先进制造技术讲解

合集下载

先进制造技术——先进制造技术概述

先进制造技术——先进制造技术概述

先进制造技术——先进制造技术概述
先进制造技术(Advanced Manufacturing Technology)是指应用现
代信息技术与自动控制技术,以提高制造质量、降低成本、提高制造效率
的先进制造技术。

先进制造技术是当今世界制造业发展的关键驱动力,它
为进行高性能、低成本、节能、环保的高端制造提供了重要基础。

计算机辅助设计(CAD)是将计算机应用于设计制造过程中,利用计
算机系统对产品尺寸、外观、性能和结构等进行精确的描述和分析,进而
实现一个从设计到制造的连续系统。

CAD设计后生成的结果可用于数控加
工等制造技术。

计算机辅助制造(CAM)是指将计算机系统用于制造设备的程序控制,实现自动化制造。

CAM可以有效地将CAD系统设计的参数传输到制造设备,改变设备的控制方式,从而提高制造质量和效率。

快速制造(Rapid Manufacturing)是指利用数字技术和数字控制技术,运用计算机控制的设备,将设计好的模型及成型模具精准快速地制造
出成品的新型制造技术。

先进制造技术课件

先进制造技术课件

工业机器人编程与操作实践
工业机器人概述
工业机器人是一种能够自动执 行工作任务的机器装置,具有 高度的灵活性、精确性和可靠 性,广泛应用于焊接、装配、 搬运、喷涂等领域。
工业机器人编程技 术
工业机器人编程是实现机器人 自动化作业的关键技术,包括 示教编程、离线编程和自主编 程等方式,通过编程实现对机 器人运动轨迹、作业顺序和作 业参数等控制。
05 精益生产与持续改进方法
精益生产理念及实施步骤
精益生产理念
追求卓越、消除浪费、持续改进、 全员参与。
实施步骤
明确目标、识别价值流、消除浪费、 持续改进。
关键成功因素
领导层的支持、员工的参与、持续 改进的文化。
价值流图分析和改善措施
价值流图分析
识别生产过程中的价值流和非价值流,找出浪费和瓶颈。
发展历程
从手工制造到机械制造,再到数字化、 智能化制造,先进制造技术经历了多 个发展阶段,不断推动着制造业的转 型升级。
特点及优势分析
特点
高精度、高效率、高柔性、集成化、 智能化等。
优势分析
先进制造技术能够显著提高生产效率 、降低生产成本、提高产品质量和一 致性,同时能够满足个性化、定制化 生产需求,提升企业竞争力。
循环经济模式
以资源节约和循环利用为特征, 通过废弃物回收、再生利用等手 段,将经济活动组织成一个“资 源-产品-再生资源”的反馈式流 程。
清洁生产技术与循环 经济的关系
清洁生产是实现循环经济的基础 和手段,而循环经济则为清洁生 产提供了更广阔的应用空间和政 策支持。
企业实施绿色制造战略路径选择
加强绿色技术创新
增材制造的应用领域
增材制造技术广泛应用于航空、医疗、汽车等领域,如制造飞机发动机零件、人体植入物 、汽车轻量化零件等。

先进制造技术知识点总结

先进制造技术知识点总结

先进制造技术知识点总结先进制造技术是指以数字化、网络化、智能化、绿色化等新一代信息技术为支撑,以开放式工程系统为基础,以全过程技术为核心,提高产品质量和技术创新能力,实现工业智能化、绿色高效化的一种综合性制造技术。

