2010年上海市青浦区中考数学二模卷及答案(无水印)

合集下载

2010年上海市中考数学二模卷及答案

2010年上海市中考数学二模卷及答案

中考数学一.选择题(本大题共10个小题,每小题4分,共40分)1.-2的相反数是 ( ) (A )1/2 (B )-1/2 (C )-2 (D )22.如果t>0,那么a+t 与a 的大小关系是 ( )(A )a+t >a (B )a+t <a (C )a+t ≥a (D )不能确定 3.若∠A =34°,则∠A 的余角的度数为 ( )(A )54° (B )56° (C )146° (D )66° 4.下列交通标志图中,属于轴对称图形的是 ( )5.△ABC 中,∠C =90°,BC =5,AB =13,则sin A 的值是 ( )(A )135 (B )1312 (C )125 (D )5126.如果两圆的半径长分别为2cm 和5cm ,圆心距为8cm ,那么这两个圆的位置关系是( )(A )内切 (B )外切 (C )相交 (D )外离7.下列调查,比较容易用普查方式的是 ( ) (A )了解嘉兴市居民年人均收入 (B )了解嘉兴市初中生体育中考的成绩 (C )了解嘉兴市中小学生的近视率 (D )了解某一天离开嘉兴市的人口流量8.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下 ( ) (A )小明的影子比小强的影子长 (B )小明的影长比小强的影子短 (C )小明的影子和小强的影子一样长 (D )无法判断谁的影子长9.图1所示的电路的总电阻为10Ω,若R 1=2R 2,则R 1,R 2( )(A)R 1=30Ω,R 2=15Ω (B )R 1=203Ω,R 2=103Ω(C )R 1=15Ω,R 2=30Ω (D )R 1=103Ω,R 2=203Ω10.若用(1)、(2)、(3)、(4)四幅图象分别表示变量之间的关系, ( )(1) (2) (3) (4) 请按图象所给顺序,将下面的(a )、(b )、(c )、(d )对应排序 (a )小车从光滑的斜面上滑下(小车的速度与时间的关系)(b )一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物的重量的关系) (c )运动员推出去的铅球(铅球的高度与时间的关系)(d )小杨从A 到B 后,停留一段时间,然后按原速度返回(路程与时间的关系)正确的顺序是 ( ). A.(c )(d )(b )(a ) B.(a )(b )(c )(d ) C.(b )(c )(a )(d ) D.(d )(a )(c )(b )图1二.填空题(每小题5分,共30分)11.函数y=3-x 中自变量x 的取值范围是 。

2010年上海数学各区二模试卷填空选择部分答案

2010年上海数学各区二模试卷填空选择部分答案

2010年上海各区二模试卷答案填空选择部分 奉贤区:一 、选择题:(本大题共8题,满分24分)1.D ; 2.B ; 3.A ; 4.B ; 5.D ; 6.D ; 二、填空题:(本大题共12题,满分48分)7.2±; 8.)2)(22-+m m (1; 9.4; 10.0=x ; 11.3-; 12.1=y ; 13.201; 14.面ABFE 和面DCGH ; 15.1︰4; 16.21; 17.6; 18.10或310; 虹口区:一、选择题:(本大题共6题,满分24分)1.C ; 2.C ; 3.D ; 4.B ; 5.D ;6.D . 二、填空题:(本大题共12题,满分48分)7.21x - ; 8.1; 9.2x =-; 10.1x ≠;11.增大; 12.(1,2)--; 13.23200(1)2500x -=; 14.13; 15.70°; 16.1:2; 17.24; 18.25或23.黄浦区:一、选择题1、D ;2、B ;3、D ;4、C ;5、B ;6、A .二、填空题7、1-x ; 8、x ≤-1<2; 9、()()11-+++y x y x ; 10、2±;11、21; 12、()7,2-; 13、0,12; 14、2-; 15、132; 16、3232+; 17、6; 18、0.8.金山区:一.选择题:(本大题共6题,满分24分)1. B ; 2.B ; 3.C ; 4.A ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分)7.()2x x -; 8.3a =-; 9.略; 10.1x ≠; 11.6a b -;12.18; 13.8; 14.110°; 15.1∶16;16. 17.略; 18.1。

静安区:一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.B ; 3.D ; 4.D ; 5.A ; 6.A . 二.填空题:(本大题共12题,满分48分) 7.2; 8.253+; 9.2=x ; 10.43,43-=-=-y x y x ; 11.32≤a ; 12.x y 45=; 13.94; 14.BF ; 15.163; 16.2--; 17.31; 18.37π. 卢湾区:一、选择题(本大题共6题,每题4分,满分24分)1. C ; 2. A ; 3.B ; 4.D ; 5.B ; 6.C .二、填空题(本大题共12题,每题4分,满分48分)7. 2-; 8.9.49; 10.22(1)x -;11. 321y y-=;12. 4; 13.24y x =--; 14.232y x =-+;15.13a b + ; 16; 17.15 ; 18. 15或105.闵行区:一、选择题:(共6题,每题4分,满分24分) 1.B ; 2.C ; 3.D ; 4.A ; 5.B ; 6.C .二、填空题:(共12题,每题4分,满分48分) 7.69a ; 8.32x >; 9.x = 4; 10.2; 11.-2; 12.-5; 13.下降; 14.13;15.b a -; 16.24; 17.AD = BC 或AB // CD 或∠A =∠C 等,正确即可;18.3.浦东新区:一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.C ; 5.A ; 6.D .二、填空题:(本大题共12题,每题4分,满分48分)7.4; 8.()()222+-x x ; 9.1-=x ; 10.12-; 11.41≤m ; 12.23-; 13.30 %; 14.a m -2; 15.33 ; 16.6; 17.4; 18.(2-,6).普陀区:1.(A) ; 2.(B) ; 3.(C); 4.(D) ; 5.(C) ; 6.(B) .二、填空题:(本大题共12题,每题4分,满分48分)7. 45a ; 8. 34.310-⨯; 9. 1; 10. 25x -<<; 11. c =0; 12. ;13.2x ≠; 14.23y x =+; 15. 30; 16.AB =CD 等; 17.5 ; 18. 9.青浦区:一、选择题:(本大题共6题,每题4分,满分24分) 1.(B );2.(C );3.(D );4.(C );5.(B );6.(B ). 二、填空题:(本大题共12题,每题4分,满分48分)7.2-π;8.2≤x ;9.1->x ;10.2=x ;11.)1)(2(-+a a a ;12.1<k 且0≠k ; 13.二;14.21;15.4.2:1;16.-3;17.10;18. 65或25. 松江区:一、选择题1、D ;2、C ;3、B ;4、D ;5、A ;6、A 二、填空题7、1-; 8、3≥x ; 9、)1)(1(-+x x x ; 10、5=x ; 11、x y 2-=; 12、a 64.0; 13、51; 14、5; 15、8; 16、4; 17、3132+; 18、52 徐汇区:一、选择题1.B; 2.C; 3.D; 4.C ; 5.A; 6.B . 二、填空题7.)2)(2(-+a a a ; 8.4=x ; 9.9<a ; 10.)3,1(; 11.①③④;12.15)1(5.122=+x ; 13.43; 14.)(21→→-a b ; 15.161; 16.623π-;17.216; 18.5144。

2010年中考模拟数学卷参考答案

2010年中考模拟数学卷参考答案

2010年中考模拟试卷 数学参考答案及评分标准三、解答题(本题有8小题,第17~19题每题6分,第20~21题8分,第22~23题每题10分,第24题12分,共66分) 17、(本题满分6分) 解:∵方程2233x mx x -=--无解∴方程2233x mx x -=--有增根x=3------------2分∴方程两边同乘以(x-3),得:26x m -=------------2分∴当x=3时,m =分 18、(本题满分6分)解:过C 点作BA 的延长线交于点E ,------------1分∵AB =AC =10,∠B =022.5 ∴∠EAC =045∴△EAC 为等腰直角三角形------------1分设AE =EC =X,则AB =AC =10∴x =∴111022S A B E C ∆=⋅=⨯⨯=≈35.42m ------------2分又∵53.610⨯2cm =362m >35.42m ------------1分 ∴预订草皮够用------------1分19、(本题满分6分)解:答案不唯一,酌情给分。

20、(本题满分8分)解:(1)18 0.55------------各1分(2)图略--------------共4分(虚设组不设各扣1分)(3)0.55±0.1均为正确------------2分 21、(本题满分8分) 解:(1)正确的结论:①②③------------2分(2)错误理由:当a >0时,只有1x >2x >0或2x <1x <0时,1y <2y 而2x <0<1x 时,1y >2y ------------4分 改正:当a >0时,在同一象限内,函数a y x=,y 随x 增大而减小-----2分22、(本题满分10分)解:(1)如右图------------共6分(030,045角,线段a 各1分,余酌情给分)(2)设AB =x,则R t △ABC 中,OB =x ,由题意得:6+ x ------------1分得,1)x =≈8米------------2分 答:旗杆高度约为8米。

2010年上海市部分区县中考数学二模答案

2010年上海市部分区县中考数学二模答案

2010年松江区初中毕业学业模拟考试数学参考答案及评分标准2010.4一、选择题1、D ;2、C ;3、B ;4、D ;5、A ;6、A 二、填空题7、1-; 8、3≥x ; 9、)1)(1(-+x x x ; 10、5=x ; 11、x y 2-=; 12、a 64.0; 13、51; 14、5; 15、8; 16、4; 17、b a 3132+; 18、52 三、解答题19.解:原式=13133)32(322-++---………………………………5分 =734-……………………………………………………………………5分 20.解:方程两边同乘以)3)(3(-+x x 得:………………………………………1分)3(2)3(2942--++-=x x x x …………………………………………2分整理得:0342=+-x x …………………………………………………2分解得:11=x ,32=x ………………………………………………………3分 经检验:32=x 是原方程的增根;……………………………………………1分 所以,原方程的解为1=x . …………………………………………………1分 21.解:连接AF ,∵AD=AB ,F 是BD 的中点∴AF ⊥BC ,∴︒=∠90AFC …………………………………………………2分 在AFC Rt ∆中,︒=∠90AFC ∵E 是AC 的中点,∴421==AC EF ………………………………………3分 又∵FE ⊥AC ,∴24==CF AF …………………………………………2分 在AFB Rt ∆中,︒=∠90AFB∵2tan ==∠BFAFB ,∴22=BF ,∴102=AB ……………………3分 22.(1)160;0.4;40……3分(2)图略;……2分(3)90~80.……………2分(4)5000………………3分23.(1)证明:∵CE 平分∠BCD 、CF 平分∠GCD∴GCF DCF DCE BCE ∠=∠∠=∠,……………………………………1分∵EF ∥BC ,∴GCF EFC FEC BCE ∠=∠∠=∠,………………………1分 ∴DCF EFC FEC DCE ∠=∠∠=∠,………………………………………1分 ∴OE=OC ,OF=OC ,∴OE=OF ……………………………………………2分 (2)∵点O 为CD 的中点,∴OD=OC ,又OE=OF∴四边形DECF 是平行四边形………………………………………………2分∵CE 平分∠BCD 、CF 平分∠GCD∴DCG DCF BCD DCE ∠=∠∠=∠21,21 ………………………………2分 ∴︒=∠+∠=∠+∠90)21(21DCG BCD DCF DCE ………………………2分即︒=∠90ECF ,∴四边形DECF 是矩形 ………………………………1分24.解:(1)因为直线343+-=x y 分别与x 轴、y 轴交于点A 和点B .由,0=x 得3=y ,0=y ,得4=x , 所以)0,4(A )3,0(B ……………1分 把)0,1(-C )3,0(B 代入c ax ax y +-=42中,得⎩⎨⎧=++=043c a a c , 解得⎪⎩⎪⎨⎧-==533a c …………………………………2分 ∴这个二次函数的解析式为3512532++-=x x y ……………………………1分 527)2(532+--=x y ,P 点坐标为P )527,2( ………………………………1分(2)设二次函数图象的对称轴与直线343+-=x y 交于E 点,与x 轴交于F 点把2-=x 代入343+-=x y 得,23=y , ∴)23,2(E ,∴103923527=-=PE …………………………1分∵PE//OB ,OF=AF , ∴AE BE =∵AD ∥BP ,∴DE PE =,5392==PE PD ……………………………2分(3)∵)23,2(E , ∴25494=+=OE ,∴OE ED > 设圆O 的半径为r ,以PD 为直径的圆与圆O 相切时,只有外切,………1分 ∴251039=-r , 解得:5321=r ,572=r ……………………………3分 即圆O 的半径为532或5725.解:1(1)∵90=∠=∠FEB DEC ,∴BEC DEF ∠=∠……………1分∵90=∠+∠=∠+∠DCP BCE DCP EDF ,…………………………1分 ∴BCE EDF ∠=∠,∴△DEF ∽△CEB …………………………………1分(2)∵PDC Rt ∆中,CP DE ⊥,∴90=∠=∠CED CDP∴△DEC ∽△PDC ,∴DCPDEC DE = ………………………………………1分 ∵△DEF ∽△CEB ,∴DCDFCB DF EC DE ==…………………………………1分 ∴DCDFDC PD =,∴DF PD =………………………………………………1分 ∵AP =x ,DF =y ,∴,1x PD -= ∴x y -=1 ……………………………1分)10(<<x …………………………………………………………………1分(3)∵△DEF ∽△CEB ,∴22CB DF S S CE B DE F =∆∆ (1) …………………………1分 ∵CF DF S S CE F DE F =∆∆(2),∴(1)÷(2)得2CBCFDF S S CE B cE F ⋅=∆∆ ……………1分 又∵E F C B E C S S ∆∆=4,∴412=⋅=∆∆CB CF DF S S CE B cE F ……………………………1分 当P 点在边DA 上时, 有411)1(=⋅-x x ,解得21=x ………………………………………………2分 当P 点在边DA 的延长线上时,411)1(=⋅+x x ,解得212-=x ……………………………………………1分长宁一、选择题(本大题共6题,每题4分,满分24分.) 1.D 2.C 3.A 4.B 5.C 6.D二、填空题(本大题共12题,每题4分,满分48分.填对得4分,填错或不填、多填均得0分) 7. 2 8.1 9.x 5 10. 1 11. b a - 12. 3±≠x 13. 2321+=x y 14. △OAF ,△OED 15.0120-22=+x x (或()12112=+x ,()12111=+++x x x )16.31 17. ()b a +43(或b a 4343+) 18. 30三、解答题:(本大题共7题,满分78分)19.(本题10分)解:︒︒-︒+︒60sin 30sin 260sin 30sin 22=()260sin 30sin ︒-︒ ………4分=22321⎪⎪⎭⎫⎝⎛-=2321- ……………… 4分 =213-(或2123-) …… 2分 20.(本题10分)解:整理(1)\(2)得⎪⎩⎪⎨⎧+>+->335211x x x (2)()()⎪⎩⎪⎨⎧->-+-+>22212121x x⎩⎨⎧<+->22)21(x x …………… 2分⎩⎨⎧<-->121x x …… …….2分∴ 121<<--x …… ……..1分∴不等式组的整数解为-2,-1,0 …….. 3分21.(本题10分)(1)80;…… ………..2分(2)0.05 ;…… …...2分 (3)84;…… ……..3分(4)不合理,初三年级学生的随机样本不能代表该校全体学生。

初中青浦二模数学试卷答案

初中青浦二模数学试卷答案

一、选择题1. 答案:D解析:由题意可知,x的值应该是2的倍数,而选项中只有D是2的倍数。

2. 答案:A解析:根据勾股定理,a² + b² = c²,代入选项验证,只有A选项符合条件。

3. 答案:C解析:题目中提到,三角形ABC是等腰三角形,所以AB = AC,又因为BC是斜边,所以BC > AB,故选C。

4. 答案:B解析:由题意可知,正方形的对角线相等,所以AC = BD,又因为AB = BC,所以三角形ABC是等边三角形。

5. 答案:D解析:由题意可知,x + y = 5,x - y = 1,解这个方程组,得到x = 3,y = 2。

二、填空题6. 答案:7解析:由题意可知,x² - 6x + 9 = 0,这是一个完全平方公式,所以x = 3。

7. 答案:8解析:由题意可知,a + b = 10,ab = 15,解这个方程组,得到a = 5,b = 5。

8. 答案:-2解析:由题意可知,-2x + 3 = 0,解这个方程,得到x = 3/2,即x = -2。

9. 答案:45°解析:由题意可知,∠ABC = 45°,∠ACB = 90°,所以∠BAC = 45°。

10. 答案:18解析:由题意可知,x² + 2x - 15 = 0,这是一个二次方程,解这个方程,得到x = 3 或 x = -5,所以x + y = 3 + (-5) = -2,即x + y = 18。

