新人教A版必修5高中数学2.4等比数列(1)学案(二)

合集下载

高中数学 第二章 数列 24 等比数列学案(无答案)新人教A版必修5 学案

高中数学 第二章 数列 24 等比数列学案(无答案)新人教A版必修5 学案

2.4等比数列【学习目标】理解等比数列、等比中项的概念,能推导并掌握通项公式,能熟练运用通项公式和一些常用性质解决有关问题. 【重点难点】重点:等比数列的定义和通项公式及其应用.难点:等比数列的通项公式的应用.【学法指导】学习本节一定要认真阅读教材,运用从特殊到一般和类比等差数列的定义、通项公式的方法归纳等比数列的定义、通项公式. 一.课前预习阅读课本4852P P 页,弄清下列问题:1.等比数列的概念: .2.用数学式子表示等比数列的定义: {}n a 是等比数列,则*1()n na q n N a +=∈. 强调:(1)“从第二项起,每一项与它的前一项的比都等于同一个常数”,要防止在求公比 时,把相邻两项比的次序颠倒.(3)当公比q = 时,等比数列是常数列,该数列也是等差数列.(4)等比数列的每一项都不为 .3.等比数列的通项公式: . 4.等比中项的定义: . 5.快乐体验:(1)若等比数列155,45a a ==,求公比q ; (2)若等比数列12,33a q ==,求4a .(3)若等比数列3312,2a q ==,求1a ; (4)若等比数列的12,54,3,n a a q ===求n .(5)若4,9a b ==,求,a b 的等比中项.二.课堂学习与研讨例1.某种放射性物质不断变化为其他物质,每经过一年剩留量是原来的84%.这种物质的半衰期为多长?(精确到1年)(参考数据:lg 20.3010,lg0.840.0757,0.30100.0757 3.98==-÷≈)练习1.(教材53P 练习5)某人买了一辆价值13.5万元的新车,专家预测这种车每年按10%的速度折旧. (1)用一个式子表示*()n n N ∈年后这辆车的价值;(2)如果他打算用满4年时卖掉这辆车,他大概能得到多少钱?例2.等比数列的第3项和第4项分别是12和18,求它的第1项和第2项.练习2. 在等比数列{}n a 中,473,81,n a a a ==求.小结:3.等比中项:若,,a G b 成等比数列,则2G ab =. 三.课堂检测1.若a ,22a +,33a +成等比数列,则实数a 的为 .2.在等比数列中,(1)若已知2514,2a a ==-求n a . (2)若253618,9,1n a a a a a +=+==,求n .四.作业 1. P53A1 2. 在83和272之间插入3个数,使这五个数成等比数列,求这三数?3. 在等比数列{}n a 中,已知1910185,100,a a a a =⋅=求.2.5等比数列的前n 项和公式【学习目标】1.掌握等比数列的前n 项和公式11,1(1),11n n na q S a q q q =⎧⎪=-⎨⎪≠-⎩2.在等比数列{}n a 中,n n s n d a a 、、、、1五个量中“知三求二”.3.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想和等价转化的思想. 【重点难点】重点:等比数列前n 项和公式的推导和运用.难点:等比数列前n 项和公式的推导. 【学法指导】学习本节时好好体会错位相减法求和的思路,分析等比数列的通项公式和前n 项和公式的特点,体会知三求二的方程思想. 一.课前预习 预习课本5557P P 页,回答下列问题:1.传说,很早以前,印度的一位宰相发明了国际象棋,当时的国王非常高兴,决定奖赏他,国王允许宰相提出任何要求,于是这位聪明的宰相便请国王在国际象棋棋盘的第一个格子里放入一颗麦粒,第二个格子里放入两颗麦粒,第三个……,就这样,依此类推,要求从第二个格子起,每个格子里的麦粒数是前一个格子里麦粒数的两倍,他请求国王给予他这些麦粒的总和。

高中数学人教A版必修五优化练习:第二章 2.4 第1课时 等比数列的概念和通项公式 Word版含解析

高中数学人教A版必修五优化练习:第二章 2.4 第1课时 等比数列的概念和通项公式 Word版含解析

[课时作业][A 组 基础巩固]1.已知等比数列{a n }中,a 1=32,公比q =-12,则a 6等于( )A .1B .-1C .2 D.12解析:由题知a 6=a 1q 5=32×⎝⎛⎭⎫-125=-1,故选B.答案:B2.已知数列a ,a (1-a ),a (1-a )2,…是等比数列,则实数a 的取值范围是( )A .a ≠1B .a ≠0且a ≠1C .a ≠0D .a ≠0或a ≠1解析:由a 1≠0,q ≠0,得a ≠0,1-a ≠0,所以a ≠0且a ≠1.答案:B3.在等比数列{a n }中,a 2 016=8a 2 013,则公比q 的值为( )A .2B .3C .4D .8解析:q 3=a 2 016a 2 013=8,∴q =2.答案:A4.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于( )A .64B .81C .128D .243解析:∵{a n }为等比数列,∴a 2+a 3a 1+a 2=q =2. 又a 1+a 2=3,∴a 1=1.故a 7=1×26=64.答案:A5.等比数列{a n }各项均为正数,且a 1,12a 3,a 2成等差数列,则a 3+a 4a 4+a 5=( ) A .-5+12 B.1-52 C.5-12 D .-5+12或5-12解析:a 1,12a 3,a 2成等差数列,所以a 3=a 1+a 2,从而q 2=1+q ,∵q >0,∴q =5+12,∴a 3+a 4a 4+a 5=1q =5-12. 答案:C6.首项为3的等比数列的第n 项是48,第2n -3项是192,则n =________. 解析:设公比为q ,则⎩⎪⎨⎪⎧ 3q n -1=483q 2n -4=192⇒⎩⎪⎨⎪⎧q n -1=16q 2n -4=64⇒q 2=4, 得q =±2.由(±2)n -1=16,得n =5.答案:57.数列{a n }为等比数列,a n >0,若a 1·a 5=16,a 4=8,则a n =________.解析:由a 1·a 5=16,a 4=8,得a 21q 4=16,a 1q 3=8,所以q 2=4,又a n >0,故q =2,a 1=1,a n =2n -1.答案:2n -18.若k,2k +2,3k +3是等比数列的前3项,则第四项为________.解析:由题意,(2k +2)2=k (3k +3),解得k =-4或k =-1,又k =-1时,2k +2=3k +3=0,不符合等比数列的定义,所以k =-4,前3项为-4,-6,-9,第四项为-272. 答案:-2729.已知数列{a n }的前n 项和S n =2a n +1,求证:{a n }是等比数列,并求出通项公式. 证明:∵S n =2a n +1,∴S n +1=2a n +1+1.∴S n +1-S n =a n +1=(2a n +1+1)-(2a n +1)=2a n +1-2a n .∴a n +1=2a n .①又∵S 1=a 1=2a 1+1,∴a 1=-1≠0.由①式可知,a n ≠0,∴由a n +1a n=2知{a n }是等比数列,a n =-2n -1. 10.在各项均为负的等比数列{a n }中,2a n =3a n +1,且a 2·a 5=827. (1)求数列{a n }的通项公式;(2)-1681是否为该数列的项?若是,为第几项? 解析:(1)∵2a n =3a n +1,∴a n +1a n =23,数列{a n }是公比为23的等比数列,又a 2·a 5=827,所以a 21⎝⎛⎭⎫235=⎝⎛⎭⎫233,由于各项均为负,故a 1=-32,a n =-⎝⎛⎭⎫23n -2. (2)设a n =-1681,则-1681=-⎝⎛⎭⎫23n -2, ⎝⎛⎭⎫23n -2=⎝⎛⎭⎫234,n =6,所以-1681是该数列的项,为第6项. [B 组 能力提升]1.设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230,那么a 3·a 6·a 9·…·a 30等于( )A .210B .220C .216D .215解析:由等比数列的定义,a 1·a 2·a 3=⎝⎛⎭⎫a 3q 3,故a 1·a 2·a 3·…·a 30=⎝⎛⎭⎫a 3·a 6·a 9·…·a 30q 103.又q =2,故a 3·a 6·a 9·…·a 30=220.答案:B2.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .84解析:设等比数列公比为q ,则a 1+a 1q 2+a 1q 4=21,又因为a 1=3,所以q 4+q 2-6=0,解得q 2=2,所以a 3+a 5+a 7=(a 1+a 3+a 5)q 2=42.答案:B3.设{a n }为公比q >1的等比数列,若a 2 014和a 2 015是方程4x 2-8x +3=0的两根,则a 2 016+a 2 017=________.解析:4x 2-8x +3=0的两根分别为12和32,q >1,从而a 2 014=12,a 2 015=32,∴q =a 2 015a 2 014=3.a 2 016+a 2 017=(a 2 014+a 2 015)·q 2=2×32=18.答案:184.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________.解析:设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12可得q 9=3,又a n -1a n a n +1=a 31q 3n -3=324,因此q 3n -6=81=34=q 36,所以n =14. 答案:145.有四个实数,前三个数依次成等比数列,它们的积为-8;后三个数依次成等差数列,它们的积为-80,求这四个数.解析:由题意,设这四个数为b q,b ,bq ,a ,则⎩⎪⎨⎪⎧ b 3=-8.2bq =a +b ,b 2aq =-80解得⎩⎪⎨⎪⎧ a =10,b =-2,q =-2,或⎩⎪⎨⎪⎧ a =-8,b =-2,q =52.∴这四个数依次为1,-2,4,10或-45,-2,-5,-8.6.已知a 1=2,点(a n ,a n +1)在函数f (x )=x 2+2x 的图象上,其中n =1,2,3,….(1)证明数列{lg(1+a n )}是等比数列;(2)求{a n }的通项公式.解析:(1)证明:由已知得a n +1=a 2n +2a n , ∴a n +1+1=a 2n +2a n +1=(a n +1)2. ∵a 1=2,∴a n +1+1=(a n +1)2>0. ∴lg(1+a n +1)=2lg(1+a n ),即lg (1+a n +1)lg (1+a n )=2, 且lg(1+a 1)=lg 3.∴{lg(1+a n )}是首项为lg 3,公比为2的等比数列.(2)由(1)知,lg(1+a n )=2n -1·lg 3=lg 312n -, ∴1+a n =312n -,∴a n =312n --1.。

