2019年高考数学二轮专题复习 专题五 5

合集下载

高中数学高考板块2 核心考点突破拿高分 专题5 第1讲 直线与圆(小题)

高中数学高考板块2 核心考点突破拿高分 专题5 第1讲 直线与圆(小题)

(2)已知直线l经过直线l1:x+y=2与l2:2x-y=1的交点,且直线l的斜率为-
2 3

则直线l的方程是
A.-3x+2y+1=0
√C.2x+3y-5=0
B.3x-2y+1=0 D.2x-3y+1=0
解析 解方程组2x+x-y=y=21,, 得yx==11,,
所以两直线的交点为(1,1). 因为直线 l 的斜率为-23, 所以直线 l 的方程为 y-1=-23(x-1),即 2x+3y-5=0.
(2)(2019·河北省级示范性高中联合体联考)已知A,B分别是双曲线C: xm2-y22 =1的 左、右顶点,P(3,4)为C上一点,则△PAB的外接圆的标准方程为_x_2_+__(_y-__3_)_2_=__1_0_.
解析 ∵P(3,4)为 C 上一点,m9 -126=1, 解得 m=1,则 B(1,0),∴kPB=42=2, PB 的中垂线方程为 y=-12(x-2)+2, 令x=0,则y=3, 设外接圆圆心为M(0,t),
△FPM为等边三角形⇒△FPM外接圆圆心与重心重合,
∴外接圆圆心坐标为-2
3-2 3
3+0,3-13+1,即-4
3
3,1,
外接圆半径为 r=
பைடு நூலகம்
-4
3
3+2
32+1+12=4
3
3,
同理可得当 x=2
3时,圆心坐标为4
3
3,1,半径为4
3
3,
∴外接圆方程为x±4
3
32+(y-1)2=136.
跟踪演练2 (1)(2019·黄冈调研)已知圆x2+y2+2k2x+2y+4k=0关于y=x对称,则
的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的

名师讲坛高考数学二轮专题复习课件:专题五 微切口19 椭圆中k1k2=-a2分之b2的应用

名师讲坛高考数学二轮专题复习课件:专题五 微切口19 椭圆中k1k2=-a2分之b2的应用
由①+②得,-a2(y21+y22)=b2(x21+x22)-2a2b2=-a2b2,所以y21+y22=b2, 所以OA2+OB2=x21+y21+x22+y22=a2+b2.
(2) 若 OA,OB 的斜率之积 kOA·kOB=-ba22,求证:线段 AB 的中点 C 在某个定椭圆 上.
【解答】 设C(x0,y0),因为C为AB的中点, 所以22xy00= =xy11+ +xy22, , 所以44xy2020= =xy2121+ +22xy11xy22+ +xy2222, .②① 因为kOA·kOB=yx11yx22=-ba22,
4. 半弦的性质特征Ax1,y1,Bx2,y2为椭圆上的两点,且kOA·kOB=-ba22: (1) x21+x22=a2,y21+y22=b2; (2) OA2+OB2=a2+b2; (3) 线段 AB 的中点的轨迹方程为ax022+by202=1(点(x0,y0)为线段 AB 的中点).
所以由 M 为线段 AB 的中点,得 Ma2,b2, 所以O→M=a2,b2,A→B=(-a,b). 因为O→M·A→B=-32b2, 所以a2,b2·(-a,b)=-a22+b22=-32b2, 整理得 a2=4b2,即 a=2b.
因为 a2=b2+c2,所以 3a2=4c2,即 3a=2c,
22
因为AB∥CD,故CD的方程为y=-12(x-x0)+y0.
联立yx4= 2+-y212=x1-,x0+y0,
消去 y,
得 x2-(x0+2y0)x+2x0y0=0,
解得 x=x0(舍去)或 x=2y0, 所以点 D 的坐标为2y0,12x0,
1 所以 k1·k2=2y20x-0 2·y0x-0 1=14,即 k1·k2 为定值14.

2019届高考数学二轮复习 专题五 立 体 几 何 (讲义训练):第3讲 立体几何中的计算 课时训练(含答案)

2019届高考数学二轮复习  专题五 立 体 几 何 (讲义训练):第3讲 立体几何中的计算 课时训练(含答案)

第3讲 立体几何中的计算 课时训练1. 已知正四棱锥底面边长为42,体积为32,则此四棱锥的侧棱长为________.答案:5解析:由正四棱锥底面边长为42,则底面正方形对角线的一半长为4,再由体积公式得四棱锥的高为3,则此四棱锥的侧棱长为5.2. (2017·镇江期末)若圆锥底面半径为2,高为5,则其侧面积为________.答案:6π解析:因为圆锥的母线长为l =22+(5)2=3,所以其侧面积为π×2×3=6π.3. (2017·常州期末)以一个圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,若所得的圆锥底面半径等于圆锥的高,则圆锥的侧面积与圆柱的侧面积之比为________.答案:2∶2解析:如图,由题意可得圆柱的侧面积为S 1=2πrh =2πr 2.圆锥的母线l =h 2+r 2=2r ,故圆锥的侧面积为S 2=12×2πr ×l =2πr 2,所以S 2∶S 1=2∶2.4. (2018·启东调研)高为63的正四面体的表面积为________.答案:3解析:由正四面体的高为63,得正四面体的棱长为1,表面积为4×34=3.5. (2017·南通一调)如图,在正四棱柱ABCD ­A 1B 1C 1D 1中,AB =3 cm ,AA 1=1 cm ,则三棱锥D 1­A 1BD 的体积为________cm 3.答案:32解析:VD 1A 1BD =VBA 1DD 1=13×3×12×3×1=32(cm 3).6. 将半径为5的圆分割成面积之比为1∶2∶3的三个扇形作为三个圆锥的侧面,设这三个圆锥的底面半径依次为r 1,r 2,r 3,则r 1+r 2+r 3=________.答案:5解析:三个圆锥的底面周长分别为53π,103π,5π,则它们的半径r 1,r 2,r 3依次为56,53,52,则r 1+r 2+r 3=5. 7. 已知圆锥的母线长为10 cm ,侧面积为60π cm 2,则此圆锥的体积为________cm 3. 答案:96π解析:设圆锥的底面半径为r ,侧面积=12×母线长×底面圆周长=60π,得r =6 cm ,此圆锥的高为8 cm ,则此圆锥的体积为13×36π×8=96π(cm 3).8. (2018·南通中学练习)如图,在正三棱柱ABC ­ A 1B 1C 1中,若各条棱长均为2,且M 为A 1C 1的中点,则三棱锥M ­ AB 1C 的体积是________.答案:233解析:在正三棱柱中,AA 1⊥平面A 1B 1C 1,则AA 1⊥B 1M .因为B 1M 是正三角形的中线,所以B 1M ⊥A 1C 1.所以B 1M ⊥平面ACC 1A 1,则VMAB 1C =VB 1ACM =13×⎝ ⎛⎭⎪⎫12×AC ×AA 1×B 1M =13×12×2×2×3=233.9. (2018·常熟期中)已知正三棱锥的体积为9 3 cm 3,高为3 cm ,则它的侧面积为________cm 2.答案:183解析:设正三棱锥底面三角形的边长为a ,则V =13×34a 2×3=93,a =6(cm),底面等边三角形的高为32×6=33(cm),底面中心到一边的距离为13×33=3(cm),侧面的斜高为32+(3)2=23(cm), S 侧=3×12×6×23=183(cm 2).10. (2018·南通一调)如图,铜质六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知正六棱柱的底面边长、高都为4 cm ,圆柱的底面积为9 3 cm 2.若将该螺帽熔化后铸成一个高为6 cm 的正三棱柱零件,则该正三棱柱的底面边长为________cm.(不计损耗)答案:210解析:由题意,六角螺帽毛坯体积为正六棱柱的体积减去圆柱的体积,即V 正六棱柱-V圆柱=(S 正六边形-S 圆)h =⎝ ⎛⎭⎪⎪⎫6×34×42-93×4=603(cm 3),因为正三棱柱的体积与六角螺帽毛坯的体积相等,设正三棱柱的底面边长为a ,所以34a 2·6=603,解得a =210(cm).11. 已知等边圆柱(轴截面是正方形的圆柱)的表面积为S ,求其内接正四棱柱的体积. 解:设等边圆柱的底面半径为r ,则高h =2r . 因为S =S 侧+2S 底=2πrh +2πr 2=6πr 2, 所以r =S6π, 所以内接正四棱柱的底面边长a =2r sin45°=2r ,所以V =S 底·h =(2r )2·2r =4r 3=S 6πS9π2.12. 如图,四边形ABCD 为菱形,四边形ACFE 为平行四边形,BD 与AC 相交于点G ,AB =BD =2,AE =3,∠EAD =∠EAB .(1) 求证:平面ACFE ⊥平面ABCD ;(2) 若∠EAG =60°,求三棱锥F ­ BDE 的体积.(1) 证明:连结EG . ∵ 四边形ABCD 为菱形, ∴ AD =AB ,BD ⊥AC ,DG =GB . 在△EAD 和△EAB 中,AD =AB ,AE =AE ,∠EAD =∠EAB ,∴ △EAD ≌△EAB , ∴ ED =EB ,∴ BD ⊥EG . ∵ BD ⊥AC ,AC ∩EG =G , ∴ BD ⊥平面ACFE . ∵ BD ⊂平面ABCD , ∴ 平面ACFE ⊥平面ABCD .(2) 解:连结FG ,∵ BD ⊥平面ACFE ,FG ⊂平面ACFE ,∴ FG ⊥BD . 在△EAG 中,AE =AG =3,且∠EAG =60°, ∴ △EAG 为正三角形, ∴ ∠EGA =60°. 在△FCG 中,CG =FC =3,∠GCF =120°, ∴ ∠FGC =30°,∴ ∠EGF =90°,即FG ⊥EG . 又BD ∩EG =G , ∴ FG ⊥平面BDE ,∴ 点F 到平面BDE 的距离为FG =3. ∵ S △BDE =12×BD ·EG=12×2×3=3,∴ 三棱锥FBDE 的体积为13×3×3=3.13. 在矩形ABCD 中,将△ABC 沿其对角线AC 折起来得到△AB 1C ,且顶点B 1在平面ACD 上的射影O 恰好落在边AD 上,如图所示.(1) 求证:AB 1⊥平面B 1CD ; (2) 若AB =1,BC =3,求三棱锥B 1­ABC 的体积.(1) 证明:因为B 1O ⊥平面ABCD ,CD ⊂平面ABCD ,所以B 1O ⊥CD . 又CD ⊥AD ,AD ∩B 1O =O , 所以CD ⊥平面AB 1D .因为AB 1⊂平面AB 1D ,所以AB 1⊥CD . 因为AB 1⊥B 1C ,且B 1C ∩CD =C , 所以AB 1⊥平面B 1CD .(2) 解:因为AB 1⊥平面B 1CD ,B 1D ⊂平面B 1CD , 所以AB 1⊥B 1D . 在Rt △AB 1D 中,B 1D =AD 2-AB 21=2. 由B 1O ·AD =AB 1·B 1D , 得B 1O =AB 1·B 1D AD=63,所以VB 1ABC =13S △ABC ·B 1O =13×12×1×3×63=26.。

2019数学(理)二轮精选讲义专题五 立体几何 第一讲空间几何体的三视图、表面积与体积 含答案

2019数学(理)二轮精选讲义专题五 立体几何 第一讲空间几何体的三视图、表面积与体积 含答案

专题五立体几何第一讲空间几何体的三视图、表面积与体积考点一空间几何体的三视图与直观图1.三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.原图形面积S与其直观图面积S′之间的关系S′=错误!S。

[对点训练]1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()[解析]两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A.故选A。

[答案]A2.(2018·河北衡水中学调研)正方体ABCD-A1B1C1D1中,E 为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()[解析]过点A,E,C1的截面为AEC1F,如图,则剩余几何体的左视图为选项C中的图形.故选C。

[答案]C3.(2018·江西南昌二中模拟)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为()A.8 B.4 C.4错误!D.4错误![解析]由三视图可知该几何体的直观图如图所示,由三视图特征可知,P A⊥平面ABC,DB⊥平面ABC,AB⊥AC,P A=AB =AC=4,DB=2,则易得S△P AC=S△ABC=8,S△CPD=12,S梯形ABDP =12,S△BCD=错误!×4错误!×2=4错误!,故选D。

[答案]D4.如图所示,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.[解析]直观图的面积S′=错误!×(1+1+错误!)×错误!=错误!.故原平面图形的面积S=错误!=2+错误!.[答案]2+错误![快速审题](1)看到三视图,想到常见几何体的三视图,进而还原空间几何体.(2)看到平面图形直观图的面积计算,想到斜二侧画法,想到原图形与直观图的面积比为错误!.由三视图还原到直观图的3步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.考点二空间几何体的表面积与体积1.柱体、锥体、台体的侧面积公式(1)S柱侧=ch(c为底面周长,h为高);(2)S锥侧=错误!ch′(c为底面周长,h′为斜高);(3)S台侧=错误!(c+c′)h′(c′,c分别为上下底面的周长,h′为斜高).2.柱体、锥体、台体的体积公式(1)V柱体=Sh(S为底面面积,h为高);(2)V锥体=错误!Sh(S为底面面积,h为高);(3)V台=错误!(S+错误!+S′)h(不要求记忆).3.球的表面积和体积公式S表=4πR2(R为球的半径),V球=43πR3(R为球的半径).[对点训练]1.(2018·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.8[解析]由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1 cm,2 cm,高为2 cm,直四棱柱的高为2 cm.故直四棱柱的体积V=1+22×2×2=6 cm3.[答案]C2.(2018·哈尔滨师范大学附中、东北师范大学附中联考)某几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积是()A.错误!+2B.错误!+2C.错误!+3 D。

