倒V天线方向图
端馈入式倒V天线的制作
这种天线取材、架设都容易。线圈的骨架可采用相同尺寸的PVC管。住在楼上地线是个头痛的事,
第4页
《无线电》合订本光盘1955-2005解密版2005年第4期
译者分别试过接在暖气管道、自来水管道、金属窗框上,感觉接在窗框上效果不错,接在阳台的金属 栏杆上也能很好地工作。但应该使栏杆与连接导线有良好的电气接触,连接处要包上胶布。此外地线 与天调之间的连线要尽可能短。 值得注意的是,由于架设环境不同,抽头的位置可能会有小变化。如果反复调节都无法使驻波最 小,可试着改变一下抽头的位置再试。在初次调整驻波时一定要用小功率,以免驻波太大损坏发射 机。 文/赵辉 编译
图4
第3页
《无线电》合订本光盘1955-2005解密版2005年第4期
图5
天线的固定
在工作间一端,天线还剩下几米时,用一段尼龙绳和绝缘子把天线固定在墙上,然后通过通风口 把天线引入工作间。如果从窗户引入,不要靠近铝合金窗框,最好能在玻璃上钻孔。天调应靠近天线 的引入点,发射机也尽可能靠近天调,尽量缩短同轴电缆的长度。同轴电缆的典型长度为600mm。这个 天线系统要有可靠的地线。
天调的制作
天调的电路见图1,天调的输出端接发射机。电感的外形尺寸、绕法如图2所示。高频扼流圈RFC可 以防止暴风雨天气时在天线积累的电荷。它在频率最低端感抗应该比低阻输入端阻抗高20倍,这样这 个扼流圈带来的损耗就可以忽略不计。可以看到,在40m时,波段开关的动触点没有和线圈接触,利用 了整个线圈。在80m时,线圈被波段开关短路,天线直接接入。线圈共20匝,线径0.9mm间绕,线圈长 度为38mm。从始端起,3= 1 2 匝处为10m抽头,5= 1 4 匝处为15m抽头,8匝处为20m抽头。
几种短波天线的比较
几种短波天线的比较(ZT)这里我们是常见的几款短波天线,如国产的10米波段1/2波长垂直天线,曰本钻石公司的HV-4,自制的加感天线,自制的DP天线。
当然,还很多的其他的天线类型。
这次只是对这几款用过的做一个比较,讲一讲个人的一些体会,希望能大家有所帮助。
还是会再继续寻找,试图找出更符合个人需要,容易制作和携带的野营天线。
1. 国产的10米波段1/2波长垂直天线:这种天线好处很多,增益高,发射仰角低,受环境影响小,无须调整,架设高度低,可以直接放在地上。
缺点是单波段天线,一个波段得要一根。
另外每节1米左右,携带不算很麻烦也不算容易。
2. 曰本钻石公司的HV-4:这是一款车天线,是适合放在车顶使用的,曾经用吸盘吸在普桑顶上,在行驶的汽车上用15米波段联络曰本电台效果非常好。
但是不把它安装在车上,它就无法正常工作,即使加上了模拟地线,谐振点也全部偏低,21MHz波段的谐振点到了18MHz。
所以其实是不适合野营使用的。
3. 自制的加感天线:振子是1.5米长的拉杆天线,收起来的时候很短。
加感线圈在底部,另外还需要地线配合。
由于当年调试的时候是把天线斜挑出阳台,地线自然下垂的形态。
所以今天曾经试图把天线振子竖起来,地线拉水平,或斜向下45度,就都无法谐振。
只有摆成当年调试的样子,才能谐振。
回想以前玩野外操作的时候,这类天线的加感线圈都是做很多抽头出来,到地方再重新找抽头位置。
看来这天线也必须这样做才成,它太受环境的影响。
这种天线携带还算容易,不过振子短,有效辐射长度短,效率不会很高。
但是也不算太差。
阻抗匹配概念阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。
天线技术的进步-三线式短波基站天线
天线技术的进步-三线式短波基站天线其实近年来,军队和地方的很多大用户和很多无线设备销售商对三线天线已有较多了解,并已广泛使用。
三线天线的更新换代目标是过去非常流行的笼形天线和普通双极宽带天线。
笼形天线是一种性能很好的定向宽带天线,通信距离较远,但比较笨重,架设不便,抗风能力差,使用频段相对较窄,价格较贵。
普通双极宽带天线由于价格很便宜,架设简便,被很多基层用户采用,但是能效低,频段内驻波比普遍较高,有效频段较窄,架设状态不稳(随风摆动),通信实效难于保证。
此外这两种天线还有一个共同的技术限制,就是只能进行定向通信,全向通信和近距离盲区通信都无法保证。
三线天线保留了这两种天线各自的长处:在能效上它近似于笼形天线;在体积、重量和架设简便性上它和普通双极宽带天线差不多。
更重要的是它全面弥补了这两种天线的不足:>①架设状态平稳,能够始终保持水平状态,不会随风摇摆,加之重量较轻,抗风能力获得极大提高,通信稳定性也更好;>②在短波全频段内都可以工作;>③不仅支持定向通信,也支持全向无盲区通信;>④造价比普通双极宽带天线要高一些,但明显低于笼形天线。
