2020年沪科版数学七年级下册期末模拟试题 (含答案)
沪科版七年级下册数学期末考试试卷含答案
沪科版七年级下册数学期末考试试卷含答案本文是根据题目《沪科版七年级下册数学期末考试试卷含答案》要求,按照试卷的格式来书写。
以下是试卷内容:第一部分:选择题(共40分)一、单项选择题(每小题2分,共20分)1. 在数轴上,点B在点A的左边5个单位,点C在点B的右边3个单位,点A在点C的 _____。
A. 右边B. 左边C. 上边D.下边2. 如果a : a = 5︰4,且a :a = 2︰3,那么(a + a)︰(a + a)= _____。
A. 10︰7B. 14︰20C. 7︰10D. 20︰143. 分数 18/11 的小数形式是 _____。
A. 1.9B. 1.18C. 1.63D. 1.724. 若 $5x + 3 = 8x - 9$,则 $x$ 的值是 _____。
A. 12B. 4C. -12D. -45. 若 $\frac{x}{3} - \frac{5}{2} = \frac{7}{6} - \frac{2}{3}$,则$x$ 的值是 _____。
A. 2B. 3C. 4D. 56. 已知 $\triangle ABC$ 是直角三角形,且边长满足 $AB:BC:AC = 3:4:5$,则 $\sin B = ______$。
A. $\frac{3}{5}$B. $\frac{3}{4}$C. $\frac{4}{5}$D.$\frac{4}{3}$7. 当横向缩小图形 $x$ 倍时,纵向缩小图形 $y$ 倍,图形的面积被缩小了 _____ 倍。
A. $xy$B. $xy^2$C. $x^2y$D. $\frac{1}{xy}$8. 下列图中,不是四边形的是 _____。
A. 正方形B. 长方形C. 梯形D. 圆形9. 把一个四位数的末尾两位数去掉,所得的差是9705。
这个四位数是 _____。
A. 10234B. 10345C. 98345D. 9834510. $\frac{3}{5}$ 和 $\frac{1}{2}$ 的和的化简分数形式是 _____。
沪科版七年级下册数学期末考试试题及答案精选全文完整版
可编辑修改精选全文完整版沪科版七年级下册数学期末考试试卷一、选择题(本大题共有10小题,每小题4分,满分40分)1.(4分)下列实数中,是无理数的为()A.3.14 B.C.D.2.(4分)下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与23.(4分)生物具有遗传多样性,遗传信息大多储存在DNA分子上,一个DNA分子直径约为0.0000002cm,这个数量用科学记数法可表示为()A.0.2×10﹣6cm B.2×10﹣6cm C.0.2×10﹣7cm D.2×10﹣7cm4.(4分)如右图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°5.(4分)把多项式x3﹣2x2+x分解因式结果正确的是()A.x(x2﹣2x)B.x2(x﹣2)C.x(x+1)(x﹣1)D.x(x﹣1)26.(4分)若分式的值为0,则b的值是()A.1B.﹣1 C.±1 D.27.(4分)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.8.(4分)如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°9.(4分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b210.(4分)定义运算a⊗b=a(1﹣b),下面给出了关于这种运算的几个结论:11.①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗a)+(b⊗b)=2ab;④若a⊗b=0,则a=0.其中正确结论的个数()A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)化简:=.12.(5分)如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是.13.(5分)若代数式x2﹣6x+b可化为(x﹣a)2﹣1,则b﹣a的值是.14.(5分)观察下列算式:31=3,32=9,33=27,34=81,35=243,…,根据上述算式中的规律,你认为32014的末位数字是.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:.16.(8分)解方程:.四、(本大题共2小题,每小题8分,满分16分)17.(8分)解不等式组:并把解集在数轴上表示出来.18.(8分)先化简,再求值:(1+)+,其中x=2.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,已知DE∥BC,BE平分∠ABNC,∠C=55°,∠ABC=70°.①求∠BED的度数(要有说理过程).②试说明BE⊥EC.20.(10分)描述并说明:海宝在研究数学问题时发现了一个有趣的现象:请根据海宝对现象的描述,用数学式子填空,并说明结论成立的理由.如果(其中a>0,b>0).那么(结论).理由∴,∴则.六、(本题满分12分)21.(12分)画图并填空:(1)画出△ABC先向右平移6格,再向下平移2格得到的△A1B1C1.(2)线段AA1与线段BB1的关系是:平行且相等.(3)△ABC的面积是 3.5平方单位.七、(本题满分12分)22.(12分)列分式方程解应用题巴蜀中学小卖部经营某款畅销饮料,3月份的销售额为20000元,为扩大销量,4月份小卖部对这种饮料打9折销售,结果销售量增加了1000瓶,销售额增加了1600元.(1)求3月份每瓶饮料的销售单价是多少元?(2)若3月份销售这种饮料获利8000元,5月份小卖部打算在3月售价的基础上促销打8折销售,若该饮料的进价不变,则销量至少为多少瓶,才能保证5月的利润比3月的利润增长25%以上?八、(本题满分14分)23.(14分)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表11 2 3 ﹣7﹣2 ﹣1 0 1(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值.表2a a2﹣1 ﹣a ﹣a22﹣a 1﹣a2a﹣2 a2参考答案与解析1、考点:无理数.专题:应用题.分析:A、B、C、D根据无理数的概念“无理数是无限不循环小数,其中有开方开不尽的数”即可判定选择项.解答:解:A、B、D中3.14,,=3是有理数,C中是无理数.故选:C.点评:此题主要考查了无理数的定义,其中:(1)有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,例如5=5.0;分数都可以化为有限小数或无限循环小数.(2)无理数是无限不循环小数,其中有开方开不尽的数.(3)有限小数和无限循环小数都可以化为分数,也就是说,一切有理数都可以用分数来表示;而无限不循环小数不能化为分数,它是无理数.2、考点:实数的性质.分析:根据相反数的概念、性质及根式的性质化简即可判定选择项.解答:解:A、=2,﹣2+2=0,故选项正确;B、=﹣2,﹣2﹣2=﹣4,故选项错误;C、﹣2+()=﹣,故选项错误;D、|﹣2|=2,2+2=4,故选项错误.故选A.点评:本题考查的是相反数的概念,只有符号不同的两个数叫互为相反数.如果两数互为相反数,它们的和为0.3、考点:科学记数法—表示较小的数.专题:应用题.分析:小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 000 2=2×10﹣7cm.故选D.点评:本题考查用科学记数法表示较小的数.一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、考点:平行线的判定.分析:根据平行线的判定分别进行分析可得答案.解答:解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.点评:此题主要考查了平行线的判定,关键是掌握平行线的判定定理.5、考点:提公因式法与公式法的综合运用.分析:这个多项式含有公因式x,应先提取公因式,然后再按完全平分公式进行二次分解.解答:解:原式=x(x2﹣2x+1)=x(x﹣1)2.故选D.点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.6、考点:分式的值为零的条件.专题:计算题.分析:分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:由题意,得:b2﹣1=0,且b2﹣2b﹣3≠0;解得:b=1;故选A.点评:由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.7、考点:由实际问题抽象出分式方程.专题:应用题;压轴题.分析:题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解答:解:根据题意,得.故选C.点评:理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.8、考点:翻折变换(折叠问题).专题:压轴题.分析:根据折叠的性质,对折前后角相等.解答:解:根据题意得:∠2=∠3,∵∠1+∠2+∠3=180°,∴∠2=(180°﹣50°)÷2=65°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣65°=115°.故选B.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.9、考点:平方差公式的几何背景.分析:第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.解答:解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.点评:此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.10、考点:整式的混合运算.专题:新定义.分析:先认真审题.理解新运算,根据新运算展开,求出后再判断即可.解答:解:∵2⊗(﹣2)=2×[1﹣(﹣2)]=6,∴①正确;∵a⊗b=a(1﹣b)=a﹣ab,b⊗a=b(1﹣a)=b﹣ab,∴②错误;∵a+b=0,∴b=﹣a,∴(a⊗a)+(b⊗b)=a(1﹣a)+b(1﹣b)=a﹣a2+b﹣b2=0﹣a2﹣a2=﹣2a2,2ab=2a(﹣a)=﹣2a2,∴③在正确;∵a⊗b=0,∴a(1﹣b)=0,a=0或1﹣b=0,∴④错误;即正确的有2个,故选B.点评:本题考查了整式的混合运算的应用,解此题的关键是能理解新运算的意义,题目比较好,难度适中.11、考点:二次根式的性质与化简.分析:根据二次根式的性质解答.解答:解:原式===4.点评:解答此题,要根据二次根式的性质:=|a|解题.12、考点:平行线的性质.专题:计算题.分析:由AB与CD平行,利用两直线平行内错角相等求出∠D的度数,在三角形COD中,利用内角和定理即可求出所求角的度数.解答:解:∵AB∥CD,∠A=20°,∴∠D=∠A=20°,在△COD中,∠D=20°,∠COD=100°,∴∠C=60°.故答案为:60°点评:此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.13、考点:配方法的应用.分析:先将代数式配成完全平方式,然后再判断a、b的值.解答:解:x2﹣6x+b=x2﹣6x+9﹣9+b=(x﹣3)2+b﹣9=(x﹣a)2﹣1,∴a=3,b﹣9=﹣1,即a=3,b=8,故b﹣a=5.故答案为:5.点评:能够熟练运用完全平方公式,是解答此类题的关键.14、考点:尾数特征;规律型:数字的变化类.分析:由31=3,32=9,33=27,34=813,35=243,36=729,37=2187,38=6561…,可知末位数字以3、9、7、1四个数字为一循环,用32014的指数2014除以4得到的余数是几就与第几个数字相同,由此解答即可.解答:解:末位数字以3、9、7、1四个数字为一循环,2014÷4=503…2,所以32014的末位数字与32的末位数字相同是9.故答案为9.点评:此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.15、考点:实数的运算.分析:本题涉及零指数幂、负指数幂、二次根式化简、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式===2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.16、考点:解分式方程.专题:计算题.分析:观察可得2﹣x=﹣(x﹣2),所以可确定方程最简公分母为:(x﹣2),然后去分母将分式方程化成整式方程求解.注意检验.解答:解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时有常数项的不要漏乘常数项.17、考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各不等式的解集,并在数轴上表示出来即可.解答:解:解不等式①得:x≤3,由②得:3(x﹣1)﹣2(2x﹣1)>6,化简得:﹣x>7,解得:x<﹣7,在数轴上表示为:,故原不等式组的解集为:x<﹣7.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18、考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•=•=,当x=2时,原式==1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19、考点:平行线的性质;垂线.专题:计算题.分析:①由BE为角平分线,求出∠EBC的度数,再由DE与BC平行,利用两直线平行内错角相等求出∠DEB度数即可;②由DE与BC平行,得到一对同旁内角互补,求出∠DEC度数,在三角形BEC中,利用内角和定理求出∠BEC为90°,即可得证.解答:解:①∵∠ABC=70°,BE平分∠ABC,∴∠EBC=∠ABC=70°×=35°,又∵DE∥BC,∴∠BED=∠EBC=35°;②∵DE∥BC,∴∠C+∠DEC=180°,∴∠DEC=180°﹣55°=125°,又∵∠BED+∠BEC=∠DEC,∴∠DCE=125°,∵∠BED=35°,∴∠BEC=90°,则BE⊥EC.点评:此题考查了平行线的判定,以及垂直定义,熟练掌握平行线的判定方法是解本题的关键.20、考点:分式的混合运算.专题:图表型.分析:根据题意列出关系式,猜想得到结论,利用分式的加减法则计算,再利用完全平方公式变形即可得证.解答:解:如果++2=ab(其中a>0,b>0),那么a+b=ab;理由:∵++2=ab,∴=ab,∴a2+b2+2ab=(ab)2,即(a+b)2=(ab)2,则a+b=ab.故答案为:++2=ab;a+b=ab;∵++2=ab,∴=ab,∴a2+b2+2ab=(ab)2,即(a+b)2=(ab)2,则a+b=ab.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.21、考点:作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质,对应点的连线平行且相等;(3)利用△ABC所在的正方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.解答:解:(1)△A1B1C1如图所示;(2)AA1与线段BB1平行且相等;(3)△ABC的面积=3×3﹣×2×3﹣×3×1﹣×2×1=9﹣3﹣1.5﹣1=3.5.故答案为:平行且相等;3.5.点评:本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22、考点:分式方程的应用.分析:(1)设3月份每瓶饮料的销售单价为x元,表示出4月份的销售量,根据4月份销量量增加1000瓶可得出方程,解出即可;(2)利用(1)中所求得出每瓶饮料的进价,再由5月的利润比3月的利润至少增长25%,可得出不等式,解出即可.解答:解:(1)设3月份每瓶饮料的销售单价为x元,由题意得,﹣=1000解得:x=4经检验x=4是原分式方程的解答:3月份每瓶饮料的销售单价是4元.(2)饮料的进价为(20000﹣8000)÷(20000÷4)=2.4元,设销量为y瓶,由题意得,(4×0.8﹣2.4)y≥8000×(1+25%)解得y≥12500答:销量至少为12500瓶,才能保证5月的利润比3月的利润增长25%以上.点评:本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是设出未知数,表示出3月份及4月份的销售量.23、考点:一元一次不等式组的应用.分析:(1)根据某一行(或某一列)各数之和为负数,则改变改行(或该列)中所有数的符号,称为一次“操作”,先改变表1的第4列,再改变第2行即可;(2)根据每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,然后分别根据如果操作第三列或第一行,根据每行的各数之和与每列的各数之和均为非负整数,列出不等式组,求出不等式组的解集,即可得出答案.解答:解:(1)根据题意得:原数表改变第4列得:1 2 3 7﹣2 ﹣1 0 ﹣1再改变第2行得:1 2 3 72 1 0 1(2)∵每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,则:①如果操作第三列,a a2﹣1 a ﹣a22﹣a 1﹣a22﹣a a2第一行之和为2a﹣1,第二行之和为5﹣2a,,解得:≤a,又∵a为整数,∴a=1或a=2,②如果操作第一行,﹣a 1﹣a2 a a22﹣a 1﹣a2a﹣2 a2则每一列之和分别为2﹣2a,2﹣2a2,2a﹣2,2a2,已知2a2≥0,则:,解得a=1,验证当a=1时,满足不等式,综上可知:a=1.点评:此题考查了一元一次不等式组的应用,关键是读懂题意,根据题目中的操作要求,列出不等式组,注意a为整数。
沪科版七年级数学下册期末测试卷-带参考答案
沪科版七年级数学下册期末测试卷-带参考答案一、选择题(本大题共10小题,每小题4分,共40分)1.下列各数是无理数的是()A.2 024 B.0 C.227 D. 32.某细胞的直径约为0.000 006 m,将数据0.000 006用科学记数法表示为() A.6×10-6B.0.6×10-5 C.6×10-7 D. 6×10-53.下列运算正确的是()A.(a4)3=a7B.a6÷a3=a2C.(3a-b)2=9a2-b2D.-a4·a6=-a104.下列各选项中正确的是()A.若a>b,则a-1<b-1 B.若a>b,则a2>b2C.若a>b,且c≠0,则ac>bc D.若a|c|>b|c|,则a>b5.下列因式分解正确的是()A. a2-2a+1=a(a-2)+1B. a2+b2=(a+b)(a-b)C. a2+4ab-4b2=(a-2b)2D. -ax2+4ax-4a=-a(x-2)26.已知a+b=5,ab=3,则ba+ab的值为()A.6 B.193 C.223D.87.如图,不能说明AB∥CD的有()①∠DAC=∠BCA;②∠BAD=∠CDE;③∠DAB+∠ABC=180°;④∠DAB=∠DCB.A. 1个B. 2个C. 3个D. 4个(第7题)8.如图,直线l1∥l2,AB⊥CD,∠1=22°,那么∠2的度数是()(第8题)A .68°B .58°C .22°D .28°9.若关于x 的不等式组⎩⎪⎨⎪⎧x2-1<2-x 3,a -3x ≤4x -2有且仅有3个整数解,且关于y 的方程a -y 3=2a -y5+1的解为负整数,则符合条件的整数a 的个数为( ) A .1B .2C .3D .410.我国宋朝数学家杨辉提出“杨辉三角”(如图),此图揭示了(a +b )n (n 为非负整数)展开式的项数及各项系数的有关规律.(第10题)例如: (a +b )0=1; (a +b )1=a +b ; (a +b )2=a 2+2ab +b 2; (a +b )3=a 3+3a 2b +3ab 2+b 3; (a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4; ……请你猜想(a +b )9的展开式中所有系数的和是( ) A .2 048B .512C .128D .64二、填空题(本大题共4小题,每小题5分,共20分) 11.181的算术平方根为________.12.已知a 2-2a -3=0,则代数式3a (a -2)的值为________.13.将两个直角三角尺按如图的方式放置,点E 在AC 边上,且ED ∥BC ,∠C第 3 页 共 10 页=30°,∠F =∠DEF =45°,则∠AEF =______.(第13题)14.观察下列方程和它们的解:①x +2x =3的解为x 1=1,x 2=2;②x +6x =5的解为x 1=2,x 2=3;③x +12x =7的解为x 1=3,x 2=4.(1)按此规律写出关于x 的第n 个方程为________________________; (2)(1)中方程的解为__________________. 三、(本大题共2小题,每小题8分,共16分) 15.计算:-12+|-2|+3-8+(-3)2.16.解不等式组:⎩⎪⎨⎪⎧2(2x -1)≤3(1+x ),x +13<x -x -12.四、(本大题共2小题,每小题8分,共16分) 17. 先化简,再求值:⎝ ⎛⎭⎪⎫1-1a +1÷2a a 2-1,其中a =-3.18.已知5a +2的立方根是3,3a +b -1的算术平方根是4,c 是13的整数部分,求3a -b +c 的平方根.五、(本大题共2小题,每小题10分,共20分) 19.在如图所示的网格中,画图并填空:(1)画出三角形ABC 向右平移6个小格得到的三角形A 1B 1C 1; (2)画出三角形A 1B 1C 1向下平移2个小格得到的三角形A 2B 2C 2;(3)如果点M 是三角形ABC 内一点,点M 随三角形ABC 经过(1)、(2)两次平移后得到的对应点是M 2,那么线段MM 2与线段AA 2的位置关系是________.(第19题)20.已知点A,B在数轴上所对应的数分别为mx-7,x-87-x,若A,B两点在原点的两侧且到原点的距离相等.(1)当m=2时,求x的值;(2)若不存在满足条件的x的值,求m的值.六、(本题满分12分)21.如图,已知∠EDC=∠GFD,∠DEF+∠AGF=180°.(1)请判断AB与EF的位置关系,并说明理由;(2)过点G作线段GH⊥EF,垂足为H,若∠DEF=30°,求∠FGH的度数.(第21题)第5 页共10 页七、(本题满分12分)22.实践与探索:如图①,边长为a的大正方形里有一个边长为b的小正方形,把图①中的阴影部分通过剪切拼成一个长方形(如图②所示).(第22题)(1)上述操作能验证的等式是:__________.(填“A”“B”或“C”)A.a2-b2=(a+b)(a-b)B.a2-2ab+b2=(a-b)2C.a2+ab=a(a+b)(2)请应用这个等式完成下列各题:①已知4a2-b2=24,2a+b=6,则2a-b=________.②计算:9×(10+1)(102+1)(104+1)(108+1)(1016+1).八、(本题满分14分)23.已知直线PQ∥MN,把一个三角尺(∠A=30°,∠C=90°)按如图①的方式放置,点D,E,F是三角尺的边与平行线的交点.(1)①∠PDC,∠MEC,∠BCE之间有怎样的数量关系?请说明理由;②若∠AEN=∠A,则∠BDF=________;(2)将图①中的三角尺进行适当转动,得到图②,直角顶点C始终在两条平行线之间,点G在线段CD上,连接EG,且有∠CEG=∠CEM,求∠BDF∠GEN的值.(第23题)第7 页共10 页答案一、1.D 2.A 3.D 4.D 5.D 6.B 7.C 8.A9.C 思路点睛:解不等式组得⎩⎪⎨⎪⎧x <2,x ≥a +27.根据不等式组有且仅有3个整数解得到a 的取值范围.再解方程a -y 3=2a -y 5+1得y =-a +152.根据解为负整数,得到另一个a 的取值范围.再取两个a 的取值范围的公共部分即可. 10.B二、11.13 12.9 13.165° 14.(1)x +n (n +1)x=2n +1 (2)x 1=n ,x 2=n +1三、15.解:原式=-1+2+(-2)+3=-1+2-2+3=2. 16.解:⎩⎪⎨⎪⎧2(2x -1)≤3(1+x ),①x +13<x -x -12,② 解不等式①,得x ≤5.解不等式②,得x >-1. 所以不等式组的解集为-1<x ≤5.四、17.解:原式=⎝ ⎛⎭⎪⎫a +1a +1-1a +1÷2a(a +1)(a -1)=a a +1·(a +1)(a -1)2a =a -12.当a =-3时,原式=-3-12=-2.18.解:因为5a +2的立方根是3, 3a +b -1的算术平方根是4,所以5a +2=27,3a +b -1=16.所以a =5,所以3×5+b -1=16,所以b =2.因为c 是13的整数部分,3<13<4,所以c =3.所以3a -b +c =3×5-2+3=16.所以3a -b +c 的平方根是±4. 五、19.解:(1)如图,三角形A 1B 1C 1即为所作.(2)如图,三角形A 2B 2C 2即为所作.(第19题) (3)平行20.解:(1)根据题意,得mx-7+x-87-x=0.把m=2代入,得2x-7+x-87-x=0,解得x=10.经检验,x=10是分式方程的解.所以x=10.(2)将mx-7+x-87-x=0化为整式方程为m-(x-8)=0.根据题意,得x-7=0,所以x=7.把x=7代入m-(x-8)=0,得m-(7-8)=0,解得m=-1.六、21.解:(1)AB∥EF,理由:因为∠EDC=∠GFD,所以DE∥GF,所以∠DEF=∠GFE.因为∠DEF+∠AGF=180°,所以∠GFE+∠AGF=180°,所以AB∥EF.(2)如图,因为GH⊥EF,所以∠GHF=90°.因为∠GFE=∠DEF=30°所以∠FGH=180°-∠GHF-∠GFE=180°-90°-30°=60°.(第21题)七、22.解:(1)A(2) ①4②9×(10+1)(102+1)(104+1)(108+1)(1016+1)=(10-1)(10+1)(102+1)(104+1)(108+1)(1016+1)第9 页共10 页=(102-1)(102+1)(104+1)(108+1)(1016+1)=(104-1)(104+1)(108+1)(1016+1)=(108-1)(108+1)(1016+1)=(1016-1)(1016+1)=1032-1.八、23.解:(1)①∠BCE=∠PDC+∠MEC.理由:过点C向右作CH∥PQ,所以∠PDC=∠DCH.因为PQ∥MN,所以CH∥MN所以∠MEC=∠ECH所以∠BCE=∠DCH+∠ECH=∠PDC+∠MEC.②60°(2)设∠CEG=∠CEM=x,则∠GEN=180°-2x.由(1)可得∠PDC+∠MEC=∠BCE=90°所以∠CDP=90°-∠CEM=90°-x所以∠BDF=90°-x.所以∠BDF∠GEN=90°-x180°-2x=12.。