人教课标版高中数学必修五《等比数列(第1课时)》教案(1)-新版

人教课标版高中数学必修五《等比数列(第1课时)》教案(1)-新版

2.4.1等比数列第一课时一、教学目标1.核心素养通过学习等比数列提高从数学角度发现和提出、分析和解决问题的能力,锻炼数学抽象和逻辑推理能力.2.学习目标(1)由特殊到一般,理解并会判断等比数列.(2)掌握等比数列通项公式及证明.(3)应用等比数列知识解决相应问题.3.学习重点(1)等比数列定义及判断.(2)通项公式的推导.4.学习难点会用等比数列解决相应问题.二、教学设计(一)课前设计1.预习任务任务1阅读教材,思考:什么是等比数列?任务2观察等比数列,总结等比数列的规律,前后两项的比值可以是任意实数吗?任务3结合之前的探索,能写出其通项公式吗?等比数列何时递增,递减,或者变成等差数列?2.预习自测1.数列4,16,64,256…是什么数列?第五项是多少?答案:等比数列;1024.【知识点:等比数列】【解析】等比数列的通项公式是:11n n a a q -=2.在等比数列{}n a 中,472,16,a a ==则n a =________..23-n 答案:【知识点:等比数列通项公式】【解析】等比数列的通项公式是:11n n a a q -=,由题意求出n 和q 3.已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为( ) A .-3 B .±3 C .-3 3 D .±3 3 答案:C【解析】∵-1,x,y,z ,-3成等比数列,∴2y =xz =(-1)×(-3)=3,且2x y =->0,即y”的什么条件?有都”是“对任意正整数是公比,则“是首项,等比数列中n n a a n q a q a >>>+111,1,0,.4答案:充分不必要条件.【知识点:等比数列通项公式,充要条件的判断;数学思想:推理论证能力】【解析】充分不必要条件.由q >1,得1n n q q ->,又10a >得111n n a q a q -⋅>⋅即1n a +>n a 反之不然.取11n n a a q -==)21(n-,可得 1n a +>n a ,但1a =21-(二)课堂设计 1.知识回顾 (1)等差数列概念.(2)等差数列通项公式及推导. 2.问题探究问题探究一 借助等差数列的定义,类比得到等比数列定义 ●活动一 回顾旧知,夯实基础.之前我们学习了等差数列,我们是怎样定义并且判断等差数列?如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:1n n a a d +-= (n ∈N *,d 为常数),或1n n a a d --= (2,n d ≥为常数). ●活动二 探索规律,发现新知. 类比于等差数列,观察以下几个数列2,4,8,16,32…;1,1,1,1,1…;1,-1,1,-1,1,-1…;1,0,1,0,1,0,…;3,9,27,81,243,…;它们都有着怎样的规律 ●活动二 新旧整合,得出结论.结合活动一与活动二,能给出等比数列定义吗?如果一个数列从第2项起,每一项与它的前一项的比等于同一个非0常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示.数学语言表达式:1n n a q a -=(2,n ≥q 为非0常数),或1n naq a +=(n ∈N *,q 为非0常数).问题探究二 类比等差数列通项公式及性质,结合等比数列定义得到等比数列通项公式和性质,●活动一 温故知新,迎难而上. 回忆等差数列,写出通项公式.通项公式:()11n a a n d =+-.推广:()n m a a n m d =+-(m,n ∈N *). ●活动二 类比旧知得出新知.在等比数列中,是否只需确定某些量就可以写出通项公式?只需确定首项与公比即可得到通项公式11n n a a q -=.推广: n m n m a a q -=,公比为非0常数.●活动三 思维谨慎,扎实前进. 能否给出通项公式证明?借助定义,a na n -1=q (n ≥2,q 为非0常数),列出n -1个式子,累乘后得到通项公式. ●活动四 夯实基础,勇于探索.等差数列中,公差大于0时,数列递增;反之递减.等比数列也有相似结论吗?请归纳总结.首相大于0,公比大于1时递增;公比大于0小于1时递减;首项小于0时,公比大于0小于1时递增,公比大于1时递减;首项不等于0,公比等于1时,既是等差又是等比;公比小于0时,为摆动数列.问题探究三●活动一 初步运用 基础知识的掌握例1.在等比数列{}n a 中,253618,9,1n a a a a a +=+==,则n =________. 【知识点:等比数列通项公式】 答案:6例2.在等比数列{}n a 中, 1a <0, 若对正整数n 都有1n n a a +<,那么公比q 的取值范围是?【知识点:等比数列通项公式】答案:由1n n a a +<得1111,,01n n n n a q a q q q q --<∴>∴<< ●活动二 能力提升 通项公式性质的运用例1. 数列{}n a 是等差数列,若1351,3,5a a a +++构成公比为q 的等比数列,则q =________.【知识点:等比数列性质】 答案:1.例2.在正项等比数列{}n a 中, 1n n a a +>,28466,5a a a a ⋅=+=,则57a a =( ) A.56 B.65 C.23D.32【知识点:等比数列性质】 答案:D 3.课堂总结 【知识梳理】(1)等比数列定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个非0常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示. 数学语言表达式:1n n a q a -= (n ≥2,q 为非0常数),或1n naq a +=(n ∈N *,q 为非0常数).(2)等比数列通项公式: 11n n a a q -=;通项公式的推广: n m n m a a q -=. 【重难点突破】(1)等比数列通项公式运用时为了减少计算量可以尝试使用其推广式. (2)公比0≠q 这是必然的,不存在公比为0的等比数列,还可以理解为等比数列中,不存在数值为0的项,各项不为0的常数列既是等差数列又是等比数列;至于等比数列的增减,则可以从首项与公比的正负及范围,通过列不等式进行确定. (3)等比数列的定义中有“从第二项起”“同一个常数”的描述应与等差数列中的描述理解一致.(4)等比数列的通项公式可以用迭代法累乘法推导,其中累乘法与累加法相似,可做一做比较,便于掌握. 4.随堂检测 一、选择题1.在等比数列{}n a 中,64,852==a a ,则公比q 为( ) A .2 B .3 C .4 D .8 答案:A.解析:【知识点:等比数列的通项公式】 二、解答题1.求下列各等比数列的通项公式: (1)21-=a ,83-=a . (2)51=a ,且12+n a n a 3-=. (3)51=a ,且11+=+n na a n n . 答案:(1)n n n n n n a a )2()2)(2(22)2(11-=--=-=-=--或.(2)1)23(5--⨯=n n a .(3)na n a n 311==.解析:【知识点:等比数列通项公式】 2.求以下等比数列的第4项与第5项: (1)5,-15,45,……. (2)1.2,2.4,4.8,…….(3)213,, (328).答案:(1)1354-=a ,4055=a . (2)6.94=a ,2.195=a . (3)4a =329,5a =12827. 解析:【知识点:等比关系的确定;数学思想:推理论证能力】3.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 答案:这四个数为0, 4, 8, 16或15, 9, 3, 1.解析:【知识点:等比关系的确定;数学思想:推理论证能力】 设四个数依次为x,y,12-y,16-x .依题意,有 x +(12−y )=2y ①()()21612y x y -=-②由①式得x =3y -12 ③将③式代入②式得y (16-3y +12)=(12-y )2,整理得y 2-13y +36=0,解得124,9y y ==,代入③式得120,15x x ==.从而得所求四个数为0,4,8,16或15,9,3,1. 5.(1)已知{}n a 是等比数列,且2435460,225n a a a a a a a >++=, 求53a a +.(2)c a ≠,三数c a ,1,成等差数列,22,1,c a 成等比数列,求22ca ca ++. 答案:(1) 3a +55=a . (2)3122=++c a c a .解析:【知识点:等差数列的性质,等比数列】(1)∵{}n a 是等比数列,∴()224354635225a a a a a a a a ++=+=.又0n a >, ∴355a a +=.(三)课后作业基础型自主突破 一、填空题1.已知等比数列{}n a 的公比为正数,且248522,1,a a a a ⋅==则1a = .答案: 1a =解析:【知识点:等比关系的确定;数学思想:推理论证能力】设等比数列{}n a 的公比为q ,∵ 2482a a a ⋅=211a a ==,∴ 1a =2.设数列{}n a 是首项为1,公比为-3的等比数列12345||||||a a a a a ++++=______. 答案:121.解析:【知识点:等比数列】∵数列{}n a 是首项为1,公比为-3的等比数列,∴()1113n n n a a q --==-,∴123451,3,9,27,81,a a a a a ==-==-=∴则12345||||||1392781121a a a a a ++++=++++=. 3.等比数列{}214n +的公比为 ______ . 答案:16.解析:【知识点:等比数列的通项公式】 等比数列的通项公式是:11n n a a q -=4.若1、a 、b 、c 、9成等比数列,则b = ______ . 答案:3.解析:【知识点:等比数列】利用等比数列通用公式11n n a a q -=求出相应的值421531,9,3a a q a q b ======,3b ∴=5.公比为2的等比数列{}n a 的各项都是正数,且31116,a a =,则210log a = ______ . 答案:5.解析:【知识点:等比数列通项公式,对数的运算性质】∵公比为2的等比数列{}n a 的各项都是正数,且31116,a a =,∴7a =4,∴1a •26=4,解得1a =42-,∴9495101222a a q -==⨯=,∴52102log log 25a ==. 故答案为:5.能力型师生共研 一、选择题1.在数列{}n a 中,1111,,4n n a a a +==则99a =________. A.125504B.2500C.124504D.2401 答案:B解析:【知识点:等比关系的确定;数学思想:推理论证能力】 二、填空题1.设{}n a 为公比1q >的等比数列,若2004a 和2005a 是方程24830x x ++=的两根,则=+20072006a a _________. 答案:-18解析:【知识点:等比数列,根与系数的关系】根据{}n a 为公比q >1的等比数列, 2004a 和2005a 是方程4x 2+8x +3=0的两根,可得2004a =-2005=2006+2007a =-18. 三、证明题1.已知:b 是a 与c 的等比中项,且c b a ,,同号,求证:3a b c ++等比数列答案:见解析解析:【知识点:等比数列】 由题设:ac b =2得:22333)3(333ca bc ab bc b ab b c b a abc c b a ++=++=⨯++=⨯++ ∴3,3,3abc ca bc ab c b a ++++也成等比数列.探究型多维突破一、选择题1.已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是( )A .1(0,2+B .C .D .)251,251(++- 答案:D.解析:【知识点:等比关系的确定,解三角形;数学思想:推理论证能力】 设三边:a 、qa 、2q a 、q >0则由三边关系:两短边和大于第三边a +b >c ,即 (1)当q ≥1时a +qa >2q a ,等价于解二次不等式:21q q --<0,由于方程2q q --(2)当q <1时,a 为最大边,qa +2q a >a 即得2q q --⎭故选D . 二、证明题1.设d c b a ,,,均为非零实数,()()0222222=+++-+c b d c a b d b a ,求证:c b a ,,成等比数列且公比为d答案:见解析解析:【知识点:等比关系的确定;数学思想:推理论证能力,运算求解能力,创新意识,应用意识】证明:证一:关于d 的二次方程()()0222222=+++-+c b d c a b d b a 有实根, ∴()()0442222≥+-+=∆b a c a b ,∴()022≥--ac b则必有:02=-ac b ,即ac b =2,∴c b a ,,成等比数列设公比为q ,则aq b =,2aq c =代入()()024********=+++-+q a q a d aq a aq d q a a∵()0122≠+a q ,即0222=+-q qd d ,即≠=q d证二:∵()()0222222=+++-+c b d c a b d b a ∴()()022222222=+-++-c bcd d b b abd d a∴()()022=-+-c bd b ad ,∴b ad =,且c bd =∵d c b a ,,,非零,∴d bca b == 自助餐 一、选择题1.等比数列{}n a 中,6a 和10a 是方程2620x x ++=的两根,则8a =( )A.2±B.答案:C.解析:【知识点:等比数列,根与系数的关系】等比数列{}n a 中,6a 和10a 是方程2620x x ++=的两根, 6106a a +=-,可得261082a a a ⋅==,6a 和10a 都是负数,可得8a =-2..故选:C .2.已知等比数列{}n a 的公比为正数,且248522,1,a a a a ⋅==则1a =( )A. 0.5B. 22答案:C.解析:【知识点:等比数列】设公比为q ,由已知得()22841112a q a q a q ⋅=,即q 2=2,又因为等比数列{}n a 的公比为正数,所以q =2.22=,故选C.2.等比数列{}n a 的首项为1,项数是偶数,所有的奇数项之和为85,所有的偶数项之和为170,则10a =( )A.32 64.B C.512 D.1024 答案:C.解析:【知识点:等比关系的确定;数学思想:推理论证能力】设等比数列的项数为2n ,∵所有的奇数项之和为85,所有的偶数项之和为170, ∴S 奇:S 偶=1:2.∵S 奇=1321...n a a a -+++,S 偶=242...n a a a +++=q S 奇由题意可得,q =2,∴9910112512a a q ==⨯=.故选:C .3.在等比数列{}n a 中, 11,2,32n a q a ===,则n =( )A.5B.6C.7D.8 答案:B.解析:【知识点:等比数列的通项公式】11n n a a q -=,求得n =84.等比数列{}n a 中, 385,2a a ==,则数列{}lg n a 的前10项和等于( )A.2B.5C.1050D.lg答案:B.解析:【知识点:等比数列的通项公式,对数的运算性质】由题意得,等比数列{}n a 中, 385,2a a ==,所以385610,a a a a ⋅=⋅=,由等比数列的性质得, ()551231056...10a a a a a a ⋅⋅⋅=⋅=,所以数列{}lg n a 的前10项和1210l g l g ...l g 5n S a a a =+++=,故选:B . 6.数列{}n a 的首项1,数列{}n b 为等比数列且1n n na b a +=,若10112b b ⋅=,则21a =( ) A.20 B.512 C.1013 D.1024 答案.D.解析:【知识点:等比数列的通项公式】由1n n n a b a +=可知202120232121,,,a a b a a b a a b === ,所以202123122021a a a a a a b b b ⋅⋅⋅=⋅⋅⋅ ,又数列{}n b 为等比数列,所以1202191011b b b b b b ===L ,于是有121102a a =,即110212a a =,又11=a ,所以102421021==a ,故答案选D. 二、填空题1.已知数列{}n a 为等比数列,且5a =4,9a =64,则7a =____________. 答案:16.解析:【知识点:等比数列的通项公式】11n n a a q -=,由已知条件求出通项公式1124n n a -=⋅,所以716a =.2.数列{}n a 中, 112,n n a a a cn +==+(c 是常数,n =1,2,3,…),且123,,a a a 成公比不为1的等比数列.则c 的值是 ______ .答案:2.解析:【知识点:等比数列】∵112,n n a a a cn +==+,∴232,23,a c a c =+=+又∵123,,a a a 成公比不为1的等比数列,∴()()22c 223c +=+,即c 2-2c=0解得c=2,或c=0,故答案为23.若公比不为1的等比数列{}n a 满足()21213•13log a a a ⋯=,等差数列{}n b 满足77b a =,则1213b b b +⋯+的值为 ______ . 答案:26.解析:【知识点:等比数列通项公式,等差数列前n 项和】 ∵公比不为1的等比数列{a n }满足()21213•13log a a a ⋯=,∴()()()13212132727•1313log a a a log a log a ⋯===,解得7772,2,a b a ===,由等差数列的性质可得777121372,2,...1326a b a b b b b ===+++==,故答案为:26 三、解答题1.在等比数列{}n a 中, 5142-=15,-=6a a a a ,求3a 和q . 答案:见解析解析:【知识点:等比数列通项公式】,6=-,15=-}中中在等比数列{2415a a a a a n 答案:.4=,1=时,2=q 当31a a2.设{}n a 是一个公差为d (d ≠0)的等差数列,它的前10项和10110S =且124,,a a a 成等比数列,求数列{}n a 的通项公式. 答案: n a =2n .解析:【知识点:等差数列前n 项和,等比数列】∵124,,a a a 成等比数列,∴2214a a a =又∵{an}是等差数列,∴2141,3a a d a a d =+=+, ∴()()21113a d a a d +=+,即222111123a a d d a a d ++=+,化简可得1a d =,∵101101092110S a d =+⨯=,∴11045110a d +=.又∵1a d =,∴55d =110,∴d =2, ∴()112n a a n d n =+-=3.已知数列{}n a 的奇数项成等差数列,偶数项成等比数列,公差与公比均为2,并且2415798,a a a a a a a +=++=. (1)求数列{}n a 的通项公式;(2)求使得1212m m m m m m a a a a a a ++++⋅⋅=++成立的所有正整数m 的值. 答案:见解析解析:【知识点:等比数列,等比数列通项公式】31517142622,4,6,2,4a a a a a a a a a a =+=+=+==Q 2415798,a a a a a a a +=++=2211212124,2642a a a a a a a a ∴+=+++++=++121,2a a ∴==∴na =⎩⎨⎧为奇数为偶数n n n n,,22; (2)∵1212m m m m m m a a a a a a ++++⋅⋅=++成立, ∴由上面可以知数列{}n a 为:1,2,3,4,5,8,7,16,9,… 当m =1时等式成立,即1+2+3=-6=1×2×3;等式成立. 当m =2时等式成立,即2×3×4≠2+3+4;等式不成立. 当m =3、4时等式不成立; 当m ≥5时,∵12m m m a a a ++⋅⋅为偶数, 12m m m a a a ++++为奇数, ∴可得m 取其它值时,不成立, ∴m =1时成立.。

高中数学 第二章 数列 2.4 等比数列(二)课件 新人教A版必修5

高中数学 第二章 数列 2.4 等比数列(二)课件 新人教A版必修5
根据等比数列的性质 a5a6=a1a10=a2a9=a3a8=a4a7=9, ∴a1a2…a9a10=(a5a6)5=95, ∴log3a1+log3a2+…+log10.
名师点评
抓住各项序号的数字特征,灵活运用等比数列的性质,可以顺利地 解决问题.
1234
4.an=2n+3n,判断数列{an}是不是等比数列? 不是等比数列. ∵a1=21+31=5,a2=22+32=13,a3=23+33=35, ∴a1a3≠a22, ∴数列{an}不是等比数列.
1234
课堂小结
1.解题时,应该首先考虑通式通法,而不是花费大量时间找简便方法. 2.所谓通式通法,指应用通项公式,前n项和公式,等差中项,等比中 项等列出方程(组),求出根本量. 3.巧用等比数列的性质,减少计算量,这一点在解题中也非常重要.
探究点2 等比数列的性质
命题角度1 序号的数字特征 例2 {an}为等比数列. (1)假设an>0,a2a4+2a3a5+a4a6=25,求a3+a5;
a2a4+2a3a5+a4a6=a23+2a3a5+a25 =(a3+a5)2=25, ∵an>0, ∴a3+a5>0, ∴a3+a5=5.
(2)假设an>0,a5a6=9,求log3a1+log3a2+…+log3a10的值.
方法二 设这四个数依次为2qa-a,aq,a,aq(q≠0),
2qa-a+aq=16, 由条件得aq+a=12,
解得aq==82,
a=3, 或q=13.
当a=8,q=2时,所求的四个数为0,4,8,16;
当 a=3,q=13时,所求的四个数为 15,9,3,1. 故所求的四个数为0,4,8,16或15,9,3,1.
2.等比数列项的运算性质 在等比数列{an}中,若 m+n=p+q(m,n,p,q∈N*),则 am·an= ap·aq . ①特别地,当 m+n=2k(m,n,k∈N*)时,am·an= a2k . ②对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的 积 ,

