16.如图,正方形ABCD的中心与坐标原点O重合,将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……依此类推,则点D2022的坐标是 (﹣2023,2022) .解析:解:∵将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,∴D1(1,2),∵再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……∴D2(﹣3,2),D3(﹣3,﹣4),D4(5,﹣4),D5(5,6),D6(﹣7,6),……,观察发现:每四个点一个循环,D4n+2(﹣4n﹣3,4n+2),∵2022=4×505+2,∴D2022(﹣2023,2022);故答案为:(﹣2023,2022).三.解答题(共9小题)17.解下列方程.(Ⅰ)x(3x+2)=6(3x+2);(Ⅱ)3x2﹣2x﹣4=0.解析:解:(Ⅰ)x(3x+2)=6(3x+2),x(3x+2)﹣6(3x+2)=0,(3x+2)(x﹣6)=0,3x+2=0或x﹣6=0,所以x1=﹣,x2=6;(Ⅱ)3x2﹣2x﹣4=0,∵Δ=(﹣2)2﹣4×3×(﹣4)=4+48=52,∴x===,∴x1=,x2=.18.已知关于x的一元二次方程x2﹣(m+3)x+3m=0.(1)若x=1是这个方程的一个根,求m的值和它的另一根;(2)求证:无论m取任何实数,方程总有实数根;解析:(1)解:将x=1代入原方程得:1﹣(m+3)+3m=0,解得:m=1,∴方程的另一根为3m÷1=3m.∴m的值为1,方程的另一根为3.(2)证明:Δ=[﹣(m+3)]2﹣4×1×3m=m2﹣6m+9=(m﹣3)2.∵(m﹣3)2≥0,即Δ≥0,∴无论m取任何实数,方程总有实数根;19.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心顺时针旋转90°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△A1B1C,使点A1的对应点A2坐标为(2,0),请画出平移后对应的△A2B2C2的图形.(3)若将△ABC绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.解析:解:(1)如图,△A1B1C即为所求.(2)如图,△A2B2C2即为所求.(3)如图,点(﹣1,﹣1)即为所求.20.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大.解析:解:设涨价x元,利润为y,则y=(60﹣40+x)(300﹣10x)=﹣10x2+100x+6000=﹣10(x﹣5)2+6250因此当x=5时,y有最大值6250.60+5=65元每件定价为65元时利润最大.设每件降价a元,总利润为w,则w=(60﹣40﹣a)(300+20a)=﹣20a2+100a+6000=﹣20(a﹣2.5)2+6125因此当a=2.5时,w有最大值6125.每件定价为57.5元时利润最大.综上所知每件定价为65元时利润最大.21.为促进经济发展,方便居民出行.某施工队要修建一个横断面为抛物线的公路隧道.抛物线的最高点P 离路面OM的距离为6m,宽度OM为12m.(1)按如图所示的平面直角坐标系,求表示该抛物线的函数表达式;(2)一货运汽车装载某大型设备后高为4m,宽为3.5m.如果该隧道内设双向行车道(正中间是一条宽1m的隔离带),那么这辆货车能否安全通过?(3)施工队计划在隧道口搭建一个矩形“脚手架”ABCD,使A,D点在抛物线上.B,C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根支杆AB,AD,DC的长度之和的最大值是多少?请你帮施工队计算一下.解析:解:(1)根据题意,顶点P的坐标为(6,6),设抛物线的解析式为y=a(x﹣6)2+6,把点O(0,0)代入得:36a+6=0,解得:,即所求抛物线的解析式为:(0≤x≤12);(2)根据题意,当x=6﹣0.5﹣3.5=2时(或者当x=6+0.5+3.5=10)时,,∴这辆货车不能安全通过;(3)设A点的坐标为,则OB=m,,根据抛物线的对称性可得CM=OB=m,∴BC=12﹣2m,∵四边形ABCD是矩形,∴AD=BC=12﹣2m,,∴三根支杆AB,AD,DC的长度之和:=,∴当m=3,即OB=3米时,三根支杆AB,AD,DC的长度之和的最大值为15.22.