专题18 圆的对称性
《圆的对称性》精品 课件
•
二、抱歉啊,不能为你金戈铁马,也不 能许你 一世繁 华,不 过我能 给你一 个小家 ,里面 温了杯 暖茶。
•
三、从晨昏到日暮,从清贫到富足,从 少年到 老迈, 从相遇 到余生 ,只想 和你十 指相扣 ,从此 再不分 开。
•
四、你的名字,是我读过最短的情诗。 我很喜 欢你, 像春去 秋来, 海棠花 开。
•
三、从晨昏到日暮,从清贫到富足,从 少年到 老迈, 从相遇 到余生 ,只想 和你十 指相扣 ,从此 再不分 开。
•
四、你的名字,是我读过最短的情诗。 我很喜 欢你, 像春去 秋来, 海棠花 开。
•
五、秒回的人应该很温柔吧,因为一直 在等喜 欢的人 ,也舍 不得让 喜欢的 人等。
•
六、多想和你有一个长久的未来,陪你 走完这 一生。 让所有 人祝福 我们, 彼此温 暖,互 不辜负 。
(1)直径是弦(. √) (2)过圆心的线段是直径(. ×) (3)半圆是弧(. √) (4)两个半圆是等弧(. ×)
(5)面积不等的两圆不是等圆(. √) (6)长度相等的两条弧是等弧(. ×) 弧长 HG = 3.84 cm
H 弧长 FE = 3.84 cm
G
E
F
C
A
看一看
C
.O
A E B D
毕业八年的她被迫重返人才市场,但 彼时的 她与毕 业时相 比毫无 长进, 面试屡 屡碰壁 。
李尚龙曾说:
真正的安稳是历经世事后的淡薄,你 还没有 见过世 界,就 想隐退 山林, 到头来 只会是 井底之 蛙。”
人生如逆水行舟,不进则退。
•
优胜劣汰的世界里,你必须不断提升 自己的 价值。 一、放下大概就是这样,即使我们没在 一起, 我也会 好好的 ,谢谢 时间惊 艳了那 段有你 的记忆 ,也谢 谢现在 更努力 变好的 自己。
圆的对称性公开课获奖课件百校联赛一等奖课件
试一试你旳能力
一.判断下列说法是否正确:
1相等旳圆心角所正确弧相等。( ×)
2相等旳弧所正确弦相等。( √ )
3相等旳弦所正确弧相等。( ×) B
二.如图,⊙O中,AB=CD,
1
A
1 50, 则 2 5_0_o__ .
C
2O
D
你会做吗?
如图,在⊙O中,AC=BD,
1 45 ,求∠2旳度数。
1.请同学们将图沿着直径CD对折, 你能发觉什么结论?
·
在⊙O中,假如直径CD 弦AB,垂足为P,
那么弦AP BP、AD BD、AC=BC
结论:(垂径定理)
C
垂直于弦旳直径,
平分这条弦 而且平分弦所正确两条弧。
·O
P
在⊙O中,假如CD是直径, A
B
CD ΑΒ于P,
D
那么:AP=BP,
AD=BD,
AC=BC
1.如图,在⊙O中,A︵B=A︵C,∠B=70°.
求∠C度数.
(第 1 题)
(第 2 题)
2.如图,AB是直径ቤተ መጻሕፍቲ ባይዱB︵C=C︵D=D︵E,
∠BOC=40°,求∠AOE旳度数
1、如图,AB为⊙O旳直径,CD为弦,CD⊥AB于
E.则下列结论中错误旳是( C ).
A.∠COE=∠DOE B.CE=DE
假如 AOB=AOB 那么 AB=AB、
AB=AB
结论:
1.在同一种圆(或等圆)中,假如圆心角相等, 那么它所正确弧相等、所正确弦相等, 所正 确弦旳弦心距也相等。
2.在同一种圆(或等圆)中以,上假三如句弧话相如等没,那 么所所正正确确弦圆旳心弦角心距__相相____等等___、_。所有 中 会正在 , 成确同 这 立弦圆个吗或结?_相_等论_等_圆还__, 3.在同一种圆(或等圆)中,假如弦相等,那 么所正确圆心角_相__等__、所正确弧__相__等__,所 正确弦旳弦心距_相__等__。
圆的对称性PPT
(第一课时)
B
1
学习目标
• 理解并掌握:在同圆或等 圆中,如果两个圆心角、两条 弧、两条弦中有一组量相等, 那么其余各组量都分别相等。
B
2
自学指导
•认真阅读P47_P48例1的内容. 并思考下列问题:
1、圆是旋转对称图形吗?它的对称中心是 哪里? 2、你能填写课本P47页和P48页的空格吗? 3、你能完成与课本P48页例1相似的练习 吗?
相垂直的直径.
A
求证:A⌒B=B⌒C=C⌒D=D⌒A; B
AB=BC=CD=DA.
OD
分析
C
要想证明在圆里面有关弧、弦相等,
根据这节课所学的圆心角定理,应
先证明什么相等?
B
21
例 相垂如直图的,直径AC. 与BD为⊙O的两条互A
求证:A⌒B=B⌒C=C⌒D=D⌒A; B
AB=BC=CD=DA.
OD
B
24
• 圆的基本性质
• 1.弧、弦、弦心距与圆心角 之间的关系:
• 在同圆或等圆中,如果两个
圆心角、两条弧、两条弦、
两弦的弦心距中,有一组量
相等,那么它们所对应的其
余各组量也分别相等.