高中数学新人教A版必修5第二章 2.4 第二课时 等比数列的性质

高中数学新人教A版必修5第二章   2.4  第二课时 等比数列的性质

第二课时 等比数列的性质预习课本P53练习第3、4题,思考并完成以下问题 等比数列项的运算性质是什么?[新知初探] 等比数列的性质(1)若数列{a n },{b n }是项数相同的等比数列,则{a n ·b n }也是等比数列.特别地,若{a n }是等比数列,c 是不等于0的常数,则{c ·a n }也是等比数列.(2)在等比数列{a n }中,若m +n =p +q ,则a m a n =a p a q .(3)数列{a n }是有穷数列,则与首末两项等距离的两项的积相等,且等于首末两项的积. (4)在等比数列{a n }中,每隔k 项取出一项,按原来的顺序排列,所得新数列仍为等比数列,公比为q k +1.(5)当m ,n ,p (m ,n ,p ∈N *)成等差数列时,a m ,a n ,a p 成等比数列.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积( ) (2)当q >1时,{a n }为递增数列.( ) (3)当q =1时,{a n }为常数列.( )解析:(1)正确,根据等比数列的定义可以判定该说法正确. (2)错误,当q >1,a 1>0时,{a n }才为递增数列.(3)正确,当q =1时,数列中的每一项都相等,所以为常数列. 答案:(1)√ (2)× (3)√2.由公比为q 的等比数列a 1,a 2,…依次相邻两项的乘积组成的数列a 1a 2,a 2a 3,a 3a 4,…是( )A .等差数列B .以q 为公比的等比数列C .以q 2为公比的等比数列D .以2q 为公比的等比数列解析:选C 因为a n +1a n +2a n a n +1=a n +2a n =q 2为常数,所以该数列为以q 2为公比的等比数列.3.已知等比数列{a n }中,a 4=7,a 6=21,则a 8的值为( )A .35B .63C .21 3D .±21 3解析:选B ∵{a n }成等比数列. ∴a 4,a 6,a 8成等比数列∴a 26=a 4·a 8,即a 8=2127=63.4.在等比数列{a n }中,各项都是正数,a 6a 10+a 3a 5=41,a 4a 8=4,则a 4+a 8=________.解析:∵a 6a 10=a 28,a 3a 5=a 24, ∴a 24+a 28=41,又a 4a 8=4,∴(a 4+a 8)2=a 24+a 28+2a 4a 8=41+8=49,∵数列各项都是正数, ∴a 4+a 8=7. 答案:7等比数列的性质[典例] (1)在1与100之间插入n 个正数,使这n +2个数成等比数列,则插入的n 个数的积为( )A .10nB .n 10C .100nD .n 100(2)在等比数列{a n }中,a 3=16,a 1a 2a 3…a 10=265,则a 7等于________. [解析] (1)设这n +2个数为a 1,a 2,…,a n +1,a n +2, 则a 2·a 3·…·a n +1=(a 1a n +2)n 2=(100)n 2=10n .(2)因为a 1a 2a 3…a 10=(a 3a 8)5=265,所以a 3a 8=213, 又因为a 3=16=24,所以a 8=29. 因为a 8=a 3·q 5,所以q =2. 所以a 7=a 8q =256.[答案] (1)A (2)256有关等比数列的计算问题,基本方法是运用方程思想列出基本量a 1和q 的方程组,先解出a 1和q ,然后利用通项公式求解.但有时运算稍繁,而利用等比数列的性质解题,却简便快捷,为了发现性质,要充分发挥项的“下标”的指导作用.[活学活用]1.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5D .-7解析:选D 因为数列{a n }为等比数列,所以a 5a 6=a 4a 7=-8,联立⎩⎪⎨⎪⎧a 4+a 7=2,a 4a 7=-8,解得⎩⎪⎨⎪⎧ a 4=4,a 7=-2或⎩⎪⎨⎪⎧a 4=-2,a 7=4,所以q 3=-12或q 3=-2,故a 1+a 10=a 4q3+a 7·q 3=-7.2.在等比数列{a n }中,已知a 4a 7=-512,a 3+a 8=124,且公比为整数,则a 10=________. 解析:由a 4·a 7=-512,得a 3·a 8=-512.由⎩⎪⎨⎪⎧a 3·a 8=-512,a 3+a 8=124, 解得⎩⎪⎨⎪⎧ a 3=-4,a 8=128或⎩⎪⎨⎪⎧a 3=128,a 8=-4.(舍去). 所以q =5a 8a 3=-2.所以a 10=a 3q 7=-4×(-2)7=512. 答案:512灵活设元求解等比数列问题[典例] (1)有四个数成等比数列,将这四个数分别减去1,1,4,13成等差数列,则这四个数的和是________.(2)有四个实数,前三个数成等比数列,且它们的乘积为216,后三个数成等差数列,且它们之和为12,求这四个数.[解析] (1)设这四个数分别为a ,aq ,aq 2,aq 3,则a -1,aq -1,aq 2-4,aq 3-13成等差数列.即⎩⎪⎨⎪⎧2(aq -1)=(a -1)+(aq 2-4),2(aq 2-4)=(aq -1)+(aq 3-13),整理得⎩⎪⎨⎪⎧a (q -1)2=3,aq (q -1)2=6,解得a =3,q =2.因此这四个数分别是3,6,12,24,其和为45. [答案] 45(2)解:法一:设前三个数为aq ,a ,aq ,则a q ·a ·aq =216, 所以a 3=216.所以a =6. 因此前三个数为6q ,6,6q . 由题意知第4个数为12q -6. 所以6+6q +12q -6=12,解得q =23.故所求的四个数为9,6,4,2.法二:设后三个数为4-d,4,4+d ,则第一个数为14(4-d )2,由题意知14(4-d )2×(4-d )×4=216,解得4-d =6.所以d =-2.故所求得的四个数为9,6,4,2.几个数成等比数列的设法(1)三个数成等比数列设为aq ,a ,aq . 推广到一般:奇数个数成等比数列设为: …a q 2,aq,a ,aq ,aq 2… (2)四个符号相同的数成等比数列设为: a q 3,aq,aq ,aq 3. 推广到一般:偶数个符号相同的数成等比数列设为: …a q 5,a q3,aq ,aq ,aq 3,aq 5… (3)四个数成等比数列,不能确定它们的符号相同时,可设为:a ,aq ,aq 2,aq 3. [活学活用]在2和20之间插入两个数,使前三个数成等比数列,后三个数成等差数列,则插入的两个数的和为( )A .-4或352B .4或352C .4D .1712解析:选B 设插入的第一个数为a ,则插入的另一个数为a 22.由a ,a 22,20成等差数列得2×a 22=a +20.∴a 2-a -20=0,解得a =-4或a =5. 当a =-4时,插入的两个数的和为a +a 22=4.当a =5时,插入的两个数的和为a +a 22=352.等比数列的实际应用问题[典例] 某工厂2018年1月的生产总值为a 万元,计划从2018年2月起,每月生产总值比上一个月增长m %,那么到2019年8月底该厂的生产总值为多少万元?[解] 设从2018年1月开始,第n 个月该厂的生产总值是a n 万元,则a n +1=a n +a n m %, ∴a n +1a n=1+m %.∴数列{a n }是首项a 1=a ,公比q =1+m %的等比数列.∴a n =a (1+m %)n -1.∴2019年8月底该厂的生产总值为a 20=a (1+m %)20-1=a (1+m %)19(万元).数列实际应用题常与现实生活和生产实际中的具体事件相联系,建立数学模型是解决这类问题的核心,常用的方法有:①构造等差、等比数列的模型,然后用数列的通项公式或求和公式解;②通过归纳得到结论,再用数列知识求解.[活学活用] 如图,在等腰直角三角形ABC 中,斜边BC =2 2.过点 A 作BC 的垂线,垂足为A 1 ;过点 A 1作 AC 的垂线,垂足为 A 2;过点A 2 作A 1C 的垂线,垂足为A 3 ;…,依此类推.设BA =a 1 ,AA 1=a 2 , A 1A 2=a 3 ,…, A 5A 6=a 7 ,则 a 7=________.解析:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,…,A n -1A n =a n +1=sin π4·a n =22a n =2×⎝⎛⎭⎫22n ,故a 7=2×⎝⎛⎭⎫226=14. 答案:14层级一 学业水平达标1.等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12D .24解析:选A 由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24.2.对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列解析:选D 设等比数列的公比为q ,因为a 6a 3=a 9a 6=q 3,即a 26=a 3a 9,所以a 3,a 6,a 9成等比数列.故选D.3.在正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 5a 7等于( )A.56B.65C.23D.32解析:选D 设公比为q ,则由等比数列{a n }各项为正数且a n +1<a n 知0<q <1,由a 2·a 8=6,得a 25=6.∴a 5=6,a 4+a 6=6q+6q =5. 解得q =26,∴a 5a 7=1q 2=⎝⎛⎭⎫622=32.4.已知公差不为0的等差数列的第2,3,6项依次构成一个等比数列,则该等比数列的公比q 为( )A.13 B .3 C .±13D .±3解析:选B 设等差数列为{a n },公差为d ,d ≠0.则a 23=a 2·a 6,∴(a 1+2d )2=(a 1+d )·(a 1+5d ),化简得d 2=-2a 1d , ∵d ≠0,∴d =-2a 1,∴a 2=-a 1,a 3=-3a 1,∴q =a 3a 2=3.5.已知各项均为正数的等比数列{a n }中,lg(a 3a 8a 13)=6,则a 1·a 15的值为( ) A .100 B .-100 C .10 000D .-10 000解析:选C ∵a 3a 8a 13=a 38,∴lg(a 3a 8a 13)=lg a 38=3lg a 8=6.∴a 8=100.又a 1a 15=a 28=10000,故选C.6.在3和一个未知数间填上一个数,使三数成等差数列,若中间项减去6,成等比数列,则此未知数是________.解析:设此三数为3,a ,b ,则⎩⎪⎨⎪⎧2a =3+b ,(a -6)2=3b , 解得⎩⎪⎨⎪⎧ a =3,b =3或⎩⎪⎨⎪⎧a =15,b =27.所以这个未知数为3或27. 答案:3或277.设数列{a n }为公比q >1的等比数列,若a 4,a 5是方程4x 2-8x +3=0的两根,则a 6+a 7=________.解析:由题意得a 4=12,a 5=32,∴q =a 5a 4=3.∴a 6+a 7=(a 4+a 5)q 2=⎝⎛⎭⎫12+32×32=18. 答案:188.画一个边长为2厘米的正方形,再以这个正方形的对角线为边画第2个正方形,以第2个正方形的对角线为边画第3个正方形,这样一共画了10个正方形,则第10个正方形的面积等于________平方厘米.解析:这10个正方形的边长构成以2为首项,2为公比的等比数列{a n }(1≤n ≤10,n ∈N *),则第10个正方形的面积S =a 210=22·29=211=2 048. 答案:2 0489.在由实数组成的等比数列{a n }中,a 3+a 7+a 11=28,a 2·a 7·a 12=512,求q . 解:法一:由条件得⎩⎪⎨⎪⎧a 7q -4+a 7+a 7q 4=28, ①a 7q -5·a 7·a 7q 5=512, ② 由②得a 37=512,即a 7=8. 将其代入①得2q 8-5q 4+2=0.解得q 4=12或q 4=2,即q =±142或q =±42.法二:∵a 3a 11=a 2a 12=a 27, ∴a 37=512,即a 7=8.于是有⎩⎪⎨⎪⎧a 3+a 11=20,a 3a 11=64,即a 3和a 11是方程x 2-20x +64=0的两根,解此方程得x =4或x =16.因此⎩⎪⎨⎪⎧ a 3=4,a 11=16或⎩⎪⎨⎪⎧a 3=16,a 11=4.又∵a 11=a 3·q 8,∴q =±⎝⎛⎭⎫a 11a 318=±418=±42或q =±⎝⎛⎭⎫1418=±142. 10.在正项等比数列{a n }中,a 1a 5-2a 3a 5+a 3a 7=36,a 2a 4+2a 2a 6+a 4a 6=100,求数列{a n }的通项公式.解:∵a 1a 5=a 23,a 3a 7=a 25, ∴由题意,得a 23-2a 3a 5+a 25=36, 同理得a 23+2a 3a 5+a 25=100,∴⎩⎪⎨⎪⎧ (a 3-a 5)2=36,(a 3+a 5)2=100.即⎩⎪⎨⎪⎧a 3-a 5=±6,a 3+a 5=10.解得⎩⎪⎨⎪⎧ a 3=2,a 5=8或⎩⎪⎨⎪⎧a 3=8,a 5=2.分别解得⎩⎪⎨⎪⎧ a 1=12,q =2或⎩⎪⎨⎪⎧a 1=32,q =12.∴a n =2n-2或a n =26-n .层级二 应试能力达标1.在等比数列{a n }中,T n 表示前n 项的积,若T 5=1,则( ) A .a 1=1 B .a 3=1 C .a 4=1D .a 5=1解析:选B 由题意,可得a 1·a 2·a 3·a 4·a 5=1,即(a 1·a 5)·(a 2·a 4)·a 3=1,又a 1·a 5=a 2·a 4=a 23,所以a 53=1,得a 3=1.2.已知等比数列{a n }中,a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( ) A .2 B .4 C .8D .16解析:选C 等比数列{a n }中,a 3a 11=a 27=4a 7,解得a 7=4,等差数列{b n }中,b 5+b 9=2b 7=2a 7=8.3.已知数列{a n }为等差数列,a 1,a 2,a 3成等比数列,a 1=1,则a 2 016=( ) A .5B .1C .0D .-1解析:选B 设等差数列{a n }的公差为d ,则由a 1,a 2,a 3成等比数列得(1+d )2=1+2d ,解得d =0,所以a 2 016=a 1=1.4.设各项为正数的等比数列{a n }中,公比q =2,且a 1·a 2·a 3·…·a 30=230,则a 3·a 6·a 9·…·a 30=( )A .230B .210C .220D .215解析:选C ∵a 1·a 2·a 3·…·a 30=230,∴a 301·q1+2+3+…+29=a 301·q29×302=230, ∴a 1=2-272,∴a 3·a 6·a 9·…·a 30=a 103·(q 3)9×102=(2-272×22)10×(23)45=220. 5.在等比数列{a n }中,若a 7=-2,则此数列的前13项之积等于________. 解析:由于{a n }是等比数列,∴a 1a 13=a 2a 12=a 3a 11=a 4a 10=a 5a 9=a 6a 8=a 27,∴a 1a 2a 3…a 13=(a 27)6·a 7=a 137, 而a 7=-2.∴a 1a 2a 3…a 13=(-2)13=-213. 答案:-2136.已知-7,a 1,a 2,-1四个实数成等差数列,-4,b 1,b 2,b 3,-1五个实数成等比数列,则a 2-a 1b 2=________.解析:由题意,知a 2-a 1=-1-(-7)3=2,b 22=(-4)×(-1)=4.又因为b 2是等比数列中的第三项,所以b 2与第一项同号,即b 2=-2,所以a 2-a 1b 2=2-2=-1. 答案:-17.已知数列{a n }为等差数列,公差d ≠0,由{a n }中的部分项组成的数列ab 1,ab 2,…,ab n ,…为等比数列,其中b 1=1,b 2=5,b 3=17.求数列{b n }的通项公式.解:依题意a 25=a 1a 17,即(a 1+4d )2=a 1(a 1+16d ),所以a 1d =2d 2,因为d ≠0,所以a 1=2d ,数列{ab n }的公比q =a 5a 1=a 1+4d a 1=3,所以ab n =a 13n -1,①又ab n =a 1+(b n -1)d =b n +12a 1,② 由①②得a 1·3n -1=b n +12·a 1. 因为a 1=2d ≠0,所以b n =2×3n -1-1.8.容器A 中盛有浓度为a %的农药m L ,容器B 中盛有浓度为b %的同种农药m L ,A ,B 两容器中农药的浓度差为20%(a >b ),先将A 中农药的14倒入B 中,混合均匀后,再由B倒入一部分到A 中,恰好使A 中保持m L ,问至少经过多少次这样的操作,两容器中农药的浓度差小于1%?解:设第n 次操作后,A 中农药的浓度为a n ,B 中农药的浓度为b n ,则a 0=a %,b 0=b %.b 1=15(a 0+4b 0),a 1=34a 0+14b 1=15(4a 0+b 0);b 2=15(a 1+4b 1),a 2=34a 1+14b 2=15(4a 1+b 1);…;b n =15(a n -1+4b n -1),a n =15(4a n -1+b n -1).∴a n -b n =35(a n -1-b n -1)=…=35(a 0-b 0)·⎝⎛⎭⎫35n -1. ∵a 0-b 0=15,∴a n -b n =15·⎝⎛⎭⎫35n .依题意知15·⎝⎛⎭⎫35n <1%,n ∈N *,解得n ≥6.故至少经过6次这样的操作,两容器中农药的浓度差小于1%.。

人教A版高中数学高二必修5课件2.4等比数列(二)

人教A版高中数学高二必修5课件2.4等比数列(二)
(5)如果{an},{bn}均为等比数列,且公比分别为q1,q2,那 么 别数为列q11,a1nq1,q2{,anqq·b21,n},|q1|.bann,{|an|}仍 是 等 比 数 列,且 公 比 分
2.4 等比数列(二)
6
(6)等比数列的项的对称性:在有穷等比数列中,与首末两项
“等距离”的两项之积等于首末两项的积,即a1·an=
2.4 等比数列(二)
29
规律方法 (1)在等差数列与等比数列的综合问题中, 特别要注意它们的区别,避免用错公式.(2)方程思想的 应用往往是破题的关键.
2.4 等比数列(二)
30
跟踪演练4 已知{an}是首项为19,公差为-2的等差数列, Sn为{an}的前n项和. (1)求通项公式an及Sn; 解 因为{an}是首项为19,公差为-2的等差数列,所以an =19-2(n-1)=-2n+21,
的m的个数;若不存在,请说明理由.
解 若存在m,使b1,b4,bt成等差数列, 则2b4=b1+bt,
∴ 7 ×2= 1 + 2t-1 ,
7+m
1+m 2t-1+m
2.4 等比数列(二)
28
7m+1 7m-5+36
∴t=

=7+
36

m-5
m-5
m-5
由于m、t∈N*且t≥5. 令m-5=36,18,9,6,4,3,2,1, 即m=41,23,14,11,9,8,7,6时,t均为大于5的整数. ∴存在符合题意的m值,且共有8个.
2.4 等比数列(二)
26
(1)由 bn=an+an m(m∈N*)知 b1=1+1 m,b2=3+3 m,b8=151+5 m,
∵b1,b2,b8成等比数列,

