初一数学三角形专题练习

合集下载

初中数学三角形专题训练50题含答案

初中数学三角形专题训练50题含答案

初中数学三角形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知AO=OB ,OC=OD ,AD 和BC 相交于点E ,则图中全等三角形有( )对.A .1对B .2对C .3对D .4对 2.两个同心圆的半径分别是 5 和 4,则长为 6 的大圆的弦一定和小圆( ) A .相交 B .相切 C .相离 D .无法确定 3.在△ABC 中,AB =8,BC =15,AC =17,则下列结论正确的是( ) A .△ABC 是直角三角形,且△A =900B .△ABC 是直角三角形,且△B =900 C .△ABC 是直角三角形,且△C =900D .△ABC 不是直角三角形 4.若菱形ABCD 的对角线8AC =,60ABC ∠=,则菱形ABCD 的面积为( ) A .16 B .C .D .5.用10根等长的火柴棒拼成一个三角形(火柴棒不允许剩余,重叠和折断),这个三角形一定是( )A .等边三角形B .等腰三角形C .直角三角形D .不等边三角形 6.下列命题:△任何实数的0次幂都等于1;△有两个角相等的等腰三角形是等边三角形;△三角形三条边垂直平分线的交点到三角形三条边的距离相等;△若三角形一个外角的平分线平行于三角形的一边,则这个三角形是等腰三角形.正确的个数有( )A .0个B .1个C .2个D .3个 7.菱形的两条对角线分别是12和16,则该菱形的边长是( )A .10B .8C .6D .5 8.如图,下列条件中,不能证明△ABC △△DCB 的是( )A .AB =DC ,AC =DBB .AB =DC ,△ABC =△DCB C .△ACB =△DBC ,△A =△D D .AB =DC ,△DBC =△ACB 9.如图,把ABC 纸片沿EG 折叠,当点A 落在ABC 外部的点F 处,此时测得2104∠=︒,30A ∠=︒,则1∠的度数为( )A .40︒B .44︒C .46︒D .48︒ 10.如图,在边长为4的正方形ABCD 中,点E 、F 分别是BC 、CD 的中点,DE 、AF 交于点G ,AF 的中点为H ,连接BG 、DH .给出下列结论:△AF DE ⊥;△85DG =;△HD BG ∥;△ABG 与DFH 相似.其中正确的结论有( )个.A .1B .2C .3D .411.下列条件中,能判定△ABC△△DEF 的是( )A .AB=DE ,BC=EF ,△A=△EB .△A=△E ,AB=EF ,△B=△DC .△A=△D ,△B=△E ,△C=△F D .△A=△D ,△B=△E ,AC=DF 12.在Rt ABC △中,90A ∠=︒,6AB =,8AC =,点P 是ABC 所在平面内一点,则222PA PB PC ++取得最小值时,下列结论正确的是( )A .点P 是ABC 三边垂直平分线的交点B .点P 是ABC 三条内角平分线的交点 C .点P 是ABC 三条高的交点D .点P 是ABC 三条中线的交点13.下列命题中,真命题是( ) A .有两边和一角对应相等的两个三角形全等B .有两边和第三边上的高对应相等的两个三角形全等C .有两边和其中一边上的高对应相等的两个三角形全等D .有两边和第三边上的中线对应相等的两个三角形全等14.已知直角三角形两边的长分别为6和8,则此三角形的周长为( )A .24B .14C .14+24D .14+15.如图,点A 的坐标为(﹣3,2),△A 的半径为1,P 为坐标轴上一动点,PQ 切△A 于点Q ,在所有P 点中,使得PQ 长最小时,点P 的坐标为( )A .(0,2)B .(0,3)C .(﹣2,0)D .(﹣3,0) 16.如图1,已知AB AC =,D 为BAC ∠的角平分线上面一点,连接BD ,CD ;如图2,已知AB AC =,D 、E 为BAC ∠的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图3,已知AB AC =,D 、E 、F 为BAC ∠的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;…,依次规律,第n 个图形中有全等三角形的对数是( ).A .nB .21n -C .(1)2n n +D .3(1)n + 17.如图,若 AC 、BD 、EF 两两互相平分于点O ,那么图中的全等三角形共有( )A .3对B .4对C .5对D .6对 18.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为( )A .27cmB .228cmC .242cmD .249 cm 19.如图,在□ABCD 中,AD =2AB ,F 是AD 的中点,作CE △AB ,垂足E 在线段AB上,连接EF 、CF ,则下列结论中:△△DCF =12△BCD ;△EF =CF ;△S △BEC <2S △CEF ;△△DFE =4△AEF .一定成立的有( )个.A .1B .2C .3D .420.如图,等边ABC 内部有一点D ,3DB =,4DC =,150BDC =∠︒,在AB 、AC 上分别有一动点E 、F ,且AE AF =,则DE DF +的最小值是( )A .5B .C .D .7二、填空题21.等腰三角形的两边长为2和3,则等腰三角形的周长为________.22.若3,m ,5=______. 23.如图,点P 是正方形ABCD 对角线BD 上的一点,且BP =BC ,则△DPC =______°.24.如图,在ABC 中,90C ∠=︒,70B ∠=︒,D ,E 分别是边AB 、AC 上的点,将A ∠沿DE 折叠,使点F 落在AB 的下方,当FDE 的边EF 与BC 平行时,ADE ∠的度数是_________.25.《九章算术)是我国古代数学名著,书中有下列问题:“今有户高多于广六尺,两隅相去适一丈.问户高、广各几何?”其意思为:今有一门,高比宽多6尺,门对角线距离恰好为1丈,问门高、宽各是多少?(1丈=10尺)如图,设门高AB 为x 尺,根据题意,可列方程为___________(将方程化简并写成一般形式).26.如图,ABC ∆和ABE 关于直线AB 对称,ABC ∆和ADC ∆关于直线AC 对称,CD 与AE 交于点F ,若32ABC ∠=︒,18ACB ∠=︒,则CFE ∠的度数为______.27.如图,有6个条形方格图,在由实线围成的图形中,全等图形有:(1)与__;(2)与__.28.如图,在△ABC 中,AB =AC ,△A =40°,CD ∥AB ,则△BCD 的度数是______.29.如图△ABC 中,△A =96°,延长BC 到D ,△ABC 的平分线与△ACD 的平分线交于点A 1,△A 1BC 的平分线与△A 1CD 的平分线交于点A 2,以此类推,△A 4BC 的平分线与△A 4CD 的平分线交于点A 5,则△A 5的大小是___30.ABC 中,AB 15=,BC 12=,AC 9=,圆O 是ABC 的内切圆,则图中阴影部分的面积为________.(结果不取近似值)31.如图所示,一水库迎水坡AB 的坡度1:2i =,则求坡角α的正弦值sin α______.32.一根旗杆在离地面4.5 m 的地方折断,旗杆顶端落在离旗杆底部6 m 外,则旗杆折断前的高度是________.33.如图,O 的弦AB 长为2,CD 是O 的直径,30,15ADB ADC ∠=︒∠=︒.△O 的半径长为_________.△P 是CD 上的动点,则PA PB +的最小值是_________.34.直角三角形斜边长是5,一直角边的长是3,则此直角三角形的面积为___________.35.如图,国旗上的五角星的五个角的度数是相同的,每一个角的度数都是____.36.在等边ABC 中,点D 在BC 边上,若4AB =,AD =BD 的长为______.37.如图,已知△MON =30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…均为等边三角形,若OA 1=2,则△A 5B 5A 6的边长为________.38.已知点G是面积为227cm的ABC的重心,那么AGC的面积等于____39.图示是一种“羊头”形图案,其作法是,从正方形1开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形2,和2′,…,依次类推,若正方形7的边长为1cm,则正方形1的边长为__________cm.40.如图,平行四边形ABCD中,点P为边AD上一个动点,连接BP,将线段PB绕点B逆时针旋转60°得到BQ,连接AQ,若△ABC=60°,AB=2,BC=6,则线段AQ 的取值范围是______.三、解答题41.如图,已知ACB DBC AC BD,,求证:A D∠=∠=∠=∠.∠交AC于点D,E为AB中点,过点A作42.已知:如图ABC中,BD平分ABCAF BD,交DE延长线于点F.∥(1)求证:AF BD=(2)当ABC满足什么条件时,四边形AFBD是矩形?请证明你的结论.43.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,△B=90°,连接AC.(1)△ACD是直角三角形吗?为什么?(2)小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?44.尺规作图=.(保留作图痕迹,不如图,ABC中,2B C∠=∠,在AC边上找一点P,使PB PC写作法)45.如图,在直角△ABC中,△ACB=90°,CD是高,△1=35°,求△2、△B与△A的度数.46.如图,在平行四边形ABCD中,E、F分别是AB、CD的中点.(1)求证:△AED△△CFB;(2)试判断四边形EBFD 的形状,并说明理由.47.如图,在△ABC 中,△ABC =△ACB ,E 为BC 边上一点,以E 为顶点作△AEF ,△AEF 的一边交AC 于点F ,使△AEF =△B .(1)如果△ABC =40°,则△BAC = ;(2)判断△BAE 与△CEF 的大小关系,并说明理由;(3)当△AEF 为直角三角形时,求△AEF 与△BAE 的数量关系.48.如图,在平面直角坐标系内有一正方形OABC ,点C 坐标为(0,4),点D 为AB 的中点,直线142y x =-+经过点C ,D 并交x 轴于点E ,BCD △沿着CD 折叠,顶点B 恰好落在OA 边上方F 处,连接BE ,点P 为直线CD 上的一动点,点Q 是线段BE 的中点.连接BP ,PQ .(1)求点F 的坐标;(2)求出点P 运动过程中,PO PA +的最小值;(3)是否存在点P ,使其在运动过程中满足EQP EBC △∽△,若存在,求出点P 坐标;若不存在,请说明理由.49.在Rt ACB △中,90ACB ∠=︒,AC BC =,D 为AB 上一点,连结CD ,将CD 绕C 点逆时针旋转90°至CE ,连结DE ,过C 作CF DE ⊥交AB 于F ,连结BE .(1)求证:AD BE=.(2)试探索线段AD,BF,DF之间满足的等量关系,并证明你的结论.(3)若15CD=,求BF.ACD=︒∠,1(注:在直角三角形中,30°所对的直角边等于斜边的一半)50.如图1,在ABC中,△A=90°,AB=AC+1,点D,E分别在边AB,AC 上,且AD=AE=1,连接DE.现将ADE绕点A顺时针方向旋转,旋转角为α(0°<α<180°),如图2,连接CE,BD,CD.(1)当0°<α<90°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求BCD的面积的最大值,并写出此时旋转角α的度数.参考答案:1.D【分析】由条件可证△AOD △△BOC ,可得△A =△B ,则可证明△ACE △△BDE ,可得AE =BE ,则可证明△AOE △△BOE ,可得△COE =△DOE ,可证△COE △△DOE ,可求得答案.【详解】解:在△AOD 和△BOC 中OA OBAOD BOC OD OC=⎧⎪∠=∠⎨⎪=⎩ △△AOD △△BOC (SAS ),△△A =△B ,△OC =OD ,OA =OB ,△AC =BD ,在△ACE 和△BDE 中A BAEC BEDAC BD∠=∠⎧⎪∠=∠⎨⎪=⎩△△ACE △△BDE (AAS ),△AE =BE ,在△AOE 和△BOE 中OA OBA BAE BE=⎧⎪∠=∠⎨⎪=⎩△△AOE △△BOE (SAS ),△△COE =△DOE ,在△COE 和△DOE 中OE OECOE DOEOD OC=⎧⎪∠=∠⎨⎪=⎩△△COE △△DOE (SAS ),故全等的三角形有4对,故选:D .【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.2.B【分析】连接OB,作OC AB⊥,根据垂径定理求出132BC AB==,根据勾股定理求出OC,即可得到判断.【详解】解:连接OB,作OC AB⊥,△6AB=,△132BC AB==,在Rt OBC中,4OC=,△点C在小圆上,△OC AB⊥,△长为6的大圆的弦和小圆相切,故选:B.【点睛】此题考查了垂径定理,勾股定理,直线与圆的位置关系,正确理解垂径定理是解题的关键.3.B【详解】22281517+=, △△ABC是直角三角形,△AC是斜边,△△B=900,故B正确;故选B.4.C【分析】过A作AE△BC于E,由菱形性质和△ABC=60°,可得△ABC是等边三角形,解Rt△ABE求得AE即可解答;【详解】解:由题意作图如下,过A作AE△BC于E,由菱形的性质可得:AB=BC,△△ABC=60°,△△ABC是等边三角形,△AB=BC=AC=8,Rt△ABE中,AE=AB sin△B=△菱形ABCD面积=BC•AE=故选:C.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,三角函数等知识;掌握菱形的性质是解题关键.5.B【分析】根据题意可知三角形的周长为10,再根据三角形的三边关系找到符合条件的三边,看符合哪类三角形即可.【详解】根据题意可知三角形的周长为10,又因为三角形任意两边之和大于第三边,△最大边要小于5,△三角形的三边可以为4,2,4或4,3,3.△这个三角形一定是等腰三角形.故选B.【点睛】此题考查了三角形的三边关系及等腰三角形的判定.三角形的三边关系:三角形任意两边之和大于第三边;任意两边之差小于第三边.6.B【分析】根据0指数幂的定义,等腰三角形三线合一,等边三角形的判定,线段垂直平分线性质逐个进行判断即可.【详解】解:△0的0次幂不存在,△△错误;△有一个角等于60°的等腰三角形是等边三角形,故△错误;△三角形三条边垂直平分线的交点到三角形三个顶点的距离相等,故△错误;△若三角形一个外角的平分线平行于三角形的一边,则这个三角形是等腰三角形,故△正确△正确的个数为:1个.故选:B .【点睛】本题考查了线段垂直平分线性质,0指数幂的定义,等腰三角形性质,等边三角形的判定的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等,任何不等于0的0次幂等于1,能理解性质和法则是解此题的关键.7.A【分析】首先根据题意画出图形,然后由菱形的两条对角线的长分别为12和16,求得OA 与OB ,再由勾股定理即可求得菱形的边长.【详解】如图,△菱形ABCD 中,A C=12,BD =16,△OA =12AC =6,OB =12BD =8,AC △BD ,△AB .即菱形的边长是10.故选:A.【点睛】此题考查了菱形的性质以及勾股定理.掌握菱形的对角线互相平分且垂直是解题的关键.8.D【详解】解:根据题意知,BC =BC .A 、由“SSS”可以判定△ABC △△DCB ,故本选项不符合题意;B 、由“SAS”可以判定△ABC △△DCB ,故本选项不符合题意;C 、由“AAS”可以判定△ABC △△DCB ,故本选项不符合题意;D 、由“SSA”不能判定△ABC △△DCB ,故本选项符合题意.故选:D .9.B【分析】设EF 与AB 交于D ,由折叠可得30F A ∠=∠=︒,根据三角形的外角性质得到21043074ADE A ∠=∠-∠=︒-︒=︒,1ADE F ∠=∠-∠,则由1ADE F ∠=∠-∠,即可求解.【详解】解:设EF 与AB 交于D ,如图,△21043074ADE A ∠=∠-∠=︒-︒=︒,又1ADE F ∠=∠-∠,1743044ADE F ∠=∠-∠=︒-︒=︒∴,故选:B .【点睛】本题考查三角形外角的性质,折叠的性质,熟练掌握三角形外角的性质与折叠的性质是解题的关键.10.B【分析】利用正方形的性质和线段中点性质,证明()SAS ADF DCE ≌,得到DAF CDE ∠=∠,即可判断△;利用勾股定理求AF =DG 的长,即可判断△;利用直角三角形的斜边中线等于斜边一半,得到DH HF =,进而得到HDF HFD ∠=∠,然后根据平行线的性质,得到HDF HFD BAG ==∠∠∠,由勾股定理求出AG =△;根据ABG DFH ∽,得到ABG DHF =∠∠,又因为AB AG ≠,得到ABG AGB ∠≠∠,进而得到AGB DHF ≠∠∠,即可判断△. 【详解】解:四边形ABCD 为正方形,90ADC BCD ,AD CD BC ==, E 、F 分别是BC 、CD 的中点,11222DF CD BC EC ∴====, 在ADF △和DCE 中,AD CD ADC BCD DF EC =⎧⎪∠=∠⎨⎪=⎩,()SAS ADF DCE ∴≌,DAF CDE ∴∠=∠,90ADG CDE ADC ∠+∠=∠=︒,90ADG DAF ∴∠+∠=︒,90AGD ∴∠=︒,AF DE ∴⊥,△结论正确;4AD =,122DF CD ==,AF ∴=,1122ADF S AD DF AG DG =⋅=⋅,AD DF DG AF ⋅∴==△结论错误; H 为AF 的中点,90ADC ∠=︒,12DH HF AF ∴=== HDF HFD ∴∠=∠,AB CD ∥,HFD BAG ∠=∠∴,HDF HFD BAG ∠=∠=∠∴,AG AD ==4AB =,52AG DF ∴==AB AB DH HF ==, AB AG DH DF∴=, ABG DFH ∴∽,△结论正确;ABG DHF ∴∠=∠,4AB =,AG = AB AG ∴≠,ABG AGB ∠≠∠∴,AGB DHF ∴∠≠∠,HD ∴与BG 不平行,△结论错误,综上可知,正确的结论为:△△,故选B .【点睛】本题考查了三角形全等的证明与判定,相似三角形的性质与判定,勾股定理,直角三角形的斜边中线等知识,熟练掌握全等三角形的判定和性质,相似三角形的判定和性质是解题关键.11.D【详解】解:A .AB=DE ,BC=EF ,△A=△E ,SSA 不能确定全等;B .△A=△E ,AB=EF ,△B=△D ,AB 和EF 不是对应边,不能确定全等;C .△A=△D ,△B=△E ,△C=△F ,AAA 不能确定全等;D .△A=△D ,△B=△E ,AC=DF ,根据AAS ,能判断△ABC△△DEF .故选D .12.D【分析】以点A 为坐标原点,AB 所在直线为x 轴,建立直角坐标系,则222PA PB PC ++=()22820032333x y ⎛⎫-+-+ ⎪⎝⎭,可得P (2,83)时,222PA PB PC ++最小,进而即可得到答案.【详解】以点A 为坐标原点,AB 所在直线为x 轴,建立直角坐标系,如图,则A (0,0),B (6,0),C (0,8),设P (x ,y ),则222PA PB PC ++=()()22222268x y x y x y ++-+++-=22331216100x y x y +--+=()22820032333x y ⎛⎫-+-+ ⎪⎝⎭, △当x =2,y =83时,即:P (2,83)时,222PA PB PC ++最小, △由待定系数法可知:AB 边上中线所在直线表达式为:883y x =-+, AC 边上中线所在直线表达式为:243y x =-+, 又△P (2,83)满足AB 边上中线所在直线表达式和AC 边上中线所在直线表达式,△点P是ABC三条中线的交点,故选D.【点睛】本题主要考查三角形中线的交点,两点间的距离公式,建立合适的坐标系,把几何问题化为代数问题,是解题的关键.13.D【分析】根据三角形全等的判定方法对A、D进行判断;利用三角形高的位置不同可对B、C进行判断.【详解】A、有两边和它们的夹角对应相等的两个三角形全等,所以A选项错误;B、有两边和第三边上的高对应相等的两个锐角三角形全等,所以B选项错误;C、有两边和其中一边上的高对应相等的两个锐角三角形全等,所以C选错误;D、有两边和第三边上的中线对应相等的两个三角形全等,所以D选项正确;故选:D.【点睛】本题考查了判断命题真假,以及全等三角形的判定,熟练掌握全等三角形的判定,仔细分类讨论是解题关键.14.C【分析】先设Rt△ABC的第三边长为x,由于8是直角边还是斜边不能确定,故应分8是斜边或x为斜边两种情况讨论.【详解】解:设Rt△ABC的第三边长为x,△当8为直角三角形的直角边时,x为斜边,由勾股定理得,10x=,此时这个三角形的周长=6+8+10=24;△当8为直角三角形的斜边时,x为直角边,由勾股定理得,22x8627,此时这个三角形的周长=△此三角形的周长为:24.故选:C.【点睛】本题考查的是勾股定理,二次根式的化简,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.15.D【分析】连接AQ、P A,如图,利用切线的性质得到△AQP=90°,再根据勾股定理得到PQ=AP△x轴时,AP的长度最小,利用垂线段最短可确定P点坐标.【详解】解:连接AQ、P A,如图,△PQ切△A于点Q,△AQ△PQ,△△AQP=90°,△PQ当AP的长度最小时,PQ的长度最小,△AP△x轴时,AP的长度最小,△AP△x轴时,PQ的长度最小,△A(﹣3,2),△此时P点坐标为(﹣3,0).故选:D.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理,垂线段最短.16.C【分析】根据条件可得图1中△ABD△△ACD有1对三角形全等;图2中可证出△ABD△△ACD,△BDE△△CDE,△ABE△△ACE有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第n个图形中全等三角形的对数.【详解】解:△AD是△BAC的平分线,△△BAD=△CAD.在△ABD与△ACD中,AB=AC,△BAD=△CAD,AD=AD,△△ABD△△ACD.△图1中有1对三角形全等;同理图2中,△ABE△△ACE,△BE=EC,△△ABD△△ACD.△BD=CD,又DE=DE,△△BDE△△CDE,△图2中有3对三角形全等;同理:图3中有6对三角形全等;由此发现:第n个图形中全等三角形的对数是()12n n+.故选:C.【点睛】此题主要考查了三角形全等的判定以及规律的归纳,解题的关键是根据条件证出图形中有几对三角形全等,然后寻找规律.17.D【分析】根据AC、BD、EF两两互相平分于点O,则有OE=OF,OA=OC,OB=OD;图中的对顶角有△AOB与△DOC,△AOE与△COF,△BOF与△DOE,△AOD与△BOC;根据两边和它们的夹角对应相等的两三角形全等(SAS)可得△AOB△△DOC;△AOE△△COF;再利用前面所证全等三角形,易证四边形ABCD是平行四边形,故△BOF△△DOE;△AOD△△BOC.【详解】解:△AC、BD、EF两两互相平分于点O△OE=OF,OA=OC,OB=OD;△△AOB=△DOC,△AOE=△COF,△BOF=△DOE,△AOD=△BOC;△△AOB△△DOC(SAS)△AOE△△COF(SAS)△OA=OC,OB=OD;△四边形ABCD是平行四边形,△ AD△BC,AD=BC△△EDO=△FBO,△AOD△△BOC△△BOF△△DOE故图中所有的全等三角形有6对,分别是△AOB△△DOC;△AOE△△COF;△BOF△△DOE;△AOD△△BOC;△ABD△△CDB;△ABC△△CDA.故选:D【点睛】本题考查了全等三角形的判定;找寻全等三角形时要从最明显的开始,由易到难,不重不漏.18.D【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积,从而可解决问题.【详解】解:△所有的三角形都是直角三角形,所有的四边形都是正方形,△正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又△a2+b2=x2,c2+d2=y2,△正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49(cm2).故选:D.【点睛】本题考查了勾股定理,注意掌握直角三角形中,两直角边的平方和等于斜边的平方.19.C【分析】△先证出AF =FD =CD ,得到△DFC =△DCF ,再根据平行线性质得到△DFC =△FCB ,即可得到△DCF =△BCF ,可得△DCF =12 △BCD ,故△正确;△做辅助线延长EF ,交CD 延长线于M ,先证△AEF △△DMF (ASA ),得到FE =MF 即12FE EM =,再通过在Rt ECM 中斜边上的中线等于斜边的一半得到12FC EM =,即可得到CF =EF ,故△正确;△根据EF =FM ,可得EFC CFM S S =,那么2ECM CFE S S =△△,再通过MC >BE ,得到BEC ECM S S △△<,即2BEC CEF S S △△<,故△的正确;△先证FC =FE ,设△FCE =x ,那么90DCF x ∠=︒-,再通过证△DCF =△DFC ,那么90DCF DFC x ∠=∠=︒-,则1802EFC x ∠=︒-,进一步证得9018022703EFD x x x ∠=︒-+︒-=︒-,即可证得3DFE AEF ∠=∠,故△错误.【详解】解:△△F 是AD 的中点,△AF =FD ,△在ABCD 中,AD =2AB ,△AF =FD =CD ,△△DFC =△DCF ,△//AD BC ,△△DFC =△FCB ,△△DCF =△BCF ,△△DCF =12△BCD ,故△正确;△延长EF ,交CD 延长线于M ,△四边形ABCD 是平行四边形,△//AB CD ,△△A =△MDF ,△F 为AD 中点,△AF =FD ,在△AEF 和△DFM 中,A FDM AF DFAFE DFM ∠∠⎧⎪⎨⎪∠∠⎩=== , △△AEF △△DMF (ASA ),△FE =MF ,即12FE EM =,△AEF =△M , △CE △AB ,△△AEC=90°,△△AEC =△ECD =90°, △12FC EM =△12FE EM =, △CF =EF ,故△正确;△△EF =FM ,△EFC CFM S S =,△2ECM CFE S S =△△,△MC >BE ,△BEC ECM S S △△<△2BEC CEF S S △△<故△正确;△设△FEC =x ,△CE △AB ,//AB CD ,△90ECD BEC ∠=∠=︒,△F 是EM 的中点,△FC =FE ,△△FCE =x ,△90DCF x ∠=︒-,△//AD BC△△FCB =△DFC△△DCF =△FCB ;△△DCF =△DFC△90DCF DFC x ∠=∠=︒-△1802EFC x ∠=︒-,△9018022703EFD x x x ∠=︒-+︒-=︒-,△90AEF x ∠=︒-,△△DFE =3△AEF ,故△错误.综上所述正确的是:△△△.故选:C .【点睛】此题主要考查了平行四边形的性质、全等三角形的判定与性质、直角三角形性质等知识,能准确找到边与边之间、角与角之间的关系是解答此题的关键.20.A【分析】过C 作HC CD ⊥于C ,使CH BD =,连接DH ,FH ,根据SAS 证明BED CFH ≅△△,得出FH DE =,则DE DF FH DF +=+,当FH DF +的最小时,DE DF +最小,当D 、F 、H 在同一条直线时,FH DF +最小,根据勾股定理算出结果即可.【详解】解:如图,过C 作HC CD ⊥于C ,使CH BD =,连接DH ,FH ,90HCA ACD ∴∠+∠=︒,150BDC ∠=︒,18015030DBC DCB ∴∠+∠=︒-︒=︒,()ABD ACD ABC ACB DBC DCB ∴∠+∠=∠+∠-∠+∠,△ABC 为等边三角形,60ABC ACB ∴∠=∠=︒,AB AC =,1203090ABD ACD ∴∠+∠=︒-︒=︒,HCA ABD ∴∠=∠, =AE AF ,BE CF ∴=,△在BED 和FCH 中BE CF HCA ABD CH BD =⎧⎪∠=∠⎨⎪=⎩,()SAS BED CFH ∴≅△△,FH DE ∴=,DE DF FH DF ∴+=+,∴当FH DF +的最小时,DE DF +最小,∴当D 、F 、H 在同一条直线时,FH DF +最小,在Rt DCH △中,3CH =,4DC =,5DH ∴,△DE DF +的最小值是5,故A 正确.故选:A .【点睛】本题主要考查了等边三角形的性质,全等三角形的判定和性质,勾股定理,余角的性质,解题的关键是作出辅助线,证明BED CFH ≅△△.21.7或8【分析】根据等腰三角形的性质,分两种情况:△当腰长为2时,△当腰长为3时,解答出即可.【详解】解:根据题意,△当腰长为2时,周长=2+2+3=7;△当腰长为3时,周长=3+3+2=8,故答案为:7或8.【点睛】本题主要考查了等腰三角形的性质,注意本题要分两种情况解答.22.3m ﹣18.【分析】先根据三角形三边关系确定m 的取值范围,然后利用二次根式的性质化简即可.【详解】△三角形的三边长分别为3、m 、5,△2<m <8,=|2﹣m |﹣2|m ﹣8|=m ﹣2﹣2(8﹣m )=3m ﹣18.故答案为:3m ﹣18.【点睛】本题主要考查三角形三边关系和二次根式的性质,掌握三角形三边关系和二次根式的性质是解题的关键.23.112.5【分析】根据正方形的性质,可以得到△PBC 的度数,再根据等腰三角形的性质和三角形内角和,求得△BPC 的度数,即可求得△DPC 的度数.【详解】解:△点P 是正方形ABCD 的对角线BD 上一点,△△PBC =45°,△BP =BC ,△△BPC =△BCP =180452︒-︒=67.5°, △△DPC =180°-△BPC =112.5°,故答案为:112.5.【点睛】本题考查正方形的性质、等腰三角形的性质,利用数形结合的思想解答是解答本题的关键.24.25︒或25度【分析】根据三角形内角和,得A ∠的角度,根据折叠得,A F ∠=∠,ADE EDF ∠=∠;又根据EF BC ∥,得90FEC C ∠=∠=︒,再根据三角形内角和,求出EGF ∠,最后根据三角形的外角和,即可求出ADE ∠.【详解】△ABC 中,90C ∠=︒,70B ∠=︒△18020A C B ∠=︒-∠-∠=︒△DEF 是DEA △折叠得到的△20A F ∠=∠=︒,ADE EDF ∠=∠△EF BC ∥△90FEC C ∠=∠=︒△18070EGF FEC F ∠=︒-∠-∠=︒△70EGF DGC ∠=∠=︒△70A ADG ∠+∠=︒△270A ADE ∠+∠=︒△25ADE ∠=︒.故答案为:25︒或25度.【点睛】本题考查三角形的知识,解题的关键是掌握三角形内角和、外角和定理. 25.26320x x --=【分析】先表示出BC 的长,再利用勾股定理建立方程即可.【详解】解:由题可知 1丈=10尺,门的对角线距离恰好为1丈,∴门的对角线距离恰好为10尺,△高比宽多6尺,设门高 AB 为x 尺,△()6BC x =-尺,△可列方程为:()222610x x +-=,整理得:26320x x --=故答案为:26320x x --=.【点睛】本题属于数学文化题,考查了勾股定理及其应用,解决本题的关键是读懂题意,能将文字语言转化为几何语言,能用含同一个未知数的式子表示出直角三角形的两条直角边,再利用勾股定理建立方程即可.26.118【分析】根据轴对称的性质得出角的度数,进而利用三角形外角的性质解答即可.【详解】解:∵△ABC和△ABE关于直线AB对称,△ABC和△ADC关于直线AC对称,∴∠DCA=∠ACB=18°,∠BAC=∠BAE,∵∠ABC=32°,∴∠BAC=180°-18°-32°=130°=∠BAE,∴∠EAC=360°﹣∠BAC﹣∠BAE=360°﹣130°﹣130°=100°,∴∠CFE=∠ACD+∠EAC=18°+100°=118°,故答案为:118°.【点睛】此题考查轴对称的性质,关键是根据轴对称的性质求出相关角的度数.27.(6)(3)(5)【分析】利用全等图形的概念可得答案.【详解】解:(1)与(6)是全等图形,(2)与(3)(5)是全等图形,故答案为:(6),(3)(5).【点睛】本题主要考查了全等图形,关键是掌握能够完全重合的两个图形叫做全等形.28.110°##110度【分析】根据等腰三角形性质,可得△B=△ACB=70°,再根据平行线的性质,即可求出△BCD的度数.【详解】解:△AB=AC,△A=40°,△△B=△ACB=12(180°-40°)=70°,△CD AB∥,△△B+△BCD=180°,△△BCD=110°.故答案为:110°【点睛】此题主要考查了等腰三角形的性质和平行线的性质,解题关键是熟练运用已知条件,进行正确的推理计算.29.3°##3度【分析】先利用外角等于不相邻的两个内角之和,以及角平分线的性质求△A1=12△A,再依此类推得,△A 2=212△A ;…△A 5=512 △A ;找出规律,从而求△A 5的值. 【详解】△BA 1C +△A 1BC =△A 1CD ,2△A 1CD =△ACD =△BAC +△ABC ,△2(△BA 1C +△A 1BC )=△BAC +△ABC ,2△BA 1C +2△A 1BC =△BAC +△ABC ,而2△A 1BC =△ABC ,△2△BA 1C =△BAC ,同理,可得2△BA 2C =△BA 1C ,2△BA 3C =△BA 2C ,2△BA 4C =△BA 3C ,2△BA 5C =△BA 4 C ,△△BA 5C =12 △BA 4C =14△BA 3C =18 △BA 2C =116 △BA 1C =132 △BAC =96°÷32=3°, 故△A 5=3°.故答案为:3°.【点睛】此题考查三角形的外角性质,解题关键在于找到规律30.549π-【分析】由15AB =,12BC =,9AC =,得到222AB BC AC =+,根据勾股定理的逆定理得到ABC 为直角三角形,于是得到ABC 的内切圆半径1291532+-==,图中阴影部分的面积等于直角三角形的面积减去圆的面积,分别利用它们的计算公式即可得到图中阴影部分的面积【详解】△ 15AB =,12BC =,9AC =,△ 222AB BC AC =+,△ ABC 为直角三角形,△ ABC 的内切圆半径1291532+-==, △ 图中阴影部分的面积2112935492ππ=⨯⨯-⋅=-. 故答案为549π-【点睛】本题考查了三角形的内切圆与内心、勾股定理的逆定理,对于不规则图形的面积要灵活转化为规则图形的求法是解题的关键31 【分析】过点A 作AC BC ⊥于C ,根据坡度与坡角的概念得1tan 2AC BC α==,设AC x =,2BC x =,根据勾股定理求出AB 的长,再根据锐角三角函数的概念即可求出答案.【详解】过点A 作AC BC ⊥于C ,△AB 的坡度1:2i =, △1tan 2AC BC α==, 设AC x =,2BC x =,△AC BC ⊥,△AB ,△sinAC AB α==【点睛】本题考查了坡度坡角的知识与解直角三角形的知识,熟练掌握坡度坡角的概念与勾股定理的应用是解本题的关键.32.12米【详解】解:如图所示,AC=6米,BC=4.5米,由勾股定理得,AB= =7.5(米). 故旗杆折断前高为:4.5+7.5=12(米).故答案为:12米.33. 2 【分析】△连接,OA OB ,易证AOB 是等边三角形,弦AB 长为2,2OA OB ==,即可得到答案;△先证90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,再用勾股定理求出AE 即可.【详解】解:△连接,OA OB ,△30,ADB ∠=︒△60AOB ∠=︒,△OA OB =,△AOB 是等边三角形,△弦AB 长为2,△2OA OB ==,即O 的半径长为2,故答案为:2△△15ADC ∠=︒,△230AOC ADC ︒∠=∠=,△90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,△60BAO ∠=︒,△2OA OE ==,△30OAE AEB ︒∠=∠=,△90BAE BAO OAE ∠=∠+∠=︒,△AE ==即PA PB+的最小值是故答案为:【点睛】此题考查了圆周角定理、勾股定理、等边三角形的判定和性质、轴对称最短路径等知识,熟练掌握相关定理并灵活应用是解题的关键.34.6【分析】利用勾股定理求解出另一条直角边,即可求解.【详解】解:△直角三角形斜边长是5,一直角边的长是3,△.×3×4=6.该直角三角形的面积S=12故答案为6.【点睛】本题考查了了勾股定理,解题的关键是掌握利用勾股定理求直角边.35.36°【分析】如图所示,△ABF中,根据内角和外角的关系,△2=△A+△B;△EDG中,△1=△D+△E;根据三角形内角和等于180°,得到△1+△2+△C=180度.于是△A+△B+△C+△D+△E=180°,由于五个角的度数是相同,即可求得每一个角的度数.【详解】△△2=△A+△B;△1=△D+△E,△1+△2+△C=180°,△△A+△B+△C+△D+△E=180°,△五个角的度数是相同,则每一个角的度数都是180°÷5=36°,故答案为36°【点睛】本题考查三角形的外角性质及三角形内角和定理,结合三角形内角和外角的关系,将所有角转化到一个三角形内,体现了数形结合思想和转化思想在解决数学问题时的魅力.36.1或3。