B
25
B
26
证明:
C ∵AC与BD为⊙O的两条互相垂直的直径,
∴∠AOB=∠BOC=∠COD=∠DOA=90º
∴
⌒ ⌒⌒ ⌒
AB=BC=CD=DA
AB=BC=CD=DA(圆心角定理)
B
22
∵把圆心角等分成功360份,则每一份的圆 心角是1º.同时整个圆也被分成了360份. 则每一份这样的弧叫做1º的弧.
这样,1º的圆心角对着1º的弧,
圆的轴对称性课件
圆的轴对称性的基本元素
圆
圆是一个闭合的曲线,由一系列 等距离于圆心的点组成。
对称轴
对称轴是一个直线,将圆分成两 个对称的部分。
对称中心
对称中心是指图形中心点关于对 称轴的镜像对称点。
圆的轴对称性的性质
性质一
对称轴上的任意两点,在旋转180度后仍然保持 重合。
性质三
通过使用圆的轴对称性,可以轻松地构建出美 丽而复杂的图形和图案。
3
数学与几何
圆的轴对称性是几何学中一个重要的概念,用于研究图形的对称性和相似性。
练习题和答案解析
1 题目一
如何判断一个图形是否具有圆的轴对称性?
2 答案一
如果一个图形可以沿着一条直线旋转180度后 与原图形重合,那么它具有圆的轴对称性。
3 题目二
请举例说明圆的轴对称性在日常生活中的应 用。
4 答案二
圆的轴对称性的特点
1 无限的对称轴
圆具有无数个对称轴,因为每条通过圆心的 直线都是它的对称轴。
2 完美的平衡
圆的轴对称性使得图形在旋转时能够保持完 美的平衡和和谐。
3 不变的形状
无论如何旋转圆,它的形状始终保持完全不 变。
4 多样化的图案
通过使用不同的对称轴和图案,可以创造出 各种美丽的圆形图案。
圆的轴对称性ppt课件
欢迎来到本次精彩的PPT课件!在这个课件中,我们将深入探讨圆的轴对称性, 了解它的定义、特点、基本元素、性质以及应用。通过练习题和答案解析, 巩固你的知识,并最终总结要点。让我们一起来领略圆的轴对称性的魅力吧!
什么是轴对称性?
轴对称性是指一个图形具有对称轴,当图形沿着这个轴旋转180度时,能够完全重合。
圆的轴对称性在日常生活中的应用包括对称 的艺术品、建筑结构的平衡设计,以及判断 图形的相似性等。
初三培优专题18 圆的对称性
AC
DB
(第 6 题图)
O
B
A
EC
DF
(第 7 题图)
A
E CP F D
B (第 8 题图)
7.如图,AB 为⊙O 的直径,CD 是弦.若 AB=10cm,CD=8cm,那么 A,B 两点到直线 CD 的距离之和
为( )
A.12cm
B.10cm
C.8cm
D.6cm
8.如图,半径为 2 的⊙O 中,弦 AB 与弦 CD 垂直相交于点 P,连结 OP.若 OP=1,求 AB2+CD2 的
AP
BE
C
O
F
D 图3
⑵ 如图 2,若弦 BC 经过半径 OA 的中点 E,F 是 C»D 的中点,G 是 F»B 的中点,⊙O 的半径为 1,求弦
FG 的长; ⑶ 如图 3,在⑵中若弦 BC 经过半径 OA 的中点 E,P 为劣弧上一动点,连结 PA,PB,PD,PF,求证:
PA PF
的定值.
PB PD
【例 4】如图,已知圆内接△ABC 中,AB>AC,D 为 B¼AC 的中点,DE⊥AB 于 E.求证:BD2-AD2=AB g
AC. (天津市竞赛试题)
解题思路:从化简待证式入手,将非常规几何问题的证明转化为常规几何题的证明. D A E C
B
圆是最简单的封闭曲线,但解决圆的问题还要用到直线形的有关知识和方法.同样,圆也为解决直线形
⑴如图 1,PA+PB= 3 PH;
⑵如图 2,PA+PB=PH;
⑶ 进 一 步 , 如 图 3 , 若 ∠ APB=α , PH 平 分 ∠ APB , 则 PA+PB=2PHcos 为 定
《圆的对称性》圆PPT课件教学课件
●O
垂足为M,OM=3,则CD= 8 .
5.在⊙O中,CD ⊥AB于M,AB为直径,若
CD=10,AM=1,则⊙O的半径是 13 .
B
3、过⊙O内一点M的最长弦长为10cm,最短弦长为
8cm,那么OM长为( )A.3 B.6cm C.41 cm D.9cm
4、如图,⊙O的直径为10,弦AB长为8,M是弦AB上
2
2
37. 4C
OD OC DC R 7.2.
7.2
在Rt△OAD中,由勾股定理,得
A
D
B
OA2 AD2 OD 2 , R
即R2 18.72 (R 7.2)2.
解得 R≈27.9(m) O
答:赵州石拱桥的桥拱半径约为
27.9m.
垂径定理的逆定理
如图,在下列五个条件中:
① CD是直径, ② CD⊥AB, ③
B
平分线就能把⌒AB平分.
作法:
1.连结AB;
2.作AB的垂直平分线CD,交⌒AB与点E; ∴点E就是所求A⌒B的中点.
变式一: 求弧AB的四等分点.
E
C
G
错在哪里?
M
N
P
1.作AB的垂直平分线CD
A
2.作AT、BT的垂直平分线 EF、GH
F
T
B
DH
强调:等分弧时一定要作弧所对的弦的垂
直平分线.