【沪科版】七年级数学下期末模拟试卷(带答案)
一、选择题1.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有若干张正方形和若干张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则库存中正方形纸板与长方形纸板之和的值可能是( )A .2018B .2019C .2020D .20212.已知关于x ,y 的方程组232x y ax y a -=-⎧⎨+=⎩,其中﹣2≤a≤0.下列结论:①当a =0时,x ,y 的值互为相反数;②20x y =⎧⎨=⎩是方程组的解;③当a =﹣1时,方程组的解也是方程2x ﹣y =1﹣a 的解;其中正确的是( ) A .①② B .①③ C .②③ D .①②③3.若关于x y ,的二元一次方程组232320x y kx y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( ) A .34-B .34C .43D .43-4.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为( )A .449x y y x y x -=+⎧⎨-=+⎩B .449x y y x y x -=+⎧⎨-=-⎩C .449x y y x y x -=-⎧⎨-=+⎩D .449x y y x y x -=-⎧⎨-=-⎩5.不等式组3114x x +>⎧⎨-≤⎩的最小整数解是( )A .5B .0C .-1D .-26.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a --7.不等式组43x x <⎧⎨≥⎩的解集在数轴上表示为( )A .B .C .D .8.在平面直角坐标系中,点P (−1,23)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 9.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40),B .(0)4,C .40)(-,D .(0,4)- 10.估计50的立方根在哪两个整数之间( ) A .2与3B .3与4C .4与5D .5与611.下列说法正确的是( )A .命题一定是正确的B .定理都是真命题C .不正确的判断就不是命题D .基本事实不一定是真命题12.若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .68m <<B .67≤<mC .67m ≤≤D .67m <≤二、填空题13.已知关于x ,y 的方程组4375x y mx y m +=⎧⎨-=-⎩的解满足不等式2x+y>8,则m 的值是_____.14.明代的程大位创作了《算法统宗》,它是一本通俗实用的数学书,将枯燥的数学问题化成了美妙的诗歌,读来朗朗上口,是将数字入诗的代表作.例如,其中有一首饮酒数学诗:“肆中饮客乱纷纷,薄酒名釂厚酒醇.醇酒一瓶醉三客,薄酒三瓶醉一人,共同饮了一十九,三十三客醉颜生.试问高明能算士,几多酶酒几多醇?”这首诗是说:“好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒1位客人,如今33位客人醉倒了,他们总共饮下19瓶酒.试问其中好酒、薄酒分别是多少瓶?”请你根据题意,求出好酒是有_____瓶. 15.如果关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是62x y =⎧⎨=⎩,则关于x ,y 的二元一次方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是______.16.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换: ①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________. 17.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.18.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.19.如图,长8米宽6米的草坪上有一条弯折的小路(小路进出口的宽度相等,且每段小路均为平行四边形),小路进出口的宽度均为1米,则绿地的面积为__平方米.20.把方程组2123x y mx y+=+⎧⎨+=⎩中,若未知数x y、满足0x y+>,则m的取值范围是_________.三、解答题21.某校准备组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案.(2)如果甲、乙两种汽车每辆车的租车费用分别为2500元和2000元,请你选择最省钱的一种方案.22.学校需要购买一些篮球和足球,已知篮球的单价比足球的单价贵30元,买2个篮球和3个足球一共需要510元.(1)求篮球和足球的单价;(2)根据学生体育活动的需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的23,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?23.“滴滴打车”深受大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/千米计算,耗时费按q元/分钟计算,小明、小亮两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如表:(2)“滴滴”推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费.某天,小丽两次使用“滴滴打车”共花费52元,总里程20千米,已知两次“滴滴打车”行驶的平均速度为40千米/小时,求小丽第一次“滴滴打车”的里程数?24.如图(1),在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),将线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,连接AC,BD,构成平行四边形ABDC.(1)请写出点C的坐标为,点D的坐标为,S四边形ABDC;(2)点Q在y轴上,且S△QAB=S四边形ABDC,求出点Q的坐标;(3)如图(2),点P是线段BD上任意一个点(不与B、D重合),连接PC、PO,试探索∠DCP、∠CPO、∠BOP之间的关系,并证明你的结论.25.计算:(1)()2325273-+-.(2)()2411893⎡⎤⎛⎫--⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 26.如图,AB 与CD 相交于O ,OE 平分AOC ∠,OF AB ⊥于O ,OG OE ⊥于O ,若BOD ∠=40,求AOE ∠和FOG ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设竖式纸盒x 个,横式纸盒y 个,正方形纸板a 张,长方形纸板b 张,由题意列出方程组可求解. 【详解】解:设竖式纸盒x 个,横式纸盒y 个, 正方形纸板a 张,长方形纸板b 张, 根据题意得:432x y bx y a +⎧⎨+⎩==,∴5x+5y=5(x+y )=a+b ∴a+b 是5的倍数 故选:C . 【点睛】本题考查了二元一次方程组,根据题意列出正确的方程组是本题的关键.2.B解析:B 【分析】把a=0代入方程组,可求得方程组的解,把2xy=⎧⎨=⎩代入方程组,可得a=1,可判断②;把a=﹣1代入方程可求得a的值为2,可判断③;可得出答案.【详解】解:①当a=0时,原方程组为23x yx y-=⎧⎨+=⎩,解得11xy=-⎧⎨=⎩,②把2xy=⎧⎨=⎩代入方程组得到a=1,不符合题意.③当a=﹣1时,原方程组为242x yx y-=⎧⎨+=-⎩,解得2xy=⎧⎨=-⎩,当2xy=⎧⎨=-⎩时,代入方程组可求得a=﹣1,把2xy=⎧⎨=-⎩与a=﹣1代入方程2x﹣y=1﹣a得,方程的左右两边成立,综上可知正确的为①③.故选:B.【点睛】本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.3.B解析:B【分析】首先解关于x的方程组,求得x,y的值,然后代入方程2x+3y=6,即可得到一个关于k 的方程,从而求解.【详解】解232320x y kx y k+=⎧⎨-=⎩得72x ky k=⎧⎨=-⎩,由题意知2×7k+3×(−2k)=6,解得k=34.故选:B【点睛】此题考查了解二元一次方程组,二元一次方程组的解,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.解题的关键是要知道两个方程组之间解的关系.4.D解析:D 【分析】根据题设老师今年x 岁,小红今年y 岁,根据题意列出方程组解答即可. 【详解】解:老师今年x 岁,小红今年y 岁,可得:449x y y xyx,故选:D . 【点睛】此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.5.C解析:C 【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来,写出这个不等式组的最小整数解即可. 【详解】 解:3114x x +>⎧⎨-≤⎩①②解不等式①得 x >-2, 解不等式②得 x≤5,所以不等式组的解集为-2<x≤4, 所以,这个不等式组的最小整数解是-1, 故选C . 【点睛】本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.6.A解析:A 【分析】分别解两个不等式得到得x <20和x >3-2a ,由于不等式组只有5个整数解,则不等式组的解集为3-2a <x <20,且整数解为15、16、17、18、19,得到14≤3-2a <15,然后再解关于a 的不等式组即可. 【详解】255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩①② 解①得x <20 解②得x >3-2a ,∵不等式组只有5个整数解, ∴不等式组的解集为3-2a <x <20, ∴14≤3-2a <15,1162a ∴-<-故选A 【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a <15是解此题的关键.7.D解析:D 【分析】根据不等式组的解集在数轴上的表示方法进行分析解答即可. 【详解】A 选项中,数轴上表达的解集是:4x >;B 选项中,数轴上表达的解集是:34x -≤<;C 选项中,数轴上表达的解集是:3x ≤;D 选项中,数轴上表达的解集是:34x ≤<;∵不等式组43x x ⎧⎨≥⎩<的解集是34x ≤<,∴选D. 【点睛】本题考查的是在数轴上表示不等式组的解集,熟知:“小于向左,大于向右”是解答此题的关键.8.B解析:B 【分析】应先判断出所求点P 的横坐标、纵坐标的符号,进而判断其所在的象限. 【详解】解:∵−1<0,0, ∴点P 在第二象限. 故选:B . 【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.A解析:A 【分析】直接利用关于x 轴上点的坐标特点得出m 的值,进而得出答案. 【详解】 解:点224P m m +(,﹣)在x 轴上,240m ∴﹣=,解得:2m =,24m ∴+=,则点P 的坐标是:()4,0. 故选A . 【点睛】此题主要考查了点的坐标,正确得出m 的值是解题关键.10.B解析:B 【分析】,可得答案. 【详解】,得34,所以,50的立方根在3与4之间 故选:B . 【点睛】本题考查了估算无理数的大小,利用了正数的被开方数越大立方根越大的关系.11.B解析:B 【分析】根据命题的定义、真命题与假命题的定义逐项判断即可得. 【详解】A 、命题有真命题和假命题,此项说法错误;B 、定理都是经过推论、论证的真命题,此项说法正确;C 、不正确的判断是假命题,此项说法错误;D 、基本事实是真命题,此项说法错误; 故选:B . 【点睛】本题考查了命题、真命题与假命题,熟练掌握理解各概念是解题关键.12.D解析:D 【分析】首先确定不等式组的解集,先利用含m 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m 的不等式,从而求出m 的范围. 【详解】 解不等式0721x m x -<⎧⎨-≤⎩①②,由①式得,x m <,由②式得3x ≥,即故m 的取值范围是67m <≤,故选D . 【点睛】本题考查不等式组的整数解问题,利用数轴就能直观的理解题意,列出关于m 的不等式组,再借助数轴做出正确的取舍.二、填空题13.m <-6【分析】先解方程组然后将xy 的值代入不等式解答【详解】解:①+②得解得x=2m-1把x=2m-1代入②得解得y=4-5m 将x=2m-1y=4-5m 代入不等式2x+y >8得4m-2+4-5m >解析:m <-6. 【分析】先解方程组,然后将x 、y 的值代入不等式解答. 【详解】 解:4375x y m x y m +=⎧⎨-=-⎩①②①+②得,5105x m =-,解得,x=2m-1,把x=2m-1代入②得,2175m y m --=-,解得,y=4-5m , 将x=2m-1,y=4-5m 代入不等式2x+y >8得 4m-2+4-5m >8, ∴m <-6, 故答案为:m <-6. 【点睛】本题考查了方程组与不等式,熟练解方程组与不等式是解题的关键.14.10【分析】根据好酒数量+薄酒数量=19和喝好酒醉倒人数+喝薄酒醉倒人数=33可列方程组解之即可【详解】解:设有好酒x 瓶薄酒y 瓶根据题意可列方程组为解得:∴好酒是有10瓶故答案为:10【点睛】本题主解析:10 【分析】根据“好酒数量+薄酒数量=19和喝好酒醉倒人数+喝薄酒醉倒人数=33”可列方程组,解之即可.【详解】解:设有好酒x 瓶,薄酒y 瓶.根据题意,可列方程组为193333x y y x +=⎧⎪⎨+=⎪⎩,解得:109x y =⎧⎨=⎩, ∴好酒是有10瓶,故答案为:10.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是掌握理解题意,找到题目蕴含的相等关系.15.【分析】先将所求的方程组变形为然后根据题意可得进一步即可求出答案【详解】解:由方程组可得∵关于xy 的二元一次方程组的解是∴解得故答案为【点睛】本题考查了二元一次方程组的解法正确理解题意合理变形得出是解析:105x y =⎧⎨=⎩【分析】 先将所求的方程组变形为11122232553255a b c a b c x y x y ⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎧+=⎪⎪⎨⎪+=⎪⎩,然后根据题意可得365225x y ⎧=⎪⎪⎨⎪=⎪⎩,进一步即可求出答案.【详解】解: 由方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩可得11122232553255a b c a b c x y x y ⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎧+=⎪⎪⎨⎪+=⎪⎩, ∵关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是62x y =⎧⎨=⎩, ∴365225x y ⎧=⎪⎪⎨⎪=⎪⎩,解得105x y =⎧⎨=⎩, 故答案为105x y =⎧⎨=⎩. 【点睛】本题考查了二元一次方程组的解法,正确理解题意、合理变形、得出365225xy⎧=⎪⎪⎨⎪=⎪⎩是解本题的关键.16.【分析】根据三种变换规律的特点解答即可【详解】解:故答案为:【点睛】本题考查了点的坐标变换读懂题目信息正确理解三种变换的特点是解题的关键解析:()2,5-【分析】根据三种变换规律的特点解答即可.【详解】解:()()()()2,52,52,5OΩ=O-=-.故答案为:()2,5-.【点睛】本题考查了点的坐标变换,读懂题目信息、正确理解三种变换的特点是解题的关键.17.【分析】作三角形的高线根据坐标求出BEOAOF的长利用面积法可以得出BC•AD=32【详解】解:过B作BE⊥x轴于E过C作CF⊥y轴于F∵B(m3)∴BE=3∵A(40)∴AO=4∵C(n-5)∴O解析:32【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=32.【详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,-5),∴OF=5,∵S △AOB =12AO•BE=12×4×3=6, S △AOC =12AO•OF=12×4×5=10, ∴S △AOB +S △AOC =6+10=16,∵S △ABC =S △AOB +S △AOC ,∴12BC•AD=16, ∴BC•AD=32,故答案为:32.【点睛】本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积.18.(1);(2)①见解析;②见解析【分析】(1)设正方形边长为a 根据正方形面积公式结合平方根的运算求出a 值则知结果;(2)①根据面积相等利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正 解析:(1)2,2-;(2)①见解析;②见解析, 350.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b ,∴b 2=5,∴5在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.19.42【分析】利用平移表示出草坪的长和宽然后根据长方形的面积公式列式计算即可得解【详解】解:由平移的性质得:草坪的长为8﹣1=7(米)宽为6米草坪的面积=7×6=42(平方米)故答案为:42【点睛】本解析:42【分析】利用平移表示出草坪的长和宽,然后根据长方形的面积公式列式计算即可得解.【详解】解:由平移的性质,得:草坪的长为8﹣1=7(米),宽为6米,草坪的面积=7×6=42(平方米).故答案为:42.【点睛】本题考查了平移的性质,熟记性质并理解求出与草坪的面积相当的长方形的长和宽是解题的关键.20.【分析】先将方程组中的两个方程相加化简得出的值再根据可得关于m 的一元一次不等式然后解不等式即可得【详解】由①②得:即解得故答案为:【点睛】本题考查了二元一次方程组的解解一元一次不等式根据二元一次方程 解析:4m >-【分析】先将方程组中的两个方程相加化简得出x y +的值,再根据0x y +>可得关于m 的一元一次不等式,然后解不等式即可得.【详解】2123x y m x y +=+⎧⎨+=⎩①②, 由①+②得:334x y m +=+,即43m x y ++=, 0x y +>,403m +∴>, 解得4m >-,故答案为:4m >-.【点睛】本题考查了二元一次方程组的解、解一元一次不等式,根据二元一次方程组得出x y +的值是解题关键.三、解答题21.(1)共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆;(2)最省钱的租车方案为:租用甲种汽车5辆,乙种汽车3辆.【分析】(1)可根据租用甲、乙两种型号的汽车座位总数不小于290,可载行李总数不小于100件列出不等式组,求出x 的取值,看在取值范围中x 可取的整数的个数即为方案数.(2)根据(1)中方案分别计算甲、乙所需要的费用,然后比较,花费较少的即为最省钱的租车方案.【详解】解:(1)由租用甲种汽车x 辆,则租用乙种汽车()8x -辆.由题意得:()()4030829010208100x x x x ⎧+-≥⎪⎨+-≥⎪⎩解得:56x ≤≤.即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.(2)租汽车的总费用为:()25002000850016000x x x +-=+(元)当x 取最小值时,总费用最省,因此当5x =时,总费用最省当5x =时,总费用为:50051600018500⨯+=元最省钱的租车方案为方案一:租用甲种汽车5辆,乙种汽车3辆.【点睛】本题主要考查的是一元一次不等式组的应用,找出题目的不等关系是解题的关键. 