七年级数学上册《三角形》练习题一

七年级数学上册《三角形》练习题一

练习题一1.选择题(1)已知三角形的一个外角小于与它相邻的内角,那么这个三角形( )A .是锐角三角形B .是直角三角形C .是钝角三角形D .以上三种情况都有可能(2)一木工师傅现有两根木条,长分别为40cm 和50cm ,他要选择第三根木条,将它们钉成一个三角形木架,设第三根木条长为x cm ,则x 的取值是( )A .9010<<xB .10020<<xC .5040<<xD .20090<<x(3)下列语句中,正确的是( )A .三角形的一个外角大于它的一个内角B .三角形的一个外角等于它的两个内角的和C .一个三角形的外角中,至少有两个钝角D .一个三角形的外角中,有且只有两个钝角(4)在ABC ∆中,B A ∠︒=∠,55比C ∠大25°,则=∠B ( )A .50°B .75°C .100°D .125°2.填空题(1)三角形三条边的长是三个连续的自然数,且周长为18,则这个三角形三条边的长为_________、_________、__________.(2)三角形的两边长3,3,则最长边c 的取值范围是___________.(3)直角三角形中,两个锐角的平分线相交所成的钝角等于____________度.(4)在钝角三角形中,最大的内角α的度数的取值范围是_________.3.画图与探索(1)画一个锐角三角形(但不是等腰三角形),使它的三条边都不是水平状态;(2)画一个直角三角形和一个钝角三角形,使直角、钝角所对的边呈水平状态;(3)量一量,在所画的三个三角形中,分别是哪个角最大,哪条迷最长;(4)在三个三角形中,最大的角与最大的边之间的关系有什么共同之处?参考答案1.(1)C (与这个外角相邻的内角是钝角)(2)A (需保证每两边之和都大于第三边)(3)C (三个内角中至少有两个锐角,或从外角和考虑)(4)B (︒=∠-∠︒=∠+∠25,125C B C B )2.(1)5、6、7 (18÷3得中间一边的长) (2)63<≤c (等边三角形的任何一边都可称为最长边) (3)135°(两锐角互余) (4)︒<<︒18090α3.画图略,最大的边所对的角也最大.。