变式一: 求弧AB的四等分点.
求证:PO平分∠BPD
若把上题改为:P
B
C 是⊙O内一点,
E
直线APB,CPD
A 分别交⊙O于A、
P O
F
B和C、D,已知 AB=CD,
结论还成立吗?
《圆的对称性》PPT课件2
∴ AM=BM,
在下列图形中,你能否利用垂径定理找到相等的线段或相等的圆弧?
同步训练:
探究二:垂径定理的应用
例1:如图,以△OAB的顶点O为圆心的⊙O交AB于点C、D,且AC=BD。求证:OA=OB。
例2:如图,已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求⊙O的半径。
连接OA,OB,
则Байду номын сангаасA=OB.
∴AM=BM.
∴点A和点B关于CD对称.
∵⊙O关于直径CD对称,
∴当圆沿着直径CD对折时,点A与点B重合,
∵CD⊥AB于M
证明:
自主学习:
能不能试着利用构造等腰三角形得出上面的等量关系?
探究一:垂径定理的三种语言
定理 垂直于弦的直径平分弦以及弦所对的两条弧.
CD⊥AB,
E
探究二:垂径定理的应用
利用折叠的方法即可解决上述问题.
2、按下面的步骤做一做:1)拿出一张圆形纸片,把这个圆对折,使圆的两半部分重合.2)得到一条折痕CD.3)在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中,点M是两条折痕的交点,即垂足.4)将纸打开,新的折痕与圆交于另一点B,如上图.在上述的操作过程中,你发现了哪些相等的线段和相等的弧?它们为什么相等呢?
自主学习:
如图,小明的理由是:
连接OA,OB,
则OA=OB.
在Rt△OAM和Rt△OBM中,
∵OA=OB,OM=OM,
∴Rt△OAM≌Rt△OBM.
∴AM=BM.
∴点A和点B关于CD对称.
∵⊙O关于直径CD对称,
∴当圆沿着直径CD对折时,点A与点B重合,
自主学习:
专题18 圆的对称性——初中数学培优
专题18 圆的对称性阅读与思考圆是一个对称图形.首先,圆是一个轴对称图形,任意一条直径所在的直线都是它的对称轴,圆的对称轴有无数条;同时,圆又是一个中心对称图形,圆心就是对称中心,圆绕其圆心旋转任意角度,都能够与本身重合,这是圆特有的旋转不变性.由圆的对称性引出了许多重要的定理:垂径定理及推论;在同圆或等圆中,圆心角、圆周角、弦、弦心距、弧之间的关系定理及推论.这些性质在计算和证明线段相等、角相等、弧相等和弦相等等方面有广泛的应有.一般方法是通过作辅助线构造直角三角形,常与勾股定理和解直角三角形相结合使用.熟悉以下基本图形和以上基本结论.我国战国时期科学家墨翟在《墨经》中写道:“圆,一中间长也.”古代的美索不达米亚人最先开始制造圆轮.日、月、果实、圆木、车轮,人类认识圆、利用圆,圆的图形在人类文明的发展史上打下了深深的烙印.例题与求解【例1】在半径为1的⊙O 中,弦AB ,ACBAC 度数为_______. (黑龙江省中考试题)解题思路:作出辅助线,解直角三角形,注AB 与AC 有不同位置关系.由于对称性是圆的基本特性,因此,在解决圆的问题时,若把对称性充分体现出来,有利于圆的问题的解决.【例2】如图,在三个等圆上各自有一条劣弧AB ,D C ,EF .如果AB +D C =EF ,那么AB +CD 与EF 的大小关系是()A .AB +CD =EF B .AB +CD >EFC .AB +CD <EFD .AB +CD 与EF 的大小关系不能确定(江苏省竞赛试题)解题思路:将弧与弦的关系及三角形的性质结合起来思考.ABCD【例3】⑴ 如图1,已知多边形ABDEC 是由边长为2的等边三角形ABC 和正方形BDEC 组成, ⊙O 过A ,D ,E 三点,求⊙O 的半径.⑵ 如图2,若多边形ABDEC 是由等腰△ABC 和矩形BDEC 组成,AB =AC =BD =2,⊙O 过A ,D ,E 三点,问⊙O 的半径是否改变?(《时代学习报》数学文化节试题)解题思路:对于⑴,给出不同解法;对于⑵,⊙的半径不改变,解法类似⑴.等边三角形、正方形、圆是平面几何图形中最完美的图形,本例表明这三个完美的图形能合成一个从形式到结果依然完美的图形.三个完美图形的不同组合可生成新的问题,同学们可参照刻意练习.【例4】如图,已知圆内接△ABC 中,AB >AC ,D 为BAC 的中点,DE ⊥AB 于E .求证:BD 2-AD 2=AB AC .(天津市竞赛试题) 解题思路:从化简待证式入手,将非常规几何问题的证明转化为常规几何题的证明.圆是最简单的封闭曲线,但解决圆的问题还要用到直线形的有关知识和方法.同样,圆也为解决直线形问题提供了新的途径和方法,善于促成同圆或等圆中的弦、弦心距、弧、圆周角、圆心角之间相等或不等关系的互相转化,是解圆相关问题的重要技巧.A BCDE图1图2【例5】在△ABC 中,M 是AB 上一点,且AM 2+BM 2+CM 2=2AM +2BM +2CM -3.若P 是线段AC 上的一个动点,⊙O 是过P ,M ,C 三点的圆,过P 作PD ∥AB 交⊙O 于点D .⑴ 求证:M 是AB 的中点;⑵ 求PD 的长. (江苏省竞赛试题)解题思路:对于⑴,运用配方法求出AM ,BM ,CM 的长,由线段长确定直线位置关系;对于⑵,促成圆周角与弧、弦之间的转化.