初中数学备课-整式分式二次根式练习题1

合集下载

初中数学《二次根式》专项练习题(附答案)

初中数学《二次根式》专项练习题(附答案)

初中数学《二次根式》专项练习题第一部分:单选题1.如果 √12 与最简二次根式 √7−2a 是同类二次根式,那么a 的值是( )A. ﹣2B. ﹣1C. 1D. 2 2.下列二次根式中,是最简二次根式的是( )A. √16B. √0.6C. √6D. √60 3.下列运算正确是( )A. 3a 3⋅2a 3=6a 3B. (a +b)2=a 2+b 2C. (−2)−2=4D. √27−√12=√3 4.二次根式 √x −3 中,x 的取值范围是( )A. x ≥3B. x >3C. x ≤3D. x <3 5.下列各式计算正确的是( )A. 3a 3+2a 2=5a 6B. 2√a +√a =3√aC. a 4•a 2=a 8D. (ab 2)3=ab 6 6.二次根式√12、√12、√30、√x +2、√40x 2、√x 2+y 2中,最简二次根式有( )个 A. 1 B. 2 C. 3 D. 4 7.√3 的倒数是( )A. −√3B. −√33C. ﹣3D. √33 8.下列各式中为最简二次根式的是( )A. √x 2+1B. x y xC. √28D. √112 9.下列哪一个选项中的等式成立( )A. √22 =2B. √33 =3C. √44 =4D. √55 =5 10.下列式子中,属于最简二次根式的是( ) A. √4 B. √5 C. √13 D. √2 11.下列计算正确的是( )A. √2+√3=√5B. 4√3−3√3=1C. √14×√7=7√2D. √24√3=812.与 −√5 是同类二次根式的是( )A. √10B. √15C. √20D. √25 13.下列计算正确的是( )A. √2+√3=√5B. √2⋅√3=√6C. √8=4D. √(−3)2=−3 14.下列计算错误的是( )A. √2 + √3 = √5B. √2 × √3 = √6C. √18 ÷ √2 =3D. (2 √2 )2=8 15.若二次根式 √3x −2 有意义,则x 的取值范围是( )A. x≥ 23B. x≤ 23C. x≥ 32D. x≤ 32 第二部分:填空题16.若式子 √x −2 有意义,则x 的取值范围是________.17.把 √500 化为最简二次根式________.18.要使根式 √x +1 有意义,则字母x 的取值范围是________. 19.计算: 3√5+4√5= ________.20.若二次根式 √x −2019 在实数范围内有意义,则x 的取值范围是________. 21.要使 √4x −5 有意义,则x 的取值范围是________.22.把√45化成最简二次根式为________.23.将二次根式√50化为最简二次根式________.24.计算:√92×√2=________.25.在√8, √12, √27, √18中与√3是同类二次根式的是________.26.最简二次根式√a2+3与√5a−3是同类二次根式,则a=________27.若a<1,化简√(a−1)2﹣1=________ ;28.计算:√3× √5=________.29.若式子√x−5有意义,则x的取值范围为________.30.使式子√3−2x3−4有意义的x取值范围是________第三部分:计算题31.计算:12√12﹣(3 √13+ √2).32.√6× √2+√24÷ √3-√48.33.计算:2cos30∘+√12−(π+2)0+|−3|.34.综合题。

中考数学专项复习《二次根式》练习题(附答案)

中考数学专项复习《二次根式》练习题(附答案)

中考数学专项复习《二次根式》练习题(附答案)一、单选题1.已知 √8k 是整数,则正整数k 的最小值为( )A .1B .2C .4D .8 2.下列运算正确的是( )A .√−83=2B .a+1a −1a =a (a ≠0)C .√5+√5=√10D .a 2⋅a 3=a 53.下列计算正确的是( ) A .√a 2=a B .√a 2=±a C .√a 2=|a| D .√a 2=−a 4.下列计算正确的是( )A .√121√3=√123=√4=2B .√212÷√12=√2C .√0.2÷√0.6=√0.20.6=√13=√33D .√−16√−2=√162=√8=2√2 5.若a ,b 为实数,且b=√a 2−9+√9−a 2a+3+4,则a+b 的值为( ) A .-1 B .1 C .1或7 D .7 6.代数式√x−2022x−2022在实数范围内有意义,则x 的值可能为( ) A .2023 B .2021 C .−2022 D .2022 7.下列计算 正确的是( )A .√(−5)2 =±5B .3√5 - √5 =2 √5C .(-√5 )2 =-5D .√8÷√2 =48.实数a 、b 在数轴上对应点如图所示,化简 √b 2 + √(a −b)2 -|a|的结果是( )A .2aB .2bC .-2bD .-2a 9.下列函数中自变量x 的取值范围是x>2的函数是( )A .y =√x −2B .y =√x−2C .y =√2x −1D .y =√2x−1 10.下列运算正确的是( )A .√25=±5B .4√3−√27=1C .√18÷√2=9D .√24⋅√32=611.已知2<a<4,则化简√1−2a+a2+√a2−8a+16的结果是()A.2a﹣5B.5﹣2a C.﹣3D.312.下列计算正确的是()A.√2+√3=√5B.√2-√3=-1C.√2×√3=6D.√18÷√2=3二、填空题13.计算:(√5)2=.14.当a=时最简二次根式√a−3与√12−2a的被开数相同。

初二数学二次根式基础练习和常考题与简单题(含解析)

初二数学二次根式基础练习和常考题与简单题(含解析)