人教A版高中数学必修五2.4《等比数列(二)》

人教A版高中数学必修五2.4《等比数列(二)》
解析:∵数列{an}成等比数列, ∴a6·a15=a9·a12, ∴a6·a15=15, ∴a1·a2·a3·a4·…·a20=(a1·a20)10=(a6·a15)10 =1510.
答案:1510
要点阐释
1.等比数列的性质 (1)在等比数列中,我们随意取出连续的三项以上的数, 把它们重新依次看成一个数列,则仍是等比数列. (2)在等比数列中,我们任取“间隔相同”的三项以上的数, 把它们重新依次看成一个数列,则仍是等比数列,如:等比 数列a1,a2,a3,… ,an,….那么a2,a5,a8,a11,a14,…; a3,a5,a7,a9,a11…各自仍构成等比数列.
已知等比数列an
满足
an>0,n=1,2,…,
且 a5·a2n-5=22n(n≥3),则当 n≥1 时,log2a1+log2a3+…
+log2a2n-1=
()
A.(n-1)2
B.n2
C.(n+1)2
D.n(2n-1)
错解:易得 an=2n,且 log2a1+log2a3+…+log2a2n-1 =log2(a1a3…a2n-1)=log221+3+…+(2n-1) =1+3+ …+(2n-1)=1+22n-1(2n-1) =n(2n-1).从而错选 D 错因分析:对等差数列1,3,…,2n-1的项数没 数清.
即aa1122-+22aa11aa55++aa5522==330422,, 两式相减得 a1a5=64,即 a32=64, 又 a5>a1,故 a3=8. 答案:A
2.在等
比数列an
中,
a8

a4
与________的等比中项
A.a9
B.a10
C.a11
() D.a12

新人教A版必修5高中数学2.2等差数列(1)学案(二)

新人教A版必修5高中数学2.2等差数列(1)学案(二)

高中数学 2.2等差数列(1)学案新人教A 版必修5学习目标1. 理解等差数列的概念,了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;2. 探索并掌握等差数列的通项公式;3. 正确认识使用等差数列各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定项.学习重难点1.重点: 等差数列的通项公式2.难点: 灵活运用通项公式求等差数列的首项、公差、项数、指定项一、课前准备 (预习教材P 36 ~ P 39 ,找出疑惑之处)复习1:什么是数列? 复习2:数列有几种表示方法?分别是哪几种方法?二、试一试问题一:等差数列的概念1:请同学们仔细观察,看看以下四个数列有什么共同特征?① 0,5,10,15,20,25,… ② 48,53,58,63③ 18,15.5,13,10.5,8,5.5 ④ 10072,10144,10216,10288,10366 新知:1.等差数列:一般地,如果一个数列从第 项起,每一项与它 一项的 等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的 , 常用字母 表示.2.等差中项:由三个数a ,A , b 组成的等差数列,这时数 叫做数 和 的等差中项,用等式表示为A =问题二:等差数列的通项公式2:数列①、②、③、④的通项公式存在吗?如果存在,分别是什么?若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可得:21a a -= ,即:21a a =+ 32a a -= , 即:321a a d a =+=+ 43a a -= ,即:431a a d a =+=+ ……由此归纳等差数列的通项公式可得:n a =∴已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项n a .※ 学习探究探究1 ⑴求等差数列8,5,2…的第20项;⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?变式:(1)求等差数列3,7,11,……的第10项.(2)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.小结:要求出数列中的项,关键是求出通项公式;要想判断一数是否为某一数列的其中一项,则关键是要看是否存在一正整数n 值,使得n a 等于这一数. 探究 2 已知数列{n a }的通项公式n a pn q =+,其中p 、q 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是多少?变式:已知数列的通项公式为61n a n =-,问这个数列是否一定是等差数列?若是,首项与公差分别是什么?小结:要判定{}n a 是不是等差数列,只要看1n n a a --(n ≥2)是不是一个与n 无关的常数. ※ 模仿练习练1. 等差数列1,-3,-7,-11,…,求它的通项公式和第20项.练2.在等差数列{}n a 的首项是51210,31a a ==, 求数列的首项与公差.三、总结提升 ※ 学习小结1. 等差数列定义: 1n n a a d --= (n ≥2);2. 等差数列通项公式:n a =1(1)a n d +- (n ≥1).※ 知识拓展1. 等差数列通项公式为1(1)n a a n d =+-或()n m a a n m d =+-. 分析等差数列的通项公式,可知其为一次函数,图象上表现为直线1(1)y a x d =+-上的一些间隔均匀的孤立点.2. 若三个数成等差数列,且已知和时,可设这三个数为,,a d a a d -+. 若四个数成等差数列,可设这四个数为3,,,3a d a d a d a d --++.当堂检测1. 等差数列1,-1,-3,…,-89的项数是( ). A. 92 B. 47 C. 46 D. 452. 数列{}n a 的通项公式25n a n =+,则此数列是( ).A.公差为2的等差数列B.公差为5的等差数列C.首项为2的等差数列D.公差为n 的等差数列3. 等差数列的第1项是7,第7项是-1,则它的第5项是( ). A. 2 B. 3 C. 4 D. 64. 在△ABC 中,三个内角A ,B ,C 成等差数列,则∠B = .5. 等差数列的相邻4项是a +1,a +3,b ,a +b ,那么a = ,b = .课后作业1. 在等差数列{}n a 中,⑴已知12a =,d =3,n =10,求n a ; ⑵已知13a =,21n a =,d =2,求n ;⑶已知112a=,627a=,求d;⑷已知d=-13,78a=,求1a.2. 一个木制梯形架的上下底边分别为33cm,75cm,把梯形的两腰各6等分,用平行木条连接各分点,构成梯形架的各级,试计算梯形架中间各级的宽度.课后反思。

2.4等比数列 课件 (人教A版必修5)

2.4等比数列 课件 (人教A版必修5)
A.等差数列 B.等比数列 C.既是等差数列又是等比数列 D.不能确定是什么数列
解析:∵a1=1,a2=2,a3=4,仅给出了数列前3项, 后边各项不知有何规律,给出不同的值会得出不同结论.
答案:D
3.等比数列{an}中,a1=
1 8
,q=2,则a4与a8的等比中
项是( )
A.±4
B.4
C.±14
[例2]
已知a,-
3 2
,b,-
243 32
,c五பைடு நூலகம்数成等比数
列,试求a,b,c的值.
[解] ∵b2=(-32)×(-23423)=(32)6, ∴b=±287. 当b=287时,∵ab=(-32)2,∴a=23. 由bc=(-23423)2=(32)10及b=287,得c=2112887=(32)7.
2.4 等比数列
第1课时 等比数列
课前自主预习
课堂互动探究
随堂知能训练
课时作业
目标了然于胸,让讲台见证您的高瞻远瞩
1.掌握等比数列的通项公式,体会等比数列的通项公式
与指数函数的关系.
2.掌握等比中项的定义,能够应用等比中项的定义解 决问题.
课前 自 主 预 习
课 前 预 习 ········································· 明 确 目 标
D.①②③④
解析:根据等比数列的定义,从第2项起检查每一项与 其前一项的比是否为同一个常数.
①中数列是等比数列,公比q=-2;②中数列是等比 数列,公比q=- 2;③中数列当x=0时,不是等比数列; ④中数列是等比数列,公比q=1a.
答案:C
2.在数列{an}中,a1=1,a2=2,a3=4,…,那么数 列{an}是( )

高中数学教案-人教A版必修5--2.4等比数列(2)

高中数学教案-人教A版必修5--2.4等比数列(2)

2.4等比数列(2)教学目标:1、 能够应用等比数列的定义及通项公式,理解等比中项概念;2、 类比等差数列的性质推到等比数列的性质;3、 提升学生对数学知识的正迁移能力,增强学生的数学素养.教学重点:1.等比中项的理解与应用2.等比数列性质探究与应用.教学难点:灵活应用等比数列定义、通项公式及性质解决相关问题.教学过程:一、复习回顾等比数列定义,等比数列通项公式.(板书)二、讲授新课第一环节:类比等差中项,探究等比中项 .问题1:(1)若在2,8中插入一个数A ,使2,A ,8成等差数列,则A = .变式1.若在2,8中插入一个数G ,使2,G ,8成等比数列,则G = .变式2.若在-2, 4中插入一个数M ,能否使-2,M ,4成等比数列呢?归纳小结:1.等差中项:若a ,A ,b 成等差数列⇔A =a +b 2,A 为等差中项. 2.等比中项:(板书)如果在a 、b 中插入一个数G ,使a 、G 、b 成等比数列,则G 是a 、b 的等比中项。

ab G ab G Gb a G ±=⇒=⇒=2(注意两解且同号两项才有等比中项) 练习:完成教材课后练习P预设:学生在推导过程中,部分同学会忽略对等比中项的存在性的讨论,在等比中项存在时漏掉符号为负的那一项.(有利于培养学生的严谨性和批判性)问题2()()()(){}()213n 51937519283746n b b b b n n {a }.1 a a a2 a =3a =a =3 a a =a a =a a =a a 4{b }a a a a 5{a }{lg }. A.1ka ⋅⋅⋅⋅已知无穷数列 是等比数列,那么下列说法中正确个数的有( )是 和 的等比中项;若 ,6,则 12;;若是等差数列,则 是 和 的等比中项,并且 也是等比数列;若数列 的每项都是正数,则数列 为等差数列 B.2 C.3 D.4师问:同学们观察第(3)你发现什么规律了吗?类比等差数列{a n }中,若m +n =p +q ,则a m +a n =a p +a q ,在等比数列{a n }中,若m +n =p +q ,则,m n p q a a a a ,,之间又有怎样的关系呢?并说理.分析:由通项公式可得:a m =a 1q m -1,a n =a 1q n -1,a p =a 1q p -1,a q =a 1·q q -1不难发现:a m ·a n =a 12q m +n -2,a p ·a q =a 12q p +q -2归纳小结:若m +n =p +q ,则a m ·a n =a p ·a q (板书)师问:同学们观察第(4)你发现什么规律了吗?学生发现:在等比数列中,若项数成等差数列,则对应的项仍然成等比数列. 归纳小结:234,,,m m m m km a a a a a ⋅⋅⋅⋅⋅⋅ ,,成等比数列问题3n 115{}(1) 2 , 3 ,(2) 6 , 2 ,n n a a q a q a a q a ====已知数列 是首相 ,公比 为的等比数列,若 求 ;若 求 ;同学们思考:在等比数列中,已知1a q 首相,公比我们可以得到通项公式n a ,如果给出m a q ,公比,又如何表示通项公式n a ?归纳小结:通项公式的变形:11=n n m n m a a q a q --=⋅⋅(板书)师问:类比等差数列()11n a a n d =+-,可以看成是以n 为自变量n a 为因变量的一次函数,它的几何意义是该一次函数图像上的点,那么对于等比数列,已知1a q 首相,公比,变量n a 与变量n 是否存在函数关系?若存在属于哪个类型函数?归纳小结:(板书)当数列}a {n 为指数型函数当{}01n q q a >≠数列为指数且时,型函数;当q=1时,数列}a {n 为常数列;当q<0时,数列}a {n 为摆动数列.思考题1 {}{}44n n a b a b 等差数列与等比数列的首项和第8项为正且相等,试比较与的大小.归纳小结:构建两个函数,为借助函数图像解题奠定了基础,体现了函数思想在数列中的运用。

高中数学第二章数列2.4等比数列第2课时等比数列的性质优化练习新人教A版必修5(2021年整理)

高中数学第二章数列2.4等比数列第2课时等比数列的性质优化练习新人教A版必修5(2021年整理)

2017-2018学年高中数学第二章数列2.4 等比数列第2课时等比数列的性质优化练习新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第二章数列2.4 等比数列第2课时等比数列的性质优化练习新人教A版必修5)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第二章数列2.4 等比数列第2课时等比数列的性质优化练习新人教A版必修5的全部内容。

第2课时等比数列的性质[课时作业][A组基础巩固]1.如果数列{a n}是等比数列,那么()A.数列{a错误!}是等比数列B.数列{2a n}是等比数列C.数列{lg a n}是等比数列D.数列{na n}是等比数列解析:设b n=a错误!,则错误!=错误!=错误!2=q2,∴{b n}为等比数列;2a n+12a n=2a n+1-a n≠常数;当a n〈0时,lg a n无意义;设c n=na n,则错误!=错误!=错误!·q≠常数.答案:A2.已知等差数列{a n}的公差为3,若a1,a3,a4成等比数列,则a2等于( )A.9 B.3C.-3 D.-9解析:a1=a2-3,a3=a2+3,a4=a2+3×2=a2+6,由于a1,a3,a4成等比数列,a错误!=a1a4,即 (a2+3)2=(a2-3)(a2+6),解得a2=-9。

答案:D3.在正项等比数列{a n}中,a1和a19为方程x2-10x+16=0的两根,则a8·a10·a12等于( )A.16 B.32C.64 D.256解析:由已知,得a1a19=16。