三、解答题11. 答案:(1)由题意可知,x² - 5x + 6 = 0,解这个方程,得到x = 2 或 x = 3。

(2)当x = 2时,代入原方程,得到2² - 5×2 + 6 = 0,所以x = 2是方程的解。

(3)当x = 3时,代入原方程,得到3² - 5×3 + 6 = 0,所以x = 3也是方程的解。

2010上海中考二模真题综合复习一

2010上海中考二模真题综合复习一

中考二模真题综合复习一(2010上海中考)徐汇,金山,浦东,松江,闵行【填空选择】1. 如图,DE 是ABC ∆的中位线,M 是DE 的中点,那么NBCDMNS S ∆∆= ______2.如图,圆弧形桥拱的跨度12=AB 米,拱高4=CD 米,则圆弧形桥拱所在圆的半径为 米.3. 如图,将矩形纸片ABCD 折叠,B 、C 两点恰好重合落在AD 边上点P 处,已知︒=∠90MPN ,PM=3,PN=4,,那么矩形纸片ABCD 的面积为 __▲ ____.4.已知半径分别是3和5的两个圆没有公共点,那么这两个圆的圆心距d 的取值范围是( ) A .8d > B . 2d > C .02d ≤< D . 8d >或02d ≤< 5.如图,在△ABC 中,AD 是BC 上的中线,BC =4, ∠ADC =30°,把△ADC 沿AD 所在直线翻折后 点C 落在点C ′ 的位置,那么点D 到直线BC ′ 的 距离是 .6.木盒里有1个红球和1个黑球,这两个球除颜色外其他都相同,从盒子里先摸出一个球,放回去摇匀后,再摸出一个球,两次都摸到红球的概率是___________ 7.已知正六边形的边长为6,那么边心距等于 . 8.已知在△AOB 中,∠B =90°,AB =OB ,点O 的坐标为(0,0),点A 的坐标为(0,4),点B 在第一象限内,将这个三角形绕原点O 逆时针旋转75°后,那么旋转后点B 的坐标 为 .9.如图,在△ABC 中,D 是BC 上的点,若B D ︰D C =1︰2,a AB =,b AC =, 那么AD = _____________ (用a 和b 表示).10.如图,已知在直角三角形ABC 中,∠C =90°,AB =5,BC =3,将ABC ∆绕着点B 顺时针旋转,使点C 落在边AB 上的点C ′处,点A 落在点A ′处,则AA ′的长为 ______ . 11.如图,在△ABC 中,AB = AC ,BD 、CE 分别是边AC 、AB 上的中线,且BD ⊥CE ,那么tan ∠ABC =___________.MN E DCB A 第1题第18题D CB A N M P D'A'第2题C /BDCAABCD (第9题图)ABC(第10题ABCDE(第11题【解答题(函数)】 1.(本题满分12分,第(1)、(2)、(3)题各4分)已知:如图,在平面直角坐标系中,点B 在x 轴上,以3为半径的⊙B 与y 轴相切,直线l 过点()2,0A -,且和⊙B 相切,与y 轴相交于点C . (1)求直线l 的解析式;(2)若抛物线2(0)y ax bx c a =++>经过点O 和B,顶点在⊙B 上,求抛物线的解析式; (3) 若点E 在直线l 上,且以A 为圆心,AE 为半径的圆与⊙B 相切,求点E 的坐标.2.(本题满分12分,每小题满分各6分)在直角坐标平面内,O 为原点,二次函数2y x bx c =-++的图像经过A (-1,0)和点B (0,3),顶点为P 。

上海市青浦区中考数学二模试卷及谜底

上海市青浦区中考数学二模试卷及谜底

10.方程组
x 2 y 11

y

11.函数 y x 1 的定义域是
2
5x

的解是
(B)只有外离一种情况;

12.请写出一个以直线 x 3 为对称轴,且在对称轴右侧部分是下降的抛物线的表
达式,这条抛物线的表达式可以是 . 13.为了解居民节约用水的情况,小丽对某个单

元的住户用水量进行调查,右表是某个单元的住户 3 月份用水量的调查结果。
③如果 AD BC 且 AB AC ,那么四边形 AEDF 是菱形. B D
其中正确的有 ………………………………………(
(A)3 个; (B)2 个; (C)1 个; (D)0 个.
(D)若 x 1,则 y 3 .
九年级数学试卷 (第 1 页) 共 9 页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,过力根管保据线护生0高不产中仅工资可艺料以高试解中卷决资配吊料置顶试技层卷术配要是置求指不,机规对组范电在高气进中设行资备继料进电试行保卷空护问载高题与中2带2资,负料而荷试且下卷可高总保中体障资配2料3置2试3时各卷,类调需管控要路试在习验最2;3大2对3限2设题度备到内进位来行。确调在保整管机使路组其敷高在设中正过资常程料工1试中况卷,下安要与全加过,强度并看工且2作5尽5下2可2都2能护可地1以关缩正于小常管故工路障作高高;中中对资资于料料继试试电卷卷保连破护接坏进管范行口围整处,核理或对高者定中对值资某,料些审试异核卷常与弯高校扁中对度资图固料纸定试,盒卷编位工写置况复.进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2010年中考数学模拟试卷参考答案

2010年中考数学模拟试卷参考答案

2010年中考数学模拟试卷 参考答案及评分标准一. 选择题(每小题3分, 共30分)二. 填空题(每小题4分, 共24分)11. -4,2 12.(3,5) 13.12-14.31 15. n )23( 16. 6S 1≤≤ 三. 解答题(8小题共66分) 17. (本题6分)解:(1)上述两同学回答的均不全面,应该是300 , 1500 , 900 (遗漏一个扣1分) ………3分 (2)答案不唯一.如面对不确定的情况就要考虑进行分类讨论;考虑问题要全面呀等等,只要有这样的意思就得3分. …………………………3分 18. (本题6分)解:900,1350,1800 ,2700, 3600,只要举出其中两个角能够进行三等分, ……………………2分尺规作图正确,每个2分 ………………………4分19、(本题6分)解:(1)第一只 肉 香肠 红枣 红枣第二只 红枣 肉 红枣 红枣 肉 香肠 红枣 香肠 红枣∴P =61122= …………………………3分(2)这样模拟不正确 …………………………1分 理由如下:连续两次掷骰子点数朝上的情况有(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)共16种,而满足条件的情况有4种 …………………………2分 20. (本题8分)解:老板第二次售手链还是赚了. …………………………1分 设第一次批发价为x 元/条,则第二次的批发价为x+0.5元/条 依题意,得: )x1000.5)(10(x ++=150 解之得 5.2x ,2x 21== …………………………3分经检验,5.2x ,2x 21== 都是原方程的根 …………………………1分 由于当x=2.5时,第二次的批发价就是3元/条,而零售价为2.8元,所以x=2.5不合题意,舍去.故第一次的批发价为2元/条.第二次的批发价为2.5元/条第二次共批发手链605.21505.0x 150==+(条) …………………………1分第二次的利润为: 1.2150-5).08.260518.26054(=⨯⨯⨯+⨯⨯ …………………………1分故,老板第二次售手链赚了1.2元 . …………………………1分21.(本题8分)解:(1)如图,由题意得,∠EAD =45°,∠FBD =30°.∴ ∠EAC =∠EAD +∠DAC =45°+15°=60°. ∵ AE ∥BF ∥CD , ∴ ∠FBC =∠EAC =60°. ∴ ∠DBC =30°.又∵ ∠DBC =∠DAB +∠ADB , ∴ ∠ADB =15°.∴ ∠DAB =∠ADB . ∴ BD =AB =2.即B ,D 之间的距离为2km . ……………………………………………4分 (2)过B 作BO ⊥DC ,交其延长线于点O , 在Rt △DBO 中,BD =2,∠DBO =60°. ∴ DO =2×sin60°=2×323=,BO =2×cos60°=1. 在Rt △CBO 中,∠CBO =30°,CO =BO tan30°=33, ∴ CD =DO -CO =332333=-(km ). 即C ,D 之间的距离为332km . …………………………………………………4分 22. (本题10分)解:(1)这个样本的中位数为120(人),众数为100(人),平均数为150(人) ………3分 信息:①这一周每天参观人数不低于100人; ②周末参观人数逐渐增加;金③一周内参观人数在百人左右的天数最多;④星期日参观人数最多;⑤这一周每天参观人数不超过240人;⑥星期五参观人数最接近这一周的平均值;•⑦一周内多数天参观人数低于本周参观人数的平均值等等.…………………………2分(2)①由(1)知样本数据的中位数为120(人),则甲、乙两团共120人,其中甲团有x人,乙团有(120-x)人.∵0<120-x≤50,∴甲团人数超过50人…………………………1分ⅰ)当50<x•≤100,•0<120-x≤50时,W=60x+80(120-x)即W=9600-20x(70≤x≤100)ⅱ)当x>100,0<120-x•≤50时,W=40x+80(120-x)即W=9600-40x(100<x<120)∴当70≤x≤100时,W关于x的函数关系式为W=9600-20x;当100<x<120时,W关于x的函数关系式为:W=9600-40x.…………………………2分②依题意x≤100,∴W关于x的函数关系式应为:W=9600-20x(70≤x≤100)根据一次函数的性质知:当x=70时,W=9600-2×700=8200(元)而两团合起来购票应付费40×120=4800(元),∴两团合起来购票比分开购票最多可节约8200-4800=3400(元).…………………………2分23.(本题10分)证明:(1)连接AM,∵AB是半圆O的直径,∴∠BMA=90°…………………………1分又∵DE⊥AB,∠ABM=∠NBE,∴Rt△ABM∽Rt△NBE∴BN BEBA BM,即BN·BM=BE·BA …………………………2分(2)连接AD,BD(如图2),∵AB是⊙O的直径,∴∠ADB=90°…………………………1分又因∵DE⊥AB,∴BD2=BE·BA …………………………1分∵BC是⊙O1的切线,∴BC2=BN·BM …………………………1分由(1)知BN·BM=BE·BA,∴BC2=BD2,即BC=BD …………………………1分(3)连接O 1N 和OM (如图3),则OM 过点O 1, ∵OB=OM ,O 1N=O 1M ,∴∠MNO 1=∠NMO 1=∠MBO …………………………1分 ∴O 1N ∥OB …………………………1分而DE ⊥OB ,∴OE ⊥O 1N∵O 1N 是 ⊙O 1的半径,∴DE 是⊙O 1的切线.…………………………1分24.(本题12分)解:(1)①法一:由题可知1AO CQ ==.90AOH QCH ∠=∠=,AHO QHC ∠=∠,AOH QCH ∴△≌△.OH CH ∴=,即H 为AQ 的中点. …………………………1分法二:(01)A ,,(01)B -,,OA OB ∴=.又BQ x ∥轴,HA HQ ∴=. …………………………1分 由①可知AH QH =,AHR QHP ∠=∠,AR PQ ∥,RAH PQH ∴∠=∠, RAH PQH ∴△≌△.AR PQ ∴=,又AR PQ ∥,∴四边形APQR 为平行四边形.………………………1分②设214P m m ⎛⎫ ⎪⎝⎭,,PQ y ∥轴,则(1)Q m -,,则2114PQ m =+.过P 作PG y ⊥轴,垂足为G ,在Rt APG △中,2114AP m PQ ===+=.∴平行四边形APQR 为菱形. …………………………2分(2)设直线PR 为y kx b =+,由OH CH =,得,0)2m (H ,214P m m ⎛⎫⎪⎝⎭,代入得: 2021.4m k b km b m ⎧+=⎪⎪⎨⎪+=⎪⎩, 221.4m k b m ⎧=⎪⎪∴⎨⎪=-⎪⎩,∴直线PR 为2124m y x m =-.………………………1分 设直线PR 与抛物线的公共点为214x x ⎛⎫ ⎪⎝⎭,,代入直线PR 关系式得:22110424m x x m -+=,21()04x m -=,解得x m =.得公共点为214m m ⎛⎫ ⎪⎝⎭,. 所以直线PH 与抛物线214y x =只有一个公共点P . …………………………2分 (3)AN ∥GH ,AN 21GH =. …………………………2分由(1)知AP=PQ ,同理知AM=MN.M A N M N A ,A Q P PA Q ∠=∠∠=∠∴ BQ PQ ,BQ M N ⊥⊥∴MN ∥PQ ∴180MPQ NMA =∠+∠ ∵⊿AMN 和⊿APQ 的内角和都为180180MAN MNA AQP PAQ =∠+∠+∠+∠∴ 90MAN PAQ =∠+∠∴ AQ AN 90NAQ ⊥∴=∠∴…………………………2分由(1)知四边形APQR 为菱形,HQ AH PR AQ =⊥∴,PR ∴∥AN为GH ∴⊿ANQ 的中位线.∴AN ∥GH ,AN 21GH = …………………………1分。

2010年上海市浦东新区中考数学二模卷及答案[1]

2010年上海市浦东新区中考数学二模卷及答案[1]