以下是先进制造技术的几个知识点总结。

1.数字化制造技术数字化制造技术是指利用计算机、云计算、物联网、虚拟现实等技术,对生产过程进行数字化建模、仿真与控制的一种技术手段。

通过数字化制造技术,生产过程可以更加准确、高效地进行规划和控制,提高生产效率,减少生产成本。

2.机器人技术机器人技术是先进制造技术的重要组成部分。

机器人可以在工业生产中替代人力完成重复性、繁重或危险的工作,提高生产效率,降低劳动力成本。

机器人技术还可以实现柔性生产线的搭建,根据生产需求进行灵活的生产调度。

3.3D打印技术3D打印技术是一种通过叠加打印方式,直接将数字模型转化为实际的三维实物的制造技术。

相比传统的制造方式,3D打印技术可以更快速、更灵活地进行产品开发和制造,同时减少了生产环节和资源消耗。

由于可以实现个性化、定制化生产,3D打印技术在医疗、航空航天、汽车等领域有广泛的应用。

4.智能制造技术智能制造技术利用先进的感知、识别、判断与决策等技术,实现设备、工序、流程之间的智能协同和智能管理。

智能制造技术可以实现工业生产的全过程监控、自动化调节和优化决策,提高生产效率和质量水平,降低资源消耗和环境污染。

5.大数据分析技术大数据分析技术是指以大规模数据为基础,通过数据的采集、存储、清洗、挖掘和建模等过程,提取有用的信息和知识的技术。

在先进制造中,大数据分析技术可以通过对生产数据的分析,发现生产过程中的问题和改进点,优化生产方案和决策,提高生产效率和产品质量。

6.智能传感器技术智能传感器技术是指将传感器与先进的通信和控制技术相结合,实现对物理量和信号的在线监测、分析和控制的技术。

智能传感器技术可以实时监测生产环境和设备状态,提供数据支撑给其他先进制造技术,实现智能化的生产调度和管理。

先进制造技术——先进制造技术概述

先进制造技术——先进制造技术概述
波音777的设计和制造
• 全数字化定义——无纸生产 • 数字化预装配——无金属样机的生产 (虚拟制造的一部分) • 广域网上的异地设计、异地制造 • 基于STEP的数据交换 •协同工作小组Team work 238个 →设计制造周期大大缩短:4年 (而波音757、767约9-10年) 更大的利润,每架777,$1.4亿
2.3 制造业发展的教训
三、东南亚经济危机的启示 1)1998年爆发的东南亚经济危机,从另一个侧面 反映了一个国家发展制造业的重要。一个国家, 如果把经济的基础放在股票、旅游、金融、房 地产、服务业上,而无自己的制造业,这个国 家的经济就容易形成泡沫经济,一有风吹草动 就会产生经济危机。 2)新加坡、台湾都有自己的制造业,因此受经济 危机的影响小一些。
5、制造业面临的竞争和挑战
5.2 制造业市场竞争的新特点 1)知识-技术-产品更新的周期更短
年数
10 8 6 4 2
平均开发时间 TD
TD > TL
平均产品寿命 TL
78 80
82 84 86 88 90 92 94 96
时间
来源: Bullinger
5、制造业面临的竞争和挑战
20世纪90年代制造业的标志性进展
2.2 制造业发展的历程
1)用机器代替手工,从作坊形成工厂
19世纪机器在英国诞生,先后传人法国、德国和美国。
2)从单件生产方式发展成大量生产方式
泰勒:以劳动分工和计件工资制为基础的科学管理。 福特:零件互换技术,1913年建立了具有划时代意义的 汽车装配生产线
3)柔性化、集成化、智能化和网络化的现代 制造技术
柔性制造系统、计算机集成制造系统、网络化制造、智 能制造系统、及时生产、精良生产、敏捷制造……

先进制造技术课件文字

先进制造技术课件文字
物联网与大数据在智能制造中的技术发展
随着物联网与大数据技术的不断进步,智能制造将实现更高程度的实 时监控和智能化决策。
物联网与大数据在智能制造中的未来展望
随着技术的不断融合和创新,物联网与大数据将在智能制造中发挥更 大的作用,推动制造业的转型升级和高质量发展。
03 增材制造技术
3D打印技术原理与分类
随着人工智能、物联网等技术的融合,工 业机器人将在智能制造中发挥更大的作用 ,提高生产效率和降低成本。
自动化生产线
自动化生产线概述
自动化生产线是指通过自动化设备、 传感器、控制系统等组成的生产线, 实现生产过程的自动化和智能化。
自动化生产线的技术发展
随着传感器、控制系统的技术进步, 自动化生产线正朝着更高效、更可靠 的方向发展,能够适应更复杂的产品 和生产环境。
详细描述
绿色制造技术是指在产品的全生命周期中,通过采用先进的技术和工艺,实现资 源的高效利用、减少环境污染和生态破坏,并达到经济效益和社会效益的双重提 升。它是一种综合考虑环境影响和资源利用效率的现代制造模式。
绿色制造技术的分类与实现方式
总结词
绿色制造技术包括清洁生产、资源高效利用、循环经济和低碳制造等多个方面,实现方 式包括优化设计、改进工艺、使用环保材料和能源等。
材料多样性
开发更多种类的打印材料,如 金属、陶瓷、塑料等,以满足
更广泛的应用需求。
打印精度和效率
提高打印精度和效率,降低生 产成本,提高产品质量。
智能化和自动化
结合人工智能、机器学习等技 术,实现增材制造过程的智能 化和自动化。
定制化与个性化
满足消费者对定制化和个性化 的需求,拓展增材制造在各行
业的应用。
数字化工厂的构建需要克服技术、人才、资金等多方面的 挑战,但同时也带来了提高生产效率、降低成本、提升产 品质量等多方面的机遇。

先进制造技术绪论

先进制造技术绪论
先进制造技术绪论
目 录
• 先进制造技术概述 • 先进制造技术核心组成 • 先进制造技术在工业生产中应用 • 先进制造技术在产品创新中作用 • 先进制造技术发展趋势与挑战 • 总结与展望
01 先进制造技术概述
定义与发展历程
定义
先进制造技术是指基于先进生产设备和 制造工艺,结合信息技术、自动化技术 等手段,实现高效、高精度、高质量、 低成本、柔性化生产的技术总称。
对未来发展趋势预测和展望
智能化
绿色化
随着人工智能技术的不断发展,先进制造 技术将更加智能化,实现自动化生产、智 能化决策和优化管理。
环保意识的提高将推动先进制造技术向绿 色化方向发展,减少资源消耗和环境污染 。
柔性化
集成化
市场需求的多样化将要求先进制造技术更 加柔性化,能够快速响应市场变化,实现 个性化定制生产。
促进制造业与互联网、人工智能等新兴产业的跨 界融合,激发创新活力,培育新的增长点。
06 总结与展望
对本次课程学习成果回顾
01 掌握了先进制造技术的基本概念、特点 Nhomakorabea发 展历程。
02 了解了先进制造技术在各个领域的应用现状 。
03
学习了先进制造技术的核心技术和关键方法 。
04
具备了运用先进制造技术解决实际问题的能 力。
FMS的运行与维护
探讨柔性制造系统的运行原理、维护方法以及故障处理等问题,确 保系统的稳定运行。
04 先进制造技术在产品创新 中作用
产品设计创新方法探讨
基于用户需求的设计创新
通过深入了解用户需求,挖掘潜在需求,以此为基础进行 产品设计创新,提高产品的用户体验和满意度。
引入新技术进行设计创新
积极引入新技术、新工艺、新材料等,将其应用于产品设 计中,实现设计创新,提升产品的技术含量和附加值。