22.(1)篮球和足球的单价分别是120元,90元;(2)共有11种购买方案【分析】(1)设一个篮球x 元,则一个足球(x−30)元,根据“买两个篮球和三个足球一共需要510元”列出方程,即可解答;(2)设购买篮球x 个,足球(100−x )个,根据“篮球购买的数量不少于足球数量的23,学校可用于购买这批篮球和足球的资金最多为10500元”,列出不等式组,求出x 的取值范围,由x 为正整数,即可解答.【详解】解:(1)设一个篮球x 元,则一个足球(x−30)元,由题意得:2x +3(x−30)=510,解得:x =120,x−30=90,答:篮球和足球的单价分别是120元,90元.(2)设购买篮球x 个,则购买足球(100−x )个, 根据题意,得:()()210031************x x x x ⎧≥-⎪⎨⎪+-≤⎩,解得:40≤x≤50.因为x 为正整数,x 可取:40,41,42,43,44,45,46,47,48,49,50,所以共有11种购买方案.【点睛】本题考查了一元一次不等式组的应用以及一元一次方程的应用,解题的关键是:(1)根据数量关系找出关于x 的一元一次方程;(2)根据数量关系找出关于m 的一元一次不等式组.本题属于中档题,难度不大,解决该题型题目时,根据数量关系找出方程(或不等式组)是关键.23.(1)p =2;q =0.3;(2)7或13.【分析】(1)利用表格中信息列出方程组即可;(2)不妨设第一次的路程为x 千米,有三种可能:分别列出方程即可解决问题.【详解】解:(1)由题意 5712.14.5610.8p q p q +⎧⎨+⎩==, 解得20.3p q ⎧⎨⎩==; (2)不妨设第一次的路程为x 千米,有三种可能:①第一次路程不超过8千米,第二次的路程超过8千米,2×20+0.3(20÷40)×60+(20-x -8)×0.6=52,解得x =7;②第一次路程超过8千米,第二次的路程也超过8千米,2×20+0.3(20÷40)×60+(x -8)×0.6+(20-x -8)×0.6=52,不存在;③第一次路程超过8千米,第二次的路程不超过8千米,2×20+0.3(20÷40)×60+(x-8)×0.6=52,解得x=13.【点睛】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.24.(1)(0,2),(4,2),8;(2)Q(0,4)或Q(0,﹣4);(3)∠CPO=∠DCP+∠BOP,证明见解析【分析】(1)根据平移直接得到点C,D坐标,用面积公式计算S四边形ABDC即可;(2)设出Q的坐标,OQ=|m|,用S△QAB=S四边形ABDC建立方程,解方程即可;(3)作PE∥AB交y 轴于点E,利用两直线平行,内错角相等即可得出结论.【详解】解:(1)∵线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,且A(﹣1,0),B(3,0),∴C(0,2),D(4,2);∵AB=4,OC=2,∴S四边形ABDC=AB×OC=4×2=8;故答案为:(0,2);(4,2);8;(2)∵点Q在y轴上,设Q(0,m),∴OQ=|m|,∴S△QAB=12×AB×OQ=12×4×|m|=2|m|,∵S四边形ABDC=8,∴2|m|=8,∴m=4或m=﹣4,∴Q(0,4)或Q(0,﹣4).(3)如图,∵线段CD是线段AB平移得到,∴CD∥AB,作PE∥AB交y 轴于点E,∴CD∥PE,∴∠CPE=∠DCP,∵PE ∥AB ,∴∠OPE =∠BOP ,∴∠CPO =∠CPE +∠OPE =∠DCP +∠BOP ,∴∠CPO =∠DCP +∠BOP .【点睛】本题主要考查了线段的平移及平行线的性质,掌握平行线的性质并作出辅助线是解题的关键.25.(1)11;(2)-10【分析】(1)首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方、开方和括号里面的运算,然后计算括号外面的乘法,求出算式的值是多少即可.【详解】解:(1()23- 539=-+11=.(2)()21183⎤⎛⎫-⨯-⎥ ⎪⎝⎭⎥⎦ ()211839⎛⎫=-⨯- ⎪⎝⎭ ()5189=⨯- 10=﹣.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.26.∠AOE=20º,∠FOG=20º【分析】根据垂直的定义以及对顶角定义直接得出FOG ∠和AOE ∠的度数即可.【详解】如图:∵BOD ∠=40,∴AOC ∠=BOD ∠=40,又OE 平分AOC ∠, ∴12AOE AOC ∠=∠=20,即AOE ∠=20, ∵OF AB ⊥于O ,OG OE ⊥,∴AOF ∠=EOG ∠=90,∴FOG ∠=AOE ∠=20(等角的余角相等).【点评】此题主要考查了垂线的定义以及角平分线的定义、对顶角等知识,得出∠AOE 的度数是解题关键.。
2020届沪科版七年级数学下册期末测试卷(有答案)(已审阅)
沪科版七年级数学第二学期期末测试卷一、选择题(每小题4分,共40分)1.给出下列各数:13,0,0.21,3.14,π,0.142 87,1π,其中是无理数的有()A.1个B.2个C.3个D.4个2.如果a>b,那么下列结论一定正确的是()A.a-3<b-3 B.3-a<3-bC.ac2>bc2D.a2>b23.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时∠B=13 6°,那么∠C应是()A.136°B.124°C.144°D.154°4.如图,已知AC⊥BC,CD⊥AB,垂足分别是C,D,那么以下线段大小的比较必定成立的是()A.CD>AD B.AC<BCC.BC>BD D.CD<BD5.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000 000 076克,将0.000 000 076用科学记数法表示为()A.7.6×10-8B.0.76×10-9C.7.6×108D.0.76×1096.如果分式x2-12x+2的值为0,则x的值是()A.1 B.0 C.-1 D.±1 7.下列运算正确的是()A .-a 2·3a 3=-3a 6B .(-12a 3b )2=14a 5b 2C .a 5÷a 5=a D.⎝ ⎛⎭⎪⎫-y 2x 3=-y 38x 3 8.已知a ,b 为两个连续整数,且a <19-1<b ,则这两个整数是( )A .1和2B .2和3C .3和4D .4和59.一个三角形的一边长是(x +3)cm ,这边上的高是5 cm ,它的面积不大于20 cm 2,则( )A .x >5B .-3<x ≤5C .x ≥-3D .x ≤510.如图,AB ∥CD ,EG 、EM 、FM 分别平分∠AEF ,∠BEF ,∠EFD ,则下列结论正确的有( )①∠DFE =∠AEF ;②∠EMF =90°;③EG ∥FM ;④∠AEF =∠EG C.A .1个B .2个C .3个D .4个二、填空题(每题5分,共20分)11.因式分解 : a 2-2ab +b 2-1=________.12.如图,∠1的同旁内角是____________,∠2的内错角是____________.13.已知x 2+y 2=3,xy =12,则⎝ ⎛⎭⎪⎫1x -1y ÷x 2-y 2xy 的值为________. 14.如图,直线l 1∥l 2,则∠1+∠2=____________.三、(每题8分,共16分)15.计算:(-4)2+(π-3)0-23-|-5|.16.化简:a 2-9a 2+6a +9÷⎝⎛⎭⎪⎫1-3a .四、(每题8分,共16分)17.解不等式(组),并把解集表示在数轴上:(1)1-x 2+2x +13<1; (2)⎩⎪⎨⎪⎧x -3(x -1)≤7,①1-2-5x 3<x .②18.解分式方程:x x -2-1x 2-4=1.五、(每题10分,共20分)19.先化简,再求值:a 2-6ab +9b 2a 2-2ab ÷⎝ ⎛⎭⎪⎫5b 2a -2b -a -2b -1a ,其中a ,b 满足⎩⎨⎧a +b =8,a -b =2.20.已知代数式(ax-3)(2x+4)-x2-b化简后不含x2项和常数项.(1)求a、b的值;(2)求(2a+b)2-(a-2b)(a+2b)-3a(a-b)的值.六、(12分)21.如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”.例如:8=32-12,16=52-32,24=72-52,则8、16、24这三个数都是奇特数.(1)32和2 020这两个数是奇特数吗?若是,表示成两个连续奇数的平方差形式.(2)设两个连续奇数是2n-1和2n+1(其中n取正整数),由这两个连续奇数构造的奇特数是8的倍数吗?为什么?七、(12分)22.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12 000元购进的科普书与用8 000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10 000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?八、(14分)23.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD上,EF 与AC相交于点G,∠ADB+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,若相等,请说明理由.答案一、1.B 点拨:π与1π都是无理数. 2.B 3.A 4.C 5.A 6.A 7.D8.C 点拨:因为16<19<25,所以4<19<5.所以4-1<19-1<5-1,即3<19-1<4.9.B 点拨:根据三角形面积的公式可以列出不等式12×5(x +3)≤20,解得x ≤5.又因为x +3>0,所以-3<x ≤5.10.C 点拨:因为AB ∥CD ,所以∠DFE =∠AEF ,故结论①正确;因为AB ∥CD ,所以∠BEF +∠DFE =180°,又因为EM 、FM 分别是∠BEF 、∠DFE 的平分线,所以∠MEF +∠MFE =12(∠BEF +∠DFE )=90°,则∠EMF =90°,故结论②正确;由题意易知∠MEG =90°,∠EMF =90°,所以EG ∥FM ,故结论③正确;结论④无法推理出.综上所述,结论①②③正确.二、11. (a -b +1)(a -b -1)点拨:a 2-2ab +b 2-1=(a -b )2-1=(a -b +1)(a -b -1).12.∠3,∠B ;∠3 点拨:当直线AB 、BC 被AC 所截时,∠1的同旁内角是∠3;当直线AB 、AC 被BC 所截时,∠1的同旁内角是∠B ;当直线AB 、CD 被AC 所截时,∠2的内错角是∠3.13.±12 点拨:(x +y )2=x 2+y 2+2xy ,由已知x 2+y 2=3,xy =12,得(x +y )2=4,解得x +y =±2.⎝ ⎛⎭⎪⎫1x -1y ÷x 2-y 2xy =-1x +y,把x +y =±2代入得⎝ ⎛⎭⎪⎫1x -1y ÷x 2-y 2xy =±12. 14.30° 点拨:如图,作l 3∥l 2,l 4∥l 1,则l 3∥l 4,∠1=∠3,∠2=∠4,所以∠5+∠6=180°,所以∠1+∠2=∠3+∠4=125°+85°-(∠5+∠6)=210°-180°=30°.三、15.解:原式=16+1-8-5=4.16.解:原式=(a -3)(a +3)(a +3)2·a a -3=a a +3.四、17.解:(1)去分母,得3(1-x )+2(2x +1)<6,整理,得x <1.在数轴上表示解集如图①所示.① ②(2)解不等式①,得x ≥-2,解不等式②,得x <-12,所以原不等式组的解集为-2≤x <-12.在数轴上表示解集如图②所示.18.解:去分母,得x (x +2)-1=x 2-4,去括号,得x 2+2x -1=x 2-4,移项、合并同类项,得2x =-3.解得x =-1.5.经检验,x =-1.5是分式方程的解.五、19.解:原式=(a -3b )2a (a -2b )÷⎣⎢⎡⎦⎥⎤5b 2a -2b -(a +2b )(a -2b )a -2b -1a =(a -3b )2a (a -2b )÷9b 2-a 2a -2b -1a=(a -3b )2a (a -2b )·a -2b (3b -a )(3b +a )-1a =-a -3b a (a +3b )-1a =-a -3b a (a +3b )-a +3b a (a +3b )=-2a a (a +3b )=-2a +3b .由⎩⎨⎧a +b =8,a -b =2, 解得⎩⎨⎧a =5,b =3,所以原式=-25+3×3=-17. 20.解:(1)(ax -3)(2x +4)-x 2-b=2ax 2+4ax -6x -12-x 2-b=(2a -1)x 2+(4a -6)x +(-12-b ),由结果不含x 2项和常数项,得到2a -1=0,-12-b =0,解得a =12,b =-12.(2)(2a +b )2-(a -2b )(a +2b )-3a (a -b )=4a 2+4ab +b 2-a 2+4b 2-3a 2+3ab=7ab +5b 2.当a =12,b =-12时,7ab +5b 2=7×12×(-12)+5×(-12)2=-42+720=678.六、21.解:(1)32这个数是奇特数,因为32=92-72.2 020这个数不是奇特数.(2)由这两个连续奇数构造的奇特数是8的倍数.理由如下:(2n +1)2-(2n -1)2=(2n +1+2n -1)(2n +1-2n +1)=4n ×2=8n .因为8n 是8的倍数,所以由这两个连续奇数构造的奇特数是8的倍数.七、22.解:(1)设文学书的单价为x 元,则科普书的单价为(x +4)元,根据题意,得12 000x +4=8 000x , 解得x =8,经检验x =8是方程的解,并且符合题意.所以x +4=12.答:文学书和科普书的单价分别是8元和12元.(2)设购进文学书550本后还能购进y 本科普书, 根据题意,得550×8+12y ≤10 000,解得y ≤46623,因为y 为整数,所以y 的最大值为466.答:至多还能购进466本科普书.八、23.解:(1)AD ∥EF .理由如下:因为∠ADB +∠CEG =180°,∠ADB +∠ADE =180°,∠FEB +∠CEF =180°, 所以∠ADE +∠FEB =180°,所以AD ∥EF .(2)∠F =∠H .理由如下:因为AD 平分∠BAC ,所以∠BAD =∠CAD ,因为∠EDH =∠C ,所以HD ∥AC ,所以∠H =∠CGH .因为AD ∥EF ,所以∠CAD =∠CGH ,∠BAD =∠F ,所以∠F =∠H .。
【沪科版】初一数学下期末模拟试题(含答案)
一、选择题1.不等式()2533x x ->-的解集为( ) A .4x <-B .4x >C .4x <D .4x >-2.下列各式中正确的是( ) A .若a b >,则11a b -<- B .若a b >,则22a b >C .若a b >,且0c ≠,则ac bc >D .若||||a b c c >,则a b > 3.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )x… -2 -1 0 1 2 3 … y …321-1-2…A .x <1B .x >1C .x <0D .x >04.如果方程组54356x y kx y -=⎧⎨+=⎩的解中的x 与y 互为相反数,则k 的值为( )A .1B .1或1-C .27-D .5-5.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A 、B 、C 、D 表示的数分别是整数a 、b 、c 、d ,且满足2319ad ,则b c +的值为( )A .3-B .2-C .1-D .0 6.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( )A .6种B .7种C .8种D .9种7.已知21x y =-⎧⎨=⎩是方程25mx y +=的解,则m 的值是( ) A .32-B .32C .2-D .2 8.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( )A .4B .6-C .1-或4D .6-或239.点A (n+2,1﹣n )不可能在( ) A .第一象限 B .第二象限C .第三象限D .第四象限10.-18的平方的立方根是( )A .4B .14C .18D .16411.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是( )A .75︒B .120︒C .135︒D .无法确定12.如果a 、b 两个数在数轴上的位置如图所示,则下列各式正确的是( )A .0a b +>B .0ab <C .0b a -<D .0ab> 二、填空题13.不等式组63024x x x -⎧⎨<+⎩的解集是__.14.“百鸡问题”译文:公鸡每只值五文钱,母鸡每只值三文钱,小鸡每三只值一文钱,现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只?__________________________;(至少写出2种结果) 15.已知x ,y ,z 都不为0,且4330230x y z x y z --=⎧⎨-+=⎩,则式子346x y z x y z -+++的值为_____.16.写一个第三象限的点坐标,这个点坐标是_______________.17.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.18.已知a 是56-的整数部分,b 是56-的小数部分.则2=ab _____. 19.如图,已知∠1=(3x +24)°,∠2=(5x +20)°,要使m ∥n ,那么∠1=_____(度).20.已知关于x 的不等式组0{321x a x -≥->-的整数解共有5个,则a 的取值范围为_________.三、解答题21.近两年,重庆市奉节县紧紧围绕“村有骨干产业、户有致富门路”的发展思路,大力实施农产品产业扶贫项目,实现助农增收其中“乡坛子”什锦套菜礼盒、奉节脐橙10km 装广受好评,单价分别为100元/盒和60元/盒.(1)某公司大力响应扶贫政策,准备用不低于15000元购买什锦套菜礼盒、奉节脐橙共200盒,则至少购入什锦套菜礼盒多少盒?(2)2021年春节将至,该公司准备再次购入以上两种产品作为员工新春福利.恰逢“学习强国”重庆学习平台开展“党员直播带货、‘渝’你抗疫助农”扶贫农产品公益直播活动.直播中,什锦套菜礼盒以原价8折销售,该公司购买数量在(1)问最少数量的基础上增加了5%2m ;奉节脐橙售价比原价降低了815m 元,购买数量在(1)问奉节脐橙最多数量的基础上增加了40%.该公司在直播间下单后实际花费比(1)问中最低花费增加2350元,求m 的值.22.学校计划利用一片空地建造一个矩形的学生自行车棚(不考虑门),其中一面靠墙,这堵墙的长度为7.9米,计划建造车棚的面积为12平方米.现有可造车棚的建造材料总长为11米.(1)给出一种设计方案;(2)若矩形车棚的长、宽都要求为整数(单位:米),一共有几种方案? (3)若要使所有建造材料恰好用完,应怎么设计?23.某一天,蔬菜经营户花90元从蔬菜批发市场批发了黄瓜和茄子共40kg ,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:24.如图所示,在平面直角坐标系中,点O 为原点,点()1,2A -,()3,1B -,将AOB 向右平移2个单位,再向上平移3个单位得到111AO B ,点A 的对应点是1A ,点B 的对应点是1B(1)直接写出1O ,1A ,1B 的坐标; (2)在图中画出111AO B ; (3)AOB 的面积=______.25.计算(1)22234x +=; (2)38130125x += (3)21|12|(2)16-----; (4)(x +2)2=25.26.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,C EFG ∠=∠,CED GHD ∠=∠,试判断AED ∠与D ∠之间的数量关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据解一元一次不等式的方法解答即可. 【详解】解:去括号,得2539x x ->-, 移项、合并同类项,得4x ->-, 不等式两边同时除以﹣1,得4x <.故选:C.【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是关键.2.D解析:D【分析】根据不等式的性质,可得答案.【详解】A、不等式的两边都减1,不等号的方向不变,故A错误;B、当a<0时,不等式两边乘负数,不等号的方向改变,故B错误;C、当c<0时,ac<bc,故C错误;D、不等式两边乘(或除以)同一个正数,不等号的方向不变,故D正确;故选:D.【点睛】本题考查了不等式的基本性质.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.3.A解析:A【分析】将x=0、y=1和x=1、y=0代入ax+b=y得到关于a、b的方程组,解之得出a、b的值,从而得到关于x的不等式,解之可得答案.【详解】解:根据题意,得:10 ba b=⎧⎨+=⎩,解得a=-1,b=1,则不等式-ax-b<0为x-1<0,解得x<1,故选:A.【点睛】本题考查了解一元一次不等式,解题的关键是根据题意列出关于x的不等式,并熟练掌握解一元一次不等式的步骤和依据.4.C解析:C【分析】根据x与y互为相反数,得到y=-x,代入方程组求出k的值即可.【详解】解:由题意得:y=-x , 代入方程组得:926x kx ⎧⎨-⎩==,∴x=-3 解得:k=-27. 故选:C . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.5.C解析:C 【分析】先根据数轴上各点的位置可得到d-a=8,与2319a d -=-组成方程组可求出a 、d ,然后根据d-c=3,d-b=4求出b 、c 的值,再代入b+c 即可. 【详解】解:由数轴上各点的位置可知d-a=8,d-c=3,d-b=4,82319d a a d -=⎧⎨-=-⎩, 所以35d a =⎧⎨=-⎩故c=d-3=0,b=d-4=-1, 代入b+c=-1. 故选:C . 【点睛】本题考查的是数轴上两点间的距离及二元一次方程组的应用,根据题意列出方程组是解题关键.6.A解析:A 【解析】 试题设兑换成10元x 张,20元的零钱y 元,由题意得: 10x+20y=100, 整理得:x+2y=10,方程的整数解为:24x y =⎧⎨=⎩,43x y =⎧⎨=⎩,62x y =⎧⎨=⎩,81x y =⎧⎨=⎩,10{0x y ==,05x y =⎧⎨=⎩. 因此兑换方案有6种, 故选A .考点:二元一次方程的应用.7.A解析:A 【分析】先根据二元一次方程的解的定义可得一个关于m 的一元一次方程,再解方程即可得. 【详解】由题意得:2215m -+⨯=, 解得32m =-, 故选:A . 【点睛】本题考查了二元一次方程的解,掌握理解方程的解的概念是解题关键.8.C解析:C 【分析】由点M 到两坐标轴的距离相等可得出32=6a a -+,求出a 的值即可. 【详解】解:∵点M 到两坐标轴的距离相等, ∴32=6a a -+∴32=6a a -+,()32=-6a a -+ ∴a=4或a=-1. 故选C . 【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出32=6a a -+,注意不要漏解.9.C解析:C 【分析】确定出n+2为负数时,1-n 一定是正数,再根据各象限内点的坐标特征解答. 