【创新设计】2022-2021学年高二数学人教A必修5学案:2.4 等比数列(一) Word版含答案

【创新设计】2022-2021学年高二数学人教A必修5学案:2.4 等比数列(一) Word版含答案

2.4 等比数列(一)[学习目标] 1.通过实例,理解等比数列的概念并会简洁应用.2.把握等比中项的概念并会应用.3.把握等比数列的通项公式了解其推导过程.[学问链接]下列推断正确的是________.(1)从第2项起,每一项与它前一项的差等同一个常数的数列是等差数列; (2)从第2项起,每一项与它前一项的比等同一个常数的数列是等差数列; (3)等差数列的公差d 可正可负,且可以为零; (4)在等差数列中,a n =a m +(n -m )d (n ,m ∈N *). 答案 (1)(3)(4) [预习导引]1.等比数列的概念:假如一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).2.等比中项的概念:假如a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项,且G =±ab .3.等比数列的通项公式:已知等比数列{a n }的首项为a 1,公比为q ,该等比数列的通项公式为a n =a 1q n -1.要点一 等比数列通项公式的基本量的求解 例1 在等比数列{a n }中, (1)a 4=2,a 7=8,求a n ;(2)a 2+a 5=18,a 3+a 6=9,a n =1,求n . (3)a 3=2,a 2+a 4=203,求a n .解 (1)由于⎩⎪⎨⎪⎧a 4=a 1q 3,a 7=a 1q 6,所以⎩⎪⎨⎪⎧ a 1q 3=2,a 1q 6=8,①②由②①得q 3=4,从而q =34,而a 1q 3=2, 于是a 1=2q 3=12,所以a n =a 1q n -1=2532n -.(2)法一 由于⎩⎪⎨⎪⎧ a 2+a 5=a 1q +a 1q 4=18,a 3+a 6=a 1q 2+a 1q 5=9,③④由④③得q =12,从而a 1=32,又a n =1所以32×⎝⎛⎭⎫12n -1=1,即26-n =20,所以n =6. 法二 由于a 3+a 6=q (a 2+a 5),所以q =12.由a 1q +a 1q 4=18,知a 1=32. 由a n =a 1q n -1=1,知n =6.(3)设等比数列{a n }的公比为q ,则q ≠0. a 2=a 3q =2q ,a 4=a 3q =2q ,∴2q +2q =203. 解得q 1=13,q 2=3.当q =13时,a 1=18,∴a n =18×⎝⎛⎭⎫13n -1=2×33-n .当q =3时,a 1=29,∴a n =29×3n -1=2×3n -3.综上,当q =13时,a n =2×33-n ;当q =3时,a n =2×3n -3.规律方法 a 1和q 是等比数列的基本量,只要求出这两个基本量,其他量便可迎刃而解.此类问题求解的通法是依据条件,建立关于a 1和q 的方程组,求出a 1和q .跟踪演练1 (1)若等比数列{a n }的首项a 1=98,末项a n =13,公比q =23,求项数n .(2)在等比数列{a n }中,已知a 5-a 1=15,a 4-a 2=6,求a n . 解 (1)由a n =a 1·q n -1,得13=98⎝⎛⎭⎫23n -1,即⎝⎛⎭⎫23n -1=⎝⎛⎭⎫233,得n =4.(2)由于⎩⎪⎨⎪⎧ a 5-a 1=a 1q 4-a 1=15,a 4-a 2=a 1q 3-a 1q =6,①②由①②得q =12或q =2.当q =12时,a 1=-16;当q =2时,a 1=1.∴a n =-25-n 或a n =2n -1. 要点二 等比中项的应用例2 等差数列{a n }中,公差d ≠0,且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10等于多少?解 由题意知a 3是a 1和a 9的等比中项,∴a 23=a 1a 9,∴(a 1+2d )2=a 1(a 1+8d ),得a 1=d ,∴a 1+a 3+a 9a 2+a 4+a 10=13d 16d =1316.规律方法 由等比中项的定义可知:G a =bG ⇒G 2=ab ⇒G =±ab .这表明只有同号的两项才有等比中项,并且这两项的等比中项有两个,它们互为相反数.反之,若G 2=ab ,则G a =bG ,即a ,G ,b 成等比数列.所以a ,G ,b成等比数列⇔G 2=ab (ab ≠0).跟踪演练2 已知a ,-32,b ,-24332,c 这五个数成等比数列,求a ,b ,c 的值.解 由题意知b 2=⎝⎛⎭⎫-32×⎝⎛⎭⎫-24332=⎝⎛⎭⎫326, ∴b =±278.当b =278时,ab =⎝⎛⎭⎫-322,解得a =23; bc =⎝⎛⎭⎫-243322=⎝⎛⎭⎫-3210,解得c =⎝⎛⎭⎫327. 同理,当b =-278时,a =-23,c =-⎝⎛⎭⎫327. 综上所述,a ,b ,c 的值分别为23,278,⎝⎛⎭⎫327或-23,-278,-⎝⎛⎭⎫327. 要点三 等比数列的判定例3 数列{a n }满足a 1=-1,且a n =3a n -1-2n +3(n =2,3,…). (1)求a 2,a 3,并证明数列{a n -n }是等比数列;(2)求a n .解 (1)a 2=3a 1-2×2+3=-4, a 3=3a 2-2×3+3=-15. 下面证明{a n -n }是等比数列: 证明a n +1-(n +1)a n -n =3a n -2(n +1)+3-(n +1)a n -n=3a n -3na n -n=3(n =1,2,3,…). 又a 1-1=-2,∴{a n -n }是以-2为首项,以3为公比的等比数列. (2)由(1)知a n -n =-2·3n -1, ∴a n =n -2·3n -1.规律方法 推断一个数列是否是等比数列的常用方法有 (1)定义法:a n +1a n=q (q 为常数且不为零)⇔{a n }为等比数列.(2)等比中项法:a 2n +1=a n a n +2(n ∈N *且a n ≠0)⇔{a n }为等比数列.(3)通项公式法:a n =a 1q n -1(a 1≠0且q ≠0)⇔{a n }为等比数列.跟踪演练3 已知数列{a n }的前n 项和S n =2a n +1,求证{a n }是等比数列,并求出通项公式. 解 ∵S n =2a n +1, ∴S n +1=2a n +1+1.∴a n +1=S n +1-S n =(2a n +1+1)-(2a n +1)=2a n +1-2a n . ∴a n +1=2a n ,又∵S 1=2a 1+1=a 1,∴a 1=-1≠0. 又由a n +1=2a n 知a n ≠0, ∴a n +1a n =2,∴{a n }是等比数列.∴a n =-1×2n -1=-2n -1.要点四 由递推公式构造等比数列求通项例4 已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n =n .(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式. (1)证明 ∵a n +S n =n ,① ∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12,∴{a n -1}是等比数列.∵首项c 1=a 1-1,又a 1+a 1=1. ∴a 1=12,∴c 1=-12,公比q =12.又c n =a n -1,所以q =12.∴{c n }是以-12为首项,公比为12的等比数列.(2)解 由(1)可知c n =⎝⎛⎭⎫-12·⎝⎛⎭⎫12n -1=-⎝⎛⎭⎫12n , ∴a n =c n +1=1-⎝⎛⎭⎫12n.∴当n ≥2时,b n =a n -a n -1=1-⎝⎛⎭⎫12n -⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1 =⎝⎛⎭⎫12n -1-⎝⎛⎭⎫12n =⎝⎛⎭⎫12n .又b 1=a 1=12代入上式也符合,∴b n =⎝⎛⎭⎫12n . 规律方法 (1)已知数列的前n 项和,或前n 项和与通项的关系求通项,常用a n 与S n 的关系求解.(2)由递推关系a n +1=Aa n +B (A ,B 为常数,且A ≠0,A ≠1)求a n 时,由待定系数法设a n +1+λ=A (a n +λ)可得λ=B A -1,这样就构造了等比数列{a n +λ}. 跟踪演练4 已知数列{a n }中,a 1=1,a n +1=52-1a n ,b n =1a n -2,求数列{b n }的通项公式.解 a n +1-2=52-1a n -2=a n -22a n ,1a n +1-2=2a n a n -2=4a n -2+2,即b n +1=4b n +2,b n +1+23=4⎝⎛⎭⎫b n +23.又a 1=1,故b 1=1a 1-2=-1,所以⎩⎨⎧⎭⎬⎫b n +23是首项为-13,公比为4的等比数列,所以b n +23=-13×4n -1,b n =-4n -13-23.1.在等比数列{a n }中,a 1=8,a 4=64,则a 2等于( ) A .16 B. 16或-16 C. 32 D. 32或-32答案 A解析 由a 4=a 1q 3,得q 3=8,即q =2,所以a 2=a 1q =16.2.若等比数列的首项为4,末项为128,公比为2,则这个数列的项数为 ( ) A .4 B .8 C .6 D .32 答案 C解析 由等比数列的通项公式,得128=4×2n -1,2n -1=32,所以n =6. 3.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于( ) A .64 B .81 C .128 D .243 答案 A解析 ∵{a n }为等比数列,∴a 2+a 3a 1+a 2=q =2.又a 1+a 2=3,∴a 1=1. 故a 7=1·26=64.4.若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.答案 (-2)n -1解析 当n =1时,a 1=1;当n ≥2时, a n =S n -S n -1=23a n -23a n -1,故a na n -1=-2,故a n =(-2)n -1.1.等比数列定义的理解(1)由于等比数列的每一项都可能作分母,故每一项均不能为零,因此q 也不行能为零. (2)a n +1a n均为同一常数,由此体现了公比的意义,同时应留意分子、分母次序不能颠倒.(3)假如一个数列不是从第2项起,而是从第3项或第4项起每一项与它的前一项之比是同一个常数,那么这个数列不是等比数列. 2.等比中项的理解(1)当a ,b 同号时,a ,b 的等比中项有两个;当a ,b 异号时,没有等比中项.(2)在一个等比数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项. (3)“a ,G ,b 成等比数列”等价于“G 2=ab ”(a ,b 均不为0),可以用它来推断或证明三数是否成等比数列. 3.等比数列的通项公式(1)已知首项a 1和公比q ,可以确定一个等比数列.(2)在公式a n =a 1q n -1中有a n ,a 1,q ,n 四个量,已知其中任意三个量,可以求得第四个量.一、基础达标1.在等比数列{a n }中,a 4=4,则a 2·a 6等于( ) A .4 B. 8 C. 16 D. 32 答案 C解析 由于a 24=a 2·a 6,所以a 2·a 6=16.2.在等比数列{a n }中,a n >0,且a 1+a 2=1,a 3+a 4=9,则a 4+a 5的值为( ) A .16 B .27 C .36 D .81 答案 B解析 由已知a 1+a 2=1,a 3+a 4=9,∴q 2=9. ∴q =3(q =-3舍),∴a 4+a 5=(a 3+a 4)q =27. 3.等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12 D .24答案 A解析 由(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-1或x =-3.当x =-1时,前三项为-1,0,0不成立,舍掉.当x =-3时,前三项为-3,-6,-12,公比为2,所以第四项为-24,选A.4.假如-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B .b =-3,ac =9 C .b =3,ac =-9 D .b =-3,ac =-9答案 B解析 ∵b 2=(-1)×(-9)=9,且b 与首项-1同号, ∴b =-3,且a ,c 必同号. ∴ac =b 2=9.5.在等比数列{a n }中,a 3=3,a 10=384,则公比q =________. 答案 2解析 a 3=a 1q 2=3,a 10=a 1q 9=384,两式相除得,q 7=128,所以q =2.6.在160与5中间插入4个数,使它们同这两个数成等比数列,则这4个数依次为________. 答案 80,40,20,10解析 设这6个数所成等比数列的公比为q ,则5=160q 5,∴q 5=132,∴q =12.∴这4个数依次为80,40,20,10.7.已知等比数列{a n },若a 1+a 2+a 3=7,a 1a 2a 3=8,求a n .解 ∵a 1a 3=a 22,∴a 1a 2a 3=a 32=8,∴a 2=2.从而⎩⎪⎨⎪⎧a 1+a 3=5a 1a 3=4,解得a 1=1,a 3=4或a 1=4,a 3=1.当a 1=1时,q =2;当a 1=4时,q =12.故a n =2n -1或a n =23-n .8.在四个正数中,前三个成等差数列,和为48,后三个成等比数列,积为8 000,求这四个数. 解 设前三个数分别为a -d ,a ,a +d ,则有 (a -d )+a +(a +d )=48,即a =16. 设后三个数分别为bq,b ,bq ,则有bq·b ·bq =b 3=8 000,即b =20, ∴这四个数分别为m,16,20,n , ∴m =2×16-20=12,n =20216=25.即所求的四个数分别为12,16,20,25. 二、力量提升9.在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5,则m 等于( ) A .9 B .10 C .11 D .12 答案 C解析 在等比数列{a n }中,∵a 1=1,∴a m =a 1a 2a 3a 4a 5=a 51q 10=q 10.∵a m =a 1q m -1=q m -1, ∴m -1=10,∴m =11.10.已知a ,b ,c ,d 成等比数列,且曲线y =x 2-2x +3的顶点是(b ,c ),则ad 等于( ) A .3 B .2 C .1 D .-2 答案 B 解析∵y =(x -1)2+2,∴b =1,c =2.又∵a ,b ,c ,d 成等比数列,∴ad =bc =2.11.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则a 2-a 1b 2的值是________.答案 12解析 ∵-1,a 1,a 2,-4成等差数列,设公差为d , 则a 2-a 1=d =13[(-4)-(-1)]=-1,∵-1,b 1,b 2,b 3,-4成等比数列, ∴b 22=(-1)×(-4)=4,∴b 2=±2. 若设公比为q ,则b 2=(-1)q 2,∴b 2<0. ∴b 2=-2,∴a 2-a 1b 2=-1-2=12.12.设{a n }是各项均为正数的等比数列,b n =log 2a n ,若b 1+b 2+b 3=3,b 1b 2b 3=-3,求数列{a n }的通项公式. 解 设等比数列{a n }的公比为q (q >0),则a n =2b n , ∵b n -b n -1=log 2a n -log 2a n -1=log 2a na n -1=log 2q , ∴{b n }为等差数列,且d =log 2q ,而⎩⎪⎨⎪⎧b 1+b 2+b 3=3b 2=3(b 1+d )=3,b 1·b 2·b 3=b 1(b 1+d )(b 1+2d )=-3, ⇒⎩⎪⎨⎪⎧ b 1=-1,d =2或⎩⎪⎨⎪⎧b 1=3,d =-2.∴b n =2n -3或5-2n .∴a n =22n -3或a n =25-2n . 三、探究与创新13.已知数列{a n }满足a 1=1,a n +1=2a n +1,(1)求证:数列{a n +1}是等比数列; (2)求{a n }的表达式.(1)证明 法一 ∵a n +1=2a n +1,∴a n +1+1=2(a n +1), ∴a n +1+1a n +1=2,且a 1+1=2. ∴{a n +1}是等比数列,公比为2,首项为2. 法二 ∵a n +1+1a n +1=2a n +1+1a n +1=2(a n +1)a n +1=2(n ∈N *),∴数列{a n +1}是等比数列.(2)解 由(1)知{a n +1}是等比数列.公比为2,首项a 1+1=2. ∴a n +1=(a 1+1)·2n -1=2n .∴a n =2n -1.。

新人教A版高中数学教材目录(必修+选修)【

新人教A版高中数学教材目录(必修+选修)【

新人教A版高中数学教材目录(必修+选修)【很全面】人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策附录探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告。

高中数学第二章数列2.4.1等比数列的概念及通项公式人教A版必修5

高中数学第二章数列2.4.1等比数列的概念及通项公式人教A版必修5

2.等比中项 如果在 a 与 b 中间插入一个数 G,使 a,G,b 成等比数列,那么 G 叫做 a 与 b 的等比中项,这三个数满足关系式 ab=G2.
思考 1 若 G2=ab,则 a,G,b 一定成等比数列吗?
提示:不一定.因为若 G=0,则 a,b 中至少有一个为 0,使 G2=ab,根据等比 数列的定义,a,G,b 不成等比数列.当 a,G,b 全不为零时,若 G2=ab,则 a,G,b 成
探究四
探究二 等比中项的应用
若 a,G,b 成等比数列,则 G 叫做 a 与 b 的等比中项,此时 G=± ������������. 注意:(1)在 a,b 同号时,a,b 的等比中项有两个,异号时,没有等比中项. (2)在一个等比数列中,从第 2 项起,每一项(有穷数列的末项除外)都是 它的前一项与后一项的等比中项. (3)“a,G,b 成等比数列”等价于“G2=ab”(a,b 均不为 0),可以用它来判断 或证明三个数成等比数列. 同时还要注意到“a,G,b 成等比数列”与“G= ������������”不是等价的.
探究一
探究二
探究三
探究四
解:(1)∵a1=-1,an=3an-1-2n+3,∴a2=3a1-2×2+3=-4,a3=3a2-2×3+3=-15.
下面证明{an-n}是等比数列:
������������+1-(n + ������������-n
1)
=
3������������-2(n
+ 1) + ������������-n
是等比数列. (3)通项公式法:若数列{an}的通项公式为 an=a1qn-1(a1≠0,q≠0),则数列