综上所述,三线天线的性能价格比远高于笼形天线和普通双极宽带天线。
这正是三线天线获得大面积推广的主要原因。
就目前掌握的情况来看,还没有哪一种基站天线具有三线天线这样的综合优势。
下面以新维公司生产的AB230三线天线为例说明三线天线的性能和使用要点。
一、三线天线的两种架设方式及其辐射特性三线天线可以选择平拉架设和倒架设两种方式。
我们以接近业余频率的4MHz、8MHz、14MHz、22MHz四个典型频点,和20、40、60、80度(从左至右)四个典型仰角的水平剖面方向图,介绍三线天线的辐射特性和架设要点。
图中页面水平方向为天线振子的架设方向。
倒V架设方式倒V架设是在天线中央直立架杆,两侧斜向拉直(距离地面或楼面1m。
中央架杆的高度与天线长度有关,如果用30米振子,中央架杆10-米12米中央架高时,各频点的俯视方向图如下:可以看出,在短波频段下半区,三线倒架设的辐射在各个仰角方向都是全向的,说明这种架设方式支持全向通信。
第一章 天线的方向图(上)
(a) 立体方向图
(b) E 面方向图 图 1-2 基本振子的方向图
(c) H 面方向图
说明:
(1) 在振子轴的两端方向(θ = 0, π )上,辐射场为零,在侧射方向(θ = π / 2 )辐射场
为最大。
(2) 基本振子的方向图函数与ϕ 无关,在垂直于天线轴的平面内辐射方向图为一
个圆。
(3) 根据 E 面和 H 面方向图的定义, yz 平面内的方向图为 E 面方向图(E 面方向
2. 中场区( β r > 1 )
随着 β r 值的逐渐增大,当其大于 1 时,式(1.4)中 β r 高次幂的项将逐渐变小,
最后消失。如果要计算该区中的电磁场,则可取式(1.4)中各场量的前两项。为分
析的方便,可取各场量的第一项即可。
Hϕ
j β Idz sinθ e− jβr 4π r
Eθ
jη0
β Idz 4π r
由观察点到坐标原点的距离 r = x2 + y2 + z2 ,及关系式 z = r cosθ ,式(1.19) 可写作
R = r2 + z′2 − 2rz′cosθ = r 1 + z′2 − 2rz′cosθ r2
采用二项式展开,可把上式写成级数形式
(1.20)
R
=
r
−
z′ cosθ
+
z′2 2r
(V/m)
Hϕ
=
j Idz sinθ e− jβr 2λr
(A/m)
(1.9a) (1.9b)
Er = Eϕ = H r = Hθ = 0
(1.9c)
导出基本振子远区辐射场表示式(1.9a)和(1.9b)的过程较繁,这里给出一种快
T型短波天线制作
T 型短波天线制作(转BCL论坛)实用天线设计与制作(转)整理前言·第一章基础知识…………………………………………………………………( 1 )§1.1 无线电波…………………………………………………………………( 1 )§1.2 电波传播………………………………………………………………… (3 )§1.3 几种基本天线…………………………………………………………( 5 )一、各向同性天线………………………………………………………………( 6 )二、赫兹振子………………………………………………………………………( 6)三、接地单极天线………………………………………………………………( 7 )四、半波偶极天线………………………………………………………………( 7 )§1.4 天线的基本参数………………………………………………………( 8 )一、输入阻抗………………………………………………………………………( 8 )二、方向图…………………………………………………………………………( 9 )三、有效长度 (10)四增益 (10)1.5 天线的防雷与接地 (11)第二章中、短波天线及其附件 (15)§2.1 长线天线 (15)§2.2 半波偶极天线 (17)§ 2.3 倒V型天线 (19)§2.4 多频道偶极天线 (20)§2.5 T型天线 (20)§2.6 地网天线 (21)§2.7 有源天线 (22)一、电路 (23)二、制作 (26)三、使用方法 (28)四、简单有源天线 (29)§2.8有源铁氧体天线 (31)一、电路 (32)二、制作 (34)三、使用方法 (36)四、工作在1.6~4.5兆赫的有源铁氧体天线 (36)§2.9 环形天线 (37)一、简单环形天线 (37)二、有源环形天线及其制作 (39)三、差分环形天线及其制作 (41)四、倾斜环形天线 (44)3 | Page 五、螺旋环形天线 (45)六、工作在短波波段的环形天线 (46)七、工作在长波波段的环形天线 (47)§2.10 高频前置滤波器 (47)一、电路 (49)二、制作 (51)三、使用方法 (52)§2.11 