2018年中考数学总复习 1.3 有理数的大小

合集下载

中考数学知识点总结(最新最全)

中考数学知识点总结(最新最全)

中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如 1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

中考数学有理数总复习省名师优质课赛课获奖课件市赛课一等奖课件

中考数学有理数总复习省名师优质课赛课获奖课件市赛课一等奖课件
例:分别求出数轴上两点间旳距离: ①表达2旳点与表达-7旳点; ②表达-3旳点与表达-1旳点。
解:①︱2-(-7)︱=︱2+7︱=︱9︱=9 ②︱-3-(-1)︱=︱-3+1︱=︱-2︱=2
3)有理数旳乘法法则
两数相乘,同号得正,异号得负, 并把绝对值相乘;
任何数同0相乘,都得0.
① 几种不等于0旳数相乘,积旳符号 由负因数旳个数决定,当负因数有奇 数个时,积为负;当负因数有偶数个 时,积为正.
1)有理数加法法则
① 同号两数相加,取相同旳符号, 并把绝对值相加; ② 异号两数相加,取绝对值较大 旳加数旳符号,并用较大旳绝对值 减去较小旳绝对值;互为相反数 旳两数相加得0;
③ 一种数同0相加,仍得这个数。
用数学语言描述有理数加法法则:
①同号相加: 若a>0,b>0,则a+b=︱a︱+︱b︱ 若a<0,b<0,则a+b= -(︱a︱+︱b︱)
1. 把一种不小于10旳数记成a×10n 旳形式,其中a是整数数位只有一位 旳数,这种记数法叫做科学记数法 .
2. 一种近似数,从左边第一种不是0 旳数字起到,到精确到旳数位止,所 有旳数字,都叫做这个数旳有效数字。
有理数旳五种运算
1.运算法则 2.运算顺序 3.运 算 律
1.运算法则
1)有理数加法法则 2)有理数减法法则 3)有理数乘法法则 4)有理数除法法则 5)有理数旳乘方
a
2)0没有倒数 ;
3)若a与b互为倒数,则ab=1.
例:下列各数,哪两个数互为倒数?
8, 1 ,-1,+(-8),1, ( 1)
8
8
6.绝对值
一种数a旳绝对值就是数轴上