【详解】解:当n+2<0时,n <﹣2,所以,1﹣n >0,即点A 的横坐标是负数时,纵坐标一定是正数,所以,点A 不可能在第三象限,有可能在第二象限;当n+2>0时,n >﹣2,所以,1﹣n 有可能大于0也有可能小于0,即点A 的横坐标是正数时,纵坐标是正数或负数,所以,点A 可能在第一象限,也可能在第四象限; 综上所述:点A 不可能在第三象限. 故选:C . 【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.B解析:B【分析】先根据题意列出代数式,然后再进行计算即可.【详解】解:由题意得:22331118644⎛⎫-==⎪⎝⎭.故答案为B.【点睛】本题考查了平方和立方根,弄清题意、根据题意列出代数式是解答本题的关键.11.A解析:A【解析】分析:根据两直线平行,内错角相等,得到∠BFD的度数,进而得出∠CFD的度数,再由三角形外角的性质即可得到结论.详解:如图,延长ED交BC于F.∵DE∥AB,∴∠DFB=∠ABF=120°,∴∠CFD=60°.∵∠CDE=∠C+∠CFD,∴∠C=∠CDE-∠CFD=135°-60°=75°.故选A.点睛:本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.12.B解析:B【分析】由题意可得a、b的大小关系和符号关系,从而根据不等式的基本性质和有理数乘除法的符号法则可以得到正确解答.【详解】解:由题意可得:a<b,-a>b,所以由不等式的性质可得:b-a>0,a+b<0,故A、C错误;又由题意可得a、b异号,所以B正确,D错误;故选B .【点睛】本题考查数轴的应用,利用数形结合的思想方法、不等式的性质和有理数乘除法的符号法则求解是解题关键.二、填空题13.【分析】分别解两个不等式得到和x <4然后根据同大取大同小取小大于小的小于大的取中间小于小的大于大的无解确定不等式组的解集【详解】解:解不等式得:解不等式得:则不等式组的解集为故答案为【点睛】本题考查 解析:2x【分析】分别解两个不等式得到2x 和x <4,然后根据同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解确定不等式组的解集. 【详解】解:解不等式630x -,得:2x , 解不等式24x x <+,得:4x <,则不等式组的解集为2x , 故答案为2x . 【点睛】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.14.02575或41878或81181或12484【分析】设公鸡有x 只母鸡有y 只则小鸡有(100−x−y )只由题意得到5x +3y +=100求出符合题意的方程的解即可【详解】设公鸡有x 只母鸡有y 只则小鸡有解析:0,25,75或4,18,78或8,11,81,或12,4,84. 【分析】设公鸡有x 只,母鸡有y 只,则小鸡有(100−x−y )只,由题意得到5x +3y +1003x y-- =100,求出符合题意的方程的解即可. 【详解】设公鸡有x 只,母鸡有y 只,则小鸡有(100−x−y )只, 根据题意得: 5x +3y +1003x y-- =100, 化简得:y =25−74x , 当x =0时,y =25,100−x−y =75; 当x =4时,y =18,100−x−y =78; 当x =8时,y =11,100−x−y =81; 当x =12时,y =4,100−x−y =84; 当x =16时,y =−3,舍去.故答案为:0,25,75或4,18,78或8,11,81,或12,4,84.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)①由购买鸡的只数找出购买小鸡的只数;②找准等量关系,正确列出二元一次方程;(2)找准等量关系,正确列出二元一次方程组;(3)结合x、y均为整数求出二元一次方程的解.15.【分析】先解三元一次方程组可用含z的代数式表示xy然后代入代数式求值【详解】解:①﹣②得2x﹣4z=0∴x=2z把x=2z代入①得8z﹣3y﹣3z=0解得y=z把x=2zy=z代入式子==故答案为:解析:1 13【分析】先解三元一次方程组,可用含z的代数式表示x、y,然后代入代数式求值.【详解】解:4330 230x y zx y z--=⎧⎨-+=⎩①②①﹣②,得2x﹣4z=0,∴x=2z.把x=2z代入①,得8z﹣3y﹣3z=0.解得y=53 z.把x=2z,y=53z代入式子346x y zx y z-+++=254 210z z z z z z-+++=1 13.故答案为:1 13.【点睛】本题主要考查的是三元一次方程的解法,正确的掌握三元一次方程的解法是解题的关键.16.(−1−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点解答即可【详解】∵第三象限的角平分线上的点的横纵坐标相等并且都为负数∴只要根据特点写出横纵坐标相等并且都为负数的一组数即可如(解析:(−1,−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点,解答即可.【详解】∵第三象限的角平分线上的点的横、纵坐标相等,并且都为负数,∴只要根据特点写出横纵坐标相等,并且都为负数的一组数即可,如(−1,−1).故答案为:(−1,−1)(答案不唯一).【点睛】本题主要考查了点的坐标,解答此题的关键是掌握第三象限的角平分线上的点的横纵坐标相等且都为负数.17.(-40)或(60)【分析】设P(m0)利用三角形的面积公式构建绝对值方程求出m即可;【详解】如图设P(m0)由题意:•|1-m|•2=5∴m=-4或6∴P (-40)或(60)故答案为:(-40)或解析:(-4,0)或(6,0)【分析】设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;【详解】如图,设P(m,0),由题意:12•|1-m|•2=5,∴m=-4或6,∴P(-4,0)或(6,0),故答案为:(-4,0)或(6,0)【点睛】此题考查三角形的面积、坐标与图形性质,解题的关键是学会利用参数构建方程解决问题.18.【分析】由于由此找到所求的无理数在哪两个和它接近的整数之间然后判断出所求的无理数的整数部分可得a小数部分让原数减去整数部分可得b代入求值即可【详解】解:∵是的整数部分故答案为:【点睛】此题主要考查了解析:30126-【分析】由于263<<,由此找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的整数部分可得a,小数部分让原数减去整数部分可得b,代入求值即可.【详解】解:∵222 263 <<263∴<∴<-<2563a是56-的整数部分∴=2a∴=--=-56236b()()222362966630126∴=-=+-=-ab-故答案为:30126【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.估算出整数部分后,小数部分=原数-整数部分.19.75【分析】直接利用邻补角的定义结合平行线的性质得出答案【详解】如图所示:∠1+∠3=180°∵m∥n∴∠2=∠3∴∠1+∠2=180°∴3x+24+5x+20=180解得:x=17则∠1=(3x+解析:75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180,解得:x=17,则∠1=(3x+24)°=75°.故答案为75.【点睛】此题主要考查了平行线的判定与性质,正确得出∠1+∠2=180°是解题关键.20.-4<a≤-3【详解】试题分析:解不等式①得:x≥a解不等式②得:x<2∴a≤x<2因为有5个整数解x可取-3-2-101∴-4<a≤-3故答案为-4<a≤-3考点:不等式组的解解析:-4<a≤-3【详解】试题分析:0321x a x -≥⎧⎨->-⎩①② 解不等式①得:x≥a ,解不等式②得:x <2,∴a≤x <2.因为有5个整数解, x 可取-3,-2,-1,0,1,∴-4<a≤-3,故答案为-4<a≤-3.考点:不等式组的解三、解答题21.(1)至少购入什锦套菜礼盒75盒;(2)15m =.【分析】(1)设购进什锦套菜礼盒x 盒,则购进奉节脐橙礼盒(200-x )盒,根据总价值不低于15000元,即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论; (2)根据销售总价=销售单价×销售数量结合题意可得出关于m 的一元一次方程,解之即可得出结论.【详解】(1)设购进什锦套菜礼盒x 盒,则购进奉节脐橙礼盒(200-x )盒,根据题意得:()6020010015000x x -+≥,解得:75x ≥.答:至少购入什锦套菜礼盒75盒;(2)根据题意得:()()5810080%751%6020075140%150002350215m m ⎛⎫⎛⎫⨯⨯++--+=+ ⎪ ⎪⎝⎭⎝⎭, 整理得:1708503m =, 解得:15m =.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元一次方程.22.(1)长为4米,宽为3米;(2)三种,宽为2m ,长为6m ;宽为3m ,长为4m ;宽为4m 时,长为3m ;(3)长为3米,宽为4米【分析】(1)根据矩形的面积公式计算即可,从中确定一种方案即可;(2)设矩形的长为y 米,宽为x 米,根据墙长7.9米,围成矩形的车棚面积为12平方米,列出方程和不等式,求出x ,y 的值,即可得出答案;(3)根据(2)得出的结果,选取宽为4米,长为3米时,正好使11米长的建造材料恰好用完.【详解】(1)∵长⨯宽=12平方米,∴当长为4米,宽为3米时,满足题意;(2)设矩形的长为y 米,宽为x 米,根据题意得:007.921112x y x y xy >⎧⎪<<⎪⎨+≤⎪⎪=⎩, ∵矩形的长、宽都是整数米,∴x=2,y=6或x=3,y=4或x=4,y=3,∴一共有3种方案:宽为2m 时,长为6m ,宽为3m 时,长为4m ,宽为4m 时,长为3m ;(3)∵要使11m 长的建造材料恰好用完,则2x+y=11,由(2)得:x=4,y=3时,2x+y=11,∴要使11m 长的建造材料恰好用完,应使宽为4m ,长为3m .【点睛】本题主要考查了一元一次不等式组的综合应用,解题关键是要读懂题目,根据题目给出的条件,找出合适的等量关系,列出不等式组,注意园子的长、宽都为整数.23.42元【分析】设设批发黄瓜xkg ,茄子ykg ,根据黄瓜的批发价是2.4元,茄子批发价是2元,共花了90元,列出二元一次方程组计算求解,然后再根据黄瓜和茄子的斤数,再求出每斤黄瓜和茄子赚的钱数,即可求出总的赚的钱数.【详解】解:设批发黄瓜xkg ,茄子ykg .根据题意得方程组402.4290x y x y +=⎧⎨+=⎩,解得2515x y =⎧⎨=⎩()()25 3.6 2.415 2.82⨯-+⨯-25 1.2150.8=⨯+⨯3012=+42=(元)答:他当天卖完这些黄瓜和茄子可赚42元钱.【点睛】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.24.(1)()12,3O ;()11,5A ;()15,2B;(2)见解析;(3)2.5. 【分析】(1)直接根据平移的坐标变化规律即可求解;(2)先描点,再连线即可;(3)利用网格图中,根据割补法即可求解.【详解】(1)()12,3O ;()11,5A ;()15,2B; (2)(3)111433141 2.5222AOB S =⨯⨯-⨯⨯-⨯⨯= 【点睛】此题主要考查图形的平移、再网格图中求三角形的面积,熟练掌握平移的性质和割补法是解题关键.25.(1)1232,32x x ==-2)x=35;(3)12;(4)123,7x x ==-. 【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)先求出x 3的值,再根据立方根的定义解答;(3)直接利用绝对值的性质、平方根定义和负指数幂的性质分别化简得出答案; (4)依据平方根的定义求解即可.【详解】(1)22234x +=,2x²=32,x²=18, 2, ∴1232,32x x ==-(2)38130125x +=, 327125x =-, x=35;(3)2|12|(2)--- =1-1144-=311442-= (4)(x +2)2=25,(x+2)=±5,x+2=5,x+2=-5,∴123,7x x ==-.【点睛】本题考查了利用平方根和立方根解方程,绝对值的性质和负指数幂的性质,掌握有关性质是解题的关键.26.∠AED+∠D=180°,理由见解析【分析】根据平行线的判定定理得出CE ∥FG ,根据平行线的性质得出∠C=∠FGD ,求出∠FGD=∠EFG ,根据平行线的判定得出AB ∥CD ,再根据平行线的性质得出即可.【详解】解:∠AED+∠D=180°,理由是:∵∠CED=∠GHD ,∴CE ∥FG ,∴∠C=∠FGD ,∵∠C=∠EFG ,∴∠FGD=∠EFG ,∴AB ∥CD ,∴∠AED+∠D=180°.【点睛】本题考查了平行线的性质和判定定理,能灵活运用平行线的性质和判定定理进行推理是解此题的关键.。
(完美版)沪科版七年级下册数学期末测试卷及含答案(配有卷)
沪科版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,过E作EG⊥EF于点E,交CD于点G.若∠CFE=120°,则∠BEG的大小为()A.20°B.30°C.60°D.120°2、下列运算正确的是()A.5a 2+3a 2=8a 4B.a 3•a 4=a 12C.(a+2b)2=a 2+4b 2D.(a-b)(-a-b)=b 2-a 23、下列计算正确的是()A.x 2+x 2=x 5B.x 2•x 3=x 6C.x 3÷x 2=xD.(2x 2)3=6x 64、已知成立,则k的值为()A.3B.-3C.-6D.65、如图,点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B. (-,)C.(,-)D. (,- )6、若分式有意义,则应满足的条件是()A. B. C. D.7、下列说法中,不正确的是()。
A.0的平方根是0B.-4的平方根是-2C.1的立方根是1D.-8的立方根是-28、(3a+2)(4a2-a-1)的结果中二次项系数是( )A.-3B.8C.5D.-59、将展开后,项的系数为()A.1B.2C.3D.410、下列运算正确的是()A. B.|﹣3|=3 C. D.11、下列运算不正确的是()A.x 6÷x3=x 3B.(﹣x 3)4=x 12C.x 2•x 3=x 5D.x 3+x 3=x 612、若,则等于()A. B. C. D.13、不改变分式的值,把它的分子与分母中各项的系数化为整数,其结果正确的是( )A. B. C. D.14、下列各数中,最小的数是()A.-lB.0C.1D.15、李刚同学在黑板上做了四个简单的分式题:①(﹣3)0=1;②a2÷a2=a;③(﹣a5)÷(﹣a)3=a2;④4m﹣2=.其中做对的题的个数有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,一副三角板GEF和HEF按如图所示放置,过E的直线AB与过F的直线CD相互平行,若∠CFG=72°,则∠BEH=________°.17、比较大小:________ .18、分解因式:m2+2m=________.19、已知x=m时,多项式x2+2x+n2的值为﹣1,则x=﹣m时,该多项式的值为________.20、方程x²=2x的根为________。
2020年沪教版初一数学下学期期末考试卷
精品资料沪教版初一数学下学期期末考试卷注意事项:本卷共七大题,计23小题,满分150分,考试时间120分钟!一、选择题(本题满分40分,每小题4分。
将唯一正确答案前的代号填入下面答题栏题号 1 2 3 4 5 6 7 8 9 10答案A、3B、-3C、±3D、3±2、下列四个实数中,是无理数的是()A、2.5B、πC、103D、1.4143、下列计算正确的是()A、326a a a•= B、4442b b b•= C、1055xxx=+ D、78y y y•=4、下列分解因式错误..的是()A、243(2)(2)3x x x x x-+=+-+ B、22()()x y x y x y-+=-+-C、22(21)x x x x-=--+ D、2221(1)x x x-+=-5、已知2()11m n+=,2mn=,则2()m n-的值为()A、7B、5C、3D、16、已知am>bm,则下面结论中正确的是()A、a>bB、 a<bC、a bm m> D、2am≥2bm7、不等式260x-+>的解集在数轴上表示正确的是()8、如图,直线AB、CD、EF两两相交,则图中为同旁内角的角共有()对。
A、3B、4C、5D、69、如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A、向右平移1格,向下3格B、向右平移1格,向下4格C、向右平移2格,向下4格D、向右平移2格,向下3格10、把一张长方形的纸片按如图所示的方式折叠,EM、FM为折痕,折叠后的C点落在B′M或B′M的延长线上,那么∠EMF的度数是()A、85°B、90°C、95°D、100°二、填空题(本大题共4小题,每小题5分,满分20分)11、氢原子中电子和原子核之间最近距离为0.000 000 003 05厘米,用科学记数法表示为________________________厘米.12、当x 时,分式23x-没有意义。
沪科版七年级下册数学期末试题试卷含答案精选全文
可编辑修改精选全文完整版沪科版七年级下册数学期末试题试卷含答案上海科技版七年级下册数学期末考试试卷一、选择题(每小题4分,共40分)1.实数中,无理数的个数是()。
A。
1 B。
2 C。
3 D。
42.估计√2+1的值在()之间。
A。
2到3之间 B。
3到4之间 C。
4到5之间 D。
5到6之间3.若a<b,则下列各式中,错误的是()。
A。
a-3<b-3 B。
-a<-b C。
-2a>-2b D。
a<b4.计算(-3a^2)^2的结果是()。
A。
3a^4 B。
-3a^4 C。
9a^4 D。
-9a^45.下列多项式在实数范围内不能因式分解的是()。
A。
x^3+2x B。
a^2+b^2 C。
D。
m^2-4n^26.不等式4-x≤2(3-x)的正整数解有()个。
A。
1个 B。
2个 C。
3个 D。
无数个7.若a^2=9,则a的值为()。
A。
-5 B。
-11 C。
-3或3 D。
±3或±58.把分式中的x和y都扩大3倍,分式的值()。
A。
不变 B。
扩大3倍 C。
缩小3倍 D。
扩大9倍9.多项式12ab^3c+8a^3b的各项公因式是()。
A。
4ab^2 B。
4abc C。
2ab^2 D。
4ab10.若(x^2+px+q)(x-2)展开后不含x的一次项,则p 与q的关系是()。
A。
p=2q B。
q=2p C。
p+2q=0 D。
q+2p=0二、填空题(每小题5分,共20分)11.分解因式:4a^2-25b^2=()。
12.分式的值为1/3,那么x的值为()。
13.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为()°。
14.若关于x的分式方程(x+1)/(x-2)+1=1有增根,则m=()。
三、解答题(每小题8分,共16分)15.解不等式组:(略)16.解分式方程:(略)四、计算题(每小题8分,共16分)17.先化简,再求值:(a+1)^2-(a+3)(a-3),其中a=-3.(略)18.如图:在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向右平移3单位,再向上平移2个单位得到三角形A1B1C1.1)在网格中画出三角形A1B1C1.2)三角形A1B1C1的面积为()。
【沪科版】七年级数学下期末模拟试题(带答案)
一、选择题1.已知关于x 的不等式组3x 05m x +⎧⎨-⎩<>的所有整数解的和为-9,则m 的取值范围( )A .3≤m <6B .4≤m <8C .3≤m <6或-6≤m <-3D .3≤m <6或-8≤m<-42.在数轴上表示不等式2(1﹣x )<4的解集,正确的是( ) A . B . C .D .3.对于任意实数,规定新运算:x y ax by xy =+-※,其中a 、b 是常数,等式右边是通常的加减乘除运算.已知211=※,()322-=-※,则a b ※的值为( ) A .3B .4C .6D .74.甲、乙两人分别从相距40km 的两地同时出发,若同向而行,则5h 后,快者追上慢者;若相向而行,则2h 后,两人相遇,那么快者速度和慢者速度(单位:km/h)分别是( ) A .14和6B .24和16C .28和12D .30和15.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为( )A .449x y y x y x -=+⎧⎨-=+⎩B .449x y y x y x -=+⎧⎨-=-⎩C .449x y y x y x -=-⎧⎨-=+⎩D .449x y y x y x -=-⎧⎨-=-⎩6.与方程529x y +=-构成的方程组,其解为33x y =-⎧⎨=⎩的是( )A .21x y +=B .328x y +=-C .348x y -=-D .543x y +=-7.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( ) A .3 B .1 C .1或3 D .2或3 8.在平面直角坐标系中,点A 的坐标为(21a +,3-),则点A 在( ) A .第一象限B .第二象限C .第三象限D .第四象限9.已知n 是正整数,并且n -1<326+<n ,则n 的值为( ) A .7B .8C .9D .1010.下列说法不正确的是( ) A .同一平面上的两条直线不平行就相交B .同位角相等,两直线平行C .过直线外一点只有一条直线与已知直线平行D .同位角互补,两直线平行11.下列不等式中,是一元一次不等式的是( ) A .2x 10->B .12-<C .3x 2y 1-≤-D .2y 35+>12.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( )A .2m >-B .2m >C .3m >D .2m <-二、填空题13.在长方形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,则小长方形的宽CE 为____________cm .14.已知x y x x ++=,且490x y ,则5x y -的值为____________.15.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=, (1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________. (2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.16.已知点P 在第四象限,且到x 轴的距离是1,到y 轴的距离是3,则P 的坐标是______.17.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b -++.18.如图所示,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草,则道路的面积是________平方米.19.若关于x 的不等式组2()12153xm x 的解集为76x -<<-,则m 的值是______.20.定义[]x 表示不大于x 的最大整数、{}[]x x x =-,例如[]22=,[]2.83-=-,[]2.82=,{}20=,{}2.80.8=,{}2.80.2-=,则满足{}[]2x x =的非零实数x 值为_______.