2010年浦东新区中考数学预测卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.计算23)()(a a -⋅-的正确结果是 (A )5a ;(B )5a -;(C )6a ;(D )6a -.2.如果二次根式5+x 有意义,那么x 的取值范围是 (A )x >0;(B )x ≥0;(C )x >-5;(D )x ≥-5.3.用配方法解方程0142=+-x x 时,配方后所得的方程是(A )1)2(2=-x ; (B )1)2(2-=-x ; (C )3)2(2=-x ; (D )3)2(2=+x . 4.木盒里有1个红球和1个黑球,这两个球除颜色外其他都相同,从盒子里先摸出一个球,放回去摇匀后,再摸出一个球,两次都摸到红球的概率是 (A )21; (B )31; (C )41; (D )32. 5.如图,平行四边形ABCD 的对角线交于点O ,a AB =,b AD =,那么b a 2121+等于(A )AO ; (B )AC ; (C )BO ; (D )CA .6.在长方体ABCD -EFGH 中,与面ABCD 平行的棱共有 (A )1条; (B )2条; (C )3条; (D )4条.二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.-4的绝对值等于 ▲ . 8.分解因式:822-x = ▲ . 9.方程23=-x 的根是 ▲ .BCDO(第5题图)ABC G H FD (第6题图)10.如果函数11)(+=x x f ,那么)2(f = ▲ .11.如果方程0)12(22=+--m x m x 有两个实数根,那么m 的取值范围是 ▲ . 12.如果正比例函数的图像经过点(2,4)和(a ,-3),那么a 的值等于 ▲ . 13.一台组装电脑的成本价是4000元,如果商家以5200元的价格卖给顾客,那么商家的盈利率为 ▲ .14.已知梯形的上底长为a ,中位线长为m ,那么这个梯形的下底长为 ▲ . 15.已知正六边形的边长为6,那么边心距等于 ▲ .16.在Rt △ABC 中,∠B =90°,AD 平分∠BAC ,交边BC 于点D ,如果BD =2,AC =6,那么△ADC 的面积等于 ▲ . 17.已知在△ABC 中,AB =AC =10,54cos =C ,中线BM 与CN 相交于点G ,那么点A 与点G 之间的距离等于 ▲ .18.已知在△AOB 中,∠B =90°,AB =OB ,点O 的坐标为(0,0),点A 的坐标为(0,4),点B 在第一象限内,将这个三角形绕原点O 逆时针旋转75°后,那么旋转后点B 的坐标 为 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:2012327223)()()(-+---. 20.(本题满分10分)解方程:2322x x xx --=-.21.(本题满分10分,其中每小题各2分)为迎接2010年上海世博会的举行,某校开展了“城市让生活更美好”世博知识调查活动,为此,该校在六年级到九年级全体学生中随机抽取了部分学生进行测试,试题共有10题,每题10分,抽测的学生每人至少答对了6题,现将有关数据整理后绘制成如下“年级人数统计图”和尚未全部完成的“成绩情况统计表”.根据图表中提供的信息,回答下列问题: (1)参加测试的学生人数有 ▲ 名; (2)成绩为80分的学生人数有 ▲ 名; (3)成绩的众数是 ▲ 分; (4)成绩的中位数是 ▲ 分;年级2830 2636年级人数统计图成绩情况统计表(5)如果学校共有1800名学生,那么由图表中提供的信息,可以估计成绩为70分的学生人数约有 ▲ 名. 22.(本题满分10分)小明不小心敲坏了一块圆形玻璃,于是他拿了其中的一小块到玻璃店去配同样大小的圆形玻璃(如图),店里的师傅说不知圆形玻璃的大小不能配,小明就借了一把尺,先量得其中的一条弦AB 的长度为60厘米,然后再量得这个弓形高CD 的长度为10厘米,由此就可求得半径解决问题.请你帮小明算一下这个圆的半径是多少厘米. 23.(本题满分12分,其中每小题各6分)已知:如图,在平行四边形ABCD 中,AM =DM .求证:(1)AE =AB ;(2)如果BM 平分∠ABC ,求证:BM ⊥CE .24.(本题满分12分,其中每小题各4分)如图,已知在平面直角坐标系中,点A 的坐标为(-2,0),点B 是点A 关于原点的对称点,P 是函数)0(2>=x xy 图像上的一点,且△ABP 是直角三角形.(1)求点P 的坐标;(2)如果二次函数的图像经过A 、B 、P 三点,求这个二次函数的解析式;(3)如果第(2)小题中求得的二次函数图像与y 轴交于点C ,过该函数图像上的点C 、点P 的直线与x 轴交于点D ,试比较∠BPD 与∠BAP 的大小,并说明理由.25.(本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分)如图,已知在矩形ABCD 中,AB =3,BC =4,P 是边BC 延长线上的一点,联接AP 交边CD 于点E ,把射线AP 沿直线AD 翻折,交射线CD 于点Q ,设CP =x ,DQ =y . (1)求y 关于x 的函数解析式,并写出定义域.(2)当点P 运动时,△APQ 的面积是否会发生变化?如果发生变化,请求出△APQ 的面积S 关于x 的函数解析式,并写出定义域;如果不发生变化,请说明理由. (3)当以4为半径的⊙Q 与直线AP 相切,且⊙A 与⊙Q 也相切时,求⊙A 的半径.ABCDEM(第23题图)ABCD(第22题图)A B C Q D (第25题图) P E A O yx (第24题图)2010年浦东新区中考数学预测卷参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.C ; 5.A ; 6.D .二、填空题:(本大题共12题,每题4分,满分48分)7.4; 8.()()222+-x x ; 9.1-=x ; 10.12-; 11.41≤m ; 12.23-;13.30 %; 14.a m -2; 15.33 ; 16.6; 17.4; 18.(2-,6).三、解答题:(本大题共7题,满分78分) 19.解:原式121219-++=………………………………………………………………(8分) 211-=.………………………………………………………………………(2分)20.解:设y xx =-2,则yx x 323=-.……………………………………………………(1分)∴原方程可化为23=-yy .……………………………………………………(1分)整理,得0322=--y y .………………………………………………………(1分) ∴31=y ,12-=y .……………………………………………………………(2分) 当31=y 时,即32=-x x .∴1-=x .…………………………………………(2分) 当12-=y 时,即12-=-xx .∴1=x .………………………………………(2分)经检验:11-=x ,12=x 都是原方程的解.……………………………………(1分) ∴原方程的解是 11-=x ,12=x .另解:去分母,得)2(23)2(22-=--x x x x .………………………………………(4分)整理,得 012=-x .…………………………………………………………(3分) 解得 11-=x ,12=x .……………………………………………………(2分)经检验:11-=x ,12=x 都是原方程的解.……………………………………(1分) ∴原方程的解是 11-=x ,12=x .21.解:(1)120;(2)36;(3)90;(4)90;(5)270.……………………(每题各2分) 22.解:设此圆的圆心为点O ,半径为r 厘米.联结DO 、AO .则点C 、D 、O 在一直线上.可得OD =(10-r )cm .……(1分) 由题意,得AD =30厘米.………………………………………………………(3分)∴ ()2221030-+=r r .…………………………………………………………(3分)解得 50=r .……………………………………………………………………(2分) 答:这个圆的半径是50厘米.………………………………………………………(1分) 23.证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD .……………(2分) ∴∠E =∠ECD .……………………………………………………………(1分) 又∵AM =DM ,∠AME =∠DMC ,∴△AEM ≌△DCM .………………(1分) ∴CD =AE .…………………………………………………………………(1分) ∴AE =AB .…………………………………………………………………(1分) (2)∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠AMB =∠MBC .………………………………………………………(1分) ∵BM 平分∠ABC ,∴∠ABM =∠MBC .………………………………(1分) ∴∠ABM =∠AMB .∴AB =AM .…………………………………………(1分) ∵AB =AE ,∴AM =AE .…………………………………………………(1分) ∴∠E =∠AME .…………………………………………………………(1分) ∵∠E +∠EBM +∠BMA +∠AME =180°,∴∠BME =90°,即BM ⊥CE .…………………………………………(1分)24.解:(1)由题意,得点B 的坐标为(2,0).………………………………………(1分)设点P 的坐标为(x ,y ).由题意可知 ∠ABP =90°或∠APB =90°.(i )当∠ABP =90°时,2=x ,1=y .∴点P 坐标是(2,1).……(1分)(ii )当∠APB =90°时,222AB PB PA =+,即()()16222222=+-+++y x y x .……………………………………(1分)又由xy 2=,可得2±=x (负值不合题意,舍去).当2=x 时,2=y .∴点P 点坐标是(2,2).………………(1分) 综上所述,点P 坐标是(2,1)或(2,2).(2)设所求的二次函数的解析式为)0(2≠++=a c bx ax y .(i )当点P 的坐标为(2,1)时,点A 、B 、P 不可能在同一个二次函数图像上.……………………………………………………………………………(1分)(ii )当点P 的坐标为(2,2)时,代入A 、B 、P 三点的坐标,得 ⎪⎩⎪⎨⎧++=++=+-=.222,240,240c b a c b a c b a …………………………………………………(1分)解得⎪⎪⎩⎪⎪⎨⎧==-=.22,0,22c b a ……………………………………………………………(1分)∴所求的二次函数解析式为22222+-=xy .………………………(1分)(3)∠BPD =∠BAP .……………………………………………………………(1分)证明如下:∵点C 坐标为(0,22),………………………………………………(1分)∴直线PC 的表达式为 22+-=x y .∴点D 坐标为(22,0).………………………………………………(1分) ∴PD =2,BD =222-,AD =222+.∴122222-=-=PDBD ,122222-=+=ADPD ,∴ADPD PDBD =.∵∠PDB =∠ADP ,∴△PBD ∽△APD .…………………………………(1分)∴∠BPD =∠BAP .另证:联接OP .∵∠APB =90°,OA =OB ,∴OP =OA .∴∠APO =∠P AO .又∵点C 坐标为(0,22),……………………………………………(1分)∴直线PC 的表达式为 22+-=x y .∴点D 坐标为(22,0).………………………………………………(1分) ∴OC =OD .∵点P 的坐标为(2,2),∴PC =PD .∴OP ⊥CD .∴∠BPD =∠APO .…………………………………………………………(1分) ∴∠BPD =∠BAP .25.解:(1)在矩形ABCD 中,∵AD ∥BC ,∴∠APB =∠DAP .又由题意,得∠QAD =∠DAP ,∴∠APB =∠QAD .∵∠B =∠ADQ =90°,∴△ADQ ∽△PBA .………………………………(1分) ∴BPAD ABDQ =,即443+=x y .∴412+=x y .………………………………………………………………(1分)定义域为0>x .……………………………………………………………(1分)(2)不发生变化.…………………………………………………………………(1分)证明如下:∵∠QAD =∠DAP ,∠ADE =∠ADQ =90°,AD =AD , ∴△ADE ≌△ADQ .∴DE =DQ =y .………………………………………………………………(1分) ∴124124482121=+++=⋅+⋅=+=∆∆x x x PC QE AD QE S S S PQE AQE .…(3分)(3)过点Q 作QF ⊥AP 于点F .∵以4为半径的⊙Q 与直线AP 相切,∴QF =4.…………………………(1分) ∵12=S ,∴AP =6.………………………………………………………(1分) 在Rt △ABP 中,∵AB =3,∴∠BP A =30°.…………………………………………………(1分) ∴∠P AQ =60°. ∴AQ =338.………………………………………………………………(1分)设⊙A 的半径为r .∵⊙A 与⊙Q 相切,∴⊙A 与⊙Q 外切或内切. (i )当⊙A 与⊙Q 外切时,AQ =r +4,即338=r +4.∴r =4338-.………………………………………………………………(1分)(ii )当⊙A 与⊙Q 内切时,AQ =r -4,即338=r -4.∴r =4338+.………………………………………………………………(1分)综上所述,⊙A 的半径为4338-或4338+.。

初中数学 上海市静安区、青浦区中考模拟第二次模拟考试数学考试卷考试题及答案

初中数学 上海市静安区、青浦区中考模拟第二次模拟考试数学考试卷考试题及答案

xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下列式子中,从左到右的变形为多项式因式分解的是()A.B.C.D.阿试题2:下列方程中,有实数根的是()A.B.C. x3+3=0 D. x4+4=0试题3:函数y=kx﹣k﹣1(常数k>0)的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限试题4:已知一组数据3、4、4、5、6、7、4、7,那么这组数据的()A.中位数是5.5,众数是4 B.中位数是5,平均数是5C.中位数是5,众数是4 D.中位数是4.5,平均数是5试题5:如果▱ABCD的对角线相交于点O,那么在下列条件中,能判断▱ABCD为菱形的是()A.∠OAB=∠OBA B.∠OAB=∠OBC C.∠OAB=∠OCD D.∠OAB=∠OAD试题6:一个图形沿一条直线翻折后再沿这条直线的方向平移,我们把这样的图形运动称为图形的翻移,这条直线称为翻移线.如图△A2B2C2是由△ABC沿直线l翻移后得到的.在下列结论中,图形的翻移所具有的性质是()A.各对应点之间的距离相等 B.各对应点的连线互相平行C.对应点连线被翻移线平分 D.对应点连线与翻移线垂直试题7:计算:= .试题8:不等式组的解集是.试题9:如果一个数的倒数等于它本身,则这个数是.试题10:如果关于x的方程x2﹣6x+m﹣1=0没有实数根,那么m的取值范围是.试题11:如果点A(﹣1,2)在一个正比例函数y=f(x)的图象上,那么y随着x的增大而(填“增大”或“减小”).试题12:将抛物线y=2x2+1向右平移3个单位,所得抛物线的表达式是.试题13:某校200名学生一次数学测试的分数均大于75且小于150,分数段的频数分布情况如下:75~90有15人,90~105有42人,105~120有58人,135~150有35人(其中每个分数段可包括最小值,不包括最大值),那么测试分数在120~135分数段的频率是0.25 .试题14:从点数为1、2、3、4、5的五张扑克牌中随机摸出两张牌,摸到的两张牌的点数之和为素数的概率是.试题15:在梯形ABCD中,AD∥BC,BC=3AD,,那么= .试题16:如果⊙O1与⊙O2内含,O1O2=4,⊙O1的半径是3,那么⊙O2的半径的取值范围是.试题17:在△ABC中,∠A=40°,△ABC绕点A旋转后点C落在边AB上的点C′,点B落到点B′,如果点C、C′、B′在同一直线上,那么∠B的度数是.试题18:在正方形ABCD中,点E、F、G、H分别在边AB、BC、CD、AD上,四边形EFGH是矩形,EF=2FG,那么矩形EFGH与正方形ABCD的面积比是.试题19:化简:,并求当时的值.试题20:解方程组:.试题21:已知:如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线AC、BD相交于点E,BD⊥CD,AB=12,cot∠ADB=.求:(1)∠DBC的余弦值;(2)DE的长.试题22:一辆高铁列车与另一辆动车组列车在1320公里的京沪高速铁路上运行时,高铁列车比动车组列车平均速度每小时快99公里,用时少3小时,求这辆高铁列车全程的运行时间和平均速度.试题23:已知:如图,在△ABC中,AB=AC,点D、E分别在边AC、AB上,DA=DB,BD与CE相交于点F,∠AFD=∠BEC.求证:(1)AF=CE;(2)BF2=EF•AF.试题24:已知AB是⊙O的直径,弦CD⊥AB,垂足为H,AH=5,CD=,点E在⊙O上,射线AE与射线CD相交于点F,设AE=x,DF=y.(1)求⊙O的半径;(2)如图,当点E在AD上时,求y与x之间的函数解析式,并写出函数的定义域;(3)如果EF=,求DF的长.试题25:如图,点A(2,6)和点B(点B在点A的右侧)在反比例函数的图象上,点C在y轴上,BC∥x轴,tan∠ACB=2,二次函数的图象经过A、B、C三点.(1)求反比例函数和二次函数的解析式;(2)如果点D在x轴的正半轴上,点E在反比例函数的图象上,四边形ACDE是平行四边形,求边CD的长.试题1答案:解答:解:A、符合因式分解的定义,故本选项正确;B、结果不是整式积的形式,不是因式分解,故本选项错误;C、结果不是整式积的形式,不是因式分解,故本选项错误;D、结果不是整式积的形式,不是因式分解,故本选项错误;故选A.试题2答案:解答:解:A、≥0,因而方程一定无解;B、x﹣1≥0,解得:x≥1,则﹣x<0,故原式一定不成立,方程无解;C、x3+3=0,则x=﹣,故选项正确;D、x4+4≥4,故原式一定不成立,故方程无解.故选C.试题3答案:解答:解:∵k>0∴﹣k<0,∴﹣k﹣1<0∴y=kx﹣k﹣1(常数k>0)的图象经过一、三、四象限,故选B.试题4答案:解答:解:平均数=(3+4+4+5+6+7+4+7)÷8=5,中位数是(4+5)÷2=4.5,在这组数据中4出现3次,最多,则众数是4.故选D.试题5答案:解答:解:∵四边形ABCD是平行四边形,∴∠OAB=∠ACD,∵∠OAB=∠OAD,∴∠DAC=∠DCA,∴AD=CD,∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)故选D.试题6答案:解答:解:∵如图所示:△A2B2C2是由△ABC沿直线l翻移后得到的,∴图形的翻移所具有的性质是:对应点连线被翻移线平分.故选:C.试题7答案:解答:解:原式==.故答案为:解答:解:,由①得,x>;由②得,x>2,故此不等式组的解集为:x>.故答案为:x>.试题9答案:解答:解:如果一个数的倒数等于它本身,则这个数是±1.试题10答案:考点:根的判别式.解答:解:∵关于x的方程x2﹣6x+m﹣1=0没有实数根,∴△=(﹣6)2﹣4×1×(m﹣1)<0,即40﹣4m<0,解得,m>10.故答案是:m>10.试题11答案:解答:解:设正比例函数解析式为y=kx(k≠0),∵过点(﹣1,2),∴2=k×(﹣1),解得k=﹣2,故正比例函数解析式为:y=﹣2x,∵k=﹣2<0,∴y随着x的增大而减小,故答案为:减小.试题12答案:解答:解:抛物线y=2x2+1的顶点坐标为(0,1),向右平移3个单位后的顶点坐标是(3,1),所以,平移后得到的抛物线的表达式是y=2(x﹣3)2+1.故答案为:y=2(x﹣3)2+1.试题13答案:解答:解:120~135分数段的频数=200﹣15﹣42﹣58﹣35=50人,则测试分数在120~135分数段的频率==0.25.故答案为:0.25.试题14答案:解答:解:画树状图得:∵共有20种等可能的结果,摸到的两张牌的点数之和为素数的有10种情况,∴摸到的两张牌的点数之和为素数的概率是:=.故答案为:.试题15答案:解答:解:过点D作DE∥AB交BC于点E,则BE=AD,∵AD∥BC,BC=3AD,=,∴==,又∵==,∴=﹣﹣=﹣﹣.故答案为:﹣﹣.试题16答案:解答:解:根据题意两圆内含,故知r﹣3>4,解得r>7.故答案为:r>7.试题17答案:解答:解:如图,∵△AB′C′是△ABC旋转得到,∴AC=AC′,∠B′AC′=∠BAC=40°,∴∠AC′C=(180°﹣∠BAC)=(180°﹣40°)=70°,∵点C的对应点C′落在AB上,∴∠AB′C′=∠AC′C﹣∠B′AC′=70°﹣40°=30°.故答案为:30°.试题18答案:解答:解:由对称性得到△EFB≌△HDC,△AEH≌△CFG,且四个三角形都为等腰直角三角形,∵△BEF∽△CFG,EF=2FG,设正方形的边长为3a,即S正方形ABCD=9a2,则BE=BF=DH=DG=2a,AE=AH=CG=CF=a,根据勾股定理得:EF=2a,EH=a,∴S矩形EFGH=EF•EH=4a2,则矩形EFGH与正方形ABCD的面积比是.故答案为:试题19答案:解答:解:原式==+==.当时,原式=.试题20答案:解答:解:,由(1)得:x+2y=±3,由(2)得:x﹣y=0或x+y﹣4=0,原方程组可化为,,,,解得原方程组的解是,,,.试题21答案:解答:解:(1)∵Rt△ABD中,cot∠ADB=,∴=,则AD=16,∴BD===20,∵AD∥BC,∴∠DBC=∠ADB,∴cos∠DBC=cos∠ADB===;(2)在Rt△BCD中,cos∠DBC=,即=,解得:BC=25,∵AD∥BC,∴==,∴=,∴DE=×BD=×20=.试题22答案:解答:解:设这辆高铁列车全程的运行时间为x小时,则那辆动车组列车全程的运行时间为(x+3)小时,由题意,得,.x2+3x﹣40=0,x1=5,x2=﹣8.经检验:它们都是原方程的根,但x=﹣8不符合题意.当x=5时,.试题23答案:解答:(1)证明:∵DA=DB,∴∠FBA=∠EAC,∵∠AFD=∠BEC,∴180°﹣∠AFD=180°﹣∠BEC,即∠BFA=∠AEC.∵在△BFA和△AEC中,∴△BFA≌△AEC(AAS).∴AF=CE.(2)解:∵△BFA≌△AEC,∴BF=AE.∵∠EAF=∠ECA,∠FEA=∠AEC,∴△EFA∽△EAC.∴.∴EA2=EF•CE.∵EA=BF,CE=AF,∴BF2=EF•AF.试题24答案:解答:解:(1)连接OD,设⊙O的半径OA=OD=r,∵AB是⊙O的直径,弦CD⊥AB,∴DH=DC=×4=2,在Rt△OHD中,∵OD2﹣OH2=DH2,OH2=(AH﹣OA)2=(5﹣r)2,∴r2﹣(5﹣r)2=(2)2,解得r=,∴⊙O的半径为;(2)作OG⊥AE,垂足为G,如图,∴AG=AE=x,∴△AOG∽△AFH,∴AG:AH=AO:AF,即x:5=:AF,解得AF=,∴FH===,∵DF=FH﹣DH,∴y关于x的函数解析式为y=﹣2,定义域为0<x≤3;(3)当点E在弧AD上时,如图,∵AF﹣AE=EF,即﹣x=,化为整式方程得2x2+3x﹣90=0,解得x1=﹣(舍去),x2=6,∴DF=y=﹣2=;当点E在弧DB上时,如图,∵AE﹣AF=EF,即x﹣=,化为整式方程得2x2﹣3x﹣90=0,解得x1=,x2=6(舍去),∵AB为直径,∴∠E=90°,∴△AHF∽△AEB,BE==,∴FH:BE=AH:AE,即FH:=5:,解得FH=∴DF=DH﹣FH=2﹣当点E在BC弧上时,同上得FH=,∴DF=DH+FH=2+.试题25答案:解答:解:(1)设反比例函数的解析式为y=,∵点A(2,6)在反比例函数的图象上,∴6=,∴k=12,∴反比例函数的解析式为,作AM⊥BC,垂足为M,交x轴于N,∴CM=2.在Rt△ACM中,AM=CM•tan∠ACB=2×2=4,∵BC∥x轴,OC=MN=AN﹣AM=6﹣4=2,∴点C的坐标(0,2).当x=2时,y=6,∴点B的坐标(6,2)设二次函数的解析式为y=ax2+bx+2,则,解得,故二次函数的解析式为;(2)延长AC交x轴于G,作EH⊥x轴,垂足为H,∵在平行四边形ACDE中,AC∥DE,∴∠AGO=∠EDH,∵BC∥x轴,∴∠ACM=∠AGO,∴∠ACM=∠EDH.∵∠AMC=∠EHD=90°,AC=ED,∴△ACM≌△EDH,∴EH=AM=4,DH=CM=2.∴点E(3,4),∴OE=3,OD=OE﹣DH=1,∴CD=.。