中考数学复习讲义1

中考数学复习讲义1

中考数学复习讲义第1课时有理数七(上)第二章编写:尤兴桂班级______姓名_______[课标要求]1、理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.2、借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义(这里a表示有理数.3、理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以上三步以内为主).4、理解有理数的运算律,能运用运算律简化运算.5、能运用有理数的运算解决简单的问题.[基础训练]1、-1, 0, 0.2,, 3 中正数一共有个.2、既不是正数也不是负数的数是 .3、如图是一个正方体盒子的展开图,请把-10,8,10,-2,-8,2分别填入六个小正方形,使得按虚线折成的正方体相对面上的两数互为相反数.4、数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为______.5、已知a与b互为倒数,c和d互为相反数,且|x|=6,则3ab-(c+d)+x2=6、若|a|=3,则a=_____7、下列四个数中,是负数的是()A、|-2|B、(-2)2C、-D、8、如图,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P’,则点P’表示的数是:.[要点梳理]1、_____与_____统称为有理数2、规定了_____、_____和_____的直线叫做数轴.3、如果两个数符号不同,绝对值相同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.0的相反数是.4、数轴上表示一个数的点与原点的叫做该数的绝对值.正数的绝对值是;负数的绝对值是;0的绝对值是5、数轴上两个点表示的数,右边的总比左边的___;正数___0,负数____0,正数__负数;两个负数比较大小,_______6、乘积为1的两个有理数互为_____.7、有理数分类应注意:(1)0是整数但不是正整数;(2)整数分为三类:正整数、零、负整数,易把整数误认为分为二类:正整数、负整数.(3)整数还可以分为自然数和负整数两类或分为偶数和奇数两类.8、两个数a、b互为相反数,则a+b=_____.9、绝对值是易错点:如绝对值是5的数应为±5,易丢掉-5.10、乘方的意义:求n个相同因数a的积的运算叫做____,乘方的结果叫做__11、科学计数法:_____________________________[问题研讨]例1、如果零上2℃记作+2℃,那么零下3℃记作()A、-3℃B、-2℃C、+3℃D、+2℃例2、如图,若A是实数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A、a<1<-aB、a<-a<1C、1<-a<aD、-a<a<1例3、首届中国(北京)国际服务贸易交易会(京交会)于6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为()A、B、C、D、★例4、a是不为1的有理数,我们把称为a的差倒数....如:2的差倒数是,的差倒数是.已知,是的差倒数,是的差倒数,是的差倒数,…,依此类推,则a=____.例5、根据如图所示的程序计算,若输入x的值为1,则输出y的值为_____7 122)2(-96.01110⨯960.1110⨯106.01110⨯110.601110⨯11a-1112=--1-111(1)2=--113a=-2a1a3a2a4a3a输入x输出y平方乘以2减去4若结果大于0否则0 1A例6、观察下面的变形规律: 211⨯ =1-12; 321⨯=12-31;431⨯=31-41;…… 解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论; (3)求和:211⨯+321⨯+431⨯+…+201220111⨯★(4)探究并计算:201220101861641421⨯++⨯+⨯+⨯ .[规律总结]1、搞清有理数的三种常见形式:① 整数 ;②分数;③无限循环小数,如0.01010101…… .2、绝对值的性质——要注意正确区分数的三种情况,尤其是负数去掉绝对值应变为其相反数.3、有理数的混合运算应灵活运用运算律. 乘方计算时注意:(1)注意分清底数,如:-a n 的底数是 a ,而不是-a ;(2)注意运算顺序,运算时先算乘方,如 3 ×52=3 ×25=75; [强化训练]1、的相反数是 ( ) A 、B 、-C 、3D 、-32、下面的数中,与-3的和为0的是 ( ) A 、3 B 、-3 C 、 D 、3、—8的相反数是( ) A 、8B 、-8C 、D 、 4、若|a|=7,|b|=5,a + b >0,那么a -b 的值是( )A 、2或 12B 、2或-12C 、-2或-12D 、-2或 125、为改善学生的营养状况,中央财政从秋季学期起,为试点地区在校生提供营养餐膳食补助,一年所学资金约为160亿元,用科学计数法表示为 元.6、5月12日,四川省汶川县发生了里氏8.0级大地震.新疆各族群众积极捐款捐物,还紧急烤制了2×104个饱含新疆各族人民深情的特色食品——馕(n áng ),运往灾区.每个馕厚度约为2cm ,若将这批馕摞成一摞,其高度大约相当于( )A 、160层楼房的高度(每层高约2.5m )B 、一棵大树的高度C 、一个足球场的长度D 、m 的高度 7、数轴上点A 到原点的距离是5,则A 表示的数是_____8、比较大小:-56 _____-679、若a 的相反数是最大的负整数,b 是绝对值最小的数,则a +b =_____.★10、观察下列等式71=7,72=49,73=343,74=2401, …,由此可判断7100的个位数字是____.11、计算 (1)(-3)×13 ÷(-13 )×3(2))1()32(32101-+-+-+⎪⎭⎫⎝⎛-31-31313131-8181-中考数学复习讲义第2课时 实数八(上)第二章 2.3~2.6编写:尤兴桂 班级______姓名_______[课标要求]1、了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根.2、了解乘方与开方与为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根.3、了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值.4、能用有理数估计一个无理数的大致范围.5、了解近似数,在解决实际问题中,能用计算器进行近似计算,并会按问题的要求结果取近似值.6、了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算. [基础训练]1、4的平方根是_____. 算术平方根是_____.2、如果一个数的平方根等于本身,则这个数是____.如果一个数的算术平方根等于本身,则这个数是____. 如果一个数的立方根等于本身,则这个数是____. 3、下列四个实数中,是无理数的为( )A .0 BC .-2D .4、(1)81-的立方根是_____;(2)已知x 3=8,则x =_____. 5、已知实数x,y满足x-2 +(y+1)2=0,则x -y 等于___ 6、用四舍五入法把0.7096精确到千分位的近似值是_____.7、今年某市约有108000名应届初中毕业生参加中考,按四舍五入保留两位有效数字,108000用科学计数法表示为( )A 、0.10×106B 、1.08×105C 、0.11×106D 、1.1×105 8、一个正方形的面积是15,估计它的边长大小在 ( )A 、2与3之间B 、3与4之间C 、4与5之间D 、5与6之间9、3―a 在实数范围内有意义,则a 的取值范围是( )A 、a≥3B 、a ≤3C 、a ≥―3D 、a ≤―3 10、计算:.[要点梳理](3)数的开方与数的乘方互为逆运算. 2、实数(1)无理数的定义及表示形式 (2)实数的分类(3)实数的大小比较的方法、运算性质,及运算律与有理数相同. 3、实数与数轴上的点是一一对应的.4、有效数字:对一个近似数,从左面第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字. [问题研讨] 例1、(1)如图,矩形OABC 的边OA 长为2 ,边AB 长为1,O A 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是A 、2.5B 、2 2C 、 3D 、 5(2)数轴上的点并不都表示有理数,如所画图中数轴上的点P 所表示的数是___. 这种说明问题的方式体现的数学思想方法是_______27()11π32sin 458-⎛⎫-︒- ⎪⎝⎭例2、把下列各数填到相应的集合里:3-1,8,327-,-π,3.14,0.1010010001…722,sin30°,tan45°,-3,-3.21001,|-3.2| 整数集合:{ …}分数集合:{ …} 有理数集合:{ …} 无理数集合:{ …}注:严格地按照定义来分类. 例3、比较大小注:有理数大小的比较方法在实数范围内仍然适用,如作差法,作商法,两个负数绝对值大的反而小等等.例4、(1)3.5万精确到_____位,有____个有效数字;1.35×103精确到_____位,有____个有效数字.(2)用四舍五入法,按要求对下列各数取近似数,并用科学记数法表示. ①地球上七大洲的总面积约为149480000km 2(保留2个有效数字).②某人一天饮水1890mL (精确到1000mL ) ③小明身高1.595m (保留3个有效数字)④人的眼睛可以看见的红光的波长为0.000077cm (精确到0.00001cm ).[规律总结]1、实数是初中数学的基础内容,试题分值5~8分,多以选择题、填空题、计算题出现.2、牢固掌握实数的有关概念,掌握数形结合的思想.3、掌握实数的各种运算,在混合运算中注意符号和运算顺序.4、对于体现创新意识的问题,可采用猜想、归纳、计算、验证等综合方法解题[强化训练]1、在实数π3 ,sin300,- 3 , 4 中,无理数的个数为( )A 、1B 、2C 、3D 、4 2、计算17+1的值在( )A 、2和3之间B 、3和4之间C 、4和5之间D 、5和6之间 3.(填“”、 “”或“=”) 4、已知|a|=5,2b =3,且ab >0,则a +b 的值为( ) A 、8 B 、-2C 、8或-8D 、2或-25、实数、在轴上的位置如图所示,且,则化简的结果为( )A 、B 、C 、D 、6、若0<x <1,则x ,x1,x 2的大小关系是( ) A 、x 1<x <x 2 B 、x <x 1<x 2 C 、x 2<x <x 1 D 、x 1<x 2<x7、如果aa ||=-1,则a 的取值是( )A 、a <0B 、a ≤0C 、a ≥0D 、a >0 8、计算(1)()1611130sin 202+⎪⎭⎫⎝⎛-+-︒+--π(2)|1+(-1)+(8-)0+()-112><a b b a >b a a +-2b a +2b a +-2b b a -2π813aob中考数学复习讲义第3课时 用字母表示数七(上)第三章 七(下)第八章幂的运算编写:尤兴桂 班级______姓名_______【课标要求】1、借助现实情境了解代数式,进一步理解用字母表示数的意义.2、能分析具体问题中的简单数量关系,并用代数式表示.3、会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算.4、整式的有关概念,如单项式、多项式、同类项等,简单的整式加、减、乘法运算.5、整数指数幂的意义与基本性质.6、会解释一些简单代数式的实际背景或几何意义. 【基础练习】1、“x 的21与y 的和”用代数式可以表示为( ) A 、21(x +y ) B 、x +21+y C 、x +21y D 、21x +y2、某超市进了一批商品,每件进价为a 元,若要获利25%,则每件商品的零售价应定为( )A 、25%aB 、(1-25%)aC 、(1+25%)aD 、%251+a3、下列运算中,正确的是( ). A 、x 3·x 2=x 5B 、x +x 2=x 3C 、2x 3÷x 2=x D 、2x 233=⎪⎭⎫⎝⎛x4、下列运算中,正确个数为( )个①x 2+x 3=x 5 ②(x 2)3=x 6 ③30×2-1=5 ④-|-5|+3=8 ⑤1÷212⨯=1A 、1B 、2C 、3D 、4 5、如果的取值是和是同类项,则与n m y x y xm m n 31253--( )A 、3和-2B 、-3和2C 、3和2D 、-3和-26、若实数a 满足2210a a -+=,则2245a a -+=_____.7、已知10m =2,10n =3,则103m+2n=____8、52314222-+-+-a a a a 与的差是_____.