机械制造--先进制造技术PPT(18张)

机械制造--先进制造技术PPT(18张)

第12章 先进制造技术简介
12.1.3 先进制造技术的发展趋势
1.集成化 2.柔性化 3.智能化 4.虚拟化 5.绿色化 6.高精度
第12章 先进制造技术简介
12.2 计算机辅助工艺规程设计(CAPP)
计 算 机 辅 助 工 艺 规 程 设 计 ( Computer Aided Process Planning),简称 CAPP。它利用计算机的快速处理信息功能和具 有各种决策功能的软件来自动生成工艺文件,是连接产品设计 与产品制造的桥梁。
第12章 先进制造技术简介
4.先进制造技术的动态性 先进制造技术没有一个固定的模式,是针对一定的应用目标,不断地吸收各种高新技术,
并将其渗透到制造系统的各个部分和制造活动的整个过程,而逐渐形成、不断发展的新技术, 因而其内涵不是绝对的,也不是一成不变的。反映在不同的时期,先进制造技术有其自身的特 点。
教学重点
1.了解先进制造技术的特点、体系结构和发展趋势。 2.理解计算机辅助工艺规程设计的分类。 3.明确计算机辅助工艺规程设计的基本工作过程和设计步骤。 4.了解先进制造技术和自动化工艺设计系统。
教学难点
了解先进制造技术和自动化工艺设计系统。
课时安排
4学时
主要概念
1.创成式CAPP系统 2.成组编码法 3.型面描述法 4.工艺数据库
5.先进制造技术应用的广泛性 先进制造技术包括了设计技术、自动化技术、系统管理技术,并将其综合应用于制造的全过 程,覆盖了产品设计、生产准备、加工与装配、销售使用、维修服务甚至回收再生等整个过程。 6.先进制造技术的系统性
先进制造技术比传统的制造技术更加重视技术与管理的结合,更加重视制造过程组织和管 理体制的简化以及合理化,从而产生了一系列先进的制造模式。

先进制造技术

先进制造技术

先进制造技术随着科技的不断进步和全球经济的发展,先进制造技术在工业领域中扮演着越来越重要的角色。

先进制造技术旨在提高制造业的效率、质量和创新能力,从而推动经济增长并满足消费者的需求。

本文将探讨先进制造技术的定义、应用领域以及对经济和社会发展的重要性。

一、先进制造技术的定义先进制造技术是指一系列高度自动化、数字化和智能化的技术和方法,用于优化和改进产品生产制造过程。

这些技术包括计算机辅助设计和制造(CAD/CAM)、机器人技术、互联网物联网(IoT)以及人工智能等。

通过将科技融入到制造过程中,先进制造技术能够提高产品质量、减少生产成本,并缩短生产周期。

二、先进制造技术的应用领域1. 3D打印技术3D打印技术是一种以数字模型为基础,通过逐层添加材料来制造三维实物的先进制造技术。

它已经广泛应用于汽车、航空航天、医疗器械等行业。

3D打印技术不仅能够减少生产成本和材料浪费,还能够实现定制化生产,满足个性化需求。

2. 自动化生产线自动化生产线利用机器人技术和自动化控制系统,实现产品的自动化制造。

它不仅能够提高生产线的效率和安全性,还能够提高产品的一致性和质量稳定性。

自动化生产线被广泛应用于汽车制造、电子制造等行业。

3. 大数据分析大数据分析通过收集和分析大量的生产数据,提供了对生产过程进行优化和改进的基础。

通过大数据分析,企业可以更好地了解市场需求、生产效率和产品质量,并基于这些数据做出决策,提高整体运营效率。

4. 智能工厂智能工厂利用物联网、人工智能和自动化技术,实现整个生产过程的数字化和智能化。

通过智能工厂,生产过程可以实现实时监控、快速反应和灵活调整,提高生产效率和产品质量,并降低生产成本。

三、先进制造技术对经济和社会发展的重要性1. 提高产能和效率先进制造技术能够优化生产过程,提高产能和效率。

通过自动化和智能化的生产线,企业可以实现生产过程的高度自动化和优化配置,从而提高产品的产能和制造效率,降低劳动力成本和生产周期。

先进制造技术的内涵特点和发展趋势

先进制造技术的内涵特点和发展趋势

先进制造技术的内涵特点和发展趋势
一、先进制造技术的内涵特点
先进制造技术(advanced manufacturing technology,AMT),是指在实现智能制造发展的过程中,全面应用信息技术、科学技术与制造工艺的整合,提高加工质量、提升產品性能、降低成本、提高效率,科学技术和信息技术所形成的现代制造技术。