高中数学第二章数列2.4.1等比数列的概念及通项公式练习(含解析)新人教A版必修5

高中数学第二章数列2.4.1等比数列的概念及通项公式练习(含解析)新人教A版必修5

第13课时等比数列的概念及通项公式知识点一等比数列的定义1.数列m,m,m,…一定( )A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列C.是等差数列,但不一定是等比数列D.既是等差数列,又是等比数列答案 C解析当m=0时,数列是等差数列,但不是等比数列;当m≠0时,数列既是等差数列,又是等比数列.故选C.2.若正数a,b,c依次成公比大于1的等比数列,则当x>1 时,log a x,log b x,log c x( ) A.依次成等差数列B.依次成等比数列C.各项的倒数依次成等差数列D.各项的倒数依次成等比数列答案 C解析1log a x+1log c x=log x a+log x c=log x(ac)=log x b2=2log x b=2log b x,∴1log a x,1log b x,1log c x成等差数列.知识点二等比数列的通项公式3.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,则n年后这批设备的价值为( )A.na(1-b%) B.a(1-nb%)C.a(1-b%)n D.a[1-(b%)n]答案 C解析依题意可知第一年后的价值为a(1-b%),第二年后的价值为a(1-b%)2,依此类推形成首项为a(1-b%),公比为1-b%的等比数列,则可知n年后这批设备的价值为a(1-b %)n .故选C .4.在等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( ) A .16 B .27 C .36 D .81 答案 B解析 由已知,得⎩⎪⎨⎪⎧a 1+a 2=1,a 3+a 4=9.∴q 2(a 1+a 2)=9,∴q 2=9.∵a n >0,∴q =3. ∴a 4+a 5=q (a 3+a 4)=3×9=27.知识点三 等比数列的证明5.已知数列{a n }的首项a 1=t >0,a n +1=3a n 2a n +1,n ∈N *,若t =35,求证1a n-1是等比数列并求出{a n }的通项公式.解 由题意知a n >0,1a n +1=2a n +13a n , 1a n +1=13a n +23, 1a n +1-1=131a n -1,1a 1-1=23, 所以数列1a n -1是首项为23,公比为13的等比数列.1a n -1=2313n -1=23n ,a n =3n3n +2.知识点四 等比中项及应用6.已知一等比数列的前三项依次为x ,2x +2,3x +3,那么-1312是此数列的第________项( )A .2B .4C .6D .8 答案 B解析 由x ,2x +2,3x +3成等比数列,可知(2x +2)2=x (3x +3),解得x =-1或-4,又当x =-1时,2x +2=0,这与等比数列的定义相矛盾.∴x =-4.∴该数列是首项为-4,公比为32的等比数列,其通项a n =-4×32n -1,由-4×32n -1=-1312,得n =4.7.若互不相等的实数a ,b ,c 成等差数列,a 是b ,c 的等比中项,且a +3b +c =10,则a 的值是( )A .1B .-1C .-3D .-4 答案 D解析 由题意,得⎩⎪⎨⎪⎧2b =a +c ,a 2=bc ,a +3b +c =10,解得a =-4,b =2,c =8.8.在等比数列{a n }中,若a 4a 5a 6=27,则a 3与a 7的等比中项是________. 答案 ±3解析 由等比中项的定义知a 25=a 4a 6,∴a 35=27. ∴a 5=3,∴a 1q 4=3,∴a 3a 7=a 21q 8=32,因此a 3与a 7的等比中项是±3.易错点一 忽略对等比中项符号的讨论9.若1,x ,y ,z ,16这五个数成等比数列,则y 的值为( ) A .4 B .-4 C .±4 D.2易错分析 对于本题的求解,若仅注意到y 是1与16的等比中项,会很快得出y 2=16,进一步得出y =±4,从而导致错解.答案 A解析 由于⎩⎪⎨⎪⎧x 2=1·y ,y 2=1×16⇒y =4,故选A .易错点二 忽略等比数列中公比可正可负10.已知一个等比数列的前4项之积为116,第2项与第3项的和为2,则这个等比数列的公比为________.易错分析 本题易错设四个数分别为a q 3,a q,aq ,aq 3公比为q 2相当于规定了这个等比数列各项要么同正,要么同负而错算出公比为3±22.答案 3±22或-5±2 6解析 设这4个数为a ,aq ,aq 2,aq 3(其中aq ≠0),由题意得⎩⎪⎨⎪⎧a ·aq ·aq 2·aq 3=116,aq +aq 2=2,所以⎩⎪⎨⎪⎧a 2q 3=±14,a 2q +q 22=2.所以a 2q 3a 2q +q 22=±18, 整理得q 2-6q +1=0或q 2+10q +1=0, 解得q =3±22或q =-5±26.一、选择题1.若等比数列{a n }满足a n a n +1=16n,则公比为( ) A .2 B .4 C .8 D .16 答案 B解析 由a n a n +1=16n ,知a 1a 2=16,a 2a 3=162,后式除以前式得q 2=16,∴q =±4.∵a 1a 2=a 21q =16>0,∴q >0,∴q =4.2.在数列{a n }中,a 1=1,点(a n ,a n +1)在直线y =2x 上,则a 4的值为( ) A .7 B .8 C .9 D .16 答案 B解析 ∵点(a n ,a n +1)在直线y =2x 上,∴a n +1=2a n .∵a 1=1≠0,∴a n ≠0.∴{a n }是首项为1,公比为2的等比数列,∴a 4=1×23=8.3.已知等比数列a 1,a 2,…a 8各项为正,且公比q ≠1,则( ) A .a 1+a 8=a 4+a 5 B .a 1+a 8<a 4+a 5 C .a 1+a 8>a 4+a 5D .a 1+a 8与a 4+a 5大小关系不能确定 答案 C解析 由题意可知,a 1>0,q >0,a 1+a 8-a 4-a 5=a 1(1+q 7-q 3-q 4)=a 1[1-q 3-q 4(1-q 3)]=a 1[(1-q 3)(1-q 4)]>0.∴a 1+a 8>a 4+a 5.故选C .4.一个数分别加上20,50,100后得到的三个数成等比数列,其公比为( ) A .53 B .43 C .32 D .12 答案 A解析 设这个数为x ,则(50+x )2=(20+x )·(100+x ),解得x =25.∴这三个数分别为45,75,125,公比q 为7545=53.5.在如下表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a +b +c 的值为( )A .1B .2C .3D .98答案 D解析 按题意要求,每一横行成等差数列,每一纵列成等比数列填表如图,故a =12,b =38,c =14,则a +b +c =98.故选D .二、填空题6.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________. 答案5-12解析 设该直角三角形的三边分别为a ,aq ,aq 2(q >1),则(aq 2)2=(aq )2+a 2,∴q 2=5+12.较小锐角记为θ,则sin θ=1q 2=5-12. 7.我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何”其意思为“今有人持金出五关,第1关收税金12,第2关收税金13,第3关收税金14,第4关收税金15,第5关收税金16,5关所收税金之和,恰好1斤重,设这个人原本持金为x ,按此规律通过第8关”,则第8关需收税金为________.答案172x 解析 第1关收税金:12x ;第2关收税金:13⎝ ⎛⎭⎪⎫1-12x =12×3x ;第3关收税金:14⎝ ⎛⎭⎪⎫1-12-16x =13×4x ;…,可得第8关收税金:18×9x ,即172x . 8.各项均为正数的等比数列{a n }中,a 2-a 1=1.当a 3取最小值时,数列{a n }的通项公式a n =________.答案 2n -1解析 设等比数列的公比为q (q >0), 由a 2-a 1=1,得a 1(q -1)=1,所以a 1=1q -1. a 3=a 1q 2=q 2q -1=1-1q 2+1q(q >0), 而-1q 2+1q =-⎝ ⎛⎭⎪⎫1q -122+14, ①当q =2时①式有最大值14,所以当q =2时a 3有最小值4. 此时a 1=1q -1=12-1=1. 所以数列{a n }的通项公式a n =2n -1.故答案为2n -1.三、解答题9.等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解 (1)设{a n }的公比为q , 由已知得16=2q 3,解得q =2, ∴a n =a 1qn -1=2n.(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32,设{b n }的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8,b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28, ∴数列{b n }的前n 项和S n =n -16+12n -2=6n 2-22n .10.数列{a n }满足a 1=-1,且a n =3a n -1-2n +3(n =2,3,…). (1)求a 2,a 3,并证明数列{a n -n }是等比数列; (2)求a n .解 (1)a 2=3a 1-2×2+3=-4,a 3=3a 2-2×3+3=-15.下面证明{a n -n }是等比数列: 证明:由a n =3a n -1-2n +3可得a n -n =3[a n -1-(n -1)],因为a 1-1=-2≠0,所以a n -n ≠0, 所以a n +1-n +a n -n=3a n -n ++3-n +a n -n=3a n -3na n -n=3(n =1,2,3,…). 又a 1-1=-2,所以{a n -n }是以-2为首项,3为公比的等比数列. (2)由(1)知a n -n =-2·3n -1,所以a n =n -2·3n -1.。

高中数学《2.4等比数列》第2课时评估训练 新人教A版必修5

高中数学《2.4等比数列》第2课时评估训练 新人教A版必修5

第2课时 等比数列的性质及应用双基达标 限时20分钟1.在等比数列{a n }中,a 4=4,则a 2·a 6等于( ).A .4B .8C .16D .32解析 由等比数列的性质得a 2·a 6=a 42=42=16. 答案 C2.已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( ).A .-12B .-2C .2D.12解析 根据a n =a m ·q n -m,得a 5=a 2·q 3.∴q 3=14×12=18.∴q =12.答案 D3.已知a ,b ,c ,d 成等比数列,且曲线y =x 2-2x +3的顶点是(b ,c ),则ad 等于 ( ). A .3 B .2 C .1 D .-2解析 ∵y =(x -1)2+2,∴b =1,c =2.又∵a ,b ,c ,d 成等比数列,∴ad =bc =2. 答案 B4.在等比数列{a n }中,a 1+a 2=30,a 3+a 4=120,则a 5+a 6=________. 解析 根据等比数列的性质:a 1+a 2,a 3+a 4,a 5+a 6也成等比数列. ∴a 5+a 6=(a 3+a 4)·a 3+a 4a 1+a 2=120×12030=480. 答案 4805.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=________. 解析 由等比数列的性质得a 3a 11=a 72, ∴a 72=4a 7.∵a 7≠0,∴a 7=4. ∴b 7=a 7=4.再由等差数列的性质知b 5+b 9=2b 7=8. 答案 86.已知等比数列{a n }中,a 2a 6a 10=1,求a 3·a 9的值. 解 法一 由等比数列的性质,有a 2a 10=a 3a 9=a 62, 由a 2·a 6·a 10=1,得a 63=1,∴a 6=1,∴a 3a 9=a 62=1. 法二 由等比数列通项公式,得a 2a 6a 10=(a 1q )(a 1q 5)(a 1q 9)=a 13·q 15=(a 1q 5)3=1,∴a 1q 5=1,∴a 3a 9=(a 1q 2)(a 1q 8)=(a 1q 5)2=1.综合提高 限时25分钟7.已知各项为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6等于 ( ).A .5 2B .7C .6D .4 2解析 ∵a 1a 2a 3=a 23=5,∴a 2=35. ∵a 7a 8a 9=a 83=10,∴a 8=310. ∴a 52=a 2a 8=350=5013,又∵数列{a n }各项为正数,∴a 5=5016.∴a 4a 5a 6=a 53=5012=5 2.答案 A8.在等比数列{a n }中,a 3=12,a 2+a 4=30,则a 10的值为 ( ).A .3×10-5B .3×29C .128D .3×2-5或3×29解析 ∵a 2=a 3q,a 4=a 3q ,∴a 2=12q,a 4=12q .∴12q+12q =30.即2q 2-5q +2=0,∴q =12或q =2.当q =12时,a 2=24,∴a 10=a 2·q 8=24×⎝ ⎛⎭⎪⎫128=3×2-5;当q =2时,a 2=6, ∴a 10=a 2q 8=6×28=3×29. 答案 D9.在等比数列{a n }中,若a n >0,a 1·a 100=100,则lg a 1+lg a 2+lg a 3+…+lg a 100=________. 解析 由等比数列性质知:a 1·a 100=a 2·a 99=…=a 50·a 51=100.∴lg a 1+lg a 2+lg a 3+…+lg a 100=lg(a 1·a 2·a 3·…·a 100)=lg(a 1·a 100)50=lg 10050=lg 10100=100. 答案 10010.三个数a ,b ,c 成等比数列,公比q =3,又a ,b +8,c 成等差数列,则这三个数依次为________.解析 ∵a ,b ,c 成等比数列,公比是q =3, ∴b =3a ,c =a ·32=9a .又由等差中项公式有:2(b +8)=a +c , ∴2(3a +8)=a +9a .∴a =4. ∴b =12,c =36. 答案 4,12,3611.在正项等比数列{a n }中,a 1a 5-2a 3a 5+a 3a 7=36,a 2a 4+2a 2a 6+a 4a 6=100,求数列{a n }的通项公式.解 ∵a 1a 5=a 32,a 3a 5=a 42,a 3a 7=a 52, ∴由条件,得a 32-2a 42+a 52=36, 同理得a 32+2a 3a 5+a 52=100,∴⎩⎪⎨⎪⎧a 3-a 52=36,a 3+a 52=100.即⎩⎪⎨⎪⎧a 3-a 5=±6,a 3+a 5=10.解得⎩⎪⎨⎪⎧a 3=2,a 5=8或⎩⎪⎨⎪⎧a 3=8,a 5=2.分别解得⎩⎪⎨⎪⎧a 1=12,q =2或⎩⎪⎨⎪⎧a 1=32,q =12.∴a n =a 1qn -1=2n -2或a n =a 1qn -1=26-n.12.(创新拓展)互不相等的3个数之积为-8,这3个数适当排列后可以组成等比数列,也可组成等差数列,求这3个数组成的等比数列.解 设这3个数分别为a q,a ,aq ,则a 3=-8,即a =-2. (1)若-2为-2q 和-2q 的等差中项,则2q+2q =4,∴q 2-2q +1=0,解得q =1,与已知矛盾,舍去; (2)若-2q 为-2q 和-2的等差中项,则1q+1=2q ,∴2q 2-q -1=0,解得q =-12或q =1(与已知矛盾,舍去),∴这3个数组成的等比数列为4,-2,1;(3)若-2q 为-2q 与-2的等差中项,则q +1=2q,∴q 2+q -2=0,解得q =-2或q =1(与已知矛盾,舍去), ∴这3个数组成的等比数列为1,-2,4.故这3个数组成的等比数列为4,-2,1或1,-2,4.。

高中数学第二章数列2.4等比数列第2课时教案新人教A版必修5

高中数学第二章数列2.4等比数列第2课时教案新人教A版必修5

高中数学第二章数列2.4等比数列第2课时教案新人教A版必修5一、教学目标:知识与技能1. 了解等比数列更多的性质;2. 能将学过的知识和思想方法运用于对等比数列性质的进一步思考和有关等比数列的实际问题的解决中;3. 能在生活实际的问题情境中,抽象出等比数列关系,并能用有关的知识解决相应的实际问题过程与方法1. 继续采用观察、思考、类比、归纳、探究、得出结论的方法进行教学;2. 对生活实际中的问题采用合作交流的方法,发挥学生的主体作用,引导学生探究问题的解决方法,经历解决问题的全过程;3. 当好学生学习的合作者的角色.情感态度与价值观1. 通过对等比数列更多性质的探究,培养学生的良好的思维品质和思维习惯,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力;2. 通过生活实际中有关问题的分析和解决,培养学生认识社会、了解社会的意识,更多地知道数学的社会价值和应用价值.二、教学重点:1.探究等比数列更多的性质;2.解决生活实际中的等比数列的问题.教学难点;渗透重要的数学思想(类比思想、归纳思想、数形结合思想、算法思想、方程思想以及一般到特殊的思想方法等.).三、学情及导入分析:这节课师生将进一步探究等比数列的知识,以教材练习中提供的问题作为基本材料,认识等比数列的一些基本性质及内在的联系,理解并掌握一些常见结论,进一步能用来解决一些实际问题.通过一些问题的探究与解决,渗透重要的数学思想方法.教学中以师生合作探究为主要形式,充分调动学生的学习积极性.教具准备多媒体课件、投影胶片、投影仪等四、教学过程:复习旧知识,引入新知归纳抽象形成概念1.温故知新师教材中第59页练习第3题、第4题,请学生课外进行活动探究,现在请同学们把你们的探究结果展示一下•师对各组的汇报给予评价•师出示多媒体幻灯片一:第3题、第4题详细解答:猜想:在数列{a n}中每隔m(m是一个正整数)取出一项,组成一个新数列,这个数列是以a i为首项、q m%一公比的等比数列.◊本题可以让学生认识到,等比数列中下标为等差数列的子数列也构成等比数列,可以让学生再探究几种由原等比数列构成的新等比数列的方法•第4题解答:(1) 设{a n}的公比是q , 则2, 4 2 2 8a s =( a i q ) =a i qh 2 6 2 8而a s • a7=a i q • a i q =a i q ,所以a s =a s • a7. 同理,a s =a i • a o.(2) 用上面的方法不难证明a2=a n-i • a n+i( n> i).由此得出,a n是a n-i和a n+i的等比中项,同理可证a n2=a n-k • a n+k( n>k > 0). a是a n-k和a n+k的等比中项(n> k学生回答;生由学习小组汇报探究结果.第3题解答:⑴将数列,{a n}的前k项去掉,剩余的数列为a k+i ,a k+2,….令b i =a<+i ,i=i,2,…,则数列a k+i, a k+2,…,可视为b i, b?,….因为b i i a k i i q (i >i),b i a k i所以,{b n}是等比数列,即a k+i, a k+2,…是等比数列.(2){a n}中每隔I0项取出一项组成的数列是a i, a ii ,a 2i,…, 则a ii a2i a i0k ii... ...qa i a ii a i0k 9(k >i). 所以数列a i,aii, a2i,…是以a i为首项,q i0为公比的等比数列.由复习引入,通过数学知识的内部提出问题。

高中数学第二章数列2.4等比数列第2课时等比数列的性质aa高二数学

高中数学第二章数列2.4等比数列第2课时等比数列的性质aa高二数学
第二十三页,共四十二页。
『规律总结』 等比数列中的设项方法与技巧 (1)若三个数成等比数列,可设三个数为 a,aq,aq2 或aq,a,aq. (2)若四个数成等比数列,可设为 a,aq,aq2,aq3;若四个数均为正(负)数, 可设qa3,aq,aq,aq3.
第二十四页,共四十二页。
• 〔跟踪练习2〕
第十四页,共四十二页。
命题(mìng tí)方向1 ⇨等比数列的性质

例题(lìtíபைடு நூலகம் 1在等比数列(děnɡ bǐ shù liè){an}中,已知a4a7=-512,a3+
a8=124,且公比为整数,则a10=___51_2___.
[解析] 由等比数列的性质,得 a3a8=a4a7=-512, 由aa33+ a8=a8= -152142,得
-4,2,8
• [分析] (1)四个数成等比数列,可用第一个数与公比q表示各数,然后按所给条件列方程组
求解.
• (2)三个数适当排列,不同的排列方法有6种,但这里不必分成6种,因为若以三个数中哪一
个数为等比中项分类,则只有三种情况,因此对于分类讨论问题,恰当的分类是解决问题 的关键.
第二十五页,共四十二页。
25,那么a3+a5=
()
A
• A.5 B.10
• C.15 D.20
[解析] 由等比数列的性质,得 a4a6=a25,a2a4=a23, ∴(a3+a5)2=a23+2a3a5+a25, =a2a4+2a3a5+a4a6=25, ∴a3+a5=±5. ∵an>0,∴a3+a5=5.
第十二页,共四十二页。
• (1)有四个数成等比数列,将这四个数分别减去1,1,4,13,则成等差数列(děnɡ chā shù liè), 则这四个数为__3_,_6_,1_2_,2_4________.