初二数学二次根式基本演习和常考题与简略题(含解析) 【1 】一.选择题(共7小题)1.若式子有意义,则x的取值规模为()A.x≥2B.x≠3C.x≥2或x≠3D.x≥2且x≠32.下列二次根式中属于最简二次根式的是()A.B.C.D.3.假如,那么x取值规模是()A.x≤2B.x<2C.x≥2D.x>24.若1<x<2,则的值为()A.2x﹣4B.﹣2C.4﹣2xD.25.下列各式盘算准确的是()A.+=B.4﹣3=1C.2×3=6D.÷=36.若是正整数,最小的整数n是()A.6B.3C.48D.27.下列根式中,不克不及与归并的是()A.B.C.D.二.填空题(共7小题)8.盘算的成果是.9.三角形的三边长分离为3.m.5,化简﹣=.10.若实数 a.b.c在数轴的地位,如图所示,则化简=.11.若二次根式是最简二次根式,则最小的正整数a=.12.盘算:(+1)(﹣1)=.13.已知x.y都是实数,且y=+4,则yx=.14.假如+=0,那么=.三.解答题(共26小题)15.盘算:.16.盘算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.17.先化简,再求值:,个中a=+1.18.盘算:+(﹣)+.19.当x=时,求代数式x2+5x﹣6的值.20.化简求值:,求的值.21.已知a,b,c在数轴上如图所示,化简:.22.盘算(1)3﹣9+3(2)(+)+(﹣)23.盘算:(1)+(﹣2013)0﹣()﹣1+|﹣3|(2)÷﹣×+.24.先化简,再求值:(+)÷,个中a=+1.25.已知a=()﹣1,b=,c=(2014﹣π)0,d=|1﹣|,(1)化简这四个数;(2)把这四个数,经由过程恰当运算后使得成果为2.请列式并写出运算进程.26.先化简:(2x+1)2+(x+2)(x﹣2)﹣4x(x+1),再求值,个中.27.先化简,再求值:,个中.28.若a.b为实数,且b=+4,求a+b的值.29.盘算:(﹣)2﹣(+)2.30.盘算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)31.盘算:(1)(2).32.盘算:(﹣3)0﹣+|1﹣|+.33.先化简,再求值,个中x=,y=27.34.已知:,求的值.35.盘算.36.盘算与化简(1)(2).37.(1)一个正数的平方根是2a﹣3与5﹣a,求这个正数.(2)已知x.y都是实数,且,求yx的值.38.若x,y,a,b知足关系式+=×,试求x,y的值.39.已知a,b为等腰三角形的两条边长,且a,b知足b=++4,求此三角形的周长.40.已知a,b,c为△ABC的三边长,且(++)2=3(++),试解释这个三角形是什么三角形.41.盘算:.42.盘算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.43.(1)盘算:×﹣4××(1﹣)0;(2)先化简,再求值:(+)÷,个中a,b知足+|b﹣|=0.44.先化简,再求值:,个中a=+1.45.盘算:+(﹣)+.46.盘算:5+﹣×+÷.初二数学二次根式基本演习和常考题与简略题(含解析)参考答案与试题解析一.选择题(共7小题)1.(2016•乐亭县一模)若式子有意义,则x的取值规模为()A.x≥2B.x≠3C.x≥2或x≠3D.x≥2且x≠3【剖析】依据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:依据二次根式有意义,分式有意义得:x﹣2≥0且x﹣3≠0,解得:x≥2且x≠3.故选D.【点评】本题考核了二次根式有意义的前提和分式的意义.考核的常识点为:分式有意义,分母不为0;二次根式的被开方数长短负数.2.(2015•锦州)下列二次根式中属于最简二次根式的是()A.B.C.D.【剖析】A.B选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;是以这三个选项都不是最简二次根式.【解答】解:A.不是最简二次根式,故本选项错误;B.不是最简二次根式,故本选项错误;C.不是最简二次根式,故本选项错误;D.是最简二次根式,故本选项准确;故选D.【点评】本题考核了对最简二次根式界说的运用,在断定最简二次根式的进程中要留意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),假如幂的指数等于或大于2,也不是最简二次根式.3.(2015•潍坊模仿)假如,那么x取值规模是()A.x≤2B.x<2C.x≥2D.x>2【剖析】依据二次根式的被开方数是一个≥0的数,可得不等式,解即可.【解答】解:∵=2﹣x,∴x﹣2≤0,解得x≤2.故选A.【点评】本题考核了二次根式的化简与性质.解题的症结是要留意被开方数的取值规模.4.(2016•呼伦贝尔)若1<x<2,则的值为()A.2x﹣4B.﹣2C.4﹣2xD.2【剖析】已知1<x<2,可断定x﹣3<0,x﹣1>0,依据绝对值,二次根式的性质解答.【解答】解:∵1<x<2,∴x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.故选D.【点评】解答此题,要弄清以下问题:1.界说:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,暗示a的算术平方根;当a=0时,=0;当a小于0时,非二次根式(若根号下为负数,则无实数根).2.性质:=|a|.5.(2015•潜江)下列各式盘算准确的是()A.+=B.4﹣3=1C.2×3=6D.÷=3【剖析】分离依据二次根式有关的运算轨则,化简剖析得出即可.【解答】解:A.,无法盘算,故此选项错误,﹣3=,故此选项错误,×3=6×3=18,故此选项错误,D.=,此选项准确,故选D.【点评】此题重要考核了二次根式的混杂运算,闇练控制二次根式根本运算是解题症结.6.(2015•安徽模仿)若是正整数,最小的整数n是()A.6B.3C.48D.2【剖析】先将所给二次根式化为最简二次根式,然后再断定n的最小正整数值.【解答】解:=4,因为是正整数,所以n的最小正整数值是3,故选B.【点评】此题考核二次根式的界说,解答此题的症结是可以或许准确的对二次根式进行化简.7.(2015•凉山州)下列根式中,不克不及与归并的是()A.B.C.D.【剖析】将各式化为最简二次根式即可得到成果.【解答】解:A.,本选项不合题意;B.,本选项不合题意;C.,本选项合题意;D.,本选项不合题意;故选C.【点评】此题考核了同类二次根式,闇练控制同类二次根式的界说是解本题的症结.二.填空题(共7小题)8.(2015•南京)盘算的成果是5.【剖析】直接运用二次根式的性质化简求出即可.【解答】解:=×=5.故答案为:5.【点评】此题重要考核了二次根式的乘除运算,准确控制二次根式的性质是解题症结.9.(2016•山西模仿)三角形的三边长分离为3.m.5,化简﹣=2m﹣10.【剖析】先运用三角形的三边关系求出m的取值规模,再化简求解即可.【解答】解:∵三角形的三边长分离为3.m.5,∴2<m<8,∴﹣=m﹣2﹣(8﹣m)=2m﹣10.故答案为:2m﹣10.【点评】本题重要考核了二次根式的性质与化简及三角形三边关系,解题的症结是熟记三角形的三边关系.10.(2016春•惠山区期末)若实数a.b.c在数轴的地位,如图所示,则化简=﹣a﹣b.【剖析】先依据数轴上各点的地位断定出a,b的符号及a+c与b﹣c的符号,再进行盘算即可.【解答】解:由数轴可知,c<b<0<a,|a|<|c|,∴a+c<0,b﹣c>0,∴原式=﹣(a+c)﹣(b﹣c)=﹣a﹣b.故答案为:﹣a﹣b.【点评】准确地依据数在数轴上的地位断定数的符号以及绝对值的大小,再依据运算轨则进行断定.11.(2016•山西模仿)若二次根式是最简二次根式,则最小的正整数a=2.【剖析】剖断一个二次根式是不是最简二次根式的办法,就是逐个检讨最简二次根式的两个前提是否同时知足,同时知足的就是最简二次根式,不然就不是.【解答】解:二次根式是最简二次根式,则最小的正整数a=2,故答案为:2.【点评】本题考核最简二次根式的界说.依据最简二次根式的界说,最简二次根式必须知足两个前提:被开方数不含分母;被开方数不含能开得尽方的因数或因式.12.(2014•福州)盘算:(+1)(﹣1)=1.【剖析】两个二项式相乘,并且这两个二项式中有一项完整雷同,另一项互为相反数.就可以用平方差公式盘算.成果是乘式中两项的平方差(雷同项的平方减去相反项的平方).【解答】解:(+1)(﹣1)=.故答案为:1.【点评】本题运用了平方差公式,使盘算比运用多项式乘法轨则要简略.13.(2014•姑苏模仿)已知x.y都是实数,且y=+4,则yx=64.【剖析】先依据二次根式有意义的前提列出关于x的不等式组,求出x的值代入yx进行盘算即可.【解答】解:∵y=+4,∴,解得x=3,∴y=4,∴yx=43=64.故答案为:64.【点评】本题考核的是二次根式有意义的前提及有理数的乘方,能依据二次根式有意义的前提求出x的值是解答此题的症结.14.(2015春•泰兴市期末)假如+=0,那么=1+.【剖析】先由非负数的性质求得a,b的值,再代入原式化简盘算可得答案.【解答】解:∵+=0,而≥0,≥0;∴a=1,b=2∴原式=1+=1+.故本题答案为:1+.【点评】本题考核了二次根式的化简,还运用了非负数的性质:若两个非负数的和为0,则这两个数均为0.三.解答题(共26小题)15.(2016•德州校级自立招生)盘算:.【剖析】先依据二次根式的乘除法轨则得到原式=﹣+2,然后运用二次根式的性质化简后归并即可.【解答】解:原式=﹣+2=4﹣+2=4+.【点评】本题考核了二次根式的混杂运算:先辈行二次根式的乘除运算,再把各二次根式化为最简二次根式,然落后行二次根式的加减运算.16.(2014•张家界)盘算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.【剖析】依据零指数幂.负整数指数幂和平方差公式得到原式=5﹣1﹣9+﹣1﹣1+2,然后归并即可.【解答】解:原式=5﹣1﹣9+﹣1﹣1+2=﹣7+3.【点评】本题考核了二次根式的混杂运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后归并同类二次根式.也考核了零指数幂.负整数指数幂.17.(2016•安徽三模)先化简,再求值:,个中a=+1.【剖析】起首把写成,然后约去公因式(a+1),再与后一项式子进行通分化简,最子女值盘算.【解答】解:,=,=,=,当时,原式==.【点评】本题重要考核二次根式的化简求值的常识点,解答本题的症结是分式的通分和约分,本题难度不大.18.(2015•闵行区二模)盘算:+(﹣)+.【剖析】先辈行二次根式的化简和乘法运算,然后归并.【解答】解:原式=+1+3﹣3+=4﹣.【点评】本题考核了二次根式的混杂运算,解答本题的症结是控制二次根式的化简和乘法轨则.19.(2015•湖北模仿)当x=时,求代数式x2+5x﹣6的值.【剖析】可直接代入求值.【解答】解:当x=时,x2+5x﹣6=()2+5()﹣6=6﹣2+5﹣5﹣6=.【点评】重要考核二次根式的混杂运算,要控制好运算次序及各运算律.20.(2016春•潮南区期中)化简求值:,求的值.【剖析】本题需先对请求的式子和已知前提进行化简,再把所得的成果代入即可求出答案.【解答】解:==,=+1;b==,∴==.【点评】本题重要考核了二次根式的化简求值,在解题时要能对请求的式子和已知前提进行化简是本题的症结.21.(2016春•日照期中)已知a,b,c在数轴上如图所示,化简:.【剖析】依据数轴abc的地位推出a+b<0,c﹣a>0,b+c<0,依据二次根式的性质和绝对值进行化简得出﹣a+a+b+c﹣a﹣b﹣c,再归并即可.【解答】解:∵从数轴可知:a<b<0<c,∴a+b<0,c﹣a>0,b+c<0,∴﹣|a+b|++|b+c|=﹣a+a+b+c﹣a﹣b﹣c=﹣a.【点评】本题考核了二次根式的性质,实数.数轴的运用,症结是能得出﹣a+a+b+c﹣a﹣b﹣c.22.(2014春•汉阳区期末)盘算(1)3﹣9+3(2)(+)+(﹣)【剖析】(1)起首对每一项二次根式进行化简,然后归并同类二次根式即可,(2)起首对每一项二次根式进行化简,然后去失落括号,进行归并同类二次根式即可.【解答】解:(1)原式=12﹣3+6=15,(2)原式=4+2+2﹣=6+.【点评】本题重要考核二次根式的化简,归并同类二次根式,症结在于准确的化简二次根式,准确的去括号,卖力的进行盘算.23.(2014春•兴业县期末)盘算:(1)+(﹣2013)0﹣()﹣1+|﹣3|(2)÷﹣×+.【剖析】(1)依据零指数幂和负整数指数幂的意义得到原式=3+1﹣2+3,然落后行加减运算; (2)依据二次根式的乘除轨则运算.【解答】解:(1)原式=3+1﹣2+3=5;(2)原式=﹣+2=4﹣+2=4+.【点评】本题考核了二次根式的盘算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后归并同类二次根式.也考核了零指数幂和负整数指数幂.24.(2016•升天县校级模仿)先化简,再求值:(+)÷,个中a=+1.【剖析】运用通分.平方差公式等将原式化简为,代入a的值即可得出结论.【解答】解:原式=(+)÷,=•,=•,=.当a=+1时,原式==.【点评】本题考核了分式的化简求值,解题的症结是将原式化简成.本题属于基本题,难度不大,解决该题型标题时,先将原代数式进行化简,再代入数据求值是症结.25.(2015•杭州模仿)已知a=()﹣1,b=,c=(2014﹣π)0,d=|1﹣|,(1)化简这四个数;(2)把这四个数,经由过程恰当运算后使得成果为2.请列式并写出运算进程.【剖析】(1)依据零指数幂和负整数指数幂和分母有理化求解;(2)可列式子为a+b﹣3c﹣d,然后把a.b.c.d的值代入盘算.【解答】解:(1)a=()﹣1=3,b==+1,c=(2014﹣π)0=1,d=|1﹣|=﹣1, (2)a+b﹣3c﹣d=3++1﹣3×1﹣+1=2.【点评】本题考核了二次根式的盘算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后归并同类二次根式.也考核了零指数幂和负整数指数幂.26.(2014•焦作一模)先化简:(2x+1)2+(x+2)(x﹣2)﹣4x(x+1),再求值,个中.【剖析】依据整式的运算轨则将式子进行化简,再代值盘算.【解答】解:原式=4x2+4x+1+x2﹣4﹣4x2﹣4x=x2﹣3,当时,原式=.【点评】本题不是很难,但是在归并同类项时要细心.27.(2010•莱芜)先化简,再求值:,个中.【剖析】这道求代数式值的标题,不该斟酌把x的值直接代入,平日做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.本题留意x﹣2看作一个整体.【解答】解:原式====﹣(x+4),当时,原式===.【点评】分式混杂运算要留意先去括号;分子.分母能因式分化的先因式分化;除法要同一为乘法运算.28.(2016春•澄城县期末)若a.b为实数,且b=+4,求a+b的值.【剖析】依据二次根式有意义的前提列出方程,分离求出a.b的值,盘算即可.【解答】解:由题意得,a2﹣1≥0,1﹣a2≥0,解得,a=±1,则b=4,∴a+b=3或5.【点评】本题考核的是二次根式有意义的前提,控制二次根式中的被开方数长短负数是解题的症结.29.(2016春•闵行区期末)盘算:(﹣)2﹣(+)2.【剖析】先辈行完整平方公式的运算,然后归并.【解答】解:原式=3﹣2+2﹣3﹣2﹣2=﹣4.【点评】本题考核了二次根式的混杂运算,解答本题的症结是控制完整平方公式以及二次根式的归并.30.(2016春•定州市期中)盘算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)【剖析】(1)先把各二次根式化为最简二次根式,然后归并即可;(2)先把各二次根式化为最简二次根式,然后把括号内归并落后行二次根式的除法运算.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=4×12÷(5+﹣4)=48÷(2)=8.【点评】本题考核了二次根式的盘算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后归并同类二次根式.31.(2015春•黔南州期末)盘算:(1)(2).【剖析】(1)先化简,再进一步去失落括号盘算即可;(2)运用二次根式的性质化简,平方差公式盘算,再进一步归并即可.【解答】解:(1)原式=2+﹣+=3﹣.(2)原式=3﹣1﹣3﹣1++1=﹣1.【点评】本题考核的是二次根式的混杂运算,在进行此类运算时,一般先把二次根式化为最简二次根式的情势后再运算.32.(2011•上海)盘算:(﹣3)0﹣+|1﹣|+.【剖析】不雅察,可以起首去绝对值以及二次根式化简,再归并同类二次根式即可.【解答】解:=1﹣3+﹣1+,=﹣3++﹣,=﹣2.【点评】此题重要考核了二次根式的混杂运算以及绝对值的性质,在进行此类运算时一般先把二次根式化为最简二次根式的情势后再运算.33.(2015春•封开县期中)先化简,再求值,个中x=,y=27.【剖析】起首对二次根式进行化简,然后去括号.归并二次根式即可化简,然后把x,y的值代入求解.【解答】解:原式=(6+3)﹣(+6)=9﹣﹣6=3﹣,当x=,y=27时,原式=3﹣=﹣=.【点评】本题考核了二次根式的化简求值,准确对二次根式进行化简是症结.34.(2003•济南)已知:,求的值.【剖析】本题需先对a的值和请求的式子进行化简,然后把a的值代入化简今后的式子即可求出成果.【解答】解:∵a==2﹣,∴a<1,∴原式==,=,=﹣2﹣.【点评】本题重要考核了二次根式的化简求值,在解题时要能灵巧运用二次根式化简的办法是本题的症结.35.(2015秋•哈尔滨校级月考)盘算.【剖析】把二次根式的被开方数相除,再依据二次根式的性质开出来即可.【解答】解:原式===2a.【点评】本题考核了二次根式的性质,二次根式的乘除的运用,重要考核学生的盘算和化简才能.36.(2012•深圳模仿)盘算与化简(1)(2).【剖析】(1)先化简二次根式,再进行盘算即可;(2)先化简二次根式,再归并同类二次根式即可.【解答】解:(1)原式=(4+)÷3=×;(2)原式=2a2+3a•5a﹣×3a=.【点评】本题考核了二次根式的混杂运算,二次根式的化简是解此题的症结.37.(2009春•岳阳校级期末)(1)一个正数的平方根是2a﹣3与5﹣a,求这个正数.(2)已知x.y都是实数,且,求yx的值.【剖析】(1)因为一个正数x的平方根有两个,且互为相反数,由此即可得到关于a方程,解方程即可得a的值,然子女入求x;(2)依据二次根式的被开方数长短负数,列出关于x的不等式组,然后解得x值,从而求得y 值;最后将它们代入所求的代数式求值即可.【解答】解:(1)设该正数为x.则由题可知2a﹣3+5﹣a=0,解得a=﹣2,所以2a﹣3=﹣7,所以x=49,即所求的正数是49;(2)依据题意,得,解得x=3,∴y=4;∴yx=43=64,即yx=64.【点评】此题重要考核了平方根的性质,留意假如一个数的平方等于A,那么这个数就叫做A 的平方根,也叫做A的二次方根.一个正数有正.负两个平方根,他们互相为相反数;零的平方根是零,负数没有平方根.38.若x,y,a,b知足关系式+=×,试求x,y的值.【剖析】由a+b﹣2014≥0,2014﹣(a+b)≥0,所以a+b=2014.再运用两个根式的和等于0,即每一个被开方数等于0.【解答】解:依题意,得a+b﹣2014≥0,2014﹣(a+b)≥0,解得a+b=2014.所以+=0,3x﹣6=0,2y﹣7=0,x=2,y=.【点评】考核了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须长短负数,不然二次根式无意义.同时考核了非负数的性质,几个非负数的和为0,这几个非负数都为0.39.(2014春•黄梅县校级期中)已知a,b为等腰三角形的两条边长,且a,b知足b=++4,求此三角形的周长.【剖析】依据二次根式有意义:被开方数为非负数可得a的值,继而得出b的值,然子女入运算即可.【解答】解:∵.有意义,∴,∴a=3,∴b=4,当a为腰时,三角形的周长为:3+3+4=10;当b为腰时,三角形的周长为:4+4+3=11.【点评】本题考核了二次根式有意义的前提,属于基本题,留意控制二次根式有意义:被开方数为非负数.40.(2013秋•川汇区校级月考)已知a,b,c为△ABC的三边长,且(++)2=3(++),试解释这个三角形是什么三角形.【剖析】先运用完整平方公式睁开后归并得到a+b+c﹣﹣﹣=0,再运用配办法得到(﹣)2+(﹣)2+(﹣)2=0,然后依据非负数的性质得到﹣=0,﹣=0,﹣=0,所以a=b=c.【解答】解:∵(++)2=3(++),∴a+b+c+2+2+2﹣3﹣3﹣3=0,∴a+b+c﹣﹣﹣=0,∴2a+2b+2c﹣2﹣2﹣2=0,∴(﹣)2+(﹣)2+(﹣)2=0,∴﹣=0,﹣=0,﹣=0,∴a=b=c,∴这个三角形为等边三角形.【点评】本题考核了二次根式的运用:把二次根式的运算与实际生涯相接洽,表现了所学常识之间的接洽,感触感染所学常识的整体性,不竭丰硕解决问题的计谋,进步解决问题的才能.41.(2016•德州校级自立招生)盘算:.【剖析】先依据二次根式的乘除法轨则得到原式=﹣+2,然后运用二次根式的性质化简后归并即可.【解答】解:原式=﹣+2=4﹣+2=4+.【点评】本题考核了二次根式的混杂运算:先辈行二次根式的乘除运算,再把各二次根式化为最简二次根式,然落后行二次根式的加减运算.42.(2014•张家界)盘算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.【剖析】依据零指数幂.负整数指数幂和平方差公式得到原式=5﹣1﹣9+﹣1﹣1+2,然后归并即可.【解答】解:原式=5﹣1﹣9+﹣1﹣1+2=﹣7+3.【点评】本题考核了二次根式的混杂运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后归并同类二次根式.也考核了零指数幂.负整数指数幂.43.(2014•荆门)(1)盘算:×﹣4××(1﹣)0;(2)先化简,再求值:(+)÷,个中a,b知足+|b﹣|=0.【剖析】(1)依据二次根式的乘法轨则和零指数幂的意义得到原式=﹣4××1=2﹣,然后归并即可;(2)先把分子和分母因式分化和除法运算化为乘法运算,再盘算括号内的运算,然后约分得到原式=,再依据非负数的性质得到a+1=0,b﹣=0,解得a=﹣1,b=,然后把a和b的值代入盘算即可.【解答】解:(1)原式=﹣4××1=2﹣=;(2)原式=[﹣]•=(﹣)•=•=,∵+|b﹣|=0,∴a+1=0,b﹣=0,解得a=﹣1,b=,当a=﹣1,b=时,原式=﹣=﹣【点评】本题考核了二次根式的混杂运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后归并同类二次根式.也考核了零指数幂.非负数的性质和分式的化简求值.44.(2016•安徽三模)先化简,再求值:,个中a=+1.【剖析】起首把写成,然后约去公因式(a+1),再与后一项式子进行通分化简,最子女值盘算.【解答】解:,=,=,=,当时,原式==.【点评】本题重要考核二次根式的化简求值的常识点,解答本题的症结是分式的通分和约分,本题难度不大.45.(2015•闵行区二模)盘算:+(﹣)+.【剖析】先辈行二次根式的化简和乘法运算,然后归并.【解答】解:原式=+1+3﹣3+=4﹣.【点评】本题考核了二次根式的混杂运算,解答本题的症结是控制二次根式的化简和乘法轨则.46.(2015春•石林县期末)盘算:5+﹣×+÷.【剖析】先二次根式化为最简二次根和依据二次根式的乘除法得到原式=+﹣+3÷=2﹣1+3,然后归并即可.【解答】解:原式=+﹣+3÷=2﹣1+3=2+2.【点评】本题考核了二次根式的混杂运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然落后行二次根式的加减运算.。