初一数学第12章 全等三角形练习题

初一数学第12章 全等三角形练习题

全等三角形练习题1. 如图1,ΔABE ≌ΔACD ,AB=8cm ,AD=5cm ,∠A=60°,∠B=40°,则AE=_______,∠C=_____.2. 如图2,如图,△ABC ≌△ADE ,则,AB = ,∠E =∠ .若∠BAE =120°,∠BAD =40°,则∠BAC =3. 如图3:∠ABC=∠DEF ,AB=DE ,要说明ΔABC ≌ΔDEF(1) 若以“SAS ”为依据,还要添加的条件为______________; (2) 若以“ASA ”为依据,还要添加的条件为______________; (3) 若以“AAS ”为依据,还要添加的条件为______________.4. 如图4:要测量河岸相对的两点A 、B 之间的距离,先从B 处出发与AB 成90°角方向,向前走50米到C 处立一根标杆,然后方向不变继续朝前走50米到D 处,在D 处右转90°沿DE 方向再走17米,到达E 处,使A 、C 与E 在同一直线上,那么测得A 、B 的距离为__________米. 5. 如图5,AB ∥CD ,AD ∥BC ,OE=OF ,则图中全等三角形有________对ABCDEFO(图1) (图2) (图3) (图4) (图5)6. 如图6,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条角平分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO =_____________7. 如图7,在ΔABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,若AB=6cm ,则ΔDBE 的周长是__________8. 如图8,幼儿园的滑梯中有两个长度相等的梯子(BC=EF ),左边滑梯的高度AC 等于右边滑梯水平方向的长度DF ,则∠ABC+∠DFE= °.9.如图9,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个.EDCAFED CBA AD E(图6) (图7) (图8) (图9) 10. 已知:如图,点B,E,C,F 在同一直线上,AB ∥DE,且AB=DE,BE=CF.求证: ΔAB C ≌ΔDEF 11.如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC 于B,且DC=EC, 能否找出与AB+AD 相等的线段,并说明理由.BAE12.如图,AD ⊥BC 于D ,AD=BD ,AC=BE. 判断BE 和AC 的关系并证明.13.用三角板可按下面方法画角平分线:在已知∠AOB 的两边上,分别取OM =ON (如图13),再分别过点M 、N 作OA 、OB 的垂线,交点为P ,画射线OP ,则OP 平分∠AOB ,请你说出其中的道理.14.如图14,工人师傅要在墙壁的O 处用钻打孔,要使孔口从墙壁对面的B 点处打开,墙壁厚是35 cm ,B 点与O 点的铅直距离AB 长是20 cm ,工人师傅在旁边墙上与AO 水平的线上截取OC =35 cm ,画CD ⊥OC ,使CD =20cm ,连接OD ,然后沿着DO 的方向打孔,结果钻头正好从B 点处打出,这是什么道理呢?请你说出理由.15.如图15,在四边形ABCD 中,AB AD =,BC DC =,E 为AC 上的一动点(不与A 重合),在E 移动过程中BE 和DE 是否相等?若相等,请写出证明过程;若不相等,请说明理由.16. 如图16, OA=OB,AC=BD.求证:OE 平分∠AOBD A EBEAOC17.如图17,小明在完成数学作业时,遇到了这样一个问题,AB=CD,BC=AD,请说明:∠A=∠C的道理,小明动手测量了一下,发现∠A确实与∠C相等,但他不能说明其中的道理,你能帮助他说明这个道理吗?试试看.18.如图16,DA平分∠BAC,AB=AC.求证: BD=CD19.已知如图19-1,AD=DC,BD平分∠ABC,求证:∠A与∠C互补.变化1:已知如图19-2,AD=DC,∠A与∠C互补,求证:BD平分∠ABC.变化2:已知如图19-3,DE⊥BC,AB+BC=2BE,求证:∠A与∠C互补.20.如图,△ABC 中AC=BC,∠ACB=90°,∠A的平分线AD交BC于点D,过点B作BE⊥AD于点E.求证:BE =12AD.EDCBABEACBDABDABD21.已知如图21,点C 是线段AB 上的任一点(C 点与A ,B 点不重合)分别以AC ,BC 为边在线段AB 的同侧作等边ACD △和等边BCE △,AE 与CD 相交于M ,BD 与CE 相交于N .求证:①ACE DCB △≌△,②//MN AB .22.如图22-1,在△ABC 中,∠ACB =90°,AC =BC ,直线l 经过顶点C ,过A 、B 两点分别作l 的垂线AE 、BF ,E 、F 为垂足.(1)当直线l 不与底边AB 相交时,求证:EF =AE +BF .(图22-1)(2)如图22-2,将直线l 绕点C 顺时针旋转,使l 与底边AB 交于点D ,请你探究直线l 在如下位置时,EF 、AE 、BF 之间的关系. ①AD >BD ;②AD =BD ;③AD <BD .(图22-2)23.如图(1),已知AB ⊥BD ,ED ⊥BD ,AB =CD ,BC =DE ,(1)试判断AC 与CE 的位置关系,并说明理由.(2).若将CD 沿CB 方向平移得到图(2)(3)(4)(5)的情形,其余条件不变,此时第(1)问中AC 与CE 的位置关系还成立吗?结论还成立吗?请说明理由.(图23)C NB ED A M24. 一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如图7形式,使点B,F,C,D在同一条直线上.(1)求证:AB⊥ED.(2)若PB=BC,请找出图中与此条件有关的一对..全等三角形,并给予证明.25. 如图25-1所示,点A(1)求证:∠ABC=∠ACB.(2)如图25-2所示,过x点的坐标;(3)如图所示,将⊿ABC沿x直线与AB的延长线交于Q点,与EFMBCPNDABEDCFA26.在四边形ABDE 中,C 是BD 边的中点.(1)如图(1),若AC 平分BAE ∠,ACE ∠=90°, 求线段AE 、AB 、DE 的长度满足的数量关系 (2)如图(2),AC 平分BAE ∠, EC 平分AED ∠,若120ACE ∠=︒,则线段AB 、BD 、DE 、AE 的长度满足怎样的数量关系?写出结论并证明;(3)如图(3),BD = 8,AB =2,DE =8,135ACE ∠=︒,求线段AE 长度的最大值.(图25-3)EDC BA图(2)EDCBA图(3) EDC BA图(1)。

专题01 认识三角形重难点专练

专题01 认识三角形重难点专练

专题01认识三角形重难点专练(原卷版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(【新东方】初中数学1146)已知三角形的一边长为8,则它的另两边长分别可以是( )A .2,9B .17,29C .3,12D .4,42.(【新东方】初中数学1137【2020年】【初二上】【开学考】)如图,在ABC V 中,20A Ð=°,ABC Ð与ACB Ð的角平分线交于1D ,1ABD Ð与1ACD Ð的角平分线交于点2D ,依此类推,4ABD Ð与4ACD Ð的角平分线交于点5D ,则5BD C Ð的度数是( )A .24°B .25°C .30°D .36°3.(【新东方】初中数学1106【2020年】【初一下】)如图,已知//AB CD ,120AFC Ð=°,13EAF EAB Ð=Ð,13ECF ECD Ð=Ð,则AEC Ð=( )A .60°B .80°C .90°D .100°4.(2021·浙江九年级专题练习)将一副三角板如图放置,∠FDE =∠A =90°,∠C =45°,∠E =60°,且点D 在BC 上,点B 在EF 上,AC ∥EF ,则∠FDC 的度数为( )A .150°B .160°C .165°D .155°5.(【新东方】初中数学1149)如图,在△ABC 中,已知点D ,E ,F 分别为边AC ,BD ,CE 的中点,且阴影部分图形面积等于4平方厘米,则△ABC 的面积为( )平方厘米A .8B .12C .16D .186.(2021·杭州绿城育华学校七年级期中)如图,直线//MN PQ ,点A 是MN 上一点,MAC Ð的角平分线交PQ 于点B ,若120Ð=°,2116Ð=°,则3Ð的大小为( )A .136°B .148°C .146°D .138°7.(2021·浙江九年级一模)如图,直角三角形ABC 的顶点A 在直线m 上,分别度量:①∠1,∠2,∠C ;②∠2,∠3,∠B ;③∠3,∠4,∠C ;④∠1,∠2,∠3,可判断直线m 与直线n 是否平行的是( )A .①B .②C .③D .④8.(【新东方】【温州】【初一下】【数学】【00103】)如图,//,MN PQ BCP Ð的角平分线CD 的反向延长线交BAN ∠的角平分线于点E ,36B E Ð-Ð=°,则B Ð为( )A .82°B .84°C .86°D .96°9.(【新东方】【2021.5.20】【TZ 】【初一下】【数学】【TZ0005】)如图,//,AF CD CB 平分,ACD BD Ð平分EBF Ð,且BC BD ^,下列结论:①BC 平分ABE Ð,②//AC BE ;③90BCD D Ð+Ð=°;④2DBF ABC Ð=Ð.其中正确的个数为( )A .4个B .3个C .2个D .1个10.(2021·浙江七年级期末)如图,AB ∥CD ,点P 在AB ,CD 之间,∠ACP =2∠PCD =40°,连结AP ,若∠BAP =α,∠CAP =α+β.下列说法中正确的是( )A .当∠P =60°时,α=30°B .当∠P =60°时,β=40°C .当β=20°时,∠P =90°D .当β=0°时,∠P =90°11.(2020·浙江湖州市·七年级月考)如图,已知直线AB ,CD 被直线AC 所截,//AB CD ,E 是平面内任意一点(点E 不在直线AB ,CD ,AC 上),设BAE a Ð=,DCE b Ð=.下列各式:①a b +,②a b -,③180a b °--,④360a b °--,AEC Ð的度数可能是( )A .①②③B .①②④C .①③④D .①②③④12.(2020·浙江杭州市·七年级其他模拟)如图,直线,AB CD 被直线AC 所截,已知//AB CD ,E 是平面内任意一点(点E 不在直线,,AB CD AC 上),设BAE a Ð=,DCE b Ð=.下列各式:①a b +,②b a -,③180a b °--,④360a b °--中,AEC Ð的度数可能是( )A .②③④B .①②④C .①③④D .①②③13.(2020·浙江绍兴市·九年级期末)如图,在ABC V 中,D 是边AB 上的点,E 是边AC 上的点,且1AD BD m =,1CE AE n =,若BCF △的面积为1,则ABC V 的面积为( )A .1mn n n ++B .1mn m n ++C .1mn n m ++D .1mn m m++14.(【新东方】台州数学初一下【00018】)如图,,AM CM 平分BAD Ð和BCD Ð,若3442B D Ð=°Ð=°,,则M Ð=( )A .34°B .38°C .40°D .42°15.(【新东方】义乌初中数学初一下【00027】)如图,,AB BC AE ^平分BAD Ð交BC 于点E ,AE DE ^,1290Ð+Ð=°,M ,N 分别是,BA CD 延长线上的点,EAM Ð和EDN Ð的平分线交于点F .下列结论:①//AB CD ;②180AEB ADC Ð+Ð=°;③DE 平分ADC Ð;④F Ð为定值.其中正确的有( )A .1个B .2个C .3个D .4个二、填空题16.(第17讲三角形(测)-备战2021年中考数学一轮复习讲练测(浙江))如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD =2BD ,BE =CE .设△ADF 的面积为S 1,△CEF 的面积为S 2,若S △ABC =6,则S 1﹣S 2=___.17.(2021·浙江九年级专题练习)a ,b ,c 是三角形的三边,每条边都大于1,则下列长度的线段一定能组成三角形的是__(填写编号)①a ﹣1,b ﹣1,c ﹣1;②a+1,b+1,c+1;③111,,a b c ;④a 2,b 2,c 2;18.(2021·浙江九年级专题练习)在V ABC 中,∠A =12∠B =13∠C ,则∠B =____度.19.(【新东方】初中数学1237初二上)如图,BF 平分ABD Ð,CE 平分ACD Ð,BF 与CE 交于G ,若120BDC Ð=°,90BGC Ð=°,则A Ð的度数为________.20.(【新东方】台州数学初一下【00016】)如图,//////AB DC ED BC AE BD ,,,那么图中和ABD △面积相等的三角形(不包括ABD △)有______个.21.(2021·浙江七年级期中)如图,一位跑酷运动员准备以连续两次“跳跃”结束一次跑酷表演,即在水平面AB 上跑至B 点,向上跃起至最高点P ,然后落在点C 处,继续在水平面CD 上跃起落在点D ,若ABK Ð和KCD Ð的平分线的反向延长线刚好交于最高点P ,88BKC Ð=°,则P Ð=_______度.22.(【新东方】初中数学1304【初二上】)如图,在ABC V 中,CD 是高线,CE 是角平分线,2A DCE Ð=Ð,2A ACB Ð=Ð,那么B Ð=_______.23.(【新东方】【2021.5.19】【JH 】【初一下】【数学】【JH0033】)如图1,赤道式日晷是中国古代最经典和传统的计时仪器,由底座,晷面、晷针三部分组成,其中底坐面与日晷所处地球半径垂直;(1)晷针与晷面夹角为___________;(2)如图2,日晷所处纬度a 为50°,若太阳光(平行光)与日晷底座面夹角为60°,则太阳光与该晷面所夹锐角度为___________.24.(2021·浙江杭州市·七年级期中)如图,AC BD ^于C ,E 是AB 上一点,CE CF ^,//,DF AB EH 平分,BEC DH Ð平分BDG Ð,则:H Ð与ACF Ð之间的数最关系为______.25.(2020·台州市书生中学八年级月考)在四边形ABCD 中,P 是AD 边上任意一点,当AP= 12AD 时,PBC S V 与ABC S V 和DBC S △ 之间的关系式为:________________;一般地,当AP=1nAD (n 表示正整数)时,PBC S V 与ABC S V 和DBC S △ 之间关系式为:________________.26.(2020·浙江八年级月考)如图,在ABC D 中,90B Ð=°,分别作其内角ACB Ð与外角DAC Ð的平分线,且两条角平分线所在的直线交于点E ,则E Ð=____度;分别作EAB Ð与ECB Ð的平分线,且两条角平分线交于点F ,则AFC Ð=______度.三、解答题27.(2021·浙江八年级期末)如图所示,在Rt ABC V 中,90ACB Ð=°,AD 平分BAC Ð交BC 于点D ,BP 平分ABC Ð交AD 于点P .(1)求APB Ð的度数.(2)若56ADC Ð=°,求ABP Ð的度数.28.(2021·浙江台州市·)如图,在平面内有三个点、、A B C(1)根据下列语句画图:①连接AB ;②作直线BC ;③作射线AC ,在AC 的延长线上取一点D 使得CD CB =,连接BD ;(2)比较,,AB BD AB BC CD AD +++的大小关系.29.(【新东方】初中数学1094【2020年】【初一下】)已知D 是ABC V 的边BC 所在直线上的一点,与B ,C 点不重合,过D 点分别作//DF AC 交AB 所在直线于点F ,//DE AB 交AC 所在直线于点E ,其中110B C Ð+Ð=°.(1)当D 在线段BC 上时(如图),求FDE Ð的度数;(2)还有没有其他情况?若有,请画出图形,并求出FDE Ð的度数.30.(2020·浙江省义乌市望道中学七年级月考)已知//AB CD ,下列各图中的ABE Ð、E Ð、CDE Ð三个角之间各有什么关系?填入下列括号内,并选择一个你自己喜欢的图加以说明理由.解:(1)图结论:____________________________;(2)图结论:____________________________;(3)图结论:____________________________;(4)图结论:____________________________;31.(【新东方】初中数学1226初二上)已知,在直角三角形ABC 中,90ACB Ð=°,D 是AB 上一点,且ACD B Ð=Ð.(1)如图1,求证:CD AB ^;(2)如图2,将ADC V 沿CD 所在直线翻折,A 点落在BD 边上,记为A ¢点.①若34B Ð=°,求A CB ¢Ð的度数;②试求B Ð与A CB ¢Ð的关系,并说明理由.32.(【新东方】初中数学1222初二上)如图,在ABC V 中,AD 是ABC V 的高线,AE 是ABC V 的角平分线,已知80,40BAC C Ð=°Ð=°.(1)求DAE Ð的大小.(2)若BF 是ABC Ð的角平分线,求AGB Ð的大小.33.(【新东方】初中数学20210625-035【初一下】)如图,在ABC V 中,点E 在AC 边上,连接BE ,过点E 作//DF BC ,交AB 于点D .若BE 平分,ABC EC Ð平分BEF Ð.设,ADE AED a b Ð=Ð=.(1)当80b =°时,求DEB Ð的度数.(2)试用含a 的代数式表示b .(3)若k b a =(k 为常数).若a 和k 都为正整数,直接写出k 的值.34.(2021·浙江七年级期末)如图,已知每个小正方形的边长为1,且正方形的顶点称为格点,网格中有一只小鱼,若小鱼平移游动,平移后的鱼头部分已画出(鱼身顶点都在格点上).(1)请作出请补全平移后的鱼尾部分111A B C △;(2)若格点P 满足PAB ABC S S =V V ,请在网格中标出一个满足条件的点P .35.(2021·浙江七年级期末)已知AM ∥BN ,BD 平分∠ABN 交AM 于点D ,E 为射线BA 上的点,设∠ABD =α.(1)如图1,求∠ADB 的度数(用α表示);(2)如图2,若F 为AD 上的点,∠EFD 的平分线所在直线分别交BD 、ED 于点G 、H ,当HG //BE 时,求∠BEF 的度数(用α表示).36.(2020·浙江翠苑中学八年级期中)如图1所示,AD 平分BAC Ð,AE BC ^,30B Ð=°,70C Ð=°.(1)BAC Ð=______°,DAE =∠______°;(2)如图2所示,若把“AE BC ^”变成“点F 在AD 的延长线上,FE BC ^”,其它条件不变,求DFE Ð的度数;(3)如图3所示,AD 平分BAC Ð,AE 平分BEC Ð,40C B Ð-Ð=°,求DAE Ð的度数.37.(2020·浙江金华市·七年级期中)如图,已知直线a ^直线b ,垂足为点O .将直角三角形纸板ABC 的直角边AC 放置在直线a 上,线段AB (或射线AB )与直线b 交于点D ,直线//CE AB 交直线b 于点E ,AF 平分DAO Ð,EF 平分DEC Ð,设BAC x Ð=度,ABC y Ð=度,且:1:2x y =.(1)求x ,y 的值及ADO Ð的度数:(2)如图,当A 、C 两点在点O 的两侧时,求AFE Ð的度数;(3)将(2)中的三角形纸板沿CA 方向平移,当A 、C 两点都移动到点O 的左侧时如图,请按题意在图中画出图形,并判断AFE Ð的度数与(2)的结果比较是否改变?若改变,直接写出此时AFE Ð的度数:若不变,请说明理由.38.(2020·浙江杭州市·七年级其他模拟)问题情景:如图1,//AB CD ,30A °Ð=,42C °Ð=,求AEC Ð的度数.小明的思路:(1)初步尝试:按小明的思路,求出图1中AEC Ð的度数.(2)问题拓展:在(1)的基础上作如图2,AP 平分BAE Ð,PC 平分DCE Ð,AP 与CP 交于点P ,直接写出求出APC Ð的度数,不需要理由.(3)问题迁移1:如图3,//AB CD ,当E 在直线AB 上方时,若EAB a Ð=,ECD b Ð=,EAB Ð和ECD Ð的平分线交于点1P ,请猜想E Ð与1P Ð的数量关系,并说明需要理由;(4)问题迁移2:如图4,//AB CD ,当点E 在直线AB 的上方时,EAB Ð的角平分线的反向延长线和ECD Ð的补角的角平分线交于点M ,直接说出猜想M Ð与E Ð的数量关系,不需要理由.39.(2020·杭州观成实验学校七年级期中)已知//AM CN ,点B 为平面内一点,AB BC ^于B .(1)如图1,直接写出A Ð和C Ð之间的数量关系________;(2)如图2,过点B 作BD AM ^于点D ,请说明ABD C Ð=Ð的理由;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE ,BP 、CF ,BF 平分DBC Ð,BE 平分ABD Ð,若180FCB NCF Ð+Ð=°,3BFC DBE Ð=Ð,求EBC Ð的度数.40.(【新东方】初中数学1124【2020年】【初一下】)已知//AB CD ,点E 、F 分别在直线AB 、CD 上,PF 交AB 于点G .(1)如图1,直接写出P Ð、PEB Ð与PFD Ð之间的数量关系:______;(2)如图2,EQ 、FQ 分别为PEB Ð与PFD Ð的平分线,且交于点Q ,试说明2P Q Ð=Ð;(3)如图3,若13BEQ PEB Ð=Ð,13DFQ PFD Ð=Ð,(2)中的结论还成立吗?若成立,请说明理由;若不成立,请求出P Ð与Q Ð的数量关系;(4)在(3)的条件下,若72CFP Ð=°,当点E 在A 、B 之间运动时,是否存在//PE FQ ?若存在,请求出Q Ð的度数:若不存在,请说明理由.41.(【新东方】初中数学1107【2020年】【初一下】)如图①,E 是直线AB ,CD 内部一点,//AB CD ,连接EA ,ED .(1)探究猜想:①若20A °Ð=,40D °Ð=,则AED =∠_______.②猜想图①中AED Ð,EAB Ð,EDC Ð的关系,并证明你的结论.(2)拓展应用:如图②,射线FE 与AB ,CD 交于分别交于点E 、F ,//AB CD ,a ,b ,c ,d 分别是被射线FE 隔开的4个区域(不含边界,其中区域a ,b 位于直线AB 上方,P 是位于以上四个区域上的点,猜想:PEB Ð,PFC Ð,EPF Ð的关系(直接写出结论,不需证明).42.(【新东方】初中数学1106【2020年】【初一下】)如图①,已知点A 、点B 分别在定直线EF 、MN 上,且60FAB Ð=°,点P 是直线EF 上一动点(与A 不重合),BC 、BD 分别平分ABP Ð和PBN Ð,分别交直线EF 于点C 、D ,老师发现当点P 从点A 出发,沿射线AF 方向移动的过程中,始终有60CBD Ð=°.(1)请你判断直线EF 和MN 的位置关系,并说明理由;(2)点P 从点A 出发,沿射线AF 方向移动,当ACB ABD =∠∠时,求NBD Ð度数.(3)点P 从点A 出发,沿射线AE 方向移动时.如图②,ACB ABD =∠∠是否始终成立?请说明理由.43.(第17讲三角形(测)-备战2021年中考数学一轮复习讲练测(浙江))(1)如图①,△ABC 中,点D 、E 在边BC 上,AE 平分∠BAC ,AD ⊥BC ,∠C =40°,∠B =60°,求:①∠CAE 的度数;②∠DAE 的度数.(2)如图②,若把(1)中的条件“AD ⊥BC”变成“F 为AE 延长线上一点,且FD ⊥BC”,其他条件不变,求出∠DFE 的度数.(3)在△ABC 中,AE 平分∠BAC ,若F 为EA 延长线上一点,FD ⊥BC ,且∠C =α,∠B =β(β>α),试猜想∠DFE 的度数(用α,β表示),请自己作出对应图形并说明理由.44.(2020·浙江群星外国语学校七年级月考)阅读下面材料:小亮遇到这样问题:如图1,已知//AB CD ,EOF 是直线AB 、CD 间的一条折线.判断O Ð、BEO Ð、DFO Ð三个角之间的数量关系.小亮通过思考发现:过点O 作//OP AB ,通过构造内错角,可使问题得到解决.(1)请回答:O Ð、BEO Ð、DFO Ð三个角之间的数量关系是__________.参考小亮思考问题的方法,解决问题:(2)如图2,将ABC V 沿BA 方向平移到DEF V (B 、D 、E 共线),50B Ð=°,AC 与DF 相交于点G ,GP 、EP 分别平分CGF Ð、DEF Ð相交于点P ,求P Ð的度数;(3)如图3,直线//m n ,点B 、F 在直线m 上,点E 、C 在直线n 上,连接FE 并延长至点A ,连接BA 、BC 和CA ,做CBF Ð和CEF Ð的平分线交于点M ,若ADC a Ð=,则M Ð=__________(直接用含a 的式子表示).45.(2021·杭州绿城育华学校七年级期中)已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,若∠EAF =30°,∠EDG =40°,求∠AED 的度数;(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则AED Ð、EAF Ð、EDG Ð之间满足怎样的关系,请说明理由;(3)如图3,DI 平分EDC Ð,交AE 于点K ,交A I 于点I ,且:1:2EAI BAI ÐÐ=,22AED Ð=°,20I Ð=°,求EKD Ð的度数.46.(【新东方】初一【2021.4.20】【东阳】【初中】【数学】【00029】)(1)如图(1),DE ∥AB ,求证:三角形ABC 的三个内角(即A Ð、B Ð、ACB Ð)之和等于180°;(2)如图(2),求证:AGF AEF F Ð=Ð+Ð;(3)如图(3),//AB CD ,119CDE Ð=°,GF 交DEB Ð的平分线EF 于点F ,150AGF Ð=°,求F Ð.47.(【新东方】初一【2021.4.20】【东阳】【初中】【数学】【00029】)阅读材料:若2222440m mn n n -+-+=,求m ,n 的值.解:∵2222440m mn n n -+-+=,∴()()2222440m mn n n n -++-+=,∴22()(2)0m n n -+-=,∴2()0m n -=,2(2)0n -=,∴2n =,2m =.根据你的观察,探究下面的问题:(1)已知22228160x y xy y +-++=,则x =________,y =________;(2)已知ABC V 的三边长a 、b 、c 都是正整数,且满足22248180a b a b +--+=,求ABC V 的周长.48.(【新东方】【温州】【初一下】【数学】【00092】)将一副三角板中的两个直角顶点C 叠放在一起,其中3060A B Ð=°Ð=°,,45D E Ð=Ð=°.(1)当30BCE Ð=°时,试说明//CD AB 的理由.(2)若按住三角板ABC 不动,绕顶点C 转动三角板DCE ,在旋转过程中始终要求点E 在直线BC 上方,当两块三角板有一组边互相平行时,则BCE Ð的度数为_________(请直接写出所有答案).49.(【新东方】初中数学1110【2020年】【初一下】)已知,如图①,点D ,E ,F ,G 是ABC V 三边上的点,且//FG AC ,(1)若EDC FGC Ð=Ð,试判断DE 与BC 是否平行,并说明理由.(2)如图②,点M 、N 分别在边AC 、BC 上,且//MN AB ,连结GM ,若60A Ð=o ,55C Ð=o ,4FGM MGC Ð=Ð,求GMN Ð的度数.(3)点M 、N 分别在射线AC 、BC 上,且//MN AB ,连结GM .若A a Ð=,ACB b Ð=,FGM n MGC Ð=Ð,直接写出GMN Ð的度数(用含a ,b ,n 的代数式表示)50.(【新东方】【2021.5.19】【JH 】【初一下】【数学】【JH0040】)如图1,含30°角的直角三角板()30DEF EDF Ð=°与含45°角的直角三角板的斜边在同一直线上,D 为BC 的中点,将直角三角板DEF 绕点D 按逆时针方向旋转()0180a a а<<°,在旋转过程中:(1)如图2,当a Ð=________°时,//DE AB ;当a Ð=______°时,DE AB ^;(2)如图③,当直角三角板DEF 的边DF 、DE 分别交BA 、CA 的延长线于点M 、N 时;①1Ð与2Ð度数的和是否变化?若不变,求出1Ð与2Ð度数的和;若变化,请说明理由;②若使得122Ð=Ð,求出1Ð、2Ð的度数,并直接写出此时a Ð的度数;。