已知⊙O的直径为10,点A、点B、点C在⊙O上,∠CAB的平分线交⊙O于点D.(1)如图①,若BC为⊙O的直径,AB=6,求AC、BD、CD的长;(2)如图②,若∠CAB=60°,求BD的长.解析:解:(1)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵在直角△CAB中,BC=10,AB=6,∴由勾股定理得到:AC===8.∵AD平分∠CAB,∴=,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴易求BD=CD=5;(2)如图②,连接OB,OD,∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5.23.(原题初探)(1)小明在数学作业本中看到有这样一道作业题:如图1,P是正方形ABCD内一点,连结PA,PB,PC现将△PAB绕点B顺时针旋转90°得到的△P′CB,连接PP′.若PA=,PB=3,∠APB=135°,则PC的长为 2 ,正方形ABCD的边长为 .(变式猜想)(2)如图2,若点P是等边△ABC内的一点,且PA=3,PB=4,PC=5,请猜想∠APB的度数,并说明理由.(拓展应用)(3)聪明的小明经过上述两小题的训练后,善于反思的他又提出了如下的问题:如图3,在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,则BD的长度为 .解析:解:(1)∵△PAB绕点B顺时针旋转90°得到的△P′CB,∴BP=BP′=3,P′C=PA=,∠PBP′=90°,∠BP′C=∠APB=135°,∴△BPP′为等腰直角三角形,∴∠BP′P=45°,PP′=PB=3,∴∠PP′C=135°﹣45°=90°,在Rt△PP′C中,由勾股定理得:PC===2,过点A作AE⊥BP交BP的延长线于E,如图1所示:∵∠APB=135°,∴∠APE=180°﹣135°=45°,∴△AEP是等腰直角三角形,∴AE=PE=PA=×=1,∴BE=PB+PE=3+1=4,在Rt△AEB中,由勾股定理得:AB===,故答案为:2,;(2)∠APB的度数为150°,理由如下:∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,将△BPC绕点B逆时针旋转60°,得到△BP′A,连接PP′,如图2所示:则△BPP′是等边三角形,∴PP′=BP=4,∠BPP′=60°,∵AP=3,AP′=PC=5,∴P'P2+AP2=AP'2,∴△APP′为直角三角形,∴∠APP′=90°,∴∠APB=∠APP′+∠BPP′=90°+60°=150°;(3)∵∠ABC=∠ACB=∠ADC=45°,∴△BAC是等腰直角三角形,∴∠BAC=90°,AB=AC,将△ABD绕点A顺时针旋转90°,得到△ACK,连接DK,如图3所示:由旋转的性质得:AK=AD=3,CK=BD,∠KAD=90°,∴△DAK是等腰直角三角形,∴DK=AD=3,∠ADK=45°,∴∠CDK=∠ADC+∠ADK=45°+45°=90°,∴△CDK是直角三角形,∴CK===,∴BD=,故答案为:.24.如图,抛物线y=ax2+bx﹣4与x轴交于A(﹣4,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的函数关系式;(2)点P是抛物上第三象限内的一动点,当点P运动到什么位置时,四边形ABCP的面积最大?求出此时点P的坐标和四边形ABCP的面积;(3)点M在抛物线对称轴上,点N是平面内一点,是否存在这样的点M、N,使得以点M、N、B、C 为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.解析:解:(1)∵抛物线y=ax2+bx﹣4与x轴交于A(﹣4,0)、B(3,0)两点,∴,解得,∴抛物线的解析式为y=x2+x﹣4;(2)如图,设点P的坐标为(m,m2+m﹣4),则﹣4<m<0,m2+m﹣4<0.连接OP.∵S四边形ABCP=S△AOP+S△COP+S△BOC=×4(﹣m2﹣m+4)+×4(﹣m)+×4×3=﹣m2﹣m+14=﹣(m+2)2+,∴当m=﹣2时,四边形ABCP的面积最大,最大值为,此时点P的坐标为(﹣2,﹣);(3)存在这样的点M、N,能够使得以点M、N、B、C为顶点的四边形是菱形.