2019高考数学二轮复习专题五解析几何学案理

2019高考数学二轮复习专题五解析几何学案理

专题五 解析几何[全国卷3年考情分析]第一讲 小题考法——直线与圆考点(一) 直线的方程主要考查直线方程、两条直线的位置关系及三个距离公式的应用.[典例感悟][典例] (1)“ab =4”是“直线2x +ay -1=0与直线bx +2y -2=0平行”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件(2)过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)距离为2的直线方程为( ) A .y =2 B .4x -3y +2=0 C .x =2D .y =2或4x -3y +2=0[解析] (1)因为两直线平行,所以2×2-ab =0,可得ab =4,必要性成立,又当a =1,b =4时,满足ab =4,但是两直线重合,充分性不成立,故选C.(2)由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.∴l 1与l 2的交点为(1,2).当所求直线斜率不存在,即直线方程为x =1时,显然不满足题意.当所求直线斜率存在时,设该直线方程为y -2=k (x -1),即kx -y +2-k =0, ∵点P (0,4)到直线的距离为2,∴2=|-2-k |1+k 2,∴k =0或k =43. ∴直线方程为y =2或4x -3y +2=0. [答案] (1)C (2)D[方法技巧]直线方程问题的2个关注点(1)求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的情况.(2)求直线方程时应根据条件选择合适的方程形式,同时要考虑直线斜率不存在的情况.[演练冲关]1.(2018·洛阳模拟)已知直线l 1:x +my -1=0,l 2:nx +y -p =0,则“m +n =0”是“l 1⊥l 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C ①若m +n =0,当m =n =0时,直线l 1:x -1=0与直线l 2:y -p =0互相垂直;当m =-n ≠0时,直线l 1的斜率为-1m ,直线l 2的斜率为-n ,∵-1m ·(-n )=-1m·m =-1,∴l 1⊥l 2.②当l 1⊥l 2时,若m=0,l 1:x -1=0,则n =0,此时m +n =0;若m ≠0,则-1m·(-n )=-1,即-n =m ,有m +n =0.故选C.2.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( ) A. 2B.823C. 3D.833解析:选B 由l 1∥l 2,得(a -2)a =1×3,且a ×2a ≠3×6,解得a =-1,所以l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2间的距离d =⎪⎪⎪⎪⎪⎪6-2312+-2=823. 3.直线x +2y -3=0与直线ax +4y +b =0关于点A (1,0)对称,则b =________.解析:因为两直线关于点A (1,0)对称,在直线x +2y -3=0上取两点M (1,1),N (5,-1),M ,N 关于点A (1,0)对称的点分别为M ′(1,-1),N ′(-3,1),则M ′(1,-1),N ′(-3,1)都在直线ax +4y +b =0上,即⎩⎪⎨⎪⎧a -4+b =0,-3a +4+b =0,解得a =b =2.答案:2考点(二) 圆 的 方 程主要考查圆的方程的求法,常涉及弦长公式、直线与圆相切等问题. [典例] (1)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53 B.213C.253D.43(2)已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为____________________.[解析] (1)设圆的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),∴⎩⎨⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,∴⎩⎪⎨⎪⎧D =-2,E =-433,F =1,∴△ABC 外接圆的圆心为⎝⎛⎭⎪⎫1,233,故△ABC 外接圆的圆心到原点的距离为1+⎝⎛⎭⎪⎫2332=213. (2)易知直线x -y +1=0与x 轴的交点为(-1,0), 即圆C 的圆心坐标为(-1,0). 因为直线x +y +3=0与圆C 相切,所以圆心(-1,0)到直线x +y +3=0的距离等于半径r ,即r =|-1+0+3|2=2,所以圆C 的方程为(x +1)2+y 2=2. [答案] (1)B (2)(x +1)2+y 2=2[方法技巧]圆的方程的2种求法[演练冲关]1.(2018·长沙模拟)与圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( ) A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4 D .(x -1)2+(y -3)2=4解析:选D 圆与圆关于直线对称,则圆的半径相同,只需圆心关于直线对称即可.由题意知已知圆的圆心坐标为(2,0),半径为2,设所求圆的圆心坐标为(a ,b ),则⎩⎪⎨⎪⎧b -0a -2×33=-1,b +02=33×a +22,解得⎩⎨⎧a =1,b =3,所以所求圆的圆心坐标为(1,3),半径为2. 从而所求圆的方程为(x -1)2+(y -3)2=4.2.(2018·广州模拟)若一个圆的圆心是抛物线x 2=4y 的焦点,且该圆与直线y =x +3相切,则该圆的标准方程是________________.解析:抛物线x 2=4y 的焦点为(0,1),即圆心为(0,1),设该圆的标准方程是x 2+(y -1)2=r 2(r >0),因为该圆与直线y =x +3相切,所以r =|-1+3|2=2,故该圆的标准方程是x 2+(y -1)2=2.答案:x 2+(y -1)2=23.(2018·惠州调研)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.解析:设圆心坐标为(a ,b ),半径为r .由已知⎩⎪⎨⎪⎧a -2b =0,b >0,又圆心(a ,b )到y 轴、x 轴的距离分别为|a |,|b |,所以|a |=r ,|b |2+3=r 2.综上,解得a =2,b =1,r =2,所以圆心坐标为(2,1),圆C 的标准方程为(x -2)2+(y -1)2=4.答案:(x -2)2+(y -1)2=44.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________. 解析:由二元二次方程表示圆的条件可得a 2=a +2≠0,解得a =2或-1.当a =2时,方程为4x 2+4y2+4x +8y +10=0,即x 2+y 2+x +2y +52=0,配方得⎝ ⎛⎭⎪⎫x +122+(y +1)2=-54<0,不表示圆;当a =-1时,方程为x 2+y 2+4x +8y -5=0,配方得(x +2)2+(y +4)2=25,则圆心坐标为(-2,-4),半径是5.答案:(-2,-4) 5考点(三) 直线与圆的位置关系主要考查直线与圆位置关系的判断、根据直线与圆的位置关系解决弦长问题、参数问题或与圆有关的最值范围问题.[典例感悟][典例] (1)(2019届高三·齐鲁名校联考)已知圆x 2-2x +y 2-2my +2m -1=0,当圆的面积最小时,直线y =x +b 与圆相切,则b =( )A .±1B .1C .± 2D. 2(2)(2018·全国卷Ⅲ)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32](3)已知点P (x ,y )在圆x 2+(y -1)2=1上运动,则y -1x -2的最大值与最小值分别为________. [解析] (1)由题意可知,圆x 2-2x +y 2-2my +2m -1=0化为标准形式为(x -1)2+(y -m )2=m 2-2m +2,圆心为(1,m ),半径r =m 2-2m +2,当圆的面积最小时,半径r =1,此时m =1,即圆心为(1,1),由直线和圆相切的条件可知|b |2=1,解得b =± 2.故选C.(2)设圆(x -2)2+y 2=2的圆心为C ,半径为r ,点P 到直线x +y +2=0的距离为d , 则圆心C (2,0),r =2,所以圆心C 到直线x +y +2=0的距离为|2+2|2=22,可得d max =22+r =32,d min =22-r = 2. 由已知条件可得|AB |=22,所以△ABP 面积的最大值为12|AB |·d max =6,△ABP 面积的最小值为12|AB |·d min =2.综上,△ABP 面积的取值范围是[2,6]. (3)设y -1x -2=k ,则k 表示点P (x ,y )与点A (2,1)连线的斜率.当直线PA 与圆相切时,k 取得最大值与最小值.设过(2,1)的直线方程为y -1=k (x -2),即kx -y +1-2k =0.由|2k |k 2+1=1,解得k =±33. [答案] (1)C (2)A (3)33,-33[方法技巧]1.直线(圆)与圆位置关系问题的求解思路(1)研究直线与圆的位置关系主要通过将圆心到直线的距离同半径做比较实现,两圆位置关系的判断依据是两圆心距离与两半径差与和的大小关系.(2)直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立关于切线斜率的等式,所以求切线方程时主要选择点斜式.过圆外一点求解切线段长的问题,可先求出圆心到圆外点的距离,再结合半径利用勾股定理计算.2.与圆有关最值问题的求解策略处理与圆有关的最值问题时,应充分考虑圆的几何性质,并根据代数式的几何意义,利用转化思想和数形结合思想求解.与圆有关的最值问题,常见类型及解题思路如下:[演练冲关]1.(2018·宁夏银川九中模拟)直线l :kx +y +4=0(k ∈R )是圆C :x 2+y 2+4x -4y +6=0的一条对称轴,过点A (0,k )作斜率为1的直线m ,则直线m 被圆C 所截得的弦长为( )A.22B. 2C. 6D .2 6解析:选C 圆C :x 2+y 2+4x -4y +6=0,即(x +2)2+(y -2)2=2,表示以C (-2,2)为圆心,2为半径的圆.由题意可得,直线l :kx +y +4=0经过圆心C (-2,2),所以-2k +2+4=0,解得k =3,所以点A (0,3),故直线m 的方程为y =x +3,即x -y +3=0,则圆心C 到直线m 的距离d =|-2-2+3|2=12,所以直线m 被圆C 所截得的弦长为2×2-12= 6.故选C.2.(2018·江苏苏州二模)已知直线l 1:x -2y =0的倾斜角为α,倾斜角为2α的直线l 2与圆M :x 2+y 2+2x -2y +F =0交于A ,C 两点,其中A (-1,0),B ,D 在圆M 上,且位于直线l 2的两侧,则四边形ABCD的面积的最大值是________.解析:由题意知,tan α=12,则tan 2α=2tan α1-tan 2α=43.直线l 2过点A (-1,0),则l 2:y =43(x +1),即4x -3y +4=0,又A 是圆M 上的点,则(-1)2+2×(-1)+F =0,得F =1, 圆M 的标准方程为(x +1)2+(y -1)2=1,圆心M (-1,1), 其到l 2的距离d =|-4-3+4|5=35.则|AC |=21-⎝ ⎛⎭⎪⎫352=85. 因为B ,D 两点在圆上,且位于直线l2的两侧,则四边形ABCD 的面积可以看成是△ABC 和△ACD 的面积之和,如图所示,当BD 垂直平分AC (即BD 为直径)时,两三角形的面积之和最大,即四边形ABCD 的面积最大,此时AC ,BD 相交于点E ,则最大面积S=12×|AC |×|BE |+12×|AC |×|DE |=12×|AC |×|BD |=12×85×2=85. 答案:853.(2018·广西桂林中学5月模拟)已知从圆C :(x +1)2+(y -2)2=2外一点P (x 1,y 1)向该圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,则当|PM |取最小值时点P 的坐标为____________.r = 2.因为解析:如图所示,连接CM ,CP .由题意知圆心C (-1,2),半径|PM |=|PO |,所以|PO |2+r 2=|PC |2,所以x 21+y 21+2=(x 1+1)2+(y 1-2)2,即2x 1-4y 1+3=0.要使|PM |的值最小,只需|PO |的值最小即可.当PO 垂直于直线2x -4y +3=0时,即PO 所在直线的方程为2x +y =0时,|PM |的值最小,此时点P为两直线的交点,则⎩⎪⎨⎪⎧2x -4y +3=0,2x +y =0,解得⎩⎪⎨⎪⎧x =-310,y =35,故当|PM |取最小值时点P 的坐标为⎝ ⎛⎭⎪⎫-310,35.答案:⎝ ⎛⎭⎪⎫-310,35[必备知能·自主补缺] 依据学情课下看,针对自身补缺漏;临近高考再浏览,考前温故熟主干[主干知识要记牢]1.直线方程的五种形式2.点到直线的距离及两平行直线间的距离(1)点P (x 0,y 0)到直线Ax +By +C =0的距离为d =|Ax 0+By 0+C |A 2+B 2.(2)两平行线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B 2.3.圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2.(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0).(3)圆的直径式方程:(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0(圆的直径的两端点是A (x 1,y 1),B (x 2,y 2)). 4.直线与圆位置关系的判定方法(1)代数方法(判断直线与圆方程联立所得方程组的解的情况):Δ>0⇔相交,Δ<0⇔相离,Δ=0⇔相切. (2)几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d ,则d <r ⇔相交,d >r ⇔相离,d =r ⇔相切.5.圆与圆的位置关系已知两圆的圆心分别为O 1,O 2,半径分别为r 1,r 2,则 (1)当|O 1O 2|>r 1+r 2时,两圆外离; (2)当|O 1O 2|=r 1+r 2时,两圆外切;(3)当|r 1-r 2|<|O 1O 2|<r 1+r 2时,两圆相交; (4)当|O 1O 2|=|r 1-r 2|时,两圆内切; (5)当0≤|O 1O 2|<|r 1-r 2|时,两圆内含.[二级结论要用好]1.直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0的位置关系 (1)平行⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0; (2)重合⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1=0; (3)相交⇔A 1B 2-A 2B 1≠0; (4)垂直⇔A 1A 2+B 1B 2=0.[针对练1] 若直线l 1:mx +y +8=0与l 2:4x +(m -5)y +2m =0垂直,则m =________. 解析:∵l 1⊥l 2,∴4m +(m -5)=0,∴m =1.答案:12.若点P (x 0,y 0)在圆x 2+y 2=r 2上,则圆过该点的切线方程为:x 0x +y 0y =r 2. [针对练2] 过点(1,3)且与圆x 2+y 2=4相切的直线l 的方程为____________. 解析:∵点(1,3)在圆x 2+y 2=4上, ∴切线方程为x +3y =4,即x +3y -4=0. 答案:x +3y -4=0[易错易混要明了]1.易忽视直线方程几种形式的限制条件,如根据直线在两坐标轴上的截距相等设方程时,未讨论截距为0的情况,直接设为x a +y a=1;再如,未讨论斜率不存在的情况直接将过定点P (x 0,y 0)的直线设为y -y 0=k (x -x 0)等.[针对练3] 已知直线过点P (1,5),且在两坐标轴上的截距相等,则此直线的方程为__________________.解析:当截距为0时,直线方程为5x -y =0;当截距不为0时,设直线方程为x a +y a=1,代入P (1,5),得a =6, ∴直线方程为x +y -6=0. 答案:5x -y =0或x +y -6=02.讨论两条直线的位置关系时,易忽视系数等于零时的讨论导致漏解,如两条直线垂直,若一条直线的斜率不存在,则另一条直线斜率为0.如果利用直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0垂直的充要条件A 1A 2+B 1B 2=0,就可以避免讨论.[针对练4] 已知直线l 1:(t +2)x +(1-t )y =1与l 2:(t -1)x +(2t +3)y +2=0互相垂直,则t 的值为________.解析:∵l 1⊥l 2,∴(t +2)(t -1)+(1-t )(2t +3)=0,解得t =1或t =-1. 答案:-1或13.求解两条平行线之间的距离时,易忽视两直线系数不相等,而直接代入公式|C 1-C 2|A 2+B 2,导致错解.[针对练5] 两平行直线3x +4y -5=0与6x +8y +5=0间的距离为________. 解析:把直线6x +8y +5=0化为3x +4y +52=0,故两平行线间的距离d =⎪⎪⎪⎪⎪⎪-5-5232+42=32.答案:324.易误认为两圆相切即为两圆外切,忽视两圆内切的情况导致漏解.[针对练6] 已知两圆x 2+y 2-2x -6y -1=0,x 2+y 2-10x -12y +m =0相切,则m =________. 解析:由x 2+y 2-2x -6y -1=0,得(x -1)2+(y -3)2=11,由x 2+y 2-10x -12y +m =0,得(x -5)2+(y-6)2=61-m .当两圆外切时,有-2+-2=61-m +11,解得m =25+1011;当两圆内切时,有-2+-2=||61-m -11,解得m =25-1011.答案:25±1011[课时跟踪检测] A 级——12+4提速练一、选择题1.已知直线l 1:x +2ay -1=0,l 2:(a +1)x -ay =0,若l 1∥l 2,则实数a 的值为( ) A .-32B .0C .-32或0D .2解析:选C 由l 1∥l 2得1×(-a )=2a (a +1),即2a 2+3a =0,解得a =0或a =-32.经检验,当a =0或a =-32时均有l 1∥l 2,故选C.2.(2018·贵阳模拟)经过三点A (-1,0),B (3,0),C (1,2)的圆的面积S =( ) A .π B .2π C .3πD .4π解析:选D 法一:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),将A (-1,0),B (3,0),C (1,2)的坐标代入圆的方程可得⎩⎪⎨⎪⎧1-D +F =0,9+3D +F =0,1+4+D +2E +F =0,解得D =-2,E =0,F =-3,所以圆的方程为x 2+y2-2x -3=0,即(x -1)2+y 2=4,所以圆的半径r =2,所以S =4π.故选D.法二:根据A ,B 两点的坐标特征可知圆心在直线x =1上,设圆心坐标为(1,a ),则r =4+a 2=|a -2|,所以a =0,r =2,所以S =4π,故选D.3.已知圆(x -1)2+y 2=1被直线x -3y =0分成两段圆弧,则较短弧长与较长弧长之比为( ) A .1∶2 B .1∶3 C .1∶4D .1∶5解析:选A (x -1)2+y 2=1的圆心为(1,0),半径为1.圆心到直线的距离d =11+3=12,所以较短弧所对的圆心角为2π3,较长弧所对的圆心角为4π3,故两弧长之比为1∶2,故选A.4.(2018·山东临沂模拟)已知直线3x +ay =0(a >0)被圆(x -2)2+y 2=4所截得的弦长为2,则a 的值为( )A. 2B. 3C .2 2D .2 3解析:选B 由已知条件可知,圆的半径为2,又直线被圆所截得的弦长为2,故圆心到直线的距离为3,即69+a2=3,得a = 3.5.(2018·郑州模拟)已知圆(x -a )2+y 2=1与直线y =x 相切于第三象限,则a 的值是( ) A. 2 B .- 2 C .± 2D .-2解析:选B 依题意得,圆心(a,0)到直线x -y =0的距离等于半径,即有|a |2=1,|a |= 2.又切点位于第三象限,结合图形(图略)可知,a =-2,故选B.6.(2018·山东济宁模拟)已知圆C 过点A (2,4),B (4,2),且圆心C 在直线x +y =4上,若直线x +2y -t =0与圆C 相切,则t 的值为( )A .-6±2 5B .6±2 5C .25±6D .6±4 5解析:选B 因为圆C 过点A (2,4),B (4,2),所以圆心C 在线段AB 的垂直平分线y =x 上,又圆心C 在直线x +y =4上,联立⎩⎪⎨⎪⎧y =x ,x +y =4,解得x =y =2,即圆心C (2,2),圆C 的半径r =-2+-2=2.又直线x +2y -t =0与圆C 相切,所以|2+4-t |5=2,解得t =6±2 5.7.若过点A (1,0)的直线l 与圆C :x 2+y 2-6x -8y +21=0相交于P ,Q 两点,线段PQ 的中点为M ,l 与直线x +2y +2=0的交点为N ,则|AM |·|AN |的值为( )A .5B .6C .7D .8解析:选B 圆C 的方程化成标准方程可得(x -3)2+(y -4)2=4,故圆心C (3,4),半径为2,则可设直线l 的方程为kx -y -k =0(k ≠0),由⎩⎪⎨⎪⎧x +2y +2=0,kx -y -k =0,得N ⎝⎛⎭⎪⎫2k -22k +1,-3k 2k +1,又直线CM 与l 垂直,得直线CM 的方程为y -4=-1k(x -3).由⎩⎪⎨⎪⎧y -4=-1k x -,kx -y -k =0,得M ⎝ ⎛⎭⎪⎫k 2+4k +3k 2+1,4k 2+2k k 2+1, 则|AM |·|AN |=⎝ ⎛⎭⎪⎫k 2+4k +3k 2+1-12+⎝ ⎛⎭⎪⎫4k 2+2k k 2+12·⎝ ⎛⎭⎪⎫2k -22k +1-12+⎝ ⎛⎭⎪⎫-3k 2k +12=2|2k +1|1+k 2×1+k 2×31+k2|2k +1|=6.故选B.8.(2019届高三·湘东五校联考)圆(x -3)2+(y -3)2=9上到直线3x +4y -11=0的距离等于2的点有( )A .1个B .2个C .3个D .4个解析:选B 圆(x -3)2+(y -3)2=9的圆心为(3,3),半径为3,圆心到直线3x +4y -11=0的距离d =|3×3+4×3-11|32+42=2,∴圆上到直线3x +4y -11=0的距离为2的点有2个.故选B. 9.圆x 2+y 2=1上的点到直线3x +4y -25=0的距离的最小值为( ) A .4 B .3 C .5D .6解析:选A 易知圆x 2+y 2=1的圆心坐标为(0,0),半径为1,圆心到直线3x +4y -25=0的距离d =|-25|5=5,所以圆x 2+y 2=1上的点到直线3x +4y -25=0的距离的最小值为5-1=4.10.(2019届高三·西安八校联考)若过点A (3,0)的直线l 与曲线(x -1)2+y 2=1有公共点,则直线l 斜率的取值范围为( )A .(-3,3)B .[-3, 3 ] C.⎝ ⎛⎭⎪⎫-33,33 D.⎣⎢⎡⎦⎥⎤-33,33 解析:选D 数形结合可知,直线l 的斜率存在,设直线l 的方程为y =k (x -3),则圆心(1,0)到直线y =k (x -3)的距离应小于等于半径1,即|2k |1+k2≤1,解得-33≤k ≤33,故选D. 11.在平面直角坐标系xOy 中,已知A (-1,0),B (0,1),则满足|PA |2-|PB |2=4且在圆x 2+y 2=4上的点P 的个数为( )A .0B .1C .2D .3解析:选C 设P (x ,y ),则由|PA |2-|PB |2=4,得(x +1)2+y 2-x 2-(y -1)2=4,所以x +y -2=0.求满足条件的点P 的个数即为求直线与圆的交点个数,圆心到直线的距离d =|0+0-2|2=2<2=r ,所以直线与圆相交,交点个数为2.故满足条件的点P 有2个.12.在平面直角坐标系xOy 中,已知点A (0,-2),点B (1,-1),P 为圆x 2+y 2=2上一动点,则|PB ||PA |的最大值是( )A .1B .3C .2D. 2解析:选C 设动点P (x ,y ),令|PB ||PA |=t (t >0),则-x 2+-1-y 2-x2+-2-y2=t 2,整理得,(1-t 2)x 2+(1-t 2)y 2-2x +(2-4t 2)y +2-4t 2=0,(*)易知当1-t 2≠0时,(*)式表示一个圆,且动点P 在该圆上,又点P 在圆x 2+y 2=2上,所以点P 为两圆的公共点,两圆方程相减得两圆公共弦所在直线l 的方程为x -(1-2t 2)y -2+3t 2=0,所以圆心(0,0)到直线l 的距离d =|-2+3t 2|1+-2t22≤2,解得0<t ≤2,所以|PB ||PA |的最大值为2.二、填空题13.(2018·全国卷Ⅰ)直线y =x +1与圆x 2+y 2+2y -3=0交于A ,B 两点,则|AB |=________. 解析:由x 2+y 2+2y -3=0,得x 2+(y +1)2=4.∴圆心C (0,-1),半径r =2.圆心C (0,-1)到直线x -y +1=0的距离d =|1+1|2=2,∴|AB |=2r 2-d 2=24-2=2 2. 