初一数学三角形练习题(有答案)知识讲解
(完整版)七年级数学三角形测试题(附答案)
第七章 三角形班级: 姓名: 座号: 评分:一. 选择题。
(每题3分,共24分)1. 若三角形两边长分别是4、5,则周长c 的范围是( )A. B. C. D. 无法确定19c 914c 1018c 2. 一个三角形的三个内角中( )A. 至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60°3. 从n 边形的一个顶点作对角线,把这个n 边形分成三角形的个数是( )A. n 个B. (n-1)个C. (n-2)个D. (n-3)个4. n 边形所有对角线的条数有( ) A. B. C. D. ()12n n -条()22n n -条()32n n -条()42n n -条5. 装饰大世界出售下列形状的地砖:正方形;长方形;正五边形;正○1○2○3○4六边形。
若只选购其中某一种地砖镶嵌地面,可供选用的地砖共有()A. 1种B. 2种C. 3种D. 4种6. 下列图形中有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形7. 如图1,点O 是△ABC 内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC 等于( )A. 95°B. 120°C. 135°D. 无法确定8. 若一个三角形的三边长是三个连续的自然数,其周长m 满足,则这样的三角形有( )1022m A. 2个 B. 3个 C. 4个 D. 5个二. 填空题。
(每空2分,共38分)1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。
2. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。
3. 要使六边形木架不变形,至少要再钉上 根木条。
4. 在△ABC 中,若∠A=∠C=∠B,则∠A= ,∠B= ,这个三角形13是 。
初一数学三角形试题答案及解析
初一数学三角形试题答案及解析1.如图,AD、AE分别是△ABC的高和角平分线,∠B=30°,∠C =70°,则∠EAD=【答案】20【解析】∵∠B=30°,∠C=70°,∴在△ABC中,∠BAC=180°﹣∠B﹣∠C=80°,∵AE是△ABC的角平分线,∴∠BAE=∠BAC=40°,又∵AD⊥BC,∴∠BAD=90°﹣∠B=60°,∴∠EAD=∠BAD﹣∠BAE=60°﹣40°=20°.故答案为:20.【考点】三角形内角和定理;三角形的外角性质2.腰三角形的底角是顶角的两倍,则此等腰三角形的顶角为【答案】36°.【解析】设等腰三角形的顶角度数为x,则底角度数为2x,根据三角形内角和定理:x+2x+2x=180°,解得x的度数.试题解析:设等腰三角形的顶角度数为x,∵等腰三角形的底角是顶角的两倍,则底角度数为2x,根据三角形内角和定理:x+2x+2x=180°,解得x=36°.【考点】等腰三角形的性质.3.如图,AD是△ABC的角平分线,∠C=90°,BC=9cm,BD=5cm,则点D到AB的距离是()A.4cm B.5cm C.6cm D.9 cm【答案】A.【解析】如图,过点D作DE⊥AB于E,∵BC=9cm,BD=5cm,∴CD=BC-BD=9-5=4cm,∵AD是△ABC的角平分线,∠C=90°,∴DE=CD=4cm,即点D到AB的距离是4cm.故选A.【考点】角平分线的性质.4.在平面直角坐标系中,点A在y轴正半轴上,点B与点C都在x轴上,且点B在点C的左侧,满足BC=OA,若-3a m-1b2与a n b2n-2是同类项且OA=m,OB=n.(1)m= ;n= .(2)点C的坐标是.(3)若坐标平面内存在一点D,满足△BCD全等△ABO,试求点D的坐标.【答案】(1)3,2;(2)(5,0)或(1,0);(3)(5,2)或(5,-2)或(2,2)或(2,-2),(1,2)或(1,-2)或(-2,2)或(-2,-2).【解析】(1)根据同类项的概念即可求得;(2)根据已知条件即可求得B(2,0)或(-2,0),根据点B在点C的左侧,BC=OA,即可确定C的坐标;(3)根据三角形全等的性质即可确定D的坐标;试题解析:(1)∵-3a m-1b2与a n b2n-2是同类项,∴,解得.(2)∵OA=m,OB=n,∴B(2,0)或(-2,0),∵点B在点C的左侧,BC=OA,∴C(5,0)或(1,0);(3)当C(5,0)时,∵△BCD全等△ABO,BC=OA=3,∴CD=2或BD=2,∴D的坐标为(5,2)或(5,-2)或(2,2)或(2,-2);当C(1,0)时,∵△BCD全等△ABO,BC=OA=3,∴CD=2或BD=2,∴D的坐标为(1,2)或(1,-2)或(-2,2)或(-2,-2).