它是一种实现自动化、智能化制造的关键技术,在提高生产效率、减少生产成本、提高产品质量的同时,将技术直接应用到制造加工来实现高效、快速、精准生产的技术。

1、服务自动化。

先进制造技术为制造企业提供了自动化服务,如自动储存、配送和包装,从而实现快速准确、经济高效的制造加工。

2、高效精确。

先进制造技术的应用可以控制产品的加工工艺,从而实现更高的精度要求,满足不断变化的客户需求。

3、高质量。

先进制造技术的应用可以提高产品的质量,减少报废率和维修费用,节约生产成本。

4、快速反应。

先进制造技术可以实现快速响应,及时处理客户的质量要求,满足客户的需求。

二、先进制造技术的发展趋势
1、集成化和智能化。

先进制造技术概述

先进制造技术概述

先进制造技术概述一、先进制造技术含义和特征先进制造技术AMT(advanced manufacturing technology)是传统制造业不断地吸收机械、信息(计算机与通信、控制理论、人工智能等)、材料、能源、环保等高新技术及现代系统管理技术等方面最新的成果,并将其综合应用于产品开发与设计、制造、检测、管理及售后服务的制造全过程,实现优质、高效、低耗、清洁、敏捷制造,并取得理想经济效果的前沿制造技术的总称。

先进制造技术的主要特征:⒈先进制造技术不是一项具体的技术,而是一项综合系统的技术。

⒉先进制造技术的先进性是建立在不断地汲取其他相关领域新技术的基础上的,是动态的、相对的。

⒊创新是先进制造技术的灵魂,并贯穿于制造全过程(产品创新、生产工艺过程创新、生产手段创新、管理创新、组织创新及市场创新)。

⒋技术与管理的结合是先进制造技术的一个突破,对市场变化做出更敏捷的反应及对最佳技术经济效益的追求,使先进制造技术十分重视生产过程组织管理体制的合理化和最佳化。

⒌市场和工业界的需求是先进制造技术的出发点与归宿,是先进制造技术的动力和目标。

先进制造技术成果的成败取决于生产检验,企业是先进制造技术的创新主体。

二、先进制造技术研究热点目前国内外对先进制造的研究主要有以下几个方面:纳米技术。

纳米技术是用单个原子、分子制造物质的科学技术。

纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、微观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物,纳米科学技术已经引发一系列新的科学技术。

精密、超精密加工。

精度为3~0.3μm,粗糙度为0.3~0.03μm的叫精密加工。

精度为0.3~0.03μm,粗糙度为0.03~0.005μm的叫超精密加工,或亚微米加工。

精密、超精密加工技术是20世纪60年代为了适应核能、大规模集成电路、激光和航天等尖端技术的需要而发展起来的精度极高的一种加工技术,也是现代制造工艺技术的核心技术。

先进制造技术-课件.

先进制造技术-课件.

5) 微型机械加工技术(微型系统设计技术、微细加工技术、微型 机械组装技术和纳米加工技术等); 6) 快速成型制造技术(激光快速成型技术、微滴快速成型技术、 激光微滴快速成型技术等);
7)
生物制造工程。
先进制造技术的体系
4.制造自动化技术 制造自动化的任务就是研究制造过程的规划、管理、组织、控 制与操作等的自动化。自动化发展阶段如图:
先进制造技术的体系
2.现代设计理论和方法 产品设计是现代制造业的灵魂,一个设计出来的产品要想在市场 竞争中占有,就必须考虑消费者对它满意度。
先进制造技术的体系
3. 1) 2) 3) ; 4) 先进成型加工技术 激光加工技术(如激光焊接、激光切割、激光打孔等); 高能束加工技术(电子束加工技术、离子束加工技术等); 高速及超高速加工技术(如高速切割技术、高速铣削技术等) 超精密加工技术(超精密加工机床、精密检测技术等); 该类技术研究要求实现优质、高效、低耗和清洁。包括:
20世纪80年代初期,美国一批有识之上相继发表言论, 对美国制造业的衰退进行了反思,强调了制造技术与 国民经 济及国力的至关重要的相依关系,强调了制造 技术的重要性。
克林顿政府制定了国家关键技术计划,并对其技术政 策做了重大调整。先进制造技术也就 是在这样一个社 会经济背景下出台了。 AMT在诸多国家和地区得到广泛的应用。
先进制造技术的体系
设计理论 和方法 基础理论 先进成型
加工技术
制造自动 化技术
先进制造
管理技术
先进制造技术的体系
1. 基础理论 先进制造技术的理论基础是其他先进制造技术赖以生存并不断 进步的相关技术。其包括: 1) 信息科学:计算机技术,自动化技术,软件工程,数据库 技术,多媒体技术,接口技术,网络通信技术,人工智能,决 策支持和专家系统,虚拟现实技术。 2) 基础科学:系统工程,运筹学及管理科学,法律,法学, 人文,社会科学。 3) 其他技术:包括材料科学,微电子技术,设计方法学,人 员培训和教育,人机工程学,市场学,环境保护,技术经济学, 标准化技术(如数据标准、产品标准、工艺标准、设计标准 等)。