理由如下:∵OB=3,OC=4,∠BOC=90°,∴BC==5.设M点的坐标为(﹣,y),分两种情况讨论:(i)以BC为边长时,如果四边形CBMN是菱形,那么BM=BC,即(3+)2+y2=25,解得y=±,即存在M(﹣,)或(﹣,﹣),能够使以点M、N、B、C为顶点的四边形是菱形;如果四边形BCMN是菱形,那么CM=BC,即(0+)2+(y+4)2=25,整理,得4y2+32y﹣35=0,解得y=﹣4±,即存在M(﹣,﹣4+)或(﹣,﹣4﹣),能够使以点M、N、B、C为顶点的四边形是菱形;(ii)以BC为对角线时,四边形MCNB是菱形,则BM=CM,即(3+)2+y2=(0+)2+(y+4)2,解得y=﹣,即存在M(﹣,﹣),能够使以点M、N、B、C为顶点的四边形是菱形;综上可知,存在这样的点M、N,使得以点M、N、B、C为顶点的四边形是菱形,此时点M的坐标为:M1(﹣,),M2(﹣,﹣4+),M3(﹣,﹣),M4(﹣,﹣4﹣),M5(﹣,﹣).。
2023-2024学年第一学期期中质量检测数学试题及答案
注意事项:1、本试卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共8页,满分120分,考试时间120分钟.2、答案全部在答题卡上完成,答在本试卷上无效.2023-2024学年第一学期九年级期中质量监测试题(卷)数学3、考试结束后,只收回答题卡.第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该选项涂黑)1.下列方程是关于x 的一元二次方程的是A.B.02342=++xx 0122=--y x C.D.0122=++x ax ()024=-x x 2.如图,将含有30°角的三角尺ABC (∠BAC =30°),以点A 中心,顺时针方向旋转,使得点C ,A ,B ′在同一直线上,则旋转角的大小是A.30°B.60°C.120°D.150°3.方程的两个实数根是x x =2A.x 1=x 2=1B.x 1=1,x 2=-1C.x 1=0,x 2=1D.x 1=0,x 2=-14.将关于x 的方程配方成的形式,则的值是0862=+-x x ()p x =-23p A.1B.28C.17D.445.如果关于x 的一元二次方程有两个实数根,则k 的取值范围是032=+-k x x A.k≥B.k≤C.k>D.k<49494949C′B′CB A6.将二次函数的图象先向左平移2个单位,再向上平移1个单()2122---=x y 位,则所得到的二次函数的解析式是A.B.()1322---=x y ()1122-+-=x y C.D.()3122-+-=x y ()3322---=x y 7.冠状病毒属的病毒是具有囊膜、基因组为线性单股正链的RNA 病毒,是自然界广泛存在的一大类病毒,冠状病毒可感染多种哺乳动物、鸟类和人.在某次冠状病毒感染中,有3只动物被感染,后来经过两轮感染后共有363只动物被感染.若每轮感染中平均一只动物会感染x 只动物,则下面所列方程正确的是A.3x(x+1)=363B.3+3x+3x ²=363C.3(1+x)²=363D.3+3(1+x)+3(1+x)²=3638.已知二次函数(c 为常数)的图象与x 轴的一个交点为(1,0),c x x y +-=42则关于x 的一元二次方程的两个实数根是042=+-c x x A.x 1=1,x 2=-1B.x 1=-1,x 2=2C.x 1=-1,x 2=0D.x 1=1,x 2=39.二次函数的图象上部分点的坐标(x,y)对应值列表如下:c bx ax y ++=2则关于该二次函数的图象与性质,下列说法正确的是A.开口方向向上B.当x>-2时,y 随x 增大而增大C.函数图象与x 轴没有交点D.函数有最小值是-210.在同一平面直角坐标系中,二次函数与一次函数的图bx ax y +=2a bx y +=象可能是x …-3-2-101…y…-3-2-3-6-11…第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共15分)11.如图,在⊙O 中,AC =BC ,半径OC 与AB 交于点D ,若AB =8cm,OB =5cm,则CD =▲cm.13.已知点A (4,y 1)和点B (-1,y 212.2022年2月4日—2月20日,北京冬奥会隆重开幕,北京成为世界上第一个既举办过夏季奥运会,又举办过冬季奥运会的国家.