可调天线衰减器 (53)一、用衰减器增强天线的选择性 (54)二、制作 (57)§2.12 调谐陷波器 (58)§ 2.13 天线低通滤波器 (61)§2.14 天线调谐器 (64)一、电路 (65)二、制作 (67)§2.15 短波通信工程中常用的天线 (68)一、笼形水平半波偶极天线 (69)二、笼形对称垂直偶极天线 (70)三、带导电地网的非对称垂直天线 (71)四、水平同相阵列式天线 (71)五、菱形天线 (72)六、对数周期天线 (74)第三章电视接收天线 (76)§3.1 架设电视天线应注意的问题 (76)§2.2 室内天线 (77)§3.2 线性半偶极天线 (77)§2.4 折合半波偶极天线 (79)§2.5 八木天线 (80)§3.6 多频道天线 (86)一、扇形天线 (86)二、两个折合振子组成的双频道天线 (87)三、隔离滤波器 (88)§3.7 八木天线阵 (91)一、双层五单元八木天线 (92)二、四层五单元八木天线 (95)三、双层双列五单元八木天线 (96)§3.8 环形天线 (97)§3.9 有源电视天线 (98)4 | Page 第四章移动通信天线 (101)§4.1 J型半波天线 (101)§4.2 地网天线 (102)一、四分之一波长地网天线 (102)二、八分之五波长地网天线 (104)三、伞骨地网天线 (106)§4.3 J型折合半波天线 (106)§4.4 共线天线 (111)一、天线结构 (112)二、馈电和匹配 (112)三、二单元共线天线 (112)§4.5 移动式和便携式天线 (113)第五章微波天线 (116)§5.1 有效孔径 (117)§5.2 喇叭天线 (118)§5.3 缝隙天线 (119)§5.4 微波透镜 (120)一、介质透镜 (121)二、金属板透镜 (122)§5.5 抛物面反射天线 (123)一、抛物面反射器的几何光学性质 (123)二、辐射方向图 (124)三、馈电器 (126)四、结构 (127)第六章馈线和匹配 (128)§6.1 传输线 (128)一、传输线的特性阻抗 (128)二、如何确定电缆的特性阻抗 (130)§6.2 匹配 (132)一、半波偶极天线的匹配 (132)二、折合半波偶极天线的匹配 (135)三、宽频带匹配器 (139)四、馈线与接收机的连接 (141)附录 (143)参考文献………………………………………………………………………………(144)§1.1 无线电波无线电波是一种电磁波.在真空中,电波以每秒299,792,077米(30万公里)的速度向前传播。
第3章 行波天线
第3章 行波天线
为了改善菱形天线的特性参数,常采用双菱天线,
它是由两个水平菱形天线组成的,如图3―1―8所示, 菱形对角线之间的距离d≈0.8λ,其方向函数表达式为
kd f 2 ( , ) f1 ( , ) cos( cos sin ) 2
(3―1―14)
第3章 行波天线
式中f1(Δ,φ)是单菱形天线的方向函数表达式。双菱
图3―1―9 回授式菱形天线
第3章 行波天线
为了提高菱形天线的效率,可采用回授式菱形天 线结构,如图3―1―9所示。回授式菱形天线没有终端 吸收电阻,它是将终端剩余能量送回输入端,再激励 天线“2”。如果回授至输入端的电流相位与输入端的 馈源电流相位相同,那么剩余的能量也就能辐射出去, 从而提高了天线的效率。但是由于只能对某一频率做 到同相回授,使天线具有频率选择性,而菱形天线主 要侧重于它的宽频带特性,所以回授式菱形天线较少
上局部的反射,从而破坏行波状态。为了使特性阻抗
变化较小,菱形的各边通常用2~3根导线并在钝角处 分开一定距离,使天线导线的等效直径增加,以减小 天线各对应线段的特性阻抗的变化。菱形天线的最大 辐射方向位于通过两锐角顶点的垂直平面内,指向终 端负载方向,具有单向辐射特性。
第3章 行波天线
行波单导线的辐射场可由式(3―1―2)计算获得,
第3章 行波天线
菱形天线一般有30%~40%的功率消耗在终端电
阻中,特别是作为大功率电台的发射天线,终端电阻 必须能承受足够大的功率,通常用几百米长的二线式
铁线来代替。铁线的特性阻抗等于天线的特性阻抗,
它沿着菱形天线的长对角线的方向平行地架设在天线 下面。铁线的长度取决于线上电流的衰减情况,例如 取300~500m长,可以使铁线末端电流衰减到始端电 流的20%~30%,这样菱形天线上反射波就很微弱了。 铁线末端接碳质电阻或短路后接地,这样也起避雷的 作用。
短波天线——精选推荐
一般开始玩主要在国内聊天7.050/14.270/21.400,再以后就玩玩dx。
.8上面主要是cw常用的短波天线(组图)常用的短波天线常用的短波天线主要分为3类,第一类是垂直天线(GP),第二类是偶级天线(DP),第三类为八木天线(YAGI)。