整式、分式、二次根式三大式复习测试题

整式、分式、二次根式三大式复习测试题

整式、分式、二次根式三大式复习测试题一、选择题(每题3分 共30分) 1 下列各式一定是二次根式的是( )A .7B .m 2C .12-mD .ab 2.下列运算正确的是( )A.2x 3-x 2=xB.x 3•(x 5)2=x 13C.(-x)6÷(-x)3=x 3D.(0.1)-2•10-1=103.明天数学课要学“勾股定理”,小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约为12 500 000,这个数用科学记数法表示为( )A. 51.2510⨯B.61.2510⨯C. 71.2510⨯D. 81.2510⨯ 4. 63(210)⨯=( )A .9610⨯B .9810⨯C .18210⨯D .18810⨯5.若分工2422---x x x 的值为零,则x 的值是( )A .2或-2B .2 C.-2 D.46.计算()221222-+---1(-)=( ) A .2 B .-2 C .6D .107.能使等式22---x x x x 成立的x 的取值范围是( )A .x>2B .x ≥0C .x >-2D .x ≥28. 下列各式中属于最简二次根式的是( )A 、53x x +B 、12+x C 、 12 D 、5.09.已知y =2xy 的值为( ) A .15- B .15 C .152-D . 15210.若9x 2+mxy+16y 2是完全平方式,则m=( ) A .12 B .24 C .+12 D . +24 二、填空题(每题3分 共15分)11. 若2x =3,4y =5,则2x-2y 的值为____________12. 在实数范围内分解因式:x 4-9=___________________12. 如果3m 7x n y+7和-4m 2-4y n 2x 是同类项,则x= ,y= ;这两个单项式的积是_ 13、等腰三角形的一内角等于50°,则其它两个内角各为 ____________ 14、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 . 15.已知A (-1,-2)和B (1,3),将点A 向______平移________ 个单位长度后得到的点与点B 关于y 轴对称. 三、计算(每题5分,共55分) 16. |-3|+(-1)2011×(π-3)0-327+(12)-217.分解因式:①-x 2+241y ②6xy 2-9x 2y-y 3P 2P 1N MOPB A18. 解方程:①271326x x x +=++ ②221046(1)1x x x x -=--19.先化简,再求值: (a -1+12+a )÷(a 2+1),其中a=2-1.。

中考数学总复习《分式与二次根式》专项练习题-附带参考答案

中考数学总复习《分式与二次根式》专项练习题-附带参考答案

中考数学总复习《分式与二次根式》专项练习题-附带参考答案一、选择题:(本题共8小题,共40分.)1.计算(﹣ 13 )﹣2的值,正确的是( )A .19B .﹣ 19C .9D .﹣92.下列各数中,化为最简二次根式后能与√3合并的是( )A .√18B .√12C .√23D .√293.使代数式√x−3x−4有意义的x 的取值范围是( )A .x >3B .x ≥3C .x >4D .x ≥3 且x ≠44.下列运算中错误的是( )A .√2 + √3 = √5B .√2 × √3 = √6C .√8 ÷ √2 =2D .(−√3)2 =35.若分式 |x|−1x 2−3x+2 的值为0,则x 的值为( )A .-1B .0C .1D .±16.如果分式xy 2x−3y 中的x ,y 都扩大为原来的2倍,那么分式的值( )A .扩大为原来的2倍B .扩大为原来的4倍C .不变D .不能确定7.若先化简 (1+2p−2)÷p 2−pp 2−4 ,再求值,且 p 是满足 −3<p <3 的整数,则化简求值的结果为()A .0或 −12 或-2或4B .-2或 −12C .-2D .−128.若√x −1+√x +y =0 ,则x 2005+y 2005 的值为: ( )A .0B .1C .-1D .2二、填空题:(本题共5小题,共15分.)9.化简: 4a−4b 3ab ⋅15ab 2a −2b 2÷1a = .10.若分式 x 2−x−2x 2+2x+1 的值为 0 ,则 x 的值等于 .11.计算 √48−√27 的结果等于 .12.已知 1a −1b =12 ,则 ab a−b 的值是13.对于分式 ,当x= 时,分式 x 2−2x−3x−3 无意义;当x= 时,分式值为零.三、解答题:(本题共4题,共45分.)14.化简:(a ﹣1+1a−3)÷a2−4a−3;15.先化简,再求值:222414816a a a a a ---÷+++,其中2a =.16.(1)计算:(12)﹣2﹣|√2−3|+2tan45°﹣(2020﹣π)0;(2)先化简,再求值:(3a+1−a +1)÷a 2−4a 2+2a+1,其中a 从﹣1,2,3中取一个你认为合适的数代入求值.17. 先化简,再求值:(1x -y +2x 2-xy )÷x +22x ,其中实数x ,y 满足y =x -2-4-2x +1.参考答案:1.C2.B3.D4.A5.A6.A7.D8.A9.20ab a+b10.211.√312.﹣213.3;-114.原式=[(a−1)(a−3)a−3+1a−3]÷(a+2)(a−2)a−3 =(a 2−4a+3a−3+1a−3)•a−3(a+2)(a−2) =(a−2)2a−3•a−3(a+2)(a−2) =a−2a+2;15.解:原式=()()()242421142222a a a a a a a a +-+-+-⨯=-=-+++; 把22a 代入得:原式=2222=--+ 16.(1)(12)﹣2﹣|√2−3|+2tan45°﹣(2020﹣π)0=4+√2−3+2×1﹣1=4+√2−3+2﹣1=2+√2;(2)(3a+1−a +1)÷a 2−4a 2+2a+1=3−(a−1)(a+1)a+1×(a+1)2(a+2)(a−2) =−(a+2)(a−2)a+1=﹣a ﹣1要使原式有意义,只能a =3则当a =3时,原式=﹣3﹣1=﹣4.17.略。

中考数学复习《二次根式》专项练习题-附带答案

中考数学复习《二次根式》专项练习题-附带答案

中考数学复习《二次根式》专项练习题-附带答案一、选择题1.下列式子,一定是二次根式的共有()√28,1,√−1,√m,,√x2+1A.5个B.4个C.3个D.2个2.下列根式是最简二次根式的是()A.√3B.√12C.√3D.√503.要使二次根式√6x+12有意义,则x的取值范围是()A.x≤-2 B.x≥-2 C.x⩾−12D.x⩽−124.计算2√5×3√10等于()A.6√15B.6√30C.30√2D.30√5 5.计算√52−42−32的结果是()A.6 B.0 C.√6D.46.使式子√x+3√4−3x在实数范围内有意义的整数x有()A.5个B.3个C.4个D.2个7.下列计算错误的是()A.√43+√121=2√7B.(√8+√3)×√3=2√6+3C.(4√2−3√6)÷2√2=2−32√3D.(√5+√7)(√5−√7)=5−7=−28.如图,在长方形ABCD中无重叠放入面积分别为12cm2和16cm2的两张正方形纸片,则图中空白部分的面积为()A.8−4√3B.16−8√3C.8√3−12D.4−2√3二、填空题9.计算:3√2−√8=.10.若代数式√2−xx−2有意义,则x的取值范围是.11.已知:x=√13+1,y=√13−1,则xy的值为.12.若a <2,化简√(a −2)2+a ﹣1= .13.已知x =√3+1,y =√3−1,则代数式y x +x y 的值是 .三、解答题14.计算:(181832;(221268(13)-15.先化简,再求值:已知x =3+2√2,求(2−x)2x−2+√x 2+9−6x x−3的值 16.已知23x =+23y =(1)试求22x y +的值; (2)试求x y y x-的值. 17.某居民小区有块形状为长方形的绿地ABCD ,长BC 为√128米,宽AB 为√50米,现在要长方形绿地中修建两个形状大小相同的长方形花坛(即图中阴影部分),每个长方形花坛的长为(√13+1)米,宽为(√13−1)米.(1)求长方形ABCD 的周长.(结果化为最简二次根式)(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为30元/平方米的地砖,要铺完整个通道,则购买地砖需要花费多少元?18.在数学课外学习活动中,小明和他的同学遇到一道题:已知a =,求2a 2﹣8a+1的值.他是这样解答的: ∵a ===2﹣,∴a ﹣2=﹣ ∴(a ﹣2)2=3,a 2﹣4a+4=3∴a 2﹣4a =﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1.请你根据小明的解析过程,解决如下问题:(1)= ;(2)化简;(3)若a=,求a4﹣10a3+a2﹣20a+5的值.参考答案1.D2.C3.B4.C5.B6.C7.A8.C9.√210.x <211.1212.113.414.(1)原式2222(2)原式333315.解: x =3+2√2=√2(3+2√2)(3−2√2)=3−2√2∴x −3=−2√2<0.原式=x −2+|x−3|x−3 =x −2+3−x x−3=x −2−1=x −3.当x =3+2√2时,原式==3+2√2−3=3−2√2−3=−2√2.16.(1)解:∵23x =和 23y =∴x+y=2323+,xy=(2323+=1 ∴()2222242114x y x y xy +=+-=-⨯= ;(2)解:∵23x =+和 23y =-∴x+y=2323+x-y=((2323232323--=+=xy=(2323=1 ∴()()2242383x y x y x y x y y x xy xy +--⨯-====17.(1)解:2×(√128+√50)=2×(8√2+5√2)=26√2(米)∴长方形ABCD 的周长为26√2米.(2)解:√128×√50−2×(√13+1)×(√13−1)=80−2×12=56(平方米)则56×30=1680(元)∴要铺完整个通道,则购买地砖需要花费1680元.18.解:(1)故答案为:﹣1; (2)==12﹣1=11;(3)∵a =∴a ﹣5=∴(a ﹣5)2=26,即a 2﹣10a+25=26.∴a 2﹣10a =1∴a 4﹣10a 3+a 2﹣20a+5=a 2(a 2﹣10a+1)﹣20a+5=a 2×(1+1)﹣20a+5=2(a 2﹣10a )+5=2+5=7. 答:a 4﹣10a 3+a 2﹣20a+5的值为7.。