下面图片是在北京冬奥会会徽征集过程中,征集到的一副图片,整个图片由“京字组成的雪花图案”、“beijing2022”、“奥运五环”三部分组成.对于图片中的“雪花图案”,至少旋转▲°能与原雪花图案重合.)是二次函数(m 为常数)()m x y +-=21-215.如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点,若四边形EFGH 是矩形,且其周长是20,则四边形ABCD 的图象上两点,则y 1和y 2的大小关系是▲.14.2021年我国高速铁路总里程为2.9万公里,2023年我国高速铁路总里程达到3.8万公里,高速铁路已经覆盖了全国80%以上的大城市,形成以“八纵八横”主通道为骨架、区域连接线衔接、城际铁路补充的高速铁路网.若设2021年到2023年我国高速铁路总里程的平均年增长率为x,则依题意可列方程为▲.的面积的最大值是▲.HG FED CBA⌒⌒三、解答题(本大题共8个小题,共75分.解答题应写出文字说明、证明过程或演算步骤)16.解方程(每小题5分,共10分)(1)()910-=+x x (2)()12832+=+x x x 17.(本小题5分)如图,以□ABCD 的顶点A 为圆心,AB 为半径作⊙A ,分别交BC ,AD 于E ,F 两点,交BA 的延长线于点G .求证:EF =FG .18.(本小题8分)在平面直角坐标系中,△ABC 三个顶点的坐标分别为A (5,4),B (1,3),C (3,1).点P (a,b)是△ABC 内的一点.(1)以点O 为中心,把△ABC 顺时针旋转90°,画出旋转后的△A 1B 1C 1,并写出A 1,B 1,C 1的坐标:A 1▲,B 1▲,C 1▲.注:点A 与A 1,B 与B 1,C 与C 1分别是对应点.(2)点P 的对应点P 1的坐标是▲;(3)若以点O 为中心,把△ABC 逆时针旋转则点P 的对应点P 2的坐标是▲,点P 1与点P2关于▲对称.(填写“x 轴、y 轴或原点”)⌒⌒19.(本小题8分)阅读下列材料,并完成相应学习任务:一元二次方程在几何作图中的应用如图1,在矩形ABCD 中,AB =3,BC =4.求作一个矩形,使其周长和面积分别是矩形ABCD 的周长和面积的2倍.因为矩形ABCD 的周长是14,面积是12,所以所求作的矩形周长是28,面积是24.若设所求作的矩形一边的长为x,则与其相邻的一边长为14-x.所以,得x(14-x)=24.解得x 1=2,x 2=12.当x=2时,14-x=12;当x=12时,14-x=2.所以求作的矩形相邻两边长分别是2和12.如图2,在边AB 的延长线取点G ,使得AG =4AB .在AD 上取AE =AD .21以AG 和AE 为邻边作出矩形AGFE .则矩形AGFE 的周长和面积分别是矩形ABCD 的周长和面积的2倍.学习任务:(1)在作出矩形AGFE 的过程中,主要体现的数学思想是▲;(填出序号即可)A.转化思想B.数形结合思想C.分类讨论思想D.归纳思想(2)是否存在一个矩形,使其周长与面积分别是矩形ABCD 的周长和面积的?21若存在,请在图1中作出符合条件的矩形;若不存在,请说明理由.图1 图2GFEDCBA D CB A20.(本小题9分)漪汾桥是太原市首座对称双七拱吊桥,每个桥拱呈大小相等的抛物线型,桥拱如长虹出水,屹立于汾河之上,是太原市地标性建筑之一.如图2所示,单个桥拱在桥面上的跨度OA =60米,在水面的跨度BC =80米,桥面距水面的垂直距离OE =7米,以桥面所在水平线为x 轴,OE 所在直线为y 轴建立平面直角坐标系.(1)求桥拱所在抛物线的函数关系表达式;(2)求桥拱最高点到水面的距离是多少米?21.(本小题10分)下面是小明解决某数学问题的过程,请认真阅读并解决相应学习任务:数学问题:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:“,”现已知商品的进价为每件40元,如何定价才能使每个星期的利润达到6080元,且顾客能够得到更大的实惠?解:设….根据题意,所列出方程:.()6080402300-20=⎪⎭⎫⎝⎛⨯+x x …根据小明所列方程,完成下列任务:(1)填空:数学问题中“”处短缺的条件是▲,小明所列方程中未知数x 的实际意义是▲.(2)请你重新设一个未知数,要求所设未知数与小明所列方程中未知数的意义不同,并结合所补充的条件,解决上面的数学问题.