答案:2 214.如果直线ax +2y +3a =0与直线3x +(a -1)y =a -7平行,则a =________.解析:由直线ax +2y +3a =0与直线3x +(a -1)y +7-a =0平行,可得⎩⎪⎨⎪⎧aa --2×3=0,a -a -3×3a ≠0,解得⎩⎪⎨⎪⎧a =3或a =-2,a ≠0且a ≠-2,故a =3.答案:315.过点M ⎝ ⎛⎭⎪⎫12,1的直线l 与圆C :(x -1)2+y 2=4交于A ,B 两点,C 为圆心,当∠ACB 最小时,直线l的方程为____________________.解析:易知当CM ⊥AB 时,∠ACB 最小,直线CM 的斜率为k CM =1-012-1=-2,从而直线l 的斜率为k l =-1k CM =12,其方程为y -1=12⎝ ⎛⎭⎪⎫x -12,即2x -4y +3=0. 答案:2x -4y +3=016.(2018·南宁、柳州模拟)过点(2,0)作直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于________.解析:令P (2,0),如图,易知|OA |=|OB |=1,所以S △AOB =12|OA |·|OB |·sin∠AOB =12sin ∠AOB ≤12,当∠AOB =90°时,△AOB 的面积取得最大值,此时过点O 作OH ⊥AB 于点H ,则|OH |=22,于是sin ∠OPH =|OH ||OP |=222=12,易知∠OPH 为锐角,所以∠OPH =30°,则直线AB 的倾斜角为150°,故直线AB 的斜率为tan 150°=-33. 答案:-33B 级——难度小题强化练1.(2018·重庆模拟)已知圆C :(x -2)2+y 2=2,直线l :y =kx ,其中k 为[-3,3]上的任意一个数,则事件“直线l 与圆C 相离”发生的概率为( )A.33B.34C.14D.3-33解析:选D 当直线l 与圆C 相离时,圆心C 到直线l 的距离d =|2k |k 2+1>2,解得k >1或k <-1,又k∈[-3,3],所以-3≤k <-1或1<k ≤3,故事件“直线l 与圆C 相离”发生的概率P =3-+-1+323=3-33,故选D. 2.(2018·合肥质检)设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3)与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为( )A .3x +4y -12=0或4x -3y +9=0B .3x +4y -12=0或x =0C .4x -3y +9=0或x =0D .3x -4y +12=0或4x +3y +9=0解析:选B 圆的方程化为标准形式为(x -1)2+(y -1)2=4,圆心C (1,1),半径r =2,当直线l 的斜率不存在时,方程为x =0,计算出弦长为23,符合题意;当直线l 的斜率存在时,可设直线l 的方程为y =kx +3,由弦长为23可知,圆心到该直线的距离为1,从而有|k +2|k 2+1=1,解得k =-34,此时方程为y =-34x +3,即3x +4y -12=0.综上,直线l 的方程为x =0或3x +4y -12=0,故选B.3.(2018·安徽黄山二模)已知圆O :x 2+y 2=1,点P 为直线x 4+y2=1上一动点,过点P 向圆O 引两条切线PA ,PB ,A ,B 为切点,则直线AB 经过定点( )A.⎝ ⎛⎭⎪⎫12,14B.⎝ ⎛⎭⎪⎫14,12C.⎝⎛⎭⎪⎫34,0 D.⎝ ⎛⎭⎪⎫0,34 解析:选B 因为点P 是直线x 4+y2=1上的一动点,所以设P (4-2m ,m ).因为PA ,PB 是圆x 2+y 2=1的两条切线,切点分别为A ,B ,所以OA ⊥PA ,OB ⊥PB ,所以点A ,B 在以OP 为直径的圆C 上,即弦AB 是圆O 和圆C 的公共弦.因为圆心C 的坐标是⎝⎛⎭⎪⎫2-m ,m 2,且半径的平方r 2=-2m2+m24,所以圆C 的方程为(x -2+m )2⎝ ⎛⎭⎪⎫y -m 22=-2m 2+m24,①又x 2+y 2=1,②所以②-①得,(2m -4)x -my +1=0,即公共弦AB 所在的直线方程为(2x -y )m +(-4x +1)=0,所以由⎩⎪⎨⎪⎧-4x +1=0,2x -y =0得⎩⎪⎨⎪⎧x =14,y =12,所以直线AB 过定点⎝ ⎛⎭⎪⎫14,12.故选B.4.(2018·南昌第一次模拟)如图,在平面直角坐标系xOy 中,直线y =2x +1与圆x 2+y 2=4相交于A ,B 两点,则cos ∠AOB =( )A.510 B .-510C.910D .-910解析:选D 法一:因为圆x 2+y 2=4的圆心为O (0,0),半径为2,所以圆心O 到直线y =2x +1的距离d =|2×0-0+1|22+-2=15,所以弦长|AB |=222-⎝ ⎛⎭⎪⎫152=2195.在△AOB 中,由余弦定理得cos ∠AOB =|OA |2+|OB |2-|AB |22|OA |·|OB |=4+4-4×1952×2×2=-910.法二:取AB 的中点D ,连接OD (图略),则OD ⊥AB ,且∠AOB =2∠AOD ,又圆心到直线的距离d =|2×0-0+1|22+-2=15,即|OD |=15,所以cos ∠AOD =|OD ||OA |=125,故cos ∠AOB =2cos 2∠AOD -1=2×⎝ ⎛⎭⎪⎫1252-1=-910. 5.已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C的切线,切点为P ,则|MP |=________.解析:圆C :x 2+y 2-2x -4y +1=0的圆心坐标为C (1,2),半径r =2,因为圆上存在两点关于直线l 对称,所以直线l :x +my +1=0过点(1,2),所以1+2m +1=0,得m =-1,所以M (-1,-1),|MC |2=(1+1)2+(2+1)2=13,r 2=4,所以|MP |=13-4=3.答案:36.(2019届高三·湘中名校联考)已知m >0,n >0,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是____________.解析:因为m >0,n >0,直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,所以圆心C (1,1)到直线的距离d =|m +1+n +1-2|m +2+n +2=1,即|m +n |=m +2+n +2,两边平方并整理得m +n+1=mn ≤⎝ ⎛⎭⎪⎫m +n 22,即(m +n )2-4(m +n )-4≥0,解得m +n ≥2+22,所以m +n 的取值范围为[2+22,+∞).答案:[2+22,+∞)第二讲 小题考法——圆锥曲线的方程与性质[典例感悟][典例] (1)(2017·全国卷Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A.x 28-y 210=1 B.x 24-y 25=1 C.x 25-y 24=1 D.x 24-y 23=1 (2)(2018·重庆模拟)已知点F 是抛物线y 2=4x 的焦点,P 是该抛物线上任意一点,M (5,3),则|PF |+|PM |的最小值是( )A .6B .5C .4D .3(3)(2018·湖北十堰十三中质检)一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为( )A.x 28+y 26=1B.x 216+y 26=1 C.x 24+y 22=1 D.x 28+y 24=1 [解析] (1)根据双曲线C 的渐近线方程为y =52x ,可知b a =52.①又椭圆x212+y23=1的焦点坐标为(3,0)和(-3,0),所以a 2+b 2=9.②根据①②可知a 2=4,b 2=5, 所以C 的方程为x 24-y 25=1.(2)由题意知,抛物线的准线l 的方程为x =-1,过点P 作PE ⊥l 于点E ,由抛物线的定义,得|PE |=|PF |,易知当P ,E ,M 三点在同一条直线上时,|PF |+|PM |取得最小值,即(|PF |+|PM |)min =5-(-1)=6,故选A.(3)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由点P (2,3)在椭圆上,知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,则c a =12.又c 2=a 2-b 2,联立⎩⎪⎨⎪⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12,得a 2=8,b 2=6,故椭圆的方程为x 28+y 26=1.[答案] (1)B (2)A (3)A[方法技巧]求解圆锥曲线标准方程的思路方法(1)定型,即确定圆锥曲线的类型、焦点位置,从而设出标准方程.(2)计算,即利用待定系数法求出方程中的a 2,b 2或p .另外,当焦点位置无法确定时,抛物线常设为y 2=2px 或x 2=2py (p ≠0),椭圆常设为mx 2+ny 2=1(m >0,n >0),双曲线常设为mx 2-ny 2=1(mn >0).[演练冲关]1.(2018·合肥一模)如图,椭圆x 2a 2+y 24=1(a >0)的左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于M ,N 两点,交y 轴于点H .若F 1,H 是线段MN 的三等分点,则△F 2MN的周长为( )A .20B .10C .2 5D .4 5解析:选D 由F 1,H 是线段MN 的三等分点,得H 是F 1N 的中点,又F 1(-c,0),∴点N 的横坐标为c ,联立方程,得⎩⎪⎨⎪⎧x =c ,x 2a 2+y24=1,得N ⎝⎛⎭⎪⎫c ,4a ,∴H ⎝ ⎛⎭⎪⎫0,2a ,M ⎝⎛⎭⎪⎫-2c ,-2a .把点M 的坐标代入椭圆方程得4c 2a 2+⎝ ⎛⎭⎪⎫-2a 24=1,化简得c 2=a 2-14,又c 2=a 2-4,∴a 2-14=a 2-4,解得a 2=5,∴a = 5.由椭圆的定义知|NF 2|+|NF 1|=|MF 2|+|MF 1|=2a ,∴△F 2MN 的周长为|NF 2|+|MF 2|+|MN |=|NF 2|+|MF 2|+|NF 1|+|MF 1|=4a =45,故选D.2.(2018·河北五个一名校联考)如果点P 1,P 2,P 3,…,P 10是抛物线y 2=2x 上的点,它们的横坐标依次为x 1,x 2,x 3,…,x 10,F 是抛物线的焦点,若x 1+x 2+x 3+…+x 10=5,则|P 1F |+|P 2F |+|P 3F |+…+|P 10F |=________.解析:由抛物线的定义可知,抛物线y 2=2px (p >0)上的点P (x 0,y 0)到焦点F 的距离|PF |=x 0+p2,在y2=2x 中,p =1,所以|P 1F |+|P 2F |+…+|P 10F |=x 1+x 2+…+x 10+5p =10.答案:103.如图,F 1,F 2是双曲线x 2a 2-y 224=1(a >0)的左、右焦点,过F 1的直线l 与双曲线交于点A ,B ,若△ABF 2为等边三角形,则双曲线的标准方程为________________,△BF 1F 2的面积为________.解析:由|AF 1|-|AF 2|=|BF 1|=2a ,|BF 2|-|BF 1|=2a ,得|BF 2|=4a ,在△AF 1F 2中,|AF 1|=6a ,|AF 2|=4a ,|F 1F 2|=2c ,∠F 1AF 2=60°,由余弦定理得4c 2=36a 2+16a 2-2×6a ×4a ×12,化简得c =7a ,由a 2+b2=c 2得,a 2+24=7a 2,解得a =2,则双曲线的方程为x 24-y 224=1,△BF 1F 2的面积为12|BF 1|·|BF 2|sin ∠F 1BF 2=12×2a ×4a ×32=8 3. 答案:x 24-y 224=1 8 3考点(二) 圆锥曲线的几何性质主要考查椭圆、双曲线的离心率的计算、双曲线渐近线的应用以及抛物线 的有关性质.[典例感悟][典例] (1)(2018·全国卷Ⅱ)双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22x D .y =±32x(2)(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a2+y 2b2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( ) A.23 B.12 C.13D.14(3)(2018·全国卷Ⅲ)已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.[解析] (1)∵e =c a =a 2+b 2a=3,∴a 2+b 2=3a 2,∴b =2a . ∴渐近线方程为y =±2x .(2)如图,作PB ⊥x 轴于点B .由题意可设|F 1F 2|=|PF 2|=2,则c = 1.由∠F 1F 2P =120°,可得|PB |=3,|BF 2|=1, 故|AB |=a +1+1=a +2,tan ∠PAB =|PB ||AB |=3a +2=36,解得a =4, 所以e =c a =14.(3)法一:设点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,∴y 21-y 22=4(x 1-x 2),∴k =y 1-y 2x 1-x 2=4y 1+y 2. 设AB 中点M ′(x 0,y 0),抛物线的焦点为F ,分别过点A ,B 作准线x =-1的垂线,垂足为A ′,B ′, 则|MM ′|=12|AB |=12(|AF |+|BF |)=12(|AA ′|+|BB ′|). ∵M ′(x 0,y 0)为AB 中点, ∴M 为A ′B ′的中点, ∴MM ′平行于x 轴, ∴y 1+y 2=2,∴k =2.法二:由题意知,抛物线的焦点坐标为F (1,0), 设直线方程为y =k (x -1), 直线方程与y 2=4x 联立,消去y ,得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1x 2=1,x 1+x 2=2k 2+4k2.由M (-1,1),得AM ―→=(-1-x 1,1-y 1), BM ―→=(-1-x 2,1-y 2).由∠AMB =90°,得AM ―→·BM ―→=0, ∴(x 1+1)(x 2+1)+(y 1-1)(y 2-1)=0, ∴x 1x 2+(x 1+x 2)+1+y 1y 2-(y 1+y 2)+1=0.又y 1y 2=k (x 1-1)·k (x 2-1)=k 2[x 1x 2-(x 1+x 2)+1],y 1+y 2=k (x 1+x 2-2),∴1+2k 2+4k2+1+k 2⎝⎛⎭⎪⎫1-2k 2+4k2+1-k ⎝ ⎛⎭⎪⎫2k 2+4k 2-2+1=0,整理得4k 2-4k+1=0,解得k =2.[答案] (1)A (2)D (3)2[方法技巧]1.椭圆、双曲线离心率(离心率范围)的求法求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a ,b ,c 的等量关系或不等关系,然后把b 用a ,c 代换,求c a的值.2.双曲线的渐近线的求法及用法(1)求法:把双曲线标准方程等号右边的1改为零,分解因式可得. (2)用法:①可得b a 或a b的值;②利用渐近线方程设所求双曲线的方程. 3.抛物线几何性质问题求解策略涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性,还要注意抛物线定义的转化应用.[演练冲关]1.(2018·长郡中学模拟)已知F 为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点,其关于双曲线C 的一条渐近线的对称点在另一条渐近线上,则双曲线C 的离心率为( )A. 2B. 3 C .2D. 5解析:选C 依题意,设双曲线的渐近线y =b a x 的倾斜角为θ,则由双曲线的对称性得3θ=π,θ=π3,b a =tan π3=3,双曲线C 的离心率e = 1+⎝ ⎛⎭⎪⎫b a2=2,选C.2.(2018·福州四校联考)已知抛物线C 的顶点为坐标原点,对称轴为坐标轴,直线l 过抛物线C 的焦点F ,且与抛物线的对称轴垂直,l 与C 交于A ,B 两点,且|AB |=8,M 为抛物线C 的准线上一点,则△ABM 的面积为( )A .16B .18C .24D .32解析:选A 不妨设抛物线C :y 2=2px (p >0),如图,因为直线l 过抛物线C 的焦点,且与抛物线的对称轴垂直,所以线段AB 为通径,所以2p =8,p =4,又M 为抛物线C 的准线上一点,所以点M 到直线AB 的距离即焦点到准线的距离,为4,所以△ABM 的面积为12×8×4=16,故选A.3.(2018·福州模拟)过椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点作x 轴的垂线,交C 于A ,B 两点,直线l 过C 的左焦点和上顶点.若以AB 为直径的圆与l 存在公共点,则C 的离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,55B.⎣⎢⎡⎭⎪⎫55,1 C.⎝⎛⎦⎥⎤0,22 D.⎣⎢⎡⎭⎪⎫22,1 解析:选A 由题设知,直线l :x -c +yb=1,即bx -cy +bc =0,以AB 为直径的圆的圆心为(c,0),根据题意,将x =c 代入椭圆C 的方程,得y =±b 2a ,即圆的半径r =b 2a .又圆与直线l 有公共点,所以2bc b 2+c 2≤b 2a,化简得2c ≤b ,平方整理得a 2≥5c 2,所以e =c a ≤55.又0<e <1,所以0<e ≤55.故选A.[典例感悟][典例] (1)(2018·开封模拟)过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点F (-c,0)作圆x 2+y 2=a 2的切线,切点为E ,延长FE 交抛物线y 2=4cx 于点P ,若E 为线段FP 的中点,则双曲线的离心率为( )A. 5B.52C.5+1D.5+12(2)(2018·洛阳模拟)已知F 是抛物线C 1:y 2=2px (p >0)的焦点,曲线C 2是以F 为圆心,p2为半径的圆,直线4x -3y -2p =0与曲线C 1,C 2从上到下依次相交于点A ,B ,C ,D ,则|AB ||CD |=( )A .16B .4 C.83D.53(3)(2018·南宁模拟)已知椭圆x 2a +y 2b=1(a >b >0)的一条弦所在的直线方程是x -y +5=0,弦的中点坐标是M (-4,1),则椭圆的离心率是( )A.12B.22C.32D.55[解析] (1)抛物线y 2=4cx 的焦点F 1(c,0),准线l :x =-c ,连接PF 1和EO (O 为坐标原点),如图,则|PF 1|=2|EO |=2a ,所以点P 到准线l :x =-c 的距离等于2a ,所以点P 的横坐标为2a -c ,由点P 在抛物线y 2=4cx 上,得P (2a -c,2ca -c ).连接OP ,则|OP |=|OF |=c ,所以(2a -c )2+[2ca -c ]2=c 2,解得e =c a =5+12,故选D.(2)因为直线4x -3y -2p =0过C 1的焦点F (C 2的圆心), 故|BF |=|CF |=p2,所以|AB ||CD |=|AF |-p2|DF |-p2.由抛物线的定义得|AF |-p 2=x A ,|DF |-p2=x D .由⎩⎪⎨⎪⎧4x -3y -2p =0,y 2=2px 整理得8x 2-17px +2p 2=0,即(8x -p )(x -2p )=0,可得x A =2p ,x D =p 8,故|AB ||CD |=x A x D=2pp8=16.故选A. (3)设直线x -y +5=0与椭圆x 2a 2+y 2b2=1相交于A (x 1,y 1),B (x 2,y 2)两点,因为AB 的中点M (-4,1),所以x 1+x 2=-8,y 1+y 2=2.易知直线AB 的斜率k =y 2-y 1x 2-x 1=1.由⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y 22b 2=1,两式相减得,x 1+x 2x 1-x 2a 2+y 1+y 2y 1-y 2b 2=0,所以y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2,所以b 2a 2=14,于是椭圆的离心率e=c a=1-b 2a2=32,故选C. [答案] (1)D (2)A (3)C[方法技巧]处理圆锥曲线与圆相结合问题的注意点(1)注意圆心、半径和平面几何知识的应用,如直径所对的圆周角为直角,构成了垂直关系;弦心距、半径、弦长的一半构成直角三角形等.(2)注意圆与特殊线的位置关系,如圆的直径与椭圆长轴(短轴),与双曲线的实轴(虚轴)的关系;圆与过定点的直线、双曲线的渐近线、抛物线的准线的位置关系等.[演练冲关]1.已知椭圆的短轴长为8,点F 1,F 2为其两个焦点,点P 为椭圆上任意一点,△PF 1F 2的内切圆面积的最大值为9π4,则椭圆的离心率为( )A.45B.22C.35D.223解析:选C 不妨设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),则2b =8,即b =4,设△PF 1F 2内切圆的半径为r ,则有S △PF 1F 2=12(2a +2c )r =12×2c |y P |,即r =c |y P |a +c ,当点P 运动到椭圆短轴的端点时,r 有最大值32,此时|y P |=b ,于是有4c a +c =32,即3a =5c ,故椭圆的离心率e =c a =35. 2.(2018·全国卷Ⅲ)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( )A. 5 B .2 C. 3D. 2解析:选C 法一:不妨设一条渐近线的方程为y =b ax , 则F 2到y =b ax 的距离d =|bc |a 2+b 2=b .在Rt △F 2PO 中,|F 2O |=c , 所以|PO |=a ,所以|PF 1|=6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中, 根据余弦定理得cos ∠POF 1=a 2+c 2-6a22ac=-cos ∠POF 2=-a c,即3a 2+c 2-(6a )2=0,得3a 2=c 2,所以e =c a= 3.法二:如图,过点F 1向OP 的反向延长线作垂线,垂足为P ′,连接P ′F 2,由题意可知,四边形PF 1P ′F 2为平行四边形,且△PP ′F 2是直角三角形.因为|F 2P |=b ,|F 2O |=c ,所以|OP |=a .又|PF 1|=6a =|F 2P ′|,|PP ′|=2a , 所以|F 2P |=2a =b ,所以c =a 2+b 2=3a , 所以e =c a= 3.3.(2018·贵阳模拟)过抛物线y 2=2px (p >0)的焦点F ,且倾斜角为60°的直线交抛物线于A ,B 两点,若|AF |>|BF |,且|AF |=2,则p =________.解析:过点A ,B 向抛物线的准线x =-p2作垂线,垂足分别为C ,D ,过点B 向AC 作垂线,垂足为E ,∵A ,B 两点在抛物线上,∴|AC |=|AF |,|BD |=|BF |.∵BE ⊥AC ,∴|AE |=|AF |-|BF |,∵直线AB 的倾斜角为60°,∴在Rt △ABE 中,2|AE |=|AB |=|AF |+|BF |, 即2(|AF |-|BF |)=|AF |+|BF |,∴|AF |=3|BF |. ∵|AF |=2,∴|BF |=23,∴|AB |=|AF |+|BF |=83.设直线AB 的方程为y =3⎝ ⎛⎭⎪⎫x -p 2,代入y 2=2px ,得3x 2-5px +3p 24=0,设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=53p ,∵|AB |=x 1+x 2+p =83,∴p =1.答案:1[必备知能·自主补缺] 依据学情课下看,针对自身补缺漏;临近高考再浏览,考前温故熟主干[主干知识要记牢]圆锥曲线的定义、标准方程和性质[二级结论要用好]1.椭圆焦点三角形的3个结论设椭圆方程是x 2a 2+y 2b2=1(a >b >0),焦点F 1(-c,0),F 2(c,0),点P 的坐标是(x 0,y 0).(1)三角形的三个边长是|PF 1|=a +ex 0,|PF 2|=a -ex 0,|F 1F 2|=2c ,e 为椭圆的离心率. (2)如果△PF 1F 2中∠F 1PF 2=α,则这个三角形的面积S △PF 1F 2=c |y 0|=b 2tan α2.(3)椭圆的离心率e =sin ∠F 1PF 2sin ∠F 1F 2P +sin ∠F 2F 1P .2.双曲线焦点三角形的2个结论P (x 0,y 0)为双曲线x 2a 2-y 2b2=1(a >0,b >0)上的点,△PF 1F 2为焦点三角形.(1)面积公式S =c |y 0|=12r 1r 2sin θ=b 2tanθ2(其中|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ).(2)焦半径若P 在右支上,|PF 1|=ex 0+a ,|PF 2|=ex 0-a ;若P 在左支上,|PF 1|=-ex 0-a ,|PF 2|=-ex 0+a . 3.抛物线y 2=2px (p >0)焦点弦AB 的4个结论 (1)x A ·x B =p 24;(2)y A ·y B =-p 2;(3)|AB |=2psin 2α(α是直线AB 的倾斜角);(4)|AB |=x A +x B +p . 4.圆锥曲线的通径。