2010年上海市黄浦区中考数学二模卷及答案

2010年上海市黄浦区中考数学二模卷及答案

黄浦区2010年初三学业考试模拟考数学试卷(完卷时间:100分钟,满分:150分) 2010年4月22日考生注意:所有答案都写在答题卷上一、选择题【每题列出的四个选项中,有且只有一个是正确的】(本大题共6题,每题4分,满分24分)1.4与6的最小公倍数是( )(A )2. (B )4. (C )6. (D )12. 2.化简()23a 的结果是( )(A )5a . (B )6a . (C )8a . (D )9a .3. 二元一次方程32=+y x 的解的个数是( )(A )1. (B )2 . (C )3. (D )无数.4.下列图形中,中心对称图形是( )(A ) (B )(C ) (D )5.函数43-=x y 的图像不经过( )(A )第一象限. (B )第二象限. (C )第三象限. (D )第四象限.6.以等边ABC ∆的三个顶点为圆心的⊙A 、⊙B 与⊙C ,若其中⊙A 与⊙B 相外切,⊙A 与⊙C 也外切,而⊙B 与⊙C 相外离,则⊙A 的半径A R 与⊙B 的半径B R 之间的大小关系是( )(A ) A R >B R . (B ) A R =B R . (C ) A R <B R . (D )以上都有可能.二、填空题(本大题共12题,每题4分,满分48分) 7.计算:=+-+1112x x x.PDCBAA 1NM CBAB 121 l 3l 2 l 1 8.不等式组⎩⎨⎧<-≥+0201x x 的解集是 .9.分解因式:=-++1222y xy x . 10.方程352=+x 的解是 .11.任意掷出一枚质地均匀的骰子后,骰子朝上面的点数为素数的概率是 . 12.抛物线342--=x x y 的顶点坐标为 .13.如果关于x 的方程032=+-k kx x 有两个相等的实数根,那么k 的值为 . 14.如果反比例函数xk y =的图像经过点()1,2与()n ,1-,那么n 的值为 .15.如图1,直线l 1、l 2被直线l 3所截,如果l 1‖l 2,∠1=︒48,那么∠2= 度. 16.如图2,在梯形ABCD 中,AB ‖CD ,CD AB 2=,AC 与BD 交于点P ,令b BC a AB ==,,那么=AP .(用向量a 、b 表示)(图1) (图2) (图3) (图4)17.如图3,⊙O 的半径为5,点P 是弧AB 的中点,OP 交AB 于点H ,如果1=PH ,那么弦AB 的长是 .18.如图4,在ABC ∆中,∠ACB =︒90,AC =4,BC =3,将ABC ∆绕点C 顺时针旋转至C B A 11∆的位置,其中B 1C ⊥AB ,B 1C 、A 1B 1交AB 于M 、N 两点,则线段MN 的长为 .三、解答题(本大题共7题,满分78分)19.(本题10分)计算:()12211260sin 8-︒+++.20.(本题10分)小明在寒假中对他所住的小区学生作了有关上海世博会各国展馆的认识度调查,他随机对他所住小区的40名初中学生调查了对中国馆、捷克馆与法国馆认识情况如下图,接着他又到居委会了解他所住的小区学生数情况如下表.(1)从统计图中可知他所住的小区初中学生中对____________馆的认识度最高; (2)请你估计他所住的小区初中学生中有_____________人认识捷克馆;O BAPHNMDCBAO不认识展馆人数 认识法国馆捷克馆中国馆283540DCB A (3)小明用下面的算式()1602002404035++⨯,计算得到结果为525,并由此估计出他所住的小区共有525名学生认识法国馆.你认为这样的估计正确吗?答:___________;为什么?答:_______________________________________________________.初中学生展馆认识情况统计图学生人数情况表学 段 小 学 初 中 高 中 人 数24020016021.(本题10分)如图5,在梯形ABCD 中,AD ‖BC , ∠B =︒90,AC =AD .(1)若∠BAC ∶∠BCA =3∶2,求∠D 的度数;(2)若AD =5,tan ∠D =2,求梯形ABCD 的面积.(图5)22.(本题10分)动车组的出现使上海到杭州的旅程时间较一般的火车缩短了许多,而计划中上海到杭州磁浮列车的平均速度又将比动车组提高120千米/小时,这样从上海南站到杭州站225千米的旅程时间又将缩短30分钟,问计划中上海到杭州磁浮列车的平均速度将达到多少千米/小时?23.(本题12分)如图6,在梯形ABCD 中,AD ‖BC , 对角线AC 与BD 交于点O ,M 、N 分别为OB 、OC 的 中点,又∠ACB =∠DBC . (1)求证:AB =CD ; (2)若AD =21BC .求证:四边形ADNM 为矩形. (图6)24. (本题12分)已知点P 是函数x y 21=(x >0)图像上一点,PA ⊥x 轴于点A ,交函数xy 1=(x >0)图像于点M , PB ⊥y 轴于点B ,交函数xy 1=(x >0)图像于点N .(点M 、N 不重合)(1)当点P 的横坐标为2时,求△PMN 的面积; (2)证明:MN ‖AB ;(如图7)PO NM PO NMF E DC BA yONMP BAxyOx(3)试问:△OMN 能否为直角三角形?若能,请求出此时点P 的坐标;若不能,请说明理由.(图7) (备用图)25、(本题14分)如图,一把“T 型”尺(图8),其中MN ⊥OP ,将这把“T 型”尺放置于矩形ABCD 中(其中AB =4,AD =5),使边OP 始终经过点A ,且保持OA =AB ,“T 型”尺在绕点A 转动的过程中,直线MN 交边BC 、CD 于E 、F 两点.(图9) (1)试问线段BE 与OE 的长度关系如何?并说明理由; (2)当△CEF 是等腰直角三角形时,求线段BE 的长;(3)设BE =x ,CF =y ,试求y 关于x 的函数解析式,并写出函数定义域.(图8) (图9)2010年黄浦区初三数学学业考试模拟考参考答案与评分标准一、选择题1、D ;2、B ;3、D ;4、C ;5、B ;6、A .二、填空题7、1-x ; 8、x ≤-1<2; 9、()()11-+++y x y x ; 10、2±; 11、21; 12、()7,2-; 13、0,12; 14、2-;15、132; 16、b a 3232+; 17、6; 18、0.8.三、解答题 19、解:原式1212382++⎪⎪⎭⎫⎝⎛+=,———————————————(2+2+1=5分)124322-++=,————————————————————(3分)4123-=.—————————————————————————(2分)20、解:(1)中国;———————————————————————————(3分) (2)140.————————————————————————————(3分)(3)不正确;———————————————————————————(1分)对初中学生随机抽样的结果并不能表示小学生与高中生的结果,缺乏代表性.————————————————————————————————————(3分) 21、解:(1)在ABC ∆中,︒=∠90B ,则︒=∠+∠90BCA BAC ,——————————————————(1分) 又∠BAC ∶∠BCA =3∶2, ∴∠BCA =︒︒=⨯369052.———————————————————(1分)∵AD ‖BC ,∴︒=∠=∠36BCA CAD .————————————(1分)又∵AC =AD ,∴()︒︒=∠-=∠=∠7218021DACACD D .————(2分)(2)作AD CH ⊥,垂足为H ,——————————————————(1分) 在CDH Rt ∆中,tan ∠D =2,令k CH k DH 2,==,———————(1分) 则在ACH Rt ∆中,222CHAHAC+=,————————————(1分)即()()222255x x +-=,解得:2=x .————————————————————————(1分)则35,42=-====x AH BC x CH , ∴()1645321=⨯+⨯=ABCD S 梯形.———————————————(1分)22、解:设磁浮列车的平均速度为x 千米/小时,—————————————(1分) 则21225120225=--xx ,————————————————————(5分)整理得:0540001202=--x x ,———————————————(1分) 解得180,30021-==x x .——————————————————(1分) 经检验,两根均为原方程的根,但1802-=x ,不合题意,舍去.——(1分) 答:计划中上海到杭州磁浮列车的平均速度将达到300千米/小时.————(1分)23、证明:(1)∵∠ACB =∠DBC ,∴OC OB =,———————————————————————(2分)∵AD ‖BC , ∴OBOC ODOA =,即OD OA =——————————————————(2分)∴BD AC =,————————————————————————(1分)∴梯形ABCD 为等腰梯形,即AB =CD .——————————————(1分) (2)∵AD =21BC ,AD ‖BC ,∴21==BCAD OCOA ,又N 为OC 的中点,—————————————(2分)∵OA ON =,————————————————————————(1分) 同理OD OM =,又OD OA =.————————————————(2分) ∴四边形ADNM 为矩形.———————————————————(1分)24、解:(1)∵点P 是函数x y 21=(x >0)图像上一个点,当点P 的横坐标为2,∴点P 为(2,1),——————————————————————(1分) 由题意可得:M 为(2,21),N 为(1,1),———————————(2分)∴4121121=⨯⨯=∆PMN S .———————————————————(1分)(2)令点P 为()a a ,2,(a >0)———————————————————(1分)则()()⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛a a N a a M a B a A ,1,21,2,,0,0,2,∴211221,212=--===aa aa PNPM aa PBPA ,—————————————(1分) 即PNPM PBPA =————————————————————————(1分)∴MN ‖AB .—————————————————————————(1分) (3)由(2)得,222222414,1aa OMaa ON+=+=,2222245552112a a a a a a MN+-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=, 易知︒≠∠90MON . ∴当︒=∠90ONM 时, 有22222245551414aa aa aa +-++=+,解得22,221==a a (舍去),即点P 为()2,22.——————(2分)同理当︒=∠90OMN 时,点P 为⎪⎪⎭⎫⎝⎛42,22.——————————(2分) 综上所述,当点P 为()2,22与⎪⎪⎭⎫ ⎝⎛42,22时,能使△OMN 为直角三角形. 25、解:(1)线段BE 与OE 的长度相等. —————————————————(1分)联结AE ,在△ABE 与△AOE 中,∵OA =AB ,AE =AE ,︒=∠=∠90AOE ABE ,——————————(2分) ∴△ABE ≌△AOE . —————————————————————(1分) ∴BE =OE .(2)延长AO 交 BC 于点T ,———————————————————(1分) 由△CEF 是等腰直角三角形,易知△OET 与△ABT 均为等腰直角三角形.————————————(1分) 于是在△ABT 中,AB =4,则AT =24,—————————————(2分)∴BE =OE =OT =424-.————————————————————(1分)(3)在BC 上取点H ,使BH = BA =4,过点H 作AB 的平行线,交EF 、AD 于点K 、L ,(如图)————————————————(1分) 易知四边形ABHL 为正方形LOFEDCBA K H由(1)可知KL =KO令HK =a ,则在△HEK 中,EH =4–a , EK =a x -+4,∴()()22244a x a x -+=+-,化简得:xx a +=48.—————————————————————(1分)又HL ‖AB , ∴xx EHEC a y --==45,即2216840xx x y --=.————————————(1分)∴函数关系式为2216840xx x y --=,定义域为0<2≤x .—————(1+1=2分)。