图1图222.(本小题12分)综合与实践问题情境:数学活动课上,老师出示了一个问题:如图1,在正方形ABCD 中,点E 是边CD 上一点,将△ADE 以点A 为中心,顺时针旋转90°,得到△ABF ,连接EF .过点A 作AG ⊥EF ,垂足为G .试猜想FG 与GE 的数量关系,并证明.(1)独立思考:请你解决老师所提出的问题;(2)拓展探究:智慧小组在老师所提问题的基础上,连接DG ,他们认为DG 平分∠ADC .请你利用图2说明,智慧小组所提出的结论是否正确?请说明理由;(3)问题解决:在图2中,若AD +DE =28,则四边形AGED 的面积为▲.(直接写出答案即可)图1 图2AB CDEFGGFEDCBA23.(本小题13分)综合与探究已知抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 32-2-=x x y 轴交于点C ,点D 是y 轴右侧抛物线上一个动点.(1)求出点A ,B ,C 的坐标;(2)如图1,当点D 在第四象限时,求出△BCD 面积的最大值,并求出这时点D 坐标;(3)当∠DAB =∠ABC 时,求出点D的坐标.图1 备用图一、选择题:1—10:DDCAB BCDCC二、填空题:11.2;12.60°;13.y 1<y 2;14.2.9(1+x)²=3.8;15.50.三、解答题:16.解:(1)x 1=-1,x 22023~2024学年第一学期九年级期中质量监测试题数学参考答案=-9;…………………………………………………………5分(2)x 1=,x 2=4.…………………………………………………………………5分23-注:阅卷组自行制定评分细则17.证明:∵AB=AE,∴∠B=∠AEB.……………………………………………………………………1分∵四边形ABCD 是平行四边形,∴AD∥BC,……………………………………………………………………2分∴∠B=∠GAF,∠FAE=∠AEB,……………………………………………………………………3分∴∠GAF=∠FAE,…………………………………………………………………4分∴EF=FG.……………………………………………………………………5分18.解:(1)画图略,画图正确.………………………………………………2分A 1(4,-5),B 1(3,-1),C 1(1,-3).………………………………………5分(2)(b,-a).……………………………………………………………………6分(3)(-b,a),原点.………………………………………………………………8分19.解:(1)B;…………………………………………………………………2分(2)不存在.……………………………………………………………………3分理由如下:若存在矩形,其周长与面积分别是矩形ABCD 的周长和面积的,21则所求的矩形周长为7,面积为6.………………………………………………4分设所求的矩形一边长为x,则与其相邻的另一边的长为-x.………………5分27所以,得x(-x)=6.……………………………………………………………6分27整理,得2x ²-7x+12=0.…………………………………………………………7分因为△=(-7)²-4×2×12=49-96<0.所以该方程无解.…………………………………………………………8分所以,不存在矩形,其周长与面积分别是矩形ABCD 的周长和面积的……9分21⌒⌒20.解:(1)设桥拱所在抛物线的函数关系表达式为y=ax ²+bx.………………1分∵OA=60,∴A 点坐标为(60,0).∵BC=80,根据对称性可知,点C 坐标为(70,-7).…………………………2分把A(60,0),B(70,-7)代入y=ax ²+bx,得………3分⎩⎨⎧-=+=+77049000603600b a b a 解得………………………………………………………………4分⎪⎩⎪⎨⎧=-=531001b a ∴桥拱所在抛物线的函数关系表达式是.………………5分x x y 5310012+-=(2)∵x x y 5310012+-=……………………………………………………7分().93010012+--=x ∴该函数的顶点为(30,9).……………………………………………………8分∵9+7=16.∴桥拱最高点到水面的距离是16米.…………………………………………9分21.解:(1)每件商品的售价每降价2元,每个星期的销售量可增加40件;每件商品的售价降了x 元.