高考数学二轮复习7大专题汇总

高考数学二轮复习7大专题汇总

高考数学二轮复习7 大专题汇总专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:侧重掌握函数的单一性,奇偶性,周期性,对称性。

这些性质往常会综合起来一同观察,而且有时会观察详细函数的这些性质,有时会观察抽象函数的这些性质。

一元二次函数:一元二次函数是贯串中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了认识,高中阶段更多的是将它与导数进行连接,依据抛物线的张口方向,与x 轴的交点地点,进而议论与定义域在x 轴上的摆放次序,这样能够判断导数的正负,最后达到求出单一区间的目的,求出极值及最值。

不等式:这一类问题经常出此刻恒成立,或存在性问题中,其本质是求函数的最值。

自然对于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的联合问题,掌握几种不等式的放缩技巧是特别必需的。

专题二:数列。

以等差等比数列为载体,观察等差等比数列的通项公式,乞降公式,通项公式和乞降公式的关系,求通项公式的几种常用方法,求前 n 项和的几种常用方法,这些知识点需要掌握。

专题三:三角函数,平面向量,解三角形。

三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有波及,有时观察三角函数的公式之间的相互转变,从而求单一区间或值域 ; 有时观察三角函数与解三角形,向量的综合性问题,自然正弦,余弦定理是很好的工具。

向量能够很好得实现数与形的转变,是一个很重要的知识连接点,它还能够和数学的一大难点分析几何整合。

专题四:立体几何。

立体几何中,三视图是每年必考点,主要出此刻选择,填空题中。

大题中的立体几何主要观察成立空间直角坐标系,经过向量这一手段求空间距离,线面角,二面角等。

此外,需要掌握棱锥,棱柱的性质,在棱锥中,侧重掌握三棱锥,四棱锥,棱柱中,应当掌握三棱柱,长方体。

空间直线与平面的地点关系应以证明垂直为要点,自然常观察的方法为间接证明。

专题五:分析几何。

高三数学二轮复习-专题五第二讲-椭圆、双曲线、抛物线课件

高三数学二轮复习-专题五第二讲-椭圆、双曲线、抛物线课件
答案 6
抛物线的方程及几何性质
(5分)(2011·山东)设M(x0,y0)为抛物线C: x2=8y上一点,F为抛物线C的焦点,以F为 圆心、|FM|为半径的圆和抛物线C的准线相交, 则y0的取值范围是
A.(0,2)
B.[0,2]
C.(2,+∞)
D.[2,+∞)
【标准解答】 ∵x2=8y, ∴焦点F的坐标为 (0,2), 准线方程为y=-2.
∴c2=a2-b2=8.∴e=ac=2 4 2=
2 2.
答案 D
4.(2011·辽宁)已知F是抛物线y2=x的焦点,A,B是该
抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的 距离为
3 A.4
B.1
5
7
C.4
D.4
解析 ∵|AF|+|BF|=xA+xB+12=3,∴xA+xB=52.
解析 由于直线AB的斜率为-ba,故OP的斜率为-ba,
直线OP的方程为y=-bax.
与椭圆方程ax22+by22=1联立,解得x=±
2 2 a.
因为PF1⊥x轴,所以x=- 22a,
从而- 22a=-c,即a= 2c. 又|F1A|=a+c= 10+ 5, 故 2c+c= 10+ 5,解得c= 5, 从而a= 10.所以所求的椭圆方程为1x02 +y52=1. 答案 1x02 +y52=1
又双曲线的离心率e= a2a+b2= a7,所以 a7=247, 所以a=2,b2=c2-a2=3, 故双曲线的方程为x42-y32=1.
答案 x42-y32=1
圆锥曲线是高考考查的重点,一般会涉及到 圆锥曲线的定义、离心率、圆锥曲线的几何 性质及直线与圆锥曲线的位置关系等. 在命题 中体现知识与能力的综合,一般地,选择题、 填空题的难度属中档偏下,解答题综合性较 强,能力要求较高,故在复习的过程中,注 重基础的同时,要兼顾直线与圆锥曲线的综 合问题的强化训练,尤其是对推理、运算能 力的训练.

2019届高考数学二轮复习 专题五 立 体 几 何 (讲义训练):第3讲 立体几何中的计算 课时讲义(含答案)

2019届高考数学二轮复习  专题五 立 体 几 何 (讲义训练):第3讲 立体几何中的计算 课时讲义(含答案)