【例6】已知AD 是⊙O 的直径,AB ,AC 是弦,且AB =AC .⑴ 如图1,求证:直径AD 平分∠BAC ;⑵ 如图2,若弦BC 经过半径OA 的中点E ,F 是CD 的中点,G 是FB 的中点,⊙O 的半径为1,求弦FG 的长;⑶ 如图3,在⑵中若弦BC 经过半径OA 的中点E ,P 为劣弧上一动点,连结P A ,PB ,PD ,PF ,求证:PA PFPB PD++的定值.(武汉市调考试题)解题思路:对于⑶,先证明∠BP A =∠DPF =300,∠BPD =600,这是解题的基础,由此可导出下列解题突破口的不同思路:①由∠BP A ==∠DPF =300,构建直角三角形;②构造P A +PF ,PB +PD 相关线段;③取BD 的中点M ,连结PM ,联想常规命题;等等.本例实质是借用了下列问题:⑴如图1,P A +PB; ⑵如图2,P A +PB =PH ;⑶进一步,如图3,若∠APB =α,PH 平分∠APB ,则P A +PB =2PHc o s2α为定值.图1A 600300300PHB PABH600 图2 PABH 图3C图1图2 图3能力训练A 级1.圆的半径为5cm ,其内接梯形的两底分别为6cm 和8cm ,则梯形的面积为_______cm 2.2.如图,残破的轮片上,弓形的弦AB 长是40cm ,高CD 是5cm ,原轮片的直径是________cm .第3题图第2题图A3.如图,已知CD 为半圆的直径,AB ⊥CD 于B .设∠AOB =α,则BA BD ta n 2=_________. (黑龙江省中考试题)4.如图,在Rt △ABC 中,∠C=900,AC BC =1,若BC =1,若以C 为圆心,CB 的长为半径的圆交AB 于P ,则AP =___________. (江苏省宿迁市中考试题)5.如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA —AB —BO 的路径运动一周.设OP 长为s ,运动时间为t ,则下列图形能大致地刻画s 与t之间的关系是( )(太原市中考试题)6.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C ,D 两点,AB =10cm ,CD =6cm ,那么AC 的长为( )A .0.5c mB .1c mC .1.5c mD .2c m7.如图,AB 为⊙O 的直径,CD 是弦.若AB =10cm ,CD =8cm ,那么A ,B 两点到直线CD 的距离之和为( )A .12cmB .10cmC .8cmD .6cmtttOAE CD FBABC DF EP (第6题图)(第4题图)(第7题图)(第8题图)8.如图,半径为2的⊙O中,弦AB与弦CD垂直相交于点P,连结OP.若OP=1,求AB2+CD2的值.(黑龙江省竞赛试题)9.如图,AM是⊙O的直径,过⊙O上一点B作BN⊥AM于N,其延长线交⊙O于点C,弦CD交AM于点E.⑴如果CD⊥AB,求证:EN=NM;⑵如果弦CD交AB于点F,且CD=AB,求证:CE2=EF•ED;⑶如果弦CD,AB的延长线交于点F,且CD=AB,那么⑵的结论是否仍成立?若成立,请证明;若不成立,请说明理由.(重庆市中考试题)10.如图,⊙O的内接四边形ABMC中,AB>AC,M是BC的中点,MH⊥AB于点H.求证:BH=1 2(AB-AC).(河南省竞赛试题)11.⑴如图1,圆内接△ABC中,AB=BC=CA,OD,OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G.求证:阴影部分四边形OFCG的面积是△ABC面积的13.⑵如图2,若∠DOE保持0120角度不变,求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的13.AB CDOEFM(第9题图)AHB MC(第10题图)图2图1ADA12.如图,正方形ABCD 的顶点A ,D 和正方形JKLM 的顶点K ,L 在一个以5为半径的⊙O 上,点J ,M 在线段BC 上.若正方形ABCD 的边长为6,求正方形JKLM 的边长.(上海市竞赛试题)B 级1.如图,AB 是⊙O 的直径,CD 是弦,过A ,B 两点作CD 的垂线,垂足分别为E ,F .若AB =10,AE =3,BF =5,则EC =__________.2.如图,把正三角形ABC 的外接圆对折,使点A 落在BC 的中点A ′上,若BC =5,则折痕在△ABC 内的部分DE 长为________. (宁波市中考试题)3.如图,已知⊙O 的半径为R ,C ,D 是直径AB 同侧圆周上的两点,AC 的度数为960,BD 的度数为360.动点P 在AB 上,则CP +PD 的最小值为__________.(陕西省竞赛试题)O A E CD FBABCDE A ′ABCDPO (第1题图)(第2题图)(第3题图)A D CB NOJ M K L(第12题图)4.如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径是( ) AB.2C .54D5.