………………………………………………………………2分(2)设每件商品的定价为x 元,根据题意可列方程…………………………3分.………………………………………6分()60804026030040=⎪⎭⎫ ⎝⎛⨯-+-x x 整理,得x ²-115x+3304=0.……………………………………………………7分解得x 1=59,x 2=56.……………………………………………………………8分为了让每位顾客得到更大的实惠,所以x=59舍去.…………………………9分答:每件商品的定价为56元,每个星期的利润能达到6080元,且顾客能够得到更大的实惠.…………………………………………………………………10分22.(1)FG=EG.………………………………………………………………1分证明:∵△ABF 是由△ADE 顺时针方向旋转90°得到的,∴△ABF≌△ADE,………………………………………………………………2分∴AF=AE.………………………………………………………………3分∵AG⊥EF,∴FG=EG.………………………………4分(2)连接CG.……………………………5分∵四边形ABCD 是正方形,∴AD=CD,∠FCE=90°.……………………6分由(1)可知,FG=EG,∴CG=EF.………………………………7分21∵∠EAF=90°,∴AG=EF.………………………………8分21∴AG=CG.∵DG=DG,∴△ADG≌△CDG,………………………………………………………………9分∴∠ADG=∠CDG,即DG 平分∠ADC.…………………………………………10分(3)196………………………………………………………………………12分23.解:(1)当y=0时,.032-2=-x x 解得x 1=-1,x 2=3.∴点A(-1,0),B(3,0).……………………………………………………2分当x=0时,y=-3,∴点C(0,-3)……………………………………………………………………3分(2)如图,过点D 作DE⊥x 轴,垂足为E,并且交直线BC 于点F.过点C 作CH⊥DE,垂足为H.……………………4分设BC 的解析式为y=kx+b.把点B(3,0),点C(0,-3)代入,得,⎩⎨⎧-==+33b b k 解得k=1,b=-3.∴直线BC 的解析式为y=x-3.……………………5分设点D(m,m ²-2m-3),则点F(m,m-3).则DF=m-3-(m ²-2m-3)=-m ²+3m.……………6分∵S △BCD =S △CDF +S △BDF =×DF×CH+×DF×BE=×DF(CH+BE)=21212121ACDEFG∴S △BCD =(-m ²+3m)×3=-m ²+m.………………………………7分212329=-(m-)²+.(0<m<3)…………………………………………8分2323827∵-<0,∴当m=时,S △BCD 有最大值,S △BCD 的最大值为.………9分2123827(3)∵点B(3,0),点C(0,-3).∴OB=OC.∵∠BOC=90°,∴∠OBC=∠OCB=45°.设点D(m,m ²-2m-3).如图,当点D 在x 轴下方时,过点D 作DP⊥OB,垂足为P.∵∠DAB=∠ABC=45°,∠APD=90°.∴∠PDA=∠PAD,∴PA=PD.∴m-(-1)=-(m ²-2m-3).……………………10分解得m=2或m=-1(舍去).当m=2时,m ²-2m-3=-3.∴点D 坐标为(2,-3).…………………………11分如图,当点D 在x 轴上方时,过点D 作DQ⊥OB,垂足为Q.∵∠DAB=∠ABC=45°,∠AQD=90°.∴∠QDA=∠QAD,∴QA=QD.∴m-(-1)=m ²-2m-3.…………………………………………………………12分解得m=4或m=-1(舍去).当m=4时,m ²-2m-3=5.∴点D 坐标为(4,5).∴当∠DAB=∠ABC 时,点D(2,-3)或(4,5) (13)分。
九年级数学上册期中考试试卷及答案
专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3,b = 4,那么a² + b² 等于多少?A. 25B. 30C. 35D. 403. 下列哪个数是质数?A. 12B. 17C. 20D. 214. 如果一个三角形的两边分别是3和4,那么第三边的长度可能是多少?A. 1B. 4C. 6D. 75. 下列哪个数是无理数?A. √4B. √9C. √16D. √18二、判断题(每题1分,共5分)1. 任何偶数乘以偶数都是偶数。