(完整版)初一数学三角形练习题(有答案)

(完整版)初一数学三角形练习题(有答案)

初一三角形练习题1.一个三角形的三个内角中 ( )A 、至少有一个钝角B 、至少有一个直角C 、至多有一个锐角D 、 至少有两个锐角 2. 下列长度的三条线段能组成三角形的是 ( )A 、 3,4,8B 、 5,6,11C 、 1,2,3D 、 5,6,103. 如图在△ABC 中,∠ACB=900,CD 是边AB 上的高。

图中与∠A 相等的角是( )A 、 ∠B B 、 ∠ACDC 、 ∠BCD D 、 ∠BDC4.如图,AC⊥BD,DE⊥AB,下列叙述正确的是() A、∠A=∠B B、∠B=∠D C、∠A=∠D D、∠A+∠D=9005.如图,∠A+∠B+∠C+∠D+∠E+∠F 的和为( ) A.180° B.360° C.540° D.720°4题图 5题图 7题图 10题图6.等腰三角形两边长分别为 3,7,则它的周长为 ( ) A 、 13 B 、 17 C 、 13或17 D 、 不能确定7.如图所示,在△ABC 中,∠B=∠C,FD ⊥BC,DE ⊥AB,∠AFD=158°, 则∠EDF=________度. A .58° B .68° C .78° D .32°8.一个多边形的内角和等于它的外角和,这个多边形是 ( ) A 、三角形 B 、 四边形 C 、 五边形 D 、 六边形 9.能将三角形面积平分的是三角形的()A 、 角平分线B 、 高C 、 中线D 、外角平分线 10.如图,AB ∥CD ,∠A=700,∠B=400,则∠ACD=() A 、 550 B 、 700 C 、 400 D 、 110011.长为11,8,6,4的四根木条,选其中三根组成三角形有 种选法,它们分别是 12.一个多边形的内角和是外角和的3倍,它是( )边形;一个多边形的各内角都等于1200,它是( )边形。

初中数学三角形专题训练50题(含答案)

初中数学三角形专题训练50题(含答案)

初中数学三角形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知⊙O的半径为R,C、D是直径AB的同侧圆周上的两点,AC的度数为100°,BC=2BD,动点P在线段AB上,则PC+PD的最小值为()C D RA.R B2.如图,在⊙ABCD中,连接AC,⊙ABC=⊙CAD=45°,AB=2,则BC的长是()AB.2C.D.43.如图点P是⊙BAC内一点,PE⊙AB于点E,PF⊙AC于点F,PE=PF,则直接得到⊙PEA⊙⊙PFA的理由是()A.HL B.ASA C.AAS D.SAS【答案】A【详解】解:⊙PE⊙AB于点E,PF⊙AC于点F,⊙⊙PEA=⊙PFA=90°,⊙PE=PF,AP=AP,⊙⊙PEA⊙⊙PFA(HL);4.如图,在平面直角坐标系中,菱形ABCD 的顶点A 在y 轴上,已知B(﹣3,0)、C(2,0),则点D 的坐标为( )A .(4,5)B .(5,4)C .(5,3)D .(4,3)5.适合下列条件的ABC ∆中,是直角三角形的共有( )⊙6a =,45A ∠=︒;⊙32A ∠=,58B ∠=︒;⊙2a =,2b =,4c =;⊙7a =,24b =,25c =.A .1个B .2个C .3个D .4个【答案】B 【分析】根据构成直角三角形三边关系的条件:三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角,判定即可.【详解】⊙6a =,45A ∠=︒,不能判定ABC ∆中是直角三角形;⊙3258A B ︒︒==∠,∠,A B ∠∠=︒+90,是直角三角形;⊙2222222a b c +=+≠,不能判定ABC ∆中是直角三角形;⊙()()22222272425a b c +=+==,是直角三角形;【点睛】此题主要考查构成直角三角形条件的判定,熟练掌握,即可解题.=,点N在CD上,且6.如图,已知四边形ABCD是矩形,点M在BC上,BM CD=与BN交于点P,则:DN CM DM,DM BN=()A2B.C D.27.如图,已知正方形的面积为25,且AB比AC大1,BC的长为()A.3B.4C.5D.6【答案】A8.如图,在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,若ABC A B C ''△≌△,且点A '恰好落在AB 上,则ACA ∠'的度数为( )A .30°B .45°C .50°D .60° 【答案】D 【分析】根据全等三角形的性质可得A C AC '=,从而得到60AA CA ,即可求解.【详解】解:⊙90ACB ∠=︒,30ABC ∠=︒,⊙⊙A =60°,⊙ABC A B C ''△≌△,⊙A C AC '=,⊙60AA C A ,⊙60ACA '∠=︒.故选:D【点睛】本题主要考查了全等三角形的性质,等腰三角形的性质,熟练掌握全等三角形的性质,等腰三角形的性质是解题的关键.9.如图,将三角板的直角顶点放在直尺的一边上,1=30∠︒,2=50∠︒,3=∠( )度A .10B .20C .30D .50 【答案】B 【分析】根据两直线平行,同位角相等求出⊙2的同位角,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.【详解】解:如图:⊙⊙2=50°,直尺的两边互相平行,⊙⊙4=⊙2=50°,⊙⊙1=30°,⊙⊙3=⊙4-⊙1=50°-30°=20°.故选:B .【点睛】本题考查了两直线平行,同位角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.10.在ABC 中,若90A C ∠+∠=︒,则( ).A .BC AB AC =+B .222AC AB BC =+ C .222AB AC BC =+D .222BC AB AC =+【答案】B【分析】由⊙A +⊙C =90°可得⊙B =90°,于是可确定AC 是Rt⊙ABC 的斜边,再根据勾股定理即得答案.【详解】解:⊙⊙A +⊙C =90°,⊙⊙B =90°,⊙AC 是Rt⊙ABC 的斜边,222【点睛】本题考查了勾股定理和三角形的内角和定理,由题意确定AC 是Rt ⊙ABC 的斜边是解题的关键.11.如图,直线AB CD ∥,AE CE ⊥于点E ,若140EAB ∠=︒,则ECD ∠的度数是( )A .120°B .130°C .150°D .160° 【答案】B 【分析】延长AE ,与DC 的延长线交于点F ,根据平行线的性质,求出⊙AFC 的度数,再利用外角的性质求出⊙ECF ,从而求出⊙EC D .【详解】解:延长AE ,与DC 的延长线交于点F ,⊙AB ⊙CD ,⊙⊙A +⊙AFC =180°,⊙⊙EAB =140°,⊙⊙AFC =40°,⊙AE ⊙CE ,⊙⊙AEC =90°,而⊙AEC =⊙AFC +⊙ECF ,⊙⊙ECF =⊙AEC -⊙F =50°,⊙⊙ECD =180°-50°=130°,故选:B .【点睛】本题考查平行线的性质和外角的性质,正确作出辅助线和正确利用平行线的性质是解题的关键.12.如图,在ABC 中,AB AC =,AD 是BAC ∠的平分线,DE AB ⊥,DF AC ⊥,垂足分别是E 、F ,下面给出的四个结论,其中正确的有( ).距离相等的点到DE 、DF 的距离也相等.A .1个B .2个C .3个D .4个 【答案】D 【分析】由等腰三角形“三线合一”可知AD⊙BC ,BD=DC ,得到AD 上的点到B 、C 两点的距离相等,根据角平分线性质定理可知DE=DF ,根据HL 证直角三角形全等,得到AE=AF ,从而得到AD 平分EDF ∠,即可得出答案.【详解】解:⊙AB AC =,AD 是BAC ∠的平分线,⊙AD⊙BC ,BD=DC ,⊙AD 上的点到B 、C 两点的距离相等,⊙⊙正确;⊙AD 是BAC ∠的平分线,DE AB ⊥,DF AC ⊥,⊙DE=DF ,⊙EDA=⊙FDA ,⊙AD 平分⊙EDF ,⊙⊙正确;在直角△AED 和直角△AFD 中,AD AD DE DF=⎧⎨=⎩ ⊙⊙AED⊙⊙AFD ,⊙AE=AF ,⊙AD 平分⊙BAC ,又⊙AD 是BAC ∠的平分线,⊙到AE 、AF 距离相等的点到DE 、DF 的距离也相等,⊙⊙、⊙正确,故选D .【点睛】本题考查了全等三角形的证明和性质,角平分线性质,等腰三角形的性质的应用,对条件的合理利用是解题的关键.13.如图,BO 、CO 分别平分⊙ABC 、⊙ACB ,OD ⊙BC 于点D ,OD =2,⊙ABC 的周长为28,则⊙ABC 的面积为( )A .28B .14C .21D .7在BOD 和△OEB OBE BO ∠=∠∠==BOD △≌△OE =OD =21122AB OE BC OD AC OF ++ )AB BC AC OD ++ 282⨯故选:A.【点睛】本题考查了角平分线的性质定理,求三角形的面积等知识,关键是根据条件构造适合角平分线性质定理条件的辅助线.14.如图,菱形ABCD的对角线AC与BD相交于点O,AE垂直平分CD,垂足为点E,则BAD∠=()A.100°B.120°C.135°D.150°【答案】B【分析】直接利用线段垂直平分线的性质得出AC=AD,再利用菱形的性质以及等边三角形的判定与性质得出答案.【详解】解:⊙AE垂直且平分边CD,⊙AC=AD,⊙四边形ABCD是菱形,⊙AD=DC,⊙ACB=⊙ACD,⊙⊙ACD是等边三角形,⊙⊙ACD=60︒,⊙⊙BCD=120︒.⊙⊙BAD=⊙BCD=120︒,故选:B.【点睛】此题主要考查了菱形的性质以及等边三角形的判定与性质,得出⊙ACD是等边三角形是解题关键.15.如图中字母A所代表的正方形的面积为()【详解】试题分析:根据勾股定理的几何意义解答.解:根据勾股定理以及正方形的面积公式知:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,所以A=289﹣225=64.故选D.16.三角形的三边长为a,b,c,且满足22-=-,则这个三角形是()()2a b c abA.等边三角形B.钝角三角形C.直角三角形D.锐角三角形【答案】C【分析】先利用完全平方公式化简已知等式,再根据勾股定理的逆定理即可得.【详解】由22a b c ab-=-得:222()2-+=-,a ab bc ab22即222a b c,+=,,a b c为三角形的三边长,∴这个三角形是直角三角形,故选:C.【点睛】本题考查了完全平方公式、勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题关键.17.如图,⊙ABC的两边AB和AC的垂直平分线分别交BC于D,E,若⊙BAC+⊙DAE=150°,则⊙BAC的度数是()A.105B.110C.115D.120【答案】B【分析】根据垂直平分线性质,⊙B=⊙DAB,⊙C=⊙EAC.则有⊙B+⊙C+2⊙DAE=150°,即180°-⊙BAC+2⊙DAE=150°,再与⊙BAC+⊙DAE=150°联立解方程组即可.【详解】⊙⊙ABC的两边AB,AC的垂直平分线分别交BC于D,E,⊙DA=DB,EA=EC,⊙⊙B=⊙DAB,⊙C=⊙EAC.⊙⊙BAC+⊙DAE=150°,⊙⊙⊙B+⊙C+2⊙DAE=150°.⊙⊙B+⊙C+⊙BAC=180°,⊙180°-⊙BAC+2⊙DAE=150°,即⊙BAC-2⊙DAE=30°.⊙由⊙⊙组成的方程组150230BAC DAEBAC DAE∠+∠=︒⎧⎨∠-∠=︒⎩,解得⊙BAC=110°.故选B.【点睛】此题考查了线段的垂直平分线、等腰三角形的性质、三角形内角和定理等知识点,解题的关键是得到⊙BAC和⊙DAE的数量关系.18.如图,在平面直角坐标系中,已知A(﹣2,4)、P(﹣1,0),B为y轴上的动点,以AB为边构造⊙ABC,使点C在x轴上,⊙BAC=90°,M为BC的中点,则PM 的最小值为()A B C D【答案】C【分析】作AH⊙y轴,CE⊙AH,证明⊙AHB⊙⊙CEA,根据相似三角形的性质得到AE =2BH,求出点M的坐标,根据两点间的距离公式用x表示出PM,根据二次函数的性质解答即可.【详解】解:如图,过点A作AH⊙y轴于H,过点C作CE⊙AH于E,则四边形CEHO是矩形,⊙OH=CE=4,⊙⊙BAC=⊙AHB=⊙AEC=90°,19.如图,在ABC 和ADE 中,36CAB DAE ∠=∠=︒,AB AC =,AD AE =.连接CD ,连接BE 并延长交AC ,AD 于点F ,G .若BE 恰好平分ABC ∠,则下列结论错误的是( )A .ADC AEB ∠=∠B .//CD ABC .DE GE=D .2BF CF AC =⋅ 【答案】C 【分析】根据SAS 即可证明DAC EAB △≌△,再利用全等三角形的性质以及等腰三角形的性质,结合相似三角形的判定和性质,即可一一判断【详解】,,36AB AC AD AE CAB DAE ==∠=∠=︒DAC EAB ∴∠=∠AB AC=∴∠=ABCBE平分∴∠=ABEDAC△≌△∴∠ACD∴∠=ACDAD AE=∴∠=ADE∠=DGE∠即ADE∴≠DE GE∠=ABCCFB∴∠=∴=BC BF∴△∽△ABCBF CF∴=AB BC=AB ACBF CF∴=AC BF2=BF CF故答案选:【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,相似三角20.如图,在Rt△ABC中,⊙ACB=90°,点D是AB边的中点,过D作DE⊙BC于点E,点P是边BC上的一个动点,AP与CD相交于点Q.当AP+PD的值最小时,AQ 与PQ之间的数量关系是()A.AQ=52PQ B.AQ=3PQ C.AQ=83PQ D.AQ=4PQ⊙MN =PE ,ND =PC ,在△DNQ 和△CPQ 中,NDQ QCP NQD PQC DN PC ∠=∠⎧⎪∠=∠⎨⎪=⎩,⊙⊙DNQ ⊙⊙CPQ ,⊙NQ =PQ ,⊙AN =NP ,⊙AQ =3PQ故选:B .【点睛】本题考查轴对称最短问题、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是利用对称找到点P 位置,熟练掌握平行线的性质,属于中考常考题型.解两条线段之和最小(短)类问题,一般是运用轴对称变换将处于直线同侧的点转化为直线异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短来确定方案,使两条线段之和转化为一条线段.二、填空题21.在Rt⊙ABC 中,⊙C =90°,若a =6,b =8,则c =________.【答案】10【详解】根据勾股定理2223664100c a b =+=+=c 为三角形边长,故c=10.22.在半径为5的圆中,弧所对的圆心角为90°,则弧所对的弦长是________.【点睛】本题考查利用半径和圆心角求弦长,难度不大,掌握勾股定理是解题的关键.23.在ABC 中,AB AC =,CD 是AB 边上的高,40ACD ∠=︒,则B ∠的度数为______.【答案】65︒或25︒【分析】分两种情况:当D 在线段AB 上时,根据题意,得出90ADC ∠=︒,再根据三角形的内角和定理,得出50A ∠=︒,再根据等边对等角,得出B ACB ∠=∠,再根据三角形的内角和定理,计算即可得出B ∠的度数;当D 在线段AB 的延长线上时,根据题意,得出90ADC ∠=︒,再根据三角形的内角和定理,得出50A ∠=︒,再根据等边对等角,得出B ACB ∠=∠,再根据三角形的外角的性质,计算即可得出B ∠的度数,综合即可得出答案.【详解】解:如图,当D 在线段AB 上时,⊙CD 是AB 边上的高,⊙90ADC ∠=︒,又⊙40ACD ∠=︒,⊙180904050A ∠=︒-︒-︒=︒,⊙AB AC =,⊙B ACB ∠=∠,⊙218018050130B A ∠=︒-∠=︒-︒=︒,⊙65B ∠=︒;如图,当D 在线段BA 的延长线上时,⊙CD 是AB 边上的高,⊙90ADC ∠=︒,又⊙40ACD ∠=︒,⊙180904050DAC ∠=︒-︒-︒=︒,⊙AB AC =,⊙B ACB ∠=∠,又⊙2DAC B ACB B ∠=∠+∠=∠,⊙250B ∠=︒,⊙25B ∠=︒,综上所述,B ∠的度数为65︒或25︒.故答案为:65︒或25︒.【点睛】本题考查了三角形的内角和定理、等边对等角、三角形的外角的性质,解本题的关键在熟练掌握相关的性质定理,分类讨论.24.如图,分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为4,则勒洛三角形的周长为:_________.25.边长为2的等边三角形的高与它的边长的比值为___________.【详解】解:等边三角形的边长是26.在Rt⊙ABC中,⊙C=90°,⊙A=30°,BC=2,则AC=_______ .27.如图,在四边形ABCD中,90∠=︒,2A==,BC=CD=AD AB∠的度数为________.ABC28.如图,在O 中,弦2BC =,点A 是圆上一点,且30BAC ∠=︒,则O 的半径是________.【答案】2【分析】连接OB ,OC ,先由圆周角定理求出BOC ∠的度数,再由OB OC =判断出BOC 是等边三角形,故可得出结论.【详解】解:连接OB ,OC ,⊙30BAC ∠=︒,⊙260BOC BAC ∠=∠=︒,⊙OB OC =,⊙BOC 是等边三角形,⊙2OB BC ==.故答案为:2【点睛】本题考查了圆周角定理,根据题意作出辅助线,构造出圆心角是解答此题的关键.29.如果等腰三角形的两边长分别为5cm 和10cm ,那么它的周长等于___________cm .【答案】25【分析】分5cm为腰和10cm为腰,两种情况求解.【详解】解:因为等腰三角形的两边长分别为5cm和10cm,当腰长为5cm时,三边长分别为5cm,5cm,10cm,+,因为55=10所以三角形不存在;当腰长为10cm时,三边长分别为5cm,10cm,10cm,+>,因为51010所以三角形存在;++=,所以三角形的周长为5101025(cm)故答案为:25.【点睛】本题考查了等腰三角形周长的分类计算,正确进行分类和判定三角形的存在性是解题的关键.30.等腰三角形的一边长为3,周长为15,则该三角形的腰长是______.31.如图,⊙O的半径为5cm,△ABC内接于⊙O,BC=5cm,则⊙A的度数为_____°.【答案】3032.如图,AD 、AE 分别是⊙ABC 的角平分线和高,⊙B =60°,⊙C =70°,则⊙EAD =______.【答案】5︒【分析】根据角平分线的性质及三角形内角和定理进行求解.【详解】解:由题意可知,⊙B =60°,⊙C =70°,所以18013050A ∠=-=°,所以25BAD ∠=°,在三角形BAE 中,906030BAE ∠=-=°,所以⊙EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识,解题的关键是进行变换求解.33.如图,正方形ABCD的对角线AC、BD相交于点O,点E、F分别在边AB、BC 上,且⊙EOF=90°,则S四边形OEBF⊙S正方形ABCD=___.34.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD (点A与点B重合),点O是夹子转轴位置,O E⊙AC于点E,OF⊙BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大值时,以点A,B,C,D为顶点的四边形的周长是_____cm.(2)当夹子的开口最大(点C与点D重合)时,A,B两点的距离为_____cm.35.如图,直线L 1、L 2、L 3分别过正方形ABCD 的三个顶点A 、D 、C ,且相互平行,若L 1、L 2的距离为1,L 2、L 3的距离为2,则正方形的边长为__________.AED DFC ≌,从而可得度.【详解】如图,过D ⊙123////L L L⊙13,EF L EF L ⊥⊥⊙AED DFC ≌1,DE CF AE DF ===22AD AE ED =+=故答案为:5.【点睛】本题考查了正方形与平行线的问题,掌握平行线的性质、全等三角形的性质以及判定定理、勾股定理是解题的关键.36.正方形ABCD 中.E 是AD 边中点.连接CE .作⊙BCE 的平分线交AB 于点F .则以下结论:⊙⊙ECD =30°.⊙⊙BCF 的外接圆经过点E ;⊙四边形AFCD 的面积是⊙BCF⊙BF AB =.其中正确的结论有 _____.(请填写所有正确结论的序号),易证BCF GCF ≅37.菱形ABCD中,AD=4,⊙DAB=60°,E、F、G、H分别是AD、AB、BC、CD上的点,且DH=FB,DE=BG,当四边形EFGH为正方形时,DH=____.38.已知菱形ABCD中,AC=6cm,BD=4cm.若以BD为边作正方形BDEF,则AF=__cm.⊙如图1,正方形BDEF在点A一侧时,延长CA交EF于点M.39.如图,正方形ABCD中,2AB=,AC,BD交于点O.若E,F分别是边AB,BC上的动点,且OE OF∆周长的最小值是__________.⊥,则OEF40.如图,在平行四边形ABCD 中,AC =3cm ,BD ,AC ⊙CD ,⊙O 是△ABD 的外接圆,则AB 的弦心距等于_____cm .【答案】116##516【分析】设AC、BD的交点为G,作圆的直径AN,连接BN,过点O作OF⊙AB于点三、解答题41.如图,AD⊙BC,⊙BAC=70°,DE⊙AC于点E,⊙D=20°.(1)求⊙B的度数,并判断⊙ABC的形状;(2)若延长线段DE恰好过点B,试说明DB是⊙ABC的平分线.【答案】(1)⊙ABC是等腰三角形,⊙B=40°;(2)见解析.【详解】分析:(1)、根据Rt⊙ADE的内角和得出⊙DAC=70°,根据平行线的性质得出⊙C=70°,从而根据有两个角相等的三角形是等腰三角形得出答案;(2)、根据等腰三角形底边上的三线合一定理得出DB为顶角的角平分线.详解:解:(1)⊙DE⊙AC于点E,⊙D=20°,⊙⊙CAD=70°,⊙AD⊙BC,⊙⊙C=⊙CAD=70°,又⊙⊙BAC=70°,⊙⊙BAC=⊙C,⊙AB=BC,⊙⊙ABC是等腰三角形,⊙⊙B=180°-⊙BAC-⊙C=180°-70°-70°=40°.(2)⊙延长线段DE恰好过点B,DE⊙AC,⊙BD⊙AC,⊙⊙ABC是等腰三角形,⊙DB是⊙ABC的平分线.点睛:本题主要考查的是等腰三角形的判定及性质,属于基础题型.明确等腰三角形底边上的三线合一定理是解决这个问题的关键.42.如图,小雪坐着轮船由点A出发沿正东方向AN航行,在点A处望湖中小岛M,测得小岛M在点A的北偏东60°,航行100米到达点B时,此时测得小岛M在点B的北偏东30°,求小岛M到航线AN的距离.Rt BDM 中,12BD MB ==2MD MB =答:小岛M 到航线【点睛】本题考查了方向角问题,勾股定理,等腰三角形的判定,含43.如图,BD 是⊙ABC 的高,AE 是⊙ABC 的角平分线,BD 交AE 于F ,若⊙BAC =44°,⊙C =80°,求⊙BEF 和⊙AFD 的度数.【答案】⊙BEF=102°;⊙AFD=68°【分析】根据BD是⊙ABC的高,AE是⊙ABC的角平分线,求得⊙ADB=90°,⊙BAE=⊙EAD=22°,根据三角形内角和定理即可求得⊙BEF和⊙AFD的度数.【详解】解:⊙BD是⊙ABC的高,AE是⊙ABC的角平分线,⊙BAC=44°,⊙C=80°,⊙⊙ADB=90°,⊙BAE=⊙EAD=22°,⊙⊙CBA=180°﹣44°﹣80°=56°,⊙⊙BEF=180°﹣22°﹣56°=102°,⊙AFD=180°﹣90°﹣22°=68°.【点睛】本题考查了三角形的高,角平分线,三角形内角和定理的应用,掌握三角形的高,角平分线的意义是解题的关键.44.(1)如图,90∠=∠=︒,O是AC的中点,求证:OB ODABC ADC=.(2)解方程:2430-+=.x x⊙()()130x x --=,即10,30x x -=-=,解得:121,3x x ==.【点睛】本题主要考查了直角三角形的性质,解一元二次方程,熟练掌握直角三角形斜边中线等于斜边的一半,一元二次方程的解法是解题的关键.45.如图,点E 在边长为10的正方形ABCD 内,6AE =,8BE =,请求出阴影部分的面积,AEB S =四边形ABCD =10ABCD ⨯AEB S =【点睛】本题主要考查了勾股定理的逆定理,熟知勾股定理的逆定理是解题的关键.46.图(a )、图(b )是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a )、图(b )中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.具体要求如下:(1)画一个底边长为4,面积为8的等腰三角形;(2)画一个面积为16的等腰直角三角形.47.如图,点A,B,C,D在同一条直线上,AB=DC,在四个论断“EA=ED,EF⊙AD,AB=DC,FB=FC”中选择二个作为已知条件,另一个作为结论,构成真命题(补充已知和求证),并进行证明.已知、如图,点A,B,C,D在同一条直线上,.求证、.证明、.【答案】见解析【分析】已知:EA=ED ,EF⊙AD ,AB=DC ,求证FB=FC .想办法证明EF 是线段BC 的垂直平分线即可.(答案不唯一)【详解】已知:如图,EA=ED ,EF⊙AD ,AB=DC ,求证FB=FC .理由:延长EF 交BC 于H .⊙EA=ED ,EF⊙AD ,⊙AH=HD ,⊙AB=DC ,⊙BH=CH ,⊙FH⊙BC ,⊙FB=FC .故答案为EA=ED ,EF⊙AD ,AB=DC ;FB=FC ;延长EF 交BC 于H .⊙EA=ED ,EF⊙AD ,⊙AH=HD ,⊙AB=DC ,⊙BH=CH ,⊙FH⊙BC ,⊙FB=FC .【点睛】此题考查等腰三角形的判定和性质,线段的垂直平分线的性质,解题的关键是理解题意,灵活运用所学知识解决问题,属于开放性题目.48.如图,已知60AOB ∠︒=,OC 平分AOB ∠,CD ⊥OA 于点D .(1)实践与操作:作OC的垂直平分线分别交OA于点E;(要求:尺规作图,保留作图痕迹,不写作法)(2)连接CE,若DE的长为1,求OC的长.(1)解:如图所示,49.正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,A(-2,3),B(-3,1),C(-1,2),现将△ABC平移先向右平移3个单位长度,再向下平移2单位长度.(1)请画出平移后的A B C '''(点B C ''、分别是B 、C 的对应点);(2)写出点A B C '''、、三点的坐标;(3)求A B C '''的面积. 【答案】(1)画图见解析 (2)A '(1,1),B '(0,-1),C '(2,0)(3)1.5【分析】(1)根据所给的平移方式作图即可;(2)根据平移方式即可求出A 、B 、C 对应点A B C '''、、三点的坐标;(3)用A B C '''所在的正方形面积减去周围三个小三角形面积即可得到答案. (1)解:如图所示,A B C '''即为所求;(2)解:⊙A B C '''是△ABC 向右平移3个单位长度,向下平移2个单位长度得到的,A (-2,3),B (-3,1),C (-1,2),⊙A '(1,1),B '(0,-1),C '(2,0);(3)50.如图1,Rt⊙ABC中,⊙ABC=90°,P是斜边AC上一个动点,以BP为直径作⊙O交BC于点D,与AC的另一个交点为E(点E在点P右侧),连结DE、BE,已知AB=3,BC=6.(1)求线段BE的长;(2)如图2,若BP平分⊙ABC,求⊙BDE的正切值;(3)是否存在点P,使得⊙BDE是等腰三角形,若存在,求出所有符合条件的CP的长;若不存在,请说明理由.。