【要点梳理】1、用运算符号(加、减、乘、除、乘方、开方)把数和____连接而成的式子,叫做代数式,单独一个数或一个字母也是代数式.2、代数式的值:一般地,用______代替代数式里的字母,按照代数式中的运算关系,计算得出的结果,叫做代数式的值.3、______和_______统称为整式. ⑴单项式是______的积,其含义是:①不含加减运算,②字母不出现在分母里,③单独的一个数或字母也是单项式.__________________叫做单项式的系数; __________________叫做单项式的次数.⑵多项式是_______的和,其含义有:①由单项式组成;②体现和的运算法则 ______ ____________叫做多项式的一个项;_________ 叫做这个多项式的次数.4、⑴同类项应必须同时具备两个条件:①_____;②_____.⑵合并同类项的法则是_________________________. 5、幂的运算法则(1)a m ·a n =_______; (2)(a m )n =______; (3)(ab)n =________; (4)a m ÷a n =____(a ≠0);(5)a 0=1( ); (6)a -p =_____(a ≠0). 【问题研讨】例1、填空(1)a 的系数是____,次数是_____ (2)3abπ的系数是_____,次数是_____例2、单项式4x a +2b y 8与-3x 2y 3a +4b 和仍是单项式,求a +b 的值.例3、按下列程序计算,把答案写在表格内:(1)填写表格:(2)请将题中计算程序用代数式表达出来,并给予化简. 分析:明确计算程序是正确解答本题的前提.例4、如图,将连续的奇数1、3、5、7 …… ,排列成如下的数表,用十字框框出5个数.问:(1)十字框框出5个数字的和与框子正中间的数17有什么关系? (2)若将十字框上下左右平移,可框住另外5个数,若设中间的数为a ,用代数式表示十字框框住的5个数字之和;(3)十字框框住的5个数字之和能等于吗?若能,分别写出十字框框住的5个数;若不能,请说明理由.【规律总结】1、整体代入法是求代数式值的方法之一2、观察数列中各个数据的数量关系(如和差倍分关系)是解答观察数字型归纳题的一个方法3、要准确理解和辨析单项式次数、系数、同类项等概念,特别要关注简单整式的运算.4、运用公式或法则进行运算,首先要判断题目是否具备某一公式或法则的结构特征,在此基础上正确选择公式或法则进行运算.【强化训练】1、若代数式26x x b -+可化为2()1x a --,则b a -的值是___.2、用代数式表示“a 、b 两数的平方和”,结果为_____.3、下列运算正确的是( ) A、321x x -= B、22122xx--=-C、236()a a a -=·D、236()a a -=-4、某计算程序编辑如图所示,当输入x =_____时,输出的y =3.5、已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定 ★6、某公园计划砌一个形状如图(1)的喷水池,后来有人建议改为图(2)的形状且外圆的直径不变,喷水池边沿的宽度,高度不变,你认为砌喷水池的边沿( )A 、图(1)需要的材料多B 、图(2)需要材材料多C 、图(1)、图(2)需要的材料一样多D 、无法确定7、先化简,再求值:(3x +2)(3x -2)-5x (x -1)-(2x -1)2,其中x =-31.8、求(7ab -3a 2)-(2b 2+13ab )-(a 2-2ab )的值,其中a =1,b =-1.图2图1 1 3 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47… … … … … …中考数学复习讲义第4课时 从面积到乘法公式(1)七(下)第三章、七(下)第八章幂的运算编写:尤兴桂 班级______姓名_______[课标要求]1、会进行简单的整式乘法运算2、能推导乘法公式:(a +b )(a -b )=a 2-b 2,(a ±b )2=a 2±2ab +b 2,了解公式的几何背景,并能利用公式进行简单计算. [基础练习]1、21ab 2c ·(-0.5ab 2)·(-2bc 2)=_______ 2、-3a 2(ab 2+31b -1)=_________3、二次三项式是一个完全平方式,则的值是4、如图,从边长为(a+1)cm 的正方形纸片中剪去一个边长为(a ﹣1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )A . 2cm 2B . 2acm 2C . 4acm 2D . (a 2﹣1)cm1、单项式的乘法法则:单项式乘以单项式,把它们的_________分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2、单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的_______,再把所得的_________.3、多项式乘法法则:多项式与多项式相乘,先用一个多项式的_____乘以另一个多项式的_____,再把所得的积相加.注意:多项式与多项式相乘的展开式中,有同类项的要合并同类项.4、 写出完全平方公式_________________________写出平方差公式 . [问题研讨]例 1、计算:①()()23232--⋅-a a a ②[(2x -y )(2x +y )+y (y -6x )]÷2x③)3)(52(y x y x -- ④)168()4(2--+x x .例2、(1)已知a +b =-3,ab =2,求a 2+b 2 和 (a -b)2的值.(2)已知A =2x+y ,B =2x -y ,计算A 2-B 2.(3)已知31=-x ,求代数式4)1(4)1(2++-+x x 的值.29x kx -+k例3、由m (a +b +c )=ma +mb +mc ,可得:(a +b )(a 2-ab +b 2)=a 3-a 2b +ab 2+a 2b -ab 2+b 3=a 3+b 3,即(a +b )(a 2-ab +b 2)=a 3+b 3. ………………………① 我们把等式①叫做多项式乘法的立方公式. 下列应用这个立方公式进行的变形不正确...的是( ) A 、(x +4y )(x 2-4xy +16y 2)=x 3+64y 3B 、(2x+y )(4x 2-2xy+y 2)=8x 3+y 3C 、(a +1)(a 2+a +1)=a 3+1D 、x 3+27=(x +3)(x 2-3x +9) [规律总结]1、掌握单项式乘多项式、多项式乘多项式的运算法则;2、二次代数式的几何意义都与面积有关;3、掌握好平方差公式与完全平方公式的特征. 平方差公式:(a +b )(a -b )=a 2-b 2 完全平方公式:(a ±b )2=a 2±2ab +b 2 [强化训练]1、利用因式分解简便计算:57×99+44×99-99正确的是( ) A 、99×(57+44)=99×101=9999 B 、99×(57+44-1)=99×100=9900 C 、99×(57+44+1)=99×102=10098 D 、99×(57+44-99)=99×2=1982、如果多项式162++mx x 能分解为一个二项式的平方的形式,那么m 的值为:( )A 、4B 、8C 、—8D 、±8 3、一套住房的平面图如图所示,其中卫生间、厨房的面积和等于( )A 、4xyB 、3xyC 、2>n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的长小方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是( )A 、2mnB 、(m +n )2C 、(m -n )2D 、m2-n 25、将图甲中阴影部分的小长方形变换到图乙位置,你 能根据两个图形的面积关系得到的数学 公式是__________.6、如图是在正方形网格中按规律填成的阴影,根据此规律,第n 个图中的阴影部分小正方形的个数是_____7、化简:(a +2)(a -2)-a (a +1)8、先化简,再求值:,其中.★9、有足够多的长方形和正方形的卡片,如下图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是 .2(2)2()()()a a b a b a b a b -++-++1,12a b =-=3ab2b baa 1 13 2 233a ba -baa -b中考数学复习讲义第5课时 从面积到乘法公式(2)七(下)第九章 9.5~9.6编写:尤兴桂 班级______姓名_______[课标要求]1、理解因式分解的意义并感受分解因式与整式乘法是相反方向的变形2、能用提公因式法、公式法(直接利用公式不超过二次)进行因式分解(指数是正整数).3、会用因式分解法解决相关问题 [基础练习]1、因式分解:= .2、分解因式:_____.225、填上适当的数,使等式成立:24x x -+____=(x -____2)6、分解因式2(2)(4)4x x x +++-=______7、下列各式从左向右的变形,属于因式分解的有( ) A 、(x+2)(x -2)=x 2-4 B 、x 2-4+3x =(x+2)(x -2)+3xC 、a 2-4=(a+2)(a -2)D 、全不对 8、下列因式分解错误的是( ) A 、x 2-y 2=(x +y )(x -y ) B 、x 2+6x +9=(x +3)2 C 、x 2+xy =x (x +y ) D 、x 2+y 2=(x +y )29、下列各式中,不能运用平方差公式的是( ) A 、-a 2+b 2 B 、-x 2-y 2 C 、494+25n 2p 2 10、把下列各式分解因式:(1)4x 4-25y 2 (2)32232a b a b ab -+(3)81(a -b)2-16(a+b)2 (4)16(b -c)2-a 2[要点梳理]1、因式分解的概念:2、因式分解的方法: ①提公因式法:; ②公式法:3、因式分解与整式乘法的关系怎样?4、因式分解法(一种重要的数学思想方法)在解题中的应用. [问题研讨]例1:(1)下列各式由左边到右边的变形中,是分解因式的是( ) A 、a (x +y )=ax +ay B 、x 2-4x +4=x (x -4)+4C 、10x 2-5x =5x (2x -1)D 、x 2-16+3x =(x +4)(x -4)+3x (2)下列因式分解中,结果正确的是( )A 、x 2-4=(x +2)(x -2)B 、1-(x +2)2=(2-4n 2) D 、x 2-x +41=x 2(1-2411x x +) (3)因式分解:-m 2+n 2=___________.(4)分解因式 .分析:考察的是因式分解的概念,注意与整式乘法的区别与联系. 例2、把下列各式分解因式:(1);1682++x x (2);1102524++a a(3)()4)(42++-+n m n m (4)4224167281y y x x +-22a a -2168()()x y x y --+-=32232a b a b ab -+=例3、已知:0136422=++-+b a b a ,求ab 的值.说明:此例运用0)(2222≥±=+±b a b ab a 及几个非负数都为零.★例4、(1)两个边长分别为a,b,c 的直角三角形和一个两条直角边都是c 的直角三角形拼成一个新的图形.试用不同的方法计算这个图形的面积,你能发现什么?(2)由四个边长分别为a,b,c 的直角三角形拼成一个新的图形.试用两种不同的方法计算这个图形的面积,并说说你发现了什么.[规律总结]因式分解的一般步骤:(1)多项式的各项有公因式时,先提公因式;(2)各项没有公因式时,要看能不能用公式法来分解; (3)分解因式,必须进行到每一个多项式都不能再分解.[强化训练]1、观察: 32-12=8; 52-32=16; 72-52=24; 92-72=32. ……根据上述规律,填空:132-112= ,192-172= .你能用含n 的等式表示这一规律吗?你能说明它的正确性吗? 2、(1)观察下面各式规律:2222)121(2)21(1+⨯=+⨯+; 2222)132(3)32(2+⨯=+⨯+; 2222)143(4)43(3+⨯=+⨯+;……写出第n 行的式子,并证明你的结论.- 第-一-网(2)计算下列各式,你发现了什么规律?①×-2; ②210010199-⨯; ③210000100019999-⨯.★3、已知P =3xy -8x+1,Q =x -2xy -2,当x ≠0时,3P -2Q =7恒成立,求y 的值.a b c c a b。