中考备考数学一轮复习 二次根式 练习题

中考备考数学一轮复习 二次根式 练习题

中考备考数学一轮复习 二次根式 练习题一、单选题1.(2022·湖北武汉·统考中考真题)下列各式计算正确的是( ) A 235B .3331=C 236=D 1226=2.(2021·湖北荆门·统考中考真题)下列运算正确的是( ) A .235x xB 2()x x -=C .23()x x x -+=D .22(1)21x x x -+=-+3.(2021·湖北襄阳·3x +x 的取值范围是( ) A .3x ≥-B .3x ≥C .3x ≤-D .3x >-4.(2021·湖北恩施·232-这三个实数中任选两数相乘,所有积中小于2的有( )个. A .0B .1C .2D .3二、填空题5.(2022·湖北武汉·统考中考真题)计算()22-的结果是_________.6.(2022·湖北荆州·统考中考真题)若32的整数部分为a ,小数部分为b ,则代数式()22a b ⋅的值是______.7.(2021·湖北黄冈·51-这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设51a -=51b +=则1ab =,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b=+++.则1210S S S +++=____.8.(2021·湖北荆州·统考中考真题)已知:(10132a -⎛⎫=+ ⎪⎝⎭,)(3232b =a b +_____________.9.(2021·湖北黄冈·2x +x 的取值范围是______. 10.(2022·湖北武汉·2(-4)_______________11.(2022·湖北黄冈·统考二模)若y =xy =_____.12.(2022·湖北随州·x 的取值范围是______.13.(2022·湖北孝感·统考模拟预测)那么x 的值可以是_________(只需写出一个)三、解答题14.(2022·湖北十堰·统考中考真题)计算:1202212(1)3-⎛⎫+- ⎪⎝⎭.15.(2022·湖北襄阳·统考中考真题)先化简,再求值:(a +2b )2+(a +2b )(a -2b )+2a (b -a ),其中a,b16.(2022·湖北恩施·统考中考真题)先化简,再求值:22111x x x x --÷-,其中x =17.(2021·湖北荆门·统考中考真题)先化简,再求值:22214244x x x x x x x x +-⎛⎫⋅- ⎪---+⎝⎭,其中3x = 18.(2021·湖北恩施·统考中考真题)先化简,再求值:222414816a a a a a ---÷+++,其中2a =.19.(2021·湖北荆州·统考中考真题)先化简,再求值:2221211a a a a a ++⎛⎫÷+ ⎪--⎝⎭,其中a =20.(2021·湖北黄石·统考中考真题)先化简,再求值:2111a a a -⎛⎫÷ ⎪⎝⎭-,其中31a.21.(2021·湖北襄阳·统考中考真题)先化简,再求值:2211x x x x x ++⎛⎫÷- ⎪⎝⎭,其中1x =.22.(2022·湖北咸宁·统考一模)计算:21|3|()2---23.(2022·湖北襄阳·统考二模)先化简,再求值:2(2)()()5()x y x y x y x x y ++-+--,其中1,1x y ==.24.(2022·湖北襄阳·统考一模)先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =.25.(2022·湖北随州·统考一模)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中3=a .26.(2022·湖北恩施·统考一模)先化简,再求值:22491369x x x x ⎛⎫÷--++ ⎝⎭+⎪,其中3x =.27.(2022·湖北十堰·统考一模)计算:1122-⎛⎫⎪⎝⎭.28.(2022·湖北宜昌·统考一模)计算:01282⎛⎫- ⎪⎝⎭参考答案:1.C【分析】由合并同类二次根式判断A ,B ,由二次根式的乘除法判断C ,D .【详解】解:A ≠B 、原计算错误,该选项不符合题意;C =D 22= 故选:C .【点睛】本题考查合并同类二次根式,二次根式的乘法,二次根式的乘方运算,掌握以上知识是解题关键. 2.D【分析】根据相应运算的基本法则逐一计算判断即可 【详解】∵()236x x -=,∵A 计算错误;||x =, ∵B 计算错误; ∵2()x -+x 无法运算, ∵C 计算错误; ∵22(1)21x x x -+=-+, ∵D 计算正确; 故选D .【点睛】本题考查了幂的乘方,二次根式的化简,完全平方公式,熟练掌握各类公式的计算法则是解题的关键. 3.A【分析】根据二次根式有意义的条件,列出不等式,即可求解.【详解】∵ ∵x +3≥0,即:3x ≥-, 故选A .【点睛】本题主要考查二次根式有意义的条件,掌握二次根式的被开方式是非负数,是解题的关键. 4.C【分析】根据题意分别求出这三个实数中任意两数的积,进而问题可求解. 【详解】解:由题意得:(326,222,326-=-=---=∵所有积中小于2的有6,2--两个; 故选C .【点睛】本题主要考查二次根式的乘法运算,熟练掌握二次根式的乘法运算是解题的关键. 5.2【分析】根据二次根式的性质进行化简即可. 2(2)2-. 故答案为:2.()()2(0000a a a a a a a ⎧⎪==⎨⎪-⎩>)<.6.2【分析】先由122<得到1322<,进而得出a 和b ,代入()22a b ⋅求解即可. 【详解】解:∵ 122<, ∵1322<<,∵ 32的整数部分为a ,小数部分为b , ∵1a =,32122b ==∵()((222222242a b ⋅=⨯=-=, 故答案为:2.【点睛】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 7.10【分析】先根据1ab =求出1111n n nS a b =+++(n 为正整数)的值,从而可得1210,,,S S S 的值,再求和即可得. 【详解】解:1ab =,111111()1n n n n n n n a S a b a a b ∴=+=+++++(n 为正整数),11()n n n n a a a ab =+++, 111n n n a a a =+++, 1=,12101S S S ===∴=, 则121010S S S +++=,故答案为:10.【点睛】本题考查了二次根式的运算、分式的运算,正确发现一般规律是解题关键. 8.2【分析】利用负整数指数幂和零指数幂求出a 的值,利用平方差公式,求出b 的值,进而即可求解.【详解】解:∵(112213a -⎛⎫=+ =⎪+⎝=⎭,221b ==-=,2, 故答案是:2.【点睛】本题主要考查二次根式求值,熟练掌握负整数指数幂和零指数幂以及平方差公式,是解题的关键. 9.x ≥-2【分析】根据二次根式有意义的条件:被开方数为非负数,列不等式求解即可. 【详解】由题意可知x +2≥0, ∵x ≥-2.故答案为:x ≥-2.【点睛】此题主要考查了二次根式有意义的条件,明确被开方数为非负数是解题关键. 10.4【分析】根据二次根式的性质进行求解即可.44-=,故答案为:4.a =是解题的关键. 11.【分析】根据二次根式有意义的条件得到x 和y 的值后可以得到解答. 【详解】解:由题意可得:x -2=2-x=0, ∵x=2,=∵xy=故答案为【点睛】本题考查二次根式的应用,熟练掌握二次根式有意义的条件是解题关键. 12.2x ≤且1x ≠【分析】根据二次根式和分式有意义的条件即可得出答案.【详解】解:根据题意得:2-x≥0,且x+1≠0,∵x≤2且x≠1,故答案为:x≤2且x≠1.【点睛】本题考查了二次根式和分式有意义的条件,掌握二次根式中的被开方数是非负数和分母≠0是解题的关键.13.3-(答案不唯一)5x+2x+5=2,解得x即可.5x+25x+x+5=2,解得,x=-3,故答案为:-3(答案不唯一).【点睛】本题考查了同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式,此题是开放题,只要满足题意即可.145【分析】根据负整数指数幂、乘方、绝对值的性质化简后计算即可.【详解】解:12022 125(1)3-⎛⎫+--⎪⎝⎭3521=-5【点睛】本题考查实数的混合运算,解题的关键是根据负整数指数幂、绝对值的性质化简.15.6,6ab【分析】直接利用完全平方公式、平方差公式化简,进而合并同类项,再把已知数据代入得出答案.【详解】解:原式=2222244422a b ab a b ab a+++-+-6ab=;a32b32,∵原式63232=6=【点睛】此题主要考查了二次根式的混合运算与整式的混合运算——化简求值,正确掌握整式的混合运算法则是解题关键.16.1x 【分析】先将除法转化为乘法,根据分式的性质约分,然后根据分式的减法进行化简,最后代入字母的值即可求解. 【详解】解:原式=()()21111x x xx x +-⋅-- 11x x=+- 1x xx +-= 1x=;当x ===. 【点睛】本题考查了分式的化简求值,分母有理化,正确的计算是解题的关键.17.21(2)x -;3+【分析】根据分式的减法和乘法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题. 【详解】2221()4244x x x x x x x x +-⋅----+ 22221(2)(2)(1)4(2)(2)4(2)(2)x x x x x x x x x x x x x x x x x ⎡⎤⎡⎤+-+--=⋅-=-⎢⎥⎢⎥------⎣⎦⎣⎦22414(2)(2)x x x x x x -=⋅=---将3x =3===+ 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18.22-+a , 【分析】先对分式进行化简,然后再代入进行求解即可.【详解】解:原式=()()()242421142222a a a a a a a a +-+-+-⨯=-=-+++;把2a 代入得:原式==【点睛】本题主要考查二次根式的运算及分式的化简求值,熟练掌握分式的运算及二次根式的运算是解题的关键. 19.1a a +6+3【分析】先计算括号内的加法,然后化除法为乘法进行化简,继而把23a =【详解】解:原式=()()21111a a a a a ++⎛⎫÷ ⎪--⎝⎭ ()()211=1+1a a a a a +-⎛⎫ ⎪-⎝⎭1=a a+ 当3a =232316+3+【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则. 20.11a +3【分析】先算括号内的减法,再把除法化为乘法,然后因式分解,约分化简,代入求值,再将结果化为最简二次根式即可. 【详解】解:原式=1(1)(1)()aa a a a a1(1)(1)a aa a a1=1a +, 将31a 代入,原式33113==-+【点睛】本题主要考查分式的化简求值,掌握因式分解,分式的通分,约分,二次根式的化简是解题的关键. 21.11x x +-;12【分析】将被除数中分子因式分解,括号里先通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,然后约分,得到最简结果,代入x 的值计算即可. 【详解】解:原式()2211x x xx x +⎛⎫=÷- ⎪⎝⎭, ()2211x x xx+-=÷,()()()2111x xx x x +=⋅+-,11x x +=-.当1x =时,原式1===【点睛】此题主要考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应先将多项式因式分解后再约分. 22.1-【分析】由21|3|3)2-=--==【详解】解:21|3|()2---34=-+1=-【点睛】本题考查实数的混合运算,涉及绝对值、负整指数幂、算术平方根等知识,是重要考点,掌握相关知识是解题关键. 23.9xy ,9.【分析】先按照完全平方公式、平方差公式、多项式乘以多项式计算整式的乘法,再合并同类项即可.【详解】解:2(2)()()5()x y x y x y x x y ++-+-- 222224455x xy y x y x xy =+++--+9.xy =当1,1x y ==上式)9119.==【点睛】本题考查的是整式的化简求值,同时考查了二次根式的混合运算,掌握完全平方公式与平方差公式进行简便运算是解题的关键.24【分析】根据分式的运算法则进行化简,再代入求解.【详解】解:原式=21(1)32(3)x x x x --⎛⎫÷⎪++⎝⎭212(3)3(1)x x x x -+⎛⎫=⋅ ⎪+-⎝⎭21x =- 将21x =22=. 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.25.13a +3【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值. 【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭ 212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭ 2311(3)a a a a ++=⋅++ 13a =+, 当33=a 时,原式33333==-+ 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.26323+【分析】先通分,再约分化简成最简形式,然后代入已知数值计算即可.【详解】(1﹣43x +)÷22969x x x -++ =234(3)3(3)(3)x x x x x +-+⋅++- =13x x -- 当33x =331323233333+-++=+- 【点睛】本题主要考查了分式化简求值,将分式化简成最简形式是解题的关键. 27.3【分析】先计算负整数指数幂、化最简二次根式、去绝对值,再进行加减计算即可. 【详解】解:原式=22323-=3-【点睛】本题考查二次根式的混合运算,涉及负整数指数幂、化最简二次根式和去绝对值.掌握二次根式的混合运算法则是解题关键.28.1-【分析】根据零指数幂,二次根式以及绝对值的性质,求解即可.【详解】解:1 22⎛⎫- ⎪⎝⎭21=-1=-【点睛】此题考查了实数的有关运算,涉及了零指数幂,二次根式的化简以及绝对值的性质,解题的关键是熟练掌握相关运算法则.。

2022年中考数学《分式 二次根式》专题训练及答案

2022年中考数学《分式 二次根式》专题训练及答案

2022年中考数学《分式 二次根式》专题训练及答案一.选择题(共19小题)1.将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖( )A .20%B .x+y 2×100%C .x+3y 20×100%D .x+3y 10x+10y ×100% 2.要使分式1x+2有意义,x 的取值应满足( ) A .x ≠0B .x ≠﹣2C .x ≥﹣2D .x >﹣2 3.1a +2a =( )A .3B .32aC .2a 2 D .3a 4.下列计算正确的是( )A .√22=2B .√(−2)2=−2C .√22=±2D .√(−2)2=±25.下列计算正确的是( )A .√22=±2B .x 2+x 2=2x 4C .(x ﹣y )2=x 2﹣y 2D .(﹣2x 2)3=﹣8x 6 6.代数式√x+1x在实数范围内有意义时,x 的取值范围为( ) A .x >﹣1B .x ≥﹣1C .x ≥﹣1且x ≠0D .x ≠0 7.√3×√6=( )A .3B .3√2C .2√3D .68.下列运算正确的是( )A .√9=±3B .2+√5=2√5C .a 2•a 3=a 6D .(﹣a 3)2=a 69.下列计算中,正确的是( )A .√2+√3=√5B .2+√2=2√2C .√2×√3=√6D .2√5+3√5=6√510.二次根式√x −3中字母x 的取值范围是( )A .x <3B .x ≤3C .x >3D .x ≥311.若方程组{2x −3y =83x −2y =17,设x +y =a 2,x ﹣y =b 2,则代数式√a 2b 2的值为( ) A .±3√5B .3√5C .3√3D .5√5 12.要使分式4x x−3有意义,则x 的取值应满足( ) A .x ≠0B .x ≠﹣3C .x ≠3D .x ≠±3 13.使分式x−3x−4有意义的字母x 的取值范围是( )A .x ≠0B .x ≠3C .x ≠4D .x ≠3且x ≠4 14.若分式x−2x+3的值为零,则x 为( )A .x =2B .x =﹣3C .x =﹣2D .x =2或x =﹣315.你听说过著名的牛顿万有引力定律吗?任何两个物体之间都有吸引力,如果设两个物体的质量分别为m 1,m 2,它们之间的距离是d ,那么它们之间的引力就是f =gm 1m 2d 2(g 为常数),人在地面上所受的重力近似地等于地球对人的引力,此时d 就是地球的半径R .天文学家测得地球的半径约占木星半径的445,地球的质量约占木星质量的1318,则站在地球上的人所受的地球重力约是他在木星表面上所受木星重力的()A .52倍B .25倍C .25倍D .4倍16.下列运算正确的是( )A .(﹣2a 2b ﹣1)2=4a 4b 2 B .(a +b )2=a 2+b 2C .√5−3√5=−2D .2a a 2−b 2+2b b 2−a 2=2a−b17.已知m ,n 是非零实数,设k =m n =m+3n m ,则( )A .k 2=3﹣kB .k 2=k ﹣3C .k 2=﹣3﹣kD .k 2=k +318.下列计算结果是负数的是( )A .2﹣3B .3﹣2C .(﹣2)3D .(﹣3)219.计算|﹣2|+2﹣1的结果是( )A .﹣112B .0C .112D .212二.填空题(共10小题)20.数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题:已知实数a ,b 同时满足a 2+2a =b +2,b 2+2b =a +2,求代数式b a +a b 的值.结合他们的对话,请解答下列问题:(1)当a =b 时,a 的值是 .(2)当a ≠b 时,代数式b a +a b 的值是 .21.若√x −1有意义,则x 的值可以是 .(写出一个即可)22.要使式子√x −3有意义,则x 可取的一个数是 .23.计算:√48√12= . 24.若二次根式√x 有意义,实数则x 的取值范围是 .25.二次根式√x 中字母x 的取值范围是 .26.已知√x −11−|7﹣x |+√(x −9)2=3y ﹣2,则2x ﹣18y 2= .27.使√x−2有意义的x 的取值范围为 . 28.若ab =13,则分式a a−b 的值为 .29.若分式x+5x−2的值为0,则x 的值为 .三.解答题(共11小题)30.先化简,再求值:x 2x−3+93−x ,其中x =1. 31.(1)计算:2﹣1+√12−sin30°; (2)化简并求值:1−a a+1,其中a =−12.32.先化简,再求值:x 2+x x 2−2x+1÷(2x−1−1x ),然后在﹣2<x ≤2的范围内选取一个合适的x 的整数值代入求值. 33.化简:x x−1−1x+1−1.小马的解答如下,小马的解答正确吗?如果不正确,写出正确的解答. 解:x x−1−1x+1−1=x (x +1)﹣(x ﹣1)﹣1=x 2+x ﹣x +1﹣1=x 234.请你阅读圆圆同学的解题过程,并回答所提出的问题.计算:3x−1+x−31−x 2.圆圆的解法原式=3(x+1)(x+1)(x−1)−x−3(x+1)(x−1)⋯①=3x+3−x−3(x+1)(x−1)⋯②=2x (x+1)(x−1)⋯③问:圆圆在第 步开始出错(写出序号即可);请你给出正确的解答过程.35.已知m =a 2b ,n =3a 2﹣2ab (a ≠0,a ≠b ).(1)当a =3,b =﹣2时,分别求m ,n 的值.(2)当m =12,n =18时,求1b −23a 的值.36.(1)计算:2sin30°+|√3−2|﹣(2021﹣π)0﹣(12)﹣2;(2)先化简,再求值x−2x 2−9÷x−2x−3,其中x =﹣4.37.(1)计算:(﹣2)0+|√3−2|−(12)−1−(−2)3;(2)先化简,再求值:(x x+2+2x−2)÷1x 2−4,其中x =﹣1. 38.(1)计算:|﹣2|−√273+(√3−1)0.(2)化简:9a 23a−1+11−3a .39.先化简再求值:x 2−2x+1x+2÷(2−x −3x+2),其中x =|2−2√3|+(12)−2−√643×cos30°. 40.(1)化简:(4a−2+3)÷1a−2;(2)解不等式组:{3x +1≤2(2+3x)2x −3<x .参考答案与试题解析一.选择题(共19小题)1.【解答】解:由题意可得,混合后的糖水含糖:10%x+30%y x+y ×100%=x+3y 10x+10y ×100%, 故选:D .2.【解答】解:要使分式1x+2有意义,则x +2≠0, 解得:x ≠﹣2.故选:B .3.【解答】解:1a +2a =1+2a =3a , 故选:D .4.【解答】解:A .√22=2,故本选项符合题意;B .√(−2)2=2,故本选项不符合题意;C .√22=2,故本选项不符合题意;D .√(−2)2=2,故本选项不符合题意;故选:A .5.【解答】解:A 选项,原式=2,故该选项不符合题意; B 选项,原式=2x 2,故该选项不符合题意;C 选项,原式=x 2﹣2xy +y 2,故该选项不符合题意;D 选项,原式=﹣8x 6,故该选项符合题意;故选:D .6.【解答】解:根据题意得x +1≥0,且x ≠0.∴x ≥﹣1且x ≠0.故选:C .7.【解答】解:原式=√3×6=√18=3√2,故选:B .8.【解答】解:A .√9=3,故此选项错误;B .2+√5,无法计算,故此选项错误;C .a 2•a 3=a 5,故此选项错误;D .(﹣a 3)2=a 6,故此选项正确.故选:D .9.【解答】解:A 、√2与√3不是同类二次根式,故A 错误.B 、2与√2不是同类二次根式,故B 错误.C 、原式=√6,故C 正确.D 、原式=5√5,故D 错误.故选:C .10.【解答】解∵二次根式√x −3有意义,∴x ﹣3≥0,解得:x ≥3.故选:D .11.【解答】解:解方程组{2x −3y =83x −2y =17,得:{x =7y =2, 则a 2=x +y =9,b 2=x ﹣y =7﹣2=5.则√a 2b 2=√9×5=3√5.故选:B .12.【解答】解:由题意得:x ﹣3≠0,∴x ≠3,故选:C .13.【解答】解:根据题意得x ﹣4≠0,则x ≠4.故选:C .14.【解答】解:由题意得:x ﹣2=0且x +3≠0,解得:x =2,故选:A .15.【解答】解:设木球的质量为M ,则地球的质量为1318M ,一个人的质量为m , ∵地球的半径为R ,地球的半径约占木星半径的445, ∴木星的半径为R ÷445=R •454=45R 4,∴站在地球上的人所受的地球重力约是他在木星表面上所受木星重力的:gm 1318M R 2gmM (45R 4)2=20255088≈0.4,故选:B .16.【解答】解:A 选项,原式=4a 4b ﹣2=4a 4b 2,故该选项正确,符合题意;B 选项,(a +b )2=a 2+2ab +b 2,故该选项错误,不符合题意;C选项,原式=﹣2√5,故该选项错误,不符合题意;D选项,原式=2aa2−b2−2ba2−b2=2(a−b)(a+b)(a−b)=2a+b,故该选项错误,不符合题意.故选:A.17.【解答】解:k=m+3nm=1+3n m,又∵k=m n,∴k=1+3nm=1+3k,∴k2=k+3,故选:D.18.【解答】解:A、2﹣3=18,故此选项不合题意;B、3﹣2=19,故此选项不合题意;C、(﹣2)3=﹣8,故此选项符合题意;D、(﹣3)2=9,故此选项不合题意;故选:C.19.【解答】解:|﹣2|+2﹣1=2+12=212.故选:D.二.填空题(共10小题)20.【解答】解:(1)当a=b时,a2+2a=a+2,a2+a﹣2=0,(a+2)(a﹣1)=0,解得:a=﹣2或1,故答案为:﹣2或1;(2)联立方程组{a2+2a=b+2①b2+2b=a+2②,将①+②,得:a2+b2+2a+2b=b+a+4,整理,得:a2+b2+a+b=4③,将①﹣②,得:a2﹣b2+2a﹣2b=b﹣a,整理,得:a2﹣b2+3a﹣3b=0,(a+b)(a﹣b)+3(a﹣b)=0,(a﹣b)(a+b+3)=0,又∵a≠b,∴a+b+3=0,即a+b=﹣3④,将④代入③,得a2+b2﹣3=4,即a2+b2=7,又∵(a +b )2=a 2+2ab +b 2=9∴ab =1,∴b a +a b =b 2+a 2ab =7,故答案为:7.21.【解答】解:由题意可得:x ﹣1≥0,即x ≥1.则x 的值可以是大于等于1的任意实数.故答案为:2(答案不唯一).22.【解答】解:要使式子√x −3有意义,必须x ﹣3≥0, 解得:x ≥3,所以x 可取的一个数是4,故答案为:4(答案不唯一).23.【解答】解:√48√12=√4812=√4=2.故答案为:2.24.【解答】解:若二次根式√x 有意义,则x ≥0. 故答案为x ≥0.25.【解答】解:由二次根式有意义的条件可知,二次根式√x 中字母x 的取值范围是x ≥0. 故答案为:x ≥0.26.【解答】解:∵√x −11一定有意义,∴x ≥11,∴√x −11−|7﹣x |+√(x −9)2=3y ﹣2,√x −11−x +7+x ﹣9=3y ﹣2,整理得:√x −11=3y ,∴x ﹣11=9y 2,则2x ﹣18y 2=2x ﹣2(x ﹣11)=22.故答案为:22.27.【解答】解:∵√x−2有意义,∴{x −2≥0x −2≠0,解得x >0. 故答案为:x >2.28.【解答】解:∵a b =13, ∴设a =k ,b =3k (k ≠0),∴原式=k k−3k=k −2k=−12,故答案为:−12.29.【解答】解:由题意可得:x +5=0且x ﹣2≠0, 解得x =﹣5.故答案为:﹣5.三.解答题(共11小题)30.【解答】解:原式=x 2x−3−9x−3 =x 2−9x−3=(x+3)(x−3)x−3 =x +3,当x =1时,原式=1+3=4.31.【解答】解:(1)2﹣1+√12−sin30° =12+2√3−12=2√3;(2)1−a a+1=a+1a+1−a a+1 =a+1−a a+1 =1a+1, 当a =−12时,原式=1−12+1=2. 32.【解答】解:原式=x(x+1)(x−1)2÷[2x x(x−1)−x−1x(x−1)] =x(x+1)(x−1)2÷2x−x+1x(x−1) =x(x+1)(x−1)2⋅x(x−1)x+1=x 2x−1, ∵x (x ﹣1)≠0,且x +1≠0,∴x ≠0且x ≠±1,∴整数x 可以取2,当x =2时,原式=222−1=4. 33.【解答】解:不正确,正确解答如下:x x−1−1x+1−1=x(x+1)x 2−1−x−1x 2−1−x 2−1x 2−1=x 2+x−x+1−x 2+1x 2−1 =2x 2−1. 34.【解答】解:②;正确解答如下:原式=3(x+1)(x+1)(x−1)−x−3(x+1)(x−1)=3x+3−x+3(x+1)(x−1)=2x+6(x+1)(x−1)=2x+6x 2−1. 故答案为:②.35.【解答】解:(1)当a =3,b =﹣2时,m =a 2b =32×(﹣2)=﹣18,n =3a 2﹣2ab =3×32﹣2×3×(﹣2)=27+12=39;(2)由题意得,m =a 2b =12,n =3a 2﹣2ab =18, 则1b −23a =3a−2b 3ab =3a 2−2ab3a 2b=183×12=12. 36.【解答】解:(1)原式=2×12+2−√3−1﹣4=1+2−√3−1﹣4=﹣2−√3;(2)原式=x−2(x+3)(x−3)•x−3x−2 =1x+3,当x =﹣4时,原式=1−4+3=−1. 37.【解答】解:(1)原式=1+2−√3−2+8 =9−√3;(2)(x x+2+2x−2)÷1x 2−4 =(x x+2+2x−2)•(x +2)(x ﹣2)=x (x ﹣2)+2(x +2)=x 2﹣2x +2x +4=x 2+4,当x =﹣1时,原式=(﹣1)2+4=1+4=5.38.【解答】解:(1)原式=2﹣3+1 =0;(2)原式=9a 23a−1−13a−1 =9a 2−13a−1 =(3a+1)(3a−1)3a−1=3a +1.39.【解答】解:原式=(x−1)2x+2÷(4−x 2x+2−3x+2) =(x−1)2x+2÷1−x 2x+2=(x−1)2x+2•x+2(1+x)(1−x) =1−x x+1. ∵x =2√3−2+4﹣4×√32=2, ∴原式=1−22+1=−13.40.【解答】解:(1)原式=4+3(a−2)a−2×(a ﹣2) =4+3a ﹣6=3a ﹣2;(2){3x+1≤2(2+3x)②2x−3<x①,解①得:x≥﹣1,解②得:x<3,故不等式组的解集是:﹣1≤x<3.。