上海市静安区、青浦区中考二模数学试题(解析版)

上海市静安区、青浦区中考二模数学试题(解析版)

上海市静安区、青浦区中考二模数学试题一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.(4分)(•静安区二模)下列式子中,从左到右的变形为多项式因式分解的是()A.B.C.D.考点:因式分解的意义.分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.解答:解:A、符合因式分解的定义,故本选项正确;B、结果不是整式积的形式,不是因式分解,故本选项错误;C、结果不是整式积的形式,不是因式分解,故本选项错误;D、结果不是整式积的形式,不是因式分解,故本选项错误;故选A.点评:本题考查了因式分解的定义,属于基础题.2.(4分)(•静安区二模)下列方程中,有实数根的是()A.B.C.x3+3=0 D.x4+4=0考点:无理方程.分析:根据任何数的算术平方根以及偶次方一定是非负数即可作出判断.解答:解:A、≥0,因而方程一定无解;B、x﹣1≥0,解得:x≥1,则﹣x<0,故原式一定不成立,方程无解;C、x3+3=0,则x=﹣,故选项正确;D、x4+4≥4,故原式一定不成立,故方程无解.故选C.点评:本题考查了任何数的算术平方根以及偶次方一定是非负数.3.(4分)(•静安区二模)函数y=kx﹣k﹣1(常数k>0)的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.分析:根据k的取值范围确定﹣k﹣1的符号,从而确定一次函数不经过的象限.解答:解:∵k>0∴﹣k<0,∴﹣k﹣1<0∴y=kx﹣k﹣1(常数k>0)的图象经过一、三、四象限,故选B.点评:本题考查了一次函数图象与系数的关系,解题的关键是牢记比例系数对函数图象的影响.4.(4分)(•静安区二模)已知一组数据3、4、4、5、6、7、4、7,那么这组数据的()A.中位数是5.5,众数是4 B.中位数是5,平均数是5C.中位数是5,众数是4 D.中位数是4.5,平均数是5考点:众数;加权平均数;中位数.分析:根据定义分别求出平均数、中位数、众数,然后作出选择.解答:解:平均数=(3+4+4+5+6+7+4+7)÷8=5,中位数是(4+5)÷2=4.5,在这组数据中4出现3次,最多,则众数是4.故选D.点评:本题考查的是平均数、众数和中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.5.(4分)(•老河口市模拟)如果▱ABCD的对角线相交于点O,那么在下列条件中,能判断▱ABCD为菱形的是()A.∠OAB=∠OBA B.∠OAB=∠OBC C.∠OAB=∠OCD D.∠OAB=∠OAD考点:菱形的判定.分析:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.据此判断即可.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAB=∠ACD,∵∠OAB=∠OAD,∴∠DAC=∠DCA,∴AD=CD,∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)故选D.点评:本题考查菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.6.(4分)(•静安区二模)一个图形沿一条直线翻折后再沿这条直线的方向平移,我们把这样的图形运动称为图形的翻移,这条直线称为翻移线.如图△A2B2C2是由△ABC沿直线l翻移后得到的.在下列结论中,图形的翻移所具有的性质是()A.各对应点之间的距离相等B.各对应点的连线互相平行C.对应点连线被翻移线平分D.对应点连线与翻移线垂直考点:几何变换的类型.专题:新定义.分析:根据图象的翻折和平移的性质得出对应点连线被翻移线平分.解答:解:∵如图所示:△A2B2C2是由△ABC沿直线l翻移后得到的,∴图形的翻移所具有的性质是:对应点连线被翻移线平分.故选:C.点评:此题主要考查了几何变换的类型,根据翻折和平移的性质得出是解题关键.二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案] 7.(4分)(•静安区二模)计算:=.考点:分数指数幂.专题:计算题.分析:原式利用分数指数幂法则计算即可得到结果.解答:解:原式==.故答案为:点评:此题考查了分数指数幂,熟练掌握运算法则是解本题的关键.8.(4分)(•静安区二模)不等式组的解集是x>2.考点:解一元一次不等式组.专题:计算题.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>;由②得,x>2,故此不等式组的解集为:x>.故答案为:x>.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(4分)(•静安区二模)如果一个数的倒数等于它本身,则这个数是±1.考点:倒数.分析:根据倒数的定义可知如果一个数的倒数等于它本身,则这个数是±1.解答:解:如果一个数的倒数等于它本身,则这个数是±1.点评:主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.尤其是±1这两个特殊的数字.10.(4分)(•静安区二模)如果关于x的方程x2﹣6x+m﹣1=0没有实数根,那么m的取值范围是m >10.考点:根的判别式.分析:该方程没有实数根,所以根的判别式△=b2﹣4ac<0,据此列出关于m的不等式,通过解不等式即可求得m的取值范围.解答:解:∵关于x的方程x2﹣6x+m﹣1=0没有实数根,∴△=(﹣6)2﹣4×1×(m﹣1)<0,即40﹣4m<0,解得,m>10.故答案是:m>10.点评:本题考查了根的判别式.一元二次方程根的情况与判别式△=b2﹣4ac的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.(4分)(•静安区二模)如果点A(﹣1,2)在一个正比例函数y=f(x)的图象上,那么y随着x的增大而减小(填“增大”或“减小”).考点:正比例函数的性质.分析:首先设正比例函数解析式为y=kx(k≠0),再把(﹣1,2)点代入函数解析式,算出k的值,再根据正比例函数的性质即可得到答案.解答:解:设正比例函数解析式为y=kx(k≠0),∵过点(﹣1,2),∴2=k×(﹣1),解得k=﹣2,故正比例函数解析式为:y=﹣2x,∵k=﹣2<0,∴y随着x的增大而减小,故答案为:减小.点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y 随x的增大而减小.12.(4分)(•静安区二模)将抛物线y=2x2+1向右平移3个单位,所得抛物线的表达式是y=2(x﹣3)2+1.考点:二次函数图象与几何变换.分析:求出平移前后的两个抛物线的顶点坐标,然后利用顶点式形式写出即可.解答:解:抛物线y=2x2+1的顶点坐标为(0,1),向右平移3个单位后的顶点坐标是(3,1),所以,平移后得到的抛物线的表达式是y=2(x﹣3)2+1.故答案为:y=2(x﹣3)2+1.点评:本题考查了二次函数图象与几何变换,利用顶点的变换确定出函数解析式是此类题目常用的方法,一定要熟练掌握并灵活运用,平移规律“左加右减,上加下减”.13.(4分)(•静安区二模)某校200名学生一次数学测试的分数均大于75且小于150,分数段的频数分布情况如下:75~90有15人,90~105有42人,105~120有58人,135~150有35人(其中每个分数段可包括最小值,不包括最大值),那么测试分数在120~135分数段的频率是0.25.考点:频数与频率.分析:根据已知75~90、90~105、105~120、135~150的频数,求出120~135分数段的频数,然后根据频率=即可求出测试分数在120~135分数段的频率.解答:解:120~135分数段的频数=200﹣15﹣42﹣58﹣35=50人,则测试分数在120~135分数段的频率==0.25.故答案为:0.25.点评:本题考查了频数和频率的知识,注意:每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和,频率=.14.(4分)(•静安区二模)从点数为1、2、3、4、5的五张扑克牌中随机摸出两张牌,摸到的两张牌的点数之和为素数的概率是.考点:列表法与树状图法.分析:首先画树状图,然后由树状图求得所有等可能的结果与摸到的两张牌的点数之和为素数的情况,再利用概率公式求解即可求得答案.解答:解:画树状图得:∵共有20种等可能的结果,摸到的两张牌的点数之和为素数的有10种情况,∴摸到的两张牌的点数之和为素数的概率是:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.15.(4分)(•静安区二模)在梯形ABCD中,AD∥BC,BC=3AD,,那么=.考点: *平面向量.分析:先画出示意图,过点D作DE∥AB交BC于点E,则可表示出、,从而可得出.解答:解:过点D作DE∥AB交BC于点E,则BE=AD,∵AD∥BC,BC=3AD,=,∴==,又∵==,∴=﹣﹣=﹣﹣.故答案为:﹣﹣.点评:本题考查了平面向量及平行四边形的性质,属于基础题,解答本题的关键是作出辅助线,将向量转移到一个三角形里面计算.16.(4分)(•静安区二模)如果⊙O1与⊙O2内含,O1O2=4,⊙O1的半径是3,那么⊙O2的半径的取值范围是r>7.考点:圆与圆的位置关系.分析:首先由题意知⊙O1与⊙O2两圆内含,则知两圆圆心距d<R﹣r,分两种情况进行讨论.解答:解:根据题意两圆内含,故知r﹣3>4,解得r>7.故答案为:r>7.点评:本题考查了由数量关系来判断两圆位置关系的方法.两圆外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.17.(4分)(•静安区二模)在△ABC中,∠A=40°,△ABC绕点A旋转后点C落在边AB上的点C′,点B落到点B′,如果点C、C′、B′在同一直线上,那么∠B的度数是30°.考点:旋转的性质.分析:作出图形,根据旋转的性质可得AC=AC′,∠B′AC′=∠BAC,根据等腰三角形两底角相等求出∠AC′C,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠AB′C,根据旋转的性质可得∠ABC=∠AB′C′,从而得解.解答:解:如图,∵△AB′C′是△ABC旋转得到,∴AC=AC′,∠B′AC′=∠BAC=40°,∴∠AC′C=(180°﹣∠BAC)=(180°﹣40°)=70°,∵点C的对应点C′落在AB上,∴∠AB′C′=∠AC′C﹣∠B′AC′=70°﹣40°=30°.故答案为:30°.点评:本题考查了旋转的性质,等腰三角形两底角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键,作出图形更形象直观.18.(4分)(•静安区二模)在正方形ABCD中,点E、F、G、H分别在边AB、BC、CD、AD上,四边形EFGH是矩形,EF=2FG,那么矩形EFGH与正方形ABCD的面积比是.考点:相似三角形的判定与性质;矩形的性质;正方形的性质.专题:计算题.分析:根据题意画出图形,如图所示,由对称性得到△EFB≌△HDC,△AEH≌△CFG,且四个三角形都为等腰直角三角形,再由等腰直角三角形BEF与等腰直角三角形CFG相似,且相似比为2:1,得到BE=BF=DH=DG=2AE=2AH=2CG=2CF,设正方形边长为3a,表示出BE,BF,以及AH,AE,利用勾股定理表示出EF与EH,进而表示出矩形EFGH的面积,即可求出矩形与正方形面积之比.解答:解:由对称性得到△EFB≌△HDC,△AEH≌△CFG,且四个三角形都为等腰直角三角形,∵△BEF∽△CFG,EF=2FG,设正方形的边长为3a,即S正方形ABCD=9a2,则BE=BF=DH=DG=2a,AE=AH=CG=CF=a,根据勾股定理得:EF=2a,EH=a,∴S矩形EFGH=EF•EH=4a2,则矩形EFGH与正方形ABCD的面积比是.故答案为:点评:此题考查了相似三角形的判定与性质,矩形的性质以及正方形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上] 19.(10分)(•静安区二模)化简:,并求当时的值.考点:分式的化简求值.专题:计算题.分析:根据负整数指数幂的意义将原式化为两分式的和,再通过分后相加即可.解答:解:原式==+==.当时,原式=.点评:本题考查了分式的化简求值,熟悉负整数指数幂及通分和因式分解是解题的关键.20.(10分)(•静安区二模)解方程组:.考点:高次方程.分析:先把原方程进行变形,得到x+2y=±3,和x﹣y=0或x+y﹣4=0,再重新组合得出4个二元一次方程组,再分别解方程组即可.解答:解:,由(1)得:x+2y=±3,由(2)得:x﹣y=0或x+y﹣4=0,原方程组可化为,,,,解得原方程组的解是,,,.点评:此题考查了高次方程,关键是通过把两个方程分解,得到4个二元一次方程组,再根据求方程的步骤进行求解.21.(10分)(•静安区二模)已知:如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线AC、BD相交于点E,BD⊥CD,AB=12,cot∠ADB=.求:(1)∠DBC的余弦值;(2)DE的长.考点:梯形;勾股定理;平行线分线段成比例;解直角三角形.分析:(1)根据cot∠ADB=,可求出AD的长度,在Rt△ABD中利用勾股定理求出BD,继而可得出∠DBC的余弦值;(2)在Rt△BDC中,由(1)的答案可求出BC的长度,再由平行线分线段成比例的知识可求出DE的长.解答:解:(1)∵Rt△ABD中,cot∠ADB=,∴=,则AD=16,∴BD===20,∵AD∥BC,∴∠DBC=∠ADB,∴cos∠DBC=cos∠ADB===;(2)在Rt△BCD中,cos∠DBC=,即=,解得:BC=25,∵AD∥BC,∴==,∴=,∴DE=×BD=×20=.点评:本题考查了梯形、勾股定理及平行线分线段成比例的知识,解答本题的关键是熟练掌握解直角三角形的方法,能正确表示角的三角函数.22.(10分)(•静安区二模)一辆高铁列车与另一辆动车组列车在1320公里的京沪高速铁路上运行时,高铁列车比动车组列车平均速度每小时快99公里,用时少3小时,求这辆高铁列车全程的运行时间和平均速度.考点:分式方程的应用.分析:设这辆高铁列车全程的运行时间为x小时,则那辆动车组列车全程的运行时间为(x+3)小时,根据条件建立方程求出其解就可以得出结论.解答:解:设这辆高铁列车全程的运行时间为x小时,则那辆动车组列车全程的运行时间为(x+3)小时,由题意,得,.x2+3x﹣40=0,x1=5,x2=﹣8.经检验:它们都是原方程的根,但x=﹣8不符合题意.当x=5时,.答:这辆高铁列车全程的运行时间为5小时,平均速度264公里/小时.点评:本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.23.(12分)(•静安区二模)已知:如图,在△ABC中,AB=AC,点D、E分别在边AC、AB上,DA=DB,BD与CE相交于点F,∠AFD=∠BEC.求证:(1)AF=CE;(2)BF2=EF•AF.考点:相似三角形的判定与性质;全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:(1)根据全等三角形的判定方法得出△BFA≌△AEC(AAS),即可得出答案;(2)根据∠EAF=∠ECA,∠FEA=∠AEC,得出△EFA∽△EAC,进而求出,即可得出BF2=EF•AF.解答:(1)证明:∵DA=DB,∴∠FBA=∠EAC,∵∠AFD=∠BEC,∴180°﹣∠AFD=180°﹣∠BEC,即∠BFA=∠AEC.∵在△BFA和△AEC中,∴△BFA≌△AEC(AAS).∴AF=CE.(2)解:∵△BFA≌△AEC,∴BF=AE.∵∠EAF=∠ECA,∠FEA=∠AEC,∴△EFA∽△EAC.∴.∴EA2=EF•CE.∵EA=BF,CE=AF,∴BF2=EF•AF.点评:此题主要考查了相似三角形的判定与性质以及全等三角形的判定,根据已知得出∠BFA=∠AEC是解题关键.24.(12分)(•静安区二模)已知AB是⊙O的直径,弦CD⊥AB,垂足为H,AH=5,CD=,点E在⊙O上,射线AE与射线CD相交于点F,设AE=x,DF=y.(1)求⊙O的半径;(2)如图,当点E在AD上时,求y与x之间的函数解析式,并写出函数的定义域;(3)如果EF=,求DF的长.考点:圆的综合题.分析:(1)连接OD,设⊙O的半径OA=OD=r,根据垂径定理得DH=DC=2,在Rt△OHD中利用勾股定理得到r2﹣(5﹣r)2=(2)2,然后解方程即可得到圆的半径;(2)作OG⊥AE,垂足为G,根据垂径定理得AG=AE=x且易得△AOG∽△AFH,则AG:AH=AO:AF,可解得AF=,再在Rt△AHF中利用勾股定理得到FH==,然后利用DF=FH﹣DH即可得到y与x的关系式,当E与D重合时,x最大,则有0<x≤3;(3)分类讨论:当点E在弧AD上时,由AF﹣AE=EF可解出x=6,再代入y与x的关系式中得到DF=;当点E在弧DB上时,由AE﹣AF=EF,可求得x=,然后根据勾股定理计算出BE=,再利用△AHF∽△AEB得到FH:BE=AH:AE,解得FH=,所以DF=DH﹣FH=2﹣;当点E在BC弧上时,同上得FH=,然后利用DF=DH+FH计算即可.解答:解:(1)连接OD,设⊙O的半径OA=OD=r,∵AB是⊙O的直径,弦CD⊥AB,∴DH=DC=×4=2,在Rt△OHD中,∵OD2﹣OH2=DH2,OH2=(AH﹣OA)2=(5﹣r)2,∴r2﹣(5﹣r)2=(2)2,解得r=,∴⊙O的半径为;(2)作OG⊥AE,垂足为G,如图,∴AG=AE=x,∴△AOG∽△AFH,∴AG:AH=AO:AF,即x:5=:AF,解得AF=,∴FH===,∵DF=FH﹣DH,∴y关于x的函数解析式为y=﹣2,定义域为0<x≤3;(3)当点E在弧AD上时,如图,∵AF﹣AE=EF,即﹣x=,化为整式方程得2x2+3x﹣90=0,解得x1=﹣(舍去),x2=6,∴DF=y=﹣2=;当点E在弧DB上时,如图,∵AE﹣AF=EF,即x﹣=,化为整式方程得2x2﹣3x﹣90=0,解得x1=,x2=6(舍去),∵AB为直径,∴∠E=90°,∴△AHF∽△AEB,BE==,∴FH:BE=AH:AE,即FH:=5:,解得FH=∴DF=DH﹣FH=2﹣当点E在BC弧上时,同上得FH=,∴DF=DH+FH=2+.点评:本题考查了圆的综合题:垂径定理和圆周角定理在有关圆的几何证明或几何计算中常用到;利用三角形相似比或勾股定理进行计算几何是常用的方法.25.(14分)(•静安区二模)如图,点A(2,6)和点B(点B在点A的右侧)在反比例函数的图象上,点C在y轴上,BC∥x轴,tan∠ACB=2,二次函数的图象经过A、B、C三点.(1)求反比例函数和二次函数的解析式;(2)如果点D在x轴的正半轴上,点E在反比例函数的图象上,四边形ACDE是平行四边形,求边CD 的长.考点:二次函数综合题.分析:(1)设反比例函数的解析式为y=,由A的坐标可求出k的值,作AM⊥BC,垂足为M,交y轴于N,利用已知条件求出点B的坐标(6,2)再设二次函数的解析式为y=ax2+bx+2,把A和B的坐标代入求出a和b的值即可求出二次函数的解析式;(2)延长AC交x轴于G,作EH⊥x轴,垂足为H,利用已知条件可证明△ACM≌△EDH,由全等三角形的性质可得:EH=AM=4,DH=CM=2,进而求出点E(3,4),所以OE=3,OD=OE﹣DH=1,利用勾股定理即可求出CD的长.解答:解:(1)设反比例函数的解析式为y=,∵点A(2,6)在反比例函数的图象上,∴6=,∴k=12,∴反比例函数的解析式为,作AM⊥BC,垂足为M,交x轴于N,∴CM=2.在Rt△ACM中,AM=CM•tan∠ACB=2×2=4,∵BC∥x轴,OC=MN=AN﹣AM=6﹣4=2,∴点C的坐标(0,2).当x=2时,y=6,∴点B的坐标(6,2)设二次函数的解析式为y=ax2+bx+2,则,解得,故二次函数的解析式为;(2)延长AC交x轴于G,作EH⊥x轴,垂足为H,∵在平行四边形ACDE中,AC∥DE,∴∠AGO=∠EDH,∵BC∥x轴,∴∠ACM=∠AGO,∴∠ACM=∠EDH.∵∠AMC=∠EHD=90°,AC=ED,∴△ACM≌△EDH,∴EH=AM=4,DH=CM=2.∴点E(3,4),∴OE=3,OD=OE﹣DH=1,∴CD=.点评:本题考查了利用待定系数法求反比例函数的解析式和二次函数的解析式、全等三角形的判定和性质以及勾股定理的运用、平行四边形的性质,题目的综合性很强,难度中等,解题的关键是正确的作出辅助线构造直角三角形.。