中考数学《有理数的大小比较》专题复习检测卷(含答案)

中考数学《有理数的大小比较》专题复习检测卷(含答案)

中考数学《有理数的大小比较》专题复习检测卷学校:___________ 姓名:___________ 班级:___________ 考号:___________一、选择题(本大题共8小题,每小题5分,共40分)1.下面是四个地市2020年12月份的日均最低温度:-10℃(a市),-14℃(b市),-5℃(c市),-8℃(d市).其中日均最低温度最高的是()A. a市B. b市C. c市D. d市2.下列式子中成立的是( )A. −|−5|>4B. −3<|−3|C. −|−4|=4D. |−5.5|<53.已知有理数a,b在数轴上的位置如图所示,则下列结论错误的是()A. |a|<1<|b|B. 1<−a<bC. 1<|a|<bD. −b<a<−14.若a为有理数,则下列判断不正确的是()A. 若|a|>0,则a>0B. 若a>0,则|a|>0C. 若a<0,则−a>0D. 若0<a<1,则|a|<15.有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A. a+b<0B. a—b<0C. ab>0D. ab>06.若0<x<1,则x,1x,-x的大小关系是()A. 1x <x<−x B. x<−x<1xC. 1x <−x<x D. −x<x<1x7.下列说法正确的是()①0是绝对值最小的有理数;②若|a|=a,则a是正数;③数轴上原点两侧的数互为相反数;④两个负数比较大小,绝对值大的负数反而小A. ①②B. ①④C. ①③D. ③④8.绝对值小于126而大于26的整数有()A. 100个B. 99个C. 198个D. 200个第2页,共3页二、填空题(本大题共5小题,每小题5分,共25分)9. 有理数a ,b ,c 在数轴上的位置如图所示,用“>”或“<”比较出下列式子与“0”的大小:(1)c +a ________0;(2)b +c ________0;(3)b +(-a )________0; (4)c +(-b )________0。

(完整版)中考数学总复习资料

(完整版)中考数学总复习资料

- 1 - 中考总复习1 有理数1、有理数的基本概念(1)正数和负数定义:大于0的数叫做正数。

在正数前加上符号“-”(负)的数叫做负数。

0既不是正数,也不是负数。

(2)有理数正整数、0、负整数统称整数。

正分数、负分数统称分数。

整数和分数统称为有理数。

2、数轴规定了原点、正方向和单位长度的直线叫做数轴。

3、相反数代数定义:只有符号不同的两个数叫做互为相反数。

几何定义:在数轴上原点的两旁,离开原点距离相等的两个点所表示的数,叫做互为相反数。

一般地,a 和-a 互为相反数。

0的相反数是0。

a =-a 所表示的意义是:一个数和它的相反数相等。

很显然,a =0。

4、绝对值定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a |。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