所以D点的坐标为(5,2)或(5,-2)或(2,2)或(2,-2),(1,2)或(1,-2)或(-2,2)或(-2,-2).【考点】1.全等三角形的判定与性质;2.同类项;3.坐标与图形性质.5.如图,在△ABC中,∠B=400,∠C=1100.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.【答案】(1)图形见解析;(2)∠DAE=35°.【解析】(1)按照三角形高线和角平分线定义进行画图即可;(2)利用角平分线把一个角平分的性质和高线得到90°的性质可得∠DAE的度数.(1)如图:(2)∵∠DAB=180°﹣∠ABC﹣∠ADB=180°﹣90°﹣40°=50°,∠BAC=180°﹣∠ABC﹣∠C=180°﹣40°﹣110°=30°,又∵AE平分∠BAC,∴∠BAE=∠BAC=150°,(角平分线的定义)∴∠DAE=∠DAB﹣∠BAE=50°﹣15°=35°.【考点】三角形高线和角平分线.6.作图题:(可以不写作法)如图已知三角形ABC内一点P.(1)过P点作线段EF∥AB,分别交AC,BC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.【答案】作图见解析.【解析】(1)根据过直线外一点作已知直线平行线的方法作图即可;(2)利用直角三角板,一条直角边与BC重合,沿BC平移,使另一条直角边过点P画垂线即可.(1)如图,EF即为所求.(2) 如图,PD即为所求.【考点】作图—基本作图.7.如图,AD为△ABC的中线,(1)作△ABD的中线BE;(2)作△BED的BD边上的高EF;(3)若△ABC的面积为60,BD=10,则点E到BC边的距离为多少?【解析】(1)找到边AD的中点E,连接BE,线段BE是△ABD的中线;(2)△BED是钝角三角形,所以BD边上的高在BD的延长线上;(3)先根据三角形的中线把三角形分成面积相等的两个小三角形,结合题意可求得△BED 的面积,再直接求点E 到BC 边的距离即可.试题解析:(1)如图所示,BE 是△ABD 的中线;(2)如图所示,EF 即是△BED 中BD 边上的高.(3)∵AD 为△ABC 的中线,BE 为三角形ABD 中线,∴S △BED =S △ABC =×60=15;∵BD=10,∴EF=2S △BED ÷BD=2×15÷10=3,即点E 到BC 边的距离为3.【考点】1.三角形的角平分线、中线和高;2.三角形的面积;8. 在△ABC 中,已知∠A:∠B:∠C=2:3:4,则这个三角形是( )A .钝角三角形B .直角三角形C .锐角三角形D .等腰三角形【答案】C .【解析】根据题意,设∠A 、∠B 、∠C 分别为2k 、3k 、4k ,则∠A+∠B+∠C=2k+3k+4k=180°,解得k=20°,∴4k=4×20°=80°<90°,所以这个三角形是锐角三角形.故选C .考点: 三角形内角和定理.9. 已知等腰三角形的两边长分别为4和9,则第三边为_________.【答案】9【解析】等腰三角形的两边长分别为4和9时,当4为腰时,则可知两腰和=4+4=8<9不符合三角形任意两边和大于第三边。
初一数学三角形试题答案及解析
初一数学三角形试题答案及解析1.小亮截了四根长分别为5cm,6cm,10cm,13cm的木条,任选其中三条组成一个三角形,这样拼成的三角形共有()A.1个B.2个C.3个D.4个【答案】C.【解析】选其中3根组成一个三角形,不同的选法有5cm,6cm,10cm;5cm,10cm,13cm;6cm,10cm,13cm;共3种.故选C.【考点】三角形三边关系.2.如图,△ABC≌△AED,∠B=40°,∠EAB=30°,∠ACB=45°,∠D= °.【答案】45°.【解析】根据全等三角形的对应角相等即可得出∠D的度数.试题解析:∵△ABC≌△AED,∠ACB=45°,∴∠ACB=∠D=45°.【考点】全等三角形的性质.3.如图,∠ACB>90°,AD^BC,BE^AC,CF^AB,垂足分别为点D、点E、点F,△ABC中BC边上的高是()A.CF ;B.BE;C.AD;D.CD;【答案】B.【解析】如图,AD、BE、CF分别是三角形ABC三条边上的高,与AC对应的高是BE.故选B.【考点】作三角形的高.4.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于 ____________ . 【答案】1800°.【解析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n-2)•180°,把多边形的边数代入公式,就得到多边形的内角和.试题解析:多边形的边数:360°÷30°=12,正多边形的内角和:(12-2)•180°=1800°.【考点】多边形内角与外角.5.正八边形的每一个内角都等于 °.【答案】135°【解析】多边形的内角和公式=180°×(n-2)=180°×(8-2)=1080°,所以每个内角为1080°÷8=135°.本题涉及了多边形内角和,该题较为简单,主要考查学生对多边形内角和公式的应用,以及对正多边形的内角间的关系。