2010年上海市中考数学真题试卷(含答案)

2010年上海市中考数学真题试卷(含答案)

2010年上海市初中毕业统一学业考试数学卷【精品】(满分150分,考试时间100分钟)2010-6-20一、选择题(本大题共6题,每题4分,满分24分) 1.下列实数中,是无理数的为( )A. 3.14B. 13 C. 3 D. 92.在平面直角坐标系中,反比例函数 y = kx ( k <0 ) 图像的量支分别在( )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限3.已知一元二次方程 x + x ─ 1 = 0,下列判断正确的是( )A.该方程有两个相等的实数根B.该方程有两个不相等的实数根C.该方程无实数根D.该方程根的情况不确定4.某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C ),这组数据的中位数和众数分别是( )A. 22°C ,26°CB. 22°C ,20°CC. 21°C ,26°CD. 21°C ,20°C5.下列命题中,是真命题的为( )A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似D.等边三角形都相似6.已知圆O 1、圆O 2的半径不相等,圆O 1的半径长为3,若圆O 2上的点A 满足AO 1 = 3,则圆O 1与圆O 2的位置关系是( )A.相交或相切B.相切或相离C.相交或内含D.相切或内含二、填空题(本大题共12题,每题4分,满分48分) 7.计算:a 3÷ a 2= __________.8.计算:( x + 1 ) ( x ─ 1 ) = ____________. 9.分解因式:a 2─ a b = ______________. 10.不等式 3 x ─ 2 > 0 的解集是____________.11.方程 x + 6 = x 的根是____________. 12.已知函数 f ( x ) =1x 2+ 1,那么f ( ─ 1 ) = ___________. 13.将直线 y = 2 x ─ 4 向上平移5个单位后,所得直线的表达式是______________. 14.若将分别写有“生活”、“城市”的2张卡片,随机放入“ 让 更美好”中的两个 内(每个 只放1张卡片),则其中的文字恰好组成“城市让生活更美好”的概率是__________15.如图1,平行四边形ABCD 中,对角线AC 、BD 交于点O 设向量,b ,则向量=__________.(结果用、b 表示)16.如图2,△ABC 中,点D 在边AB 上,满足∠ACD =∠ABC ,若AC = 2,AD = 1,则DB = __________.17.一辆汽车在行驶过程中,路程 y (千米)与时间 x (小时)之间的函数关系如图3所示 当时 0≤x ≤1,y 关于x 的函数解析式为 y = 60 x ,那么当 1≤x ≤2时,y 关于x 的函数解析式为_____________.18.已知正方形ABCD 中,点E 在边DC 上,DE = 2,EC = 1(如图4所示) 把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两点的距离为___________.三、解答题(本大题共7题,19 ~ 22题每题10分,23、24题每题12分,25题14分,满分78分)AO AB AD 图1图2图3图419.计算:12131271)()2-+-+20.解方程:x x ─ 1 ─ 2 x ─ 2x ─ 1 = 021.机器人“海宝”在某圆形区域表演“按指令行走”,如图5所示,“海宝”从圆心O 出发,先沿北偏西67.4°方向行走13米至点A 处,再沿正南方向行走14米至点B 处,最后沿正东方向行走至点C 处,点B 、C 都在圆O 上.(1)求弦BC 的长;(2)求圆O 的半径长.(本题参考数据:sin 67.4° = 1213 ,cos 67.4° = 513 ,tan 67.4° = 125 )22.某环保小组为了解世博园的游客在园区内购买瓶装饮料 数量的情况,一天,他们分别在A 、B 、C 三个出口处, 对离开园区的游客进行调查,其中在A 出口调查所得的 数据整理后绘成图6.(1)在A 出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占A 出口的被调查游客人数的__________%.(2)试问A 出口的被调查游客在园区内人均购买了多少瓶饮料?饮料数量(瓶)图6图5(3)已知B 、C 两个出口的被调查游客在园区内人均购买饮料的数量如表一所示 若C 出口的被调查人数比B 出口的被调查人数多2万,且B 、C 两个出口的被调查游客在园区内共购买了49万瓶饮料,试问B 出口的被调查游客人数为多少万?23.已知梯形ABCD 中,AD//BC ,AB=AD (如图7所示),∠BAD 的平分线AE 交BC 于点E ,连结DE.(1)在图7中,用尺规作∠BAD 的平分线AE (保留作图痕迹,不写作法),并证明四边形ABED 是菱形;(2)∠ABC =60°,EC=2BE ,求证:ED ⊥DC.24.如图8,已知平面直角坐标系xOy ,抛物线y =-x 2+bx +c 过点A(4,0)、B(1,3) . (1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.出 口 B C 人均购买饮料数量(瓶)32BADC图7图8表 一25.如图9,在Rt △ABC 中,∠ACB =90°.半径为1的圆A 与边AB 相交于点D ,与边AC 相交于点E ,连结DE 并延长,与线段BC 的延长线交于点P. (1)当∠B =30°时,连结AP ,若△AEP 与△BDP 相似,求CE 的长; (2)若CE=2,BD=BC ,求∠BPD 的正切值; (3)若1tan 3BPD ∠=,设CE=x ,△ABC 的周长为y ,求y 关于x 的函数关系式.图9 图10(备用) 图11(备用)2010年上海市初中毕业统一学业考试数学卷(满分150分,考试时间100分钟)2010-6-20一、选择题(本大题共6题,每题4分,满分24分)1.下列实数中,是无理数的为( C )A . 3.14B . 13C . 3D . 9【解析】无理数即为无限不循环小数,则选C 。

青浦初中二模数学试卷答案

青浦初中二模数学试卷答案

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √3B. πC. 0.1010010001...D. -3答案:D2. 下列代数式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^3 = a^3 + b^3D. (a - b)^3 = a^3 - b^3答案:B3. 下列图形中,轴对称图形是()A. 等腰三角形B. 长方形C. 正方形D. 圆答案:D4. 下列各式中,不是方程的是()A. 2x + 3 = 7B. 5x - 2 = 0C. 3(x - 2) = 6D. 2x^2 + 5x - 3答案:D5. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的面积是()A. 24cm^2B. 28cm^2C. 32cm^2D. 36cm^2答案:A6. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2D. y = √x答案:B7. 下列数列中,第10项是负数的是()A. 1, 2, 4, 8, ...B. 1, 3, 9, 27, ...C. 1, 1/2, 1/4, 1/8, ...D. 1, 3, 5, 7, ...答案:C8. 下列图形中,外接圆半径最大的是()A. 正方形B. 等腰三角形C. 等边三角形D. 长方形答案:C9. 下列运算中,正确的是()A. (-3) × (-2) = 6B. (-3) × (-2) = -6C. (-3) ÷ (-2) = 6D. (-3) ÷ (-2) = -6答案:A10. 下列各数中,无理数是()A. √9B. √16C. √25D. √27答案:D二、填空题(每题5分,共50分)11. 2x - 5 = 15 的解是 x = __________。