先进制造技术第一章

先进制造技术第一章
先进制造技术能够提高产品质量和生 产效率,降低生产成本和能源消耗, 增强企业市场竞争力,推动制造业转 型升级和可持续发展。
应用领域举例
航空航天领域
先进制造技术在航空航天领域的应用包括飞机发动机制造 、航空材料加工、航空电子设备等,能够提高航空航天产 品的性能和质量。
医疗器械领域
先进制造技术在医疗器械领域的应用包括医疗器械设计、 加工和制造等,能够提高医疗器械的精度和可靠性,保障 医疗安全。
模块化设计
01
将复杂系统划分为独立的功能模块,便于开发、维护和升级。
开放性原则
02
支持不同厂商、不同技术的集成,实现系统的可扩展性和互操
作性。
分层结构
03
划分为感知层、控制层、执行层和应用层,降低系统复杂性。
关键组成部分介绍
感知层
通过传感器、RFID等技术,实 现设备状态监测、环境参数采
集等功能。
成本高企
先进制造技术的研发和应用往往需要大量的资金投入,使得一些 中小企业难以承担。
未来发展趋势预测
绿色制造
环保意识的提高将推动先进制造技术向绿 色、低碳、可持续的方向发展,减少对环
境的影响。
智能化发展
随着人工智能、大数据等技术的不 断发展,未来先进制造技术将更加 智能化,实现自动化生产、智能化
管理和优化。
06
绿色低碳可持续发展战略在先进 制造中实践
绿色低碳生产理念推广
节能减排
通过改进生产工艺、提高能源利 用效率、采用清洁能源等手段, 减少制造过程中的能源消耗和污
染物排放。
绿色供应链管理
将绿色低碳理念贯穿于整个供应链, 从原材料采购、生产、运输、销售 到回收处理等环节,实现全过程的 绿色化。

先进制造技术完整文字ppt课件

先进制造技术完整文字ppt课件

可编辑课件
46
(二)叠(分)层实体制造技术
(LOM技术,Laminated Object Manufacturing )
工业设计依托高水平的制造技术,新技 术的涌现促进了设计风格的变化,而工业 设计也赋予了技术一种视觉形式,创造了 崭新的现代生活方式,并提供了一系列表 现现代化确切含义的符号。
可编辑课件
2
三、产品开发战略的演变:
60年代: “如何做得更多”。 70年代: “如何做得更便宜”。 80年代:“如何做得更好”。 90年代:“做得更快”。
可编辑课件
16
“集”:集成化制造
“集成化”是技术的集成,是管理的集成, 是技术与管理的集成。现代的制造技术就是 集成的技术,先进制造技术就是制造技术、 信息技术、管理科学与有关科学技术的集成。
可编辑课件
17
“快”:敏捷化制造
即指对市场的快速响应,对生产的快速 重组,这两个快速必然要求生产模式有高 度柔性与高度敏捷性 .
敏捷制造、动态联盟、快速成型技术、 快速模具技术等。
可编辑课件
18
绿色制造 “绿”:绿色制造
又称清洁制造,其目标是使产品从设计、 生产、运输到报废处理的全过程对环境的负 面影响达到最小”.其内涵是产品生命周期的 全过程均具有绿色性。
可编辑课件
19
我国改革开放取得巨大成就,保持着世界上最 快的经济发展速度,但是仍然沿袭着粗放型的经 济增长模式。例如近年我国年GDP约占全世界 GDP的4%。但各类资源消费总量约合50亿吨。 其中钢铁、煤炭、水泥分别占全世界总消费量的 30%、31%和40%。
(2)被扫描区域的树脂薄层产生光聚合反应而固 化,形成零件的一个薄层。
可编辑课件
41