第3讲 立体几何中的计算 课时讲义1. 高考对立体几何的计算,主要是能利用公式求常见几何体(柱体、锥体、台体和球)的表面积与体积.有时还需能解决距离、翻折、存在性等比较综合性的问题.2. 高考中常见的题型为:(1) 常见几何体的表面积与体积的计算;(2) 利用等积变换求距离问题;(3) 通过计算证明平行与垂直等问题;(4) 几何体的内切和外接.1. 棱长都是2的三棱锥的表面积为________. 答案:43解析: 因为四个面是全等的正三角形,则S 表面积=4×34×4=43.2. 如图,正方体ABCDA 1B 1C 1D 1的棱长为1,点P 是棱BB 1的中点,则四棱锥PAA 1C 1C的体积为________.答案:13解析:四棱锥PAA 1C 1C 的体积为13×22×2×1=13.3. (2018·南京学情调研)将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为27π cm 3,则该圆柱的侧面积为________cm 2.答案:18π解析:设正方形的边长为a cm ,则πa 2·a =27π,解得a =3,所以侧面积2π×3×3=18π.4. (2018·海安质量测试)已知正三棱锥的体积为36 3 cm 3,高为4 cm ,则底面边长为________cm.答案:63解析: 设正三棱锥的底面边长为a ,则其面积为S =34a 2.由题意13·34a 2×4=363,解得a =63., 一) 表面积与体积, 1) 如图,在以A ,B ,C ,D ,E 为顶点的六面体中,△ABC 和△ABD 均为等边三角形,且平面ABC ⊥平面ABD ,EC ⊥平面ABC ,EC =3,AB =2.(1) 求证:DE ∥平面ABC ; (2) 求此六面体的体积.(1) 证明:作DF ⊥AB ,交AB 于点F ,连结CF. 因为平面ABC ⊥平面ABD , 且平面ABC ∩平面ABD =AB , 所以DF ⊥平面ABC.因为EC ⊥平面ABC ,所以DF ∥EC. 因为△ABD 是边长为2的等边三角形, 所以DF =3,因此DF =EC ,所以四边形DECF 为平行四边形,所以DE ∥CF.因为DE ⊄平面ABC ,CF ⊂平面ABC , 所以DE ∥平面ABC.(2) 解:因为△ABD 是等边三角形,所以点F 是AB 的中点. 又△ABC 是等边三角形,所以CF ⊥AB. 由DF ⊥平面ABC 知,DF ⊥CF , 所以CF ⊥平面ABD.因为DE ∥CF ,所以DE ⊥平面ABD , 因此四面体ABDE 的体积为13S △ABD ·DE =1;四面体ABCE 的体积为13S △ABC ·CE =1,而六面体ABCED 的体积=四面体ABDE 的体积+四面体ABCE 的体积, 故所求六面体的体积为2.(2018·苏州暑假测试)如图,正四棱锥P ABCD 的底面一边AB 的长为2 3 cm ,侧面积为83 cm 2,则它的体积为________cm 3.答案:4解析:记正四棱锥P ABCD 的底面中心为点O ,棱AB 的中点为H, 连结PO ,HO ,PH ,则PO ⊥平面ABCD .因为正四棱锥的侧面积为83 cm 2,所以83=4×12×23×PH ,解得PH =2.在直角△PHO 中,PH =2,HO =3,所以PO =1,所以V PABCD =13×S 四边形ABCD ×PO =13×23×23×1=4(cm 3)., 二) 翻折与切割问题, 2) 如图,在菱形ABCD 中,AB =2,∠ABC =60°,BD ∩AC =O ,现将其沿菱形对角线BD 折起得到空间四边形EBCD ,使EC =2.(1) 求证:EO ⊥CD ;(2) 求点O 到平面EDC 的距离.(1) 证明:∵ 四边形ABCD 为菱形,∴ AC ⊥BD . ∵ BD ∩AC =O ,∴ AO ⊥BD ,即EO ⊥BD .∵ 在菱形ABCD 中,AB =2,∠ABC =60°,∴ AD =CD =BC =2,AO =OC =1. ∵ EC =2,CO =EO =1,∴ EO 2+OC 2=EC 2,∴ EO ⊥OC . 又BD ∩OC =O ,∴ EO ⊥平面BCD ,∴ EO ⊥CD .(2) 解:设点O 到平面ECD 的距离为h ,由(1)知EO ⊥平面OCD .V 三棱锥O CDE =V 三棱锥E OCD ,即13S △OCD ·EO =13S △ECD ·h . 在Rt △OCD 中,OC =1,OD =3,∠DOC =90°,∴ S △OCD =12OC ·OD =32.在△CDE 中,ED =DC =2,EC =2,∴ S △CDE =12×2×22-(22)2=72, ∴ h =S △OCD ·EO S △ECD =217,即点O 到平面EDC 的距离为217.如图①,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,点E 是AD的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到如图②中△A 1BE 的位置,得到四棱锥A 1BCDE .(1) 求证:CD ⊥平面A 1OC ;(2) 当平面A 1BE ⊥平面BCDE 时,四棱锥A 1BCDE 的体积为362,求a 的值.,①) ,②)(1) 证明:在图①中,因为AB =BC =12AD =a ,点E 是AD 的中点,∠BAD =π2,所以BE ⊥AC ,即在图②中,BE ⊥A 1O ,BE ⊥OC . 又A 1O ∩OC =O ,所以BE ⊥平面A 1OC . 在图①中,BC ∥ED ,且BC =ED ,所以四边形BCDE 是平行四边形,所以BE ∥CD , 所以CD ⊥平面A 1OC .(2) 解:因为平面A 1BE ⊥平面BCDE ,所以A 1O 是四棱锥A 1BCDE 的高. 根据图①可得A 1O =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2, 所以VA 1BCDE =13×S ×A 1O =13×a 2×22a =26a 3.由26a 3=362,解得a =6., 三) 立体几何中的以算代证问题, 3) (2018·泰州中学学情调研)在直三棱柱ABCA 1B 1C 1中,AB =AC =AA 1=3a ,BC =2a ,D 是BC 的中点,E ,F 分别是AA 1,CC 1上一点,且AE =CF =2a.(1) 求证:B 1F ⊥平面ADF ; (2) 求三棱锥B 1ADF 的体积.(1) 证明:∵ AB =AC ,D 为BC 中点,∴ AD ⊥BC.在直三棱柱ABC -A 1B 1C 1中,B 1B ⊥底面ABC ,AD ⊂底面ABC ,∴ AD ⊥B 1B.∵ BC ∩B 1B =B ,∴ AD ⊥平面B 1BCC 1. ∵ B 1F ⊂平面B 1BCC 1,∴ AD ⊥B 1F.在矩形B 1BCC 1中,C 1F =CD =a ,B 1C 1=CF =2a , ∴ Rt △DCF ≌Rt △FC 1B 1,∴ ∠CFD =∠C 1B 1F , ∴ ∠B 1FD =90°,∴ B 1F ⊥FD . ∵ AD ∩FD =D ,∴ B 1F ⊥平面AFD . (2) 解: ∵ B 1F ⊥平面AFD ,∴ VB 1-ADF =13·S △ADF ·B 1F =13×12×AD ×DF ×B 1F =52a 33.如图①,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2.将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体DABC ,如图②.(1) 求证:BC ⊥平面ACD ; (2) 求几何体DABC 的体积.(1) 证明:(证法1)在图①中,由题意知,AC =BC =22,∴ AC 2+BC 2=AB 2,∴ AC ⊥BC .取AC 的中点O ,连结DO ,由AD =CD ,得DO ⊥AC .又平面ADC ⊥平面ABC ,且平面ADC ∩平面ABC =AC ,DO ⊂平面ACD , ∴ OD ⊥平面ABC ,∴ OD ⊥BC . 又AC ⊥BC ,AC ∩OD =O , ∴ BC ⊥平面ACD .(证法2)在图①中,由题意得AC =BC =22,∴ AC 2+BC 2=AB 2, ∴ AC ⊥BC .∵ 平面ADC ⊥平面ABC ,平面ADC ∩平面ABC =AC ,BC ⊂平面ABC , ∴ BC ⊥平面ACD .(2) 解:由(1)知,BC 为三棱锥BACD 的高, 且BC =22,S △ACD =12×2×2=2,∴ 三棱锥BACD 的体积V BACD =13S △ACD ·BC =13×2×22=423,即几何体DABC 的体积为423.1. (2018·天津卷)如图,已知正方体ABCDA 1B 1C 1D 1的棱长为1,则四棱锥A 1BB 1D 1D 的体积为________.答案:13解析:如图,连结A 1C 1,交B 1D 1于点O ,很明显A 1C 1⊥平面BDD 1B 1,则A 1O 是四棱锥的高,且A 1O =12A 1C 1=12×12+12=22,S 四边形BDD 1B 1=BD ×DD 1=2×1=2,结合四棱锥体积公式可得其体积为V =13Sh =13×2×22=13.2. (2018·江苏卷)如图,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.答案:43解析:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于2,所以该多面体的体积为2×13×1×(2)2=43.3. (2017·北京卷)如图,在三棱锥PABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,点D 为线段AC 的中点,E 为线段PC 上一点.(1) 求证:PA ⊥BD ;(2) 求证:平面BDE ⊥平面PAC ;(3) 当PA ∥平面BDE 时,求三棱锥EBCD 的体积.(1) 证明:因为PA ⊥AB ,PA ⊥BC ,AB ∩BC =B ,所以PA ⊥平面ABC. 因为BD ⊂平面ABC ,所以PA ⊥BD.(2) 证明:因为AB =BC ,点D 为AC 的中点,所以BD ⊥AC. 由(1)知,PA ⊥BD ,PA ∩AC =A ,所以BD ⊥平面PAC. 又BD ⊂平面BDE , 所以平面BDE ⊥平面PAC.(3) 解:因为PA ∥平面BDE ,平面PAC ∩平面BDE =DE ,所以PA ∥DE. 因为点D 为AC 的中点,所以DE =12PA =1,BD =DC =2.由(1)知,PA ⊥平面ABC ,所以DE ⊥平面ABC , 所以三棱锥EBCD 的体积为V =13×12×BD ×DC ×DE =13.4. (2017·全国卷Ⅰ)如图,在四棱锥PABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°. (1) 求证:平面PAB ⊥平面PAD ;(2) 若PA =PD =AB =DC ,∠APD =90°,且四棱锥PABCD 的体积为83,求该四棱锥的侧面积.(1) 证明:由已知∠BAP =∠CDP =90°,得AB ⊥AP ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD .又PA ∩PD =P ,所以AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(2) 解:如图,在平面PAD 内作PE ⊥AD ,垂足为点E .由(1)知,AB ⊥平面PAD ,故AB ⊥PE ,由AB ∩AD =A ,可得PE ⊥平面ABCD .设AB =x ,则由已知可得AD =2x ,PE =22x ,故四棱锥PABCD 的体积V PABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,解得x =2. 从而PA =PD =2,AD =BC =22,PB =PC =22,所以△PBC 为等边三角形,可得四棱锥PABCD 的侧面积为 12PA ·PD +12PA ·AB +12PD ·DC +12BC 2sin 60°=6+2 3.5. (2017·全国卷Ⅲ)如图,在四面体ABCD 中,△ABC 是正三角形,AD =CD .(1) 求证:AC ⊥BD ;(2) 已知△ACD 是直角三角形,AB =BD ,若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.(1) 证明:如图,取AC 的中点O ,连结DO ,BO .因为AD =CD ,所以AC ⊥DO .又由于△ABC 是正三角形,所以AC ⊥BO . 又DO ∩BO =O ,所以AC ⊥平面DOB . 因为BD ⊂平面DOB ,所以AC ⊥BD . (2) 解:连结EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,BO 2+AO 2=AB 2. 又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2, 故∠DOB =90°.由题设知△AEC 为直角三角形,所以EO =12AC .又△ABC 是正三角形,且AB =BD ,所以EO =12BD ,故点E 为BD 的中点.所以点E 到平面ABC 的距离为点D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1∶1.(本题模拟高考评分标准,满分14分) (2018·长春模拟)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1) 求证:平面AEC ⊥平面BED ;(2) 若∠ABC =120°,AE ⊥EC ,三棱锥EACD 的体积为63,求该三棱锥的侧面积.(1) 证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,AC ⊂平面ABCD ,所以AC ⊥BE .(2分) 因为BD ∩BE =B ,故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(6分)(2) 解:设AB =x ,在菱形ABCD 中,由∠ABC =120°,得AG =GC =32x ,GB =GD=x2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x .(8分)由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x .由已知得三棱锥EACD 的体积为63,即13×12·AC ·GD ·BE =624x 3=63,解得x =2.(9分)从而可得AE =EC =ED =6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5.故三棱锥EACD 的侧面积为3+25.(14分)1. 若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为________. 答案:2π解析: 设圆柱的底面半径为r ,高为h ,则有2πr =2,即r =1π,故圆柱的体积为V =πr 2h =π⎝ ⎛⎭⎪⎫1π2×2=2π.2. 如图,已知AF ⊥平面ABCD ,四边形ABEF 为矩形,四边形ABCD 为直角梯形,∠DAB =90°,AB ∥CD ,AD =AF =CD =2,AB =4.(1) 求证:AF ∥平面BCE ; (2) 求证:AC ⊥平面BCE ; (3) 求三棱锥EBCF 的体积.(1) 证明:∵ 四边形ABEF 为矩形,∴ AF ∥BE .又BE ⊂平面BCE ,AF ⊄平面BCE , ∴ AF ∥平面BCE .(2) 证明:如图,过点C 作CM ⊥AB ,垂足为点M . ∵ AD ⊥DC ,∴ 四边形ADCM 为矩形, ∴ AM =DC =MB =AD =2.∴ AC =22,CM =2,BC =22,∴ AC 2+BC 2=AB 2,∴ AC ⊥BC . ∵ AF ⊥平面ABCD ,AF ∥BE , ∴ BE ⊥平面ABCD ,∴ BE ⊥AC .∵ BE ⊂平面BCE ,BC ⊂平面BCE ,BC ∩BE =B , ∴ AC ⊥平面BCE .(3) 解:∵ AF ⊥平面ABCD ,∴ AF ⊥CM .∵ CM ⊥AB ,AF ⊂平面ABEF ,AB ⊂平面ABEF ,AF ∩AB =A ,∴ CM ⊥平面ABEF ,∴ V 三棱锥EBCF =V 三棱锥CBEF =13×12×BE ×EF ×CM =16×2×4×2=83.3. (2016·江苏卷)现需要设计一个仓库,它由上、下两部分组成,上部分的形状是正四棱锥P A 1B 1C 1D 1,下部分的形状是正四棱柱ABCD A 1B 1C 1D 1(如图),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1) 若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2) 若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大?解:(1) ∵ PO 1=2 m ,正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,∴ O 1O =8 m ,∴ 仓库的容积V =13×62×2+62×8=312(m 3). (2) 若正四棱锥的侧棱长为6 m ,设PO 1=x m ,则O 1O =4x m ,A 1O 1=36-x 2 m ,A 1B 1=2·36-x 2 m , 则仓库的容积V (x )=13×(2·36-x 2)2·x +(2·36-x 2)2·4x =-263x 3+312x (0<x<6), V ′(x )=-26x 2+312(0<x <6).当0<x <23时,V ′(x )>0,V (x )单调递增; 当23<x <6时,V ′(x )<0,V (x )单调递减. 故当x =23时,V (x )取最大值. 即当PO 1=23 m 时,仓库的容积最大.请使用“课后训练·第19讲”活页练习,及时查漏补缺!。

2019高考数学二轮复习专题五解析几何商考提能圆的第二定义__阿波罗尼斯圆课件

2019高考数学二轮复习专题五解析几何商考提能圆的第二定义__阿波罗尼斯圆课件
解答
例3 如图所示,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4, 设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;
解答
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.
解答
例4 在x轴正半轴上是否存在两个定点A,B,使得圆x2+y2=4上任意一
四、范例欣赏
例1 设A(-c,0),B(c,0)(c>0)为两定点,动点P到A点的距离与到B点的 距离的比为定值a(a>0),求P点的轨迹.
解答
例2 如图,圆O1与圆O2的半径都是1,O1O2=4,过动点P分别作圆O1, 圆O2的切线PM,PN(M,N分别为切点),使得PM= 2PN,试建立适当的 坐标系,并求动点P的轨迹方程.
设切线l方程为y-2=k(x-4),
易得
|4k-2| k2+1=1,解得
k=8±1519.
∴切线 l 的方程为 y-2=8±1519(x-4).
123456
解答
(2)求以点M为圆心,且被直线y=2x-1截得的弦长为4的⊙M的方程; 解 圆心到直线 y=2x-1 的距离为 5,设圆的半径为 r,则 r2=22+( 5)2 =9,
5.如图,已知平面α⊥平面β,A,B是平面α与平面β的交线上的两个定点, DA⊂β,CB⊂β,且DA⊥α,CB⊥α,AD=4,BC=8,AB=6,在平面α上 有一个动点P,使得∠APD=∠BPC,求△PAB的面积的最大值.
123456
解答
6.已知⊙O:x2+y2=1和点M(4,2). (1)过点M向⊙O引切线l,求直线l的方程; 解 直线l的斜率存在,
证:设AB=2m(m>0),PA=λPB,以AB中点为原点,直线AB为x轴建立 平面直角坐标系,则A(-m,0),B(m,0). 又设 P(x,y),则由 PA=λPB 得 x+m2+y2=λ x-m2+y2, 两边平方并化简整理得(λ2-1)x2-2m(λ2+1)x+(λ2-1)y2=m2(1-λ2). 当λ=1时,x=0,轨迹为线段AB的垂直平分线; 当 λ>1 时,x-λλ22+ -11m2+y2=λ42λ-2m122,轨迹为以点λλ22+ -11m,0为圆心, 2λm λ2-1为半径的圆. 上述课本习题的一般化情形就是阿波罗尼斯定理.

高考理科数学二轮复习:专题透析(5)概率与统计名师讲义(含答案)

高考理科数学二轮复习:专题透析(5)概率与统计名师讲义(含答案)