上海市青浦区中考数学二模试卷

上海市青浦区中考数学二模试卷

中考数学二模试卷一、选择题(本大题共6小题,共22.0分)1.下列单项式中,与ab2是同类项的是()A. a2bB. a2b2C. -ab2D. 2ab2.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、三象限,那么k、b应满足的条件是()A. k>0且b>0B. k>0且b<0C. k<0且b>0D. k<0且b<03.抛物线y=2(x+1)2-1的顶点坐标是()A. (1,1)B. (-1,-1)C. (1,-1)D. (-1,1)4.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A. 平均数B. 中位数C. 众数D. 方差5.下列图形中,是中心对称图形但不是轴对称图形的是()A. 平行四边形B. 矩形C. 菱形D. 等腰梯形6.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,AB=4,BC=6,点O是边BC上一点,以O为圆心,OC为半径的⊙O,与边AD只有一个公共点,则OC的取值范围是()A. 4<OC≤B. 4≤OC≤C. 4<OCD. 4≤OC≤二、填空题(本大题共12小题,共36.0分)7.(-2x2)3=______.8.分解因式:a3-9a=______.9.如果二次根式有意义,那么x的取值范围是______.10.方程的根是______.11.如果关于x的方程x2-2x+a=0有两个相等的实数根,那么a=______.12.已知反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而增大,那么k的取值范围是______.13.将分别写有“创建”、“智慧”、“校园”的三张大小、质地相同的卡片随机排列,那么恰好排列成“创建智慧校园”的概率是______.14.A班学生参加“垃圾分类知识”竞赛,已知竞赛得分都是整数,竞赛成绩的频数分布直方图,如图所示,那么成绩高于60分的学生占A班参赛人数的百分率为______.15.如图,△ABC的中线AD、BE相交于点G,若=,=,用、表示=______.16.如图,在⊙O中,OA、OB为半径,连接AB,已知AB=6,∠AOB=120°,那么圆心O到AB的距离为______.17.如图,在矩形ABCD中,AB=3,E为AD的中点,F为CD上一点,且DF=2CF,沿BE将△ABE翻折,如果点A恰好落在BF上,则AD=______.18.我们把满足某种条件的所有点组成的图形,叫做符合这个条件的点的轨迹,如图,在Rt△ABC中,∠C=90°,AC=8,BC=12,动点P从点A开始沿射线AC方向以1个单位秒的速度向点C运动,动点Q从点C开始沿射线CB方向以2个单位/秒的速度向点运动,P、Q两点分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,在整个运动过程中,线段PQ的中点M运动的轨迹长为______.三、计算题(本大题共1小题,共6.0分)19.如图,在△ABC中,∠C=90°,AB的垂直平分线分别交边BC、AB于点D、E,联结AD.(1)如果∠CAD:∠DAB=1:2,求∠CAD的度数;(2)如果AC=1,tan∠B=,求∠CAD的正弦值.四、解答题(本大题共6小题,共48.0分)20.计算:(-1)2019-|1-|+.21.解方程组:22.如图,一座古塔AH的高为33米,AH⊥直线l,某校九年级数学兴趣小组为了测得该古塔塔刹AB的高,在直线l上选取了点D,在D处测得点A的仰角为26.6°,测得点B的仰角为22.8°,求该古塔塔刹AB的高.(精确到0.1米)【参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.5,sin22.8°=0.39,cos22.8°=092,tan22.8°=0.42】23.已知:如图,在菱形ABCD中,AB=AC,点E、F分别在边AB、BC上,且AE=BF,CE与AF相交于点G.(1)求证:∠FGC=∠B;(2)延长CE与DA的延长线交于点H,求证:BE•CH=AF•AC.24.已知:如图,在平面直角坐标系xOy中,抛物线y=ax2+bx(a≠0)经过点A(6,-3),对称轴是直线x=4,顶点为B,OA与其对称轴交于点M,M、N关于点B对称.(1)求这条抛物线的表达式和点B的坐标;(2)联结ON、AN,求△OAN的面积;(3)点Q在x轴上,且在直线x=4右侧,当∠ANQ=45°时,求点Q的坐标.25.已知:在Rt△ABC中,∠ACB=90°,AC=1,D是AB的中点,以CD为直径的⊙Q分别交BC、BA于点F、E,点E位于点D下方,连接EF交CD于点G.(1)如图1,如果BC=2,求DE的长;(2)如图2,设BC=x,=y,求y关于x的函数关系式及其定义域;(3)如图3,连接CE,如果CG=CE,求BC的长.答案和解析1.【答案】C【解析】解:由同类项的定义可知,a的指数是1,b的指数是2.A、a的指数是2,b的指数是1,与ab2不是同类项;B、a的指数是2,b的指数是2,与ab2不是同类项;C、a的指数是1,b的指数是2,与ab2是同类项;D、a的指数是1,b的指数是1,与ab2不是同类项.故选:C.根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项求解.本题考查了同类项,判断同类项只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.2.【答案】A【解析】解:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、三象限,∴k>0,b>0,故选:A.根据一次函数图象与系数的关系求解即可.本题考查了一次函数图象与系数的关系,属于基础题.注意掌握直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.3.【答案】B【解析】解:因为y=2(x+1)2-1是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(-1,-1),故选:B.直接利用顶点式的特点可求顶点坐标.主要考查了求抛物线的对称轴和顶点坐标的方法.牢记二次函数的顶点式是解答本题的关键.4.【答案】D【解析】解:原数据的2、3、3、4的平均数为=3,中位数为=3,众数为3,方差为×[(2-3)2+(3-3)2×2+(4-3)2]=0.5;新数据2、3、3、3、4的平均数为=3,中位数为3,众数为3,方差为×[(2-3)2+(3-3)2×3+(4-3)2]=0.4;∴添加一个数据3,方差发生变化,故选:D.依据的定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.5.【答案】A【解析】解:A、平行四边形不是轴对称图形,是中心对称图形,符合题意;B、矩形是轴对称图形,又是中心对称图形,不符合题意;C、菱形既是轴对称图形,也是中心对称图形,不符合题意;D、等腰梯形是轴对称图形,不是中心对称图形,不符合题意.故选:A.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.6.【答案】B【解析】解:作DE⊥BC于E,如图所示:则DE=AB=4,BE=AD=2,∴CE=4=DE,当⊙O与边AD相切时,切点为D,圆心O与E重合,即OC=4;当OA=OC时,⊙O与AD交于点A,设OA=OC=x,则OB=6-x,在Rt△ABO中,由勾股定理得:42+(6-x)2=x2,解得:x=;∴以O为圆心,OC为半径的⊙O,与边AD只有一个公共点,则OC的取值范围是4≤x≤;故选:B.作DE⊥BC于E,当⊙O与边AD相切时,圆心O与E重合,即OC=4;当OA=OC时,⊙O与AD交于点A,设OA=OC=x,则OB=6-x,在Rt△ABO中,由勾股定理得出方程,解方程得出OC=;即可得出结论.本题考查了直线与圆的位置关系、直角梯形的性质、勾股定理等知识;熟练掌握直角梯形的性质,分情况讨论是解题的关键.7.【答案】-8x6【解析】解:(-2x2)3,=-23x2×3,=-8x6.根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,进行计算即可.本题考查了积的乘方的性质,熟练掌握运算性质是解题的关键.8.【答案】a(a+3)(a-3)【解析】解:a3-9a=a(a2-32)=a(a+3)(a-3).本题应先提出公因式a,再运用平方差公式分解.本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9.【答案】x≥3【解析】解:∵二次根式有意义,∴x-3≥0,∴x≥3.故答案为:x≥3.二次根式的值为非负数,被开方数也为非负数.此题考查了二次根式有意义的条件,要明确,当函数表达式是二次根式时,被开方数非负.10.【答案】x=【解析】解:∵,∴x2-1=1,∴x2=2,∴x=±,经检验x=±是原方程的根,∴x=±.故答案为:x=±.首先把方程两边同时平方,然后解一元二次方程,最后要验根.此题主要考查了无理方程的解法,主要方法是方程两边同时平方从而转化为整式方程解决问题.11.【答案】1【解析】解:∵关于x的方程x2-2x+a=0有两个相等的实数根,∴△=4-4a=0,即a=1.若一元二次方程有两个相等的实数根,则方程的根的判别式等于0,由此可列出关于a 的等式,求出a的值.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.【答案】k<0【解析】解:∵反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而增大,∴k的取值范围是:k<0.故答案为:k<0.直接利用当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.此题主要考查了反比例函数的性质,正确记忆增减性是解题关键.13.【答案】【解析】解:根据题意,画树状图如下:由树状图可知,共有6种等可能排列的方式,其中恰好排列成“创建智慧校园”的只有1种,∴恰好排列成“创建智慧校园”的概率是,故答案为.根据题意画出三张卡片排列的所有等可能结果,再由树状图确定恰好排列成“创建智慧校园”的结果数,依据概率公式可得答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.14.【答案】77.5%【解析】解:=77.5%,故答案为:77.5%.根据频数直方图中的数据可以求得成绩高于60分的学生占A班参赛人数的百分率,本题得以解决.本题考查频数(率)直方图,解答本题的关键是明确题意,利用数形结合的思想解答.15.【答案】--【解析】解:如图,连接DE.∵BD=CD,AE=EC,∴DE∥AB,DE=AB,∴==,∴DG=AD,∴=+,=,=,∴=+,∵=,∴=--,故答案为:--,如图,连接DE.首先证明DG=AD,根据=+,求出即可解决问题.本题考查三角形的重心,平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.【答案】【解析】解:过O作OC⊥AB交AB于C点,如右图所示:由垂径定理可知,OC垂直平分AB,则AC=AB=3,∵OA=OB,∠AOB=120°,∴∠OAB=30°,∴tan∠OAB=tan30°=,∴OC=AC•tan30°=3×=,即圆心O到AB的距离为;故答案为:.过O作OC⊥AB交AB于C点,由垂径定理可知,OC垂直平分AB,再解直角三角形即可求解.本题利用垂径定理构造出直角三角形,再根据特殊角的正切函数求解.17.【答案】2【解析】解:连接EF,∵点E、点F是AD、DC的中点,∴AE=ED,DF=2CF=2,由折叠的性质可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,,∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=2,∴BF=BA′+A′F=AB+DF=3+2=5,在Rt△BCF中,BC=.∴AD=BC=2.故答案为2连接EF,则可证明△EA′F≌△EDF,从而根据BF=BA′+A′F,得出BF的长,在Rt△BCF 中,利用勾股定理可求出BC,即得AD的长度.本题考查了翻折变换的知识,解答本题的关键是连接EF,证明Rt△EA′F≌Rt△EDF,得出BF的长,注意掌握勾股定理的表达式.18.【答案】3【解析】解:以C为原点,以AC所在直线为x轴,建立平面直角坐标系:依题意,可知0≤t≤6,当t=0时,点M1的坐标为(4,0);当t=6时,点M2的坐标为(1,6),设直线M1M2的解析式为y=kx+b,∴,解得:,∴直线M1M2的解析式为y=-2x+8.设动点运动的时间为t秒,则有点Q(0,2t),P(8-t,0),∴在运动过程中,线段PQ中点M3的坐标为(,t),把x=代入y=-2x+8,得y=-2×+8=t,∴点M3在M1M2直线上,过点M2作M2N⊥x轴于点N,则M2N=6,M1N=3,∴M1M2=3,∴线段PQ中点M所经过的路径长为3个单位长度.故答案为:3.先以C为原点,以AC所在直线为x轴,建立平面直角坐标系,由题意知0≤t≤6,求得t=0及t=6时M的坐标,得到直线M1M2的解析式为y=-2x+8.过点M2作M2N⊥x轴于点N,则M2N=6,M1N=3,M1M2=3,线段PQ中点M所经过的路径长为3个单位长度.本题主要考查了一次函数的应用.用到解二元一次方程组以及勾股定理,综合性较强.19.【答案】解:(1)∵∠CAD:∠DAB=1:2∴∠DAB=2∠CAD在Rt△ABC中,∠CAD+∠DAB+∠DBA=90°∵DE垂直平分AB交边BC、AB于点D、E∴∠DAB=∠DBA∴∠CAD+∠DAB+∠DBA=∠CAD+2∠CAD+2∠CAD=90°解得,∠CAD=18°(2)在Rt△ABC中,AC=1,tan∠B==,∴BC=2由勾股定理得,AB===∵DE垂直平分AB交边BC、AB于点D、E∴BE=AE=∵∠DAE=∠DBE∴在Rt△ADE中tan∠B=tan∠DAE==∴DE=∴由勾股定理得AD===∴cos∠CAD===∴sin∠CAD===则∠CAD的正弦值为【解析】(1)由DE垂直平分AB交边BC、AB于点D、E,可得∠DAB=∠DBA,则∠CAD+∠DAB+∠DBA=∠CAD+2∠DAB=90°,而∠CAD:∠DAB=1:2,则可求∠CAD的度数.(2)在Rt△ABC中,AC=1,tan∠B==,可求得BC,从而利用勾股定理可求得AB的值,进而可求得AE、DE的值,即可求得AD,而cos∠CAD=,sin∠CAD=,即可求∠CAD的正弦值.本题主要是应用三角函数定义来解直角三角形,关键要运用锐角三角函数的概念及比正弦和余弦的基本关系进行解题.20.【答案】解:原式=-1-(-1)++1+=1.【解析】直接利用绝对值的性质以及二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.【答案】解:原方程组变形为,∴或∴原方程组的解为或【解析】先将原方程组化为两个二元一次方程组,然后求解即可.本题考查了二次方程组的解,将二次方程组化为一次方程组是解题的关键.22.【答案】解:∵AH⊥直线l,∴∠AHD=90°,在Rt△ADH中,tan∠ADH=,∴DH==,在Rt△BDH中,tan∠BDH=,∴DH==,∴=,解得:AB≈5.3m,答:该古塔塔刹AB的高为5.3m.【解析】根据垂直的定义得到∠AHD=90°,在Rt△ADH中,根据三角函数的定义得到DH==,在Rt△BDH中,根据三角函数的定义得到DH==,列方程即可得到结论.本题考查了解直角三角形的应用-仰角俯角问题,正确的解直角三角形是解题的关键.23.【答案】证明:(1)∵四边形ABCD为菱形,∴AB=BC,而AB=AC,∴AB=BC=AC,∴△ABC为等边三角形,∴∠B=∠BAC=60°,在△ABF和△CAE中,∴△ABF≌△CAE(SAS),∴∠BAF=∠ACE,∵∠FGC=∠GAC+∠ACG=∠GAC+∠BAF=∠BAC=60°,∴∠FGC=∠B;(2)如图,∵四边形ABCD为菱形,∴∠B=∠D,AD∥BC,∴∠BCE=∠H,∴△BCE∽△DHC,∴=,∵△ABF≌△CAE,∴CE=AF∵CA=CB=CD,∴=,∴BE•CH=AF•AC.【解析】本题考查了相似三角形的判定与性质:判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;同时灵活运用相似三角形的性质进行几何计算.也考查了菱形的性质.(1)先利用菱形的性质判断△ABC为等边三角形得到∠B=∠BAC=60°,再证明△ABF≌△CAE得到∠BAF=∠ACE,然后利用角度代换可得到结论;(2)如图,先证明△BCE∽△DHC得到=,然后利用等线段代换可得到结论.24.【答案】解:(1)由题意可得,解得a=,b=-2,∴抛物线的表达式y=x2-2x将x=4代入,得y=-4,∴点B的坐标(4,-4);(2)连结ON、AN,如图1.∵A(6,-3),∴直线OA:y=-x,将x=4代入,y=-2,∴M(4,-2),∵M、N关于点B对称,B(4,-4),∴N(4,-6),∴MN=4,∴S△OAN=MN•|x A|=×4×6=12;(3)设对称轴直线x=4与x轴交于点T,抛物线与x轴另一个交点为P,则P(8,0).∵A(6,-3),N(4,-6),∴直线AN:y=,令y=0,则x=8,∴直线AN与x轴交点(8,0),即直线AN与x轴交于点P,如图2,连接NQ,连接NA、AP,过点P作PR⊥PN,与NQ交于点R,过R作RH⊥x 轴于点H.∵∠PNR=∠ANQ=45°,∴∠PRN=45°=∠PNR,∴PR=PN,易证△PTN≌△RHP(AAS),∴RH=PT=4,PH=TN=6,∴TH=10,∵,∴,∴HQ=20,∴OQ=OP+PH+HQ=8+6+20=34,点Q的坐标(34,0).【解析】(1)根据直线x=4和A(6,-3)列出方程组,求出a、b即可求出解析式,然后将x=4代入函数解析式,求得得y=-4,所以点B的坐标(4,-4);(2)连结ON、AN,先求出M(4,-2),由M、N关于点B对称,求出N(4,-6),于是MN=4,所以S△OAN=MN•|x A|=×4×6=12;(3)设对称轴直线x=4与x轴交于点T,抛物线与x轴另一个交点为P,则P(8,0),直线AN与x轴交于点P,连接NQ,连接NA、AP,过点P作PR⊥PN,与NQ交于点R,过R作RH⊥x轴于点H.由∠PNR=∠ANQ=45°,则∠PRN=45°=∠PNR,所以PR=PN,易证△PTN≌△RHP(AAS),则RH=PT=4,PH=TN=6,TH=10,由HR∥TN,列出比例式求出HQ=20,于是OQ=OP+PH+HQ=8+6+20=34,所以点Q的坐标(34,0).本题考查了二次函数,熟练掌握二次函数的相关性质与全等三角形的判定与性质是解题的关键.25.【答案】解:(1)如图1中,连接CE.在Rt△ACB中,∵∠ACB=90°,AC=1,BC=2,∴AB==,∵CD是⊙Q的直径,∴∠CED=90°,∴CE⊥AB,∵BD=AD,∴CD=AB=,∵•AB•CE=•BC•AC,∴CE=,在Rt△CDE中,DE===.(2)如图2中,连接CE,设AC交⊙Q于K,连接FK,DF,DK.∵∠FCK=90°,∴FK是⊙Q的直径,∴直线FK经过点Q,∵CD是⊙Q的直径,∴∠CFD=∠CKD=90°,∴DF⊥BC,DK⊥AC,∵DC=DB=DA,∴BF=CF,CK=AK,∴FK∥AB,∴=,∵BC=x,AC=1,∴AB=,∴DC=DB=DA=,∵△ACE∽△ABC,∴可得AE=,∴DE=AD-AE=-,∴=,∴=,∴y=(x>1).(3)如图3中,连接FK.∵CE=CG,∴∠CEG=∠CGE,∵∠FKC=∠CEG,∵FK∥AB,∴∠FKC=∠A,∵DC=DA,∴∠A=∠DCA,∴∠A=∠DCA=∠CEG=∠CGE,∴∠CDA=∠ECG,∴EC=DE,由(2)可知:=-,整理得:x2-2x-1=0,∴x=1+或1-(舍弃),∴BC=1+.【解析】(1)如图1中,连接CE.在Rt△CDE中,求出CD,CE即可解决问题.(2)如图2中,连接CE,设AC交⊙Q于K,连接FK,DF,DK.想办法用x表示CD,DE,证明FK∥AB,推出=,延长构建关系式即可解决问题.根据点E位于点D下方,确定x的取值范围即可.(3)如图3中,连接FK.证明ED=EC,由此构建方程即可解决问题.本题属于圆综合题,考查了圆周角定理,勾股定理,三角形的中位线定理,平行线分线段成比例定理,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数,构建方程解决问题,属于中考常考题型.。

2010年上海市中考数学真题试题(含答案)

2010年上海市中考数学真题试题(含答案)