除此之外,还有框型、钻石型、碟型等等,这里我们主要讨论前三类天线,其中重点探讨偶级天线及其变形。
从使用来看,GP天线主要用于近距离—中距离通讯,尤其是近距离通讯依靠地波传送,效果非常好。
而DP天线的近距离通讯效果惨不忍睹。
由于高度的限制,普通爱好者不可能架设很高的天线,一般来说5-10米高度的GP天线适合自己架设。
但是对于短波波长来说,这样的高度是远远不够的,例如180米波,即使1/2波长也有90米高,对于普通爱好者来说这是根本不可能实现的。
因此5- 10米高的短波天线如果希望用于短波全段就必须加感,这样发射的效率就很低了。
通常GP天线用于21-29M频段较为普遍,再低的频段就不再使用GP天线了。
此外,GP天线的防雷也比较难做,总不可能在天线旁边树一根比天线还高的铁管做避雷针吧?这是一支典型的DP天线的结构,其中红色部分为绝缘子,和两端的牵引绳隔开。
主振子长度为1/2波长*0.95缩短率。
为何要采用1/2波长呢?这是因为1/2波长中心抽头后两端各为1/4波长,这样天线的阻抗为50欧姆,才能够和发射机相匹配。
DP天线主要采用天波通讯,远距离通讯的效果非常好,且架设简单,不需要竖起很高的天线,制作成本低廉,因此为大多数无线电爱好者所采用。
DP天线有许多变形,下面我向大家一一做个介绍。
倒“V”天线,这是DP天线的一种变形方式,这样做的一则可以节省天线的占地面积,另一方面,可以改善原先DP天线的近距离地波通讯效果。
但这样做之后,天线具有了方向性,参见图中的最大辐射方向。
由于短波发射机可以工作在0-30M的各个波段,因此单一长度的天线就不能满足我们的需要了,而为每一个波段分别制作一根天线又不现实。
天线的方向图
介绍工程上采用的镜像法和反射系数法.
第26页/共48页
元天线的镜像
三种情况的基本振子镜像
垂直基本振子的镜像电流与原电流等幅同相,即I’=I(称为正 像);水平基本振子的镜像电流与原电流等幅反相,即I’=I(称为负像);倾斜基本振子的镜像电流取向相反,镜像电流
的垂直和水平分量分别为原电流对应分量的正像和负像
第27页/共48页
第28页/共48页
对于有限长度的对称振子天线,通常是以垂直和水平两种 方式架设在地面上。采用镜像法时,这两种架设方式的镜 像如下图所示。
对称振子的镜像
对称振子天线上的电流为正弦分布,但是可把天线分割成许多基 本振子,有基本振子的镜像的合成便是整个天线的镜像。镜像电 流满足如下规则: (1) 垂直对称振子,其镜像点电流与原电流等幅同相; (2) 水平对称振子,其镜像点电流与原电流等幅反相。 只要确定了天线上某点对应的镜像点,其镜像电流不难确定。
第3页/共48页
则远区的总场为
E E0 E1 E0 1 me j
可见,二元阵总场方向图由两部分相乘而得,第一部分与 单元天线的方向图函数有关;第二部分称为阵因子,它与
单元间距d、电流幅度比值m、相位差和空间方向角有
关,与单元天线的型式无关。因此得方向图相乘原理:由 相同单元天线组成的天线阵的方向图函数等于单元方向图 函数与阵因子的乘积。
E
2 E0
sin d
cos
阵因子函数只与角有关,与角无关,说明阵因子方向图关于
阵轴旋转对称
第5页/共48页
天线方向图ppt课件
27
28
29
上面给出的方向图函数为对称振子的E面方向图函数;H面方向图在垂直于振子轴的平面内,即坐标示意图中的xy平面内,在该平面 内(=90)的H面方向图函数为常数,即为一个圆。
从方向图函数的表达式可以看出,电流为正弦分布的对称振子的方向图函数不仅与空间
30
a) 2l ≤ λ时的归一化方向图
(b) λ≤2l ≤2 λ时的归一化方向图
不同长度的对称振子二维极坐标归一化E面方向图
当2l=λ/4、λ/2 、3/4λ 和λ时的归一化E面方向图如图 (a)所示,作为比较,该图中也画出了2l<<λ的短天线(或元天线)的方向图。从 图 (a)可以看出,长度不大于一个波长的对称振子的方向图,随着其长度增加,波瓣变窄,方向性增强。它们的H面方向图均为一个圆。
仿照上节的方法,将电流表达式代入到元天线的辐射场公式, 然后积分取绝对值,可得远区电场强度的振幅公式. 当l为半波长的奇数倍时,电场强度的振幅为
60Im
cos
l
2
cos
E
r0
sin
当l为半波长的数偶数倍时,电场强度的振幅为
60Im
sin
l
2
cos
E
r0
sin
代入
I I0e j z , 0 120
有 (2)作远区近似,可近似认为
dE
j 60 r
I0e j 'z sin e j r dz
r0//r , 有
15
幅度近似为
原辐射场近似为 (3)求总场
r r0 z cos