如图,AB 是半圆O 的直径,C 是半圆圆周上一点,M 是AC 的中点,MN ⊥AB 于N ,则有()A .MN =12AC B .MN=2AC C .MN =35AC D .MN(武汉市选拔赛试题)第4题图第5题图A O6.已知,AB 为⊙O 的直径,D 为AC 的中点,DE ⊥AB 于点E ,且DE =3.求AC 的长度.7.如图,已知四边形ABCD 内接于直径为3的⊙O ;对角线AC 是直径,对角线AC 和BD 的交点为P ,AB =BD ,且PC =0.6,求四边形ABCD 的周长.(全国初中数学联赛试题)AD O BE GFN ACBDO P(第7题图)(第6题图)C8.如图,已知点A ,B ,C ,D 顺次在⊙O 上,AB BD =,BM ⊥AC 于M .求证:AM =DC +CM .(江苏省竞赛试题)9.如图,在直角坐体系中,点B ,C 在x 轴的负半轴上,点A 在y 轴的负半轴上,以AC 为直径的圆与AB 的延长线交于点D ,CD AO =,如果AB =10,AO >BO ,且AO ,BO 是x 的二次方程0482=++kx x 的两个根.⑴ 求点D 的坐标;⑵ 若点P 在直径AC 上,且AP =14AC ,判断点(-2,10)是否在过D ,P 两点的直线上,并说明理由. (河南省中考试题)10.⑴如图1,已知P A ,PB 为⊙O 的弦,C 是劣弧AB 的中点,直线CD ⊥P A 于点E ,求证:AE =PE +PB . ⑵如图2,已知P A ,PB 为⊙O 的弦,C 是优弧AB 的中点,直线CD ⊥P A 于点E ,问:AE ,PE 与PB 之间存在怎样的等量关系?写出并证明你的结论.x(第9题图)ABC D O M (第8题图)A图1CPBDEO A图2C PB D EO11.如图,已知弦CD 垂直于⊙O 的直径AB 于L ,弦AE 平分半径OC 于H .求证:弦DE 平分弦BC 于M . (全俄奥林匹克竞赛试题)12.如图,在△ABC 中,D 为AC 边上一点,且AD =DC +CB ,过D 作AC 的垂线交△ABC 的外接圆于M ,过M 作AB 的垂线MN ,交圆于N .求证:MN 为△ABC 外接圆的直径.专题18 圆的对称性 例1 15°或75° 提示:分AB 、AC 在圆心O 同侧、异侧两种情况讨论.例2 B例3 (1)解法一:如图,将正方形BDEC 上的等边△ABC 向下平移,使其底边与DE 重合,得等边△ODE .∵A 、B 、C 的对应点是O 、D 、E ,∴OD =AB ,OE =AC ,AO =BD .∵等边△ABC 和正方形BDEC 的边长都是2,∴AB =BD =AC =2,∴OD =OA =OE =2.∵A 、D 、E 三点确定一圆,O 到A 、D 、E 三点的距离相等.∴O 点为圆心,OA 为半径,∴该圆的半径为2.解法二:如图,将△ABC 平移到△ODE 位置,并作AF ⊥BC ,垂足为F ,延长交DE 于H .∵△ABC 为等边三角形,∴AF 垂直平分BC ,∵四边形BDEC 为正方形,∴AH 垂直平分正方形边DE .又∵DE 是圆的弦,∴AH 必过圆心,记圆心为O 点,并设⊙O 的半径为r .在Rt △ABF 中,∵∠BAF =30°,∴AF =AB ·cos 30°=OH =AF +FH -OA2-r .在Rt △ODH 中,OH 2+DH 2=OD 2,∴2r -)2+12=r 2,解得r =2. (2)⊙O 的半径不变,因为AB =AC =BD =2,此题求法和(1)一样,⊙O 的半径为2.例4 提示:BD 2-AD 2=(BE 2+ED 2)-(AE 2+ED 2)=(BE +AE )(BE -AE )=AB (BE -AE ),只需要证明AC =BE -AE 即可.在BA 上截取BF =AC .连DF 可证明△DBF ≌△DCA ,则DF =AD ,AE =EF . 例5 (1)由条件,得(AM -1)2+(BM -1)2+(CM -1)2=0,∴AM =BM =CM =1.因此,M 是AB 中点,且∠ACB =90°. (2)由(1)知,∠A =∠PCM ,又PD ∥AB ,∴∠A =∠CPD ,∠PCM =∠CPD ,因此,,CD PM CPM DCP ==,于是有DP =CM =1.例6 (1)连结BD 、CD ,∵AD 是直径,所以∠ABD =∠ACD =90°,又∵AB =AC ,AD =AD ,∴△ABD ≌△ACD ,∴∠BAD =∠DAC ,∴AD 平分∠BAC .(2)连结OB 、OC ,则OA ⊥BC ,又AE =OE ,得ABAC O LE BDMH(第11题图)AC M N ODB(第12题图)=BO =OA =OC ,△AOB ,△AOC 都为等边三角形,连结OG ,则∠GOF =90°,FG (3)取BD 的中点M ,过M 作MS ⊥P A 于S ,MT ⊥PF 于T ,连AM ,FM .∠BPM =∠DPM =30°,∠APM =∠FPM =60°,则MS =MT ,MA =MF ,Rt △ASM ≌Rt △FTM ,Rt △PMS ≌Rt △PMF .∴PS =12PM .∴P A+PF =2PS =2PT =PM .同理可证:PB +PD .