5概率与一、数原理1.分加法数原理和分步乘法数原理的区是什么?分加法数原理“分” ,此中各样方法互相独立 ,用此中任何一种方法都能够做完件事 ;分步乘法数原理“分步” ,各个步互相依存 ,只有各个步都达成了才算达成件事 .2.摆列数、合数的公式及性是什么?(1)=n(n-1)(n-2) ⋯(n-m+1)=公(2)= =式=(n,m∈N+ ,且 m≤n)特地 , =1性(1)0!= 1; =n!(2) =;=+3.二式系数的性是什么?性性描绘称与首末两头“等距离”的两个二式系数相等 ,即 =性增减二式系当 k<(n∈N+ ) ,二式系数是增的性数(n∈N+ ) ,二式系数是减的当 k>二式当 n 偶数 ,中的一获得最大系数的最大当 n 奇数 ,中的两与获得最大而且相等4.各二式系数的和是什么?(1)(a+b )n睁开式的各二式系数的和+ + + ⋯+= 2n.(2)偶数的二式系数的和等于奇数的二式系数的和,即+ + + ⋯= + ++ ⋯= 2n- 1.二、概率1.互斥事件与立事件有什么区与系?互斥与立都是两个事件的关系,互斥事件是不行能同生的两个事件,而立事件除要求两个事件不一样生外 ,要求两者之一必有一个生 .所以 ,立事件是互斥事件的特别状况 ,而互斥事件不必定是立事件 .2.基本领件的三个特色是什么?(1)每一个基本领件生的可能性都是相等的;(2)任何两个基本领件都是互斥的;(3)任何事件 (除不行能事件 )都能够表示成基本领件的和.3.古典概型、几何概型的概率公式分是什么?古典概型的概率公式 :P(A)=.几何概型的概率公式 :P(A)=.三、统计初步与统计事例1.分层抽样的合用范围是什么?当整体是由差别明显的几个部分构成时,常常采纳分层抽样的方法.2.怎样作频次分布直方图?(1)求极差 (即一组数据中最大值与最小值的差).(2)决定组距与组数 .(3)将数据分组 .(4)列频次分布表 .(5)画频次分布直方图 .3.频次分布直方图的特色是什么?(1)频次分布直方图中相邻两横坐标之差表示组距,纵坐标表示,频率=组距×.(2)在频次分布直方图中 ,各小长方形的面积总和等于 1.由于在频次分布直方图中组距是一个固定值 ,所以各小长方形高的比也就是频次比 .(3)频次分布表和频次分布直方图是一组数据频次分布的两种形式,前者正确 ,后者直观 .4.怎样进行回归剖析 ?(1)定义 :对拥有有关关系的两个变量进行统计剖析的一种常用方法.(2)本点的中心于一拥有性有关关系的数据 (x1,y1),(x2,y2), ⋯ ,(x n,y n),此中 ( , )称本点的中心 .(3)有关系数当r> 0 ,表示两个量正有关; 当r< 0 ,表示两个量有关 .r 的越靠近于 1,表示两个量的性有关性越 .r 的越靠近于 0,表示两个量之的性有关性越弱 .往常当 |r|大于 0.75 ,两个量有很的性有关性.5.独立性的一般步是什么?解决独立性的用,必定要依照独立性的步得出.独立性的一般步 :(1)依据本数据制成2×2 列表 ;(2)依据公式 K2=算K2的k;(3)比 k 与界的大小关系 ,做出推测 .四、随机量及其用1.失散型随机量的分布列及性是什么?(1)失散型随机量的分布列:若失散型随机量X 全部可能的取x1,x2, ⋯,x i⋯,x n,X 取每一个 x i(i= 1,2, ⋯,n)的概率 p1,p2, ⋯,p n,表X x1x2⋯x i⋯x nP p1p2⋯p i⋯p n称失散型随机量X 的概率分布列或称失散型随机量X 的分布列.(2)失散型随机量的分布列的性:①0≤p≤1(i= 1,2,3,⋯,i n);②p1+p2+ ⋯+p n= 1;③P(x i≤X≤x j)=p i+p i+ 1+ ⋯+p j .2.事件的互相独立性的观点及公式是什么?(1)互相独立的定 :事件 A 能否生事件 B 能否生的概率没有影响,即 P(B|A)=P (B). ,称事件 A 与事件 B 互相独立 ,并把两个事件叫作互相独立事件 .(2)概率公式条件事件 A,B 互相独立事件 A⋯,1,A2, A n互相独立公式P(A∩B)=P (A) ·P(B) P(A1∩A2∩⋯∩A n) =P (A1) ·P(A2) ·⋯·P(A n)3.独立重复与二分布的观点和公式是什么?(1)独立重复①定 :在同样条件下 ,重复地做n 次 ,各次互相独立 ,那么一般就称它 n 次独立重复 .②概率公式 :在一次中事件 A 生的概率p, n 次独立重复中,事件 A 恰巧生 k 次的概率 P k n-k⋯,n(k)=p (1-p)(k=0,1,2,n).(2)二分布 :在 n 次独立重复中 ,事件 A 生的次数 X,事件 A 不生的概率 q= 1-p, n 次独立重复中事件 A 恰巧生 k 次的概率是P(X=k)= p k q n-k,此中 k=0,1,2,⋯,n于是 X 的分布列 :X 0 1 ⋯k ⋯np0pq p k q n p n qP⋯⋯q n n-1-k0此称失散型随机量X 听从参数 n,p 的二分布 ,作 X~B(n,p).4.正分布的观点及性是什么?(1)正曲 :正量的概率密度函数的象叫作正曲,其函数表达式 f(x)=·,x∈R,此中μ,σ 参数 ,且σ>0,-∞<μ<+∞.(2)正曲的性①曲位于 x 上方 ,与 x 不订交 ,与 x 之的面1;②曲是峰的 ,它对于直 x=μ 称 ;③曲在 x=μ 达到峰;④当μ必定 ,曲的形状由σ确立 ,σ越小 ,曲越“瘦高”,表示体的分布越集中 ;σ越大 ,曲越“矮胖”,表示体的分布越分别 .(3)正体在三个特别区内取的概率①P(μ-σ<X≤μ+σ)= 0.6826;②P(μ-2σ<X≤μ+2σ)= 0.9544;③P(μ-3σ<X≤μ+3σ)= 0.9974.5.失散型随机量的数学希望(或均 )与方差的观点是什么 ?一个失散型随机量X 全部可能取的是x1,x2, ⋯,x n些的概率分是 p1,p2, ⋯,p n.(1)数学希望 :称 E(X)=x 1p1+x2p2+ ⋯+x n p n失散型随机量 X 的均或数学希望 (称希望 ),它刻画了个失散型随机量取的均匀水平 .(2)方差 :称 D(X)= (x1-E(X))2p1+ (x2-E(X))2p2+ ⋯+ (x n-E(X))2p n失散型随机量 X 的方差 ,它反应了失散型随机量取相于希望的均匀波大小(或失散程度 ),D(X)的算平方根叫作失散型随机量X 的准差 .6.均与方差的性有哪些?(1)E(aX+b)=aE (X)+b(a,b 常数 ).(2)D(aX+b )=a2D(X)(a,b 常数 ).(3)两点分布与二分布的均、方差的公式①若 X 听从两点分布 ,E(X)=p ,D(X)=p (1-p).②若 X~B(n,p), E(X)=np,D(X)=np(1-p).几何概型、古典概型、互相独立事件与互斥事件的概率、条件概率是高考的点 ,几何概型主要以客形式考,求解的关在于找准度(度或面 );互相独立事件、互斥事件常作解答的一部分考,也是一步求分布列、希望与方差的基础,求解该类问题要正确理解题意,正确判断概率模型,恰当选择概率公式 .近几年的高考数学试题对统计事例的考察一般不独自命题 ,而是与概率、随机变量的数学希望交汇命题 ,高考对此类题目的要求是能依据给出的或经过统计图表给出的有关数据求线性回归方程,认识独立性查验的思想方法 ,会判断两个分类变量能否有关.从近几年高考情况来看,该类专题在高考取占的比率大概为15%,以简单题、中档题为主,考察题型分选择题、填空题和解答题 .一、选择题、填空题的命题特色(一)考察摆列、组合的应用 ,以考察两个计数原理和摆列、组合的应用为主,难度中等 ,常常以选择题、填空题的形式出现.1.(2018 ·全国Ⅰ卷·理 T15 改编 )从 2 名女生 ,4 名男生中选 3 人参加科技竞赛 ,恰有 1 名女生当选 ,则不一样的选法共有种.(用数字填写答案)分析 ?由题意可得有1名女生,2名男生,则有 C = 12 种不一样的选法 .答案?122.(2018 ·浙江卷·T16 改编 )从 1,3,5,7,9 中任取 2 个数字 ,从 2,4,6 中任取 2 个数字,一共能够构成个没有重复数字的四位数.(用数字作答 )分析 ?一共能够构成 A = 720 个没有重复数字的四位数.答案 ?7203.(2017 ·全国Ⅱ卷·理 T6 改编 )安排 5 名志愿者达成 4 项工作 ,每项工作只需由1 人达成 ,则不一样的安排方式共有 ().A.120 种B.180 种C.240 种D.360 种分析 ?由题意可得 ,5 人中选出 4 人达成工作 ,剩下 1 人没有工作 ,故不同的安排方式有 A = 120(种).答案 ?A(二)考察二项式定理的应用,以考察运用二项式定理求特定项、求项数和二项式定理性质的应用为主,难度中等 ,常常以选择题、填空题的形式出现.4.(2018 ·全国Ⅲ卷·理 T5 改编 )的睁开式中x的系数为().A.10B.20C.40D.80分析 ?由题可得 Tr+ 1C25-rC·r ·10-3r, (x ) 2 x令 10-3r= 1,得 r= 3.所以·2r=·32 =80.答案 ?D5.(2017 ·全国Ⅰ卷·理 T6 改编 )(1+x )6的睁开式中 x4的系数为 ().A.15B.16C.30D.35分析 ?由于 (1+x)6睁开式的通项为 T r 所以(1+x)6的展r+ 1C x ,开式中含 x4的项为 1C x4和C x6.由于+= 16,所以(1+x)6的睁开式中x4的系数为16.答案 ?B(三)考察随机事件的概率 ,以考察随机事件、互斥事件与对峙事件的概率为主 ,难度中等 ,常与事件的频次交汇考察.本节内容在高考取三种题型都有可能出现 ,随机事件的频次与概率题目常常以解答题的形式出现,互斥事件、对峙事件的观点及概率题目常常以选择、填空题的形式出现.6.(2018 ·全国Ⅲ卷·文 T5 改编 )若某集体中的成员只用现金支付的概率为0.25,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为().分析 ? 设事件 A 为“不用现金支付”,事件 B 为“既用现金支付也用非现金支付”,事件 C 为“只用现金支付”,则 P(A)= 1-P(B)-P(C)= 1-0.15-0.25= 0.6,故选 C.答案?C(四)考察古典概型 ,全国卷对古典概型每年都会考察 ,难度中等 ,主要考察实质背景的可能事件 ,往常与互斥事件、对峙事件一同考察 .在高考取独自命题时 ,往常以选择题、填空题形式出现 ,属于中低档题 .7.(2018 ·全国Ⅱ卷·理 T8 改编 )我国数学家陈景润在哥德巴赫猜想的研究中获得了世界当先的成就 .哥德巴赫猜想是“每个大于 2 的偶数能够表示为两个素数的和”,如30= 7+ 23.在不超出 30 的素数中 ,随机选用 2 个不一样的数 ,其和等于26 的概率是 ().A. B. C. D.分析 ?不超出30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选用 2 个不一样的数 ,共有 C= 45 种取法 .由于 3+ 23= 7+ 19= 26,所以随机选用2 个不一样的数 ,其和等于 26 的有 2 种取法 ,故所求概率为.答案?D8.(2018 ·江苏卷·T6 改编 )某兴趣小组有 2 名男生和 3 名女生 ,现从中任选 2 名学生去参加活动 ,则恰巧选中 1 名男生和 1 名女生的概率为.分析 ?从5名学生中任选2 名学生 ,共有 C = 10 种选法 ,此中恰巧选中1 名男生和 1 名女生的选法有 C C= 6 种,所以所求概率为= .答案 ?(五)考察几何概型 ,难度较大 ,以理解几何概型的观点、概率公式为主,会求一些简单的几何概型的概率 ,常与平面几何、线性规划、不等式的解集等知识交汇考察 ,在高考取多以选择题、填空题的形式考察 ,难度中等 .9.(2018 ·全国Ⅰ卷·理 T10 改编 )折纸艺术是我国古代留下来可贵的民间艺术,拥有很高的审美价值和应用价值.以下图的是一个折纸图案,由一个正方形内切一个圆形 ,而后在四个极点处罚别嵌入半径为正方形边长一半的扇形 .向图中随机投入一个质点 ,则质点落在暗影部分的概率 P1与质点落在正方形内圆形地区外面的概率P2的大小关系是 ().A.P1>P 2B.P1<P 2C.P1=P 2D.不可以确立分析 ?将正方形内圆形地区外面的四个角进行沿直角边重合组合,恰好获得的图形就是暗影部分图形,所以暗影部分地区的面积等于正方形内圆形地区外面的面积 ,故 P1=P 2.答案?C10.(2016 ·全国Ⅱ卷·文 T8 改编 )某路口人行横道的信号灯为红灯和绿灯交替出现 ,红灯连续时间为40 秒.若一名行人到达该路口碰到红灯,则起码需要等待 10 秒才出现绿灯的概率为().A. B. C. D.分析 ?起码需要等候10秒才出现绿灯的概率为= ,应选 A .答案?A(六)考察随机抽样 ,在抽样方法的考察中,系统抽样、分层抽样是考察的要点 ,题型主要以选择题和填空题为主,属于中低档题 .11.(2017 ·江苏卷·T3 改编 )某工厂生产甲、乙、丙、丁四种不一样型号的产品,产量分别为 200、400、300、100 件,为查验产品的质量 ,现用分层抽样的方法从以上全部的产品中抽取60 件进行查验 ,则应从甲种型号的产品中抽取件.分析 ?∵==,∴应从甲种型号的产品中抽取×200= 12(件 ).答案?12(七)用样本预计整体 ,主要考察均匀数、方差等的计算以及茎叶图、频次分布直方图的简单应用 .题型以选择题和填空题为主 ,出现解答题时常常与概率相联合 ,属于中档题 .12.(2018 ·全国Ⅰ卷·理 T3 改编 )某地域经过一年的新乡村建设,乡村的经济收入增添了一倍 ,实现翻番 .为更好地认识该地域乡村的经济收入变化状况,统计了该地域新乡村建设前后乡村的经济收入构成比率,获得以下饼图 :则以下选项中不正确的选项是().A.新乡村建设后 ,栽种收入增添B.新乡村建设后 ,其余收入增添了一倍以上C.新乡村建设后 ,养殖收入没有增添D.新乡村建设后 ,养殖收入与第三家产收入的总和超出了经济收入的一半分析 ? 由题干可知 ,乡村的经济收入增添了一倍 ,实现翻番 .为方即可设建设前后的经济收入分别为 100,200(单位省去 ).A 中,栽种收入前后分别为60,74,收入增添了 ,A 正确 ;B 中,其余收入前后分别为 4,10,增添了一倍以上 ,B 正确 ;C 中,养殖收入前后分别为 30,60,收入增添了一倍 ,C 错误 ;D 中,建设后 ,养殖收入与第三家产收入的总和为(30+ 28)×2= 116> 100,D 正确 .应选 C.答案?C13.(2017 ·全国Ⅲ卷·理 T3)某城市为认识旅客人数的变化规律 ,提升旅行服务质量 ,采集并整理了 2014 年 1 月至 2016 年 12 月时期月招待旅客量 (单位 :万人)的数据 ,绘制了下边的折线图 .依据该折线图 ,以下结论错误的选项是 ().A.月招待旅客量逐月增添B.年招待旅客量逐年增添C.各年的月招待旅客量顶峰期大概在7,8 月D.各年 1 月至 6 月的月招待旅客量相对于7 月至 12 月,颠簸性更小 ,变化比较安稳分析 ? 对于选项 A, 由图易知 ,月招待旅客量每年 7,8 月份明显高于 12 月份 ,故 A 错误 ;对于选项 B,察看折线图的变化趋向可知 ,年招待旅客量逐年增添 ,故 B 正确 ;对于选项 C,D,由图可知明显正确 .答案?A(八)考察失散型随机变量分布列、超几何分布、条件概率、正态分布、数学希望与方差 ,求失散型随机变量的数学希望是全国卷高考要点考察的内容,在选择题、填空题中有时会出现.主要考察失散型随机变量的分布列、数学希望、正态分布等 .14.(2018 ·全国Ⅲ卷·理 T8 改编 )某集体中的每位成员使用挪动支付的概率都为 p,各成员的支付方式互相独立,设 X 为该集体的 10 位成员中使用挪动支付的人数 ,D(X)= 2.1,P(X= 4)<P (X= 6),则 p= ().分析 ? 由于 X~B(n,p),所以 D(X)=np(1-p)= 2.1,所以 p= 0.3 或 p=0.7.由于 P(X= 4)=p4(1-p)6<P (X= 6)=p6(1-p)4,所以 (1-p)2 2可得p> 0.5.故p=0.7.<p ,答案?A15.(2017 ·全国Ⅱ卷·理 T13 改编 )一批产品的二等品率为 0.08,从这批产品中每次随机取一件,有放回地抽取 100 次,X 表示抽到的二等品件数,则D(X)=.分析 ?有放回地抽取,是一个二项分布模型, 此中p=0.08,n=100,则D(X)=np(1-p)= 100×0.08×0.92= 7.36.答案 ?7.36二、解答题的命题特色概率与统计综合试题的题干阅读量大,简单造成考生在数学模型转变过程中失误,得分率不高 .这些试题主要考察古典概型,用样本预计整体,利用回归方程进行展望 ,独立性查验的应用 ,失散型随机变量的分布列和数学希望 ,正分布等 .概率、随机量的数学希望交命,高考此目的要求是能依据出的或通表出的有关数据求性回方程.1.(2018 ·全国Ⅱ卷·理 T18)下是某地域 2000 年至 2016 年境基施投y(位 :元)的折.了地域 2018 年的境基施投 ,成立了 y 与量 t 的两个性回模型 .依据2000 年至 2016 年的数据 (量 t 的挨次1,2, ⋯ ,17)成立模型①: =- 30.4+ 13.5t;依据 2010年至 2016 年的数据 (量t 的挨次 1,2, ⋯,7)成立模型②: = 99+ 17.5t.(1)分利用两个模型 ,求地域 2018 年的境基施投的.(2)你用哪个模型获得的更靠谱?并明原因 .分析 ? (1)利用模型①,从 2000 年开始算起 ,2018 年即 t= 19,所以地域2018 年的境基施投的=- 30.4+ 13.5×19= 226.1(元).利用模型②,从 2010 年开始算起 ,2018 年即 t= 9,所以地域 2018 年的境基施投的= 99+ 17.5×9= 256.5(元).(2)利用模型②获得的更靠谱 .原因以下 :(i) 从折能够看出 ,2000年至 2016 年的数据的点没有随机分布在直线 y=- 30.4+ 13.5t 上下 ,这说明利用 2000 年至 2016 年的数据成立的线性模型①不可以很好地描绘环境基础设备投资额的变化趋向.2010 年相对 2009 年的环境基础设备投资额有明显增添,2010 年至 2016 年的数据对应的点位于一条直线的邻近 ,这说明从 2010 年开始环境基础设备投资额的变化规律呈线性增添趋向,利用2010年至2016年的数据成立的线性模型= 99+ 17.5t能够,所以利用模型②较好地描绘2010年此后的环境基础设备投资额的变化趋向获得的展望值更靠谱.(ii)从计算结果看 ,相对于 2016 年的环境基础设备投资额 220 亿元 ,由模型①获得的展望值 226.1 亿元的增幅明显偏低 ,而利用模型②获得的展望值的增幅比较合理 ,说明利用模型②获得的展望值更靠谱 .2.(2018 ·全国Ⅰ卷,理 T20)某工厂的某种产品成箱包装 ,每箱 200 件,每一箱产品在交托用户以前要对产品作查验,如查验出不合格品,则改换为合格品 .查验时 ,先从这箱产品中任取 20 件作查验 ,再依据查验结果断定能否对余下的全部产品作查验 .设每件产品为不合格品的概率都为p(0<p< 1),且各件产品能否为不合格品互相独立.(1)记 20 件产品中恰有 2 件不合格品的概率为f(p),求 f(p)的最大值点 p0.(2)现对一箱产品查验了20 件,结果恰有 2 件不合格品 ,以(1)中确立的 p0作为p 的值 .已知每件产品的查验花费为 2 元,如有不合格品进入用户手中,则工厂要对每件不合格品支付25 元的补偿花费 .(i)若不对该箱余下的产品作查验 ,这一箱产品的查验花费与补偿花费的和记为 X,求 E(X).(ii)以查验花费与补偿花费和的希望值为决议依照 ,能否该对这箱余下的全部产品作查验 ?分析 ? (1)由题意可知 ,独立重复试验切合二项分布 ,20 件产品中恰有 2 件不合格品的概率为f(p)C p2(1-p)18= 190p2(1-p)18,对上式求导得 f'(p)= [190p2(1-p)18]'=190[2p(1-p)18-18p2(1-p)17]=190p(1-p)17[2(1-p)-18p]=380p(1-p)17(1-10p).当 f'(p)= 0 时,有 p(1-p)17由适当∈时(1-10p)= 0,0<p< 1,p,f'(p)> 0,f(p)单一递加 ;当 p∈时,f'(p)< 0,f(p)单一递减.故 f(p)max=f (p0)=f,即 p0= .(2)(i) 由题意 ,节余未作查验的产品有180件,此中 Y表示不合格品的件数 ,其听从二项分布Y~B.故 E(Y)= 180× = 18.又 X= 40+ 25Y,故 E(X)=E (40+ 25Y)= 40+ 25×18= 490(元).(ii)若对这箱余下的全部产品作查验 ,则需要的查验费为 200×2= 400(元).由于 E(X)= 490> 400,所以需要对这箱余下的全部产品作查验.3.(2018 ·全国Ⅲ卷·理 T18)某工厂为提升生产效率 ,睁开技术创新活动 ,提出了达成某项生产任务的两种新的生产方式 .为比较两种生产方式的效率,选用40 名工人 ,将他们随机分红两组 ,每组 20 人,第一组工人用第一种生产方式 , 第二组工人用第二种生产方式 .依据工人达成生产任务的工作时间 (单位 :min) 绘制了以下茎叶图 :(1)依据茎叶图判断哪一种生产方式的效率更高?并说明原因 .(2)求 40 名工人达成生产任务所需时间的中位数 m,并将达成生产任务所需时间超出 m 和不超出 m 的工人数填入下边的列联表 :不超出超出 mm第一种生产方式第二种生产方式(3)依据 (2)中的列联表 ,可否有 99%的掌握以为两种生产方式的效率有差别?附:K2=,P(K2≥k0)0.0500.0100.001k0 3.841 6.63510.828分析 ? (1)第二种生产方式的效率更高.原因以下 :(i)由茎叶图可知 ,用第一种生产方式的工人中 ,有 75%的工人达成生产任务所需时间起码 80 分钟 ,用第二种生产方式的工人中 ,有 75%的工人达成生产任务所需时间至多 79 分钟 ,所以第二种生产方式的效率更高 .(ii)由茎叶图可知,用第一种生产方式的工人达成生产任务所需时间的中位数为 85.5 分钟 ,用第二种生产方式的工人达成生产任务所需时间的中位数为 73.5 分钟 ,所以第二种生产方式的效率更高 .(iii)由茎叶图可知,用第一种生产方式的工人达成生产任务均匀所需时间高于 80 分钟 ,用第二种生产方式的工人达成生产任务均匀所需时间低于80 分钟 ,所以第二种生产方式的效率更高.(iv)由茎叶图可知 ,用第一种生产方式的工人达成生产任务所需时间分布在茎 8 上的最多 ,对于茎 8 大概呈对称分布 ;用第二种生产方式的工人达成生产任务所需时间分布在茎 7 上的最多 ,对于茎 7 大概呈对称分布 .又用两种生产方式的工人达成生产任务所需时间分布的区间同样 ,故能够以为用第二种生产方式达成生产任务所需的时间比用第一种生产方式达成生产任务所需的时间更少 ,所以第二种生产方式的效率更高 .(2)由茎叶图知 m== 80.列联表以下 :超出 m不超出第一种生产方m 155式第二种生产方515式(3)因 K2的 k== 10> 6.635,所以有 99%的掌握两种生方式的效率有差别.4.(2017 ·全国Ⅰ卷·理 T19)了控某种部件的一条生的生程,每日从生上随机抽取16 个部件 ,并量其尺寸 (位 :cm).依据期生 ,能够条生正常状下生的部件的尺寸听从正分布2N(μ,σ).(1) 假生状正常,X 表示一天内抽取的16 个部件中其尺寸在(μ-3σ,μ+3σ)以外的部件数,求P(X≥1)及X 的数学希望.(2)一天内抽部件中 ,假如出了尺寸在 (μ-3σ,μ+3σ)以外的部件 ,就条生在一天的生程可能出了异样状况 ,需当日的生程行 .(i)明上述控生程方法的合理性 .(ii)下边是在一天内抽取的 16 个部件的尺寸 :9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95算得 =xi= 9.97,s==≈0 .212,此中 x i抽取的第 i 个部件的尺寸 ,i= 1,2,⋯,16.用本均匀数作μ的估 ,用本准差 s 作σ的估 ,利用估判断能否需当日的生程行?剔除 ( -3, + 3 )以外的数据 ,用剩下的数据估μ和σ(精准到 0.01).2附:若随机量Z服从正分布N(μ,σ),P(μ-3σ<Z<μ+3σ)= 0.9974,0.997416≈0.9592,≈0.09.分析 ? (1)由题可知抽取的一个部件的尺寸落在(μ-3σ,μ+3σ)以内的概率为 0.9974,进而部件的尺寸落在 (μ-3σ,μ+3σ)以外的概率为0.0026,故 X~B(16,0.0026).所以 P(X≥1)= 1-P(X= 0)= 1-0.997416≈1-0.9592=0.0408, X 的数学希望 E(X)= 16×0.0026= 0.0416.(2)(i) 假如生产状态正常 ,一个部件尺寸在 (μ-3σ,μ+3σ)以外的概率只有0.0026,一天内抽取的16 个部件中,出现尺寸在(μ-3σ,μ+3σ)以外的部件的概率只有0.0408,发生的概率很小,所以一旦发生这种状况,就有原因以为这条生产线在这天的生产过程可能出现了异样状况,需对当日的生产过程进行检查,可见上述监控生产过程的方法是合理的 .(ii) 由 = 9.97,s≈0.212,得μ的预计值为 = 9.97,σ的预计值为 = 0.212,由样本数据能够看出有一个部件的尺寸在 ( -3 , + 3 )以外 ,所以需对当日的生产过程进行检查 .剔除( -3 , +3 )以外的数据9.22,剩下数据的均匀数为×(16×9.97-9.22)= 10.02,所以μ的预计值为 10.02.= 16×0.2122+ 16×9.972≈ 1591.134,剔除( -3 , +3 )以外的数据9.22,剩下数据的样本方差为×2-15×10.022) ≈0.008,所以σ的预计值为≈0.09.1.样本数据(1)众数、中位数及均匀数都是描绘一组数据集中趋向的量 ,均匀数是最重要的量 ,与每个样本数占有关 ,这是中位数、众数所不拥有的性质 .(2)标准差、方差描绘了一组数据环绕均匀数颠簸的大小.标准差、方差越大 ,数据的失散程度就越大.(3)茎叶图、频次分布表和频次分布直方图都是用图表直观描绘样本数据的分布规律的 .2.频次分布直方图(1)用样本预计整体是统计的基本思想,而利用频次分布表和频次分布直方图来预计整体则是用样本的频次分布去预计整体分布的两种主要方法 .频次分布表在数目表示上比较正确 ,频次分布直方图比较直观 .(2)频次分布表中的频数之和等于样本容量,各组中的频次之和等于1;在频次分布直方图中,各小长方形的面积表示相应各组的频次,所以全部小长方形的面积的和等于 1;均匀数是频次分布直方图各个小矩形的面积×底边中点的横坐标之和 .3.摆列与组合(1)①解决“在”与“不在”的有限制条件的摆列问题 ,既能够从元素下手 ,也能够从地点下手 ,原则是谁“特别”谁优先 .不论是从元素考虑仍是从地点考虑 , 都要贯彻究竟 ,不可以既考虑元素又考虑地点 .②解决相邻问题的方法是“捆绑法”,即把相邻元素看作一个整体和其余元素一同摆列,同时要注意捆绑元素的内部摆列 .③解决不相邻问题的方法是“插空法”,即先考虑不受限制的元素的摆列,再将不相邻的元素插在前方元素摆列的空中间.④对于定序问题,可先不考虑次序限制,摆列后 ,再除以定序元素的全摆列.⑤若某些问题从正面考虑比较复杂 ,可从其反面下手 ,即采纳“间接法”.(2)组合问题的限制条件主要表此刻拿出元素中“含”或“不含”某些元素,或许“起码”或“最多”含有几个元素 :①“含有”或“不含有”某些元素的组合题型.“含”,则先将这些元素拿出 ,再由此外元素补足 ; “不含”,则先将这些元素剔除,再从剩下的元素中去选用 .②“起码”或“最多”含有几个元素的题型 .考虑逆向思想 ,用间接法办理 .(3)分组分派问题是摆列、组合问题的综合运用,解决这种问题的一个基本指导思想就是先分组后分派 .对于分组问题,有整体均分、部分均分和不平分三种 ,不论分红几组 ,都应注意只需有一些组中元素的个数相等 ,就存在均分现象 .4.随机变量的均值与方差一般计算步骤 :(1)理解 X 的意义 ,写出 X 的全部可能取的值 .(2)求 X 取各个值的概率 ,写出分布列 .(3)依据分布列,由均值的定义求出均值 E(X),进一步由公式D(X)=(x i -E(X))2p i=E(X2)-(E(X))2求出 D(X).(4)以特别分布 (两点分布、二项分布、超几何分布 )为背景的均值与方差。