r r0
e e e jr
1.主瓣宽度
指方向图主瓣上两个半功率点(即场强下降到最大值的0.707倍处或分贝值从最大值下降3dB处对应的两点)之间的夹角。记为 ,主瓣 宽度有时又称为半功率波束宽度或3dB波束宽度。
第3章行波天线
缺点: (1)结构庞大,场地大。适用于大型固 定电台作远距离通信用。 (2)副瓣多,副瓣电平较高。 (3)由于终端有负载电阻吸收能量,故 天线效率为50-80%左右。
4.其它形式的菱形天线
d
~
接终端负载
双菱天线
主菱形 回授菱形
终端吸收铁线 回授线 回授线长度调节器
回授式菱形天线
3.1.3 行波V形天线
1.菱形天线的构成
l 2φ h
接 特 性 阻抗
接馈线
λ ⎞ ⎛ θm1 = cos ⎜1 − ⎟ ⎝ 2L ⎠
−1
1 2θ0 4 3 θm1 2
负 载
菱形天线的辐射
I1dL1
~
θ
dEθ1 dEθ2
I4=-I1
长轴辐射场的相位差决定于三个因素: 1.电流方向相反产生相位差π; 2.极化方向相反(电场方向相反) 产生的相位差π ; 3.路程差为0
馈 线 Rl V形斜天线
Rl
电台
Rl
倒V形天线(又称为Λ天线)
3.1.4 低架行波天线
工作方向 l
终端电阻
电台
架设方便、隐蔽
E⊥ dI dx l dε2 “2” dε1 dx “1” xcosϕ ϕ x x=0 E11 x
E11
E⊥
ϕ=0o x
低架行波天线接收过程
o φ=90
o φ=90 o φ=0 180o
H= l
λ
4 sin Δ 0 1 2 (1 − sin φ 0 cos Δ 0 )
0
λ
=
φ 0 = 90 − Δ 0
菱形天线的优点: (1)菱形天线可以在2:1或3:1频率范围内使用, 频带宽。 (2)结构简单,架设经济,维护方便。 (3)方向性较强,适合于短波远距离定点通信。 (4)天线上驻波成分很小,因此不会发生电压 或电流过大的问题,可应用于较大的功率。
4波段倒V天线制作
短波三角形四波段倒V天线文/贺欣颖(BD6BX)天线制作思路此次制作天线的思路是:一是要合拢"蜘蛛腿",同向伸展,便于架设;二是要轻一些,尽可能减少天线支杆的负荷;三是要能方便升降,以利于调整和维护;四是要有一定强度,能抗风荷;五是波段尽量多一些(4个波段,7MHz、14MHz、21MHz、28MHz~29MHz),方便到处"溜达"。
基于上述思路,笔者制作了一款短波三角形四波段倒V天线,结构见图1。
选料制作制作该天线的材料都是常见的,振子为2.5mm2的多股软铜线,各波段每一侧振子长度按预定谐振频率的λ/4计算,并要留一点余量。
我选择的各波段振子长度,7MHz段10.63m、14MHz段5.26m、21MHz段3.52m、28MHz~29MHz段2.54m;振子拉绳用的是户外电话线芯线,它是铜包钢线,轻便、强度高,关键是防锈蚀性能较好;三角形支架用的是φ20mm的PVC硬塑料管,质量要好一点的。
还有一种厚壁的塑料水管,强度虽好,但重量要增加不少。
管材间使用PVC胶粘接,并辅以尼龙扎带等非金属材料加固,振子支架结构见图2。
该支架用于固定4个振子的相对位置,振子穿过支架孔洞的地方应将其固定,防止支架在振子上滑动,以避免天线变形影响参数;绝缘纤维板长10cm,其宽窄、薄厚以满足抗拉强度要求为准(瓷质的更好,但重量增加);辅助拉绳也用铜包钢芯电话线,是为防止风摆造成三角形天线臂的旋转而设置的,结构见图3,因此不能与主拉绳拴在一个固定点上;天线杆为毛竹,顶端固定一个蝴蝶瓷瓶当滑轮用,穿过一根钢丝或单根铜包钢芯电话线,勾住巴伦组件,构成简便实用的天线升降系统,以便于调试和维护。
成品滑轮固然好,只是金属件容易锈死,而塑料的又不耐老化。
馈线采用SYV-50-7高频电缆,与巴伦连接的SL-16高频插头,固定后应在连接处涂防水胶。
制作天线要有"三心"和"二意":选料用心,以免留下隐患;制作细心,避免留下缺陷;调整耐心,否则前功尽弃。
水平偶极天线的架设方法
第五节水平偶极天线的架设方法水平偶极天线标准情况下的阻抗是73欧姆,图一是标准的设立方法,天线的元件方向成一直线,两边的支柱可利用大楼或其它杆状物如竹竿代替也可以。
当您的无线电设备操作的电波频率低时,若要架设一标准的水平偶极天线,就必须在较宽广的平面上来架设。
这是都市最大的限制。
但是,不一定要作成标准水平偶极天线,也可以驾成倒V型(如图二),如此一来面积长度就可以节省很多,同时也只需用到一根中心支柱。
5.1水平偶极天线角度与阻抗的关系水平偶极天线给电部角度为180度时的阻抗是73欧姆;从180度角度开始变窄,它的阻抗也会随之渐渐地下降。
150度时是68欧姆,120度时是58欧姆,105时刚好是50欧姆,更窄的角度90度时是42欧姆,60度时刚降列23欧姆。