初一数学三角形与全等三角形知识点大全经典练习含复习资料
初一数学三角形知识点归纳一、与三角形有关的线段1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形2、等边三角形:三边都相等的三角形3、等腰三角形:有两条边相等的三角形4、不等边三角形:三边都不相等的三角形5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角6、三角形分类:不等边三角形等腰三角形:底边和腰不等的等腰三角形等边三角形7、三角形两边之和大于第三边,两边之差小于第三边注:1)在实际运用中,只需检验最短的两边之和大于第三边,则可说明能组成三角形 2)在实际运用中,已经两边,则第三边的取值范围为:两边之差<第三边<两边之和3)所有通过周长相加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形8、三角形的高:从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高9、三角形的中线:连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC的边BC上的中线注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小10、三角形的角平分线:画∠A的平分线AD,交∠A所对的边BC于D,所得线段AD叫做△ABC的角平分线11、三角形的稳定性,四边形没有稳定性二、与三角形有关的角1、三角形内角和定理:三角形三个内角的和等于180度。
证明方法:利用平行线性质2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角3、三角形的一个外角等于与它不相邻的两个内角的和4、三角形的一个外角大于与它不相邻的任何一个内角5、三角形的外角和为360度6、等腰三角形两个底角相等三、多边形及其内角和1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形2、N边形:如果一个多边形由N条线段组成,那么这个多边形就叫做N边形。
3、内角:多边形相邻两边组成的角叫做它的内角4、外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角5、对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线6、正多边形:各个角都相等,各条边都相等的多边形叫做正多边形7、多边形的内角和:n边形内角和等于(n-2)*1808、多边形的外角和:360度注:有些题,利用外角和,能提升解题速度9、从n边形的一个顶点出发,可以引n-3条对角线,它们将n边形分成n-2个△注:探索题型中,一定要注意是否是从N边形顶点出发,不要盲目背诵答案10、从n边形的一个顶点出发,可以引n-3条对角线,n边形共有对角线23)-n(n条。
初一数学三角形的内角和试题
初一数学三角形的内角和试题1.一个三角形的三个内角中,至少有()A.一个锐角B.两个锐角C.一个钝角D.一个直角【答案】B【解析】根据三角形的内角和定理判断即可.三角形的三个内角中至少有两个锐角,不可能有两个钝角或两个直角,故选B.【考点】本题考查的是三角形的内角和定理点评:解答本题的关键是熟练掌握三角形的三个内角和是180°.2.已知一个多边形的外角和等于它的内角和,则这多边形是()A.三角形B.四边形C.五边形D.六边形【答案】B【解析】根据多边形的外角和以及四边形的内角和定理即可解决问题.∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,∴这个多边形是四边形,故选B.【考点】本题考查的是多边形的外角和点评:解答本题的关键是熟练掌握任意多边形的外角和均是360度,与边数无关。
3.若一个多边形的内角和等于1080°,则这个多边形的边数是( )A.9B.8C.7D.6【答案】B【解析】根设这个多边形的边数是n,据多边形的内角和公式即可得到结果。