初中数学分式和二次根式专题训练【含答案】

初中数学分式和二次根式专题训练【含答案】

分式和二次根式专题训练一、填空题:(每题 3 分,共 36 分)1、当 x____时,分式有意义。

2、当____时,有意义。

3、计算:-a-1=____。

4、化简:(x2-xy)÷=____。

5、分式,,的最简公分母是____。

6、比较大小:2____3。

7、已知=,则的值是____。

8、若最简根式和是同类根式,则 x+y=____。

9、仿照2=·==的做法,化简3=____。

10、当 2<x<3 时,-=____。

11、若的小数部分是 a,则 a=____。

12、若=++2成立,则 x+y=____。

二、选择题:(每题 4 分,共 24 分)1、下列各式中,属于分式的是()A、 B、 C、x+ D、2、对于分式总有()A、=B、=C、=D、=3、下列根式中,属最简二次根式的是()A、 B、 C、 D、4、可以与合并的二次根式是()A、 B、 C、 D、5、如果分式中的 x 和都扩大为原来的 2 倍,那么分式的值()A、扩大 2 倍B、扩大 4 倍C、不变D、缩小 2 倍6、当 x<0 时,|-x|等于()A、0B、-2xC、2xD、-2x或0三、计算:(每题 6 分,共 24 分)1、()3÷()0×(-)-22、(+)÷3、-+4、(3-2)2四、计算:(每题 6 分,共 24 分)1、-+2、÷(x+1)·3、-·4、4b+-3ab (+)五、解答题:(每题 8 分,共 32 分)1、某人在环形跑道上跑步,共跑两圈,第一圈的速度是 x 米/分钟,第二圈的速度是米/分钟(x>),则他平均一分钟跑的路程是多少?2、若菱形的两条对角线的长分别为 3+2和 3-2,求菱形的面积。

3、如图,是某住宅的平面结构示意图,图中标明了有关尺寸(墙体厚度忽略不计,单位:m),房主计划把卧室以外的地面都铺上地砖,如果他选用的地砖的价格是 a 元/m2,则买砖至少需要多少元?若每平方米需砖 b 块,则他应该买多少块砖?(用含 a,x,的代数式表示)。

最新八年级数学整式与分式与二次根式练习题

最新八年级数学整式与分式与二次根式练习题

第二章 整式一、中考导航图解:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧→⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎭⎬⎫⎩⎨⎧分组分解法十字相乘法公式法提公因式法基本方法因式分解的意义因式分解多项式乘项式单项式乘多项式单项式乘单项式积的乘方幂的乘法同底数幂的乘法整式乘法多项式除以多项式单项式除以单项式零指数和负整数指数幂同底数幂的除法整式除法整式乘除去括号与添括号合并同类项整式的加减同类项多项式的排列次数项数多项式次数系数单项式整式的概念整式、 二、数学反射及数学方法:1、整体代入法例1、已知x 2+xy=2,,y 2+xy=5,则222121y xy x ++的值是多少?练习:若a 、b 都是正数。

且b a b a +=-211,则22ba ab -的值是多少?2、利用同类项的定义做题。

例2、若单项式2a m+2n b n-2m+2与a 5b 7是同类项,求n m 的值.3、利用乘法公式做题:例3、若a 2+b 2=5,ab=2,则(a+b )2=__________。

4、创新应用题:例4、从边长为a 的正方形内去掉一个边长为b 的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是( )A .a 2-b 2=(a+b )(a-b ) B.(a-b )2=a 2-2ab+b 2C.(a+b )2=a 2+2ab+b 2 D .a 2+ab=a (a+b )5、逆用公式法。

例5、已知x m =2,x n =3,求(1)x 2m+3n ; (2)x 2m-3n .第三章 分式一、、中考导航图解。

中考数学总复习《二次根式》专项测试题-附参考答案

中考数学总复习《二次根式》专项测试题-附参考答案

中考数学总复习《二次根式》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.已知n是正整数,√48n是整数,则n的最小值是( )A.1B.2C.3D.42.下列二次根式中,是最简二次根式的是( ).A.√9B.√12C.√13D.√15 3.按如图所示的程序计算,若开始输入的n值为√2,则最后输出的结果是( )A.14B.16C.8+5√2D.14+√24.在式子2x−1,1x−2,√x−1,√x−2中,x可以同时取1和2的是( )A.2x−1B.1x−2C.√x−1D.√x−25.下列各式中,化简后能与√2合并的是( )A.√12B.√8C.√23D.√0.26.下列运算中:①√4+√(−2)2=0;②√17−√10=√7;③√6√6√6=√6;④√12÷2√3=3;⑤(√6−√24)÷√6=−1;⑥(√6−√6)×√6=√6−1其中正确的有( )A.4个B.3个C.2个D.1个7.等式√x−3√x+1=√x−3x+1成立的x的取值范围在数轴上可表示为( )A.B.C.D.8.已知长方形的面积为12,其中一边长为2√2,则另一边长为( )A.2√2B.3√3C.3√2D.2√3二、填空题(共5题,共15分)9.求代数式√2x+1x−2有意义时的x的范围是.10.已知x、y为实数,且y=√x2−16−√16−x2−3,则x-y= .11.若式子√3−a的值为非负数,则满足条件的所有整数a的方差是12.当a= 时,最简二次根式√a−3与√12−2a的被开数相同。

13.最简二次根式:如果一个二次根式满足下列两个条件:(1)被开方数不含有能的因数或因式;(2)被开方数中的因数是,字母因式是我们把这个二次根式叫最简二次根式,注:二次根式的运算结果应化为最简二次根式.三、解答题(共3题,共45分)14.先化简,再求值:(2a+1−2a+1a2−1)÷a−1a2−2a+1其中a=√3−1.15.大家知道√2是无理数,而无理数是无限不循环小数,因此√2的小数部分我们不可能全部写出来1<√2<2于是可用√2−1来表示√2的小数部分.请解答下列问题:(1) √35的整数部分是,小数部分是.(2) 如果√11的小数部分为a,√27的整数部分为b,求a+b−√11的值.(3) 已知:90+√117=x+y其中x是整数,且0<y<1,求x+√117+59−y的平方根.−(2+√3)(2−√3)+√27÷√12.16.计算:√12参考答案1. 【答案】C2. 【答案】D3. 【答案】C4. 【答案】B5. 【答案】B6. 【答案】D7. 【答案】D8. 【答案】C9.【答案】x≥12,且x≠210.【答案】7或-111.【答案】351212.【答案】513.【答案】化为平方数或平方式;整数;整式14. 【答案】原式=[2a−2(a+1)(a−1)−2a+1(a+1)(a−1)]÷a−1(a−1)2 =−3(a+1)(a−1)⋅(a−1)=−3a+1,当a=√3−1时原式=√3−1+1=−√3.15. 【答案】(1) 5;√35−5(2) 3<√11<4由题意可知:a=√11−3,b=5所以原式=√11−3+5−√11 =2.(3) 10<√117<11有题意可知:x=100,y=√117−10所以原式=169所以平方根为−13,13.16. 【答案】√12−(2+√3)(2−√3)+√27÷√12=√22−(4−3)+√94=√22−1+32=√2+12.。

(完整版)二次根式专题练习(含答案)

(完整版)二次根式专题练习(含答案)