因此,如果用50欧姆的同轴电缆线作为天线的传输线时,150度的角度是最理想的。
图三是水平偶极天线的角度离地高度与阻抗的比较。
从这个图表可知道:当水平偶极天线的角度一样,而天线的地上高度不一样时,也会有可能产生阻抗不同的情形。
例如:您的水平偶极天线张开角度为120度时,天线的离地高度是0.56波长、0.73波长、1.15波长时(21MHz的情况是7.95米、10.37米、16.33米),这时候天线的阻抗却降到了50欧姆了。
要想架设一组高效率的水平偶极天线,就必须注意上列事项。
除此之外,下列项目也请特别注意:天线元件尽量避免靠近电华配线和电力线。
天线主体四周如果离一般电线太近的话,不但会影响改变天线的阻抗,而且会产生电波干扰。
一个波长以上的距离最理想,两者无法兼顾时,也请尽量避免天线元件和电线平行,而且利用一高一低或相互交叉之方式架设。
在遇有钢筋水泥大厦、钢铁、和其它金属类的情况下亦有相同之影响,所以也请特别注意。
5.2平衡与不平衡转换器(BALUN)的使用水平偶极天线本身是平衡式(BALANCE),但同轴电缆线准却是不平衡式(UNBALANCE),迎接不平衡式的电缆线列平衡式的天线时,就需要使用到平衡与不平衡转换器,但是一般市售的转换器价格QI却比一组自制的简单偶极天线价格高,在这种情况下,不用转换器也是可以的,只要上述事项都能够注意到,实际使用起来也没有问题。
短波通信天线介绍
距离也愈远
f0
F2 F1 E
D
电离层
仰角
2021/7/1
f5
f4
f3
f5 <f4 <f3 <f2 <f1 <f0
f2
f1
46
电源对通信质量的影响
在选购电源时,一定要挑选功率容量大、 输出电压纹波小、电磁屏蔽特性好、电路 设计余量大的静化电源产品
2021/7/1
47
鞭状天线可选择两种架设形态
远距离通信时多用直立形态,这时可以利 用地面以下部分的“镜象天线”效应,使 天线鞭的电长度比实际架高增加将近一倍。
三线式短波天线架设平拉架设点对点和点对扇面定向通信普通天线低频时辐射方向为双球形窄边无辐射三线平拉为椭圆形宽边辐射更强窄边也有一定辐射倒v架设360全向幅射较低频率下还能够产生高仰角幅射兼顾近中远各种距离兼容各种极化方式中心站天线32
短波通信天线介绍
国家无线电监测中心成都监测站 陈良
2021/7/1
40
天馈线
尽量选用质量较好的产品
降低电磁干扰,提高收发信号质量
一定机械强度,避免损坏 可靠安装
注意接头污垢、进水、绑扎不牢、久经风吹雨 打 造成密封处断裂 驻波比上升,甚至于损坏 发射设备
2021/7/1
41
防雷与接地
天线应做防雷措施,天线置于直击雷防护区域, 同时馈线加SPD防雷管,天线铁搭及馈线金属外 壳部分必须做好接地处理,接地网良好。每年雷 雨来临季节做好维护检查,雷电天气尽量不使用, 防止雷电引入损坏接收机或有源天线。
方向图、方向系数
离天线一定距离处,辐射场的相对场强(归一化 模值)随方向变化的图形,通常采用通 过天线最 大辐射方向上的两个相互垂直的平面方向图来表 示。
全文图解十五种简易抗干扰外接收音机天线的制作
全文图解十五种简易抗干扰外接收音机天线的制作目录一、短波传播方式二、解决通信盲区的方法三、自制收音机天线的种类四、改善短波信号质量的三大要素五、天线种类制作之一:中短波平行天线六、天线种类制作之二:短波框形天线七、天线种类制作之三:中波框形天线八、天线种类制作之四:双振子单波段天线九、天线种类制作之五:波段双极缩短型天线十、天线种类制作之六:直立式多波段天线十一、天线种类制作之七:自制短波天线放大器十二、增益型天线十三、自助型天线十四、莲花天线十五、自制G5RV高频全波段接收天线一、短波传播方式无线电广播、无线电通信、电视、雷达等都要靠无线电波的传播来实现。
电波在各种媒介质及媒介质分界面上传播的过程,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散和媒介质的吸收,其场强不断减弱。
为使接收点有足够的场强,必须掌握电波传播的途径、特点和规律,才能达到良好的通信效果。
常见的传播方式有:地波(表面波)传播,直射波(视距)传播,天波传播,散射传播。
超短波适用直射波传播方式进通信。
短波的基本传播途径有两种:A、地波(表面波)传播。
B、天波传播。
天波传播是短波通信的主要传输方式。
1、地波传播沿大地与空气的分界面传播的电波,叫地面波或表面波,简称地波。
地波的传播途径其传播途径主要取决于地面的电特性。
地波在传播过程中,由于部份能量被大地吸收,很快减弱,波长越短,减弱越快,因而传播距离不远。
但地波不受气候影响,可靠性高。
通常,超长波、长波、中波无线电通信,利用地波传播。