设这个多边形的边数是n,由题意得,解得,故选B.【考点】本题考查的是多边形的内角和公式点评:解答本题的关键是熟练掌握多边形的内角和公式:4.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( )A.十三边形B.十二边形C.十一边形D.十边形【答案】A【解析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n-3)条对角线,由此可得到答案.设这个多边形是n边形.依题意,得n-3=10,∴n=13,故选A.【考点】本题考查的是多边形的对角线点评:多边形有n条边,则经过多边形的一个顶点所有的对角线有(n-3)条,经过多边形的一个顶点的所有对角线把多边形分成(n-2)个三角形.5.一个多边形边数增加1,则这个多边形内角增加,外角增加 .【答案】180度,0度【解析】根据多边形的内角和公式,多边形的外角和为360度即可得到结果。
初一数学与三角形有关的角试题
初一数学与三角形有关的角试题1.一个三角形中最多有_____个内角是钝角,最多可有_____个角是锐角.【答案】,【解析】本题主要考查了三角形内角和. 根据三角形内角和是180°即可解决问题.解:如果一个三角形中出现2个或3个钝角,那么三角形的内角和就大于180°,不符合三角形内角和是180°,如果一个三角形中出现2个或3个直角,再加上第三个角,那么三角形的内角和就大于180°,也不符合三角形内角和是180°,所以,三角形中最多有一个钝角或直角,最少有两个锐角,一个三角形中最多有3个锐角,如锐角三角形,∴一个三角形最多有1钝角;最多有3个锐角.2.如图,_____.【答案】【解析】本题主要考查三角形的内角和定理. 连接∠2和∠4的顶点,可得两个三角形,根据三角形的内角和定理即可求出答案.解:连接∠2和∠4的顶点,可得两个三角形,根据三角形的内角和定理,∠1+∠2+∠3+∠4=360°.3.如图,已知折线,且.说明:.【答案】证明见解析【解析】本题考查的是三角形内角和定理.根据三角形内角和定理和平行线的判定求证解:连结BD在△BDC中,∠BDC+∠DBC+∠C=180°∵∴∠ABD+∠EDB =180°∴4.在△ABC中,若∠A=∠B=∠C,则∠C等于()A.45°B.60°C.90°D.120°【答案】C【解析】本题主要考查了三角形的内角和定理.依据三角形内角和定理得,∠C+∠C+∠C=180°,解得∠C=90°5.一个三角形的内角中,至少有()A.一个钝角B.一个直角C.一个锐角D.两个锐角【答案】D【解析】本题主要考查了三角形的内角和定理. 根据三角形的内角和等于180°,而直角与钝角都不小于90°,所以最多只能有一个,所以至少有两个锐角.解:∵三角形的内角和等于180°,∴直角或钝角至多有一个,∴锐角至少有两个.故选D.6.如图所示,∠1+∠2+∠3+∠4的度数为()A100° B.180° C.360° D.无法确定【答案】C【解析】本题主要考查了三角形的内角和定理.作如图辅助线,这样把∠1、∠2、∠3、∠4四个角的和转化为两个三角形的内角和,即2×180°=360°故选C7.如图所示,∠1+∠2+∠3+∠4的度数为 .【答案】300°【解析】本题主要考查了三角形的内角和定理. 根据三角形的内角和等于180°求解∵∠1+∠2=180°-30°=150°,∠3+∠4=180°-30°=150°,∴∠1+∠2+∠3+∠4=150°+150°=300°8.如图所示,在△ABC中,∠A=60°,BD,CE分别是AC,AB 上的高,H是BD,CE的交点,求∠BHC的度数.【答案】120°【解析】本题主要考查了三角形内角和定理.根据三角形内角和等于180°求解解:因为BD,CE分别是AC,AB 上的高,所以∠ADB=∠BEH=90°,所以∠ABD=180°-∠ADB-∠A=180°-90°-60°=30°,因此∠BHC=∠BEH+∠ABD=90°+30°=120°9.如图,______.【答案】【解析】本题主要考查了三角形的内角和定理.运用了三角形的内角和定理计算解:∵∠1+∠2=180°-40°=140°,∠3+∠4=180°-40°=140°,∴∠1+∠2+∠3+∠4=280°.10.已知∠A的两边与∠B的两边互相垂直,若∠A=80º,则∠B的度数是 .【答案】80º或100º【解析】本题主要考查角的概念若两个角的边互相垂直,那么这两个角必相等或互补,即可得到结果.两个角的边互相垂直,那么这两个角必相等或互补,∠A=80º,∠B80º或100º。
初一几何三角形练习题及答案
初一几何三角形练习题及答案1. 求下列三角形的内角和:a) 直角三角形b) 等边三角形c) 钝角三角形解答:a) 直角三角形的内角和为180度。
其中一个角为90度(直角),剩余两个角之和为90度。
b) 等边三角形的内角和为180度。
由于等边三角形的三条边长度相等,所以三个角也必定相等,每个角为60度,三个角之和为180度。
c) 钝角三角形的内角和为180度。
钝角三角形有一个角大于90度,其它两个角的和小于90度,但三个角之和仍然等于180度。
2. 给定一个三角形,如果已知两个角的度数,如何求出第三个角的度数?解答:三角形的内角和为180度。