三、解答题21.受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a 出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a ,求a 的最大值. 22.解不等式组:323(2)52x x x -<⎧⎨-≤+⎩.23.解方程组:(1)35,24;x y x y +=⎧⎨-=⎩ (2)3(1)1,5(1)2 1.x y y x --=⎧⎨-=+⎩24.(1)请在网格中建立平面直角坐标系,使得A ,B 两点的坐标分别为()4,1,()1,2-;(2)在(1)的条件下,过点B 作x 轴的垂线,垂足为点M ,在BM 的延长线上取一点C ,使MC BM =. ①写出点C 的坐标;②平移线段AB 使点A 移动到点C ,画出平移后的线段CD ,并写出点D 的坐标.25.计算: (13168-. (2)()23540.255(4)8⨯--⨯⨯-.26.如图,已知直线l 1//l 2,l 3、和l 1、l 2分别交于点A 、B 、C 、D ,点P 在直线l 3或上且不与点A 、B 、C 、D 重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3. (1)若点P 在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P 在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P 在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明; (4)若点P 在线段DC 延长线上运动时,请直接写出∠1、∠2、∠3之间的关系.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先求解不等式组,再根据条件判断出含参代数式的范围,从而求得参数的范围即可. 【详解】解原不等式得:35m x x ⎧<-⎪⎨⎪>-⎩,即53m x -≤<-, 由所有整数解的和为-9,可知原不等式包含的整数为-4,-3,-2或-4,-3,-2,-1,0,1, 当整数为-4,-3,-2时,则13m-2<-≤-,解得:36m ≤<, 当整数为-4,-3,-2,-1,0,1时,则23m1<-≤,解得:63m -≤<-, 故选:C . 【点睛】本题考查含参不等式组求解问题,熟练掌握对含参代数式范围的确定是解题关键.2.A解析:A 【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x )<4 去括号得:2﹣2x<4 移项得:2x >﹣2, 系数化为1得:x >﹣1,故选A .“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3.D解析:D 【分析】根据新定义运算,得到关于a ,b 的方程组,求出a ,b 的值,再代入求解,即可. 【详解】∵211=※,()322-=-※,∴221=1a b +-⨯,-32(3)22a b +--⨯=-, ∴a=2,b=-1,∴a b ※=2(1)22(1)(1)2(1)7-=⨯+-⨯--⨯-=※, 故选D . 【点睛】本题主要考查解二元一次方程组,理解新定义的运算以及加减消元法解二元一次方程组,是解题的关键.4.A解析:A 【分析】设快者的速度是/xkm h ,慢者的速度是/ykm h ,根据追及问题和相遇问题的求解方法列二元一次方程组求解. 【详解】解:设快者的速度是/xkm h ,慢者的速度是/ykm h ,列式()()540240x y x y ⎧-=⎪⎨+=⎪⎩,解得146x y =⎧⎨=⎩.故选:A . 【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意列出二元一次方程组.5.D解析:D 【分析】根据题设老师今年x 岁,小红今年y 岁,根据题意列出方程组解答即可. 【详解】解:老师今年x 岁,小红今年y 岁,可得:449x y y xyx,故选:D . 【点睛】此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.6.D解析:D【分析】将解33xy=-⎧⎨=⎩代入选项中验证即可求解.【详解】解:A.33xy=-⎧⎨=⎩不是方程21x y+=的解,该项不符合题意;B.33xy=-⎧⎨=⎩不是方程328x y+=-的解,该项不符合题意;C.33xy=-⎧⎨=⎩不是方程348x y-=-的解,该项不符合题意;D.33xy=-⎧⎨=⎩是方程543x y+=-的解,该项符合题意;故选:D.【点睛】本题考查二元一次方程组的解,理解二元一次方程组的解的定义是解题的关键.7.C解析:C【分析】根据点A到x轴的距离与到y轴的距离相等可得3m-5=m+1或3m-5=-(m+1),解出m的值.【详解】解:∵点A到x轴的距离与到y轴的距离相等,∴3m-5=m+1或3m-5=-(m+1),解得:m=3或1,故选:C.【点睛】本题考查了点的坐标,关键是掌握到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值.8.D解析:D【分析】根据各象限内点的坐标特征解答.【详解】∵210a+>,a+,3-)在第四象限.点A(21故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.C解析:C【分析】根据实数的大小关系比较,得到5<6,从而得到n的值.【详解】解:∵<5<6,∴8<<9,∴n=9.故选:C.【点睛】10.D解析:D【分析】根据平行线的概念对选项A进行判断;根据平行线的性质对选项B进行判断;根据平行线的公理和判定定理对选项C和D进行判断.【详解】A. 同一平面上的两条直线不平行就相交,所以选项A正确;B. 同位角相等,两直线平行,这是平行线的判定定理,所以B选项正确;C.过直线外一点有且只有一条直线与已知直线平行,所以选项C正确;D. 同旁内角互补,两直线平行,所以选项D错误.故选D.【点睛】本题是一道关于平行线的题目,掌握平行线的性质和定理是解决此题的关键.11.A解析:A【分析】只含有一个未知数,且未知数的最高次数为1的不等式叫做一元一次不等式.【详解】A 、是一元一次不等式;B 、不含未知数,不符合定义;C 、含有两个未知数,不符合定义;D 、未知数的次数是2,不符合定义,故选:A. 【点睛】此题考查一元一次不等式的定义:只含有一个未知数,且未知数的最高次数为1的不等式叫做一元一次不等式.12.A解析:A 【分析】首先解关于x 和y 的方程组,利用m 表示出x+y ,代入x+y >0即可得到关于m 的不等式,求得m 的范围. 【详解】 解:2133x y m x y -+⋯⎧⎨+⋯⎩=①=②①+②得2x+2y=2m+4, 则x+y=m+2, 根据题意得m+2>0, 解得m >-2. 故选:A . 【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m 当作已知数表示出x+y 的值,再得到关于m 的不等式.二、填空题13.2【分析】设小长方形的宽CE 为小长方形的长是根据长方形ABCD 的长和宽列出方程组求解【详解】解:设小长方形的宽CE 为小长方形的长是根据图形大长方形的宽可以表示为或者则大长方形的长可以表示为则解得故答解析:2 【分析】设小长方形的宽CE 为xcm ,小长方形的长是ycm ,根据长方形ABCD 的长和宽列出方程组52313x x yx y +=+⎧⎨+=⎩求解.【详解】解:设小长方形的宽CE 为xcm ,小长方形的长是ycm , 根据图形,大长方形的宽可以表示为52x +,或者x y +,则52x x y +=+,大长方形的长可以表示为3x y +, 则313x y +=,52313x x y x y +=+⎧⎨+=⎩,解得27x y =⎧⎨=⎩. 故答案是:2. 【点睛】本题考查二元一次方程组的应用,解题的关键是找到等量关系列出方程组求解.14.18【分析】由第一个等式得到等号右边x 为非负进而得到|x|=x 化简为进而得到再结合即可求解【详解】解:由绝对值的非负性可知:中等号右边x 为非负数即|x|=x ∴可化简为:进一步得到∴解得∴故答案为:1解析:18 【分析】由第一个等式得到等号右边x 为非负,进而得到|x|=x ,化简为xy x x ,进而得到0x y ,再结合490x y 即可求解.【详解】解:由绝对值的非负性可知:x y x x ++=中等号右边x 为非负数,即|x |=x , ∴x y x x ++=可化简为:x y x x ,进一步得到0x y ,∴0490x y x y +=⎧⎨+-=⎩,解得33x y =⎧⎨=-⎩,∴515(3)18x y ,故答案为:18. 【点睛】本题考查了绝对值的非负性及二元一次方程组的解法,本题的关键是能得到x 为非负数,即|x |=x 进而化简求解.15.或【分析】(1)分和两种情况分别代入方程求解即可得;(2)先求出再根据x 轴上方的点的纵坐标大于0建立不等式求解即可得【详解】(1)由题意得:或①当时代入方程得:解得则因此点A 的坐标为②当时代入方程得解析:(2,2)A 或(1,1)A - 43x > 【分析】(1)分x y =和x y =-两种情况,分别代入方程求解即可得;(2)先求出34y x =-,再根据x 轴上方的点的纵坐标大于0建立不等式,求解即可得. 【详解】(1)由题意得:x y =或x y =- ①当x y =时代入方程得:34y y -=,解得2y = 则2x =因此,点A 的坐标为(2,2)A ②当x y =-时代入方程得:34y y --=,解得1y =- 则1x =因此,点A 的坐标为(1,1)A - 综上,点A 的坐标为(2,2)A 或(1,1)A - 故答案为:(2,2)A 或(1,1)A -; (2)方程34x y -=可变形为34y x =-当点A 在x 轴上方时,点A 的纵坐标一定大于0,即0y > 则340x -> 解得43x >故答案为:43x >. 【点睛】本题考查了点坐标、点到坐标轴的距离等知识点,掌握平面直角坐标系中,点坐标的特征是解题关键.16.【分析】先根据第四象限的点坐标符号规律可得点P 的横坐标为正数纵坐标为负数再根据点到坐标轴的距离即可得【详解】点在第四象限点P 的横坐标为正数纵坐标为负数又到轴的距离是1到轴的距离是3点P 的纵坐标为横坐 解析:()3,1-【分析】先根据第四象限的点坐标符号规律可得点P 的横坐标为正数,纵坐标为负数,再根据点到坐标轴的距离即可得. 【详解】点P 在第四象限,∴点P 的横坐标为正数,纵坐标为负数,又到x 轴的距离是1,到y 轴的距离是3,∴点P 的纵坐标为1-,横坐标为3,即点P 的坐标为()3,1-, 故答案为:()3,1-. 【点睛】本题考查了象限中的点坐标、点到坐标轴的距离,熟练掌握象限中的点坐标符号规律是解题关键.17.2a-c【分析】根据数轴得到a<b<0<c由此得到a-c<0a+b<0依此化简各式再合并同类项即可【详解】由数轴得a<b<0<c∴a-c<0a+b<0∴=-b-(c-a)+(a+b)=-b-c+a+解析:2a-c【分析】根据数轴得到a<b<0<c,由此得到a-c<0,a+b<0,依此化简各式,再合并同类项即可.【详解】由数轴得a<b<0<c,∴a-c<0,a+b<0,∴|-|a c=-b-(c-a)+(a+b)=-b-c+a+a+b=2a-c.【点睛】此题考查数轴上的点表示数,利用数轴比较数的大小,绝对值的性质,立方根的化简,整式的加减法计算法则,解题的关键是依据数轴确定各式子的符号由此化简各式.18.79【分析】可以根据平移的性质此小路相当于一条横向长为50米与一条纵向长为30米的小路道路的面积=横纵小路的面积-小路交叉处的面积计算即可【详解】由题意可得道路的面积为:(30+50)×1−1=79解析:79【分析】可以根据平移的性质,此小路相当于一条横向长为50米与一条纵向长为30米的小路,道路的面积=横纵小路的面积-小路交叉处的面积,计算即可.【详解】由题意可得,道路的面积为:(30+50)×1−1=79(m2).故答案为79.【点睛】此题考查生活中的平移现象,解题关键在于掌握运算公式.19.【分析】先解不等式组得出其解集为结合可得关于的方程解之可得答案【详解】解:由①得:由②得:不等式的解集为:∵关于的不等式组的解集为【点睛】本题考查的是利用一元一次不等式组的解集求参数熟悉相关性质是解解析:15 2【分析】 先解不等式组得出其解集为1262m x ,结合76x -<<-可得关于m 的方程,解之可得答案.【详解】解:2()102153x m x ①②由①得:2210x m +->,221x m >-+, 12x m >-+由②得:212x <-,6x <-, ∴不等式的解集为:162m x -+<<- ∵关于x 的不等式组的解集为76x -<<-,172m ∴-+=- 152m ∴= 【点睛】本题考查的是利用一元一次不等式组的解集求参数,熟悉相关性质是解题的关键. 20.【分析】三、解答题21.(1)3月20日当天口罩的价格为每盒36元.(2)a 的最大值为25.【分析】(1)可设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,根据3月20日当天,王老师购买4盒口罩比年初多花了48元列出方程即可求解;(2)根据两种口罩销售的总金额比3月20日至少提高了1%10a ,列出不等式即可求解. 【详解】解:(1)设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,依题意有4 1.5448x x ⨯-=,解得24x = ,1.5 1.52436x =⨯=.∴3月20日当天口罩的价格为每盒36元.(2)1000×(1+20%)=1200(盒), 5120010006⨯==1000(盒), 1200-1000=200(盒),依题意有()13620010003610.7%1000361%10a a ⎛⎫⨯+⨯-≥⨯+⎪⎝⎭, 解得a≤25.故a 的最大值为25.【点睛】 本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.22.45x -≤<【分析】分别求出不等式组中两不等式的解集,找出两解集中的公共部分确定出不等式组的解集.【详解】解: ()335222x x x -⎧⎪⎨-≤+⎪⎩<①②, 由①得:x <5,由②得:x ≥﹣4,∴不等式组的解集为﹣4≤x <5.【点睛】本题考查解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法.23.(1)21x y =⎧⎨=-⎩;(2)22x y =⎧⎨=⎩. 【分析】(1)利用加减消元法求解即可;(2)原方程整理后利用加减消元法求解即可.【详解】解:(1)3524x y x y +=⎧⎨-=⎩①② ①×2得:6210x y +=③,②+③得:714x =,解得2x =,代入①得:65y +=,解得1y =-,所以,该方程组的解为21x y =⎧⎨=-⎩; (2)原方程组整理得:34256x y x y -=⎧⎨-+=⎩①②, ①×5得:15520x y -=③,②+③得:1326x =,解得2x =,代入①得:64y -=,解得2y =,所以,该方程组的解为22x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组.解二元一次方程组主要有两种方法,加减消元法和代入消元法,掌握“消元”思想是解题关键.24.(1)见解析;(2)①(1,2)C ;②图见解析,(2,1)D --【分析】(1)根据点A 、B 坐标即可建立坐标系;(2)①由(1)中所作图形即可得;②根据平移的定义作图可得.【详解】(1)建立平面直角坐标系如图所示:(2)①所画图形如图所示,点C 的坐标为(1,2);②如图所示,线段CD 即为所求,点D 的坐标为(-2,-1).【点睛】本题主要考查了坐标与图形的性质及平移变换作图,解题关键是根据题意建立直角坐标系,然后根据平移规律找出平移后的对应点.25.(1)6;(2)70.【分析】(1)首先计算算术平方根、立方根,然后进行加减计算即可;(2)首先计算乘方、乘法,最后进行加减计算即可.【详解】解:(13168-=4-(-2)=6.(2)()23540.255(4)8⨯--⨯⨯-=()()5160.255648⨯--⨯⨯-=1080-+=70.【点睛】 本题考查了实数的混合运算,正确理解算术平方根、立方根性质及乘方法则,确定运算顺序是关键.26.(1)证明见详解;(2)∠3=∠2﹣∠1;(3)∠3=360°﹣∠1﹣∠2,证明见详解;(4)∠3=360°﹣∠1﹣∠2.【分析】此题四个小题的解题思路是一致的,过P 作直线l 1、l 2的平行线,利用平行线的性质得到和∠1、∠2相等的角,然后结合这些等角和∠3的位置关系,即可得出∠1、∠2、∠3的数量关系.【详解】解:(1)如图(1)证明:过P 作PQ ∥l 1∥l 2,由两直线平行,内错角相等,可得:∠1=∠QPE 、∠2=∠QPF ;∵∠EPF =∠QPE +∠QPF ,∴∠EPF =∠1+∠2.(2)∠3=∠2﹣∠1;证明:如图2,过P 作直线PQ ∥l 1∥l 2,则:∠1=∠QPE 、∠2=∠QPF ;∵∠EPF =∠QPF ﹣∠QPE ,∴∠EPF =∠2﹣∠1.(3)∠3=360°﹣∠1﹣∠2.证明:如图(3),过P 作PQ ∥l 1∥l 2;∴∠EPQ+∠1=180°,∠FPQ+∠2=180°,∵∠EPF=∠EPQ+∠FPQ;∴∠EPQ +∠FPQ +∠1+∠2=360°,即∠EPF=360°﹣∠1﹣∠2;(4)点P在线段DC延长线上运动时,∠3=∠1﹣∠2.证明:如图(4),过P作PQ∥l1∥l2;∴∠1=∠QPE、∠2=∠QPF;∵∠QPE﹣∠QPF=∠EPF;∴∠3=∠1﹣∠2.【点睛】此题主要考查的是平行线的性质,能够正确地作出辅助线,是解决问题的关键.。
【沪科版】初一数学下期末模拟试卷(及答案)
一、选择题1.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( )A .3a >B .3a ≤C .3a <D .3a ≥2.已知关于x 的不等式组1021x x x a -⎧<⎪⎨⎪+>⎩有且只有一个整数解,则a 的取值范围是( )A .11a -<≤B .11a -≤<C .31a -<≤- D .31a -≤<- 3.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是( )A .1x >-B .3x ≤ C .13x -≤≤ D .13x -<≤ 4.如图,正方形ABCD 由四个相同的大长方形,四个相同的小长方形以及一个小正方形组成.其中四个大长方形的长和宽分别是小长方形长和宽的3倍,若中间小正方形的面积为1,则大正方形ABCD 的面积是( )A .49B .64C .81D .1005.如图1、图2都是由8个一样的小长方形拼(围)成的大矩形,且图2中的阴影部分(小矩形)的面积为21cm .则小长方形的长为( )cm .A .5B .3C .7D .9 6.已知方程组2325x y x y +=⎧⎨-=⎩,则39x y +的值为( ) A .2- B .2 C .6- D .67.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是32=19423x y x y +⎧⎨+=⎩,在图2所示的算筹图所表示的方程组是( )A .2114327x y x y +=⎧⎨+=⎩B .21437x y x y +=⎧⎨+=⎩C .2274311x y x y +=⎧⎨+=⎩D .2114327y x y x +=⎧⎨+=⎩8.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( ) A .横向拉伸为原来的2倍B .纵向拉伸为原来的2倍C .横向压缩为原来的12D .纵向压缩为原来的12 9.若点P (﹣m ,﹣3)在第四象限,则m 满足( ) A .m >3 B .0<m≤3 C .m <0D .m <0或m >3 10.如果32.37≈1.333,323.7≈2.872,那么32370约等于( )A .287.2B .28.72C .13.33D .133.3 11.已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46° 12.不等式1322x x -+>的解在数轴上表示正确的是( ) A .B .C .D . 二、填空题13.不等式12x -<的正整数解是_______________.14.己知不等式组1x x a ≤⎧⎨≤⎩的解集是1x ≤,则a 的取值范围是______. 15.一辆货车、一辆客车、一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,货车在前,小轿车在后,客车在货车与小轿车的正中间,过了20min ,小轿车追上了客车;又过了10min ;小轿车追上了货车;再过了________min 客车追上了货车.16.已知方程组2221x y x y +=⎧⎨+=⎩,那么x y +=_________. 17.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.18.若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________ 19.计算(1)22234x +=;(2)38130125x += (3)21|12|(2)16-----; (4)(x +2)2=25.20.如图,直线////a b c ,直角三角板的直角顶点落在直线b 上,若135∠=︒,则2∠等于_______.三、解答题21.某商家欲购进甲、乙两种抗疫用品共180件,其进价和售价如表:甲 乙 进价(元/件)14 35 售价(元/件) 20 43、乙两种用品应分别购进多少件?(请用二元一次方程组求解)(2)若商家计划投入资金少于5040元,且销售完这批抗疫用品后获利不少于1314元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.22.计划对河道进行改造,现有甲乙两个工程队参加改造施工,受条件限制,每天只能由一个工程队施工.若甲工程队先单独施工3天,再由乙工程队单独施工5天,则可以完成550米施工任务:若甲工程队先单独施工2天,再由乙工程对单独施工4天,则可以完成420米的施工任务.(1)求甲、乙两个工程队平均每天分别能完成多少米施工任务?(2)该河道全长6000米,若两队合作工期不能超过90天,乙工程队至少施工多少天? 23.解方程或方程组:(1)7234(2)x x -=--;(2)2151136x x +--=;(按要求解方程并在括号里注明此步依据) 解:去分母,得____________________________.( )去括号,得_____________________________.( )移项,得______________________________.( )合并同类项,得_____________________________.系数化为“1”,得_____________________________. (3)52253415x y x y +=⎧⎨+=⎩24.某市在创建文明城市过程中,在城市中心建了若干街心公园.如图是所建“丹枫公园”的平面示意图,在8×8的正方形网格中,各点分别为:A 点,公共自行车停车处;B 点,公园大门;C 点,便利店;D 点,社会主义核心价值观标牌;E 点,健身器械;F 点,文化小屋,如果B 点和D 点的坐标分别为(2,﹣2).(3,﹣1).(1)请你根据题目条件,画出符合题意的平面直角坐标系;(2)在(1)的平面直角坐标系中,写出点A ,C ,E ,F 的坐标.25.计算.(1)()113122⎛⎫⎛⎫---++ ⎪ ⎪⎝⎭⎝⎭; (2)()3328864-+-÷-⨯.26.如图,已知AM ∥BN ,∠A =64°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D .