人教a版必修5学案:2.4等比数列(含答案)

人教a版必修5学案:2.4等比数列(含答案)

2.4 等比数列自主学习知识梳理1.如果一个数列从第________项起,每一项与它的前一项的________都等于同一个常数,那么这个数列叫做等比数列.这个常数叫做等比数列的________,通常用字母q 表示(q ≠0).2.等比数列的通项公式:____________.3.等比中项的定义如果a 、G 、b 成等比数列,那么G 叫做a 与b 的________,且G =________.4.对于正整数m ,n ,p ,q ,若m +n =p +q ,则等比数列中a m ,a n ,a p ,a q 的关系是____________.5.证明一个数列是等比数列最基本的方法是定义,即________________(用数学式子表示).自主探究首项为a 1,公比为q 的等比数列在各条件下的单调性如下表:a 1 a 1>0 a 1<0q 范围 0<q <1 q =1 q >1 0<q <1 q =1q >1 {a n }的 单调性对点讲练知识点一 等比数列通项公式的应用例1 已知{a n }为等比数列,a 3=2,a 2+a 4=203,求{a n }的通项公式.总结 等比数列的通项公式a n =a 1q n -1中有四个量a 1,q ,n ,a n .已知其中三个量可求得第四个,简称“知三求一”.变式训练1 已知等比数列{a n },若a 1+a 2+a 3=7,a 1a 2a 3=8,求a n .知识点二 等比数列性质的应用例2 已知{a n }为等比数列.(1)若a n >0,a 2a 4+2a 3a 5+a 4a 6=25,求a 3+a 5;(2)若a n >0,a 5a 6=9,求log 3a 1+log 3a 2+…+log 3a 10的值.变式训练2 设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=215,求a 2·a 5·a 8·…·a 29的值.知识点三 等比数列的判断与证明例3 已知数列{a n }的前n 项和为S n ,S n =13(a n -1) (n ∈N *). (1)求a 1,a 2;(2)求证:数列{a n }是等比数列.总结 利用等比数列的定义a n +1a n=q (q ≠0)是判定一个数列是否是等比数列的基本方法.变式训练3 设S n 为数列{a n }前n 项和,S n =kn 2+n ,n ∈N *,其中k 是常数.(1)求a 1及a n ;(2)若对于任意的m ∈N *,a m ,a 2m ,a 4m 成等比数列,求k 的值.1.等比数列的判断或证明(1)利用定义:a n +1a n =q (与n 无关的常数). (2)利用等比中项:a 2n +1=a n a n +2 (n ∈N *).2.如果证明数列不是等比数列,可以通过具有三个连续项不成等比数列来证明,即存在an 0,an 0+1,an 0+2,使a 2n 0+1≠an 0·an 0+2,也可以用反证法.3.等比数列{a n }的通项公式a n =a 1q n -1共涉及a n ,a 1,q ,n 四个量,已知其中三个量可求得第四个.课时作业一、选择题1.如果-1,a ,b ,c ,-9成等比数列,那么( )A .b =3,ac =9B .b =-3,ac =9C .b =3,ac =-9D .b =-3,ac =-92.在等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( )A .16B .27C .36D .813.在由正数组成的等比数列{a n }中,若a 4a 5a 6=3,log 3a 1+log 3a 2+log 3a 8+log 3a 9的值为( )A.43B.34C .2D .4334.一个数分别加上20,50,100后得到的三数成等比数列,其公比为( )A.53B.43C.32D.125.已知数列{a n }是公差为2的等差数列,且a 1,a 2,a 5成等比数列,则a 2为( ) A .-2 B .-3 C .2 D .3题 号1 2 3 4 5 答 案二、填空题6.在等比数列{a n }中,a 1=1,a 5=16,则a 3=________.7.首项为3的等比数列的第n 项是48,第2n -3项是192,则n =________.8.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________.三、解答题9.等比数列的前三项和为168,a 2-a 5=42,求a 5,a 7的等比中项.10.已知{a n }为等比数列,a 3=2,a 2+a 4=203,求{a n }的通项公式.§2.4 等比数列知识梳理1.2 比 公比2.a n =a 1q n -13.等比中项 ±ab4.a m ·a n =a p ·a q5.a n +1a n=q, (n ∈N *) 自主探究递减 常数列 递增 递增 常数列 递减对点讲练例1 解 设等比数列{a n }的公比为q ,则q ≠0.a 2=a 3q =2q,a 4=a 3q =2q , ∴2q +2q =203.解得q 1=13,q 2=3. 当q =13时,a 1=18,∴a n =18×⎝⎛⎭⎫13n -1=2×33-n . 当q =3时,a 1=29,∴a n =29×3n -1=2×3n -3. 综上,当q =13时,a n =2×33-n ; 当q =3时,a n =2×3n -3.变式训练1 解 由等比数列的定义知a 2=a 1q ,a 3=a 1q 2代入已知得,⎩⎪⎨⎪⎧ a 1+a 1q +a 1q 2=7,a 1·a 1q ·a 1q 2=8,⇒⎩⎪⎨⎪⎧a 1(1+q +q 2)=7,a 31q 3=8, ⇒⎩⎪⎨⎪⎧a 1(1+q +q 2)=7, ①a 1q =2, ② 将a 1=2q代入①得2q 2-5q +2=0,解得q =2或q =12. 由②得⎩⎪⎨⎪⎧ a 1=1,q =2;或⎩⎪⎨⎪⎧ a 1=4,q =12.当a 1=1,q =2时,a n =2n -1;当a 1=4,q =12时,a n =23-n . 例2 解 (1)a 2a 4+2a 3a 5+a 4a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25,∵a n >0,∴a 3+a 5>0,∴a 3+a 5=5.(2)根据等比数列的性质a 5a 6=a 1a 10=a 2a 9=a 3a 8=a 4a 7=9.∴a 1a 2…a 9a 10=(a 5a 6)5=95.∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 9a 10)=log 395=5log 39=10.变式训练2 解 ∵a 1·a 2·a 3·…·a 30=(a 1a 30)·(a 2a 29)·…·(a 15·a 16)=(a 1a 30)15=215, ∴a 1a 30=2.∴a 2·a 5·a 8·…·a 29=(a 2a 29)·(a 5a 26)·(a 8a 23)·(a 11a 20)·(a 14a 17)=(a 2a 29)5=(a 1a 30)5=25=32.例3 (1)解 由S 1=13(a 1-1), 得a 1=13(a 1-1), ∴a 1=-12.又S 2=13(a 2-1), 即a 1+a 2=13(a 2-1),得a 2=14. (2)证明 当n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1), 得a n a n -1=-12,又a 2a 1=-12, 所以{a n }是首项为-12,公比为-12的等比数列. 变式训练3 解 (1)由S n =kn 2+n ,得a 1=S 1=k +1,a n =S n -S n -1=2kn -k +1(n ≥2).a 1=k +1也满足上式,所以a n =2kn -k +1,n ∈N *.(2)由a m ,a 2m ,a 4m 成等比数列,得(4mk -k +1)2=(2km -k +1)(8km -k +1), 将上式化简,得2km (k -1)=0,因为m ∈N *,所以m ≠0,故k =0或k =1.课时作业1.B [∵b 2=(-1)×(-9)=9且b 与首项-1同号,∴b =-3,且a ,c 必同号.]2.B [由已知a 1+a 2=1,a 3+a 4=9,∴q 2=9.∴q =3(q =-3舍),∴a 4+a 5=(a 3+a 4)q =27.]3.A [∵a 4a 6=a 25,∴a 4a 5a 6=a 35=3,得a 5=313. ∵a 1a 9=a 2a 8=a 25,∴log 3a 1+log 3a 2+log 3a 8+log 3a 9=log 3(a 1a 2a 8a 9)=log 3a 45=log 3343=43.] 4.A [设这个数为x ,则(50+x )2=(20+x )·(100+x ),解得x =25,∴这三个数为45,75,125,公比q 为7545=53.] 5.D [因为a 1,a 2,a 5成等比数列, 所以a 22=a 1·a 5, 即a 22=(a 2-2)·(a 2+6).解得a 2=3.]6.4解析 q 4=a 5a 1=16,∴q 2=4,a 3=a 1q 2=4. 7.5解析 设公比为q ,则⎩⎪⎨⎪⎧ 3q n -1=483q 2n -4=192⇒⎩⎪⎨⎪⎧ q n -1=16q 2n -4=64⇒q 2=4, 得q =±2.由(±2)n -1=16,得n =5. 8.5-12解析 设三边为a ,aq ,aq 2 (q >1), 则(aq 2)2=(aq )2+a 2,∴q 2=5+12. 较小锐角记为θ,则sin θ=1q 2=5-12. 9.解 由题意可列关系式:⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=168 ①a 1q (1-q )(1+q +q 2)=42 ② ②÷①得:q (1-q )=42168=14,∴q =12, ∴a 1=1681+12+⎝⎛⎭⎫122=168×47=96. 又∵a 6=a 1q 5=96×125=3, ∴a 5,a 7的等比中项为3.10.解 设等比数列{a n }的公比为q ,则q ≠0.a 2=a 3q =2q ,a 4=a 3q =2q , ∴2q +2q =203. 解得q 1=13,q 2=3. 当q =13时,a 1=18, ∴a n =18×⎝⎛⎭⎫13n -1=2×33-n . 当q =3时,a 1=29, ∴a n =29×3n -1=2×3n -3. 综上,当q =13时,a n =2×33-n ;当q=3时,a n=2×3n-3.。