初二数学专题练习《二次根式》一.选择题1.式子在实数范围内有意义,则x 的取值范围是()A .x<1 B.x≤1 C .x> 1D. x≥ 12.若 1<x<2,则的值为() A .2x﹣4 B.﹣ 2 C .4﹣2x D.2 3.下列计算正确的是() A .=2B.=C.=x D.=x 4.实数 a , b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B.2a ﹣b C .﹣ b D.b5.化简+ ﹣的结果为()A.0 B.2 C .﹣2 D. 26.已知 x<1,则化简的结果是() A . x﹣ 1 B.x+1 C .﹣ x﹣1D . 1﹣ x7.下列式子运算正确的是() A .B. C .D.8.若,则 x3﹣ 3x2+3x 的值等于()A .B. C .D.二.填空题9.要使代数式有意义,则 x 的取值范围是.10.在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为.11.计算:=.12.化简:=.13.计算:(+)=.14.观察下列等式:第 1 个等式: a 1==﹣1,第 2 个等式: a 2==﹣,第 3 个等式: a 3==2﹣,第 4 个等式: a 4==﹣2,按上述规律,回答以下问题:( 1)请写出第 n 个等式: a n=;( 2) a 1+a 2+a 3+ +a n =.15.已知 a 、b 为有理数,m 、n 分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b=.16.已知: a <0,化简=.17.设,,,,.设,则 S=(用含n的代数式表示,其中n 为正整数).三.解答题18.计算或化简:﹣(3+);19.计算:(3﹣)(3+)+(2﹣)20.先化简,再求值:,其中x=﹣3﹣(π﹣3)0.21.计算:(+ )× .22.计算:×(﹣)+| ﹣2 |+ ()﹣3.23.计算:(+1 )(﹣1)+ ﹣()0.24.如图,实数 a 、b 在数轴上的位置,化简:.25.阅读材料,解答下列问题.例:当 a >0 时,如 a=6 则|a|=|6|=6,故此时a的绝对值是它本身;当 a=0 时, |a|=0 ,故此时 a 的绝对值是零;当 a <0 时,如 a= ﹣ 6 则|a|=| ﹣ 6|= ﹣(﹣ 6),故此时 a 的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:( 1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.26.已知: a=,b=.求代数式的值.27.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)( 1)请用不同的方法化简.(2=;=.(3)化简:+++ +.28.化简求值:,其中..参考答案与解析一.选择题1.( 2016? 贵港)式子在实数范围内有意义,则x 的取值范围是()A . x< 1B.x≤1 C . x>1D.x≥1【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得 x 的取值范围.【解答】解:依题意得: x﹣ 1> 0,解得 x>1.故选: C.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零..2.( 2016? 呼伦贝尔)若 1<x<2,则的值为()A . 2x﹣4 B.﹣ 2 C .4﹣2x D.2【分析】已知 1< x< 2,可判断 x﹣3<0,x﹣ 1>0,根据绝对值,二次根式的性质解答.【解答】解:∵ 1< x< 2,∴x﹣ 3< 0, x﹣ 1>0,原式 =|x ﹣ 3|+=|x ﹣3|+|x﹣1|=3﹣x+x ﹣ 1=2.故选 D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当 a > 0 时,表示a的算术平方根;当 a=0 时,=0 ;当 a 小于 0 时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.3.( 2016? 南充)下列计算正确的是()A .=2B.= C .=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解: A 、=2,正确;B、=,故此选项错误;C 、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选: A..【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.4.( 2016? 潍坊)实数 a ,b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B. 2a ﹣ b C .﹣ bD .b【分析】直接利用数轴上 a ,b 的位置,进而得出 a <0,a ﹣b < 0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示: a <0,a ﹣b <0,则 |a|+=﹣a ﹣( a ﹣b )=﹣2a+b .故选: A.【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.5.( 2016? 营口)化简+﹣的结果为()A.0 B.2C.﹣2D.2【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+﹣=3 +﹣2=2,故选: D.【点评】本题考查了二次根式的加减,先化简,再加减运算.6.已知 x<1,则化简的结果是()A . x﹣ 1B.x+1 C .﹣ x﹣1 D.1﹣x【分析】先进行因式分解, x2﹣2x+1= (x﹣1)2,再根据二次根式的性质来解题即可..【解答】解:==|x ﹣1|∵x< 1,∴原式 =﹣( x﹣ 1) =1﹣ x,故选 D.【点评】根据完全平方公式、绝对值的运算解答此题.7.下列式子运算正确的是()A.B.C.D.【分析】根据二次根式的性质化简二次根式:=|a|;根据二次根式分母有理化的方法“同乘分母的有理化因式”,进行分母有理化;二次根式的加减实质是合并同类二次根式.【解答】解: A 、和不是同类二次根式,不能计算,故 A 错误;B、=2,故B错误;C、=,故C错误;D、=2 ﹣+2+ =4,故 D 正确.故选: D.【点评】此题考查了根据二次根式的性质进行化简以及二次根式的加减乘除运算,能够熟练进行二次根式的分母有理化.8.若,则x3﹣3x2+3x的值等于()A.B.C.D..【分析】把 x 的值代入所求代数式求值即可.也可以由已知得(x﹣1)2 =3,即 x2﹣ 2x﹣2=0,则 x3 ﹣3x2+3x=x (x2﹣ 2x﹣2)﹣( x2﹣2x ﹣2)+3x ﹣ 2=3x﹣ 2,代值即可.【解答】解:∵ x3﹣3x2 +3x=x ( x2﹣3x+3 ),∴当时,原式 =()[﹣3()+3]=3+1 .故选 C.【点评】代数式的三次方不好求,就先提取公因式,把它变成二次方后再代入化简合并求值.二.填空题9.( 2016? 贺州)要使代数式有意义,则x的取值范围是x≥﹣ 1 且 x≠0.【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于 0,列不等式组求解.【解答】解:根据题意,得,解得 x≥﹣ 1 且 x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.10.( 2016? 乐山)在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为3.【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得: a ﹣5<0,a ﹣ 2> 0,则+|a ﹣ 2|=5﹣a+a ﹣2=3.11.( 2016? 聊城)计算:=12.【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12 .故答案为: 12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.12.( 2016? 威海)化简:=.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式 =3﹣2=.故答案为:.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.13.( 2016? 潍坊)计算:(+)=12.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式 = ?(+3)=×4=12 .算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.( 2016? 黄石)观察下列等式:第 1 个等式: a 1= = ﹣ 1,第 2 个等式: a 2= = ﹣,第 3 个等式: a 3= =2﹣,第 4 个等式: a 4= = ﹣ 2,按上述规律,回答以下问题:( 1)请写出第 n 个等式: a n= = ﹣;;( 2) a 1+a 2+a 3+ +a n = ﹣1 .【分析】( 1)根据题意可知,a 1= = ﹣1,a 2 = = ﹣,a 3= =2 ﹣,a 4== ﹣ 2,由此得出第 n 个等式: a n = = ﹣;( 2)将每一个等式化简即可求得答案.【解答】解:(1)∵第 1 个等式: a 1= = ﹣1,第 2 个等式: a 2= = ﹣,第 3 个等式: a 3= =2﹣,第 4 个等式: a 4= = ﹣2,∴第 n 个等式: a n= = ﹣;(2) a 1+a 2+a 3+ +a n=(﹣1)+(﹣)+(2﹣)+(﹣2)++(﹣)故答案为=﹣;﹣1.【点评】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.15.已知 a 、b 为有理数, m 、n 分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5.【分析】只需首先对估算出大小,从而求出其整数部分 a ,其小数部分用﹣a表示.再分别代入 amn+bn 2=1 进行计算.【解答】解:因为 2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把 m=2 ,n=3 ﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得( 6a+16b )﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以 6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以 2a+b=3 ﹣0.5=2.5 .故答案为: 2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.16.已知: a <0,化简=﹣2.【分析】根据二次根式的性质化简.【解答】解:∵原式 =﹣=﹣又∵二次根式内的数为非负数∴a ﹣ =0∴a=1 或﹣ 1∵a <0∴a= ﹣ 1∴原式 =0﹣2= ﹣2.【点评】解决本题的关键是根据二次根式内的数为非负数得到 a 的值.17.设,,,,.设,则 S=(用含n的代数式表示,其中n 为正整数).【分析】由 S n =1++===,求,得出一般规律.【解答】解:∵ S n =1++===,∴==1+=1+﹣,∴S=1+1﹣ +1+ ﹣ + +1+ ﹣=n+1 ﹣==.故答案为:.【点评】本题考查了二次根式的化简求值.关键是由S n变形,得出一般规律,寻找抵消规律.三.解答题(共11 小题)18.( 2016? 泰州)计算或化简:﹣(3+);【解答】解:(1)﹣(3+)=﹣(+)=﹣﹣=﹣;【点评】本题考查了二次根式的加减法以及分式的混合运算,正确化简是解题的关键.19.( 2016? 盐城)计算:(3﹣)(3+)+(2﹣)【分析】利用平方差公式和二次根式的乘法法则运算.【解答】解:原式 =9 ﹣7+2﹣ 2=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.( 2016? 锦州)先化简,再求值:,其中x=﹣3﹣(π﹣3)0.【分析】先根据分式混合运算的法则把原式进行化简,再把化简后x 的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=×4﹣﹣1,=2 ﹣﹣1,=﹣1.把 x=﹣1代入得到:==.即=.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.21.计算:(+)×.【分析】首先应用乘法分配律,可得(+)×合运算顺序,先计算乘法,再计算加法,求出算式(【解答】解:(+)×= ×+×;然后根据二次根式的混+)×的值是多少即可.=×+×=1+9=10【点评】此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.22.计算:×(﹣)+|﹣2|+ ()﹣3.【分析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8 ,然后化简后合并即可.【解答】解:原式 =﹣+2 +8=﹣3 +2 +8=8﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运.算,然后合并同类二次根式.也考查了负整数整数幂、23.计算:(+1 )(﹣1)+﹣()0.【分析】先根据平方差公式和零指数幂的意义得到原式=3﹣ 1+2﹣1,然后进行加减运算.【解答】解:原式 =3﹣ 1+2﹣1=1+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.24.如图,实数 a 、b 在数轴上的位置,化简:.【分析】本题综合性较强,不仅要结合图形,还需要熟悉算术平方根的定义.【解答】解:由数轴知, a <0,且 b >0,∴a ﹣b <0,∴,=|a| ﹣|b|﹣[﹣(a﹣b)],=(﹣ a )﹣ b+a ﹣b ,=﹣2b .【点评】本小题主要考查利用数轴表示实数取值范围、二次根式的化简、代数式的恒等变形等基础知识,考查基本的代数运算能力.观察数轴确定 a 、 b 及 a ﹣ b 的符号是解答本题的关键,本题巧用数轴给出了每个数的符号,渗透了数形结合的思想,这也是中考时常考的知识点.本题考查算术平方根的化简,应先确定 a 、b 及 a ﹣b 的符号,再分别化简,最后计算.25.阅读材料,解答下列问题.例:当 a >0 时,如 a=6 则|a|=|6|=6,故此时a的绝对值是它本身;当 a=0 时, |a|=0 ,故此时 a 的绝对值是零;当 a <0 时,如 a= ﹣ 6 则|a|=| ﹣ 6|= ﹣(﹣ 6),故此时 a 的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:( 1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.【分析】应用二次根式的化简,首先应注意被开方数的范围,再进行化简.【解答】解:(1)由题意可得=;( 2)由( 1)可得:=|a|.【点评】本题主要考查二次根式的化简方法与运用:①当 a >0 时,=a ;②当 a < 0 时,= ﹣ a ;③当 a=0 时,=0.26.已知: a=,b=.求代数式的值.【分析】先求得 a+b=10 ,ab=1 ,再把求值的式子化为 a 与 b 的和与积的形式,将整体代入求值即可.【解答】解:由已知,得 a+b=10 ,ab=1 ,∴===.【点评】本题关键是先求出a+b 、ab 的值,再将被开方数变形,整体代值.27.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)( 1)请用不同的方法化简.(2=;=.(3)化简:+++ +.【分析】(1 )中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;( 2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;.(2)原式= + +=++ +=.【点评】学会分母有理化的两种方法.28.化简求值:,其中.【分析】由 a=2+,b=2﹣,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式 =+,约分后得+,接着分母有理化和通分得到原式=,然后根据整体思想进行计算.【解答】解:∵ a=2+>0,b=2﹣>0,∴a+b=4 ,ab=1 ,∴原式=+=+=+=,当 a+b=4 ,ab=1 ,原式 =×=4.【点评】本题考查了二次根式的化简求值:先把各二次根式化为最简二次根式,再合并同类二次根式,然后把字母的值代入(或整体代入)进行计算.。

分式方程和二次根式试题和答案

分式方程和二次根式试题和答案

分式方程和二次根式专项讲解一.知识框架二.知识概念1、分式:形如BA,A 、B 是整式,B 中含有未知数且B 不等于0的整式叫做分式。

其中A叫做分式的分子,B 叫做分式的分母。

分式方程的意义:分母中含有未知数的方程叫做分式方程.二次根式:一般地,形如√ā(a≥0)的代数式叫做二次根式。

当a >0时,√a 表示a 的算数平方根,其中√0=0 2、分式有意义的条件:分母不等于03、分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。

用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C 为整式,且C≠0) 5、最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.6、分式的四则运算:①同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加 减.用字母表示为:cba cbc a ±=± ②异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:bdbcad d c b a ±=± ③分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:bdacd c b a =* ④分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.bc ad d c b a =÷(2).除以一个分式,等于乘以这个分式的倒数: cd b a d c b a *=÷ 7、 理解并掌握下列结论: (1)()0≥a a 是非负数; (2)()()02≥=a a a ; (3)()02≥=a a a ;三、知识讲解【例1】(2009年黔东南州)当x_____时,11+x 有意义.(1-≠x )★直通中考:1、(2009年漳州)若分式12x -无意义,则实数x 的值是 x=2 . 2、(2009年天津市)若分式22221x x x x --++的值为0,则x 的值等于 x=2 .3、(2010安徽芜湖)要使式子a +2a有意义,a 的取值范围是( B ) A .a ≠0 B .a >-2且a ≠0 C .a >-2或a ≠0 D .a ≥-2且a ≠0 4、已知有意义,则在平面直角坐标系中,点P (m ,n )位于第 __四__ 象限.【例2】(2009年成都)分式方程2131x x =+的解是 x=2 ★直通中考:1、(2009年潍坊)方程3123x x =+的解是 .(x=9) 2、(2009宁夏)解分式方程:1233x x x +=--.(37=x ) 【例3】(2009 年佛山市)化简:2211xyx y x y x y⎛⎫+÷ ⎪-+-⎝⎭ (y 2)★直通中考:1、(2009年湖南长沙)分式111(1)a a a +++的计算结果是( C ) A .11a + B .1a a +C .1aD .1a a+ 2、(2009年佳木斯)计算21111a a a ⎛⎫+÷ ⎪--⎝⎭= (1+a a) 3、(2009年成都)化简:22221369x y x y x y x xy y +--÷--+=_______ (yx y -2) 4、(2010广东广州)若a <1,化简2(1)1a --=( D )A .a ﹣2B .2﹣aC .aD .﹣a5、已知2<x <5,化简2(2)x -+2(5)x -=________.(3) 【例4】(2009年内江市)已知25350x x --=,则22152525x x x x ----=__________.(528) ★直通中考:1、(2009烟台市)设0a b >>,2260a b ab +-=,则a bb a+-的值等于.(2) 2、(2009年枣庄市)已知a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P = Q (填“>”、“<”或“=”).3、(2011·呼和浩特)若x 2-3x +1=0,则x 2x 4+x 2+1的值为________.(81)4、(2011·乐山)若m 为正实数,且m -1m =3,则m 2-1m2=________.(53)5、(2010四川广安)若|2|20x y y -++=,则xy 的值为( A ) A .8 B . 2 C .5 D .6-6、已知522+-+-=x x y ,则x y =________.(52) 【例5】(2009年河北)已知a = 2,1-=b ,求2221a b a ab --+÷1a的值.解:化简后1++b a ,代入可得2112=+-★直通中考:1、(2009年莆田)先化简,再求值:2244242x x x x x x +++÷---,其中1x =.解:化简后x -,代入可得-12、(2009年衡阳市)先化简,再求值:212)14(-÷-+-a a a a a ,其中31=a .解:化简后13-a ,代入可得01313=-⨯3、(2011年中考)已知x 是一元二次方程0132=-+x x 的实数根,求代数式⎪⎭⎫ ⎝⎛--+÷--2526332x x x x x 的值.解:化简后)3(31+x x ,因为0132=-+x x 可化为1)3(=+x x ,故原式可得314、(2009湖北省荆门市)已知x =2+3,y =2-3,计算代数式2211()()x y x y x y x y x y+----+的值.解:化简后xy 4-,代入可得()()34-32324-=-+5、如图,点A 的坐标为(﹣,0),点B 在直线y=x 上运动,当线段AB 最短时点B 的坐为( A )A .(﹣,﹣)B .(﹣,﹣)C .(,)D . (0,0)6、如图所示,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为__4_______.【例6】(2009年安顺)下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的统计图表如下: 依据上列图表,回答下列问题:(1) 其中观看足球比赛的门票有_50__张;观看乒乓球比赛的门票占全部门票的_20_%;(2) 公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地完全相同且充分洗匀),问员工小华抽到男篮门票的概率是 ;(103)(3) 若购买乒乓球门票的总款数占全部门票总款数的61,求每张乒乓球门票的价格。