高考数学二轮复习第2部分专题5解析几何第3讲圆锥曲线中的综合问题课件理

高考数学二轮复习第2部分专题5解析几何第3讲圆锥曲线中的综合问题课件理
(1)求直线AP斜率的取值范围; (2)求|PA|·|PQ|的最大值.
切入点:(1)直接套用斜率公式,并借助-12<x<32求其范围; (2)先分别计算|PA|、|PQ|的长,再建立|PA|·|PQ|的函数,进而借 助导数求其最值.
[解](1)设直线AP的斜率为k,k=xx2+-1214=x-12, 因为-12<x<32, 所以-1<x-12<1, 即直线AP斜率的取值范围是(-1,1).
(与向量交汇直线过定点问题)设M点为圆C:x2+y2=4上的动 点,点M在x轴上的投影为N.动点P满足2 P→N = 3 M→N ,动点P的轨迹 为E.
(1)求E的方程; (2)设E的左顶点为D,若直线l:y=kx+m与曲线E交于A,B两 点(A,B不是左、右顶点),且满足| D→A + D→B |=| D→A - D→B |,求证:直 线l恒过定点,并求出该定点的坐标.
第二部分 讲练篇
专题五 解析几何 第3讲 圆锥曲线中的综合问题
研考题 举题固法
求圆锥曲线中的最值范围问题(5年2考) 考向1 构造不等式求最值或范围
[高考解读] 以直线与圆锥曲线的位置关系为载体,融函数与 方程,均值不等式、导数于一体,重在考查学生的数学建模、数学 运算能力和逻辑推理及等价转化能力.
[解](1)设点M(x0,y0),P(x,y),由题意可知N(x0,0), ∵2P→N= 3M→N,∴2(x0-x,-y)= 3(0,-y0), 即x0=x,y0= 23y, 又点M在圆C:x2+y2=4上,∴x20+y20=4, 将x0=x,y0= 23y代入得x42+y32=1, 即轨迹E的方程为x42+y32=1.
设C(p,q),由2qpp=+q21,-2=0
得p=q=2,所以C(2,2).

【2019最新】高考数学二轮专题复习 专题五 5

【2019最新】高考数学二轮专题复习 专题五 5

的所有顶点都在半径为的球面C. D. ABCD-A1B1C1D1中,E是棱D.抛物线的一部分的垂线,垂足为8.(20xx浙江第一次五校联考)已知三棱锥A-BCD中,AB=AC=BD=CD=2,BC=2AD=2,则直线AD与底面BCD所成角为.9.(20xx浙江金华十校模拟(4月),文13)如图,在正三棱柱ABC-A1B1C1中,D为AB的中点,AA1=4,AB=6,则异面直线B1D与AC1所成角的余弦值为.10.如图,将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D-ABC中,给出下列三个命题:①△DBC是等边三角形;②AC⊥BD;③三棱锥D-ABC的体积是;④AB与CD 所成的角是60°.其中正确命题的序号是.11.点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个命题:①三棱锥A-D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正确的命题序号是.小题,共45分.解答应写出必要的文字说明、直三棱柱ABC-A1B1C1的中点.B1BCC1;A1ABB1所成的角为45°,求三棱锥(20xx浙江大学附中,文18)如图,已知四棱锥P-ABCD,底面ABCD为边长为2的菱形,PA⊥平面ABCD,∠ABC=60°,E是BC的中点,PA=AB.(1)证明:AE⊥PD;(2)若F为PD上的动点,求EF与平面PAD所成最大值的正切值.14.(本小题满分16分)(20xx浙江杭州第二中学高三仿真,文18)已知四棱锥P-ABCD中,底面ABCD为∠ABC=的菱形,PA⊥平面ABCD,点Q在直线PA上.(1)证明:直线QC⊥直线BD;连接EF,CF,则EF∥BD,于是异面直线所成的角∠CEF.为正三角形,设AB=2,因为AA1⊥平面A1B1=A1C1=B1C1=2a, A1M=a.在Rt△AA1M的中点为O1,AC的中点为ACC1A1,PO2∥BD1.在平面与此圆上的点的连线满足即为二面角B-AA1-CP应落在以A1ABCD内,所以点P 由条件中的新定义知:PP1⊥α,P1Q1⊥βAE,C1E,因为四边形EB1.所以四边形就是异面直线B1DABC-A1B1C1是直三棱柱,所以的边BC的中点,所以B1BCC1.平面AEF⊥平面B1BCC1.为菱形,且∠ABC=60°,又E为BC中点,。

2019年高考数学(文科)二轮专题突破课件:专题五 立体几何 5.2

2019年高考数学(文科)二轮专题突破课件:专题五 立体几何 5.2

2 3
DA,求三
棱锥Q-ABP的体积.
考情分析
高频考点

核心归纳
-14-
命题热点一 命题热点二 命题热点三
(1)证明 由已知可得,∠BAC=90°,BA⊥AC. 又 BA⊥AD,所以 AB⊥平面 ACD. 又 AB⊂平面 ABC, 所以平面 ACD⊥平面 ABC.
(2)解 由已知可得,DC=CM=AB=3,DA=3 2. 又 BP=DQ=23DA,所以 BP=2 2. 作 QE⊥AC,垂足为 E,则 QE 13DC. 由已知及(1)可得 DC⊥平面 ABC, 所以 QE⊥平面 ABC,QE=1. 因此,三棱锥 Q-APB 的体积为 VQ-ABP=13×QE×S△ABP=13×1×12×3×2 2sin 45°=1.
命题热点一
命题热点二
考情分析 命题热点三
高频考点
核心归纳
-13-
对点训练2(2018全国Ⅰ,文18)如图,在平行四边形ABCM中,
AB=AC=3,∠ACM=90°.以AC为折痕将△ACM折起,使点M到达点D
的位置,且AB⊥DA.
(1)证明:平面ACD⊥平面ABC; (2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=
5.2 空间中的平行与垂直
考情分析
高频考点
核心归纳
试题统计
题型 命题规律
高考对空间点、线、面位
置关系的考查主要有两种
(2014 全国Ⅰ,文 19)
形式:一是对命题真假的判
(2014 全国Ⅱ,文 18)
断,通常以选择题、填空题
(2015 全国Ⅰ,文 18) (2016 的全形国式Ⅰ考,文查1,1难) 度不大,也
(1)证明:AC⊥HD';

高考数学二轮复习 专题五 函数与导数 第15讲 曲线的切

高考数学二轮复习 专题五 函数与导数 第15讲 曲线的切

-2),则
e
x0

2 2x0 ex0 2,

b, 解得x0=ln
2,b=-2ln
2.
(2)y'=ln x+1,则曲线y=xln x在x=1与x=t处的切线斜率切线互相垂直得ln t+1=-1,则正数t的值为e-2.
【方法归纳】 (1)直线与曲线相切时,与切点坐标有关,若题中没有切点,则 需要设出切点坐标,利用切点在曲线上、切点在切线上和在切点处的导数值 等于切线的斜率三个性质建立方程组求解.(2)若两条直线的斜率都存在,且 互相垂直,则斜率乘积为-1.

x0
题型三 两曲线的公切线
例3 设t≠0,点P(t,0)是函数f(x)=x3+ax与g(x)=bx2+c的图象的一个公共点,两函 数的图象在点P处有相同的切线.试用t表示a,b,c.
解析 因为函数f(x),g(x)的图象都经过点P(t,0), 所以f(t)=0,g(t)=0,即t3+at=0,bt2+c=0. 因为t≠0,所以a=-t2,c=ab. 又因为f(x),g(x)的图象在点P(t,0)处有相同的切线, 所以f '(t)=g'(t). 由题意知f '(x)=3x2+a,g'(x)=2bx, 所以3t2+a=2bt. 将a=-t2代入上式得b=t,则c=ab=-t3. 故a=-t2,b=t,c=-t3.
所以-1≤
ex
4

1 ex

2
<0,则α∈ 34
,
.
2.已知P是曲线y= 1 x2- 1 ln x上的动点,Q是直线y= 3 x-1上的动点,则PQ的最小
42

2019届高三理科数学第二轮专题复习配套文档专题五 第3讲圆锥曲线中的定点与定值

2019届高三理科数学第二轮专题复习配套文档专题五 第3讲圆锥曲线中的定点与定值

第3讲圆锥曲线中的定点与定值、范围与存在性问题[真题再现]1.(2017·课标Ⅱ)设O为坐标原点,动点M在椭圆C:错误!+y2=1上,过M作x轴的垂线,垂足为N,点P满足错误!=错误!错误!.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且错误!·错误!=1.证明:过点P且垂直于OQ的直线l过C的左焦点F。