即:如果a >0,那么|a |=a ;如果a =0,那么|a |=0;如果a <0,那么|a |=-a 。

a =|a |所表示的意义是:一个数和它的绝对值相等。

很显然,a ≥0。

5、倒数定义:乘积是1的两个数互为倒数。

1a a=所表示的意义是:一个数和它的倒数相等。

很显然,a =±1。

6、数的比较大小法则:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

7、乘方定义:求n 个相同因数的积的运算,叫做乘方。

乘方的结果叫做幂。

如:43421Λan na a a a 个•••=读作a 的n 次方(幂),在a n 中,a 叫做底数,n 叫做指数。

性质:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0。

8、科学记数法定义:把一个大于10的数表示成a ×10n 的形式(其中a 大于或等于1且小于10,n 是正整数),这种记数方法叫做科学记数法。

小于-10的数也可以类似表示。

用科学记数法表示一个绝对值大于10的数时,n 是原数的整数数位减1得到的正整数。

初三数学总复习知识点整理归纳

初三数学总复习知识点整理归纳

初三数学总复习知识点整理归纳初三数学总复习知识点整理归纳1.有理数:〔1〕凡能写成形式的数,都是有理数。

正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;〔2〕有理数的分类:① 有理数分成整数,分数;整数又分成正整数,负整数和0;分数分成正分数和负分数。

②有理数分成正数、0、负数。

正数又分成正整数和正分数,负数分成负整数和负分数。

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:〔1〕只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;〔2〕相反数的和为0, a+b=0 a、b互为相反数.4.绝对值:〔1〕正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点分开原点的间隔;〔2〕绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:〔1〕正数的绝对值越大,这个数越大;〔2〕正数永远比0大,负数永远比0小;〔3〕正数大于一切负数;〔4〕两个负数比大小,绝对值大的反而小;〔5〕数轴上的两个数,右边的数总比左边的数大;〔6〕大数-小数 > 0,小数-大数拓展阅读:初三数学学习方法一、学习的方案为了让学习的目的更加明确,需要合理安排学习时间,不慌不忙,稳打稳扎,它是推动学生主动学习和克制困难的内在动力。

但方案一定要实在可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨练学习意志。

二、错题反思我们不要笼统地抱怨自己解题时“粗心”,而应该把做错的题目研究一下,是不是因为注意力不集中,顾此失彼;或者审题马虎,误解题意;或者记错概念、公式、定理;或者是心急慌忙,随意跳步骤,造成运算错误等等。

只要找到根,就能做到不让同一错误出现第二次;只要把所有会做的题目都做对,就能获得优良成绩。

三、复习很重要数学学习往往是通过做作业到达对知识的稳固、加深理解和学会运用,从而形成技能技巧,以及开展智力与数学才能。

2018年成都市中考数学试题及答案详解

2018年成都市中考数学试题及答案详解

四川省成都市2018年中考数学试卷(解析版)一、选择题(A卷)1.实数在数轴上对应的点的位置如图所示,这四个数中最大的是()A. B. C. D.【答案】D【考点】数轴及有理数在数轴上的表示,有理数大小比较【解析】【解答】解:根据数轴可知a<b<0<c<d∴这四个数中最大的数是d故答案为:D【分析】根据数轴上右边的数总比左边的数大,即可得出结果。

2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:40万=4×105故答案为:B【分析】根据科学计数法的表示形式为:a×10n。

其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。

3.如图所示的正六棱柱的主视图是()A. B.C. D.【答案】A【考点】简单几何体的三视图【解析】【解答】解:∵从正面看是左右相邻的3个矩形,中间的矩形面积较大,两边的矩形面积相同,∴答案A符合题意故答案为:A【分析】根据主视图是从正面看到的平面图形,即可求解。

4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【考点】关于原点对称的坐标特征【解析】【解答】解:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。

5.下列计算正确的是()A. B. C. D.【答案】D【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,积的乘方【解析】【解答】解:A、x2+x2=2x2,因此A不符合题意;B、(x-y)2=x2-2xy+y2,因此B不符合题意;C、(x2y)3=x6y3,因此C不符合题意;D、,因此D符合题意;故答案为:D【分析】根据合并同类项的法则,可对A作出判断;根据完全平方公式,可对B作出判断;根据积的乘方运算法则及同底数幂的乘法,可对C、D作出判断;即可得出答案。

1.3 有理数的大小(课件,新教材)七年级数学上册(沪科版2024)

1.3 有理数的大小(课件,新教材)七年级数学上册(沪科版2024)
4
3
1
1


(5)|
|

8
7
(6)3的相反数 > 5的相反数;
(7)-2的相反数 < -4的相反数;
(8)-3的相反数 > 5的相反数.
7.观察数轴,写出绝对值小于5的所有整数.
解:画出数轴如图所示,则可知绝对值小于5的整数有-4,-3,
-2,-1,0,1,2,3,4.
分层练习-基础
知识点一:利用数轴比较大小
正数 大于 0,0 大于 负数 ,正数大于 负数 .两个负数比较,绝对值大的
反而 小

4.下列四个数中最大的数是( D
)
A.-2
B.-1
C.0
D.1
5.下列各数中,比-1 小的数是( A )
A.-2
B.0
C.1
D.2
分层练习-基础
6.下列比较大小正确的是( D )
1
1
A.- >-
2
3
B.-|-1|=-(-1)
沪科版(2024)七年级数学上册
1.3 有理数的大小
第一章有理数
目录/CONTENTS
学习目标
情景导入
新知探究
分层练习
课堂反馈
课堂小结
学习目标
1.掌握有理数大小的比较法则;
2.能利用数轴及绝对值的知识,比较两个有理数的
大小.(重点、难点)
情景导入
下图表示某一天我国5个旅游区的最低气温.
泰山-4℃
新知探究
2.运用绝对值比较有理数的大小
做一做:在数轴上分别表示下列各对数,比较它们的大小:
(1)-1 与 -3; (2)-5 与 -2.
解:
-5

初中数学知识点中考总复习总结归纳(人教版)

初中数学知识点中考总复习总结归纳(人教版)

初中数学知识点中考总复习总结归纳(人教版)2023年初中数学知识点中考总复习总结归纳第一章有理数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,32等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001…等;(4)一些三角函数,如sin60o等π+8等;3第二章整式的加减考点一、整式的有关概念(3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如?4ab,这种表示就是错误的,应写成?132132ab。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如3?5a3b2c是6次单项式。

考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

人教版七年级上册数学第一章有理数的比较大小

人教版七年级上册数学第一章有理数的比较大小

人教版七年级上册数学第一章有理数的比
较大小
本文档旨在介绍人教版七年级上册数学第一章有理数的比较大
小的内容。

以下是该章节的主要内容概述。

1. 有理数的概念:
有理数包括正整数、负整数和零,可以表示为分数或小数。


章将重点介绍有理数的比较大小。

2. 有理数的比较大小:
有理数的比较大小可以通过数轴上的位置来确定。

数轴上靠右
的数值较大,靠左的数值较小。

当两个有理数在数轴上的位置不同,可以直接通过数轴来比较大小。

3. 有理数的相反数和绝对值:
一个有理数的相反数与其符号相反,绝对值指一个数离原点的
距离。

对于相同绝对值的有理数,正数比负数大。

4. 有理数大小的判断法则:
- 当两个有理数符号相同时,绝对值越大,数值越大。

- 当两个有理数绝对值相同时,正数比负数大,负数比零大。

5. 有理数的加法和减法:
本章也会介绍有理数的加法和减法运算。

当两个有理数同号时,将它们的绝对值相加或相减,然后保留相同的符号。

当两个有理数
异号时,可以先求它们的绝对值的差,结果的符号由绝对值较大的
数决定。

以上是人教版七年级上册数学第一章有理数的比较大小的主要
内容概述。

希望本文档对您有所帮助。

有理数的运算-中考数学一轮复习考点专题复习大全(全国通用)

有理数的运算-中考数学一轮复习考点专题复习大全(全国通用)