()2. 任何奇数乘以奇数都是奇数。
()3. 0是一个自然数。
()4. 任何一个整数都可以分解为几个质数的乘积。
()5. 任何一个正整数都有因数1和它本身。
()三、填空题(每题1分,共5分)1. 一个等差数列的前三项分别是2,5,8,那么第四项是______。
2. 如果一个三角形的两边分别是5和12,那么第三边的长度不可能是______。
3. 下列哪个数是合数?______4. 下列哪个数是立方数?______5. 下列哪个数是平方数?______四、简答题(每题2分,共10分)1. 解释什么是等差数列。
2. 解释什么是等比数列。
3. 解释什么是质数。
4. 解释什么是合数。
5. 解释什么是无理数。
五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是3,7,11,求这个数列的公差。
2. 如果一个三角形的两边分别是6和8,那么第三边的长度可能是多少?3. 如果 a = 2,b = 3,那么a² + b² 等于多少?4. 如果一个数是12的倍数,那么这个数也一定是3的倍数吗?为什么?5. 如果一个数是9的倍数,那么这个数也一定是3的倍数吗?为什么?六、分析题(每题5分,共10分)1. 分析为什么0既不是正数也不是负数。
2. 分析为什么1既不是质数也不是合数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学第一学期期中考试试卷(考试时间:90分钟,满分100分) 成绩:一、选择题(本大题共10小题,每小题3分,共30分)每小题给出4个答案,其中只有一个是正确的,请把你选择的答案填入下表.1、一元二次方程01532=+-x x 的二次项系数、一次项系数和常数项分别是( ) A. 3 , 5 , 1 B. 3 , 5- , 1C. 3- , 5 , 1D. 3- , 5- , 1- 2、在ABC Rt ∆中,︒=∠90C ,那么BCAC是A ∠的( ) A .正弦 B .余弦 C .正切 D .余 切3、下列方程中,关于x 的一元二次方程是( ) A . )1(2)1(32+=+x x B.1112=+yx C. 0122=-+y x D. 1222-=+x x x4、某物体的三视图是如图所示的3个图形,那么该物体的形状是( ) A .长方体 B .圆锥体 C .立方体 D .圆柱体5、中央电视台的“幸运5 2”栏目中的“百宝箱”互动环节是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖.参与这个游戏的观众有3次翻牌的机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( )1113A ... .255620B C D 6、菱湖是全国著名的淡水鱼产地,某养鱼专业户为了估计他承包的鱼塘里有多少条鱼?假设这个塘里养的是同一种鱼X 先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼( )A .1600条B .1000条C .800条D .600条7、若M (-12 ,y 1),N (-14 ,y 2),P (12 ,y 3)三点都在函数xy 1=中的图象上,则y 1,y 2,y 3,的大小关系为( )A .y 2 >y 3>y 1B 、y 2>y 1>y 3C .y 3 >y 1>y 2D 、y 3>y 2>y 18、在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( ) A .小明的影子比小强的影子长 B .小明的影子比小强的影子短 C .小明的影子和小强的影子一样长 D .无法判断谁的影子长 9、若等于,则的一个根是方程n m n n mx x n +≠=++)0(02( )A .21- B. 1- C. 21D. 1班级: 姓名: 考号: 座位号:---------------------O ----------------------------O ----------------------------O ----------------------------O ----------------------------O -----------------------O --------- -- 封 线 内 不 要 答 题A BC九年级数学试卷 第1页 共8页九年级数学试卷 第2页 共8页10、函数y= kx 与y=kx+k 在同一坐标系的图象大致是图中的( )二、填空题(本大题共5小题,每小题3分,共15分) 。