【新】九年级数学 人教版 中考专题复习-代数篇(整式、分式、二次根式)练习题

【新】九年级数学 人教版 中考专题复习-代数篇(整式、分式、二次根式)练习题

中考专题复习-代数篇【整式篇】【学生总结-幂运算公式】 (1) (2) (3) (4)2、若32=n a ,则n a 6= .3、若 3m ,2m y x == 则 =+y x m ____, =+y 2x 3m =______.4、计算:()()()22245+•+•+b b b ().)2y -x (2y)-x (2y -x 432••【换指数】计算:(-2)1999+(-2)200020102009)532()135(⨯【整体带入】变式3、若ab 2=-6 ,则-ab(a 2b 5-ab 3-b)的值为平方差公式公式: ( a+b)(a-b)= a 2-b 2语言叙述:两数的 和乘以这两个数的差等于这两个数的平方差 , . 。

公式结构特点:左边: (a+b)(a-b)右边: a 2-b 2完全平方公式公式: (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2语言叙述:两数的 完全平方和(差)等于这两个数各自平方和与这两个数乘积2倍的和(差)。

,. 。

公式结构特点:左边: (a+b)2; (a-b)2右边:a 2+2ab+b 2; a 2-2ab+b 2 熟悉公式:公式中的a 和b 既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。

公式变形1、a 2+b 2=(a+b)2 =(a-b)22、(a-b )2=(a+b)2 ; (a+b)2=(a-b)23、(a+b)2 +(a-b )2=4、(a+b)2 --(a-b )2= 一、计算下列各题:2)(y x + 2)23(y x - 2)12(--t 5、2)313(c ab +-【十字相乘法】(二次项系数为1)232++x x 232+-x x 322-+x x 322--x x(二次项系数不为1)2522++x x 3522--x x 20322--x x 7522-+x x【分式篇】【分式加减法】例.(1)3b b x x + 242)2(2---x x x例.计算 (1)mm -+-329122 (2)a-b+22b a b +变式练习 1.计算:(1) (2)xx x ----13132(3)222x x x +--2144x x x --+ (4)++y x 1yx -11、计算:(1)))(())((a b c b ca cb b a b a --++--+ (2)x x x x ---3)3(32(3)22n m nn m m n m m ---++ (4) a -242a --【分式乘除法】分子分母因式分解→约分→计算例1.计算 (1)y x yz z xy 32982-•- (2)y x yx y x y x y x +-•-+÷-222)(1计算:(1)⎪⎪⎭⎫ ⎝⎛-÷x y y x 346342, (2)xy x xy xy y x y x ++÷++-22222224.【分式混合计算】例.计算:(1))(a ab a b a 222-2a b a · 1-2a 12+++ (2) 4421642++-÷-x x x x变式练习 1.计算(1)⎪⎭⎫ ⎝⎛+-÷-111122x x x (2)x x x x x x x x -÷⎪⎭⎫ ⎝⎛+----+44412222【二次根式篇】【知识点一】:二次根式 1、a 有意义的条件:a 0≥2、二次根式的非负性:①⎩⎨⎧<-≥==0a ,a 0a ,a |a |a 2②0a ≥3、最简二次根式;①被开方数不含能开得尽方的因数和因式; ②被开方数不含分母.4、二次根式的乘除法法则:()0,0a b ab a b =≥≥g()0,0a a a b b b=≥≥例题讲解:例1:a 3-有意义,a 的取值范围____________; 2:已知y=2x -+2x -+5,求=yx_____________; 3:21--=x x y 在实数范围内有意义,x 应满足 ; 例2:02)2(2=++-y y x ,则xy 的值。

新初中数学二次根式基础测试题附答案(1)

新初中数学二次根式基础测试题附答案(1)

新初中数学二次根式基础测试题附答案(1)一、选择题1.n的最大值为()A.12B.11C.8D.3【答案】C【解析】【分析】如果实数n取最大值,那么12-n22,从而得出结果.【详解】2时,n取最大值,则n=8,故选:C【点睛】本题考查二次根式的有关知识,解题的关键是理解”的含义.2.(的结果在()之间.A.1和2 B.2和3 C.3和4 D.4和5【答案】B【解析】【分析】的范围,再求出答案即可.【详解】(==22∵45<∴223<<(的结果在2和3之间故选:B【点睛】本题考查了无理数大小的估算,用有理数逼近无理数,求无理数的近似值.考查了二次根式的混合运算顺序,先乘方、再乘除、最后加减,有括号的先算括号里面的.3.下列各式计算正确的是()A1082==-=B.()()236==-⨯-=C 115236==+=D .54==- 【答案】D【解析】【分析】根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断.【详解】解:A 、原式,所以A 选项错误;B 、原式,所以B 选项错误;C 、原式C 选项错误;D 、原式54==-,所以D 选项正确. 故选:D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.下列各式计算正确的是( )A .2+b =2bB =C .(2a 2)3=8a 5D .a 6÷ a 4=a 2【答案】D【解析】解:A .2与b 不是同类项,不能合并,故错误;B 不是同类二次根式,不能合并,故错误;C .(2a 2)3=8a 6,故错误;D .正确.故选D .5.已知n n 的最小值是( )A .3B .5C .15D .45【答案】B【解析】【分析】由题意可知45n 是一个完全平方数,从而可求得答案.【详解】=∵n∴n 的最小值为5.故选:B .【点睛】此题考查二次根式的定义,掌握二次根式的定义是解题的关键.6.若x 、y 4y =,则xy 的值为( )A .0B .12C .2D .不能确定 【答案】C【解析】由题意得,2x −1⩾0且1−2x ⩾0,解得x ⩾12且x ⩽12, ∴x =12, y =4,∴xy =12×4=2. 故答案为C.7.1x -在实数范围内有意义,则实数x 的取值范围是( ) A .1x ≠B .3x >-且1x ≠C .3x ≥-D .3x ≥-且1x ≠ 【答案】D【解析】【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.【详解】∵代数式1x -在有意义, ∴x+3≥0,x-1≠0,解得:x≥-3且x≠1,故选D .【点睛】本题主要考查了分式和二次根式有意义的条件,关键是掌握:①分式有意义,分母不为0;②二次根式的被开方数是非负数.8.m 的值不可以是( )A .18m =B .4m =C .32m =D .627m = 【答案】B【解析】【分析】【详解】A. 18m =4,是同类二次根式,故此选项不符合题意;B. 4m = ,此选项符合题意C. 32m =,是同类二次根式,故此选项不符合题意;D. 627m = 故选:B【点睛】本题考查二次根式的化简和同类二次根式的定义,掌握二次根式的化简法则是本题的解题关键.9.x 的取值范围是( )A .1x ≥-B .12x -≤≤C .2x ≤D .12x -<< 【答案】B【解析】【分析】【详解】解:要使二次根式有意义,则必须满足二次根式的被开方数为非负数,则1020x x +≥⎧⎨-≥⎩,解得:12x -≤≤ 故选:B .【点睛】本题考查二次根式的性质.10.已知25523y x x =-+--,则2xy 的值为( ) A .15-B .15C .152-D .152 【答案】A【解析】试题解析:由25523y x x =-+--,得250{520x x -≥-≥, 解得 2.5{3x y ==-.2xy =2×2.5×(-3)=-15,故选A .11.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D . 【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.12.如果一个三角形的三边长分别为12、k 、7221236k k -+|2k ﹣5|的结果是( )A .﹣k ﹣1B .k +1C .3k ﹣11D .11﹣3k【解析】【分析】求出k的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】∵一个三角形的三边长分别为12、k、72,∴72-12<k<12+72,∴3<k<4,,=-|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k,故选D.【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.13.在下列各组根式中,是同类二次根式的是()A BC D【答案】B【解析】【分析】根据二次根式的性质化简,根据同类二次根式的概念判断即可.【详解】A=不是同类二次根式;B2=是同类二次根式;C b==D不是同类二次根式;故选:B.本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.14.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.15.计算4÷的结果是( )A .2BC .23D .34【答案】A【解析】【分析】根据二次根式的运算法则,按照运算顺序进行计算即可.【详解】解:4÷ 1(24=⨯÷1186=1326=⨯22=.故选:A.【点睛】此题主要考查二次根式的运算,根据运算顺序准确求解是解题的关键.16.婴儿游泳是供婴儿进行室内或室外游泳的场所,婴儿游泳池的样式多种多样,现已知一长方体婴儿游泳池的体积为300立方米、高为38米,则该长方体婴儿游泳池的底面积为()A.403平方米B.402平方米C.203平方米D.202平方米【答案】D【解析】【分析】根据底面积=体积÷高列出算式,再利用二次根式的除法法则计算可得.【详解】解:根据题意,该长方体婴儿游泳池的底面积为300÷38=33008÷=800=202(平方米)故选:D.【点睛】考核知识点:二次根式除法.理解题意,掌握二次根式除法法则是关键.17.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为()A.2 B6C.236223D.23225【答案】D【解析】【分析】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.【详解】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积=()()222323⨯-+⨯-=222233-+-=23225+-故选:D【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.18.下列二次根式是最简二次根式的是( )A .57B .12C . 6.4D .37【答案】D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 、被开方数含分母,故A 不符合题意;B 、被开方数含开的尽的因数,故B 不符合题意;C 、被开方数是小数,故C 不符合题意;D 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 符合题意. 故选:D .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.19.实数,a b 在数轴上对应的点位置如图所示,则化简22||a a b b +++的结果是( )A .2a -B .2b -C .2a b +D .2a b -【答案】A【解析】【分析】 利用2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可. 【详解】 解:0,,a b a b Q <<>0,a b ∴+<22||a a b b a a b b ∴+++=+++()a a b b =--++a ab b =---+2.a =-故选A . 【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.20.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a .。

初中二次根式练习题

初中二次根式练习题

二次根式练习题(1)一、选择题(每小题3分,共30分)1.若m -3为二次根式,则m 的取值为 ( )A .m≤3 B.m <3 C .m≥3 D.m >32.下列式子中二次根式的个数有 ( )⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x . A .2个 B .3个 C .4个 D .5个3.当22-+a a 有意义时,a 的取值范围是 ( )A .a≥2B .a >2C .a≠2 D.a≠-24.下列计算正确的是 ( ) ①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-;A .1个B .2个C .3个D .4个5.化简二次根式352⨯-)(得 ( )A .35-B .35C .35±D .306.对于二次根式92+x ,以下说法不正确的是 ( )A .它是一个正数B .是一个无理数C .最简二次根式D .它的最小值是37.把ab a123分母有理化后得 ( )A .b 4B .b 2C .b 21 D . b b2 8.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31 C .153 D .143 10.计算:abab b a 1⋅÷等于 ( ) A .ab ab 21B .ab ab 1C .ab b1 D .ab b二、填空题(每小题3分,共分)11.当x___________时,x 31-是二次根式.12.当x___________时,x 43-在实数范围内有意义. 13.比较大小:23-______32-.14.=⋅ba ab 182____________;=-222425__________. 15.计算:=⋅b a 10253___________. 16.计算:2216ac b =_________________. 17.当a=3时,则=+215a ___________. 18.若xx x x --=--3232成立,则x 满足_____________________. 三、解答题(46分)19.(8分)把下列各式写成平方差的形式,再分解因式:⑴52-x ; ⑵742-a ; ⑶15162-y ; ⑷2223y x -.20.(12分)计算: ⑴))((36163--⋅-; ⑵63312⋅⋅;⑶)(102132531-⋅⋅; ⑷z y x 10010101⋅⋅-.21.(12分)计算: ⑴20245-; ⑵14425081010⨯⨯..; ⑶521312321⨯÷; ⑷)(ba b b a 1223÷⋅.22.(8分)把下列各式化成最简二次根式: ⑴27121352722-; ⑵ba c abc 4322-. 23.(6分)已知:2420-=x ,求221x x +的值.。

八年级数学-二次根式练习题(含解析)

八年级数学-二次根式练习题(含解析)