初中数学三角形专题训练50题含参考答案

初中数学三角形专题训练50题含参考答案

初中数学三角形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知△ABC的六个元素,则图中甲、乙、丙三个三角形中和△ABC全等的图形个数是A.1B.2C.3D.02.如图,以点P为圆心,以x轴交于A,B两点,点A的坐标为(2,0),点B的坐标为(6,0),则圆心P的坐标为()A.B.(4,2)C.(4,4)D.(2,3.如图,等腰△ABC,BA=BC,点P是腰AB上一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与原三角形相似,满足这样条件的直线最多有()A.1个B.2个C .3个D .4个4.在学习“三角形的内角和外角”时,老师在学案上设计了以下内容:下列选项正确的是( )A .①处填ECD ∠B .①处填ECD ∠C .①处填A ∠D .①处填B ∠ 5.如图,在一块长方形草地上修速两条互相垂直且宽度相同的平行四边形通道,其中60KHB ∠=︒,已知20AB =米,30BC =米,四块草地总图积为2503m ,设GH 为x 米,则可列方程为( )A .2030503⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭B .(20)(30)503x x --=C .2203097x x x +-=D .232030974x x x +-= 6.下列四个命题中,是假命题的是( )A .过直线外一点,有且只有一条直线与已知直线平行B .两条直线被第三条直线所截,同位角相等C .三角形任意两边之和大于第三边D .如果a b =,a c =,那么b c =7.如图,BD 是①O 的直径,点A 、C 在圆上,且CD =OB ,则①BAC =( )A.120°B.90°C.60°D.30°8.已知:在平行四边形ABCD中,点M是BC的中点,MAD MDA∠=∠,则B∠=()A.60°B.90°C.100°D.120°9.两个直角三角形中:①有两条边相等;①一锐角和斜边对应相等;①斜边和一直角边对应相等;①两个锐角对应相等.能使这两个直角三角形全等的是()A.①①①B.①①C.①①D.①①①①10.如图,已知点O是正六边形ABCDEF的中心,扇形AOE的面积是12π,则正六边形的边长为()A.6B.C.D.1211.如图,△ABC和△DCE都是等边三角形,点B、C、E在同一条直线上,BC=1,CE=2,连接BD,则BD的长为()A.3B.C.D12.如图,在△ABC中,①ACB=90°,①B=40°,分别以点A和点B为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交BC 于点E ,连接CD ,则①CDE 等于( )A .8°B .10°C .15°D .20° 13.已知菱形ABCD ,E 、F 是动点,边长为5,BE AF =,120BAD ∠=︒,则下列命题中正确的是( )①BEC AFC ≌;①ECF △为等边三角形;①ECF △的边长最小值为①若2AF =,则23FGC EGC S S =△△.A .①①B .①①C .①①①D .①①① 14.如图,在直角①O 的内部有一滑动杆AB ,当端点A 沿直线AO 向下滑动时,端点B 会随之自动地沿直线OB 向左滑动,如果滑动杆从图中AB 处滑动到A ′B ′处,那么滑动杆的中点C 所经过的路径是( )A .直线的一部分B .圆的一部分C .双曲线的一部分D .抛物线的一部分15.如图,平面内三点A 、B 、C ,AB =,AC =BC 为对角线作正方形BDCE ,连接AD ,则AD 的最大值是()A.5B.C.7D.16.在ABCD中,O是对角线AC,BD的交点.若AOB的面积是8,则ABCD□的面积是()A.16B.24C.32D.4017.如图,已知半圆O的直径8AB=,C是半圆上一点,沿AC折叠半圆得到弧ADC,交直径AB于点D,若DA、DB的长均不小于2,则AC的长可能是()A.7B.6C.5D.418.梯形的对角线互相垂直,其中一条对角线长为5,梯形的高为4,则梯形的面积为()A.5B.10C.503D.25319.如图,抛物线y=x2+bx+c与x轴的交点为A(x1,0)和B(x2,0),与y轴负半轴交点为C,点D为线段OC上一点.且满足c=x1+b,①ACO=①DBO,则下列说法:①b-c=1;①①AOC①①DOB;①若①DBC=30°,则抛物线的对称轴为直线x①当点B绕点D顺时针旋转90°后得到的点B'也在抛物线上,则抛物线的解析式为y=x2-2x-3.正确的是()A .①①①B .①①①C .①①①D .①①①①二、填空题20.如图,P 是MON ∠的平分线上一点,PA ON ⊥于点A ,Q 是射线OM 上一个动点,若8PA =,则PQ 的最小值为______.21.△ABC 中,①A=40o ,①B=60o ,则与①C 相邻外角的度数是______.22.在ABC 中,15,13AB AC ==,高12AD =,则ABC 的周长是 _____. 23.如图,已知ABC BAD ≌,A 和B ,C 和D 分别是对应顶点,且60C ∠=︒,35ABD ∠=︒,则BAD ∠ 的度数是_______24.工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在AOB ∠的两边OA 、OB 上分别在取OC OD =,移动角尺,使角尺两边相同的刻度分别与点C 、D 重合,这时过角尺顶点M 的射线OM 就是AOB ∠的平分线.利用所学知识可知他构造全等三角形的依据是________.25.等腰三角形的周长18cm ,其中一边长为8cm ,则底边长为 ___________cm . 26.如图,在①ABC 中,AD 、AE 分别是BC 边上的中线和高,AE =6,S △ABD =15,则CD =_____.27.如图,为了防止门板变形,小明在门板上钉了一根加固木条,从数学的角度看,这样做的理由是利用了三角形的________.28.如图,在Rt △ABC 中,AB =BC ,①B =90°,AC =BDEF 是△ABC 的内接正方形(点D ,E ,F 在三角形的边上),则此正方形的面积是_______.29.如图, 正方形ABCD 和等边AEF △都内接于O EF ⊙,与BC CD ,分别相交于点G , H . 若6AE =, 则EG 的长为________.30.如图,在等边①ABC 中,BC =9,点O 是AC 上的一点,点D 是BC 上的一点,若①APO ①①COD ,AO =2.7,则BP =__________.31.平行四边形ABCD 中,E 为BA 延长线上的一点,CE 交AD 于F 点,若:1:3AE AB =,则:CDF ABCF S S =四边形________.32.如图,在Rt ①ABC 中,①ACB =90°,点D 是边AB 的中点,连接CD ,将①BCD 沿直线CD 翻折得到①ECD ,连接AE .若AC =6,BC =8,则①ADE 的面积为____.33.已知:如图,以Rt ABC 的三边为斜边分别向外作等腰直角三角形,若斜边AB=5,则图中阴影部分的面积为__.34.如图,在菱形ABCD 中,点E 是BC 上的点,AE ①BC ,若sin B =35,EC =3,P 是AB 边上的一个动点,则线段PE 最小时,BP 长为_____.35.如图,AB 为①O 的直径,弦CD①AB 于E ,已知CD =12,BE =2,则①O 半径为________.36.如图,在Rt①ABC 中,①ACB =90°,①B =35°,CD 是斜边AB 上的中线,如果将①BCD 沿CD 所在直线翻折,点B 落在点E 处,联结AE ,那么①CAE 的度数是_____度.37.如图,在菱形ABCD 中,=60B ∠︒,E 在CD 上,将ADE ∆沿AE 翻折至AD E '∆,且AD '刚好过BC 的中点P ,则D EC '∠=_________.38.如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C ,点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A ,以22O A 为边作正方形2222O A B C ,,则点2020B 的坐标______.三、解答题39.如图,在ABC 中,44ABC ∠=︒,BD 平分ABC ∠,60C ∠=︒,22BDE ∠=︒.(1)求证:DE//AB;∠的度数.(2)求ADB40.如图,菱形ABCD对角线AC,BD相交于点O,点E是AD的中点,过点A作对角线AC的垂线,与OE的延长线交于点F,连接FD.(1)求证:四边形AODF是矩形;(2)若AD=10,①ABC=60°,求OF和OA的长.=,D是BC边上的中点,连结AD,BE平分①ABC交41.如图,在①ABC中,AB ACAC于点E,过点E作EF//BC交AB于点F.(1)若36∠=︒,求①BAD的度数;C(2)求证:点F在BE的垂直平分线上.42.如图,已知EF①BC,AD①BC,①1=①2,①判断DM与AB的位置关系,并说明理由;①若①BAC=70°,DM平分①ADC,求①ACB的度数.43.如图1,线段AD,BC相交于点O,32B︒∠=,38∠=.D︒(1)若60A ︒∠=,求AOB ∠和C ∠的度数;(2)在(1)的条件下,如图2,若BAO ∠、DCO ∠的平分线AM ,CM 相交于点M ,求M ∠度数;(3)若改变条件,设B α∠=,D β∠=,试用含αβ,的代数式表示M ∠的大小. 44.已知抛物线y =x 2+(12m ﹣2)x ﹣3,抛物线与坐标轴交于点A (3,0)、B 两点.(1)求抛物线解析式;(2)当点P (2,a )在抛物线上时.①如图1,过点P 不与坐标轴平行的直线l 1与抛物线有且只有一个交点,求直线l 1的方程;①如图2,若直线l 2:y =2x +b 交抛物线于M ,点M 在点P 的右侧,过点P (2,a )作PQ ①y 轴交直线l 2于点Q ,延长MQ 到点N 使得MQ =NQ ,试判断点N 是否在抛物线上?请说明理由.45.已知:如图,已知点B 、E 、F 、C 在同一直线上,AB =CD ,AE ⊥BC ,DF ⊥BC ,E ,F 是垂足,CE =BF ,求证:AB //CD .46.已知:如图所示,在Rt ABC ∆中,90ACB ∠=︒,AC BC =,点D 是BC 的中点,CE AD⊥,垂足为点E,BF AC交CE的延长线于点F,求证:AB垂直平分DF.47.求证:顶角是锐角的等腰三角形腰上的高与底边夹角等于其顶角的一半.(1)根据题意补全下图,并根据题设和结论,结合图形,用符号语言补充写出“已知”和“求证”.=,______;已知:在锐角ABC中,AB AC求证:______.(2)证明:48.如图,已知①ABC中,AB=AC,①A=108°,BD平分①ABC.求证:BC=AB+CD.参考答案:1.B【分析】根据全等三角形判定方法进行判断即可【详解】解:由已知,甲全等条件不具备,乙和△ABC满足两角夹边,故全等,丙和△ABC满足两角和其中一角的对边,故全等,因此,有两个三角形可以判定三角形全等. 2.C【分析】作PC①AB于C,如图,由点A和点B坐标得到AB=4,再根据垂径定理得到AC=BC=2,然后根据勾股定理计算出PC=4,于是可确定P点坐标.【详解】解:作PC①AB于C,如图,①点A的坐标为(2,0),点B的坐标为(6,0),①OA=2,OB=6,①AB=OB-OA=4,①PC①AB,①AC=BC=2,在Rt△P AC中,①P A AC=2,①PC,①OC=OA+AC=4,①P点坐标为(4,4).故选:C.【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、坐标与图形性质.3.C【分析】根据相似三角形的判定,过点P分别BC,AC的平行线即可得到与原三角形相似的三角形,过点P作以点P为顶点的角与①A相等的角也可以得到原三角形相似的三角形.【详解】解:①BA=BC,①①A=①C,①作PE①BC,可得①APE①①ABC.①作PF①AC,可得①BPF①①BAC.①作①APG=①A,可得①AGP①①ABC,故选:C.【点睛】本题考查相似三角形的判定质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题.4.B【分析】延长BC到点D,过点C作CE①AB.依据平行线的性质以及平角的定义,即可得到①A+①B+①ACB=180°.【详解】延长BC到点D,过点C作CE①AB,①CE①AB.①①A=①ACE(两直线平行,内错角相等).①B=①ECD(两直线平行,同位角相等).①①ACB+①ACE+①ECD=180°(平角定义).①①A+①B+①ACB=180°(等量代换).故选:B.【点睛】本题主要考查了平行线的性质以及三角形内角和定理,解题时注意:两直线平行,内错角相等;两直线平行,同位角相等.5.D【分析】设GH为x米,根据矩形和平行四边形的面积公式,即可得出关于x的一元二次方程,此题得解.【详解】解:过H 作HM ①LG 于M ,①①KHB =60°,//LG KH ,①①HGM =①KHB =60°,①①HMG =90°,①HM , ①长方形的面积=20×30=600(cm )2,①四块草地总面积为503m 2,①通道的面积为:20x +30x -34x 2=97, 故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.B【分析】根据平行公理,平行线的性质及三角形三边关系等逐项判断.【详解】A.过直线外一点,有且只有一条直线与已知直线平行,故A 不符合题意;B.两条平行线被第三条直线所截,同位角相等,故B 符合题意;C.三角形任意两边之和大于第三边,故C 不符合题意;D.如果a =b ,a =c ,那么b =c ,故D 不符合题意.故选:B .【点睛】本题考查命题与定理,解题的关键是掌握平行公理,平行线的性质及三角形三边关系等教材上的相关结论.7.C【分析】根据题意得OCD ∆为等边三角形,则60COD ∠=︒,根据圆周角定理得出BAC ∠的度数.【详解】解:连接OC ,CD OB =,OCD ∴∆为等边三角形,60COD ∴∠=︒,180120BOC COD ∴∠=︒-∠=︒,111206022BAC BOC ∴∠=∠=⨯︒=︒, 故选:C .【点睛】本题考查了圆周角定理、等边三角形的判定,解题的关键是掌握圆周角定理的内容.8.B【分析】由MAD MDA ∠=∠,得AM =DM ,再由平行四边形的性质得AB =CD ,AB ∥CD ,则①B +①C =180°,然后证△ABM ①△DCM (SSS ),得①B =①C ,即可求得①B 度数.【详解】解:如图,过点M 作MN ①AD 于N ,①MAD MDA ∠=∠,①AM =DM ,①平行四边形ABCD ,①AB =CD ,AB ∥CD ,①①B +①C =180°,①点M 是BC 的中点,在△ABM 与△DCM 中,AB DC BM CM AM DM =⎧⎪=⎨⎪=⎩,①△ABM ①△DCM (SSS ),①①B =①C ,①2①B =180°,①①B =90°,故选:B .【点睛】本题考查平行四边形的性质,等腰三角形的判定,全等三角形的判定与性质,熟练掌握相关性质与判定是解题的关键.9.B【分析】根据直角三角形全等的判定条件逐一分析即可得到答案.【详解】解:①两个直角三角形中有两条边相等,不能证明两个直角三角形全等,如一条直角边相等,另一个直角边与斜边相等;①两个直角三角形中一锐角和斜边对应相等,可用AAS 证明两个直角三角形全等; ①两个直角三角形中斜边和一直角边对应相等,可用HL 证明两个直角三角形全等; ①两个直角三角形中两个锐角对应相等,不能证明两个直角三角形全等;故选B .【点睛】本题主要考查了直角三角形全等的判定定理,熟知直角三角形的判定定理有AAS SAS ASA SSS HL ,,,,是解题的关键.10.A【分析】先求出中心角120AOE ∠︒=,证得OAF △是等边三角形,得到AF R =,根据扇形的面积求出圆的半径,即可得到正六边形的边长.【详解】解:连接OF ,设①O 的半径为R ,①O 是正六边形ABCDEF 的中心, ①360606AOF EOF ︒∠=∠==︒, ①120AOE ∠︒=,①OAF △是等边三角形,①AF OA R ==,①扇形AOE 的面积是12π, ①212012360R ππ=, ①236R = ,①6AF R ==,①正六边形的边长是6,故选:A .【点睛】本题考查了正多边形与圆,扇形的面积计算,解题的关键是求出正多边形的边长等于圆的半径.11.D【分析】作DF①CE 于F ,构建两个直角三角形,运用勾股定理逐一解答即可.【详解】过D 作DF①CE 于F ,根据等腰三角形的三线合一,得:CF=1,在直角三角形CDF 中,根据勾股定理,得:DF 2=CD 2-CF 2=22-12=3,在直角三角形BDF 中,BF=BC+CF=1+1=2,根据勾股定理得:故选D.【点睛】本题考查了等边三角形的性质,勾股定理等,正确添加辅助线、熟练应用相关的性质与定理是解题的关键.12.B【分析】由题意得MN 垂直平分AB ,得到AD =BD ,①ADE =90°,证得CD =AD =BD ,求出①ADC =2①B =80°,即可得到①CDE 的度数.【详解】解:由题意得MN 垂直平分AB ,①AD =BD ,①ADE =90°,①①ACB =90°,①CD =AD =BD ,①①BCD =①B =40°,①①ADC =2①B =80°,①①CDE =①ADE -①ADC =10°,故选:B .【点睛】此题考查了线段垂直平分线的作图方法,直角三角形斜边中线等于斜边一半的性质、等腰三角形的性质、三角形的外角性质,正确理解线段垂直平分线的作图是解题的关键.13.C【分析】根据菱形的性质可得AB =BC ,AD ①BC ,①BAC =①DAC =12①BAD =60°,从而可得①B =60°,进而证明△ABC 是等边三角形,然后得出BC =AC ,即可判断①;利用①的结论可得CE =CF ,①BCE =①ACF ,从而可得①BCA =①ECF =60°,即可判断①;当CE ①AB 时,ECF △的边长取最小值,根据含30度角的直角三角形的性质求出BE ,再利用勾股定理求出CE 即可判断①;过点E 作EM ①BC ,交AC 于点M ,求出EM =3,然后利用平行线分线段成比例求出23FG AF EG EM ==即可判断①. 【详解】解:①四边形ABCD 是菱形,120BAD ∠=︒,①AB =BC ,AD ①BC ,①BAC =①DAC =12①BAD =60°,①①B =180°−①BAD =60°,①①ABC 是等边三角形,①BC =AC ,①ACB =60°,在△BEC 和△AFC 中,BE AF B FAC BC AC =⎧⎪∠=∠⎨⎪=⎩,①①BEC ①①AFC (SAS ),①正确; ①CE =CF ,①BCE =①ACF ,①①BCE +①ACE =①ACF +①ACE , ①①BCA =①ECF =60°,①①ECF 是等边三角形,①正确; ①△ABC 是等边三角形,AB =BC =5, ①当CE ①AB 时,ECF △的边长取最小值, ①①B =60°,①此时①BCE =30°,①BE =1522BC =, ①CE①ECF △,①错误; 过点E 作EM ①BC ,交AC 于点M ,①①BEC ①①AFC ,①AF =BE =2,①AB =5,①AE =AB −BE =5−2=3,①EM ①BC ,①①AEM =①B =60°,①AME =①ACB =60°, ①①AEM 是等边三角形,①AE =EM =3,①AD①BC,①AF①EM①23 FG AFEG EM==,①23FGC EGCS S=△△,①正确;故选:C.