[解析](1)设P(x,y),M(x0,y0),设N(x0,0),错误!=(x-x0,y),错误!=(0,y0).由NP,→= 2 错误!得x0=x,y0=错误!y0.因为M(x0,y0)在C上,所以错误!+错误!=1.因此点P的轨迹方程为x2+y2=2.(2)由题意知F(-1,0).设Q(-3,t),P(m,n),则错误!=(-3,t),错误!=(-1-m,-n),错误!·错误!=3+3m-tn,错误!=(m,n),错误!=(-3-m,t-n).由错误!·错误!=1得-3m-m2+tn-n2=1,又由(1)知m2+n2=2,故3+3m-tn=0。

所以错误!·错误!=0,即错误!⊥错误!。

又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F。

2.(2018·已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足P A,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+错误!=1(x<0)上的动点,求△P AB面积的取值范围.[解](1)解:设P(x0,y0),A错误!,B错误!。

因为P A,PB的中点在抛物线上,所以y1,y2为方程错误!2=4·错误!即y2-2y0y+8x0-y错误!=0的两个不同的实根.所以y1+y2=2y0,因此,PM垂直于y轴.(2)解:由(1)可知错误!所以|PM|=错误!(y错误!+y错误!)-x0=错误!y错误!-3x0,|y1-y2|=2错误!。

2019高考数学(理)高分大二轮课件:专题5第2讲综合大题部分

2019高考数学(理)高分大二轮课件:专题5第2讲综合大题部分
专题5 数列
第2讲 综合大题部分
[考情考向分析] 1.利用转化证明等差、等比数列.
2.通过分组转化、错位相减、裂项相消求数列和,进而求与不等式相关综合问题.
考点一
考点二
考点一
证明等差、等比数列
an+1 an+ an+2 1 1. (定义法 )各项均不为 0 的数列 {an}满足 = an+2an,且 a3= 2a8= . 2 5 1 (1)证明:数列 { }是等差数列,并求数列{an}的通项公式; an an (2)若数列{bn}的通项公式为 bn= ,求数列{bn}的前 n 项和 Sn. 2n+ 6
2
精准考点突破
易错防范突破
真题押题精练
增分强化练
首页
上页
下页
末页
考点一
考点二
解析:(1)依题意,an+1an+an+2an+1=2an+2an,两边同时除以anan+1an+2,
1 2 1 可得 + = ,故数列 { }是等差数列, an an+2 an an+1 1 设数列 { }的公差为 d. an 1 因为 a3= 2a8= , 5 1 1 所以 = 5, = 10, a3 a8 1
∴2an+1=an+2+an,
9
精准考点突破
易错防范突破 真题押题精练 增分强化练
首页
上页
下页
末页
考点一
考点二
∴数列{an}是等差数列, 又由2S1=22a1-a2,a1=2,解得a2=4. ∴d=4-2=2. ∴an=2+2(n-1)=2n.
由nbn+1=anbn,得bn+1=2bn,又b1=a1=2,
3
精准考点突破
易错防范突破
真题押题精练
增分强化练
首页

备战2019高考数学(理科)大二轮复习课件:专题五立体几何5.2

备战2019高考数学(理科)大二轮复习课件:专题五立体几何5.2
4 3
所以四面体 F-BCD 的体积为 VF-BCD= S· FC= .
3 12
1
3
-26命题热点一 命题热点二 命题热点三
当三棱锥 M-ABC 体积最大时,M 为������������ 的中点. 由题设得 D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),M(0,1,1), ������������=(-2,1,1),������������ =(0,2,0),������������=(2,0,0). 设 n=(x1,y,z)是平面 MAB 的法向量, ������· ������������ = 0, -2������ + ������ + ������ = 0, 则 即 可取 n=(1,0,2), 2������ = 0. ������· ������������ = 0. ������������是平面 MCD 的法向量, 因此 cos<n,������������>=
2
= .
3 ,解得 2
4 a=-4(舍去),a= . 3
所以 n= -
8 3 4 3 4 , ,3 3 3
又������������ =(0,2,-2 3),所以
3 cos<������������ ,n>= . 4
所以 PC 与平面 PAM 所成角的正弦值为 .
Байду номын сангаас
3 4
-13命题热点一 命题热点二 命题热点三
由(1)及已知可得 A
2 ,0,0 2
,P 0,0,
所以������������ = 2 2 ,0,- 2 2
2 ,B 2 2 ,1,2
2 ,1,0 ,C 2 2 , ������������ =( 2

2019年《·高考总复习》数学:专题五 第2课时

2019年《·高考总复习》数学:专题五 第2课时

2019年8月10日
遇上你是缘分,愿您生活愉快,身体健康,学业有成,金 榜题名!
7
பைடு நூலகம்
【互动探究】 1.(2017 年新课标Ⅱ)设 O 为坐标原点,动点 M 在椭圆 C: x22+y2=1 上,过 M 作 x 轴的垂线,垂足为 N,点 P 满足N→P= 2N→M. (1)求点 P 的轨迹方程; (2)设点 Q 在直线 x=-3 上,且O→P·P→Q=1.证明:过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F.
2019年8月10日
遇上你是缘分,愿您生活愉快,身体健康,学业有成,金 榜题名!
15
(1)解:由题意,有 a2a-b2= 22,a42+b22=1, 解得 a2=8,b2=4. 所以 C 的方程为x82+y42=1. (2)证明:设直线 l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2, y2),M(xM,yM). 将 y=kx+b 代入x82+y42=1,得 (2k2+1)x2+4kbx+2b2-8=0.
2019年8月10日
遇上你是缘分,愿您生活愉快,身体健康,学业有成,金 榜题名!
20
(2)存在符合题意的点,理由如下: 设 P(0,b)为符合题意的点,M(x1 ,y1),N(x2,y2),直线 PM,PN 的斜率分别为 k1,k2. 将 y=kx+a 代入 C 的方程整理,得 x2-4kx-4a=0. ∴x1+x2=4k,x1x2=-4a. ∴k1+k2=y1x-1 b+y2x-2 b=2kx1x2+ax-1x2bx1+x2=ka+a b.
遇上你是缘分,愿您生活愉快,身体健康,学业有成,金 榜题名!
17
题型 3 圆锥曲线中的探索性问题 探索性问题是近几年高考的热点问题,是一种具有开放性 和发散性的问题,此类题目的条件或结论不完备.要求解答者自 己去探索,结合已有条件,进行观察、分析、比较和概括.圆锥 曲线的探索性问题主要体现在以下几个方面:(1)探索点是否存 在;(2)探索曲线是否存在;(3)探索命题是否成立.解决这类问题 的基本策略是:通常假定题中的数学对象存在(或结论成立)或 暂且认可其中的一部分的结论,然后在这个前提下进行逻辑推 理,若由此导出矛盾,则否定假设;否则,给出肯定结论.其中 反证法在解题中起着重要的作用.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考数学二轮专题复习专题五 5(时间:60分钟满分:100分)一、选择题(本大题共7小题,每小题5分,共35分)1.已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为( )A. B.C. D.2.(2015浙江杭州第二次高考科目教学质量检测,文6)已知ABC-A1B1C1是所有棱长均相等的直三棱柱,M是B1C1的中点,那么下列命题中正确的是( )A.在棱AB上存在点N,使MN与平面ABC所成的角为45°B.在棱AA1上存在点N,使MN与平面BCC1B1所成的角为45°C.在棱AC上存在点N,使MN与AB1平行D.在棱BC上存在点N,使MN与AB1垂直3.(2015浙江杭州二中仿真考,文8)过正方体ABCD-A1B1C1D1的棱DD1的中点与直线BD1所成角为40°,且与平面ACC1A1所成角为50°的直线条数为( )A.1B.2C.3D.无数4.直三棱柱ABC-A1B1C1的所有顶点都在半径为的球面上,AB=AC=,AA1=2,则二面角B-AA1-C的余弦值为( )A.-B.-C. D.5.在平面四边形ABCD中,AD=AB=,CD=CB=,且AD⊥AB,现将△ABD沿着对角线BD翻折成△A'BD,则在△A'BD折起至转到平面BCD内的过程中,直线A'C与平面BCD所成的最大角的正切值为( )A.1B.C.D.6.如图,在正方体ABCD-A1B1C1D1中,E是棱B1C1的中点,动点P在底面ABCD内,且PA1=A1E,则点P运动形成的图形是( )A.线段B.圆弧C.椭圆的一部分D.抛物线的一部分7.在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则( )A.平面α与平面β垂直B.平面α与平面β所成的(锐)二面角为45°C.平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60°二、填空题(本大题共4小题,每小题5分,共20分)8.(2015浙江第一次五校联考)已知三棱锥A-BCD中,AB=AC=BD=CD=2,BC=2AD=2,则直线AD与底面BCD所成角为.9.(2015浙江金华十校模拟(4月),文13)如图,在正三棱柱ABC-A1B1C1中,D为AB的中点,AA1=4,AB=6,则异面直线B1D与AC1所成角的余弦值为.10.如图,将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D-ABC中,给出下列三个命题:①△DBC是等边三角形;②AC⊥BD;③三棱锥D-ABC的体积是;④AB与CD 所成的角是60°.其中正确命题的序号是.11.点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个命题:①三棱锥A-D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正确的命题序号是.三、解答题(本大题共3小题,共45分.解答应写出必要的文字说明、证明过程或演算步骤)12.(本小题满分14分)(2015湖南,文18)如图,直三棱柱ABC-A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点.(1)证明:平面AEF⊥平面B1BCC1;(2)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F-AEC的体积.13.(本小题满分15分)(2015浙江大学附中,文18)如图,已知四棱锥P-ABCD,底面ABCD为边长为2的菱形,PA⊥平面ABCD,∠ABC=60°,E是BC的中点,PA=AB.(1)证明:AE⊥PD;(2)若F为PD上的动点,求EF与平面PAD所成最大值的正切值.14.(本小题满分16分)(2015浙江杭州第二中学高三仿真,文18)已知四棱锥P-ABCD中,底面ABCD为∠ABC=的菱形,PA⊥平面ABCD,点Q在直线PA上.(1)证明:直线QC⊥直线BD;(2)若二面角B-QC-D的大小为,点M为BC的中点,求直线QM与AB所成角的余弦值.参考答案专题能力训练13 空间中的角及动态问题1.B 解析:如图所示,取AD的中点F,连接EF,CF,则EF∥BD,于是异面直线CE与BD所成的角即为CE与EF所成的角∠CEF.由题意知△ABC,△ADC为正三角形,设AB=2,则CE=CF=,EF=BD=1.在△CEF中,由余弦定理,得cos∠CEF=.故选B.2.B 解析:如图所示,连接A1M和AM,因为AA1⊥平面A1B1C1,A1M⊂平面A1B1C1,所以AA1⊥A1M.设AA1=2a,则A1B1=A1C1=B1C1=2a,因为M是B1C1的中点,所以A1M⊥B1C1.所以A1M=a.在Rt△AA1M中,tan∠AMA1=>1,所以∠AMA1>45°.所以在棱AA1上存在点N,使MN与平面BCC1B1所成的角为45°.故选B.3.B 解析:取DD1的中点P,A1C1的中点为O1,AC的中点为O2,O1O2的中点为O,连接OP和PO2,则OP⊥平面ACC1A1,PO2∥BD1.在平面ACC1A1内,以点O为圆心,半径为画圆,则点P与此圆上的点的连线满足:过DD1的中点P,且与平面ACC1A1所成的角为50°,所以满足与PO2所成角为40°的直线PQ有且只有2条.故选B.4.D 解析:设B1C1=m,由已知有∠BAC即为二面角B-AA1-C的平面角,设∠BAC=α,如图:有=2r=2,即m=2sin α,由余弦定理有m2=3+3-2×cosα,4sin2α=6-6cos α,从而可得(cos α-1)(2cos α-1)=0.∵0<α<π,∴cos α=.∴二面角B-AA1-C的余弦值为.5.C 解析:如下图,OA=1,OC=2.当A'C与圆相切时,直线A'C与平面BCD所成角最大,最大角为30°,其正切值为.6.B 解析:由PA1=A1E知点P应落在以A1为球心,A1E长为半径的球面上.又知动点P在底面ABCD内,所以点P的轨迹是面ABCD与球面形成的交线,故为圆弧,所以选B.7.A 解析:设P1=fα(P),P2=fβ(P).由条件中的新定义知:PP1⊥α,P1Q1⊥β,PP2⊥β,P2Q2⊥α,故PP1∥P2Q2,PP2∥P1Q1,PP1⊥P1Q2,PP2⊥P2Q1,可知点P,P1,P2,Q1,Q2五点共面,记为平面γ,可得α⊥γ,β⊥γ.当α⊥β时,PP2⊥PP1,此时四边形PP1Q2P2为矩形,PP2⊥P2Q2,故Q1与Q2重合,满足题意,A 正确;B中取正方体的一个底面及与其成45°的一个体对角面,则当PQ1=1时,PQ2=,不成立;C中取正方体的一组相对的面,明显有PQ1=1,PQ2=0,不成立;D中与B类似,当PQ1=时,PQ2=,不成立,故选A.8. 解析:取BC中点E,连接AE,DE,则BC⊥AE,BC⊥DE,∴BC⊥平面ADE.∴∠ADE即为直线AD与平面BCD所成的角,易得AD=DE=AD=.∴∠ADE=,即直线AD与平面BCD所成角为.9. 解析:取A1B1的中点E,连接AE,C1E,因为四边形AA1B1B是矩形,D是AB的中点,所以AB A1B1.所以AD EB1.所以四边形AEB1D是平行四边形.所以AE∥DB1.所以∠EAC1就是异面直线B1D与AC1所成角.在三角形AEC1中,AE==5,AC1==2,EC1=3,所以cos∠EAC1=.10.①②④解析:设AC∩BD=O,①根据图可知BD=DO==1,再由BC=DC=1,可知△DBC是等边三角形;②由AC⊥DO,AC⊥BO,可得AC⊥平面DOB,从而有AC⊥BD;③三棱锥D-ABC的体积=S△ABC·OD=×1×1×;④过点O作OE∥AB,OF∥CD,则∠EOF(或补角)为所求角,在△OEF中可解得∠EOF=120°,故AB与CD所成的角为60°.因此应填“①②④”.11.①②④解析:由题意可得直线BC1平行于直线AD1,并且直线AD1⊂平面AD1C,直线BC1⊄平面AD1C,所以直线BC1∥平面AD1C.所以.点P到平面AD1C的距离不变,所以体积不变.即①是正确的;连接A1C1,A1B,可得平面AD1C∥平面A1C1B.又因为A1P⊂平面A1C1B,所以A1P∥平面ACD1.所以②正确;当点P运动到B点时△DBC1是等边三角形,所以DP不垂直BC1.故③不正确;因为直线AC⊥平面DB1,DB1⊂平面DB1,所以AC⊥DB1.同理可得AD1⊥DB1.所以可得DB1⊥平面AD1C.又因为DB1⊂平面PDB1,所以可得平面PDB1⊥平面ACD1.故④正确.综上,可知正确的序号为①②④.12.(1)证明:如图,因为三棱柱ABC-A1B1C1是直三棱柱,所以AE⊥BB1.又E是正三角形ABC的边BC的中点,所以AE⊥BC.因此,AE⊥平面B1BCC1.而AE⊂平面AEF,所以,平面AEF⊥平面B1BCC1.(2)解:设AB的中点为D,连接A1D,CD.因为△ABC是正三角形,所以CD⊥AB.又三棱柱ABC-A1B1C1是直三棱柱,所以CD⊥AA1.因此CD⊥平面A1ABB1,于是∠CA1D为直线A1C与平面A1ABB1所成的角.由题设,∠CA1D=45°,所以A1D=CD=AB=.在Rt△AA1D中,AA1=,所以FC=AA1=.故三棱锥F-AEC的体积V=S△AEC·FC=.13.(1)证明:∵四边形ABCD为菱形,且∠ABC=60°,∴△ABC为正三角形.又E为BC中点,∴AE⊥BC.又AD∥BC,∴AE⊥AD.∵PA⊥平面ABCD,又AE⊂平面ABCD,∴PA⊥AE.∴AE⊥平面PAD.又PD⊂平面PAD,∴AE⊥PD.(2)解:连接AF,由(1)知AE⊥平面PAD,∴∠AFE为EF与平面PAD所成的角.在Rt△AEF中,AE=,∠AFE最大当且仅当AF最短,即AF⊥PD时∠AFE最大,依题意,此时在Rt△PAD中,PA·AD=PD·AF,∴AF=,tan∠AFE=.∴EF与平面PAD所成最大角的正切值为.14.(1)证明:显然BD⊥AC,PA⊥平面ABCD,则PA⊥BD,所以BD⊥平面PAC.因为QC⊂平面PAC,所以直线QC⊥直线BD.(2)解:由已知和对称性可知,二面角B-QC-A的大小为,设底面ABCD的棱长为单位长度2,AQ=x,AC,BD交于点E,则有点B到平面AQC的距离BE为1,过点E作QC的垂线,垂足设为F,则有tan∠BFE=tan,BE=1,则EF=,点A到QC的距离为,则有=2x,得x=.过点M作AB的平行线交AD的中点为G,则GM=2,QG=,AM=,则QM=,cos∠QMG=.故所求的QM与AB所成角的余弦值为.。

相关文档
最新文档