(1)∠ABN 的度数是_____,∠CBD 的度数是_______;(2)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(3)当点P 运动到使∠ACB =∠ABD 时,∠ABC 的度数是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】求出方程的解,根据已知得出a-3≥0,求出即可.【详解】解:解方程a-x=3得:x=a-3,∵方程的解是非负数,∴a-3≥0,解得:a≥3,故选:D .【点睛】本题考查了一元一次方程的解,解一元一次不等式,解一元一次方程的应用,关键是得出一个关于a 的不等式.2.D解析:D【分析】首先解每个不等式,然后根据不等式组的整数解的个数,确定整数解,从而确定a 的范围.【详解】 解:1021x x x a -⎧<⎪⎨⎪+>⎩①② 解①得1x <且0x ≠,解②得12a x ->. 若不等式组只有1个整数解,则整数解是1-.1212a -∴-≤<- 所以31a -≤<-,故选:D .【点睛】此题考查的是一元一次不等式组的解法和一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 3.D解析:D【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【详解】由数轴知,此不等式组的解集为-1<x≤3,故选D.【点睛】考查解一元一次不等式组,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.C解析:C【分析】设小长方形的长为a,宽为b,则大长方形的长为3a,宽为3b,观察图形,根据各边之间的组合关系,找出关于a、b的二元一次方程组,解方程组即可求出a、b值,进而即可得出正方形ABCD的边长,根据正方形的面积公式即可得出结论.【详解】设小长方形的长为a,宽为b,则大长方形的长为3a,宽为3b,由已知得:133a ba b a b=+⎧⎨=++⎩,解得:21ab=⎧⎨=⎩,∴正方形ABCD的边长AB=3a+3b=3×(2+1)=9,∴正方形ABCD的面积为9×9=81.故选:C.【点睛】本题考查了二元一次方程组的应用,解题的关键是找出关于a、b的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,观察图形根据各边之间的关系找出方程(或方程组)是关键.5.A解析:A【分析】仔细观察图形,发现本题中2个等量关系为:小长方形的长×3=小长方形的宽×5,(小长方形的宽×2-小长方形的长)=1.根据这两个等量关系可列出方程组.【详解】解:设这8个大小一样的小长方形的长为x cm ,宽为y cm .由题意,得3521x y y x =⎧⎨-=⎩解得53x y =⎧⎨=⎩答:小长方形的长为5.故选:A .【点睛】此题主要考查了二元一次方程组的应用,解题关键是弄清题意,找到合适的等量关系,列出方程组.6.C解析:C【分析】方程组两方程相减求出x+3y 的值,进而即可求得3x+9y 的值.【详解】2325x y x y +=⎧⎨-=⎩①②, ①-②得:32x y +=-,∴()39336x y x y +=+=-,故选:C .【点睛】本题考查了求代数式的值以及解二元一次方程组,解二元一次方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.灵活运用整体代入法是解题的关键. 7.A解析:A【分析】图2中,第一个方程x 的系数为2,y 的系数为1,相加为11;第二个方程x 的系数为4,y 的系数为3,相加为27,据此解答即可.【详解】解:图2所示的算筹图所表示的方程组是2114327x y x y +=⎧⎨+=⎩. 故选:A .【点睛】本题考查了二元一次方程组的应用,读懂题意、明确图1表示方程组的方法是解题关键. 8.B解析:B【分析】根据横坐标不变,纵坐标变为原来的2倍得到整个图形将沿y 轴变长,即可得出结论.【详解】如果将一个图形上各点的横坐标不变,纵坐标乘以2,则这个图形发生的变化是:纵向拉伸为原来的2倍.故选B .【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关系.9.C解析:C【分析】根据第四象限内点的特点,横坐标是正数,列出不等式求解即可.【详解】解:根据第四象限的点的横坐标是正数,可得﹣m >0,解得m <0.故选:C .【点睛】本题考查平面直角坐标系中各象限内点的坐标符号,关键是掌握四个象限内点的坐标符号.10.C解析:C【分析】【详解】1.3331013.33==≈⨯=. 故答案为:C .【点睛】本题考查了立方根的定义,正确变形、熟练掌握立方根的概念是关键. 11.C解析:C【分析】如图(见解析),先根据平行线的性质、角的和差可得66EAB EC C D AE ∠+∠=∠=︒,同样的方法可得F FAB FCD ∠=∠+∠,再根据角的倍分可得,2323FAB EAB FCD ECD ∠=∠∠=∠,由此即可得出答案. 【详解】 如图,过点E 作//EG AB ,则////EG AB CD ,,EAB CE C A D G G E E ∴∠=∠∠∠=,66AEG EAB ECD CE A C G E ∴∠+=∠+=∠=∠∠︒,同理可得:F FAB FCD ∠=∠+∠, 11,33EAF EAB ECF ECD ∠=∠∠=∠, ,2323FAB EAB FCD ECD ∴∠=∠∠=∠, ()266443333222F FAB FCD EAB ECD EAB ECD ∴∠=∠+∠=∠+∠=∠+∠=⨯︒=︒,故选:C .【点睛】本题考查了平行线的性质、角的和差倍分,熟练掌握平行线的性质是解题关键. 12.B解析:B【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】解:∵1322x x -+>, ∴3122x x >+, ∴3322x <, ∴1x <, 将不等式解集表示在数轴上如下:故选:B .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.二、填空题13.12【分析】先求出不等式的解集再从不等式的解集中找出适合条件的正整数即可【详解】解:∴∴正整数解为:12故答案为:12【点睛】本题考查了一元一次不等式的整数解属于基础题关键是根据解集求出符合条件的解 解析:1,2.【分析】先求出不等式的解集,再从不等式的解集中找出适合条件的正整数即可.【详解】解:12x -<∴3x <∴正整数解为:1,2.故答案为:1,2.【点睛】本题考查了一元一次不等式的整数解,属于基础题,关键是根据解集求出符合条件的解. 14.a≥1【分析】已知不等式组的解集为再根据不等式组解集的口诀:同大取大得到a 的范围【详解】解:∵一元一次不等式组的解集为∴a≥1故答案为:a≥1【点睛】本题考查了一元一次不等式组解集的求法将不等式组解解析:a≥1【分析】已知不等式组的解集为1x ≤,再根据不等式组解集的口诀:同大取大,得到a 的范围.【详解】解:∵一元一次不等式组1x x a ≤⎧⎨≤⎩的解集为1x ≤, ∴a≥1,故答案为:a≥1.【点睛】本题考查了一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求a 的范围. 15.【分析】由于在某一时刻货车在前小轿车在后客车在货车与小轿车的中间所以设在某一时刻客车与货车小轿车的距离均为S 千米小轿车货车客车的速度分别为abc (千米/分)由过了分钟小轿车追上了客车可以列出方程由又 解析:30【分析】由于在某一时刻,货车在前,小轿车在后,客车在货车与小轿车的中间,所以设在某一时刻,客车与货车、小轿车的距离均为S 千米,小轿车、货车、客车的速度分别为a 、b 、c (千米/分),由过了20分钟,小轿车追上了客车可以列出方程()20a c s -=,由又过了10分钟,小轿车追上了货车列出方程()302a b s -=,由再过t 分钟,客车追上了货车列出方程()()30t c b s +-=,联立所有方程求解即可求出t 的值.【详解】解:设在某一时刻,客车与货车、小轿车的距离均为S 千米,再过t 分钟,客车追上了货车,小轿车、货车、客车的速度分别为a 、b 、c (千米/分),由题意可得:()()()()2030230a c s a b s t c b s -=⎧⎪-=⎨⎪+-=⎩①②③由②×2-①×3 得:60s c b -=④, ④代入③中得:3060t +=,∴30t =(分). 故答案为:30.【点睛】此题主要考查了三元一次方程组的应用,解题的关键是正确理解题意,准确变为题目的数量关系,然后列出方程组解决问题.16.1【分析】根据二元二次方程组代入消元法性质计算得到x 和y 的值从而完成求解【详解】∵∴将代入到得:∴将代入得∴∴故答案为:1【点睛】本题考查了二元二次方程组和代数式的知识;解题的关键是熟练掌握二元二次 解析:1【分析】根据二元二次方程组代入消元法性质计算,得到x 和y 的值,从而完成求解.【详解】∵22x y +=∴22x y =-将22x y =-代入到21x y +=得:441y y -+=∴1y =将1y =代入22x y +=,得22x +=∴0x =∴011x y +=+=故答案为:1.【点睛】本题考查了二元二次方程组和代数式的知识;解题的关键是熟练掌握二元二次方程组代入消元法、代数式的性质,从而完成求解.17.(8-4)【分析】直接利用平移中点的变化规律求解即可【详解】解:原来点的横坐标是5纵坐标是-2向右平移3个单位再向下平移2个单位得到新点的横坐标是5+3=8纵坐标为-2-2=-4则点B 的坐标为(8-解析:(8,-4)【分析】直接利用平移中点的变化规律求解即可.【详解】解:原来点的横坐标是5,纵坐标是-2,向右平移3个单位,再向下平移2个单位得到新点的横坐标是5+3=8,纵坐标为-2-2=-4.则点B 的坐标为(8,-4).故答案为:(8,-4).【点睛】本题主要考查了坐标与图形变化-平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.18.1或;【分析】点坐标到x 轴的距离是纵坐标的绝对值到y 轴的距离是横坐标的绝对值根据它们相等列式求出a 的值【详解】解:点到x 轴的距离是到y 轴的距离是列式:解得符合题意解得符合题意故答案是:1或【点睛】本 解析:1或79-; 【分析】点坐标到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,根据它们相等列式求出a 的值.【详解】解:点()35,62P a a +--到x 轴的距离是62a --,到y 轴的距离是35a +, 列式:6235a a --=+, 6235a a --=+,解得79a =-,符合题意, ()6235a a --=-+,解得1a =,符合题意.故答案是:1或79-. 【点睛】本题考查点坐标的意义和解绝对值方程,解题的关键是掌握点坐标的定义和解绝对值方程的方法. 19.(1);(2)x=;(3);(4)【分析】(1)方程整理后利用平方根定义开方即可求出解;(2)先求出x3的值再根据立方根的定义解答;(3)直接利用绝对值的性质平方根定义和负指数幂的性质分别化简得出答解析:(1)12x x ==-2)x=35;(3)12;(4)123,7x x ==-. 【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)先求出x 3的值,再根据立方根的定义解答;(3)直接利用绝对值的性质、平方根定义和负指数幂的性质分别化简得出答案; (4)依据平方根的定义求解即可.【详解】(1)22234x +=,2x²=32,x²=18,,∴12x x ==-(2)38130125x +=, 327125x =-, x=35;(3)2|12|(2)--- =1-1144-=311442-= (4)(x +2)2=25,(x+2)=±5,x+2=5,x+2=-5,∴123,7x x ==-.【点睛】本题考查了利用平方根和立方根解方程,绝对值的性质和负指数幂的性质,掌握有关性质是解题的关键.20.【分析】如图利用平行线的性质得出∠3=35°然后进一步得出∠4的度数从而再次利用平行线性质得出答案即可【详解】如图所示∵∴∴∠4=90°−∠3=55°∵∴∠2=∠4=55°故答案为:55°【点睛】本解析:55︒【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵//a b ,135∠=︒,∴335∠=︒,∴∠4=90°−∠3=55°,∵////a b c ,∴∠2=∠4=55°.故答案为:55°.【点睛】本题主要考查了平行线的性质,熟练掌握相关概念是解题关键.三、解答题21.(1)甲种商品购进100件,乙种商品购进80件;(2)方案一:甲种商品购进61件,乙种商品购进119件.方案二:甲种商品购进62件,乙种商品购进118件.方案三:甲种商品购进63件,乙种商品购进117件.获利最大的是方案一:甲种商品购进61件,乙种商品购进119件.【分析】(1)等量关系为:甲件数+乙件数=180;甲总利润+乙总利润=1240.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<5040;甲总利润+乙总利润≥1314.【详解】解:(1)(1)设甲种商品应购进x 件,乙种商品应购进y 件.根据题意得:180681240x y x y +=⎧⎨+=⎩. 解得:10080x y =⎧⎨=⎩. 答:甲种商品购进100件,乙种商品购进80件.(2)设甲种商品购进a 件,则乙种商品购进(180)a -件.根据题意得1435(180)504068(180)1314a a a a +-<⎧⎨+-≥⎩解不等式组得6063a <. a 为非负整数,a ∴取61,62,63180a ∴-相应取119,118,117方案一:甲种商品购进61件,乙种商品购进119件,此时利润为:66181191318⨯+⨯=元;方案二:甲种商品购进62件,乙种商品购进118件,此时利润为:66281181316⨯+⨯=元;方案三:甲种商品购进63件,乙种商品购进117件,此时利润为:66281181314⨯+⨯=元;所以,有三种购货方案,其中获利最大的是方案一:甲种商品购进61件,乙种商品购进119件.【点睛】本题考查了二元一次方程组的应用及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.22.(1)甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米;(2)乙工程队至少施工50天【分析】(1)设甲工程队每天施工x 米,乙工程队每天施工y 米,根据等量关系列出二元一次方程组,即可求解;(2)设乙工程队施工a 天,根据不等量关系,列出一元一次不等式,即可求解.【详解】(1)设甲工程队每天施工x 米,乙工程队每天施工y 米,根据题意得:3555024420x y x y +=⎧⎨+=⎩,解得:5080x y =⎧⎨=⎩, 答:甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米; (2)设乙工程队施工a 天,根据题意得:80a+50(90-a )≥6000,解得:a≥50,答:乙工程队至少施工50天【点睛】本题主要考查二元一次方程组与一元一次不等式的实际应用,找出等量关系和不等量关系,列出方程组和不等式,是解题的关键.23.(1)2x =;(2)3x =-;(3)50x y =⎧⎨=⎩【分析】(1)按一元一次方程解法,去分母,去括号,移项合并,系数化1即可;(2)根据等式性质2去分母,()()221516x x +--=,根据去括号法则或乘法分配律去括号42516x x +-+=,根据等式的基本性质移项45612x x -=--,合并,系数化1即可;(3)标号,利用加减消元法2⨯-①②,求出x ,将x 代入②求出y ,联立即可.【详解】(1)解:去括号,得72348x x -=-+.移项,得42387x x -=+-.合并同类项,得24=x .系数化为“1”,得2x =.(2)解:去分母,得()()221516x x +--=.(等式的基本性质2)去括号,得42516x x +-+=.(去括号法则或乘法分配律)移项,得45612x x -=--.(等式的基本性质1)合并同类项,得3x -=.系数化为“1”,得3x =-.故答案为:()()221516x x +--=.(等式的基本性质2);42516x x +-+=.(去括号法则或乘法分配律);45612x x -=--.(等式的基本性质1);3x -=;3x =-(3)解:5225,3415.x y x y +=⎧⎨+=⎩①② 2⨯-①②,得735.x =解得 5.x =将5x =代入②,得0.y =∴原方程组的解为5,0.x y =⎧⎨=⎩【点睛】本题考查一元一次方程的解法与二元一次方程组的解法,掌握一元一次方程的变形依据,和解法,会用加减消元法或代入消元法解二元一次方程组是解题关键.24.(1)见解析;(2)点A ,C ,E ,F 的坐标分别为(﹣1,﹣3),(﹣2,3),(0,1),(4,2)【分析】(1)根据B ,D 两点坐标建立平面直角坐标系即可.(2)根据点的位置写出坐标即可.【详解】解:(1)平面直角坐标系如图所示.(2)点A ,C ,E ,F 的坐标分别为(﹣1,﹣3),(﹣2,3),(0,1),(4,2).【点睛】本题考查点的坐标等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(1)4;(2)6-.【分析】(1)变减号为加号同时省略括号和加号,先两个分数相加,再和最后一个数相加; (2)先算乘方和开方,再算乘除,最后算加减.【详解】(1)原式111322=-++ 13=+4=;(2)原式()()8288=-+-÷-⨯82=-+6=-.【点睛】此题考查有理数混合运算,其关键是熟练掌握每种运算和按运算顺序运算,注意用运算律改变运算顺序以使运算简便.26.(1)116°;58°;(2)不变,∠APB=2∠ADB ,理由见解析;(3)29°【分析】(1)由平行线的性质,两直线平行,同旁内角互补可直接求出∠ABN ;由角平分线的定义可以证明∠CBD =12∠ABN ,即可求出结果; (2)证∠APB =∠PBN ,∠PBN =2∠DBN ,即可推出结论;(3)可先证明∠ABC =∠DBN ,由(1)∠ABN =116°,可推出∠CBD =58°,所以∠ABC+∠DBN =58°,则可求出∠ABC 的度数.【详解】(1)∵AM//BN ,∠A =64°,∴∠ABN =180°﹣∠A =116°,∵BC 平分∠ABP ,BD 平分∠PBN ,∴∠ABP =2∠CBP ,∠PBN =2∠DBP ,∴2∠CBP+2∠DBP =116°,∴∠CBD =∠CBP+∠DBP =58°;故答案为:116°;58°;(2)不变,∠APB=2∠ADB ,∵AM//BN ,∴∠APB =∠PBN ,∠ADB =∠DBN ,∵BD 平分∠PBN ,∴∠PBN =2∠DBN ,∴∠APB=2∠ADB ;(3)∵AM//BN ,∴∠ACB =∠CBN ,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN∴∠ABC=∠DBN,由(1)∠ABN=116°,∴∠CBD=58°,∴∠ABC+∠DBN=58°,∴∠ABC=29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.。
2020年沪教版数学七年级下册期末测试卷附答案(一)
2020年沪教版数学七年级下册期末测试卷附答案(一)一、选择题(共6小题;共18分)1. 在实数:,,(每个之间依次多一个)中,无理数的个数是A. 个B. 个C. 个D. 个2. 求的值是A. B. C. D.3. 点所在的象限是A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 下列说法正确的是A. 的平方根是B. 的平方根是的立方根是的立方根是5. 如图,点在的延长线上,下列条件中不能判定的是A. B.C. D.6. 将的三个顶点的横坐标乘以,纵坐标不变,则所得图形A. 与原图形关于轴对称B. 与原图形关于轴对称C. 与原图形关于原点对称D. 向轴的负方向平移了一个单位二、填空题(共12小题;共42分)7. 计算:.8. 中国的领水面积约为,将数用科学记数法表示为.9. 如图,与是直线和直线被直线所截的同位角.10. 如图,,,,则度.11. 已知的两条边的长度分别为,若的周长为偶数,则第三条边的长度是.12. 直线外一点到这条直线的叫做点到直线的距离.13. 点在第象限,点在轴上.14. 已知点是直角坐标平面内的点,如果,那么点在第象限.15. 如图,已知中,,剪去后成四边形,则度.16. 如图,点是线段上一点,且,.若点是线段的中点,则线段的长为.17. 如图,,只需补充一个条件:,就可得.18. 学习等腰三角形相关内容后,张老师请同学们交流这样的一个问题:“在等腰中,,请你求出其余两个角的度数”.同学们经过片刻的思考和交流后,李明同学举手说“其余两个角的度数是和”,你认为李明回答是否正确:,你的理由是.三、解答题(共7小题;共90分)19. 已知一个直角三角形的两条直角边的长分别为和.求这个直角三角形的周长与面积.20. 计算:.21. 利用幂的性质计算:.22. 解方程:.23. 已知直线,被直线所截,,分别平分于和.如果,那么和平行么?为什么?24. 如图,在中,,是边上一点,点在线段上,.(1)说明与全等的理由;(2)说明的理由.25. 如图,在中,已知,,线段经过点,且,说明的理由.答案第一部分1. C 【解析】无理数为无限不循环小数.无理数有:,.2. B 【解析】.3. B4. C5. A6. A第二部分7.8.9. ,,,10.11. 或【解析】设第三边长为,则,即.又周长为偶数,为奇数,.12. 垂线段的长度13. 三,14. 一、三15.16.17. (答案不唯一)18. 不正确,其余两个角度数分别为和或和第三部分19. 周长为,面积为20. 原式21. .22.23. ,又,分别平分,,,,,.24. (1)理由略(提示:隐含条件(等边对等角))(2)理由略(提示:三线合一)25. 提示:证与全等即可.。
2019-2020学年沪教版数学七年级(下)期末测试卷(含答案解析)