22、天波传播天波是指由天线向高空辐射的电磁波受到天空电离层反射或折射后返回地面的无线电波。
天波是短波的主要传播途径。
短波信号由天线发出后,经电离层反射回地面,又由地面反射回电离层,可以多次反射,因而传播距离很远(可上万公里),而且不受地面障碍物阻挡。
但天波传播的最大弱点是信号很不稳定的,处理不好会影响通信效果。
随着无线电通信新技术的不断涌现,天波传播弱点对短波通信的影响,正在逐步被克服。
业余无线电10米,29.6Mhz介绍
10米频段是HF频段中频率最高的频段,这个频段有着许多神奇的特性,在传播开放时由于电离层的衰减很小,即使只用很小的发射功率就能进行出人意料的远距离的通讯。
10米频段因频率较高,天线的尺寸较小,容易自制和架设,而且制作所用的材料成本低廉,只要按照一定的要求进行制作、架设和调整,即可自制出与产品天线相媲美的天线。
拥有一条性能良好的天线比选择一部性能优越的收发信机重要。
在此笔者介绍四种容易制作,成本低廉,效果不错的天线。
㈠1/2波长垂直天线这种天线的基本结构是把两条1/4波长振子上下垂直架设(如图一)。
天线在水平面上是无方向性的,可以随时和360度各方向的电台通联。
在垂直方向是约3~5度的低辐射角,天线收发的是垂直极化波,是一种适合作远距离DX通讯的天线。
●制作天线所用的材料如表一所示,都是采用容易买到的廉价的东西,一般只要花上一个上午就可买齐。
天线的支撑主杆采用约5米长的毛竹或木杆(主杆长一点对电波的辐射有利,但天线的机械强度会降低,要加拉线补强),毛竹要挑结实笔直的,若采用木杆最好要预先涂上几层油漆,以提高耐侯性。
把铝管的一头按照图三中所示的部位和尺寸套着电工用PVC管钻洞。
用铜螺丝把塑料管和两条铝管振子连接固定起来。
注意PVC管的一边的孔是大一点的,以使螺丝头能与铝管接触。
把同轴电缆分别抽出约20mm芯线和屏蔽线,分别焊上线耳。
把同轴电缆的芯线接到准备架设在上面的铝管的铜螺丝上,把屏蔽线接到下面的铝管的铜螺丝上。
用绝缘胶布缠绕在接头和同轴电缆上,使天线和电缆防水。
用U型夹把铝管振子固定在主杆上,U型夹可以利用旧的电视天线上的。
同时用扎带把电缆固定好。
在铝管振子顶上安上一个瓶盖之类的盖子,防止雨水进入铝管振子里面这种天线不单可以应用在10米频段,通过增加或减少加感线圈的圈数,还可以使天线工作于其他的业余频段。
当调试熟练后,转换频段只要转换加感线圈的抽头就可以。
要获得精细的调谐,就要制作更多的抽头,或者采用天线调谐器。
免费 共享----端馈入式倒V天线的制作
端馈入式倒V天线的制作
赵辉
本文介绍的多波段端馈入式倒V天线成本低,容易制作,由1根20.91m长的漆包线和1个简单的天调 (L型网路)构成。下面简单介绍一下具体制作方法。
天调的制作
天调的电路见图1,天调的输出端接发射机。电感的外形尺寸、绕法如图2所示。高频扼流圈RFC可
文/赵辉 编译
第5页
译者的话
这种天线取材、架设都容易。线圈的骨架可采用相同尺寸的PVC管。住在楼上地线是个头痛的事,
第4页
《无线电》合订本光盘1955-2005解密版2005年第4期
译者分别试过接在暖气管道、自来水管道、金属窗框上,感觉接在窗框上效果不错,接在阳台的金属 栏杆上也能很好地工作。但应该使栏杆与连接导线有良好的电气接触,连接处要包上胶布。此外地线 与天调之间的连线要尽可能短。 值得注意的是,由于架设环境不同,抽头的位置可能会有小变化。如果反复调节都无法使驻波最 小,可试着改变一下抽头的位置再试。在初次调整驻波时一定要用小功率,以免驻波太大损坏发射 机。
天调的调整
要把这种天调调整到对于发射机呈现纯电阻,就在天调与发射机之间串入合适阻抗的驻波表。把 收发信机与天调接好,调到40m段,将天调的波段开关置于40m的位置,调节天调的可变电容C,使收到 的信号最强,也就是峰点处。把驻波表的开关置于反射波(REF)的挡位,发射一个小功率载波,微调 天调的可变电容C,使反射波的读数最小。不要动可变电容,把发射机调到最大功率发射一个载波,微 调天调的可变电容C,检查一下是不是反射波最小,记下这个位置。20m、15m、10m的调整方法完全相 同,分别标上刻度。最后,把可变电容调到容量最小的位置,波段开关置于80m,如果驻波很大,那就 是地线的问题了。调好后就可以使用了。
如何制作架设倒V天线
如何架设倒V天线(BG7BUM收集整理)倒V天线单边振子长度数据及计算方式如下:水平、倒V天线计算公式1/4波长水平、倒V天线长度的计算公式:光速/频率/4*95%=(单臂)长度7.05MHz天线的计算长度300000/7.05/4*95%=10107mm14.270MHz天线的计算长度300000/14.27/4*95%=4993mm21.400MHz天线的计算长度300000/21.4/4*95%=3330mm29.60MHz天线的计算长度300000/29.60/4*95%=2667mm以上仅仅是按照公式计算所得的长度,每个波段的天线最好是预长300mm左右,固定好位置后,用驻波表监测着逐步裁剪到最理想驻波的长度。