【点睛】本题考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定与性质,含30度角的直角三角形的性质,勾股定理以及平行线分线段成比例,灵活运用各性质进行推理是解题的关键.14.B【详解】连接OC、OC′,如图,①①AOB=90°,C为AB中点,①OC=12AB=12A′B′=OC′,①当端点A沿直线AO向下滑动时,AB的中点C到O的距离始终为定长,①滑动杆的中点C所经过的路径是一段圆弧.故选B.【点睛】考点:①圆的定义与性质;①直角三角形的性质.15.C【分析】如图,将①BDA绕点D顺时针旋转90°得到①CDM,由旋转的性质可得①ADM是等腰直角三角形,根据勾股定理推出AD,可知当AM的值最大时,AD的值最大,利用三角形的三边关系求出AM的最大值,即可解决问题.【详解】解:如图,将BDA△绕点D顺时针旋转90°得到CDM由旋转的性质可知:4AB CM ==,DA DM =,90ADM ∠=︒①ADM △是等腰直角三角形,①根据勾股定理222AD MD AM +=,①AD AM =, ①当AM 的值最大时,AD 的值最大,①AM AC CM ≤+,AC CM AB ===①AM ≤①AM 的最大值为①AD 的最大值为7,故选C .【点睛】本题考查了正方形的性质,旋转的性质,等腰直角三角形的判定和性质,勾股定理以及两点之间线段最短.解题的关键在于根据旋转的性质构造等腰直角三角形. 16.C【分析】根据平行四边形的性质可得BO =DO ,AO =CO ,由此可得8AOB AOD BOC COD S S S S ∆∆∆∆====,从而可得结论.【详解】解:①四边形ABCD 是平行四边形,①BO =DO ,AO =CO ,①8AOB AOD BOC COD S S S S ∆∆∆∆====,①平行四边形ABCD 的面积=4×8=32,故选:C【点睛】本题考查了平行四边形的性质和三角形中线的性质,解决本题的关键是理解平行四边形的对角线互相平分.17.A【分析】分如解图①,当点D 在圆心O 的左侧且2AD =时,如解图①,当点D 在圆心O 的右侧且2BD =时,两种情况求出AC 的长,从而确定AC 的取值范围即可得到答案.【详解】如解图①,当点D 在圆心O 的左侧且2AD =时,过C 作CE AB ⊥,垂足为E ,连接CD 、CO 、CB ,①AC ADC =,①CDB CBD ∠=∠,①CD CB =,①3DE BE ==,①2DO =,①1OE =,①5AE =,22215CE CO OE =-=,①AC =如解图①,当点D 在圆心O 的右侧且2BD =时,过C 作CE AB ⊥,垂足为E ,连接CD 、CO 、CB ,①AC ADC =,①CDB CBD ∠=∠,①CD CB =,①1DE BE ==,①3OE =,①7AE =,2227CE CO OE =-=,①AC =①若DA 、DB 的长均不小于2AC ≤①AC 的长可能是7,故选A .【点睛】本题主要考查了圆周角定理,等腰三角形的性质与判定,勾股定理,无理数的估算等等,利用分类讨论的思想求解是解题的关键.18.C【分析】过B 作BE AC ∥交DC 延长线于E ,过B 作BF DC ⊥于F ,如图所示,根据题意,分两种情况讨论:①当5BD =时;①当5AC =时,根据双垂直模型得到BDF EBF ∽△△,利用相似比得到未知线段,然后根据BDE ABCD S S =△梯形代值求解即可得到答案.【详解】解:过B 作BE AC ∥交DC 延长线于E ,过B 作BF DC ⊥于F ,如图所示:4BF ∴=,①当5BD =时,对角线相互垂直,即AC BD ⊥,BE BD ∴⊥,90DBF EBF ∴∠+∠=︒,BF DC ⊥,在Rt BDF △中,90,5,4DFB BD BF ∠=︒==,则3DF =, 90DBF BDF ∴∠+∠=︒,BDF EBF ∴∠=∠,90BFD BFE ∠=∠=︒,∴BDF EBF ∽△△,BD DF BE BF ∴=,即534BE =,203BE ∴=, ,AB CE AC BE ∥∥,∴四边形ABEF 是平行四边形,AB CE ∴=, ∴()()11111205052222233BDE ABCD S AB DC BF CE DC BF DE BF S BD BE =+⋅=+⋅=⋅==⋅=⨯⨯=△梯形;①当5AC =时,对角线相互垂直,即AC BD ⊥,BE BD ∴⊥,90DBF EBF ∴∠+∠=︒,BF DC ⊥,在Rt BEF △中,90,5,4EFB BE BF ∠=︒==,则3EF =, 90DBF BDF ∴∠+∠=︒,BDF EBF ∴∠=∠,90BFD BFE ∠=∠=︒,∴BDF EBF ∽△△,BD BF BE EF∴=,即453BD =, 203BD ∴=, ,AB CE AC BE ∥∥,∴四边形ABEF 是平行四边形,AB CE ∴=, ∴()()11111205052222233BDE ABCD S AB DC BF CE DC BF DE BF S BD BE =+⋅=+⋅=⋅==⋅=⨯⨯=△梯形;综上所述,梯形的对角线互相垂直,其中一条对角线长为5,梯形的高为4,则梯形的面积为503,【点睛】本题属于几何综合问题,考查梯形性质、梯形面积公式、勾股定理、两个三角形相似的判定与性质、平行四边形的判定与性质、三角形面积及双垂直模型等知识,熟练掌握相关几何图形的性质是解决问题的关键.19.B【分析】利用已知条件分别求得点A,B,C的坐标,表示出线段OA,OB,OC的长度,利用二次函数的性质,待定系数法与全等三角形的判定定理对每个结论进行逐一判断即可得出结论.【详解】解:将A(x1,0)代入物线y=x2+bx+c得:x12+bx1+c=0.①c=x1+b,①x12+bx1+x1+b=0,①x1(x1+1)+b(x1+1)=0,①(x1+b)(x1+1)=0,①c=x1+b≠0,①x1+1=0,①x1=-1,①A(-1,0),①OA=1,①c=-1+b,①b-c=1.①①的结论正确;①c=-1+b,①y=x2+bx+b-1,令y=0,则x2+bx+b-1=0,解得:x=-1或x=1-b,①B(1-b,0),①抛物线的对称轴在y轴的右侧,①b<0,①OB=1-b,①C(0,b-1),①OB =OC ,在△AOC 和△DOB 中,90ACO DBO OC OB AOC DOB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ①①AOC ①①DOB (ASA ).①①的结论正确;若①DBC =30°,过点D 作DH ①BC 于点H ,如图,①①AOC ①①DOB ,①OA =OD =1,AC =BD ,①CD =OC -OD =-b ,①OB =OC ,①①OCB =①OBC =45°,①DH ①BC ,①DH, ①DH ①BC ,①DBC =30°,①BD =2DH,①ACb ,①OA 2+OC 2=AC 2,①12+(1−b ) 2=b ) 2.解得:b①b①抛物线的对称轴为直线x== ①①的结论不正确;当点B 绕点D 顺时针旋转90°后得到的点B '也在抛物线上时,过点B ′作B ′M ①y 轴于点M ,如图,由题意:DB =DB ′,①BDB ′=90°,①①MDB ′+①ODB =90°,①①ODB +①OBD =90°,①①MDB ′=①OBD ,在△MDB ′和△OBD 中,90DMB BOD MDB OBD DB BD ''∠=∠=︒⎧⎪∠=∠⎨⎪=⎩',①①MDB ′①①OBD (AAS ),①MD =OB =1-b ,MB ′=OD =1,①OM =OD +DM =2-b ,①B ′(1,b -2),①1+b +b -1=b -2,解得:b =-2,①c =b -1=-3,①此时抛物线的解析式为y=x2-2x-3,①①的结论正确;综上,正确的结论是:①①①.故选:B.【点睛】本题主要考查了待定系数法,数形结合法,二次函数的性质,抛物线与x轴的交点,抛物线上点的坐标的特征,图形的旋转的性质,全等三角形的判定与性质,勾股定理,含30°角的直角三角形的性质,熟练掌握二次函数的性质是解题的关键.20.8【分析】根据角平分线的性质定理解答.【详解】解:当PQ①OM时,PQ最小,①P是①MON角平分线上的一点,PA①ON,PQ①OM,①PQ=PA=8,故答案为:8.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.21.100°##100度【分析】先根据三角形的内角和求出①C的度数,即可求出与①C相邻外角的度数【详解】①C=180°-①A-①B=80°,①①C相邻外角的度数为180°-80°=100°.故答案为:100°【点睛】此题主要考查邻补角的求解,解题的关键是熟知三角形的内角和为180°. 22.42或32##32或42【分析】分两种情况讨论:当高AD在ABC的内部时,当高AD在ABC的外部时,结合勾股定理,即可求解.【详解】解:当高AD在ABC的内部时,如图,在Rt ABD中,9BD,在Rt ACD中,5CD==,①14BC BD CD =+=,此时ABC 的周长是15141342AB BC AC ++=++=;当高AD 在ABC 的外部时,如图,在Rt ABD中,9BD ,在Rt ACD中,5CD ==,①4BC BD CD =-=,此时ABC 的周长是1541332AB BC AC ++=++=;综上所述,ABC 的周长是42或32.故答案为:42或32【点睛】此题考查了勾股定理的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.23.85︒【分析】根据全等三角形的性质和三角形内角和定理计算即可;【详解】①ABC BAD ≌,60C ∠=︒,35ABD ∠=︒,①60C D ∠=∠=︒,35DBA CAB ∠=∠=︒,①180180603585DAB D DBA ∠=︒-∠-∠=︒-︒-︒=︒.故答案是:85︒.【点睛】本题主要考查了全等三角形的性质和三角形内角和定理,准确分析计算是解题的关键.24.SSS【分析】根据全等三角形的判定定理SSS 推出①COM ①①DOM ,根据全等三角形的性质得出①COM =①DOM ,根据角平分线的定义得出答案即可.【详解】解:在①COM 和①DOM 中,,OC OD OM OM MC MD =⎧⎪=⎨⎪=⎩. ①①COM ①①DOM (SSS ),①①COM=①DOM,即OM是①AOB的平分线,故答案为:SSS.【点睛】本题考查了全等三角形的判定定理和性质定理,能熟记全等三角形的判定定理是解此题的关键.25.2或8.【详解】试题分析:由题意知,应分两种情况:当腰长为8cm时,则另一腰也为8cm,底边为18-2×8=2cm,①0<2<8+8,①边长分别为8cm,8cm,2cm,能构成三角形;当底边长为8cm时,腰的长=(18-8)÷2=5cm,①0<8<5+5=13,①边长为5cm,5cm,8cm,能构成三角形.故答案为2或8.考点:等腰三角形的性质.26.5【分析】由利用三角形的面积公式可求得BD的长,再由中线的定义可得CD=BD,从而得解.【详解】解:①S△ABD=15,AE是BC边上的高,BD•AE=15,①12×6BD=15,则12解得:BD=5,①AD是BC边上的中线,①CD=BD=5.故答案为:5.【点睛】本题主要考查三角形的中线,三角形的高,解答的关键是由三角形的面积公式求得BD的长.27.稳定性【分析】根据三角形的三边一旦确定,则形状大小完全确定,即三角形的稳定性.【详解】解:这样做的原因是:利用三角形的稳定性使门板不变形.故答案为:三角形具有稳定性.【点睛】本题主要考查三角形的稳定性在实际生活中的应用.28.36【分析】由△ABC 是等腰直角三角形,可得①A =①C =45°,从而证明△AEF 也是等腰直角三角形,设AF =x ,则BF =12﹣x ,列出方程并求出x 的值,再根据正方形的面积公式即可求得.【详解】解:①①ABC 是等腰直角三角形,①①A =①C =45°,①四边形BDEF 是△ABC 的内接正方形,①EF ①BC ,①①AEF =①C =45°,①①AEF 也是等腰直角三角形,①AF =EF ,设AF =x ,则BF =12﹣x ,①12﹣x =x ,①x =6,①此正方形的面积为6×6=36.故答案为:36.【点睛】本题考查了正方形的性质、等腰三角形的性质及判定.解题的关键是熟练掌握正方形的性质.29.3【分析】连接AC ,CE ,CF ,正方形ABCD 和等边AEF △都内接于O ,得证AC 是O 的直径,45ACG ∠=,60AEF AFE ∠=∠=,AE AF =,从而得证90AEC AFC ∠=∠=,30CEF CFE ∠=∠=,得到CE CF =,直线AC 是线段EF 的垂直平分线,从而得到90GMC ∠=,45CGM ∠=,得证CM GM =,30EAM ∠=,从而得证132EM AE ==,AM =2AC EC =,结合222AC EC AE =+,确定AC =CM GM AC AM ==-==,根据EG EM GM =-计算即可.【详解】如图,连接AC ,CE ,CF ,因为正方形ABCD 和等边AEF △都内接于O , 所以AC 是O 的直径,45ACG ∠=,60AEF AFE ∠=∠=,AE AF =,所以90AEC AFC ∠=∠=,30CEF CFE ∠=∠=,所以CE CF =,所以直线AC 是线段EF 的垂直平分线,所以90GMC ∠=,45CGM ∠=,所以CM GM =,30EAM ∠=,所以132EM AE ==,AM ==2AC EC =, 因为222AC EC AE =+, 所以2221()62AC AC =+,解得AC =所以CM GM AC AM ==-=所以EG EM GM =-=3故答案为:3【点睛】本题考查了正方形的性质,等边三角形的性质,线段垂直平分线的判定和性质,圆的基本性质,直角三角形的性质,勾股定理,等腰直角三角形的判定和性质,熟练掌握正方形的性质,圆的性质,等边三角形的性质,勾股定理是解题的关键.30.2.7【分析】根据全等可得OC =AP ,再根据等边三角形的性质可得AC =AB ,从而可得AO =BP ,即可得出结论【详解】解:①①ABC 为等边三角形,①AC =AB =BC =9,①①APO ①①COD ,AO =2.7,①AP =OC ,①BP =AO =2.7.故答案为:2.7.【点睛】本题考查全等三角形的性质,等边三角形的性质.正确理解性质得出线段之间的关系是解题关键.31.5:3.【分析】过C 做CG ①AD 交AD 延长线于G ,根据四边形ABCD 为平行四边形,可得CD∥AB 且CD =AB ,AD =BC ,利用平行线性质可得①CDF =①EAF ,①DCF =①E ,可证△DCF ①①AEF ,根据相似三角形性质可得31DF DC AF AE ==,设AF =m ,DF =3m ,则BC =AD = 4m ,求三角形与四边形面积S △CDF =1322DF CG mCG ⋅=,S 四边形ABCF =()()1154222AF BC CG m m CG mCG +⋅=+⋅=,再求两面积比即可. 【详解】解:过C 做CG ①AD 交AD 延长线于G ,①四边形ABCD 为平行四边形,①CD∥AB 且CD =AB ,AD =BC ,①①CDF =①EAF ,①DCF =①E ,①△DCF ①①AEF , ①31DF DC AF AE ==, 设AF =m ,DF =3m ,则BC =AD =AF +DF =4m ,①S △CDF =1322DF CG mCG ⋅=, S 四边形ABCF =()()1154222AF BC CG m m CG mCG +⋅=+⋅=, ①53::5:322CDF ABCF S S mCG mCG ==四边形. 故答案为5:3.【点睛】本题考查平行四边形的性质,三角形相似判定与性质,三角形面积与四边形面积,掌握平行四边形的性质,三角形相似判定与性质,三角形面积与四边形面积是解题关键.32.6.72【分析】连接BE,延长CD交BE与点H,作CF①AB,垂足为F.首先证明DC垂直平分线段BE,△ABE是直角三角形,利用三角形的面积求出EH,得到BE的长,在Rt△ABE 中,利用勾股定理即可解决问题.【详解】解:如图,连接BE,延长CD交BE与点H,作CF①AB,垂足为F.①①ACB=90°,AC=6,BC=8.①AB,①D是AB的中点,①AD=BD=CD=5,①S△ABC=12AC•BC=12AB•CF,①12×6×8=12×10×CF,解得CF=4.8.①将△BCD沿直线CD翻折得到△ECD,①BC=CE,BD=DE,①CH①BE,BH=HE.①AD=DB=DE,①①ABE为直角三角形,①AEB=90°,①S△ECD=S△ACD,①12DC•HE=12AD•CF,①DC=AD,①HE=CF=4.8.①BE=2EH=9.6.①①AEB=90°,①AE.①S△ADE=12EH•AE=12×2.8×4.8=6.72.故答案为:6.72.【点睛】本题考查了翻折变换(折叠问题),直角三角形斜边上的中线的性质,勾股定理,三角形的面积等知识,解题的关键是学会利用面积法求高,属于中考常考题型.33.【详解】试题分析:根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.解:在Rt①ABC中,AB2=AC2+BC2,AB=5,S阴影=S△AHC+S△BFC+S△AEB=×+×+×,=(AC2+BC2+AB2),=AB2,=×52=.故答案为.点评:本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.34.48 5【分析】根据垂线段最短可知当EP①AB时,线段EP最短.根据12•AB•PE=12×BE×AE,只要求出AB、AE、BE、PE,即可解决问题.【详解】解:根据垂线段最短可知当PE①AB时,线段PE最短.①AE①BC于E,sinB=35=AEAB,设AE=3k,AB=BC=5k,则BE=4k,EC=k,①EC=3,①k=3,①BE=12,AB=15,AE=9,当PE①AB时,12•AB•PE=12×BE×AE,①PE=AE BEAB⨯=365,①线段PE的最小值为365,①BP 485.故答案为:485.【点睛】本题考查菱形的性质、解直角三角形、垂线段最短、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.35.10.【分析】连结OC,设①O半径为r,则OC=r,OE=r-2,根据垂径定理得到CE=DE=1 2CD=6,在Rt△OCE中,利用勾股定理列出关于r的等式,然后解方程求出r即可.【详解】解:连结OC,设①O半径为r,则OC=r,OE=r-BE=r-2,①CD①AB,CD=12①CE=DE=12CD=6,。