先进制造技术

先进制造技术

先进制造技术引言随着科技的不断发展,先进制造技术在各个领域中扮演着越来越重要的角色。

先进制造技术的应用不仅提高了产品质量和生产效率,还推动了产业的升级和创新。

本文将介绍先进制造技术的概念、应用和未来发展方向。

什么是先进制造技术先进制造技术是指应用最新科学技术和工程原理来设计、构建和生产产品的方法和过程。

这些技术包括但不限于机器人技术、3D打印技术、数字化制造技术等。

通过采用先进制造技术,企业可以实现更高的生产效率、更好的产品质量以及更快的交付周期。

先进制造技术的应用领域汽车制造先进制造技术在汽车制造行业中有广泛应用。

一方面,机器人技术在汽车生产线上用于完成重复性、危险或高精度的工作任务,提高了生产效率和工作安全性。

另一方面,3D打印技术在汽车零部件制造中的应用也越来越广泛,可以实现个性化定制、减少制造成本和缩短生产周期。

航空航天制造在航空航天制造领域,先进制造技术对于生产高性能的飞机部件至关重要。

例如,数字化制造技术可以提供更高的设计灵活性和生产精度,同时还能减少制造错误的可能性。

此外,先进制造技术还可以应用于复杂组件的制造和装配,提高生产效率和生产质量。

电子产品制造先进制造技术在电子产品制造行业中也发挥着重要的作用。

例如,通过采用先进的机器人技术,可以提高电子产品的组装速度和工艺精度,同时减少组装过程中可能的人为错误。

另外,3D打印技术在电子产品外壳的制造上也具有优势,可以实现个性化设计和快速制造。

先进制造技术的发展趋势自动化和智能化先进制造技术的发展趋势之一是自动化和智能化水平的提高。

随着机器人技术和人工智能技术的不断发展,制造过程将更加智能化,生产效率和质量将得到进一步提升。

数字化和虚拟化另一个发展趋势是数字化制造和虚拟化技术的应用。

通过数字化制造技术,生产过程可以更加灵活和可追溯,同时还可以实现产品的个性化定制。

虚拟化技术可以帮助企业在设计和生产之前进行模拟和优化,减少错误和成本。

网络化和协同化随着物联网和云计算技术的发展,先进制造技术也将更加网络化和协同化。

(完整版)先进制造技术

(完整版)先进制造技术

1.FMS由哪几部分组成?各有什么作用?P192.自动导向小车(AGV)有哪些特点?有哪些类型?并简述其中一种类型的工作原理。

P33(1)较高的柔性(2)实时监视和扩展(3)安全可靠4)维护方便线导小车是利用电磁感应制导原理进行导向的。

小车除有驱动系统以外,在小车前部还装有一对扫描线圈。

当埋入地沟内的导线通以低频率变电流时,在导线周围便形成一个环形磁场。

当导线从小车前部两个扫描线圈中间通过时,两个扫描线圈中的感应电势相等。

当小车偏离轨道时,扫描线圈就会产生感应电动势差,其中势差经过放大后给转向制导电动机,使AGV朝向减少误差的方向偏转,直至电动势差消除为止,从而保证小车始终沿着导线方向进行。

3.FMS的控制系统是一个多级递阶控制系统,简述各级的作用。

P424.P91 1、3、5P705.精密加工研究包括哪些主要内容?结合精密切削加工对发展国防和尖端技术的重要性,试提出发展我国精密切削加工技术的策略、研究重点及主要研究方向。

超精密加工技术在尖端产品和现代化武器的制造中占有非常重要的地位。

国防方面,例如:对于导弹来说,具有决定意义的是导弹的命中精度,而命中精度是由惯性仪表的精度所决定的。

制造惯性仪表,需要有超精密加工技术和相应的设备。

尖端技术方面,大规模集成电路的发展,促进了微细工程的发展,并且密切依赖于微细工程的发展。

因为集成电路的发展要求电路中各种元件微型化,使有限的微小面积上能容纳更多的电子元件,以形成功能复杂和完备的电路。

因此,提高超精密加工水平以减小电路微细图案的最小线条宽度就成了提高集成电路集成度的技术关键。

6..实现精密与超精密加工应具备哪些基本条件?试结合金刚石刀具精密切削,简述切削用量对加工质量的影响及主要控制技术。

7.一般情况下精密和超精密机床通常采用哪种轴承?试述常用几种主轴轴承的特点并说明为什么目前大部分精密和超精密机床均采用空气轴承?P1868..试述在线捡检测和误差补偿技术在精密和超精密加工中的作用。

先进制造技术的内涵及特点

先进制造技术的内涵及特点

先进制造技术的内涵及特点
一、先进制造技术的内涵
先进制造技术(Advanced Manufacturing Technology,AMT),是指
集成制造系统(Integrated Manufacturing System,IMS)、自动化控制
技术、信息技术、集成电路技术、机器人技术、微机技术、自动测量技术
等先进的制造技术的统称。

二、先进制造技术的特点
1、自动化程度高:自动化是先进制造技术的基础,通过控制系统、
传感器、机器人等组成的自动化生产线,可实现智能制造,实现自动化生产,提高了制造的灵活性。

2、整体化设计:先进制造技术结合系统工程理论,采用整体化的设
计方法,将工艺流程、设备、材料、技术、财务等各方面综合考虑,以系
统的思维去面对制造问题,整体性地解决问题。

3、集成技术:集成就是把多种功能的设备、技术技术等集中一体化,比如用先进的产品设计技术实现产品设计、把自动控制技术和计算机网络
技术结合,实现制造系统的集成。

4、智能化:利用现代计算机技术,利用机器人技术等,实现自动检
测和自学习,实现自动制造。

智能控制技术能够自动控制机器人的动作,
实现复杂工作的自动化,提高制造效率,实现更高的工作精度。

5、数字化:将制造生产中的各个环节进行数字化计算和处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

先进制造工艺的发展及其内容定义先进制造工艺技术是指研究与物料处理过程和物料直接相关的各项技术,要求实现优质、高效、低耗、清洁和灵活。

先进制造工艺的发展加工精度不断提高切削速度迅速提高新型工程材料的应用推动了制造工艺的进一步发展近净成型技术不断发展表面工程技术日益受到重视精密、超精密加工技术它是指对工件表面材料进行去除,使工件的尺寸、表面性能达到产品要求所采取的技术措旌。

当前,纳米(nm)加工技术代表了制造技术的最高精度水平。

超精加工材料由金属扩大到非金属。

根据加工的尺寸精度和表面粗糙度,可大致分为三个不同的档次,精密加工3~0.30.3~0.03超精密加工(亚微米加工)0.3~0.030.3~0.005纳米加工<0.03<0.005精密成型制造技术它是指工件成形后只需少量加工或无须加工就可用作零件的成形技术。

它是多种高新技术与传统的毛坯成形技术融为一体的综合技术。

它正在从近净成形工艺向净成形工艺的方向发展。

特种加工技术它是指那些不属于常规加工范畴的加工。

例如,高能束流(电子束、离子束、激光束)加工、电加工(电解和电火花加工)、超声波加工、高压水射流加工以及多种能源的组合加工。

表面工程技术它是指采用物理、化学、金属学、高分子化学、电学、光学和机械学等技术及其组合,提高产品表面耐磨、耐蚀、耐热、耐辐射、抗疲劳等性能的各项技术。

它主要包括热处理、表面改性、制膜和涂层等技术。

超精密加工技术的分类定义超精密加工技术是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra在0.1~0.025μm之间,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。