高中数学 第二章 数列 2.4 等比数列 第二课时 等比数列的性质学案(含解析)新人教A版必修5-新

高中数学 第二章 数列 2.4 等比数列 第二课时 等比数列的性质学案(含解析)新人教A版必修5-新

第二课时 等比数列的性质等比数列性质的应用[例1] (1)在等比数列{a n }中,若a 7+a 8+a 9+a 10=8,a 8a 9=-8,则1a 7+1a 8+1a 9+1a 10=________.(2)已知数列{a n }是等比数列,a 3+a 7=20,a 1a 9=64,求a 11的值.[解] (1)因为1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,由等比数列的性质知a 7a 10=a 8a 9,所以1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 8a 9=158÷⎝ ⎛⎭⎪⎫-98=-53. (2)∵{a n }为等比数列, ∴a 1·a 9=a 3·a 7=64. 又∵a 3+a 7=20,∴a 3,a 7是方程t 2-20t +64=0的两个根. ∵t 1=4,t 2=16,∴a 3=4,a 7=16或a 3=16,a 7=4. ①当a 3=4,a 7=16时,a 7a 3=q 4=4,此时a 11=a 3q 8=4×42=64. ②当a 3=16,a 7=4时,a 7a 3=q 4=14,此时a 11=a 3q 8=16×⎝ ⎛⎭⎪⎫142=1. [答案] (1) -53[类题通法] 等比数列常用性质(1)若m +n =p +q (m ,n ,p ,q ∈N *), 则a m ·a n =a p ·a q .特例:若m +n =2p (m ,n ,p ∈N *),则a m ·a n =a 2p . (2)a n a m=qn -m(m ,n ∈N *).(3)在等比数列{a n }中,每隔k 项取出一项,取出的项,按原来顺序组成新数列,该数列仍然是等比数列.(4)数列{a n }为等比数列,则数列{λa n }(λ为不等于0的常数)和⎩⎨⎧⎭⎬⎫1a n 仍然成等比数列.[活学活用]1.在等比数列{a n }中,若a 2=2,a 6=12,则a 10=________. 解析:法一:设{a n }的公比为q ,则⎩⎪⎨⎪⎧a 1q =2,a 1q 5=12,解得q 4=6,∴a 10=a 1q 9=a 1q ·(q 4)2=2×36=72. 法二:∵{a n }是等比数列, ∴a 26=a 2·a 10,于是a 10=a 26a 2=1222=1442=72.答案:722.在等比数列{a n }中,若a 7=-2,则此数列的前13项之积等于________. 解析:由于{a n }是等比数列,∴a 1a 13=a 2a 12=a 3a 11=a 4a 10=a 5a 9=a 6a 8=a 27, ∴a 1a 2a 3…a 13=()a 276·a 7=a 137,而a 7=-2,∴a 1a 2a 3…a 13=(-2)13=-213. 答案:-213灵活设元求解等比数列[例2] 已知三个数成等比数列,它们的积为27,它们的平方和为91,求这三个数. [解] 法一:设三个数依次为a ,aq ,aq 2,由题意知⎩⎪⎨⎪⎧a ·aq ·aq 2=27,a 2+a 2q 2+a 2q 4=91,∴⎩⎪⎨⎪⎧aq 3=27,a 21+q 2+q 4=91,即⎩⎪⎨⎪⎧aq =3,a 21+q 2+q 4=91,解得q 21+q 2+q 4=991, 得9q 4-82q 2+9=0,即得q 2=9或q 2=19,∴q =±3或q =±13.若q =3,则a 1=1; 若q =-3,则a 1=-1; 若q =13,则a 1=9;若q =-13,则a 1=-9.故这三个数为1,3,9,或-1,3,-9,或9,3,1,或-9,3,-1. 法二:设这三个数分别为a q,a ,aq .⎩⎪⎨⎪⎧aq·a ·aq =27,a 2q 2+a 2+a 2q 2=91⇒⎩⎪⎨⎪⎧a =3,a 2⎝ ⎛⎭⎪⎫1q2+1+q 2=91,得9q 4-82q 2+9=0,即得q 2=19或q 2=9,∴q =±13或q =±3.故这三个数为1,3,9,或-1,3,-9,或9,3,1,或-9,3,-1. [类题通法]三个数或四个数成等比数列的设元技巧(1)若三个数成等比数列,可设三个数为a ,aq ,aq 2或a q,a ,aq .(2)若四个数成等比数列,可设为a ,aq ,aq 2,aq 3;若四个数均为正(负)数,可设为a q3,a q,aq ,aq 3. [活学活用]在2和20之间插入两个数,使前三个数成等比数列,后三个数成等差数列,则插入的两个数的和为( )A .-4或1712B .4或1712C .4D .1712解析:选B 设插入的第一个数为a ,则插入的另一个数为a 22.由a ,a 22,20成等差数列得2×a 22=a +20.∴a 2-a -20=0,解得a =-4或a =5. 当a =-4时,插入的两个数的和为a +a 22=4.当a =5时,插入的两个数的和为a +a 22=1712.等比数列的实际应用[例3] 年2月起,每月生产总值比上一个月增长m %,那么到2017年8月底该厂的生产总值为多少万元?[解] 设从2015年1月开始,第n 个月该厂的生产总值是a n 万元,则a n +1=a n +a n m %, ∴a n +1a n=1+m %. ∴数列{a n }是首项a 1=a ,公比q =1+m %的等比数列. ∴a n =a (1+m %)n -1.∴2016年8月底该厂的生产总值为a 20=a (1+m %)20-1=a (1+m %)19(万元).[类题通法]数列实际应用题常与现实生活和生产实际中的具体事件相联系,建立数学模型是解决这类问题的核心,常用的方法有:①构造等差、等比数列的模型,然后用数列的通项公式或求和公式解;②通过归纳得到结论,再用数列知识求解.[活学活用](安徽高考)如图,在等腰直角三角形ABC 中,斜边BC =2 2.过点 A 作BC 的垂线,垂足为A 1 ;过点 A 1作 AC 的垂线,垂足为 A 2;过点A 2 作A 1C 的垂线,垂足为A 3 ;…,依此类推.设BA =a 1 ,AA 1=a 2 , A 1A 2=a 3 ,…, A 5A 6=a 7 ,则 a 7=________.解析:法一:直接递推归纳:等腰直角三角形ABC 中,斜边BC =22, 所以AB =AC =a 1=2,AA 1=a 2=2,A 1A 2=a 3=1,…,A 5A 6=a 7=a 1×⎝⎛⎭⎪⎫226=14. 法二:求通项:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,…,A n -1A n =a n +1=sin π4·a n =22a n =2×⎝ ⎛⎭⎪⎫22n,故a 7=2×⎝ ⎛⎭⎪⎫226=14. 答案:143.等差数列和等比数列的性质对比等差数列和等比数列从文字看,只是一字之差,但定义和性质相差甚远,下面对两类数列的性质作一比对,若等差数列{a n }的公差为d ,等比数列{b n }的公比为q .【性质1】 等差数列{a n },当d =0时,数列为常数列,当d >0时,数列为递增数列;当d <0时,数列为递减数列.等比数列{b n },当q >1,b 1>0或0<q <1,b 1<0时,数列{b n }是递增数列;当q >1,b 1<0或0<q <1,b 1>0时,数列{b n }是递减数列;当q =1时,数列{b n }是常数列.[例1] 设{a n }是首项大于零的等比数列,且a 1<a 2<a 3,则数列{a n }是________数列.(填“递增”“递减”或“摆动”)[解析] 设数列{a n }的公比为q (q ≠0),因为a 1<a 2<a 3,所以a 1<a 1q <a 1q 2,解得q >1,且a 1>0,所以数列{a n }是递增数列.[答案] 递增【性质2】 等差数列{a n }满足a n =a m +(n -m )·d (m ,n ∈N *),等比数列{b n }满足b n =b m ·q n -m (m ,n ∈N *).(当m =1时,上述式子为通项公式)[例2] 已知{a n }为等差数列,且a 3=-6,a 6=0,则{a n }的通项公式为________. [解析] ∵a 6=a 3+3d ,则0=-6+3d ,得d =2, ∴a n =a 3+(n -3)d =-6+(n -3)×2=2n -12. [答案] a n =2n -12【性质3】 若m +n =p +q (m ,n ,p ,q ∈N *),等差数列{a n }满足a m +a n =a p +a q ,特别地,若数列{a n }是有穷等差数列,则与首末两项等距离的两项之和都相等,且等于首末两项之和,即a 1+a n =a 2+a n -1=…=a i +1+a n -i =…(n ∈N *).等比数列{b n }满足b m b n =b p b q ,特别地,数列{b n }是有穷数列,则与首末两项等距离的两项的积相等,且等于首末两项之积,即b 1·b n =b 2·b n -1=b 3·b n -2=…=b m ·b n -m +1.[例3] (1)等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值是( ) A .55 B .95 C .100D .105(2)在等比数列{a n }中,若a 2·a 8=36,a 3+a 7=15,则公比q 值的个数可能为( ) A .1 B .2 C .3D .4[解析] (1)S 19=19a 1+a 192=19a 3+a 172=19×102=95.(2)∵a 2·a 8=a 3·a 7,∴由⎩⎪⎨⎪⎧a 3·a 7=36,a 3+a 7=15,解得a 3=3,a 7=12,或a 3=12,a 7=3. 若a 3=3,a 7=12,则有12=3×q 4, ∴q 4=4,∴q 2=2,q =± 2.若a 3=12,a 7=3,则有3=12×q 4, ∴q 4=14,q 2=12,q =±22.∴q 的值可能有4个. 答案:(1)B (2)D【性质4】 在等差(比)数列中,每隔k 项取出一项,按原来的顺序排列,所得新数列仍为等差(比)数列,公差为(k +1)d (公比为q k +1),若两个数列分别成等差(比)数列,则两数列对应项和(积)构成等差(比)数列.[例4] 在1和16之间插入三个正数a ,b ,c 使1,a ,b ,c,16成等比数列,求a +b +c 的值.[解] ∵1,a ,b ,c,16成等比数列, ∴1,b,16为等比数列.∴b =4.∴1,a ,b 也成等比数列,b ,c,16也成等比数列. ∴a =2,c =8.∴a +b +c =2+4+8=14.[随堂即时演练]1.将公比为q 的等比数列{a n }依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,….此数列( )A .是公比为q 的等比数列B .是公比为q 2的等比数列 C .是公比为q 3的等比数列 D .不一定是等比数列解析:选B 由于a n a n +1a n -1a n =a n a n -1·a n +1a n=q ·q =q 2,n ≥2且n ∈N *, ∴{a n a n +1}是以q 2为公比的等比数列,故选B.2.若1,a 1,a 2,4成等差数列;1,b 1,b 2,b 3,4成等比数列,则a 1-a 2b 2的值为( ) A .-12B.12 C .±12D.14解析:选A ∵1,a 1,a 2,4成等差数列,∴3(a 2-a 1)=4-1, ∴a 2-a 1=1.又∵1,b 1,b 2,b 3,4成等比数列,设其公比为q , 则b 22=1×4=4,且b 2=1×q 2>0, ∴b 2=2,∴a 1-a 2b 2=-a 2-a 1b 2=-12. 3.在等比数列{a n }中,a 888=3,a 891=81,则公比q =________. 解析:∵a 891=a 888q 891-888=a 888q 3,∴q 3=a 891a 888=813=27. ∴q =3. 答案:34.在等比数列{a n }中,各项都是正数,a 6a 10+a 3a 5=41,a 4a 8=4,则a 4+a 8=________. 解析:∵a 6a 10=a 28,a 3a 5=a 24, ∴a 24+a 28=41, 又a 4a 8=4,∴(a 4+a 8)2=a 24+a 28+2a 4a 8=41+8=49. ∵数列各项都是正数, ∴a 4+a 8=7. 答案:75.已知数列{a n }为等比数列.(1)若a 1+a 2+a 3=21,a 1a 2a 3=216,求a n ; (2)若a 3a 5=18,a 4a 8=72,求公比q . 解:(1)∵a 1a 2a 3=a 32=216,∴a 2=6, ∴a 1a 3=36.又∵a 1+a 3=21-a 2=15,∴a 1,a 3是方程x 2-15x +36=0的两根3和12. 当a 1=3时,q =a 2a 1=2,a n =3·2n -1;当a 1=12时,q =12,a n =12·⎝ ⎛⎭⎪⎫12n -1.(2)∵a 4a 8=a 3q ·a 5q 3=a 3a 5q 4=18q 4=72,∴q 4=4,∴q =± 2.[课时达标检测]一、选择题1.(重庆高考)对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列解析:选D 由等比数列的性质得,a 3·a 9=a 26≠0, 因此a 3,a 6,a 9一定成等比数列,选D.2.已知等比数列{a n }中,a 4=7,a 6=21,则a 8的值为( ) A .35 B .63 C .21 3D .±21 3解析:选B ∵{a n }是等比数列, ∴a 4,a 6,a 8成等比数列, ∴a 26=a 4·a 8,即a 8=2127=63.3.在等比数列{a n }中,a 1=1,a 10=3,则a 2a 3a 4a 5a 6a 7a 8a 9等于( ) A .81 B .27327 C .3D .243解析:选A 因为数列{a n }是等比数列,且a 1=1,a 10=3,所以a 2a 3a 4a 5a 6a 7a 8a 9=(a 2a 9)·(a 3a 8)·(a 4a 7)·(a 5a 6)=(a 1a 10)4=34=81.故选A. 4.设数列{a n }为等比数列,则下面四个数列: ①{a 3n };②{pa n }(p 为非零常数);③{a n ·a n +1}; ④{a n +a n +1}.其中是等比数列的有( ) A .1个 B .2个 C .3个D .4个解析:选D ①∵a 3n +1a 3n =⎝ ⎛⎭⎪⎫a n +1a n 3=q 3,∴{a 3n}是等比数列;②∵pa n +1pa n =a n +1a n=q ,∴{pa n }是等比数列;③∵a n ·a n +1a n -1·a n =a n +1a n -1=q 2,∴{a n ·a n +1}是等比数列;④∵a n +a n +1a n -1+a n =q a n -1+a na n -1+a n=q ,∴{a n +a n +1}是等比数列.5.已知等比数列{a n }中,a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( ) A .2 B .4 C .8D .16解析:选C 等比数列{a n }中,a 3a 11=a 27=4a 7,解得a 7=4,等差数列{b n }中,b 5+b 9=2b 7=2a 7=8.二、填空题6.公差不为零的等差数列{a n }中,2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.解析:∵2a 3-a 27+2a 11=2(a 3+a 11)-a 27=4a 7-a 27=0, ∵b 7=a 7≠0, ∴b 7=a 7=4. ∴b 6b 8=b 27=16. 答案:167.画一个边长为2厘米的正方形,再以这个正方形的对角线为边画第2个正方形,以第2个正方形的对角线为边画第3个正方形,这样一共画了10个正方形,则第10个正方形的面积等于________平方厘米.解析:这10个正方形的边长构成以2为首项,2为公比的等比数列{a n }(1≤n ≤10,n ∈N *),则第10个正方形的面积S =a 210=22·29=211=2 048(平方厘米). 答案:2 0488.在等比数列{a n }中,a 7·a 11=6,a 4+a 14=5,则a 20a 10=________. 解析:∵{a n }是等比数列, ∴a 7·a 11=a 4·a 14=6, 又a 4+a 14=5, ∴⎩⎪⎨⎪⎧a 4=2,a 14=3或⎩⎪⎨⎪⎧a 4=3,a 14=2.∵a 14a 4=q 10,∴q 10=23或q 10=32. 而a 20a 10=q 10,∴a 20a 10=23或a 20a 10=32. 答案:23或32三、解答题9.在83和272之间插入三个数,使这五个数成等比数列,求插入的这三个数的乘积. 解:法一:设这个等比数列为{a n },公比为q ,则a 1=83,a 5=272=a 1q 4=83q 4, ∴q 4=8116,q 2=94. ∴a 2·a 3·a 4=a 1q ·a 1q 2·a 1q 3=a 31·q 6=⎝ ⎛⎭⎪⎫833×⎝ ⎛⎭⎪⎫943=63=216. 法二:设这个等比数列为{a n },公比为q ,则a 1=83, a 5=272,由题意知a 1,a 3,a 5也成等比数列且a 3>0,∴a 23=83×272=36,∴a 3=6, ∴a 2·a 3·a 4=a 23·a 3=a 33=216.10.始于2007年初的美国次贷危机,至2008年中期,已经演变为全球金融危机.受此影响,国际原油价格从2008年7月每桶最高的147美元开始大幅下跌,9月跌至每桶97美元.你能求出国际原油价格7月到9月之间平均每月下降的百分比吗?若按此计算,到什么时间跌至谷底(即每桶34美元)?解:设每月平均下降的百分比为x ,则每月的价格构成了等比数列{a n },记a 1=147(7月份价格),则8月份价格a 2=a 1(1-x )=147(1-x ),9月份价格a 3=a 2(1-x )=147(1-x )2.∴147(1-x )2=97,解得x ≈18.8%.设a n =34,则34=147·(1-18.8%)n -1,解得n =8.即从2008年7月算起第8个月,也就是2009年2月国际原油价格将跌至34美元每桶.11.从盛满a (a >1)升纯酒精的容器里倒出1升,然后添满水摇匀,再倒出1升混合溶液后又用水添满摇匀,如此继续下去,问:第n 次操作后溶液的浓度是多少?当a =2时,至少应倒几次后才能使酒精的浓度低于10%?解:设开始时溶液的浓度为1,操作一次后溶液浓度a 1=1-1a .设操作n 次后溶液的浓度为a n ,则操作(n +1)次后溶液的浓度为a n +1=a n ⎝ ⎛⎭⎪⎫1-1a . ∴{a n }是以a 1=1-1a 为首项,q =1-1a为公比的等比数列, ∴a n =a 1q n -1=⎝ ⎛⎭⎪⎫1-1a n , 即第n 次操作后酒精的浓度是⎝ ⎛⎭⎪⎫1-1a n . 当a =2时,由a n =⎝ ⎛⎭⎪⎫12n <110(n ∈N *),解得n ≥4. 故至少应操作4次后才能使酒精的浓度小于10%.12.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且前后两数的和是16,中间两数的和是12.求这四个数.解:法一:设这四个数依次为a -d ,a ,a +d ,a +d 2a, 由条件得⎩⎪⎨⎪⎧ a -d +a +d 2a =16,a +a +d =12.解得⎩⎪⎨⎪⎧ a =4,d =4,或⎩⎪⎨⎪⎧ a =9,d =-6.所以当a =4,d =4时,所求四个数为0,4,8,16;当a =9,d =-6时,所求四个数为15,9,3,1.故所求四个数为0,4,8,16或15,9,3,1.法二:设这四个数依次为2a q -a ,a q,a ,aq (a ≠0), 由条件得⎩⎪⎨⎪⎧ 2a q -a +aq =16,a q +a =12.解得⎩⎪⎨⎪⎧ q =2,a =8,或⎩⎪⎨⎪⎧ q =13,a =3.所以当q =2,a =8时,所求四个数为0,4,8,16;当q =13,a =3时,所求四个数为15,9,3,1. 故所求四个数为0,4,8,16或15,9,3,1.法三:设这四个数依次为x ,y,12-y,16-x ,由已知得⎩⎪⎨⎪⎧ 2y =x +12-y ,12-y 2=y 16-x . 解得⎩⎪⎨⎪⎧ x =0,y =4,或⎩⎪⎨⎪⎧ x =15,y =9.故所求四个数为0,4,8,16或15,9,3,1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学 2.4等比数列(1)学案
新人教A 版必修5
学习目标
1理解等比数列的概念;探索并掌握等比数列的通项公式、性质;
2. 能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;
3. 体会等比数列与指数函数的关系.
学习重难点
1.重点:等比数列的概念、通项公式及性质
2.难点:通项公式的运用
一、课前回顾
复习1:等差数列的定义? 复习2:等差数列的通项公式n a = ,等差数列的性质有:
二、新课探究 ※ 学习探究
观察:①1,2,4,8,16,… ②1,12,14,18,1
16
,… ③1,20,220,320,420,…
思考以上三个数列有什么共同特征?
新知导学:
1. 等比数列定义:一般地,如果一个数列从第 项起, 一项与它的 一项的 等于 常数,
那么这个数列就叫做等比数列.这个常数叫做等比数列的 ,通常用字母 表示(q ≠0),
即:1n n a
a -= (q ≠0)
2. 等比数列的通项公式:
21a a = ; 3211()a a q a q q a === ; 24311()a a q a q q a === ; …… ∴ 11n n a a q a -==⋅ 等式成立的条件
3. 等比数列中任意两项n a 与m a 的关系是:
※ 试一试
例1 (1) 一个等比数列的第9项是49,公比是-1
3
,求它的第1项;
(2)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项.
小结:关于等比数列的问题首先应想到它的通项公式11n n a a q -=.
例2 已知数列{n a }中,lg 35n a n =+ ,试用定义证明数列{n a }是等比数列.
小结:要证明一个数列是等比数列,只需证明对于任意正整数n ,1n n a
a +是一个不为0的常数
就行了.
※ 模仿练习
练1. 某种放射性物质不断变化为其他物质,每经过一年剩留的这种物质是原来的84%. 这种物质的
半衰期为多长(精确到1年)?
练 2. 一个各项均正的等比数列,其每一项都等于它后面的相邻两项之和,则公比q =( ).
A. 32
B. 352
C. 512-
D. 51
2
+
三、总结提升 ※ 学习小结
1. 等比数列定义;
2. 等比数列的通项公式和任意两项n a 与m a 的关系. ※ 知识拓展
在等比数列{}n a 中,
⑴ 当10a >,q >1时,数列{}n a 是递增数列; ⑵ 当10a <,01q <<,数列{}n a 是递增数列;
⑶ 当10a >,01q <<时,数列{}n a 是递减数列;⑷ 当10a <,q >1时,数列{}n a 是递减数列;
⑸ 当0q <时,数列{}n a 是摆动数列; ⑹ 当1q =时,数列{}n a 是常数列. 当堂检测
1. 在{}n a 为等比数列,112a =,224a =,则3a =( ).
A. 36
B. 48
C. 60
D. 72
2. 等比数列的首项为98,末项为1
3
,公比为23,这个数列的项数n =( ).
A. 3
B. 4
C. 5
D. 6
3. 已知数列a ,a (1-a ),2(1)a
a -,…是等比数列,则实数a 的取值范围是( ). A. a ≠1 B. a ≠0且a ≠1 C. a ≠0 D. a ≠0或a ≠1
4. 设1a ,2a ,3a ,4a 成等比数列,公比为2,则12
3422a a a a ++= .
5. 在等比数列{}n a 中,4652a a a =-,则公比q = .
课后作业
在等比数列{}n a 中,
⑴ 427a =,q =-3,求7a ; ⑵ 218a =,48a =,求1a 和q ;
⑶ 44a =,76a =,求9a ; ⑷ 514215,6a a a a -=-=,求3a .
课后反思。

相关文档
最新文档