初一数学三角形练习题及答案

初一数学三角形练习题及答案

初一数学三角形练习题及答案1. 在下列三角形中,哪些是等腰三角形?a) △ABC,其中AB = BC = 5 cm,AC = 6 cmb) △DEF,其中DE = 7 cm,DF = 8 cm,EF = 9 cmc) △GHI,其中GH = 5 cm,GI = 6 cm答案:a) 是。

b) 不是。

c) 不是。

2. 解答下列问题:a) 如果一个三角形的两个角度分别是60°和70°,第三个角度是多少?b) 一个三角形的三个角度分别是45°、45°和90°,这个三角形属于什么类型?答案:a) 50°。

b) 直角三角形。

3. 计算下列三角形的周长:a) △JKL,其中JK = 9 cm,KL = 6 cm,JL = 8 cmb) △MNO,其中MN = 12 cm,NO = 10 cm,MO = 7 cm答案:a) 周长为 23 cm。

b) 周长为 29 cm。

4. 已知△PQR 是等边三角形,边长为 10 cm。

计算△PQR 的高度。

答案:△PQR 的高度为 8.66 cm。

5. 判断下列三角形的形状:a) △STU,其中ST = TU = US,且∠STU = 60°b) △VWX,其中VW = WX = XV,且∠VWX = 90°c) △YZA,其中YAZ = ZAY,且∠YZA = 45°答案:a) 等边三角形。

b) 等腰直角三角形。

c) 等腰等角三角形。

6. 根据下列信息判断△ABC 是什么类型的三角形:a) AB = BC,且∠BAC = 90°b) AB = BC,且∠BAC = 75°c) AB = AC,且∠ABC = 45°答案:a) 直角等腰三角形。

b) 等腰锐角三角形。

c) 等边等角三角形。

7. 计算下列三角形的面积:a) △DEF,其中DE = 8 cm,DF = 10 cm,EF = 12 cmb) △GHI,其中GH = 7 cm,GI = 5 cm,∠GHI = 60°答案:a) 面积为 39.69 cm²。

初一数学 三角形专题复习

初一数学 三角形专题复习

初一数学三角形专题复习一.选择题(共50小题)1.在下列各图的△ABC中,正确画出AC边上的高的图形是()A.B.C.D.2.下列各图中,画出AC边上的高,正确的是()A.B.C.D.3.不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的高和中线4.下列说法正确的是()A.三角形的三条中线交于一点B.三角形的三条高都在三角形内部C.三角形不一定具有稳定性D.三角形的角平分线可能在三角形的内部或外部5.下列说法正确的是()A.三角形的角平分线是射线B.连接三角形任意两边中点的线段是三角形的中线C.三角形的高都在三角形的内部D.直角三角形的三条高线交于直角顶点处6.下列说法正确的个数有()①三角形的角平分线、中线和高都在三角形内;②直角三角形只有一条高;③三角形的高至少有一条在三角形内;④三角形的高是直线,角平分线是射线,中线是线段.A.1个B.2个C.3个D.4个7.如图,工人师傅砌门时,常用木条EF固定门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性8.如图所示,一扇窗户打开后,用窗钩AB即可固定,这里所用的几何原理是()A.两点之间线段最短B.垂线段最短C.两定确定一条直线D.三角形的稳定性9.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性D.两直线平行,内错角相等10.下列长度的三条线段中,能组成三角形的是()A.3cm,5cm,8cm B.3cm,4cm,8cm C.3cm,3cm,5cm D.4cm,4cm,8cm11.在△ABC中,AB=8,BC=2,AC的长为奇数,△ABC的周长为()A.17B.19C.17或21D.17或1912.在△ABC中,AB=10,BC=2,并且AC的长为偶数,则△ABC的周长为()A.20B.21C.22D.2313.三角形的两边长分别为2cm和7cm,另一边长a为偶数,则这个三角形的周长为()A.13cm B.15cm C.17cm D.15cm或17cm14.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7B.7或9C.7D.915.如图,AB=7,AC=3,则中线AD的取值范围是()A.4<AD<11B.2<AD<5.5C.2<AD<5D.4<AD<1016.如图,点D是△ABC的边BC上的中线,AB=6,AD=4,则AC的取值范围为()A.2<AC<14B.2<AC<12C.1<AC<4D.1<AC<817.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠B=44°,∠C=70°,则∠DAE的度数是()A.10°B.12°C.13°D.15°18.如图,CD,CE分别是△ABC的高和角平分线,∠A=25°,∠B=65°,则∠DCE度数为()A.20°B.30°C.18°D.15°19.如图,a∥b,Rt△ABC的直角顶点C在直线b上.若∠A=43°,∠2=25°,则∠1等于()A.18°B.22°C.25°D.32°20.将一副三角尺按如图所示的方式叠放,则∠1的度数为()A.45°B.60°C.75°D.15°21.如图,∠ACE是△ABC的外角,BD平分∠ABC,CD平分∠ACE,且BD,CD相交于点D.若∠A=80°,则∠D等于()A.30°B.40°C.50°D.55°(21题)(22题)22.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°23.已知△ABC的内角∠A=a,分别作内角∠ABC与外角∠ACD的平分线,两条平分线交于点A1,得∠A1;∠A1BC 和∠A1CD的平分线交于点A2,得∠A2;…以此类推得到∠A2023的度数是()A.B.C.D.24.如图,在△ABC中,∠BAC=50°,∠ABC和∠ACB的平分线交于点P,则∠BPC的度数是()A.115°B.100°C.105°D.125°25.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE 于点E,若∠BOC=115°,则∠2=()A.30°B.25°C.20°D.35°(25题)(26题)26.如图,△ABC的两个外角的平分线相交于点O,若∠A=80°,则∠O等于()A.40°B.50°C.60°D.80°27.如图:①②③中,∠A=42°,∠1=∠2,∠3=∠4,则∠O1+∠O2+∠O3=()度.A.84B.111C.225D.20128.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,且∠BIC=140°,BM,CM分别平分∠ABC,∠ACB的外角,则∠BMC的度数是()A.25°B.30°C.35°D.40°29.如图,在△ABC中,BD、CD分别平分∠ABC、∠ACB,BG、CG分别平分三角形的两个外角∠EBC、∠FCB,则∠D和∠G的数量关系为()A.B.∠D+∠G=180°C.D.30.如图,在△ABC中,∠A=∠ABC,BH是∠ABC的平分线,BD和CD是△ABC两个外角的平分线,D、C、H三点在一条直线上,下列结论中:①DB⊥BH;②;③DH∥AB;④;⑤∠CBD=∠D,其中正确的结论有()A.2个B.3个C.4个D.5个31.在△ABC中,∠ABC,∠ACB的平分线交于点O,∠ACB的外角平分线所在直线与∠ABC的平分线交于点D,与∠ABC的外角平分线交于点E,下列结论:①;②;③;④∠E+∠DCF =90°+∠ABD.其中所有正确结论的序号是()A.①②B.③④C.①②④D.①②③④32.如图,在△ABC中,∠B=∠C,D为BC边上的一点,点E在AC边上,∠ADE=∠AED,若∠BAD=24°,则∠CDE的度数为()A.12°B.14°C.16°D.24°33.如图,在△ABC中,∠B=∠C=45°,点D在BC上,点E在AC上,连接AD,DE,∠ADE=∠AED,若∠BAD =m°,则∠CDE等于()A.B.C.D.34.如图,若∠A=70°,∠B=40°,∠C=32°.则∠BDC=()A.102°B.110°C.142°D.148°35.如图中,高BD与CE交于O点,若∠BAC=72°,则∠BOC的度数为()A.72°B.126°C.108°D.162°36.如图,△ABC中,∠A=80°,高BE和CH的交点为O,则∠BOC等于()A.80°B.120°C.100°D.150°37.如图,在△ABC中,∠C=40°,按图中虚线将∠C剪去后,∠1+∠2等于()A.140°B.210°C.220°D.320°38.如图,将一个三角形剪去一个角后,∠1+∠2=230°,则∠A等于()A.35°B.50°C.65°D.70°39.如图,△ABC中,点D,E分别在∠ABC和∠ACB的平分线上,连接BD,DE,EC,若∠D+∠E=295°,则∠A 等于()A.65°B.60°C.55°D.50°40.如图所示,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为()A.45°B.50°C.55°D.60°41.如图,三角形纸片ABC中,∠A=80°,∠B=60°,将纸片的角折叠,使点C落在△ABC内,若∠α=30°,则∠β的度数是()A.30°B.40°C.50°D.60°42.如图,将一张三角形纸片ABC的三角折叠,使点A落在△ABC的A′处折痕为DE,若∠A=α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是()A.γ=180°﹣α﹣βB.γ=α+2βC.γ=2α+βD.γ=α+β43.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将∠C沿DE对折,使点C落在△ABC外的点C′处,若∠1=20°,则∠2的度数为()A.80°B.90°C.100°D.110°44.如图,将纸片△ABC沿DE折叠使点A落在点A′处,若∠1=80°,∠2=16°,则∠A为()A.25°B.28°C.32°D.36°45.如图,在△ABC中,∠1=120°,∠2=50°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠C的度数是()A.40°B.35°C.50°D.45°46.若△ABC满足下列某个条件,则它不是直角三角形的是()A.∠C=∠A+∠B B.∠C=∠A﹣∠B C.∠A:∠B:∠C=1:4:3D.∠A=2∠B=3∠C47.具备下列条件的△ABC,不是直角三角形的是()A.∠A:∠B:∠C=1:2:3 B.∠A+∠B=∠C C.∠A=∠B=3∠C D.48.根据下列条件能判定△ABC是直角三角形的有()①∠A+∠B=∠C,②,③∠A:∠B:∠C=5:2:3,④∠A=2∠B=3∠C.A.1个B.2个C.3个D.4个49.在下列条件①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=∠C;④∠A:∠B:∠C=1:2:3中,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个50.如图,线段AD,BC相交于点O,连接AB,CD,AP平分∠BAD,CP平分∠BCD,则∠P,∠B,∠D满足的关系式是()A.∠P=∠B+∠D B.∠P=∠D﹣∠B C.D.二.填空题(共9小题)51.已知AD是△ABC的边BC上的中线,若△ABD的周长比△ACD的周长大6,则AB与AC的差是. 52.BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是.53.在△ABC中,AD为BC边的中线,若△ABD与△ADC的周长差为3,AB=8,则AC=.54.在△ABC中,BC边上的中线把三角形分割为两部分,若分割的这两部分周长之差为2,AB=5,则AC的长为.55.已知:如图所示,在△ABC中,点D、E、F分别为BC、AD、CE的中点,且,则阴影部分的面积为cm2.56.如图所示,在△ABC中,D、E、F分别为BC、AD、CE的中点,且S△ABC=4cm2,则阴影部分(△AEF)的面积等于.57.如图所示,在△ABC中,点D,E分别为BC,AD的中点,且S△ABC=4cm2,则阴影部分的面积为cm2.58.如图,在△ABC中,D、E、F分别为BC、AD、CE的中点,且S△ABC=24cm2,则阴影部分△AEF的面积为cm2.59.阅读材料:如图1所示,线段AB与CD相交于点O,称△AOC与△DOB为“对顶三角形”.根据三角形内角和定理知“对顶三角形”有如下性质:∠A+∠C=∠B+∠D.(1)如图2所示,线段AB与CD相交于点O,∠CAO与∠BDO的平分线AP和DP相交于点P,AP交CD于点M,DP交AB于点N,已知∠B=96°,∠C=98°,则∠P的度数是.(2)如图3所示,∠A+∠B+∠C+∠D+∠E+∠F=.三.解答题60.如图①,线段AB,CD相交于点O,连接AD,CB.如图②,在图①的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD,AB分别相交于点M,N.(1)图①中请直接写出∠A+∠D与∠B+∠C之间的数量关系:;(2)应用(1)的结果,猜想∠P与∠D,∠B之间存在着怎样的数量关系?并说明理由.。