八年级数学-二次根式练习题(含解析)一.选择题(共15小题)1.二次根式在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥﹣1 C.x≠2 D.x≥﹣1且x≠22.若式子在实数范围内有意义,则x的取值范围是()A.x≥0 B.x≥1 C.x>1 D.x>03.若在实数范围内有意义,则x的取值范围是()A.x>﹣B.x>﹣且x≠0 C.x≥﹣D.x≥﹣且x≠04.式子+有意义的条件是()A.x≥0 B.x≤0 C.x≠﹣2 D.x≤0且x≠﹣25.若有意义,则x满足条件是()A.x≥﹣3且x≠1 B.x>﹣3且x≠1 C.x≥1 D.x≥﹣36.已知y=++2,则x y的值为()A.9 B.8 C.2 D.37.在式子中,二次根式有()A.2个B.3个C.4个D.5个8.下列各式中,一定是二次根式的有()①②③④⑤A.2个B.3个C.4个D.5个9.已知n是正整数,是整数,n的最小值为()A.21 B.22 C.23 D.2410.已知,则=()A.B.C.D.﹣11.若二次根式在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.12.如果y=,则2x﹣y的平方根是()A.﹣7 B.1 C.7 D.±113.若是二次根式,则下列说法正确的是()A.x≥0 B.x≥0且y>0C.x、y同号D.x≥0,y>0或x≤0,y<014.若,则a的取值范围是()A.a>0 B.a≥1 C.0<a<1 D.0<a≤115.使下列式子有意义的实数x的取值都满足x≥1的式子的是()A.B.C.+D.二.填空题(共10小题)16.若实数a,b满足,则a﹣b的平方根是.17.当x时,在实数范围内有意义.18.若在实数范围内有意义,则x的取值范围是.19.若|2017﹣m|+=m,则m﹣20172=.20.使代数式有意义的整数x的和是.21.观察与思考:形如的根式叫做复合二次根式,把变成=叫复合二次根式的化简,请化简=.22.若代数式﹣(x﹣2)0+(x﹣3)﹣2有意义,则x的取值范围是.23.设x,y为实数,且,则点(x,y)在第象限.24.代数式﹣3﹣的最大值为,若有意义,则=.25.当a时,无意义;有意义的条件是.三.解答题(共15小题)26.已知+=b+8.(1)求a、b的值;(2)求a2﹣b2的平方根和a+2b的立方根.27.(1)若++y=16,求﹣的值(2)若a,b互为相反数,c,d互为倒数,m的绝对值为2,求+m﹣cd的值28.若y=++x3,求10x+2y的平方根.29.已知n=﹣6,求的值.30.若b=+﹣a+10.(1)求ab及a+b的值;(2)若a、b满足x,试求x的值.31.(1)已知y=+x+3,求的值.(2)比较大小:3与2.32.已知x,y为实数,y=,求xy的平方根.33.若x,y为实数,且y=++.求﹣的值.34.已知a,b分别为等腰三角形的两条边长,且a•b满足b=4++3,求此三角形的周长.35.若a,b是一等腰三角形的两边长,且满足等式,试求此等腰三角形的周长.36.(1)已知a+3与2a﹣15是一个正数的平方根,求a的值;(2)已知x,y为实数,且y=﹣+4,求的值.37.(1)计算:(﹣)﹣1﹣|﹣3|﹣20160+()2;(2)解方程:4(x﹣1)2﹣1=24;(3)已知y=++3,则xy的算术平方根.38.请认真阅读下列这道例题的解法,并完成后面两问的作答:例:已知y=+2018,求的值.解:由,解得:x=2017,∴y=2018.∴.请继续完成下列两个问题:(1)若x、y为实数,且y>+2,化简:;(2)若y•=y+2,求的值.39.若a,b为实数,且,求.40.已知a、b、c为一个等腰三角形的三条边长,并且a、b满足b=2,求此等腰三角形周长.参考答案与试题解析一.选择题(共15小题)1.【分析】直接利用二次根式的定义得出x的取值范围进而得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x+1≥0,解得:x≥﹣1.故选:B.2.【分析】根据被开方数是非负数、除数不等于0,确定x的取值范围.【解答】解:由题意,可得x﹣1>0,所以x>1故选:C.3.【分析】根据二次根式被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得,2x+5≥0,解得,x≥﹣,故选:C.4.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得﹣x≥0且x+2≠0,解得x≤0且x≠﹣2.故选:D.5.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:∵有意义,∴x满足条件是:x+3≥0,且x﹣1≠0,解得:x≥﹣3且x≠1.故选:A.6.【分析】直接利用二次根式有意义的条件得出x的值,进而求出y的值,即可得出答案, 【解答】解:∵y=++2,∴x﹣3=3﹣x=0,解得:x=3,则y=2,则x y=32=9.故选:A.7.【分析】根据二次根式的定义对各数分析判断即可得解.【解答】解:根据二次根式的定义,y=﹣2时,y+1=﹣2+1=﹣1,所以二次根式有(x>0),,(x<0),,共4个.故选:C.8.【分析】利用二次根式定义判断即可.【解答】解:①是二次根式;②,当a≥0时是二次根式;③是二次根式;④是二次根式;⑤,当x≤0时是二次根式,故选:B.9.【分析】如果一个根式是整数,则被开方数是完全平方数,首先把化简,然后求n的最小值.【解答】解:∵189=32×21,∴=3,∴要使是整数,n的最小正整数为21.故选:A.10.【分析】根据二次根式有意义的条件求出x,根据题意求出y,分母有理化化简即可.【解答】解:由题意得,x2﹣2≥0,2﹣x2≥0,∴x2=2,解得,x=±,当x=时,无意义,当x=﹣时,2=2y,解得,y=,∴==+,故选:C.11.【分析】直接利用二次根式有意义的条件结合数轴得出答案.【解答】解:二次根式在实数范围内有意义,则2x﹣6≥0,解得:x≥3,则x的取值范围在数轴上表示为:.故选:A.12.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:由题意可得:x2﹣4=0,x+2≠0,解得:x=2,故y=3,则2x﹣y=1,故2x﹣y的平方根是:±1.故选:D.13.【分析】二次根式中的被开方数必须是非负数.【解答】解:依题意有≥0且y≠0,即≥0且y≠0.所以x≥0,y>0或x≤0,y<0.故选:D.14.【分析】直接利用二次根式有意义的条件得出答案.【解答】解:∵,∴,解得:0<a≤1.故选:D.15.【分析】根据分式有意义的条件以及二次根式有意义的条件即可求出答案【解答】解:(A)由,可得:x≤0且x≠﹣1,故x≥1时,无意义,故不选A,(B)由x+1>0,可得:x>﹣1,此时有意义,不都满足x≥1,故不选B;(C)由可得:﹣1≤x≤1,故C不选;(D)解得:x>1,满足x≥1,故选D故选:D.二.填空题(共10小题)16.【分析】直接利用二次根式有意义的条件进而分析得出答案.【解答】解:∵和有意义,则a=5,故b=﹣4,则===3,∴a﹣b的平方根是:±3.故答案为:±3.17.【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【解答】解:由题意得,x+1≥0,|x|﹣2≠0,解得,x≥﹣1且x≠2,故答案为:≥﹣1且x≠2.18.【分析】根据被开方数大于等于0,分母不等于0列不等式求解即可.【解答】解:由题意得,﹣>0,解得x<﹣3.故答案为:x<﹣3.19.【分析】根据二次根式的性质求出m≥2018,再化简绝对值,根据平方运算,可得答案.【解答】解:∵|2017﹣m|+=m,∴m﹣2018≥0,m≥2018,由题意,得m﹣2017+=m.化简,得=2017,平方,得m﹣2018=20172,m﹣20172=2018.故答案为:201820.【分析】直接利用二次根式的性质得出不等式组求出答案.【解答】解:使代数式有意义,则,解得:﹣4<x≤,则整数x有:﹣3,﹣2,﹣1,0,故整数x的和是:﹣3﹣2﹣1=﹣6.故答案为:﹣6.21.【分析】直接利用完全平方公式将原式变形进而得出答案.【解答】解:==﹣.故答案为:﹣.22.【分析】直接利用二次根式有意义的条件以及零指数幂的性质和负指数幂的性质分别判断得出答案.【解答】解:∵代数式﹣(x﹣2)0+(x﹣3)﹣2有意义,∴x+1≥0,且x﹣1≠0,x﹣2≠0,x﹣3≠0,解得:x≥﹣1且x≠1,x≠2,x≠3.故答案为:x≥﹣1且x≠1,x≠2,x≠3.23.【分析】直接利用二次根式有意义的条件得出x的值,进而得出y的值,再利用点的坐标特点得出答案.【解答】解:由题意可得:,解得:x=5,故y=﹣4,则点(x,y)为(5,﹣4)在第四象限.故答案为:四.24.【分析】根据算术平方根具有非负性可得当=0时,代数式﹣3﹣有最大值,进而可得代数式﹣3﹣的最大值为﹣3;再根据二次根式被开方数为非负数可得x=0,进而可得答案.【解答】解:∵≥0,∴当=0时,代数式﹣3﹣有最大值,∴代数式﹣3﹣的最大值为﹣3;∵有意义,∴,解得:x=0,则=1,故答案为:﹣3;1.25.【分析】根据二次根式成立的条件:被开方数是非负数;无意义:被开方数小于0,列不等式可得结论.【解答】解:3a﹣2<0,a<,由有意义得:,解得,当a时,无意义;有意义的条件是:x≤2且x≠﹣8,故答案为:a,x≤2且x≠﹣8.三.解答题(共15小题)26.【分析】(1)关键二次根式有意义的条件即可求解;(2)将(1)中求得的值代入即可求解.【解答】解:(1)由题意得a﹣17≥0,且17﹣a≥0,得a﹣17=0,解得a=17,把a=17代入等式,得b+8=0,解得b=﹣8.答:a、b的值分别为17、﹣8.(2)由(1)得a=17,b=﹣8,±=±=±15,===1.答:a2﹣b2的平方根为±15,a+2b的立方根为1.27.【分析】(1)根据二次根式的被开方数是非负数;(2)根据相反数、倒数的定义以及绝对值得到:a+b=0,cd=1,m=±2,代入求值即可.【解答】解:(1)由题意,得解得x=8.所以y=16所以原式=﹣=2﹣4=﹣2.(2)∵a,b互为相反数,c,d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2,∴=+m﹣1=m﹣1.当m=2时,原式=1.当m=﹣2时,原式=﹣2﹣1=﹣3.综上所述,+m﹣cd的值是1或﹣3.28.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后计算出10x+2y的值,再求平方根.【解答】解:由题意得:,解得:x=2,则y=8,10x+2y=20+16=36,平方根为±6.29.【分析】直接利用二次根式的性质得出m,n的值,进而化简得出答案.【解答】解:∵与有意义,∴m=2019,则n=﹣6,故==45.30.【分析】(1)直接利用二次根式有意义的条件得出ab,a+b的值;(2)利用已知结合完全平方公式计算得出答案.【解答】解:(1)∵b=+﹣a+10,∴ab=10,b=﹣a+10,则a+b=10;(2)∵a、b满足x,∴x2=,∴x2===8,∴x=±2.31.【分析】(1)直接利用二次根式有意义的条件分析得出x,y的值,进而答案;(2)直接将二次根式变形进而比较即可.【解答】解:(1)∵y=+x+3,∴x=3,故y=6,∴==3;(2)∵3=,2=,∴>,即3>2.32.【分析】根据被开方数是非负数且分母不等于零,可得x,y的值,根据开平方,可得答案.【解答】解:由题意,得,,且x﹣2≠0解得x=﹣2,y=﹣xy=,xy的平方根是.33.【分析】根据二次根式的被开方数是非负数求得x的值,进而得到y的值,代入求值即可.【解答】解:依题意得:x=,则y=,所以==,==2,所以﹣=﹣=﹣=.34.【分析】根据题意求出a、b的值,根据三角形的三边关系确定三角形的边长,求出此三角形的周长.【解答】解:由题意得,3a﹣6≥0,2﹣a≥0,解得,a≥2,a≤2,则a=2,则b=4,∵2+2=4,∴2、2、4不能组成三角形,∴此三角形的周长为2+4+4=10.35.【分析】根据被开方数大于等于0列式求出a,再求出b,然后分a是腰长与底边两种情况讨论.【解答】解:根据题意得,3a﹣6≥0且2﹣a≥0,解得a≥2且a≤2,所以a=2,b=4,①a=2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②a=2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,所以此等腰三角形的周长为10.36.【分析】(1)直接利用平方根的定义分析得出答案;(2)利用二次根式有意义的条件分析得出答案.【解答】解:(1)根据平方根的性质得,a+3+2a﹣15=0,解得:a=4,答:a的值为4;(2)满足二次根式与有意义,则,解得:x=9,∴y=4,∴=+=5.37.【分析】(1)直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案;(2)利用直接开平方法解方程得出答案;(3)直接利用二次根式的性质分析得出x,y的值进而得出答案.【解答】解:(1)(﹣)﹣1﹣|﹣3|﹣20160+()2=﹣4﹣3﹣1+2=﹣6;(2)∵4(x﹣1)2﹣1=24,∴(x﹣1)2=,∴x﹣1=±,解得:x1=,x2=﹣;(3)∵y=++3,∴,解得:x=4,∴y=3,则xy=12,故12的算术平方根为:2.38.【分析】根据题意给出的方法即可求出答案.【解答】解:(1)由,解得:x=3,∴y>2.∴;(2)由:,解得:x=1.y=﹣2.∴.39.【分析】根据被开方数是非负数且分母不等于零,可得答案.【解答】解:由题意,得a2﹣1=0,且a+1≠0,解得a=1,b=.﹣=﹣3.40.【分析】由二次根式有意义的条件可得,解不等式可得a的值,进而可得b的值,然后再分两种情况进行计算即可.【解答】解:由题意得:,解得:a=3,则b=5,若c=a=3,此时周长为11,若c=b=5,此时周长为13.。

《二次根式》专题专练(一)(4个专题)

《二次根式》专题专练(一)(4个专题)
(2)若再以OA2为边按逆时针方向作等边△OA2B2,A2B2与OB1相交于点A3,按此作法进行下去,得到△OA3B3,△OA4B4,…,△OAnBn(如图1).求△OA6B6的周长.
分析:本题先根据图形进行计算,再探究规律.
解:(1) ;
(2)依题意: ;


依此类推 ,所以△ 的周长为 .
点评:数与形是一个问题的两个方面,数无形不直观,形缺数难入微,数形结合既有助于找到解答思路,也常使解答简捷,数形结合的关键在于几何图形转化为数的知识去探索规律,本题就体现了这种数与形的统一与和谐!
3.考查同类二次根式的概念
例4.(2007年眉山市)下列二次根式中与 是同类二次根式的是( ).
A. B. C. D.
分析:只要将所给式子化成最简二次根式,再看是否与2相同即可.
解:因为 ; ; ; ,故选D.
点评:判断是否与同类二次根式关键是化成最简二次根式以后,被开方数相同那就是同类二次根式,重点考查对概念的理解和把握情况.
点评:判断是否是二次根式的条件是 ≥0),要特别注意 ≥0这个条件,本题重点考查对二次根式概念的理解.
例2.(2007年成都市: ≥0,又 ≥0,再由非负数的性质就可以求出a,b的值.
解:由已知条件可得:a=2,b= -5,所以a+b=2-5= -3.
专练四:
1.写出和为6的两个无理数(只需写出一对)
2.借助计算器可以求出 , , , ,……仔细观察上面几道题中的计算结果,试猜想: =。
3.动手操作题:用计算器探索:已知按一定规律排列的一组数:1, , ,…, , 。如果从中选出若干个数,使它们的和大于3,那么至少需要选个数。
4.阅读下列解题过程,并按要求填空:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式、分式、二次根式练习题1
整式
1、 化简:()2332x x -的结果是( ) A 、56x - B 、53x - C 、52x D 、56x
2、 下列计算正确的是( ) A 、2323a a a += B 、()2
36a a = C 、326a a a ⋅= D 、824a a a ÷= 3、 计算:()4
233a b --的结果是( )A 、81281a b B 、6712a b C 、6712a b - D 、81281a b - 4、 化简()213x x -⋅的结果是( )A 、5x B 、4x C 、x D 、1x
5、若23x =,45y =,则22x y -的值为( )A 、35 B 、2- C D 、65 5、 若2320a a --=,则2526a a +-=
6、 计算()(2)a b a b ++=
7、 已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )
A 、51x --
B 、51x +
C 、131x --
D 、131x +
8、 若523m x y +与3n x y 的和是单项式,则m n =
因式分解
9、 因式分解:32a ab -=
10、 将下列各式分解因式:
(1)3222x x y xy -+; (2)3a a - (3)22a b a b ---;
(4)41a - (5)322620a a a +- (6)2222264(16)x y x y -+
分式
11、若分式
21
x -有意义,则x 的取值范围是( ) A 、1x ≠ B 、1x > C 、1x = D 、1x < 12、化简2244xy y x x --+的结果是( ) A 、2x x + B 、2x x - C 、2y x + D 、2y x - 13、分式化简()1111a a a +++ 14、化简2422a a a a a a
-⎛⎫-⋅ ⎪-+⎝⎭
15、、化简:22222369x y x y y x y x xy y x y --÷-++++ 16、已知1
1
4a b -=,求2227a ab b
a b ab ---+的值
二次根式
17、当x 时,二次根式在实数范围内有意义.
18、 的值是( ).A 、3- B 、3或3- C 、3
D 、9
19、 10b -=,那么()2007a b +的值为 .
20、 下列根式中属于最简二次根式的是( ).A B C
D
21、 ( ).A 、 B C D
22 ).
A B C D
23、
= . =
24、 计算:)22= .
25、 计算:⎛÷ ⎝
26、 求代数式的值:22224242x x x x x x --⎛

÷-- ⎪-+⎝⎭,其中2x =+
27、先化简,再求值:22
2111a a
a a a +⎛⎫+÷ ⎪+--⎝⎭的值,其中。

相关文档
最新文档