∴PA PF PB PD +==+为定值.A 级 1.49或7 2.85 3.1 4 5.C 6.D 7.D 8.过O 点作OE ⊥AB 于E ,OF ⊥CD 于F ,连结OD ,OA ,则AE =BE ,CF =DF ,∵OE 2=AO 2-AE 2=(4214AB -),OF 2=OD 2-FD 2=414-CD 2,∴OE 2+OF 2=(4214AB -)+(4214CD -)=PF 2+OF 2=OP 2=12,即4214AB -+4214CD -=1,故AB 2+CD 2=28.得x 1=-3(舍去),x 2=75,∴正方形JKLM 的边长为145..26-3 提示:作OM ⊥CD 于M ,则EC =12(EF -CD). 2.103 3.3R 提示:设D'是D 点关于直径AB 对称的点,连结CD'交AB 于P ,则P 点使CP +PD 最小,∠COD'=120°,CP +PD =CP +PD'=CD'=3R. 4.D 提示:如图:,得⎩⎪⎨⎪⎧a 2+12=r 2(2-a)2+(12)2=r 2 ,解得a =1316,r =51716 5.A 提示:连结OM ,则OM ⊥AC.6.解法一:连结OD 交AC 于点F ,∵D 为⌒AC 的中点,∴AC ⊥OD ,AF =CF.又DE ⊥AB ,∴∠DEO =∠AFO.∴△ODE ≌△OAF.∴AF =DE.∵DE =3∴AC =6.解法二:延长DE 交⊙O 于点G ,易证⌒AC =2⌒AD =⌒AD +⌒AG =⌒DG ,则DG =AC =2DE =6.7.连结BO 并延长交AD 于H ,因AB =BD ,故BH ⊥AD ,又∠ADC =90°,则BH ∥CD ,从而△OPB ∽△CPD ,得CD BO =CP PO ,即CD 1.5=0.61.5-0.6,解得CD =1.于是AD =AC 2-CD 2=22,又OH =12CD =12,则AB =AH 2+BH 2=2+4=6,BC =AC 2-AB 2=9-6= 3.∴四边形ABCD 的周长为1+22+3+ 6.8.提示:延长DC 至N ,使CN =CM ,连结BN ,则∠BCN =∠BAD =∠BDA =∠BCA ,可证得△BCN ≌△BCM ,Rt △BAM ≌Rt △BDN.9.⑴AO =8,BO =6,AB =BC =10,AD =CO =16,DB =AD -AB =6,过D 作DE ⊥BC 于E ,由Rt △DEB ∽Rt △AOB ,得DE =245,BE =185,EO =6+185=485.∴D(-485,245).⑵A(0,-8),C(-16,0),P(-4,-6),经过D ,P 两点的直线为y =-2714x -967,点(2,-10)不在直线DP 上.10.⑴在AE 上截取AF =BP ,连结AC ,BC ,FC ,PC ,可证明△CAF ≌△CBP ,CF =CP.又CD ⊥PA ,则PE =FE ,故AE =PB +PE.⑵AE =PE -PB ,在PE 上截取PF =PB ,连结AC ,BC ,FC ,PC ,可证明△CPF ≌△CPB ,CF =CB =CA.又CD ⊥AP ,则FE =AE ,故AE =PE -PB.11.连结BD ,∠CBA =∠DBA ,CB =BD ,由∠AOC =∠CBD ,∠A =∠BDE ,得△AOH ∽△DBM ,∴OH OA=BMBD=12,即BM=12BC.12.延长AC至点E,使CE=BC,连结MA,MB,ME,BE.∵AD=DC+BC=DC+CE=DE,又MD ⊥AE,∴MA=ME,∠MAE=∠MEA.∵∠MAE=∠MBC,,又由CE=BC得∠CEB=∠CBE,∴∠MEB=∠MBE,得MA=ME=MB,即M为优弧⌒AB的中点,而MN⊥AB,∴MN是⊙O的直径.。
圆的对称性课件
总结
知2-讲
本题考查了对弧、弦、圆心角之间的关系的理解,对于 圆中的一些易混易错结论应结合图形来解答.特别要注 意:看是否有“在同圆或等圆中”这个前提条件.
知2-讲
例3 如图, AB,DE是⊙O的直径,C是⊙O上的一点,且 AD=CE . BE与CE的大小有什么关系?为什么?
解:BE=CE. 理由是 ∵ ∠AOD=∠BOE, ∴ AD=BE . 又∵ AD=CE, ∴ BE=CE . ∴ BE=CE.
图形的个数是( )
A.2个
B.3个
C.4个
D.5个
知1-练
3 下列说法中,不正确的是( ) A.圆既是轴对称图形,又是中心对称图形 B.圆绕着它的圆心旋转任意角度,都能与自身重合 C.圆的对称轴有无数条,对称中心只有一个 D.圆的每一条直径都是它的对称轴
知识点 2 圆心角、弧、弦之间的关系
知2-导
总结
知1-讲
将一个图形绕一个定点旋转时, 具有下列特性:一 是旋转角度、方向相同,二是图形的形状、大小保持 不变,因此本题圆中变换位置前后对应的弧、角、线 段都相等.
知1-练
1 (202X·徐州)下列图案中,是轴对称图X·凉山州)在线段、平行四边形、矩形、等腰三角 形、圆这几个图形中,既是轴对称图形又是中心对称
知2-讲
要点精析:(1)上述三种关系成立的前提条件是“在同圆 或等圆中”,否则不成立.
(2)由于一条弦对着两条弧,“弦相等,所对的弧相等”中 的“弧相等”指的是“劣弧相等”或“优弧相等”.