七年级下册期末数学试卷姓名:得分:日期:一、选择题(本大题共 10 小题,共 40 分)1、(4分) 在13,0,√2,-3这四个数中,为无理数的是()A.13B.0C.√2D.-32、(4分) 下列计算正确的是()A.x2•x2=x4B.4x2+2x2=6x4C.(x-y)2=x2-y2D.(x3)2=x53、(4分) 下列分式中,是最简分式的是()A.4xyx2B.x2−11+xC.x2+1x−1D.42x−64、(4分) 随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007(平方毫米),这个数用科学记数法表示为()A.7×10-6B.0.7×10-6C.7×10-7D.70×10-85、(4分) 如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14°B.15°C.16°D.17°6、(4分) 计算(6x3-2x)÷(-2x)的结果是()A.-3x2B.-3x2-1C.-3x2+1D.3x2-17、(4分) 不等式组{2x>−1−3x+9≥0的所有整数解的和是()A.4B.6C.7D.88、(4分) 关于x 的方程3x−2x+1-m x+1=2有增根,则m 的值是( )A.-5B.5C.-7D.29、(4分) 已知a+b=-5,ab=-4,则a 2-ab+b 2的值是( )A.37B.33C.29D.2110、(4分) 已知关于x 的不等式3x-m+1>0的最小整数解为2,则实数m 的取值范围是() A.4≤m <7 B.4<m <7 C.4≤m≤7 D.4<m≤7二、填空题(本大题共 4 小题,共 20 分)11、(5分) 若(x-1)3=8,则x=______.12、(5分) 分解因式:a 3-4ab 2=______.13、(5分) 如图,已知直线AD 、BE 、CF 相交于O ,OG⊥AD ,且∠BOC=35°,∠FOG=30°,则∠DOE=______.14、(5分) 若关于x 的分式方程x+m x−2+2m2−x =3的解为正实数,则实数m 的取值范围是______.三、解答题(本大题共 9 小题,共 90 分)15、(8分) 计算:−22+√9−(−12)−2−(3−π)016、(8分) 解不等式组{5−x >3x 2−2x−13−1≤0并把解集在数轴上表示出来.17、(8分) 解方程:xx+1−2x−1=1.18、(8分) 如图:已知∠1+∠2=180°,∠3=∠B,请问AB与DE是否平行,并说明理由.19、(10分) 如图,在边长为1的小正方形组成的网格中,将△ABC向右平移5个单位长度,再向上平移4个单位长度,得到△A1B1C1.(1)在网格中画出△A1B1C1;(2)求△ABC的面积.20、(10分) 先化简:(2x-x 2+1x )÷x 2−2x+1x ,然后从0,1,-2中选择一个适当的数作为x 的值代入求值.21、(12分) 观察下列等式: ①11+12-12=11;②13+14-112=12;③15+16-130=13;④17+18-156=14;…(1)请按以上规律写出第⑤个等式:______;(2)猜想并写出第n 个等式:______;(3)请证明猜想的正确性.22、(12分) 为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.23、(14分) 如图,已知AM∥BN ,∠A=60°,点P 是射线AM 上一动点(与A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,交射线AM 于C 、D .(要有推理过程,不需要写出每一步的理由)(1)求∠CBD的度数;(2)试说明:∠APB=2∠ADB;(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.参考答案【第 1 题】【答案】C【解析】解:无理数为√2,故选:C.分别根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√2,0.8080080008…(每两个8之间依次多1个0)等形式.【第 2 题】【答案】A【解析】解:∵x2•x2=x4,∴选项A符合题意;∵4x2+2x2=6x2,∴选项B不符合题意;∵(x-y)2=x2-2xy+y2,∴选项C不符合题意;∵(x3)2=x6,∴选项D不符合题意.故选:A.根据幂的乘方与积的乘方,完全平方公式的应用,以及合并同类项的方法,逐项判断即可.此题主要考查了幂的乘方与积的乘方,完全平方公式的应用,以及合并同类项的方法,要熟练掌握.【 第 3 题 】【 答 案 】C【 解析 】解:A 、原式=4y x ,故本选项错误;B 、原式=x-1,故本选项错误;C 、是最简分式,故本选项正确;D 、原式=2x−3,故本选项错误. 故选:C .最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.本题考查了分式的基本性质和最简分式,能熟记分式的化简过程是解此题的关键,首先要把分子分母分解因式,然后进行约分.【 第 4 题 】【 答 案 】C【 解析 】解:0.000 0007=7×10-7.故选:C .科学记数法就是将一个数字表示成(a×10的n 次幂的形式),其中1≤|a|<10,n 表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂.本题0.000 000 7<1时,n 为负数.此题考查的是电子原件的面积,可以用科学记数法表示,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.【 第 5 题 】【 答 案 】C【 解析 】解:如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD ,∴∠1=∠EBC=16°,故选:C .依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD ,即可得出∠1=∠EBC=16°. 本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.【 第 6 题 】【 答 案 】C【 解析 】解:原式=-3x 2+1故选:C .根据整式的除法法则即可求出答案.本题考查整式的除法,解题的关键是熟练运用整式的除法法则,本题属于基础题型.【 第 7 题 】【 答 案 】B【 解析 】解:不等式组整理得:{x >−12x ≤3, 解得:-12<x≤3,则不等式组的整数解为0,1,2,3,之和为6,故选:B .分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,进而求出整数解之和即可.此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.【 第 8 题 】【 答 案 】A【 解析 】解:由题意得:3x-2-m=2(x+1),方程的增根为x=-1,把x=-1代入得,-3-2-m=0解得m=-5,故选:A .根据分式的方程增根定义,得出增根,再代入化简后的整式方程进行计算即可.本题考查了分式方程的增根,掌握分式方程增根的定义是解题的关键.【 第 9 题 】【 答 案 】A【 解析 】解:∵a+b=-5,ab=-4,∴a 2-ab+b 2=(a+b )2-3ab=(-5)2-3×(-4)=37,故选:A .先根据完全平方公式进行变形,再代入求出即可.本题考查了完全平方公式,能灵活运用完全平方公式进行变形是解此题的关键.【 第 10 题 】【 答 案 】A【 解析 】解:解不等式3x-m+1>0,得:x >m−13,∵不等式有最小整数解2, ∴1≤m−13<2, 解得:4≤m <7,故选:A .先解出不等式,然后根据最小整数解为2得出关于m 的不等式组,解之即可求得m 的取值范围.本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.【第 11 题】【答案】3【解析】解:∵(x-1)3=8,∴x-1=2,解得:x=3.故答案为:3.直接利用立方根的定义得出x的值,进而得出答案.此题主要考查了立方根,正确开立方是解题关键.【第 12 题】【答案】a(a+2b)(a-2b)【解析】解:a3-4ab2=a(a2-4b2)=a(a+2b)(a-2b).故答案为:a(a+2b)(a-2b).观察原式a3-4ab2,找到公因式a,提出公因式后发现a2-4b2符合平方差公式的形式,再利用平方差公式继续分解因式.本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.【第 13 题】【答案】25°【解析】解:∵OG⊥AD,∴∠GOD=90°,∵∠EOF=∠BOC=35°,又∵∠FOG=30°,∴∠DOE=∠GOD-∠EOF-∠GOF=90°-35°-30°=25°,故答案为:25°.由已知条件和观察图形可知∠EOF与∠BOC是对顶角,OG⊥AD,∠GOD为90°,利用这些关系可解此题.本题利用垂直的定义,对顶角的性质计算,要注意领会由垂直得直角这一要点.【第 14 题】【答案】m<6且m≠2【解析】解:x+mx−2+2m2−x=3,方程两边同乘(x-2)得,x+m-2m=3x-6,解得,x=6−m2,∵6−m2≠2,∴m≠2,由题意得,6−m2>0,解得,m<6,故答案为:m<6且m≠2.利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.【第 15 题】【答案】原式=-4+3-4-1=-6.【解析】直接利用负指数幂的性质以及零指数幂的性质、二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.【第 16 题】【答案】解:{5−x>3①x2−2x−13−1≤0②,解不等式①,得x<2,解不等式②,得x≥-4,所以,不等式组的解集是-4≤x<2不等式组的解集在数轴上表示如下:.【解析】首先分别解出两个不等式的解集,再根据解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到,确定不等式组的解集,再在数轴上表示解集即可.此题主要考查了一元一次不等式组的解法,关键是正确解出两个不等式的解集,掌握确定不等式组解集的规律.【第 17 题】【答案】解:原方程得:xx+1−2(x+1)(x−1)=1,方程两边同乘以(x+1)(x-1)得:x(x-1)-2=x2 -1,整理得:x2-x-2=x2-1,∴x=-1,检验:当x=-1时,(x+1)(x-1)=0,∴原分式方程无解.【解析】首先对分式的分母进行因式分解,然后通过方程两边同乘以最简公分母,把分式方程转化为整式方程进行求解,最后要把求得的x的值代入到最简公分母进行检验.本题主要考查因式分解,解分式方程,关键在于正确把分式方程整理为整式方程,注意最后要进行检验.【第 18 题】【答案】解:结论:AB∥DE.理由:∵∠1+∠ADC=180°(平角的定义),又∵∠1+∠2=180(已知),∴∠ADC=∠2(等量代换),∴EF∥DC (同位角相等两直线平行),∴∠3=∠EDC (两直线平行,内错角相等),又∵∠3=∠B (已知),∴∠EDC=∠B (等量代换),∴AB∥DE (同位角相等两直线平行).【 解析 】结论:AB∥DE .首先证明EF∥BC ,再证明∠B=∠EDC 即可.本题考查平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【 第 19 题 】【 答 案 】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)△ABC 的面积为:2×3-12×1×1-12×2×2-12×1×3=2.【 解析 】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用△ABC 所在矩形面积减去周围三角形面积进而得出答案.此题主要考查了平移变换以及三角形面积求法,正确得出平移后对应点位置是解题关键.【 第 20 题 】【 答 案 】解:原式=(2x 2x -x 2+1x )÷(x−1)2x =(x+1)(x−1)x •x (x−1)=x+1x−1,当x=-2时,原式=−2+1−2−1=13.【 解析 】先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可. 本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.【 第 21 题 】【 答 案 】(1)19+110-190=15(2) 12n−1+12n -1(2n−1)2n =1n(3)左边=2n+(2n−1)(2n−1)2n -1(2n−1)2n=4n−1−1(2n−1)2n=4n−2(2n−1)2n=1n ,即左边=右边,所以12n−1+12n -1(2n−1)2n =1n .【 解析 】解:(1)19+110-190=15,故答案为:19+110-190=15;(2)12n−1+12n -1(2n−1)2n =1n ,故答案为:12n−1+12n -1(2n−1)2n =1n ;(3)左边=2n+(2n−1)(2n−1)2n -1(2n−1)2n=4n−1−1(2n−1)2n=4n−2(2n−1)2n=1n ,即左边=右边,所以12n−1+12n -1(2n−1)2n =1n .(1)根据算式所反应的规律得出即可;(2)根据算式所反应的规律得出即可;(3)求出左边的值,再判断即可.本题考查了有理数的混合运算,能根据算式得出规律是解此题的关键.【 第 22 题 】【 答 案 】解:(1)设梨树苗的单价为x 元,则苹果树苗的单价为(x+2)元,依题意得:2500x =3500x+2,解得x=5.经检验x=5是原方程的解,且符合题意.答:梨树苗的单价是5元;(2)设购买梨树苗种树苗a 棵,苹果树苗则购买(1100-a )棵,依题意得:(5+2)(1100-a )+5a≤6000,解得a≥850.答:梨树苗至少购买850棵.【 解析 】(1)设梨树苗的单价为x 元,则苹果树苗的单价为(x+2)元,根据两种树苗购买的棵树一样多列出方程求出其解即可;(2)设购买梨树苗种树苗a 棵,苹果树苗则购买(1100-a )棵,根据购买两种树苗的总费用不超过6000元建立不等式求出其解即可.本题考查了列分式方程解实际问题的运用,一元一次不等式解实际问题的运用,解答时由方程求出两种树苗的单价是关键.【 第 23 题 】【 答 案 】解:(1)∵AM∥BN∴∠A+∠ABN=180°又∵∠A=60°∴∠ABN=120°∵BC 、BD 分别平分∠ABP 和∠PBN ∴∠CBP=12∠ABP ,∠PBD=12∠PBN∴∠CBD=12∠ABP+12∠PBN=12∠ABN=60°.(2)∵AM∥BN ,∴∠APB=∠PBN∠ADB=∠DBN ,又∵∠PBD=∠DBN ,∴∠APB=2∠DBN ,∴∠APB=2∠ADB .(3)AM∥BN∴∠ACB=∠CBN又∵∠ACB=∠ABD∴∠CBN=∠ABD∴∠CBN -∠CBD=∠ABD∠CBD ∴∠DBN=∠ABC又∵∠CBD=60°,∠ABN=120°∴∠ABC=30°.【 解析 】(1)证明∠CBD=12∠ABP+12∠PBN=12∠ABN 即可解决问题. (2)利用平行线的性质即可解决问题.(3)只要证明∠DBN=∠ABC 即可解决问题.本题考查了平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.。
【沪科版】初一数学下期末第一次模拟试题(带答案)
一、选择题1.某校七年级1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,可列式为( )A .2256x y x y+=⎧⎨=⎩B .2265x y x y +=⎧⎨=⎩C .22310x y x y+=⎧⎨=⎩D .22103x y x y+=⎧⎨=⎩2.如果不等式组5x x m<⎧⎨>⎩有解,那么m 的取值范围是( ) A .m >5B .m≥5C .m <5D .m≤83.不等式组43x x <⎧⎨≥⎩的解集在数轴上表示为( )A .B .C .D .4.与方程529x y +=-构成的方程组,其解为33x y =-⎧⎨=⎩的是( )A .21x y +=B .328x y +=-C .348x y -=-D .543x y +=-5.小明4天里阅读的总页数比小颖5天里阅读的总页数多8页,小颖平均每天阅读的页数比小明平均每天阅读的页数的2倍少10页.若小明、小颖平均每天分别阅读x 页、y 页,则下列方程组正确的是( )A.485210x yy x-=⎧⎨=-⎩B.485210x yy x+=⎧⎨=+⎩C.458210x yy x=-⎧⎨=-⎩D.458210x yy x=+⎧⎨=+⎩6.若方程组21322x y kx y+=-⎧⎨+=⎩的解满足0x y+=,则k的值为()A.1-B.1 C.0 D.不能确定7.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A1,第二次移动到点A2,第n次移动到点A n,则点A2020的坐标是()A.(1010,0) B.(1010,1) C.(1009,0) D.(1009,1)8.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为()A.100 B.81 C.64 D.499.下列说法中,正确的是()A.无理数包括正无理数、零和负无理数B.无限小数都是无理数C.无理数都是无限不循环小数D.无理数加上无理数一定还是无理数10.关于平移后对应点所连的线段,下列说法正确的是()①对应点所连的线段一定平行,但不一定相等;②对应点所连的线段一定相等,但不一定平行,有可能相交;③对应点所连的线段平行且相等,也有可能在同一条直线上;④有可能所有对应点的连线都在同一条直线上.A.①③B.②③C.③④D.①②11.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况参赛者答对题数 答错题数得分 A20 0 100 B18 2 88 C14 6 64 D15 5 70 E91134A .胜一场积5分,负一场扣1分B .某参赛选手得了80分C .某参赛选手得了76分D .某参赛选手得分可能为负数12.若关于x 的方程 332x a += 的解是正数,则a 的取值范围是( ) A .23a <B .23a >C .a 为任何实数D .a 为大于0的数二、填空题13.在平面直角坐标系 xOy 中,点(,)P a b 的“变换点”Q 的坐标定义如下:当a b 时,Q点坐标为(,)b a -;当a b <时,Q 点坐标为(,)a b -. (1)(2,3)-的变换点坐标是_____________.(2)若(,0.52)a a -+的变换点坐标是(,)m n ,则m 的最大值是_____________.14.若方程组ax y c x by d -=⎧⎨-=⎩的解为12x y =⎧⎨=-⎩,则方程组y ax cby x d -=⎧⎨-=⎩的解为______.15.若方程2(3)31a a xy --+=是关于x ,y 的二元一次方程,则a 的值为_____.16.点P 先向左平移4个单位,再向上平移1个单位,得到点Q(2,-3),则点P 坐标为__ 17.如图,点A 的坐标(-2,3)点B 的坐标是(3,-2),则图中点C 的坐标是______.18.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数. 19.命题“相等的角是对顶角”是______(填“真命题”或“假命题”).20.关于x 的不等式132x a x -≤⎧⎨-<⎩有5个整数解,则a 的取值范围是______.三、解答题21.解下列不等式:(1)()()212531x x -+<-+(2)解不等式组 ()32421152x x x x ⎧--≥⎪⎨-+<⎪⎩22.解下列不等式(组) (1)22143x x +-≥ (2)2731205x x x +>-⎧⎪-⎨≥⎪⎩23.若方程12225m n m n x y --+-+=是二元一次方程,求m ,n 的值. 24.ABC 在直角坐标系中如图所示. (1)请写出点A 、B 、C 的坐标; (2)求ABC 的面积.25.计算: (1)3243333225⎛- ⎝; (2381|136463---26.如图//AB CD ,62B ∠=︒,EG 平分BED ∠,EG EF ⊥,求CEF ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据彩色卡纸的总张数为22张其剪出三角形的数量为圆的2倍,即可得出关于x、y的二元一次方程组,此题得解.【详解】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据题意得:22 56x yx y+=⎧⎨=⎩.故选:A.【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.2.C解析:C【解析】∵不等式组有解,∴m<5.故选C.【方法点睛】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键.3.D解析:D【分析】根据不等式组的解集在数轴上的表示方法进行分析解答即可.【详解】A选项中,数轴上表达的解集是:4x>;B 选项中,数轴上表达的解集是:34x -≤<;C 选项中,数轴上表达的解集是:3x ≤;D 选项中,数轴上表达的解集是:34x ≤<; ∵不等式组43x x ⎧⎨≥⎩<的解集是34x ≤<, ∴选D. 【点睛】本题考查的是在数轴上表示不等式组的解集,熟知:“小于向左,大于向右”是解答此题的关键.4.D解析:D 【分析】将解33x y =-⎧⎨=⎩代入选项中验证即可求解.【详解】解:A .33x y =-⎧⎨=⎩不是方程21x y +=的解,该项不符合题意;B .33x y =-⎧⎨=⎩不是方程328x y +=-的解,该项不符合题意;C .33x y =-⎧⎨=⎩不是方程348x y -=-的解,该项不符合题意;D .33x y =-⎧⎨=⎩是方程543x y +=-的解,该项符合题意;故选:D . 【点睛】本题考查二元一次方程组的解,理解二元一次方程组的解的定义是解题的关键.5.A解析:A 【分析】设小明、小颖平均每天分别阅读x 页、y 页,根据“小明4天里阅读的总页数比小颖5天里阅读的总页数多8页,小颖平均每天阅读的页数比小明平均每天阅读的页数的2倍少10页”得到两个等量关系,即可求解. 【详解】解:设小明、小颖平均每天分别阅读x 页、y 页,根据题意可得:485210x yy x -=⎧⎨=-⎩,故选:A . 【点睛】本题考查列二元一次方程组,根据题意找出等量关系是解题的关键.6.B解析:B【分析】方程组中两方程相加得到以k为未知数的方程,解方程即可得答案.【详解】解:①+②,得3(x+y)=3-3k,由x+y=0,得3-3k=0,解得k=1,故选:B.【点睛】本题考查了二元一次方程组的解,利用等式的性质是解题关键.7.A解析:A【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2020的坐标.【详解】A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2020÷4=505,所以A2020的坐标为(505×2,0),则A2020的坐标是(1010,0).故选:A.【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.8.B解析:B【分析】设边长为10的正方形内部的整点的坐标为(x,y),x,y都为整数,根据题意可得规律求解.【详解】解:设边长为10的正方形内部的整点的坐标为(x,y),x,y都为整数.则﹣5<x<5,﹣5<y<5,故x只可取﹣4,﹣3,﹣2,﹣1,0,1,2,3,4共9个,y只可取﹣4,﹣3,﹣2,﹣1,0,1,2,3,4共9个,它们共可组成点(x,y)的数目为9×9=81(个).故选:B.本题主要考查平面直角坐标系点的坐标规律,关键是根据题意得到点的坐标特点规律,然后进行求解即可.9.C解析:C【分析】根据实数的概念和分类即可判断.【详解】A、无理数包括正无理数和负无理数,则此项错误;B、无限循环小数是有理数,无限不循环小数是无理数,则此项错误;C、无理数都是无限不循环小数,则此项正确;D(0=,则此项错误;故选:C.【点睛】本题考查了实数的概念和分类,熟练掌握实数的概念是解题关键.10.C解析:C【分析】根据平移的性质,对应点所连的线段一定平行或在一条直线上,对应点所连的线段一定相等,分别求解即可.【详解】①的说法“对应点所连的线段一定相等,但不一定平行”错误;②的说法“对应点所连的线段一定相等,但不一定平行,有可能相交”错误;③的说法“对应点所连的线段平行且相等,也有可能在同一条直线上”正确;④的说法“有可能所有对应点的连线都在同一条直线上”正确;故正确的说法为③④.故选:C.【点睛】本题主要考查了平移的性质:①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行或在一条直线上且相等.11.B解析:B【分析】由参赛者A可得:胜一场得100÷20=5分,设负一场扣x分,根据参赛者B的得分列出方程,求出方程的解即可得出负一场扣多差分;设参赛选手胜y场,则负(20-y)场,根据胜场的得分+负场的得分=选手得分,分别建立方程求出其解即可.A .由参赛者A 可得:胜一场得100÷20=5分,设负一场扣x 分,根据参赛者B 的得分:5181288x ⨯-⨯=,解得:1x =,所以负一场扣1分;故本选项正确;B .