考向02 有理数的运算【考点梳理】考点一:有理数的四则运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;0与任何数相加都等于任何数(2)有理数减法法则::减去一个数等于加上这个数的相反数(3)有理数的乘法法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘; 0乘以任何一个数都等于0;②多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘(4)有理数的除法法则①两数相除,同号得正,异号得负,再把绝对值相除;0除以任何一个不为0的数都得0; ②除以一个不为0的数,等于乘以这个数的倒数考点二、有理数乘法的运算律:(1)乘法的交换律:ab=ba ; (2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .考点三、比较两个数的大小(1)负数< 0 < 正数,任何一个正数都大于一切负数 (2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小 (4)两数相乘(或相除),同号得正 > 0,异号得负 < 0考点四、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n, 当n 为正偶数时: (-a)n=an或 (a-b)n =(b-a)n.考点五、科学记数法:一个大于10的数记成a ×10n 的形式,a 是整数数位只有一位的数,这种记数法叫科学记数法.考点六、非负数的性质:若02=++c b a ,则000===c b a 且且【题型探究】题型一:有理数的加法运算1.(2022·浙江温州·中考真题)计算9(3)+-的结果是( ) A .6B .6-C .3D .3-2.(2022·云南省昆明市第十中学三模)在《九章算术注》中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(白色为正,黑色为负),如图1表示的是213211+-=-的计算过程,则图2表示的过程是在计算( )A .(13)(23)10-++=B .(31)(32)1-++=C .(13)(23)36+++=D .(13)(23)10++-=-3.(2022·贵州贵阳·一模)综合实践课上,同学们在如图所示的三阶幻方中,填写了一些数、式子和图案(其中每个式子或图案都表示一个数),若处于每一横行、每一竖列、两条斜对角线上的3个数之和都相等,则y x 的值为( )A .8-B .2C .16D .64题型二:有理数的减法运算4.(2022·黑龙江·哈尔滨市萧红中学校模拟预测)哈市某天的最高气温为15℃,最低气温为2-℃,则最高气温与最低气温的差为( ) A .5℃B .17℃C .17-℃D .5-℃5.(2022·山西·三模)计算()85---的结果是( ) A .3B .-3C .13D .-136.(2020·浙江温州·二模)如图是我国常年(1991~2020年)冬春两季各节气的平均气温折线统计图,根据图中的信息,各节气的平均气温最大值与最小值的差是( )A .8.75B .13.86C .18.28D .18.91题型三:有理数的加减混合运算7.(2022·湖南·长沙市中雅培粹学校二模)茶颜悦色是长沙本土知名奶茶品牌,更是被全国奶茶爱好者所知的“网红”品牌,2013年创立于长沙,目前在长沙地区有100多家直营门店.黄经理负责其中一家门店,若一杯幽兰拿铁成本是7元,卖17元,某顾客来买了一杯幽兰拿铁,给了黄经理一张50元纸币,黄经理没零钱,于是找邻居换了50元零钱.事后邻居发现那50元纸币是假的,最后黄经理又赔了邻居50元.请问黄经理一共亏了 __元.8.(2021·江苏宿迁·三模)如果△+△=★,〇=□+□,△=〇+〇+〇+〇,那么★÷□的值为_____.9.(2022·河北·邯郸市邯山区芳园实验中学一模)已知一列数2,0,﹣1.﹣12. (1)求最大的数和最小的数的差;(2)若再添上一个有理数m ,使得五个有理数的和为0,求m 的值.题型四:有理数的乘法运算律10.(2022·浙江丽水·三模)如图,运算中的( )处,填写的理由是( ) 5(12)(37)6-⨯-⨯537126=⨯⨯(乘法交换律)537126⎛⎫=⨯⨯ ⎪⎝⎭( ) 3710370=⨯=.A .乘法交换律B .乘法结合律C .分配律D .加括号11.(2022·河北唐山·一模)计算117313(24)126424⎛⎫-+-⨯- ⎪⎝⎭的结果是( )A .1B .1-C .10D .10-12.(2022·河北邯郸·二模)在简便运算时,把47249948⎛⎫⨯- ⎪⎝⎭变形成最合适的形式是( )A .12410048⎛⎫⨯-+ ⎪⎝⎭B .12410048⎛⎫⨯-- ⎪⎝⎭C .47249948⎛⎫⨯-- ⎪⎝⎭D .47249948⎛⎫⨯-+ ⎪⎝⎭题型五:有理数的除法13.(2022·山西·模拟预测)计算()62-÷的结果是( ) A .-3B .3C .-12D .1214.(2021·安徽·郎溪实验一模)两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗的座位,已知火车上的座位的排法如图所示,那么下列座位号码符合要求的是( )A .48,49B .62,63C .75,76D .84,8515.(2021·四川·绵阳外国语实验学校一模)如果□×(﹣12019)=1,则“□”内应填的实数是( ) A .12019B .2019C .﹣12019D .﹣2019题型六:有理数的乘法16.(2022·河北唐山·二模)计算222333m n ++⋅⋅⋅++⨯⨯⋅⋅⋅⨯=个个( )A .32m n +B .23+m nC .23m n +D .23n m +17.(2022·广东番禺中学三模)若2423y x x =--,则2022()x y +等于( )A .1B .5C .5-D .1-18.(2022·湖北鄂州·中考真题)生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n 来表示.即:21=2,22=4,23=8,24=16,25=32,……,请你推算22022的个位数字是( ) A .8B .6C .4D .2题型七:科学计算法19.(2022·浙江·南海实验学校三模)据国家统计局数据公报,2021年虽受“新冠疫情”影响,但全年国内生产总值仍高达1143670亿元,比上年同比增长8.1%.数据“1143670”用科学记数法可表示为( ) A .511.4367010⨯ B .61.14367010⨯C .71.14367010⨯D .80.114367010⨯20.(2022·吉林·长春市第一〇八学校二模)第24届冬季奥林匹克运动会,于2022年2月4日在我国首都北京开幕,据统计,北京冬奥会开幕式电视直播观众规模达3.16亿,是历史上收视率最高的一届冬奥会,数据3.16亿用科学记数法可以表示为( ) A .93.1610⨯ B .90.31610⨯C .731.610⨯D .83.1610⨯21.(2022·四川·威远县凤翔中学二模)据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( ) A .733.8610⨯B .83.38610⨯C .90.338610⨯D .93.38610⨯题型八:近似数22.(2022·河北沧州·一模)网聚正能量,构建同心圆.以“奋斗的人民 奋进的中国”为主题的2021中国正能量“五个一百”网络精品征集评选展播活动进入火热的展播投票阶段.截至2021年11月26日18点,“五个一百”活动投票量累计13909615次,数据13909615用科学记数法表示并精确到百万位为( ) A .80.13910⨯B .71.3910⨯C .80.1410⨯D .71.410⨯23.(2022·江苏盐城·一模)西溪天仙缘景区建筑以汉朝风格为主,美丽的传说,各式传统的小吃,吸引着无数游客心驰神往.景区游客日最大接待量为55500人,数字55500用四舍五入法精确到千位可以表示为( ) A .55.610⨯B .45.610⨯C .45610⨯D .50.5610⨯24.(2022·上海金山区世界外国语学校一模)某市参加毕业考试的学生人数约为8.63×410人.关于这里的近似数8.63×410,下列说法正确的是( ) A .精确到百分位,有3个有效数字; B .精确到百位,有3个有效数字; C .精确到百分位,有5个有效数字;D .精确到百位,有5个有效数字.题型九:有理数的混合运算25.(2022·广西·宾阳县教育局教学研究室三模)计算:()()2231524÷-+⨯-+-.26.(2022·河北沧州·一模)计算:()44881999⎛⎫-⨯-÷- ⎪.(1)解法1是从第______步开始出现错误的;解法2是从第______步开始出现错误的;(填写序号即可) (2)请给出正确解答.27.(2022·山东济宁·一模)阅读材料: 求2320212022122222++++++的值.解:设2320212022122222S =++++++①将①×2得:234202220232222222S =++++++②由②-①得:202321S =-, 即2320212022202312222221++++++=-请你仿照此法计算:2313333n +++++(其中n 为整数)【必刷基础】一、单选题28.(2022·河南洛阳·二模)今年的“两会”上,李克强总理在谈到今年需要就业的新增劳动力时,指出今年高校毕业生1076万,是历年最高.数据“1076万”用科学记数法表示为( ) A .71.07610⨯B .81.07610⨯C .610.7610⨯D .80.107610⨯29.(2022·江苏·常州市北郊初级中学二模)42-的值为( ) A .16-B .16C .8-D .830.(2022·四川·绵阳中学英才学校二模)已知点P 的坐标为(),m n ,且22440m n n n -+++=,则点P 关于x 轴的对称点坐标为( ) A .()4,2-B .()4,2-C .()4,2D .()2,4-31.(2022·广东·深圳市南山外国语学校三模)已知a 、b 互为相反数,c 、d 互为倒数,则代数式()52a b cd +-的值为( ) A .3B .2-C .3-D .032.(2022·广东·东莞市光明中学三模)在6-,12,()5--,3--,21-,0这六个数中,负数的个数有( ) A .0个B .1个C .2个D .3个33.(2022·宁夏·中考真题)已知实数a ,b 在数轴上的位置如图所示,则a ba b+的值是( )A .2-B .1-C .0D .234.(2022·内蒙古包头·中考真题)若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( ) A .8-B .5-C .1-D .1635.(2022·黑龙江齐齐哈尔·中考真题)下列计算正确的是( ) A .2ab ab b ÷= B .222()a b a b -=- C .448235m m m +=D .33(2)6-=-a a36.(2022·安徽·三模)下列各数中,化简结果最小的是( ) A .-5B .5C .()15--D .()25-37.(2022·新疆·乌鲁木齐市第六十八中学模拟预测)计算:()()1202011322π-⎛⎫-⨯-+-+- ⎪⎝⎭.38.(2022·浙江杭州·中考真题)计算:()32623⎛⎫-⨯-- ⎪⎝⎭■.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是12,请计算()3216232⎛⎫-⨯-- ⎪⎝⎭.(2)如果计算结果等于6,求被污染的数字.【必刷培优】一、单选题39.(2022·湖南·吉首市教育科学研究所模拟预测)观察下列等式:122=,224=,328=,4216=,5232=,6264=,⋅⋅⋅,根据这个规律,则1234202222222++++⋅⋅⋅+的末尾数字是( )A .0B .2C .4D .640.(2022·江苏苏州·中考真题)下列运算正确的是( ) A .()277-=- B .2693÷= C .222a b ab += D .235a b ab ⋅=41.(2022·河北·中考真题)若x 和y 互为倒数,则112x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的值是( )A .1B .2C .3D .442.(2022·湖北武汉·中考真题)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A .9B .10C .11D .1243.(2022·湖南娄底·中考真题)在古代,人们通过在绳子上打结来计数.即“结绳计数”.当时有位父亲为了准确记录孩子的出生天数,在粗细不同的绳子上打结(如图),由细到粗(右细左粗),满七进一,那么孩子已经出生了( )A .1335天B .516天C .435天D .54天44.(2022·湖南娄底·中考真题)若10x N =,则称x 是以10为底N 的对数.记作:lg x N =.例如:210100=,则2lg100=;0101=,则0lg1=.对数运算满足:当0M >,0N >时,()lg lg lg M N MN +=,例如:lg3lg5lg15+=,则()2lg5lg5lg 2lg 2+⨯+的值为( ) A .5B .2C .1D .0二、填空题45.(2022·江苏·靖江市滨江学校三模)5-的倒数是 ____.46.(2022·重庆八中模拟预测)计算:1122-⎛⎫-+-= ⎪⎝⎭________.47.(2022·江苏·常州市北郊初级中学二模)为做好新冠疫情常态化防控,更好保护人民群众身体健康,常州市开展新冠疫苗检测工作.截至4月底,已累计新冠疫苗检测27000000剂次,数据27000000用科学记数法可表示_____ 48.(2022·江苏·盐城市初级中学三模)小余同学计划在某外卖网站点如下表所示的菜品,已知每份订单的配送费为4元,商家为了促销,对每份订单的总价(不含配送费)提供满减优惠:满30元减12元,满60元减30元,满100元减45元,如果小余在购买下表中所有菜品时,采取适当的下单方式,那么他点餐总费用最低可为____________元. 菜品单价(含包装费) 数量 水煮牛肉(小份)30元1 醋溜土豆丝(小份) 12元 1 豉汁排骨(小份) 30元1 手撕包菜(小份) 12元1 米饭 3元249.(2022·重庆文德中学校二模)计算:()2022120221212-⎛⎫⋅+-= ⎪⎝⎭______.50.(2022·广东·深圳市南山外国语学校三模)某种细菌培养过程中每半小时分裂1次,每次一分为二,若这种细菌由1个分裂到128个,那么这个过程要经过______小时. 51.(2022·西藏·中考真题)已知a ,b 都是实数,若2120220a b ,则b a =_____.三、解答题52.(2022·广西·南宁二中三模)计算:21116(2)324⎛⎫⨯---÷ ⎪⎝⎭.53.(2023·河北·九年级专题练习)对于任意的实数x ,y ,规定运算“※”如下:x y ax by =+※. (1)当3a =,4b =时,求12-※()的值; (2)若5316=※,232-=-※(),求a 与b 的值.54.(2022·河北·平泉市教育局教研室二模)在城区老旧小区改造中,为了提高居民的宜居环境,某小区规划修建一个广场(平面图如图中阴影部分所示).(1)用含m ,n 的式子表示广场(阴影部分)的面积S ;(2)若30m =米,20n =米,修建每平方米需费用200元,用科学记数法表示修建广场的总费用W 的值.55.(2022·安徽·二模)古老而悠久的民族文化宝典中,有一颗璀璨夺目的明珠一一河图洛书(如图1).人们为河图洛书神话般的传说、高深的奥义、丰富的内容、简洁的形式万分惊讶,对河图洛书与中国的思想文化、社会科学、自然科学的密切联系更是迷惑不解,然而,令我们每个人吃惊和迷惑不解的是,河图洛书只是两个简单的数字图,如图2,在33⨯的九官格中,每行每列及每条对角线上的三数之和都相等.