拓展:(1)弦心距:圆心到圆的一条弦的距离叫做弦心距. 弦与弦心距的关系:在同一个圆中,两条弦相等,则它 们的弦心距相等,反之亦成立;在同一个圆中,弦越长, 则其弦心距越小.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题18 圆的对称性阅读与思考圆是一个对称图形.首先,圆是一个轴对称图形,任意一条直径所在的直线都是它的对称轴,圆的对称轴有无数条;同时,圆又是一个中心对称图形,圆心就是对称中心,圆绕其圆心旋转任意角度,都能够与本身重合,这是圆特有的旋转不变性.由圆的对称性引出了许多重要的定理:垂径定理及推论;在同圆或等圆中,圆心角、圆周角、弦、弦心距、弧之间的关系定理及推论.这些性质在计算和证明线段相等、角相等、弧相等和弦相等等方面有广泛的应有.一般方法是通过作辅助线构造直角三角形,常与勾股定理和解直角三角形相结合使用.熟悉以下基本图形和以上基本结论.我国战国时期科学家墨翟在《墨经》中写道:“圆,一中间长也.”古代的美索不达米亚人最先开始制造圆轮.日、月、果实、圆木、车轮,人类认识圆、利用圆,圆的图形在人类文明的发展史上打下了深深的烙印.例题与求解【例1】在半径为1的⊙O中,弦AB,AC BAC度数为_______.(黑龙江省中考试题)解题思路:作出辅助线,解直角三角形,注AB与AC有不同位置关系.由于对称性是圆的基本特性,因此,在解决圆的问题时,若把对称性充分体现出来,有利于圆的问题的解决.【例2】如图,在三个等圆上各自有一条劣弧AB ,D C ,EF .如果AB +D C =EF ,那么AB +CD 与EF 的大小关系是()A .AB +CD =EF B .AB +CD >EFC .AB +CD <EFD .AB +CD 与EF 的大小关系不能确定(江苏省竞赛试题)解题思路:将弧与弦的关系及三角形的性质结合起来思考.【例3】⑴ 如图1,已知多边形ABDEC 是由边长为2的等边三角形ABC 和正方形BDEC 组成, ⊙O 过A ,D ,E 三点,求⊙O 的半径.⑵ 如图2,若多边形ABDEC 是由等腰△ABC 和矩形BDEC 组成,AB =AC =BD =2,⊙O 过A ,D ,E 三点,问⊙O 的半径是否改变?(《时代学习报》数学文化节试题)ABCD解题思路:对于⑴,给出不同解法;对于⑵,⊙的半径不改变,解法类似⑴.等边三角形、正方形、圆是平面几何图形中最完美的图形,本例表明这三个完美的图形能合成一个从形式到结果依然完美的图形.三个完美图形的不同组合可生成新的问题,同学们可参照刻意练习.【例4】如图,已知圆内接△ABC中,AB>AC,D为BAC的中点,DE⊥AB于E.求证:BD2-AD2=AB AC.(天津市竞赛试题)解题思路:从化简待证式入手,将非常规几何问题的证明转化为常规几何题的证明.AB CDE 图1 图2圆是最简单的封闭曲线,但解决圆的问题还要用到直线形的有关知识和方法.同样,圆也为解决直线形问题提供了新的途径和方法,善于促成同圆或等圆中的弦、弦心距、弧、圆周角、圆心角之间相等或不等关系的互相转化,是解圆相关问题的重要技巧.【例5】在△ABC中,M是AB上一点,且AM2+BM2+CM2=2AM+2BM+2CM-3.若P是线段AC 上的一个动点,⊙O是过P,M,C三点的圆,过P作PD∥AB交⊙O于点D.⑴求证:M是AB的中点;⑵求PD的长.(江苏省竞赛试题)解题思路:对于⑴,运用配方法求出AM,BM,CM的长,由线段长确定直线位置关系;对于⑵,促成圆周角与弧、弦之间的转化.【例6】已知AD是⊙O的直径,AB,AC是弦,且AB=AC.⑴ 如图1,求证:直径AD 平分∠BAC ;⑵ 如图2,若弦BC 经过半径OA 的中点E ,F 是CD 的中点,G 是FB 的中点,⊙O 的半径为1,求弦FG 的长;⑶ 如图3,在⑵中若弦BC 经过半径OA 的中点E ,P 为劣弧上一动点,连结P A ,PB ,PD ,PF ,求证:PA PFPB PD++的定值.(武汉市调考试题)解题思路:对于⑶,先证明∠BP A =∠DPF =300,∠BPD =600,这是解题的基础,由此可导出下列解题突破口的不同思路:①由∠BP A ==∠DPF =300,构建直角三角形;②构造P A +PF ,PB +PD 相关线段;③取BD 的中点M ,连结PM ,联想常规命题;等等.本例实质是借用了下列问题:⑴如图1,P A +PB; ⑵如图2,P A +PB =PH ;⑶进一步,如图3,若∠APB =α,PH 平分∠APB ,则P A +PB =2PHc o s2α为定值.能力训练A 级1.圆的半径为5cm ,其内接梯形的两底分别为6cm 和8cm ,则梯形的面积为_______cm 2. 2.如图,残破的轮片上,弓形的弦AB 长是40cm ,高CD 是5cm ,原轮片的直径是________cm .图1A 600300300PHB PABH600 图2 PABH 图3C图1图2图3第3题图第2题图A3.如图,已知CD 为半圆的直径,AB ⊥CD 于B .设∠AOB =α,则BA BD ta n 2=_________. (黑龙江省中考试题)4.如图,在Rt △ABC 中,∠C=900,AC BC =1,若BC =1,若以C 为圆心,CB 的长为半径的圆交AB 于P ,则AP =___________. (江苏省宿迁市中考试题)5.如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA —AB —BO 的路径运动一周.