根据加工方法的机理和特点,超精密加工可以分为超精密切削、超精密磨削、超精密特种加工和复合加工。

超精密加工的关键技术实现超精密切削技术,不仅需要超精密的机床和刀具,也需要超稳定的环境,还需要运用计算机技术进行实时检测和反馈补偿。

精密主轴现在超精密加工机床中使用的回转精度最高的主轴是空气静压轴承主轴。

回转精度国内可达0.05微米,国外可达0.03微米超精密导轨超精密加工机床常采用的导轨形式有V-V型滑行导轨和滚动导轨、液体静压导轨和气体静压导轨。

在精度方面,空气导轨是目前最好的导轨。

传动系统目前,用于精密加工和超精密加工的传动系统主要有:滚珠丝杠传动系统、静压丝杠传动系统、摩擦驱动系统和直线电机驱动系统。

超精密刀具天然金刚石刀具是目前最主要的超精密切削刀具,由于它的刃口形状会被直接反映到加工材料的表面上,因此金刚石刀具刃磨技术是超精密切削中的一项重要技术。

精密测量技术目前,在超精密加工领域,尺寸测量技术主要有两种:一是激光干涉技术,二是光栅技术。

微进给系统微进给系统一般被用做微进给或补偿工具,以压电陶瓷为驱动器的基于弹性铰链支承的微位移机构目前是用的最多的。

加工原理超精密加工的精度要求越来越高,机床相对工件的精度裕度已很小。

在这种情况下,只是靠改进原来的技术很难提高加工精度。

因此,应该从工作原理着手进行研究,以寻求解决办法。

环境控制技术良好的工作环境是保证超精密加工质量的必要条件。

影响环境的主要因素有温度、湿度、污染和噪声。

金刚石超精密车削机理与特点切削在晶粒内进行切削力>原子结合力(剪切应力达13000 N/ mm2)刀尖处温度极高,应力极大,普通刀具难以承受高速切削(与传统精密切削相反),工件变形小,表层高温不会波及工件内层,可获得高精度和好表面质量金刚石超精密车削的关键技术要求高精度、高刚度、良好稳定性、抗振性及数控功能等。

金刚石刀具超精切削刀具材料:天然金刚石,人造单晶金刚石金刚石的晶体结构:规整的单晶金刚石晶体有八面体、十二面体和六面体,有三根4次对称轴,四根3次对称轴和六根2次对称轴(图1-20)。

金刚石刀具刃磨通常在铸铁研磨盘上进行研磨晶向选择应使晶向与主切削刃平行圆角半径越小越好(理论可达到1nm)金刚石超精密车削的应用用于铜、铝及其合金精密切削(切铁金属,由于亲合作用,产生“碳化磨损”,影响刀具寿命和加工质量)加工各种红外光学材料如锗、硅、ZnS和ZnSe等加工有机玻璃和各种塑料典型产品:光学反射镜、射电望远镜主镜面、大型投影电视屏幕、照像机塑料镜片、树脂隐形眼镜镜片等砂轮材料:金刚石,立方氮化硼(CBN)特点:可加工各种高硬度、高脆性金属及非金属材料(铁金属用CBN)耐磨性好,耐用度高,磨削能力强,磨削效率高磨削力小,磨削温度低,加工表面好砂轮修整:分整形与修锐(去除结合剂,露出磨粒)两步进行常用方法—①用碳化硅砂轮(或金刚石笔)修整,获得所需形状;②电解修锐(适用于金属结合剂砂轮),效果好,并可在线修整ELID(Electrolytic In-Process Dressing)使用ELID磨削,冷却液为一种特殊电解液。