(1)将图2九宫格中的数改为如图3的形式,则九宫格中n= ,e= ;(2)若用-5,-4,-3,-2,-1,0,1,2,3这九个数填在如图4的九宫格中,试求图中m的值.参考答案:1.A【分析】根据有理数的加法法则计算即可.【详解】解:9(3)+-(93)=+-=6故选:A .【点睛】本题考查了有理数的加法,掌握绝对值不相等的异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值时解题的关键.2.A【分析】根据图1可知,一横表示10,一竖表示1,白色为正,黑色为负,由此即可得出答案.【详解】解:由图1可知,一横表示10,一竖表示1,白色为正,黑色为负,则图2表示的过程是在计算()()132310-++=,故选:A .【点睛】本题考查了有理数的加减法,掌握理解每个算筹所表示的数是解题关键.3.D【分析】根据幻方的特点列出算式-2+y +6=2y +y +0=x -2+0,再根据法则计算可得.【详解】解:根据题意知-2+y +6=2y +y +0=x -2+0,则y +4=3y ,3y =x -2,∴y =2,x =3y +2=8,∴y x =82=64,故选:D .【点睛】本题主要考查有理数的加法和乘方,解题的关键是掌握有理数的加减运算法则及幻方的特点.4.B【分析】用该市当天的最高气温减去最低气温,即可求出结果.【详解】解:最高气温与最低气温的差为:()--=15217℃故选:B .【点睛】本题考查了有理数的减法,熟练掌握有理数的运算法则是解决本题的关键.5.C【分析】根据绝对值的意义和有理数的减法运算法则计算即可.【详解】解:原式=8+5=13.故选:C .【点睛】本题考查绝对值的意义,有理数的减法运算,熟练掌握这些知识点是解题关键.6.D【分析】观察折线统计图可得各节气的平均气温最大值为13.86℃,最小值为-5.05℃,即可求解.【详解】解:根据题意得:各节气的平均气温最大值为13.86℃,最小值为-5.05℃,∴各节气的平均气温最大值与最小值的差是()13.86 5.0518.91--=℃.故选:D【点睛】本题主要考查了折线统计图,准确从统计图获取信息是解题的关键.7.40【分析】首先算出黄经理总的支出,再求出他的总收入,进而得出黄经理的亏损.【详解】解:根据题意可得:总支出:幽兰拿铁成本是7元,找零钱()5017-元,赔邻居50元,共()750175090+-+=(元),总收入:和邻居换钱得50元,总共50元,剩余:509040-=-(元),即黄经理一共亏了40元.故答案为:40.【点睛】本题考查有理数加减运算的实际应用,读懂题意,计算出总的收入和总的支出是解题的关键.8.16【分析】根据题意可知★=2个△=8个〇=16个□,再代入★÷□即可计算求解.【详解】解:∵△+△=★,∴★=2个△,∵△=〇+〇+〇+〇,∴★=8个〇,∵〇=□+□,∴★=16个□,∴★÷□=16.故答案为:16.【点睛】本题考查了等式的性质与有理数的混合运算,由题得出★=16个□是解题关键.9.(1)3;(2)m =-12.【分析】(1)首先得出最大数和最小数,进而得出答案;(2)根据题意列出方程,解方程即可求解.(1)解:∵最大的数是2,最小的数是-1,∴最大的数与最小的数之差为2-(-1)=2+1=3;(2)解:根据题意得:2+0+(-1)+(-12)+m =0, 解得:m =-12. 【点睛】本题考查有理数的运算,一元一次方程的应用;熟练掌握解一元一次方程的方法和步骤是解本题的关键.10.B【分析】根据运算过程可知是根据乘法结合律.【详解】解:()()512376-⨯-⨯ 537126=⨯⨯(乘法交换律) 537126⎛⎫=⨯⨯ ⎪⎝⎭(乘法结合律) 3710=⨯=370故选:B .【点睛】本题考查了有理数的乘法运算律,熟练掌握和运用有理数的乘法运算律是解决本题的关键.11.A【分析】原式利用乘法分配律计算即可求出值【详解】解:原式=117313(24)(24)(24)(24) 126424⨯--⨯-+⨯--⨯-=-22+28-18+13=6-18+13=-12+13=1,故选:A【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.A【分析】根据乘法分配律即可求解.【详解】47249948⎛⎫⨯-⎪⎝⎭=12410048⎛⎫⨯-+⎪⎝⎭计算起来最简便,故选A.【点睛】此题主要考查有理数的运算,解题的关键是熟知乘法分配律的运用.13.A【分析】根据有理数的除法法则即可解答.【详解】解:−6÷2=-3,故选A.【点睛】本题考查了有理数的除法,解决本题的关键是熟记有理数的除法法则.14.D【分析】根据图形中的数据变化,可得被5除余1的数,和能被5整除的座位号靠窗,座位连在一起,且有一个靠窗的座位,通过分析选项即可得结论.【详解】解:由已知图形中座位的排列顺序,可得:被5除余1的数,和能被5整除的座位号靠窗,由于两位旅客希望座位连在一起,且有一个靠窗的座位,48593÷=,故A选项不符合;625122÷=,故B选项不符合;75515÷=,故C选项不符合;85517÷=,故D符合,故选:D.【点睛】本题考查了数据的变化规律,对数据的处理,并能正确找出其中的规律是解题的关键.15.D【分析】根据乘除互逆运算的关系求解可得.【详解】解:1÷(﹣12019 )=﹣2 019 故选:D .【点睛】本题主要考查有理数的除法,解题的关键是掌握有理数的乘法与除法是互逆的运算关系.16.D【分析】根据乘法的含义,可得:222m ++⋅⋅⋅+=个2m ,根据乘方的含义,可得:333n ⨯⨯⋅⋅⋅⨯=个3n ,据此求解即可.【详解】解:222333m n ++⋅⋅⋅++⨯⨯⋅⋅⋅⨯=个个2m +3n .故选:D .【点睛】此题主要考查了有理数的乘法、有理数的乘方,解答此题的关键是要明确乘法、乘方的含义.17.A【分析】直接利用二次根式中被开方数是非负数,得出x 的值,进而得出y 的值,再利用有理数的乘方运算法则计算即可. 【详解】解:由题意可得:20420x x -≥⎧⎨-≥⎩, 解得:x =2,故y =-3,∴20222022()(213)=x y +=-.故选:A .【点睛】此题主要考查了二次根式有意义的条件以及有理数的乘方运算,正确掌握被开方数为非负数是解题关键.18.C【分析】利用已知得出数字个位数的变化规律进而得出答案.【详解】解:∵21=2,22=4,23=8,24=16,25=32,…,∴尾数每4个一循环,∵2022÷4=505……2,∴22022的个位数字应该是:4.故选:C .【点睛】此题主要考查了尾数特征,根据题意得出数字变化规律是解题关键.19.B【分析】直接利用科学记数法表示即可得到答案.【详解】解:61.143611436707010⨯=,故选B .【点睛】本题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数,解题关键是确定a 和n 的值.20.D【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:3.16亿8316000000 3.1610==⨯.故选:D .【点睛】此题考查科学记数法的表示方法,解题的关键是掌握科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.21.B【分析】科学记数法要表示成()n 1010⨯<<0a a .【详解】解:数字338 600 000用科学记数法可简洁表示为83.38610⨯,故选B .【点睛】本题主要考查科学记数法的运用,能够熟练根据要求转化数字是解题关键.22.D【分析】首先精确到百万位,再用科学记数法表示.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:原数精确到百万位为:13909615≈14000000,再用科学记数法表示为:14000000=1.4×107,故选D .【点睛】本题考查取近似数和科学记数法的综合应用,熟练掌握精确度的意义和四舍五入的方法、科学记数法的意义和算法是解题关键.23.B【分析】先用科学记数法表示出所给的数,再按精确度的要求进行四舍五入即可得到答案.【详解】解:用科学记数法表示:455500 5.5510=⨯,四舍五入法精确到千位得:445.551015.60≈⨯⨯.故选:B .【点睛】本题考查了近似数和科学记数法.解题的关键是先用科学记数法表示出所给的数,再按精确度的要求进行四舍五入,注意近似数末尾有意义的0.24.B【分析】在标准形式a ×10n 中a 的部分中,从左边第一个不为0的数字数起,共有3个有效数字是8,6,3,且其展开后可看出精确到的是百位.【详解】解:8.63×104=86300,所以有3个有效数字,8,6,3,精确到百位.故选:B .【点睛】此题主要考查科学记数法与有效数字,解答的关键是明确用科学记数法表示的数的有效数字的确定方法.25.3【详解】解:原式()91104=÷+-+()9104=+-+3=.【点睛】本题考查了有理数的混合运算,解题关键是熟记有理数混合运算顺序和法则,准确进行计算.26.(1)①;③(2)解答过程见详解【分析】(1)根据有理数运算法则判断即可;(2)按照运算法则,先进行乘除运算,再进行加减运算即可.【详解】(1)解:解法1,步骤①中“先算加减后算乘除”不符合有理数混合运算法则,故步骤①错误; 解法2,11363622-+≠-,步骤③不符合有理数加法法则,故步骤③错误. 故答案为:①;③.(2)解:原式()44981998⎛⎫=-⨯-⨯- ⎪⎝⎭ 1236=-+ 1235=- 【点睛】本题主要考查了有理数的混合运算,解题关键在于熟练掌握有理数混合运算的运算法则.27.1312n -+ 【分析】仿照材料中的方法解答即可.【详解】解:设231133333n n S -=+++++①,将等式两边同时乘3,得231333333n n S +=+++++②, ②−①,得3S −S =131n -+,即2S =131n -+,则S =1312n -+, 所以23113312333n n+++++=-+. 【点睛】本题主要考查数字的变化规律,解答的关键是理解清楚所给的解答方式,并灵活运用. 28.A【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正整数;当原数的绝对值1<时,n 是负整数,由此即可得到答案.【详解】解:7107610760000 1.07610==⨯万.故选:A .【点睛】本题主要考查了科学记数法,解题的关键是熟练掌握科学记数法的定义.29.A【分析】根据乘方定义计算即可.【详解】422222=16-=-⨯⨯⨯.故选:A .【点睛】本题主要考查了乘方的运算,理解定义是解题的关键. 30.A【分析】根据二次根式的非负性和完全平方公式求出m ,n 的值,进而即可求解.【详解】解:2440n n ++=,()220n+=,∴20,20m n n-=+=,解得:4,2m n=-=-,∴P的坐标为()4,2--,∴点P关于x轴的对称点坐标为()4,2-.故选:A.【点睛】本题主要考查二次根式与平方的非负性,点的坐标,轴对称变换,根据非负数的性质,求出m,n 的值是关键.31.B【分析】根据a,b互为相反数,c,d互为倒数,可以得到a+b=0,cd=1,然后代入所求式子计算即可.【详解】解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴5(a+b)﹣2cd=5×0﹣2×1=0﹣2=﹣2,故选:B.【点睛】本题考查了相反数和倒数,有理数的混合运算,解答本题的关键是求出a+b、cd的值.32.D【分析】先利用相反数、绝对值和乘方的意义计算出()55--=,33--=-,211-=-,然后根据实数的分类求解.【详解】解:()55--=,33--=-,211-=-,所以这六个数中,负数为6-,3--,21-.故选:D.【点睛】本题考查了有理数的分类,有理数乘方:求n个相同因数积的运算,叫做乘方.也考查了绝对值和相反数,熟知相关知识是解题的关键.33.C【分析】根据数轴上点的位置可得a<0,0b>,据此化简求解即可.【详解】解:由数轴上点的位置可得a<0,0b >, ∴110a b a b a b a b+=+=-+=-, 故选:C .【点睛】本题主要考查了化简绝对值,根据数轴上点的位置判断式子符号,有理数的除法,正确得到a<0,0b >是解题的关键.34.C【分析】根据a ,b 互为相反数,可得0a b +=,c 的倒数是4,可得14c =,代入即可求解. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c 的倒数是4, ∴14c =, ∴334a b c +-()34a b c =+-130414=⨯-⨯=-, 故选:C 【点睛】本题考查了代数式的求值问题,利用已知求得0a b +=,14c =是解题的关键. 35.A 【分析】根据单项式除以单项式,完全平方公式,合并同类项,有理数的乘方的运算法则进行计算求解即可.【详解】解:A 中2ab ab b ÷=,正确,故符合题意;B 中()222222-=-+≠-a b a ab b a b ,错误,故不符合题意;C 中44482355m m m m +=≠,错误,故不符合题意;D 中()333286a a a -=-≠-,错误,故不符合题意;故选A .【点睛】本题考查了单项式除以单项式,完全平方公式,合并同类项以及有理数的乘方.解题的关键在于熟练掌握运算法则并正确的计算.36.A【分析】分别计算绝对值,负整数指数幂,乘方运算,再比较各数的大小,从而可得答案. 【详解】解:12155,5,525,5而15525,5 125555, 所以最小的数是5,-故选:A【点睛】本题考查的是绝对值的含义,负整数指数幂的含义,有理数的乘方运算,有理数的大小比较,掌握以上基础知识是解本题的关键.37.1【分析】根据()1n -运算、零指数幂、负整数指数幂及绝对值运算分别求解后,利用有理数的混合运算法则求解即可得到结论 【详解】解:()()12020011322π-⎛⎫-⨯-+-+- ⎪⎝⎭ 1122=⨯-+1=. 【点睛】本题考查有理数混合运算,涉及到()1n-运算、零指数幂、负整数指数幂及绝对值运算等知识,熟练掌握运算法则及运算顺序是解决问题的关键.38.(1)-9(2)3【分析】(1)根据有理数混合运算法则计算即可;(2)设被污染的数字为x ,由题意,得()326263x ⎛⎫-⨯--= ⎪⎝⎭,解方程即可; 【详解】(1)解:()()32116268326⎛⎫-⨯--=-⨯- ⎪⎝⎭189=--=-; (2)设被污染的数字为x ,由题意,得()326263x ⎛⎫-⨯--= ⎪⎝⎭,解得3x =, 所以被污染的数字是3.【点睛】本题主要考查有理数的混合运算、一元一次方程的应用,掌握相关运算法则和步骤是接替的关键.39.D【分析】通过观察发现2n 的个位数字是2、4、8、6四个数字依次不断循环,直接填空即可;【详解】解:通过观察发现2n的个位数字是2、4、8、6四个数字依次不断循环,且2+4+8+6=20,尾数为02022÷4=500……2,则尾数为2+4=6,故选D.【点睛】此题考查幂的乘方末尾的数字规律,注意观察循环的数字规律,利用规律解决问题.40.Ba=,判断A选项不正确;C选项中2a、2b不是同类项,不能合并;D选项中,单项式与单项式法则:把单项式的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;B 选项正确.【详解】A.7,故A不正确;B.2366932÷=⨯=,故B正确;C. 222a b ab+≠,故C不正确;D. 236a b ab⋅=,故D不正确;故选B.【点睛】本题考查二次根式的性质、有理数的除法及整式的运算,灵活运用相应运算法则是解题的关键.41.B【分析】先将112x yy x⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭化简,再利用互为倒数,相乘为1,算出结果,即可【详解】112111 221212121x yy xxy x yx y xyxyxyxyxy⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭=-⋅+⋅-=-+-=-+∵x和y互为倒数∴1xy=。