设OP 长为s ,运动时间为t ,则下列图形能大致地刻画s 与t 之间的关系是( )(太原市中考试题)6.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C ,D 两点,AB =10cm ,CD =6cm ,那么AC 的长为( )A .0.5c mB .1c mC .1.5c mD .2c m7.如图,AB 为⊙O 的直径,CD 是弦.若AB =10cm ,CD =8cm ,那么A ,B 两点到直线CD 的距离之和为()tttOAE CD FBABC DF EP (第6题图)(第4题图)(第7题图)(第8题图)A.12cm B.10cm C.8cm D.6cm8.如图,半径为2的⊙O中,弦AB与弦CD垂直相交于点P,连结OP.若OP=1,求AB2+CD2的值.(黑龙江省竞赛试题)9.如图,AM是⊙O的直径,过⊙O上一点B作BN⊥AM于N,其延长线交⊙O于点C,弦CD交AM于点E.⑴如果CD⊥AB,求证:EN=NM;⑵如果弦CD交AB于点F,且CD=AB,求证:CE2=EF•ED;⑶如果弦CD,AB的延长线交于点F,且CD=AB,那么⑵的结论是否仍成立?若成立,请证明;若不成立,请说明理由.(重庆市中考试题)10.如图,⊙O 的内接四边形ABMC 中,AB >AC ,M 是BC 的中点,MH ⊥AB 于点H .求证:BH =12(AB -AC ).(河南省竞赛试题)11.⑴如图1,圆内接△ABC 中,AB =BC =CA ,OD ,OE 为⊙O 的半径,OD ⊥BC 于点F ,OE ⊥AC 于点G .求证:阴影部分四边形OFCG 的面积是△ABC 面积的13. ⑵如图2,若∠DOE 保持0120角度不变,求证:当∠DOE 绕着O 点旋转时,由两条半径和△ABC 的两条边围成的图形(图中阴影部分)面积始终是△ABC 的面积的13. 图2图1DAB CD OE F M(第9题图)AH BMC(第10题图)12.如图,正方形ABCD 的顶点A ,D 和正方形JKLM 的顶点K ,L 在一个以5为半径的⊙O 上,点J ,M 在线段BC 上.若正方形ABCD 的边长为6,求正方形JKLM 的边长.(上海市竞赛试题)B 级1.如图,AB 是⊙O 的直径,CD 是弦,过A ,B 两点作CD 的垂线,垂足分别为E ,F .若AB =10,AE =3,BF =5,则EC =__________.2.如图,把正三角形ABC 的外接圆对折,使点A 落在BC 的中点A ′上,若BC =5,则折痕在△ABC 内的部分DE 长为________. (宁波市中考试题)3.如图,已知⊙O 的半径为R ,C ,D 是直径AB 同侧圆周上的两点,AC 的度数为960,BD 的度数为360.动点P 在AB 上,则CP +PD 的最小值为__________.(陕西省竞赛试题)4.如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径是( )O AE CD FBABCDE A ′ABCDPO (第1题图)(第2题图)(第3题图)A D CB NOJ M KL(第12题图)ABC .54D5.如图,AB 是半圆O 的直径,C 是半圆圆周上一点,M 是AC 的中点,MN ⊥AB 于N ,则有()A .MN =12AC B .MN=2AC C .MN =35AC D .MN(武汉市选拔赛试题)第4题图第5题图A C6.已知,AB 为⊙O 的直径,D 为AC 的中点,DE ⊥AB 于点E ,且DE =3.求AC 的长度.7.如图,已知四边形ABCD 内接于直径为3的⊙O ;对角线AC 是直径,对角线AC 和BD 的交点为P ,AB =BD ,且PC =0.6,求四边形ABCD 的周长.AD O BE GFN ACBDO P(第7题图)(第6题图)C(全国初中数学联赛试题)8.如图,已知点A ,B ,C ,D 顺次在⊙O 上,AB BD =,BM ⊥AC 于M .求证:AM =DC +CM .(江苏省竞赛试题)9.如图,在直角坐体系中,点B ,C 在x 轴的负半轴上,点A 在y 轴的负半轴上,以AC 为直径的圆与AB 的延长线交于点D ,CD AO =,如果AB =10,AO >BO ,且AO ,BO 是x 的二次方程0482=++kx x ABC D OM (第8题图)的两个根.⑴ 求点D 的坐标;⑵ 若点P 在直径AC 上,且AP =14AC ,判断点(-2,10)是否在过D ,P 两点的直线上,并说明理由. (河南省中考试题)10.⑴如图1,已知P A ,PB 为⊙O 的弦,C 是劣弧AB 的中点,直线CD ⊥P A 于点E ,求证:AE =PE +PB . ⑵如图2,已知P A ,PB 为⊙O 的弦,C 是优弧AB 的中点,直线CD ⊥P A 于点E ,问:AE ,PE 与PB 之间存在怎样的等量关系?写出并证明你的结论.11.如图,已知弦CD 垂直于⊙O 的直径AB 于L ,弦AE 平分半径OC 于H .求证:弦DE 平分弦BC 于M . (全俄奥林匹克竞赛试题)x(第9题图)A图1CPBDEO A图2C PB D EO12.如图,在△ABC 中,D 为AC 边上一点,且AD =DC +CB ,过D 作AC 的垂线交△ABC 的外接圆于M ,过M 作AB 的垂线MN ,交圆于N .求证:MN 为△ABC 外接圆的直径.AC O LE BDMH(第11题图)AC MN OD B(第12题图)。