通电后,砂轮结合剂发生氧化,氧化层阻止电解进一步进行。

在切削力作用下,氧化层脱落,露出了新的锋利磨粒。

由于电解修锐连续进行,砂轮在整个磨削过程保持同一锋利状态。

塑性(延性)磨削磨削脆性材料时,在一定工艺条件下,切屑形成与塑性材料相似,即通过剪切形式被磨粒从基体上切除下来。

磨削后工件表面呈有规则纹理,无脆性断裂凹凸不平,也无裂纹。

塑性磨削工艺条件:(1)切削深度小于临界切削深度,它与工件材料特性和磨粒的几何形状有关。

一般临界切削深度<1μm。

为此对机床要求:①高的定位精度和运动精度。

以免因磨粒切削深度超过1μm时,导致转变为脆性磨削。

②高的刚性。

因为塑性磨削切削力远超过脆性磨削的水平,机床刚性低,会因切削力引起的变形而破坏塑性切屑形成的条件。

(2)磨粒与工件的接触点的温度高到一定程度时,工件材料的局部物理特性会发生变化,导致切屑形成机理的变化(已有试验作支持)。

精密与超精密砂带磨削砂带:带基材料为聚碳酸脂薄膜,其上植有细微砂粒。

砂带在一定工作压力下与工件接触并作相对运动,进行磨削或抛光。

有开式(图1-25)和闭式两种形式,可磨削平面、内外圆表面、曲面等。

微细/纳米加工技术微细加工——通常指1mm以下微细尺寸零件的加工,其加工误差为0.1μm ~10μm 。

超微细加工——通常指1μm以下超微细尺寸零件的加工,其加工误差为0.01μm ~0.1μm。

精度表示方法——一般尺寸加工,其精度用误差尺寸与加工尺寸比值表示;微细加工,其精度用误差尺寸绝对值表示。

“加工单位”——去除一块材料的大小,对于微细加工,加工单位可以到分子级或原子级。

微切削机理——切削在晶粒内进行,切削力要超过晶体内分子、原子间的结合力,单位面积切削阻力急剧增大。

微细机械加工主要采用铣、钻和车三种形式,可加工平面、内腔、孔和外圆表面。

◆刀具:多用单晶金刚石车刀、铣刀(图1-35)。

铣刀的回转半径(可小到5μm)靠刀尖相对于回转轴线的偏移来得到。

当刀具回转时,刀具的切削刃形成一个圆锥形的切削面。

微细电加工线放电磨削法(WEDG)电极线沿着导丝器中的槽以5~10mm/min的低速滑动,可加工圆柱形的轴(图1-39)。

如导丝器通过数字控制作相应的运动,还可加工出各种形状的杆件光刻加工(电子束光刻大规模集成电路)纳米加工技术(LIGA)X射线刻蚀电镀膜技术LIGA由深层同步X射线光刻、电铸成形、塑注成形组合而成。

包括三个主要工序:1)以同步加速器放射的短波长(<1nm)X射线作为曝光光源,在厚度达0.5mm的光致抗蚀剂上生成曝光图形的三维实体;2)用曝光蚀刻图形实体作电铸模具,生成铸型;3)以生成的铸型作为模具,加工出所需微型零件。

LIGA特点用材广泛,可以是金属及其合金、陶瓷、聚合物、玻璃等可以制作高度达0.1~0.5mm,高宽比大于200的三维微结构(图1-60),形状精度达亚微米可以实现大批量复制,成本较低LIGA代表产品及应用微传感器、微电机、微机械零件、微光学元件、微波元件、真空电子元件、微型医疗器械等广泛应用于加工、测量、自动化、电子、生物、医学、化工等领域扫描隧道显微加工技术扫描隧道显微镜1981年由在IBM瑞士苏黎世实验室工作的G.Binning 和H.Rohrer 发明,可用于观察物体级的表面形貌。

被列为20世纪80年度世界十大科技成果之一,1986年因此获诺贝尔物理学奖。

STM工作原理基于量子力学的隧道效应。

当两电极之间距离缩小到1nm时,由于粒子波动性,电流会在外加电场作用下,穿过绝缘势垒,从一个电极流向另一个电极。

当一个电极为非常尖锐的探针时,由于尖端放电使隧道电流加大。

原子力显微镜阳极氧化法加工(AFM)原子力显微镜(AFM)为解决非导体微观表面形貌测量,借鉴扫描隧道显微镜原理,C.Binning 于1986年发明原子力显微镜。

当两原子间距离缩小到级时,原子间作用力显示出来,造成两原子势垒高度降低,两者之间产生吸引力。

而当两原子间距离继续缩小至原子直径时,由于原子间电子云的不相容性,两者之间又产生排斥力。

AFM两种测量模式:◎接触式——探针针尖与试件表面距离<0.5nm,利用原子间的排斥力。

由于分辨率高,目前采用较多。

其工作原理是:保持探针与被测表面间的原子排斥力一定,探针扫描时的垂直位移即反映被测表面形貌。

◎非接触式——探针针尖与试件表面距离为0.5~1nm,利用原子间的吸引力。

高速加工技术高速加工技术定义1978年,CIRP(国际生产工程协会)提出以线速度为500~7000m/min的切削为高速切削。

ISO1940标准规定,主轴转速高于8000rev/min为高速切削。

德国Darmstadt工业大学提出以高于5~10倍普通切削速度的切削定义为高速切削。

主轴轴承孔直径与主轴最大转速乘积达(5~2000)×105mm·rev/min高速切削不能简单地用某一具体的切削速度值来定义,对于不同的工件材料,其高速切削的速度范围是不同的。

考虑到目前的生产实际,不同工件材料切削速度范围的划分高速加工技术的发展与应用1931年4月德国切削物理学家萨洛蒙(Carl Salomon)曾根据一些实验曲线,即人们常提及的著名的“萨洛蒙曲线”,提出了超高速切削的理论。

高速切削加工关键技术高速切削机床主轴转速高,输出功率大:常规机床转速一般为2000r/min,而高速切削机床则为10000~100000 r/min;主轴电动机功率为15~80kW进给速度高:约为常规机床的10倍(60~100 m/min )主轴转速和进给速度的加速度高:从启动到达到最高转速要在1~2s内完成,工作台的加、减速度有常规的0.1~0.2g提高到1~2g。

机床静、动态特性好:除具有足够的静刚度外,还必须有很高的动刚度和热刚度其它功能部件性能高:快速换刀、快速工作台交换、快速排屑装置、安全保护、检测装置高速主轴单元高速主轴部件的性能直接决定了机床所能达到的切削速度、加工精度和应用范围,是高速机床的核心部件。

相关文档
最新文档