2024年中考数学总复习知识点总结

2024年中考数学总复习知识点总结

一、整数的运算1.加法、减法、乘法和除法的运算规则2.负数的概念和运算3.整数的比较大小二、有理数的运算1.加法、减法、乘法和除法的运算规则2.绝对值的概念和性质3.有理数的比较大小三、平方根和立方根1.平方根和立方根的概念和性质2.估算和画图确定平方根的值3.利用平方根和立方根解决实际问题四、代数式和方程式1.代数式的基本概念和性质2.方程式的基本概念和性质3.一次方程的解法和实际应用4.二次方程的解法和实际应用5.指数幂的计算和简化6.一次方程和二次方程的应用题五、图形的认识1.平面图形的基本概念和性质2.直线、线段、射线的概念和性质3.角的概念和性质4.三角形的概念和性质5.四边形的概念和性质6.圆的概念和性质六、相似和全等1.图形的相似和全等的概念和性质2.相似三角形的判定和应用3.全等三角形的判定和证明4.利用相似和全等解决实际问题七、频数分布和概率1.数据的整理、统计和表示2.频数分布和频率分布3.概率的概念和性质4.概率的计算和应用八、函数1.函数的概念和性质2.求函数值和函数的增减性3.过点作切线和求解方程的应用4.表函数和获得函数关系式九、统计与图表1.数据的整理、统计和表示2.直方图、折线图和饼图的绘制和分析十、面积和体积1.平面图形的面积计算2.三角形、四边形和多边形的面积计算3.圆的面积计算4.空间图形的体积计算十一、比例和变量1.比例的概念和应用2.比例的计算和问题解决3.变量的概念和应用4.变量的计算和问题解决。

(最新整理)2018年中考数学总复习知识点总结(最新版)

(最新整理)2018年中考数学总复习知识点总结(最新版)

b
b
b
(4)绝对值比较法:设 a、b 是两负实数,则 a b a b .
(5)平方法:设 a、b 是两负实数,则 a2 b2 a b .
3
考点六、实数的运算
2018 年中考数学总复习知识点总结(最新版)
(做题的基础,分值相当大)
1、加法交换律
ab ba
2、加法结合律
(a b) c a (b c)
个字母也是代数式。 2、单项式 只含有数字与字母的积的代数式叫做单项式。
4
2018 年中考数学总复习知识点总结(最新版)
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,
如 4 1 a2b ,这种表示就是错误的,应写成 13 a2b .一个单项式中,所有字母的指数的
3
3
和叫做这个单项式的次数。如 5a3b2c 是 6 次单项式.
3、倒数 如果 a 与 b 互为倒数,则有 ab=1,反之亦成立.倒数等于本身的数是 1 和—1.零 没有倒数。
考点三、平方根、算数平方根和立方根
1、平方根
如果一个数的平方等于 a,那么这个数就叫做 a 的平方根(或二次方根)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数 a 的平方根记做“ a ”.
考点二、多项式
1、多项式
几个单项式的和叫做多项式.其中每个单项式叫做这个多项式的项.多项式中不
含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数.
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的
值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入.

中考数学总复习讲义01:数与代数

中考数学总复习讲义01:数与代数

中考数学第一轮总复习讲义 考点1:有理数的意义、数轴、相反数、绝对值的概念(B ) 1.有理数:(1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 注:2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-.5.倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1; a1也可表示为a -1,若ab=1⇔ a 、b 互为倒数;若ab =-1⇔ a 、b 互为负倒数. 6.非负数:零和正数统称非负数。

①常见的非负数的形式:|a| 、2a 、)0(≥a a ;②非负数的常用应用类型: 几个非负数之和为0,则每一个非负数都为0;中考真题1. (2010安徽)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是( )A 、﹣1B 、0C 、1D 、22. (2008安徽)-3的绝对值是( ) A.3 B.-3 C.13 D. 13- 3.(2007安徽)34相反数是( ) A.43 B.43 C.34 D. 344. (2005安徽)计算12--||结果正确的是( ) A. 3 B. 1 C. -1 D. -35.(2011•安顺)﹣4的倒数的相反数是( )A 、﹣4 B 、4 C 、﹣ D 、6. 2011河北)若|x -3|+|y +2|=0,则x +y 的值为 .考点2:有理数大小的比较(B )实数比较大小:(1)利用数轴:数轴上的两个数,右边的数总比左边的数大;(2)利用绝对值:正数>0>负数,正数>负数,两个负数,绝对值大的反而小;0,0,0a b a b a b a b a b a b a b->⇔>-=⇔=-<⇔<(3)作差比较法:设、是两个任意实数,则除此之外,还有平方法、倒数法等方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3有理数的大小
1.掌握有理数大小的比较法则.
2.会比较有理数的大小,并能正确地使用“>”或“<”连接.
3.初步学会进行有理数大小比较的推理和书写.
4.体会数形结合数学思想方法的美.
重点
有理数大小比较的方法.
难点
比较两个负数的大小.
一、复习旧知,导入新知
1.数轴包括哪几个要素?怎么画?
2.大于0的数在数轴上位于原点的哪一侧?小于0的数呢?
3.问:如何比较两个正数的大小?
(1)珠穆朗玛峰海拔高度为8844米与吐鲁番盆地海拔高度为-155米,问:哪个地方高?
(2)温度计示意图中-2℃与5℃哪个温度高?
上述两个问题,实际是比较8844与-155的大小,以及5与-2的大小,像这样的问题实际上是比较两个有理数在大小(板书课题).
二、自主合作,感受新知
回顾以前学的知识、阅读课文并结合生活实际,完成《探究在线·高效课堂》“预习导学”部分.
三、师生互动,理解新知
探究点一:利用数轴比较大小
问题1:把课本P14表格中表示5个旅游区最低气温的数表示在数轴上.观察这5个数在数轴上的位置,你发现了什么?温度的高低与相应的数在数轴上的位置有什么关系?
(数轴上表示的数的位置与气温的高低有关.气温越高,数轴上表示的数就越靠右) 一般地,我们有:数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大.
探究点二:正数、零与负数三者的大小关系
问题2:我们知道:有理数可分为正数、负数和零三类,那么两个有理数的大小比较有哪几种情况呢?
两个有理数的大小比较有如下几种情况:(1)一正一零;(2)一负一零;(3)两负;(4)一正一负;(5)两正.
请同学们观察数轴思考一下:正数、零和负数三者的大小关系如何?
学生自主探究得出:正数大于零,零大于负数,正数大于负数,即正数>0>负数.
探究点三:利用绝对值比较大小
问题3:在数轴上任意取两个负数,比较大小,观察较小的数有什么特点?
学生完成课本P14思考,发现:在原点的左边,-1离原点比-1.5更近,-14
离原点比-12
更近,-2离原点比-2.5更近,-0.5离原点比-5更近,但是其绝对值,离原点越近的反而越小.
引导学生归纳得出:两个负数比较大小,绝对值大的反而小.
四、应用迁移,运用新知
1.借助数轴比较数的大小
例1 画出数轴,在数轴上表示下列各数,并用“<”连接:+5,-3.5,12,-112
,4,0.
解析:画出数轴,在数轴上标出表示各数的点,然后根据右边的数总比左边的数大进行比较.
解:如图所示.
因为在数轴上右边的数大于左边的数,所以-3.5<-112<0<12
<4<+5. 方法总结:此类问题是考查有理数的意义以及数轴的有关知识,正确地画出数轴是解决本题的关键.
2.根据正、负数性质及法则比较大小
例2 见课本P15例题.
方法总结:在比较有理数的大小时,应先化简各数的符号,再利用法则比较数的大小.
3.有理数的最值问题
例3 设a 是绝对值最小的数,b 是最大的负整数,c 是最小的正整数,则a 、b 、c 三数分别为( )
A .0,-1,1
B .1,0,-1
C .1,-1,0
D .0,1,-1
解析:因为a 是绝对值最小的数,所以a =0,因为b 是最大的负整数,所以b =-1,因为c 是最小的正整数,所以c =1,综上所述,a 、b 、c 分别为0、-1、1.
方法总结:绝对值最小的有理数是0;最大的负整数是-1;最小的正整数是1.
五、尝试练习,掌握新知
课本P15练习第1~3题.
《探究在线·高效课堂》“随堂演练”部分.
六、课堂小结,梳理新知
通过本节课的学习,我们都学到了哪些数学知识和方法?
先由学生叙述比较有理数大小的两种方法——利用数轴比较大小和利用绝对值比较大小,然后教师引导学生得出:比较两个有理数的大小,学习了绝对值以后,就可以不必利用数轴来比较两个有理数的大小了.正数大于一切负数;两个负数,绝对值大的反而小.
七、深化练习,巩固新知
课本P16习题1.3第1~7题.。

相关文档
最新文档