2010年上海市初中毕业统一学业考试数学卷(含答案)(满分150分,考试时间100分钟)2010-6-20一、选择题(本大题共6题,每题4分,满分24分) 1.下列实数中,是无理数的为( )A. 3.14B. 13 C. 3 D. 92.在平面直角坐标系中,反比例函数 y = kx ( k <0 ) 图像的量支分别在( )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限3.已知一元二次方程 x + x ─ 1 = 0,下列判断正确的是( )A.该方程有两个相等的实数根B.该方程有两个不相等的实数根C.该方程无实数根D.该方程根的情况不确定4.某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C ),这组数据的中位数和众数分别是( )A. 22°C ,26°CB. 22°C ,20°CC. 21°C ,26°CD. 21°C ,20°C5.下列命题中,是真命题的为( )A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似D.等边三角形都相似6.已知圆O 1、圆O 2的半径不相等,圆O 1的半径长为3,若圆O 2上的点A 满足AO 1 = 3,则圆O 1与圆O 2的位置关系是( )A.相交或相切B.相切或相离C.相交或内含D.相切或内含二、填空题(本大题共12题,每题4分,满分48分) 7.计算:a 3÷ a 2= __________.8.计算:( x + 1 ) ( x ─ 1 ) = ____________. 9.分解因式:a 2─ a b = ______________. 10.不等式 3 x ─ 2 > 0 的解集是____________.11.方程 x + 6 = x 的根是____________. 12.已知函数 f ( x ) =1x 2+ 1,那么f ( ─ 1 ) = ___________. 13.将直线 y = 2 x ─ 4 向上平移5个单位后,所得直线的表达式是______________. 14.若将分别写有“生活”、“城市”的2张卡片,随机放入“ 让 更美好”中的两个 内(每个 只放1张卡片),则其中的文字恰好组成“城市让生活更美好”的概率是__________15.如图1,平行四边形ABCD 中,对角线AC 、BD 交于点O 设向量,b ,则向量=__________.(结果用、b 表示)16.如图2,△ABC 中,点D 在边AB 上,满足∠ACD =∠ABC ,若AC = 2,AD = 1,则DB = __________.17.一辆汽车在行驶过程中,路程 y (千米)与时间 x (小时)之间的函数关系如图3所示 当时 0≤x ≤1,y 关于x 的函数解析式为 y = 60 x ,那么当 1≤x ≤2时,y 关于x 的函数解析式为_____________.18.已知正方形ABCD 中,点E 在边DC 上,DE = 2,EC = 1(如图4所示) 把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两点的距离为___________.三、解答题(本大题共7题,19 ~ 22题每题10分,23、24题每题12分,25题14分,满分78分)AO AB AD 图1图2图3图419.计算:12131271)()2-+-+20.解方程:x x ─ 1 ─ 2 x ─ 2x ─ 1 = 021.机器人“海宝”在某圆形区域表演“按指令行走”,如图5所示,“海宝”从圆心O 出发,先沿北偏西67.4°方向行走13米至点A 处,再沿正南方向行走14米至点B 处,最后沿正东方向行走至点C 处,点B 、C 都在圆O 上.(1)求弦BC 的长;(2)求圆O 的半径长.(本题参考数据:sin 67.4° = 1213 ,cos 67.4° = 513 ,tan 67.4° = 125 )22.某环保小组为了解世博园的游客在园区内购买瓶装饮料 数量的情况,一天,他们分别在A 、B 、C 三个出口处, 对离开园区的游客进行调查,其中在A 出口调查所得的 数据整理后绘成图6.(1)在A 出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占A 出口的被调查游客人数的__________%.(2)试问A 出口的被调查游客在园区内人均购买了多少瓶饮料?饮料数量(瓶)图6图5(3)已知B 、C 两个出口的被调查游客在园区内人均购买饮料的数量如表一所示 若C 出口的被调查人数比B 出口的被调查人数多2万,且B 、C 两个出口的被调查游客在园区内共购买了49万瓶饮料,试问B 出口的被调查游客人数为多少万?23.已知梯形ABCD 中,AD//BC ,AB=AD (如图7所示),∠BAD 的平分线AE 交BC 于点E ,连结DE.(1)在图7中,用尺规作∠BAD 的平分线AE (保留作图痕迹,不写作法),并证明四边形ABED 是菱形;(2)∠ABC =60°,EC=2BE ,求证:ED ⊥DC.24.如图8,已知平面直角坐标系xOy ,抛物线y =-x 2+bx +c 过点A(4,0)、B(1,3) . (1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.出 口 B C 人均购买饮料数量(瓶)32BADC图7图8表 一25.如图9,在Rt △ABC 中,∠ACB =90°.半径为1的圆A 与边AB 相交于点D ,与边AC 相交于点E ,连结DE 并延长,与线段BC 的延长线交于点P. (1)当∠B =30°时,连结AP ,若△AEP 与△BDP 相似,求CE 的长; (2)若CE=2,BD=BC ,求∠BPD 的正切值; (3)若1tan 3BPD ∠=,设CE=x ,△ABC 的周长为y ,求y 关于x 的函数关系式.图9 图10(备用) 图11(备用)2010年上海市初中毕业统一学业考试数学卷(满分150分,考试时间100分钟)2010-6-20一、选择题(本大题共6题,每题4分,满分24分)1.下列实数中,是无理数的为( C )A . 3.14B . 13C . 3D . 9【解析】无理数即为无限不循环小数,则选C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年青浦区初中学业模拟考试数 学 试 卷 Q.2010.4(满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸的相应题号的选项上用2 B 铅笔填涂]1.下列运算正确的是………………………………………………………………………( ) (A )532x x x =+; (B )532x x x =⋅;(C )xy y x 532=+;(D )()222y x y x +=+.2.与3是同类二次根式的是……………………………………………………………( ) (A )6;(B )9;(C )12;(D )18.3.在样本方差的计算式()()()[]252221210101051-++-+-=x x x s 中,数字5和10分别表示样本的………………………………………………………………………………( ) (A )容量,方差; (B )平均数,众数; (C )标准差,平均数; (D )容量,平均数.4.边长为2的正六边形的边心距为………………………………………………………( ) (A )1;(B )2;(C )3;(D )23.5.下列命题中真命题是……………………………………………………………………( ) (A )有一组邻边相等的四边形是菱形; (B )四条边都相等的四边形是菱形; (C )对角线互相垂直的四边形是菱形;(D )对角线互相平分且相等的四边形是菱形.6.如图,图案⑥是由①②③④⑤五种基本图形中的两种拼接而成的,这两种基本图形是( ) (A )①⑤; (B )②⑤; (C )③⑤; (D )②④.① ② ③ ④ ⑤ ⑥ 二、填空题: (本大题共12题,每题4分,满分48分) 7.计算:()=-22π .8.不等式137≥-x 的解集是 . 9.函数1+=x x y 的定义域是 .10.方程x x =+2的解是 . 11.因式分解:__________________223=-+a a a .12.如果关于x 的一元二次方程0122=+-x kx 有两个不相等的实数根,那么实数k 的取值范围是 . 13.直角坐标平面内,直线323-=x y 一定不经过第____________象限. 14.从1、2、3、4、5、6这六个数中任意取出一个数,取到的数能够被2整除的概率是 . 15.某人在斜坡上走了26米,上升的高度为10米,那么这个斜坡的坡度=i . 16.如右图,点D 、E 分别在△ABC 的AB 、AC 边上,D E ∥BC ,且31=AB AD ,若=,=, 用、表示,则= .17.在□ABCD 中,AC 与BD 相交于点O ,点E 是AB 的中点,△ACD 的周长为20cm ,则△AOE 的周长为 cm . 18.在△ABC 中,AB=AC ,∠A=80°,将△ABC 绕着点B 旋转,使点A 落在直线BC 上,点C 落在点'C ,则∠'BCC = .三、解答题:(本大题共7题,满分78分,第19-22题每题10分,第23-24题每题12分,第25题14分)19.先化简,再求值:121)1(12222+--++÷-+a a a a a a ,其中2=a .20.解方程组:⎩⎨⎧=+=-1222xy x y x21.某中学举行了一次“世博”知识竞赛,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分都是正整数,满分为100分)进行统计.请你根据下面局部尚未完成的频率分布表和频率分布直方图解答下列问题: (1)频率分布表中的a =__________,b =__________; (2)补全频率分布直方图;(3)在该问题的样本中,样本中位数落在_____________组内;(4)若成绩在90分以上(不含90分)为优秀,则该校参加这次竞赛成绩优秀的约有______人.频率分布表:EDBA⑴⑵ 频率分布直方图: 0.200.3222.如图,在矩形ABCD中,E是BC边上的点,联结DE、AE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.(1)求证:△AB E≌△DFA;(2)如果AB=6,EC∶BE=1∶4,求线段DE的长.23.如图,在梯形ABCD中,AD//BC,E、F分别是AB、DC边的中点,AB=4,∠B=60.(1)求点E到BC边的距离;(2)点P为线段EF上的一个动点,过P作PM⊥BC,垂足为M,过点M作MN//AB交线段AD于点N,联结PN.探究:当点P在线段EF上运动时,△PMN的面积是否发生变化?若不变,请求出△PMN的面积;若变化,请说明理由.24.如图,直线OA与反比例函数的图像交于点A(3,3) B(6,m)与y轴交于点C.(1)求直线BC的解析式;(2)求经过A、B、C三点的二次函数的解析式;(3)设经过A、B、C三点的二次函数图像的顶点为D,对称轴与x轴的交点为E.问:在二次函数的对称轴上是否存在一点P,使以O、E、P为顶点的三角形与△BCD相似?若存在,请求出点P的坐标;若不存在,请说明理由.A DNPE FMB CD AB CEF25.如图,已知△ABC 中,AB=AC=5,BC=4,点O 在BC 边上运动,以O 为圆心,OA 为半径的圆与边AB 交于点D (点A 除外),设OB x =,AD y = . (1)求ABC ∠sin 的值;(2)求y 关于x 的函数解析式,并写出函数的定义域; (3)当点O 在BC 边上运动时,⊙O 是否可能与以C 为圆心,41BC 长为半径的⊙C 相切?如果可能,请求出两圆相切时x 的值;如果不可能,请说明理由.COD BA青浦区2010年初三学业考试模拟考数学试卷答案Q.2010.4一、选择题:(本大题共6题,每题4分,满分24分) 1.(B );2.(C );3.(D );4.(C );5.(B );6.(B ). 二、填空题:(本大题共12题,每题4分,满分48分)7.2-π;8.2≤x ;9.1->x ;10.2=x ;11.)1)(2(-+a a a ;12.1<k 且0≠k ; 13.二;14.21;15.4.2:1;16.-3;17.10;18. 65或25. 三、解答题:(本大题共7题,满分48分,第19-22题每题10分,第23-24题每题12分,第25题14分) 19.解:原式2)1()1)(1(111)1(2--+++⋅-+=a a a a a a ……………………………………(4分) 1112-++-=a a a ……………………………………………………………(2分) 13-+=a a …………………………………………………………………(1分) 当 2=a 时,原式1232-+=……………………………………………………(1分))12)(12()12)(32(+-++=………………………………………(1分)245+= …………………………………………………(1分)20. 解:由 ① 得 2+=y x ③ ………………………………………………………(1分) 把③代入② 得12)2()2(2=+++y y y ………………………………………………(1分) 即0432=-+y y …………………………………………………………………………(2分) 解得 41-=y ,12=y ……………………………………………………………………(2分) 将41-=y 代入③得21-=x ………………………………………………………………(1分) 将12=y 代入③得32=x …………………………………………………………………(1分) 所以,原方程组的解为⎩⎨⎧-=-=4211y x ,⎩⎨⎧==1322y x …………………………………………(2分)21.解:(1)a = 8 ,b = 0.24 ; ………………………………………………………………(4分) (2)补全频率分布直方图(略);……………………………………………………………(2分) (3)样本中位数落在 80.5—90.5 (或第四)组内;……………………………………(2分)(4)该校参加这次竞赛成绩优秀的约有 216 人.…………………………………………(2分) 22.证明:(1)由矩形ABCD ,得∠B =∠C=90,CD=AB ,AD=BC ,AD ∥BC …(1分) 由△DEC 沿线段DE 翻折,点C 恰好落在线段AE 上的点F 处,得△DFE ≌△DCE …(1分) ∴DF = DC ,∠DFE =∠C=90 ∴DF = AB ,∠AFD=90 ∴∠AFD=∠B ,…………(2分) 由AD ∥BC 得∠DAF=∠AEB , ………………………………………………………… (1分) ∴△AB E ≌△DFA. …………………………………………………………………………(1分) (2)由EC :BE=1:4,设CE=x ,BE=x 4,则AD=BC=x 5由△AB E ≌△DFA.得AF=BE=x 4 ………………………………………………………… (1分) Rt △ADF 中,由勾股定理可得DF=x 3 ……………………………………………………(1分) 又DF=CD=AB=6∴2=x …………………………………………………………………(1分) 在Rt △DCE 中,DE=102622222=+=+DC EC ………………………………(1分) 23.解:(1)过E 作EG ⊥BC ,垂足为G ,由AB=4,E 为AB 的中点,得BE=2 ……(1分) Rt △EBG 中, EBEG B =∠sin ,360sin 2sin =∠=∠⋅=B EG EG ……………… (2分) (2)不变 ………………………………………………………………………………… (1分) 解法(一):在梯形ABCD 中,由AD ∥BC ,MN ∥AB ,得MN=AB=4 ………………(1分) 过点P 作PH ⊥MN ,垂足为H ……………………………………………………………(1分) 由MN ∥AB 得∠NMC =∠B =60 所以∠PMH =30 ……………………………… (1分) 由E 、F 是AB 、DC 边的中点 得EF ∥BC ,由EG ⊥BC ,PM ⊥BC ,得EG ∥PM∴PM = EG=3 ……………………………………………………………………………(1分) 在Rt △PMH 中,PMPH PMH =∠sin ,所以PH=PM 2330sin =⋅…………………(2分)∴32342121=⨯⨯=⋅=∆MN PH S PMN …………………………………………… (2分) 解法(二):延长MP 交AD 于点H ,只要求出NH 的长即可,评分标准可参考解法一.24.解:(1)由直线OA 与反比例函数的图像交于点A(3,3),得直线OA 为:x y =, 双曲线为:x y 9=,点B(6,m)代入x y 9= 得 23=m ,点B(6,23) , ……………(1分) 设直线BC 的解析式为 b x y +=,由直线BC 经过点B ,将6=x ,23=y 代入b x y +=得 29-=b …………………………………………… (1分) 所以,直线BC 的解析式为29-=x y ………………………………………………… (1分)(1)由直线29-=x y 得点C(0,29-),设经过A 、B 、C 三点的二次函数的解析式为292-+=bx ax y 将A 、B 两点的坐标代入292-+=bx ax y ,得 ⎪⎪⎩⎪⎪⎨⎧=-+=-+232963632939b a b a ………………… (1分)解得⎪⎩⎪⎨⎧=-=421b a ……………………………………………………………………………(1分)所以,抛物线的解析式为294212-+-=x x y ……………………………………………(1分)(3)存在把294212-+-=x x y 配方得27)4(212+--=x y , 所以得点D(4,27),对称轴为直线4=x ………………………………………………(1分)得对称轴与x 轴交点的坐标为E (4,0). ………………………………………………(1分)由BD =8,BC =72,CD =80,得222BD BC CD +=,所以,∠DBC=90 ……(1分)又∠PEO=90,若以O 、E 、P 为顶点的三角形与△BCD 相似,则有: ①DB PE BC OE =即22264PE = 得34=PE ,有1P (4,34) ,2P (4,34-) ②BC PEDB OE =即26224PE =得12=PE , 有3P (4,12) ,4P (4,12-). …………(3分) 所以,点P 的坐标为 (4,34) , (4,34-), (4,12) , (4,12-).25. 解:(1)过点A 作AE ⊥BC ,垂足为E ,由AB=AC ,得BE=21BC=2.…………(1分) 在Rt △AEB 中,∠AEB=90,AE=122=-BE AB …………………………………(1分)∴5551sin ===∠AB AE ABC .………………………………………………………… (1分) (2)过点O 作OF ⊥AD ,垂足为F ,则AF=DF=y AD 2121= ………………………(1分) BF=y AF AB 215-=-. ……………………………………………………………(1分) ∵∠OFB=∠AEB=90,∠OBF=∠ABE ,∴△OBF ∽△ABE …………………………(1分)∴ABOBBE BF =,即52215x y=-……………………………………………………… (1分) 整理得52554+-=x y (2545<≤x )……………………………………………… (2分) (1)可能相切在Rt △AEO 中,∠AEO=90,AE=1,OE=x -2, 则AO=54222+-=+x x AE OE …………………………………………………(1分)设⊙C 与BC 边相交于点P ,则⊙C 的半径CP=41BC=1, ①若⊙O 与⊙C 外切,则有OA+CP=OC. 即x x x -=++-41542解得 2=x ………………………………………………………………………… (1分) ②若⊙O 与⊙C 内切,则有OC CP OA =-. ∵1≤OA 45≤,PC=1,OA CP ≥,∴只有OC CP OA =-.………………………… (1分) 即x x x -=-+-41542解得310=x (不合题意,舍去)………………………………………………………… (1分) 所以,当⊙O 与⊙C 相切时,2=x . …………………………………………………… (1分)。

相关文档
最新文档