或者使用发信机结合驻波表,监测每对振子的谐振频率(驻波低于1.2的频点),边测边剪(随着谐振频率的升高,振子也在缩短,直到达到您所要的中心频点都低于等于1.2即可)。
例如:假设我们的目标频率是21.400MHz上述天线SWR最小值时候的频率读数是19.896MHz。
读数差=21.400MHz-19.896MHz=1.504MHz=1504KHz 计算得知15米波段每KHz对应修剪长度为0.025cm:15米波段半波振子总修剪值=1504X0.025=37.6(cm)振子两边对称剪去37.6/2=18.8(cm)修剪振子要留有余地,差别越小越要细心,防止修剪过多。
还要注意测试人员尽量远离天线振子,或站在偶极天线中间馈电点附近测试,减少人体干扰。
另外,使用天线测试仪时,可以指示天线振子谐振时的阻抗,不断调整天线的夹角和高度可以改变阻抗,尽量调整阻抗接近50欧姆即可。
水平偶极天线角度与阻抗的关系如下:水平偶极天线给电部角度为180度时的阻抗是73欧姆;从180度角度开始变窄,它的阻抗也会随之渐渐地下降。
150度时是68欧姆,120度时是58欧姆,105时刚好是50欧姆,更窄的角度90度时是42欧姆,60度时刚降列23欧姆。
短波通信中基站天线的选择和架设分析
短波通信中基站天线的选择和架设分析牛吉凌;罗宇;赵杨;金小艳【摘要】短波通信由于设备使用方便、通信组网灵活、价格相对低廉、系统抗毁性强等特点,成为海上舰艇与指挥中心、岸站之间的重要通信方式.短波通信的畅通与否直接决定处理突发事件的通信保障能力.如何使短波通信始终处于优良状态,是通信技术保障人员着力解决的问题.短波通信系统主要由收发信机、天线和各种终端设备组成.本文着重对短波通信中基站天线的分类、选择、架设等内容进行分析,以期提供借鉴.%HF communication, for its convenient operation, flexible communication network, relatively low cost and strong system survivability, now becomes an important communication mode of between naval vessels, command centers and shore station. Whether the HF communication is clear or not directly determines the communication guarantee capability in dealing with the emergency. How to make HF communication always in a good state is a problem that the communication technology guarantee personnel should try to solve. HF communication system mainly consists of transceiver, antenna and a variety of terminal devices. This paper focuses on classification, selection and erection of basestation antenna in HF communication, expecting to provide some reference for the technical personnel in this field.【期刊名称】《通信技术》【年(卷),期】2018(051)001【总页数】5页(P240-244)【关键词】短波通信;天线;选择;架设【作者】牛吉凌;罗宇;赵杨;金小艳【作者单位】中国电子科技集团公司第三十研究所,四川成都 610041;中国电子科技集团公司第三十研究所,四川成都 610041;中国电子科技集团公司第三十研究所,四川成都 610041;中国电子科技集团公司第三十研究所,四川成都 610041【正文语种】中文【中图分类】TN9240 引言1 短波天线的分类短波通信基于建设和维护费用相对较低﹑无须中继﹑抗毁性强等特点,已经成为世界各国中﹑远程通信的重要通信方式和保底通信手段。