设参赛选手胜y 场,则负(20-y )场,则()512080y y ⨯-⨯-=,解得503y =,∵y 为整数,∴参数选手不可能得80分;故本选项错误;C .设参赛选手胜y 场,则负(20-y )场,()512076y y ⨯-⨯-=,解得16y =,所以参数选手胜了16场,负了4场;故本选项正确;D .设参赛选手胜y 场,则负(20-y )场,()51200y y ⨯-⨯-<,解得103y <,所以当参赛选手低于4场胜利时候,得分就可能是负数;故本选项正确; 故选:B 【点睛】本题考查了总数÷分数=每份数的运用,列一元一次方程解实际问题的运用,结论猜想试题的运用,解答时关键胜场的得分+负场得分=总得分是关键.12.A解析:A 【分析】先解方程,再结合题意列出不等式,解之即可得出答案. 【详解】 解:∵3x+3a=2, ∴x=233a- , 又∵方程的解为正数, ∴233a->0, ∴a <23. 故选:A. 【点睛】本题考查一元一次不等式与一元一次方程的综合运用,正确理解一元一次方程解的意义及熟练求解一元一次不等式是解题关键.二、填空题13.【分析】(1)-2<3满足时点的坐标为据此写出即可;(2)分和两种情况讨论解答【详解】(1)∵-2<3满足∴的变换点坐标是故填::(2)当≥时≥此时该点的变换点坐标是≤;当<时<此时该点的变换点坐标解析:()2,3-- 43【分析】(1)-2<3,满足a b <时,点的坐标为(,)a b -,据此写出即可; (2)分a b 和a b <,两种情况讨论解答. 【详解】(1)∵-2<3,满足a b <, ∴(2,3)-的变换点坐标是()2,3--, 故填:()2,3--:(2)当a ≥0.52a -+时,a ≥43,此时该点的变换点坐标是(0.52,)a a -+-, 0.52m a =-+≤43;当a <0.52a -+时,a <43,此时该点的变换点坐标是(,0.52)a a -, m a =<43, 故m 的最大值是43, 故填:43. 【点睛】本题考查不等式的应用、点的坐标特征,读懂“变换点”的坐标定义是关键.14.【分析】用换元法求解即可【详解】解:∵∴∵方程组的解为∴∴故答案为:【点睛】此题考查利用换元法解二元一次方程组注意要根据方程的特点灵活选用合适的方法解数学题时把某个式子看成一个整体用一个变量去代替它解析:12x y =-⎧⎨=⎩【分析】用换元法求解即可. 【详解】解:∵y ax cby x d -=⎧⎨-=⎩,∴()()()()a x y cx b y d ⎧---=⎪⎨---=⎪⎩,∵方程组ax y c x by d -=⎧⎨-=⎩的解为12x y =⎧⎨=-⎩,∴12x y -=⎧⎨-=-⎩, ∴12x y =-⎧⎨=⎩, 故答案为:12x y =-⎧⎨=⎩. 【点睛】此题考查利用换元法解二元一次方程组,注意要根据方程的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.15.-3【分析】根据二元一次方程的定义:含有两个未知数并且含有未知数的项的次数都是1像这样的方程叫做二元一次方程可得|a|-2=1且a-3≠0再解即可【详解】解:由题得解得a=-3故答案为:-3【点睛】解析:-3【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程可得|a|-2=1,且a-3≠0,再解即可.【详解】 解:由题得,2130a a ⎧-⎨-≠⎩= , 解得a=-3,故答案为:-3.【点睛】本题考查了二元一次方程的定义.二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程. 16.(6-4)【分析】直接利用平移中点的变化规律求解即可平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】设点P 的坐标为()由题意得:求得所以点P 的坐标为()故答案为:()【点睛】本题解析:(6,-4)【分析】直接利用平移中,点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】设点P 的坐标为(x ,y ),由题意,得:42x -=,13y +=-,求得6x =,4y =-,所以点P 的坐标为(6,4-).).故答案为:(6,4【点睛】本题考查了坐标与图形变化-平移,用到的知识点为:左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.17.(12)【分析】根据平面直角坐标系的特点建立坐标系即可确定C点的坐标【详解】解:∵点A的坐标(-23)点B的坐标是(3-2)故平面直角坐标系如图所示:故答案为:(12)【点睛】本题主要考查了坐标与图解析:(1,2)【分析】根据平面直角坐标系的特点建立坐标系,即可确定C点的坐标.【详解】解:∵点A的坐标(-2,3)点B的坐标是(3,-2),故平面直角坐标系如图所示:故答案为:(1,2).【点睛】本题主要考查了坐标与图形,解题的关键是根据两个已知点,确定直角坐标系.18.(1)8888;(2)1134【分析】(1)根据进步数的定义分别求出四位正整数中的最大进步数与最小进步数即可得解;(2)根据进步数的定义可以推得所求数为1114112411341144中的某一个再根解析:(1)8888;(2)1134 .【分析】(1)根据进步数的定义分别求出四位正整数中的最大“进步数”与最小“进步数”即可得解;(2)根据进步数的定义可以推得所求数为1114、1124、1134、1144中的某一个,再根据这个四位正整数能被7整除逐一对4个数进行验证可以得解.【详解】解:(1)由进步数的定义可知四位正整数中最大的“进步数”应该是9999,又最高位不能为0,所以四位正整数中的千位最小为0,所以四位正整数中最小的“进步数”应该是1111,∴9999-1111=8888,∴四位正整数中的最大的“进步数”与最小的“进步数”的差为8888;(2)由已知可得所求数的千位为1,十位为1-4中的某个数字,∴所求数为1114、1124、1134、1144中的某一个,∵这个四位正整数能被7整除,∴由1114=159×7+1,1124=160×7+4,1134=162×7,1144=163×7+3可知所求数为1134 .【点睛】本题考查新定义下的实数规律探索,由材料归纳出新定义并应用于具体问题求解是解题关键.19.假命题【分析】对顶角相等但相等的角不一定是对顶角从而可得出答案【详解】解:对顶角相等但相等的角不一定是对顶角从而可得命题相等的角是对顶角是假命题故答案为:假命题【点睛】此题考查了命题与定理的知识属于 解析:假命题【分析】对顶角相等,但相等的角不一定是对顶角,从而可得出答案.【详解】解:对顶角相等,但相等的角不一定是对顶角,从而可得命题“相等的角是对顶角”是假命题.故答案为:假命题.【点睛】此题考查了命题与定理的知识,属于基础题,在判断的时候要仔细思考.20.【分析】首先解每个不等式两个不等式的解集的公共部分就是不等式组的解集确定整数解据此即可写出a 的范围【详解】解:解不等式①得;解不等式②得:则不等式的解集为∵不等式有5个整数解∴一定是01234∴即故 解析:12a ≤<【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,确定整数解,据此即可写出a 的范围.【详解】解:132x a x -≤⎧⎨-<⎩①②, 解不等式①得,4x ≤;解不等式②得:2x a >-,则不等式的解集为24a x -<≤,∵不等式132x a x -≤⎧⎨-<⎩有5个整数解, ∴一定是0,1,2,3,4.∴120a ,即12a ≤<,故答案为:12a ≤<.【点睛】此题考查的是一元一次不等式组的解法,根据x 的取值范围,得出x 的整数解,然后代入方程即可解出a 的值.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三、解答题21.(1)x <25;(2)-7<x≤1. 【分析】(1)根据解不等式的步骤:去括号——移项——合并同类项——系数化为1,解之即可得出答案;(2)求出每个不等式的解集,根据找不等式组解集的规律找出即可.【详解】(1)解:去括号得:2x-2+2<5-3x-3,移项得:2x+3x <2,合并同类项得:5x <2,系数化为1得:x <25(2)解:()32421152x x x x ⎧--≥⎪⎨-+<⎪⎩①② 解不等式①得, x≤1,解不等式②得, x >-7,∴原不等式组的解集为:-7<x≤1【点睛】本题考查了解一元一次不等式组和一元一次不等式,解题的关键是注意不等号的方向. 22.(1)x≤2;(2)2≤x<8;【分析】(1)不等式两边同时乘以12,化简计算即可.(2)分别求解两个不等式的取值,再把取值范围合并.【详解】(1)解:不等式两边同乘以12得:3(x+2)≥4(2x-1);去括号得:3x+6≥8x -4;移项合并同类项得:-5x≥-10;系数化为1得:x≤2;(2)解:解不等式1得:x<8;解不等式2得:x≥2;∴2≤x<8;【点睛】本题考察了不等式以及不等式组的简单运算,属于解不等式(组)的基础运算,注意细心即可.23.m=53,n=﹣13. 【分析】 根据二元一次方程的定义,含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程,列出等式,即可求解.【详解】解:根据题意,得11221m n m n --=⎧⎨+-=⎩, 解得53m =,13n =-. 【点睛】本题考查了二元一次方程组的概念以及解方程组,明确二元一次方程的定义是解题的关键.24.(1)(2,2)A ,(1,1)B -,(2,2)C --;(2)4.【分析】(1)直接利用已知平面直角坐标系得出各点坐标即可;(2)利用割补法求解即可.【详解】解:(1)如图所示:(2,2)A ,(1,1)B -,(2,2)C --;(2)ABC ∆的面积为:11144131344114222⨯-⨯⨯-⨯⨯-⨯⨯-⨯=. 【点睛】此题主要考查了坐标与图形的性质以及三角形的面积,正确结合图形利用割补法计算三角形的面积是解题关键.25.(1;(2)12-【分析】(1)先去括号,再利用二次根式加减运算法则进行计算;(2)直接利用绝对值的性质和立方根的性质、二次根式的性质分别化简后再相加减即可;【详解】(1)⎛- ⎝=;(2|1--=914++-=12-【点睛】考查了实数的运算,解题关键是掌握运算法则和运算顺序.26.59°【分析】由题意,先求出BED ∠,由角平分线定义得到GED ∠,再结合垂直和平角的定义,即可求出答案.【详解】解:根据题意,∵//AB CD ,∴62BED B ∠=∠=︒,∵EG 平分BED ∠, ∴11623122GED BED ∠=∠=⨯︒=︒, ∵EG EF ⊥,∴90FEG ∠=︒,∴180319059CEF ∠=︒-︒-︒=︒;【点睛】本题考查了角平分线的定义,平行线的性质,以及余角、补角的定义,解题的关键是熟练掌握所学的知识,正确求出角的度数.。
2020年沪教版数学七年级下册期末测试卷附答案
2020年沪教版数学七年级下册期末测试卷附答案一、选择题(共6小题;共18分)1. 下列各数中是无理数的是A. B. C. D.2. 已知面积为的正方形的边长为,那么的值是A. B. C. D.3. 若点位于第一象限,则点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 下列计算正确的是A. 的平方根是C. 的四次方根是D.5. 如图,不能推断的是A. B.C. D.6. 在直角坐标平面内,已知在轴与直线之间有点,如果该点关于直线的对称点的坐标为,那么的值为A. B. C. D.二、填空题(共12小题;共36分)7. .8. 据上海市统计局最新发布的统计公报显示,年末上海市常住人口总数约为人,用科学记数法将保留三个有效数字是.9. 如图,的同位角是.10. 如图,已知,,那么直线,的夹角是.11. 已知三角形的三边长分别为、和,则的取值范围是.12. 如图,点到直线的距离是线段的长度.13. 在平面直角坐标系中,如果点在第三象限,那么的取值范围是.14. 如图,将边长为个单位的正方形置于平面直角坐标系内,如果与轴平行,且点的坐标是,那么点的坐标为.15. 如图,已知点,,,在同一条直线上,,,,那么的度数是.16. 如图,将沿射线方向平移得到,,,那么的长度是.17. 如图,在四边形中,,要使,可添加一个条件为.18. 在中,,若将绕点顺时针旋转得,使点落在原的边上,如果,则.三、解答题(共10小题;共96分)19. 计算:.20. .21. (结果表示为含幂的形式).22. 解方程:.23. 如图,已知直线,被直线所截,平分,,求的度数.解:因为(已知),所以().所以().因为(),所以因为平分(已知),所以(角平分线的意义).所以所以24. 如图,已知,,垂足为点,,.(1)求的度数;(2)求的长度.25. 如图,已知,,,垂足分别为点,.说明与全等的理由.26. 如图,点是等边外一点,点是边上一点,,,联结,.(1)试说明的理由;(2)试判断的形状,并说明理由.27. 如图,在直角坐标平面内,已知点,点的横坐标是,的面积为.(1)求点的坐标.(2)如果是直角坐标平面内的点,那么点在什么位置时,?28. 如图,以为腰向两侧分别作全等的等腰三角形和等腰三角形,过顶角的顶点作,使(),将的边与重合,绕点按逆时针方向旋转,与射线,分别交于点,,设旋转角度为.(1)如图,当时,线段与相等吗?请说明理由.(2)当时,线段,与线段具有怎样的数量关系?请在图中画出图形并说明理由.(3)连接,在绕点逆时针旋转过程中(),当线段时,请用含的代数式直接表示出的度数.答案第一部分1. C2. A3. B4. D5. B6. D第二部分7.8.9.10.11.12.13.14.15.16.17. 答案不唯一,如等18. 或第三部分.20..22.23. 同位角相等,两直线平行;两直线平行,同旁内角互补;邻补角的意义;;;;24. (1)(2)25. 理由略(提示:根据说明).26. (1)略(2)是等边三角形,理由略(提示:由得,,从而可得为有一个内角等于的等腰三角形,即等边三角形).27. (1)点的坐标为或.(2)当点在直线或直线上时,.28. (1)相等.理由如下:等腰三角形和等腰三角形全等,,(全等三角形、等腰三角形的性质),(全等三角形的对应角相等).(已知),(等量代换),所以(等式性质),即.在和中,所以(),所以(全等三角形的对应边相等).(2).画出图形如图所示,理由如下:(等量代换),(等式性质),即.(已证),,即.在和中,(),(全等三角形的对应边相等),(等量代换).与全等,(全等三角形的对应边相等),(等量代换).(3).。
沪教版2019-2020学年七年级下学期期末考试数学模拟试卷及答案解析
第 1 页 共 24 页 沪教版2019-2020学年七年级下学期期末考试数学模拟试卷
一、选择题:(本大题共6题,每题2分,满分12分)
1.下列计算正确的是( )
A .﹣ =﹣3
B .(﹣)2=64
C . =±25
D . =3
2.下列数据中准确数是( )
A .上海科技馆的建筑面积约98000平方米
B .“小巨人”姚明身高2.26米
C .我国的神州十号飞船有3个舱
D .截止去年年底中国国内生产总值(GDP )676708亿元
3.如图,已知直线a 、b 被直线c 所截,那么∠1的同旁内角是( )
A .∠3
B .∠4
C .∠5
D .∠6
4.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )
A .8或10
B .8
C .10
D .6或12
5.如图,△ABC 、△DEF 和△GMN 都是等边三角形,且点E 、M 在线段AC 上,点G 在线段EF
上,那么∠1+∠2+∠3等于( )
A .90°
B .120°
C .150°
D .180°
6.象棋在中国有着三千多年的历史,是趣味性很强的益智游戏.如图,是一局象棋残局,已知表示
棋子“马”和“车”的点的坐标分别为(﹣2,﹣1)和(3,1),那么表示棋子“将”的点的坐标为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册期末模拟试卷
本试卷共8大题,计23小题,满分150分,考试时间120分钟.
一、选择题(本大题共10小题,每小题4分,满分40分)
1、9的平方根为( )
A 、3
B 、-3
C 、±3
D 、3±2、下列四个实数中,是无理数的是( )
A 、2.5
B 、π
C 、
103
D 、1.414 3、下列计算正确的是( )
A 、326a a a •=
B 、4442b b b •=
C 、1055x x x =+
D 、78y y y •= 4、下列分解因式错误..
的是( ) A 、243(2)(2)3x x x x x -+=+-+
B 、22()()x y x y x y -+=-+-
C 、22(21)x x x x -=--+
D 、2221(1)x x x -+=- 5、已知2()11m n +=,2mn =,则2()m n -的值为( )
A 、7
B 、5
C 、3
D 、1
6、已知am >bm ,则下面结论中正确的是( )
A 、a >b
B 、 a <b
C 、 a b m m
> D 、 2am ≥2bm 7、不等式260x -+>的解集在数轴上表示正确的是( )
8、如图,直线AB 、CD 、EF 两两相交,则图中为同旁内角的角共有( )对。
A 、3
B 、4
C 、5
D 、6
9、如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一
个长方形的整体,则应将上面的方格块( )
A 、向右平移1格,向下3格
B 、向右平移1格,向下4格
C 、向右平移2格,向下4格
D 、向右平移2格,向下3格
10、把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在B ′M 或B ′M 的延长
A、85°
B、90°
C、95°
D、100°
二、填空题(本大题共4小题,每小题5分,满分20分)
11、当x 时,分式
2
3
x-
没有意义。
12、如图,AB=BC=CD=1,则图中所有线段长度之和为。
13、一个宽度相等的纸条,如下图这样折叠,则∠1等于。
14、在一块长为a,宽为b的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个
单位),则草地的面积为。
三、(本大题共2小题,每小题8分,满分16分)
15、解不等式组
3
31
2
13(1)8
x
x
x x
-
⎧
++
⎪
⎨
⎪--<-
⎩
≥。
【解】
16、解方程:
33
1
22
x
x x
-
+=
--。
【解】
四、(本大题共2小题,每小题8分,满分16分)
17、如图,已知长方体的体积为353
3a b cm,求它的高。
【解】
18、先化简,再求值:
2
2
424
(2)
442
x x
x
x x x
--
÷--
+++
,其中3
x=。
【解】
五、(本大题共2小题,每小题10分,满分20分)
19、观察下列等式:
11
11
22
⨯=-,
22
22
33
⨯=-,
33
33
44
⨯=-,……
(1)探索这些等式中的规律,直接写出第n个等式(用含n的等式表示)。
(2)试说明你的结论的正确性。
【解】
20、如图,三条直线AB、CD、EF相交于同一点O,若∠AOE=2∠AOC,∠COF=60°,求∠BOD的度数。
【解】
六、(本题满分12分)
21、为了解七年级学生每周的课外阅读情况,某校语文组调查了该校七年级部分学生某周的课外阅读量(精确到千字),将调查数据经过统计整理后,得到如下频数分布直方图,
回答下列问题:
(1)填空:
①该校语文组调查了名学生的课外阅读量;
②左边第一组的频数=,频率=。
(2)求阅读量在1.1万字以上的人数。
【解】
七、(本题满分12分)
22、已知,AC ⊥AB ,EF ⊥BC ,AD ⊥BC ,∠1=∠2,请问AC ⊥DG 吗?请写出推理过程。
【解】
八、(本题满分14分)
23、北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动
服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元。
(1)该商场两次共购进这种运动服多少套?
(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本
) 【解】
参考答案
一、选择题:
1、C
2、B
3、D
4、A
5、C
6、C
7、B
8、D
9、C 10、B
二、填空题:
11、3 12、10 13、60° 14、ab b -
三、
15、解:由(1)得:1x … ……3′
由(2)得:2x >- ……6′
在数轴上表示出不等式组的解集为
∴不等式组的解集为21x -<… ……8′
16、解:3
3
122x x x -+=--
去分母 323x x -+-=-
合并 22x =
系数化为1 1x = ……6′
经检验1x =是原方程的解。
……8′
17、解:长方体的高为3523
32a b ab ab ÷÷ ……3′
22ab = ……8′
18、解:原式=2
2222x x x
x x --÷++ =2
2
2(2)x x x x x -+⨯+- =1
x ……6′
将3x =代入得1
3。
……8′
19、解:(1)11n
n
n n n n ⨯=-++
……4′ (2)22
11111
n n n
n
n n
n n n n n n n +-=-==⨯+++++
……10′ 20、解:∵∠COF =60°
∴∠COE =120° ……4′
又∵∠AOE =2∠AOC
∴∠AOC =40° ……8′
21、解:(1)①40;②4,0.1 ……9′(每空3分)
(2)12+8=20人 ……12′
22、解:∵ EF ⊥BC ,AD ⊥BC ,
∴ AD ∥EF ……2′
∴ ∠2=∠3 ……5′
又∵∠1=∠2
∴∠1=∠3 ……7′
∴AB ∥DG ……10′
∵AC ⊥AB
∴DG ⊥AC ……12′
23、解:(1)设商场第一次购进x 套运动服,由题意得:
6800032000102x x
-=, ……2′ 解这个方程,得200x =。
经检验,200x =是所列方程的根。
……4′
22200200600x x +=⨯+=。
所以商场两次共购进这种运动服600套。
……6′
(2)设每套运动服的售价为y 元,由题意得:
600320006800020%3200068000
y --+≥, ……10′ 解这个不等式,得200y ≥, ……12′
所以每套运动服的售价至少是200元。
……14′
1、老吾老以及人之老,幼吾幼以及人之幼。
20.6.176.17.202006:1206:12:37Jun-2006:12
2、鞠躬尽瘁,死而后已。
二〇二〇年六月十七日2020年6月17日星期三
3、同是天涯沦落人,相逢何必曾相识。
06:126.17.202006:126.17.202006:1206:12:376.17.202006:126.17.2020
4、人之相识,贵在相知,人之相知,贵在知心。
6.17.20206.17.202006:1206:1206:12:3706:12:37
5、书到用时方恨少,事非经过不知难。
Wednesday, June 17, 2020June 20Wednesday, June 17, 20206/17/2020
6、居安思危,思则有备,有备无患。
6时12分6时12分17-Jun-206.17.2020
7、若要功夫深,铁杵磨成针。
20.6.1720.6.1720.6.17。
2020年6月17日星期三二〇二〇年六月十七日 8、人无远虑,必有近忧。
06:1206:12:376.17.2020Wednesday, June 17, 2020 亲爱的读者: 春去春又回,新桃换旧符。
在那桃花盛开的地方,在
这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,感谢你的阅读。