初一数学三角形经典例题专题训练

初一数学三角形经典例题专题训练

A C BD三角形经典例题专题训练一、填空题:(每题 3 分,共 36 分)1、△ABC 中,AB =AC ,∠B =50°,则∠A =____。

2、在Rt △ABC 中,∠C =90°,a =4,c =5,则 sinA =____。

3、等腰三角形一边长为 5cm ,另一边长为 11cm ,则它的周长是____cm 。

4、△ABC 的三边长为 a =9,b =12,c =15,则∠C =____度。

5、已知 tan α=0.7010,利用计算器求锐角α=____(精确到1')。

6、如图,木工师傅做好门框后,为防止变形常常像图中所示那样钉上 两条斜拉的木条(即图中的AB 、CD 两个木条),这样做的数学道理是_______。

第6题 第7题 第8题 第11题7、如图,DE 是△ABC 的中位线,DE =6cm ,则BC =____。

8、在△ABC 中,AD ⊥BC 于D ,再添加一个条件____就可确定,△ABD ≌△ACD 。

9、如果等腰三角形的底角为15°,腰长为6cm ,那么这个三角形的面积为______。

10、有一个斜坡的坡度记 i =1∶3,则坡角α=____。

11、如图,△ABC 的边BC 的垂直平分线MN 交AC 于D ,若AC =6cm ,AB =4cm ,则△ADB 的周长=____。

12、如图,已知图中每个小方格的边长为 1,则点 B 到直线 AC 的距离等于____。

二、选择题:(每题 4 分,共 24 分) 1、下列哪组线段可以围成三角形( )A 、1,2,3B 、1,2,3C 、2,8,5D 、3,3,72、能把一个三角形分成两个面积相等的三角形的线段,是三角形的( )A 、中线B 、高线C 、边的中垂线D 、角平分线3、如图,□ABCD 中,对角线AC 、BD 相交于O 点,则图中全等的三角形共有( ) A 、1对 B 、2对 C 、3对 D 、4对 4、如图,在固定电线杆时,要求拉线AC 与地面成75°角,现有拉线AC 的长为8米,则电线杆上固定点C 距地面( )A 、8sin75°(米)B 、8sin75°(米)A B D┐CA D EBCOAD CBA BC DDA BNCMC 、8tcm75°(米)D 、8tan75°(米)5、若三角形中最大内角是60°,则这个三角形是( ) A 、不等边三角形 B 、等腰三角形 C 、等边三角形 D 、不能确定6、已知一直角三角形的周长是 4+26,斜边上的中线长为 2,则这个三角形的面积是( ) A 、5 B 、3 C 、2 D 、1三、解答题:(每题 9 分,共 54 分)1、已知:CD 平分∠ACB ,BF 是△ABC 的高,若∠A =70°∠ABC =60°求∠BMC 的度数。

初一数学三角形试题

初一数学三角形试题

初一数学三角形试题1.在△ABC中,已知∠ABC=66°,∠ACB=54°,BE⊥AC,CF⊥AB,垂足分别为E、F,H是BE、CF的交点.求:(1)∠ABE的度数;(2)∠BHC的度数.【答案】(1)30°;(2)120°.【解析】(1)先根据三角形内角和定理求出∠A的度数,再由BE⊥AC得出∠AEB=90°,由直角三角形的性质即可得出结论;(2)直接根据三角形外角的性质即可得出结论.试题解析:(1)∵∠ABC=66°,∠ACB=54°,∴∠A=180°-66°-54°=60°,∵BE⊥AC,∴∠AEB=90°,∴∠A+∠ABE=90°,∴∠ABE=90°-60°=30°;(2)∵∠BHC是△BFH的一个外角,∴∠BHC=∠BFH+∠ABE,∵CF⊥AB,∴∠BFH=90°,∴∠BHC=90°+30°=120°.【考点】1.三角形的外角性质;2.三角形内角和定理.2.下列命题中,真命题的是( )A.相等的两个角是对顶角B.若a>b,则>C.两条直线被第三条直线所截,内错角相等D.等腰三角形的两个底角相等【答案】D【解析】A.相等的两个角不定是对顶角,所以是假命题;B.若a、b为负数时,则有<,是假命题;C.两条直线被第三条直线所截,内错角不一定相等,是假命题;D.正确【考点】命题与定理3.在△ABC中,已知两条边a=3,b=4,则第三边c的取值范围是_________.【答案】1<c<7【解析】根据三角形的三边关系可知b-a<c<a+b,即可得第三边c的取值范围.【考点】三角形的三边关系4.如图所示,在△ABC中,∠B=∠C,∠BAD=40°,并且∠ADE=•∠AED,•求∠CDE的度数.【答案】20°【解析】可以设∠DAE=x°,然后根据三角形的内角和是180°以及等腰三角形的性质用x分别表示∠C和∠AED,再根据三角形的一个外角等于和它不相邻的两个内角和进行求解.试题解析:设∠DAE=x,则∠BAC=40°+x.-因为∠B=∠C,所以2∠2=180°-∠BAC,-∠C=90°-∠BAC=90°-(40°+x).-同理∠AED=90°-∠DAE=90°-x.-∠CDE=∠AED-∠C=(90°-x)-[90°-(40°+x)]=20°.【考点】三角形外角性质;三角形内角和定理5.如下图,在△ABC中,∠B=600,∠C=400,AD⊥BC于D,AE平分∠BAC;则∠DAE= .【答案】10°.【解析】∵△ABC中,∠B=60°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,∵AE平分∠BAC,∴∠CAE=∠BAC=×80°=40°,∵AD⊥BC,∴∠CAD=90°﹣∠C=90°﹣40°=50°,∴∠DAE=∠CAD﹣∠CAE=50°﹣40°=10°.故答案是10°.【考点】三角形内角和定理.6.在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于______度.【答案】230°.【解析】首先根据三角形内角和可以计算出∠A+∠B的度数,再根据四边形内角和为360°可算出∠1+∠2的结果.试题解析:∵△ABC中,∠C=50°,∴∠A+∠B=180°-∠C=130°,∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°-130°=230°.考点: 1.多边形内角与外角;2.三角形内角和定理.7.下列长度的三条线段,能组成三角形的是A.1cm,2cm,3cm B.2cm,3cm,6cmC.4cm,6cm,8cm D.5cm,6cm,12cm【答案】C【解析】三角形的三边关系:三角形的任两边之和大于第三边,任两边之差小于第三边.解:A、,B、, D、,均不能组成一个三角形,故错误;C、,能组成一个三角形,本选项正确.【考点】三角形的三边关系点评:本题属于基础应用题,只需学生熟练掌握三角形的三边关系,即可完成.8.如图:PC、PB是∠ACB、∠ABC的平分线,∠A=40º,∠BPC=()A.∠BPC=70ºB.∠BPC=140ºC.∠BPC=110ºD.∠BPC=40º【答案】C【解析】在中,∠A=40º,则;因为PC、PB是∠ACB、∠ABC的平分线,所以,所以= ,在中,∠BPC=,选C【考点】平分线点评:本题考查平分线,解答本题的重点是掌握平分线的概念和性质,熟悉三角形内角和定理,本题难度一般9.一个三角形最多有a个锐角,b个直角,c个钝角,则a+b+c= .【答案】5【解析】根据三角形的基本性质可得a、b、c的值,从而求得结果.由题意得,,,则.【考点】三角形的基本性质点评:本题属于基础应用题,只需学生熟练掌握三角形的基本性质,即可完成.10.等腰三角形两边长分别是5cm和8cm,则其周长是 .【答案】18cm或21cm【解析】题中没有明确腰和底,故要分情况讨论,再结合等腰三角形的性质求解即可.当5cm为腰时,三边长为5、5、8,其周长为当8cm为腰时,三边长为5、8、8,其周长为所以则其周长是18cm或21cm.【考点】等腰三角形的性质点评:等腰三角形的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.11.如图,在中,,是的垂直平分线,交于点,交于点.已知,则的度数为()A.B.C.D.【答案】B【解析】根据垂直平分线的性质的性质可得AE=CE,即得∠EAD=∠ECD,再结合∠BAE=10°根据三角形的内角和定理求解即可.∵是的垂直平分线∴AE=CE∴∠EAD=∠ECD∵,∴∠C=40°故选B.【考点】垂直平分线的性质,三角形的内角和定理点评:三角形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.12.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整,若调整木条的夹角时不破坏此木框,则任两螺丝的距离的最大值是( )A.5B.6C.7D.10【答案】C【解析】若两个螺丝的距离最大,则此时这个木框的形状为三角形,可根据三条木棍的长来判断有几种三角形的组合,然后分别找出这些三角形的最长边即可.已知4条木棍的四边长为2、3、4、6;①选2+3、4、6作为三角形,则三边长为5、4、6;6-5<4<6+5,能构成三角形,此时两个螺丝间的最长距离为6;②选3+4、6、2作为三角形,则三边长为2、7、6;6-2<7<6+2,能构成三角形,此时两个螺丝间的最大距离为7;③选4+6、2、3作为三角形,则三边长为10、2、3;2+3<10,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为7.故选C.【考点】三角形的三边关系点评:能够正确的判断出调整角度后三角形木框的组合方法是解答的关键.13.如图,C、F在BE上,∠A=∠D,AB∥DE,BF=EC.求证:AB=DE.【答案】可证明△ABC≌△DEF(AAS)则AB=DE.【解析】解: ∵AB∥DE ∴∠B=∠E ∵BF=EC ∴BF+FC=EC+FC 即BC=EF在△ABC和△DEF中∵∴△ABC≌△DEF(AAS)∴AB=DE.【考点】全等三角形判定与性质。

初一几何三角形练习题及答案

初一几何三角形练习题及答案

初一几何三角形练习题及答案1. 求下列三角形的内角和:a) 直角三角形b) 等边三角形c) 钝角三角形解答:a) 直角三角形的内角和为180度。

其中一个角为90度(直角),剩余两个角之和为90度。

b) 等边三角形的内角和为180度。

由于等边三角形的三条边长度相等,所以三个角也必定相等,每个角为60度,三个角之和为180度。

c) 钝角三角形的内角和为180度。

钝角三角形有一个角大于90度,其它两个角的和小于90度,但三个角之和仍然等于180度。

2. 给定一个三角形,如果已知两个角的度数,如何求出第三个角的度数?解答:三角形的内角和为180度。

已知两个角的度数后,可以用180度减去这两个角的度数,得到第三个角的度数。

例如,如果一个三角形的两个角分别为40度和60度,那么第三个角的度数为180度 - 40度 - 60度 = 80度。

3. 求下列三角形的周长:a) 边长分别为3 cm, 4 cm和 5 cm的三角形b) 边长分别为6 cm, 8 cm和 10 cm的三角形解答:a) 边长分别为3 cm, 4 cm和 5 cm的三角形的周长为3 cm + 4 cm + 5 cm = 12 cm。

b) 边长分别为6 cm, 8 cm和 10 cm的三角形的周长为6 cm + 8 cm +10 cm = 24 cm。

4. 求下列三角形的面积:a) 底边长为4 cm,高为3 cm的三角形b) 边长分别为5 cm, 7 cm和 8 cm的三角形解答:a) 底边长为4 cm,高为3 cm的三角形的面积为(4 cm * 3 cm) / 2 = 6 cm²。

b) 边长分别为5 cm, 7 cm和 8 cm的三角形的面积可以用海伦公式计算。

首先计算半周长:(5 cm + 7 cm + 8 cm) / 2 = 10 cm。

然后使用海伦公式:√(10 cm * (10 cm - 5 cm) * (10 cm - 7 cm) * (10 cm - 8 cm)) ≈ 17.32 cm²。

(完整版)初中数学三角形专题练习

(完整版)初中数学三角形专题练习

(完整版)初中数学三角形专题练习-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN三角形专题练习1.已知:如图,D 是BC 上一点, ∠C =62°,∠CAD =32°,则 ∠ADB = 度.2. 以下列各组线段长为边,能构成三角形的是( ) A 、4cm 、5cm 、6cm B 、2cm 、3cm 、5cm C 、4cm 、4cm 、9cm D 、12cm 、5cm 、6cm3. 如图,若△ABC ≌△DEF ,则∠E 等于( )A .30°B . 50°C .60°D .100°4. 已知:如图,点C 、D 在线段AB 上,PC =PD 。

请你添加一个条件,使图中存在全等三角形并给予证明。

所加条件为________,你得到的一对全等三角形是 △___≌△___。

5. 如图,等腰三角形ABC 的顶角为120o ,腰长为10,则底边上的高AD =____。

6. 在三角形纸片ABC 中,∠C =90°,∠A =30°,AC =3,折叠该纸片,使点A 与点B 重合,折痕与AB 、AC 分别相交于点D 和点E ,折痕DE 的长为7. 如图所示,BC =6,E 、F 分别是线段AB 和线段AC 的中点,那么线段EF 的长是( ).(A )6 (B )5 (C )4.5 (D )38. 如图,□ABCD 中,对角线AC 和BD 相交于点O ,如果AC=12、BD=10、AB=m ,那么m 的取值范围是( )A 、1< m <11B 、2< m <22C 、10< m <12D 、5< m <6D CBAA B C 30? 50 ?D E F D BFE CB A (第7题) A DC B OADC9. 如图,已知,在△ABC 和△DCB 中,AC=DB ,若不增加任何字母与辅助线,要使△ABC ≌△DCB ,则还需增加一个条件是_ _。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H
P
G
F
E
D C B
A 三角形、
主要知识点:
1.三角形的分类
三角形按边分类可分为_______和______(等边三角形是等腰三角形的特殊情况); 按角分类可分为______、_______和_______, 2.一般三角形的性质
(1)角与角的关系:三个内角的和等于___°; 三个外角的和等于___;
一个外角等于和它不相邻的两个内角之和,并且大于任何—个和它不相邻的内角,____________。

(2)边与边的关系:三角形中任两边之和大于第三边,任两边之差小于第三边。

(3)边与角的大小对应关系:在一个三角形中,__边对等角;等角对等____。

3. 几种特殊三角形的特殊性质
(1)等腰三角形的特殊性质:①等腰三角形的两个_____角相等;②等腰三角形_______、_____中线和______是同一条线段,三线合一;这条线段所在的直线是等腰三角形的对称轴。

(2)等边三角形的特殊性质:①等边三角形每个内角都等于___°。

②三线合一 (3)直角三角形的特殊性质:①直角三角形的两个锐角互为___角; 4. 三角形的面积一般三角形:S △ =
2
1
a h ( h 是a 边上的高 ) 例1: (基础题) 如图, AC //DF , GH 是截线.∠CBF =40°, ∠BHF =80°. 求∠HBF , ∠BFP , ∠BED .∠BEF
例2: (基础题)
①在△ABC 中,已知∠B = 40°,∠C = 80°,则∠A = (度)
②:、。

如图,△ABC 中,∠A = 60°,∠C = 50°,则外角∠CBD = 。

③已知,在△ABC 中, ∠A + ∠B = ∠C ,那么△ABC 的形状为( )
A 、直角三角形
B 、钝角三角形
C 、锐角三角形
D 、以上都不对 ④下列长度的三条线段能组成三角形的是( )
A.3cm ,4cm ,8cm
B.5cm ,6cm ,11cm
C.5cm ,6cm ,10cm
D.3cm ,8cm ,12cm ⑤如果一个三角形的三边长分别为x ,2,3,那么x 的取值范围是 。

A
C
第 8 题
D
D B
A
第 14 题
⑥小华要从长度分别为5cm 、6cm 、11cm 、16cm 的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是_ .______. ⑦已知等腰三角形的一边长为6,另一边长为10,则它的周长为 ⑧在△ABC 中,AB = AC ,BC=10cm,∠A = 80°,则∠B = ,
∠C = 。

BD=______,CD=________
⑨如图,AB = AC ,BC ⊥ AD ,若BC = 6,则
⑩画一画 如图,在△ABC 中: (1).画出∠C 的平分线CD (2).画出
BC 边上的中线AE
(3).画出△ABC 的边AC 上的高BF 例3: (提高)
①△ABC 中,∠C=90°,∠B-2∠A=30°,则∠A= ,∠B=
③在等腰三角形中,一个角是另一个角的2倍,求三个角?_______________________
④:在等腰三角形中,,周长为40cm,一个边另一个边2倍,求三个边?_________________ 例4 如图,D 是△ABC 的∠C 的外角平分线与BA 的延长线的交点,求证:∠BAC >∠B
例6.ABC 为等边三角形,D 是AC 中点,E 是BC 延长线上一点,且CE = 2
1BC 求证: BD = DE
一、选择题:
1. 等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为( ) A.150° B.80° C.50°或80° D.70°
2. 在△ABC 中, ∠A =50°, ∠B ,∠C 的角平分线相交于点O ,则∠BOC 的度数是( ) A . 65° B . 115° C . 130° D . 100°
3.如图,如果∠1=∠2=∠3,则AM 为△ 的角平分线, AN 为△ 的角平分线。

二、填空题:
2 C
3
N M B
1
A
A
1. 已知△ABC 中,则∠A + ∠B + ∠C = (度)
2. 。

若AD 是△ABC 的高,则∠ADB = (度)。

3. 若AE 是△ABC 的中线,BC = 4,则BE = =
4. 若AF 是△ABC 中∠A 的平分线,∠A = 70°,则∠CAF = ∠ = (度)。

5. △ABC 中,BC = 12cm ,BC 边上的高AD = 6cm ,则△ABC 的面积为 。

6. 直角三角形的一锐角为60°,则另一锐角为 。

7. 等腰三角形的一个角为45°,则顶角为 。

8. 在△ABC 中,∠A :∠B :∠C = 1:2:3,∠C = 。

9. 如图,∠BAC=90°,AD ⊥BC ,则图中共有 个直角三角形;
10. △ABC 中,BO 、CO 分别平分∠ABC 、∠ACB 若∠A=70°,则∠BOC= ; 若∠BOC=120°,∠A= 。

三、解答题:
14、如图4,∠1+∠2+∠3+∠4= 度;
15、如图;ABCD 是一个四边形木框,为了使它保持稳定的形状,需在AC 或BD 上钉上一根木条,现量得AB=80㎝,BC=60㎝,CD=40㎝,AD=50㎝,试问所需的木条长度至少要多长?
16有一天小明对同学说:“我的步子大,一步能走三米(即两脚着地时的间距有三米”。

有的同学将信将疑,而小颖说:“小明,你在吹牛”。

你觉得小颖的话有道理吗?
17. 图1-4-27,已知在△ABC 中,AB=AC ,∠A=40°,∠ABC 的平分线BD 交AC 于D.
求:∠ADB 和∠CDB 的度数.
.18。

已知等腰三角形的周长是25,一腰上的中线把三角形分成两个,两
个三角形的周长的差是4。

求等腰三角形各边的长。

Í
¼4 A
B
C
D
A B C
D
E
x y
z x y z A B D E
19.如图,已知在△ABC 中,AB=AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 与CE 相交于M 点。

求证:BM=CM 。

.22。

如图,在△ABC 中,AB=AC ,点D 、E 分别在AC 、AB 上,且BC=BD=DE=EA , 求∠A 的度数。

23.、如图,BE 、CD 相交于点A ,CF 为∠BCD 的平分线,EF 为∠BED 的平分线。

试探求∠F 与∠B 、∠D 之间的关系,并说明理由。

例1、填空:。

(6)正二十边形的每个内角都等于 。

(7)一个多边形的内角和为1800°,则它的边数为 。

(8)n 多边形的每一个外角是36°,则n 是 。

(9)多边形的每一个内角都等于150°,则从此多边形一个顶点出发引出的对角线有 条。

(10)如果把一个多边形截去一个三角形,剩下的多边形的内角和是2160°,那么原来的多边形的边
数是 。

(11)一多边形除一内角外,其余各内角之和为2570°,
则这个内角等于 。

例5、给定△ABC 的三个顶点和它内部的七个点,已知这十个点中的任意三点都不在一条直线上,把原三角形分成以这些点为顶点的小三角形,并且每个小三角形的内部都不包含这十个点中的任一点,求证:这些小三角形的个数是15
E F
D
C B A。

相关文档
最新文档