请把你的答案填入下表。
11、某商场在“五一”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是 ; 12、某工厂调整内部管理机制,计划两年后使成本降低36%,以适应市场需求,若每年降低成本的百分数相同,设每年降低百分数为x ,则有方程: _; 13、反比例函数()0>=k xky 在第一象限内的图像如图,点M 是图像上一点,MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是 ;14、在AB C Rt ∆中,∠=∠Rt C ,2=BC ,23=tgB ,则=AC 。
15、按规律填空1、2、3、5、8、13、21、34、 .三、解答题(本大题有7题,共55分) 16、解下列方程组(每小题5分,共10分)(1)01422=--x x (5分)(2)23)23(+=+x x x (5分)17、计算: cos 245o +tan60o cos30o -3tan 230o +4sin 230o (6分)封 线 内 不 要 答 题 ---------------------O ----------------------------O ----------------------------O ----------------------------O ----------------------------O -----------------------O -----------九年级数学试卷 第3页 共8页九年级数学试卷 第4页 共8页18、如图是一条河,点A为对岸一棵大树,点B是该岸一根标杆,且AB与河岸大致垂直,现有如下器材:一个卷尺,若干根标杆,根据所学的数学知识,设计出一个测量A、B两点间距离的方案,在图上画出图形,写出测量方法。
(6分)19、如图2-l-20是某校初三年级部分学生做引体向上的成绩,进行整理后,分成五组画出的频率分布直方图,已知从左到右前四个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数是25,根据已知条件回答下列问题:(7分)⑴第五小组的频率是多少?⑵参加本次测试的学生总数是多少?⑶如果做20次以上为及格(包括20次),求此次测试及格的人数是多少?20、如图,已知测速站P到公路L的距离PO为40米,一辆汽车在公路L上行驶,测得此车从点A行驶到点B所用的时间为2秒,并测得∠APO=600,∠BPO=300,计算此车从A到B的平均速度为每秒多少米(结果保留四个有效数字),并判断此车是否超过了每秒22米的限制速度。
(8分)732.13LPA OB班级:姓名:考号:座位号:---------------------O----------------------------O----------------------------O----------------------------O----------------------------O-----------------------O-----------封线内不要答题九年级数学试卷第5页共8页九年级数学试卷第6页共8页21、某水果批发商场经销一种高档水果如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?(7分)22、若反比例函数xy6=与一次函数4-=mxy的图象都经过点A(a,2)(11分)(1)求点A的坐标;(3分)(2)求一次函数4-=mxy的解析式;(4分)(3)设O为坐标原点,若两个函数图像的另一个交点为B,求△AOB的面积。
(4分)封线内不要答题---------------------O----------------------------O----------------------------O----------------------------O----------------------------O-----------------------O-----------九年级数学试卷第7页共8页九年级数学试卷第8页共8页。