已知两个角的度数后,可以用180度减去这两个角的度数,得到第三个角的度数。
例如,如果一个三角形的两个角分别为40度和60度,那么第三个角的度数为180度 - 40度 - 60度 = 80度。
3. 求下列三角形的周长:a) 边长分别为3 cm, 4 cm和 5 cm的三角形b) 边长分别为6 cm, 8 cm和 10 cm的三角形解答:a) 边长分别为3 cm, 4 cm和 5 cm的三角形的周长为3 cm + 4 cm + 5 cm = 12 cm。
b) 边长分别为6 cm, 8 cm和 10 cm的三角形的周长为6 cm + 8 cm +10 cm = 24 cm。
4. 求下列三角形的面积:a) 底边长为4 cm,高为3 cm的三角形b) 边长分别为5 cm, 7 cm和 8 cm的三角形解答:a) 底边长为4 cm,高为3 cm的三角形的面积为(4 cm * 3 cm) / 2 = 6 cm²。
b) 边长分别为5 cm, 7 cm和 8 cm的三角形的面积可以用海伦公式计算。
首先计算半周长:(5 cm + 7 cm + 8 cm) / 2 = 10 cm。
然后使用海伦公式:√(10 cm * (10 cm - 5 cm) * (10 cm - 7 cm) * (10 cm - 8 cm)) ≈ 17.32 cm²。
初中数学三角形知识点训练附答案
A. , , B. , ,
C. D.
【答案】C
【解析】
【分析】
要判断一个角是不是直角,先要知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.
【详解】
A.若BC=4,AC=5,AB=6,则BC2+AC2≠AB2,故△ABC不是直角三角形;
【详解】
在Rt△ABC中,∠A=90°,
∵∠1=45°(已知),
∴∠3=90°-∠1=45°(三角形的内角和定理),
∴∠4=180°-∠3=135°(平角定义),
∵EF∥MN(已知),
∴∠2=∠4=135°(两直线平行,同位角相等).
故选D.
【点睛】
此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.
12.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()
A.1B. C. D.
【答案】D
【解析】
【分析】
由等腰三角形的判定方法可知△AGC是等腰三角形,所以F为GC中点,再由已知条件可得EF为△CBG的中位线,利用中位线的性质即可求出线段EF的长.
B. ,故不能组成直角三角形;
C. ,故可以组成直角三角形;
D. ,故不能组成直角三角形;
故选C.
【点睛】
本题主要考查了勾股定理的逆定理(如果三角形两边的平方等于第三边的平方,那么这个三角形是直角三角形),掌握勾股定理的逆定理是解题的关键.
16.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来的()
初一数学三角形试题
初一数学三角形试题1.如图,已知∠EAC=∠BAD,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠D.其中能使△ABC≌△AED的条件有()A.4个 B.3个 C.2个 D.1个【答案】C.【解析】∵∠EAC=∠BAD,∴∠EAC+∠BAE=∠BAD+∠BAE,即∠BAC=∠EAD,当AB=AE时,在△ABC和△AED中,,∴△ABC≌△AED(SAS);当BC=ED时,不能判断△ABC≌△AED.当∠C=∠D时,在△ABC和△AED中,,∴△ABC≌△AED(ASA);当∠B=∠D,而AC=AD,所以∠B与∠D不是对应角,所以不能判断△ABC≌△AED.故选C.【考点】全等三角形的判定.2.一幅美丽的图案,在其顶点处由四个正多边形镶嵌而成,其中三个分别为正三角形、正四边形、正六边形,则另一个为()A.正三角形B.正四边形C.正五边形D.正六边形【答案】B【解析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.∵正三角形、正四边形、正六边形的内角分别为60°、90°、120°,又∵360°-60°-90°-120°=90°,∴另一个为正四边形.【考点】平面镶嵌(密铺)3.如图,四边形ABCD中,∠A=∠C=900,平分∠A BC交CD于E,DF平分∠A DC交AB于F(1)若∠ABC=600,则∠ADC= °, ∠ADF= °;(2)BE与DF平行吗?试说明理由.【答案】(1)1200,600;(2)BE∥DF.证明见解析.【解析】根据四边形的内角和定理和∠A=∠C=90°,得∠ABC+∠ADC=180°;根据角平分线定义、等角的余角相等易证明和BE与DF两条直线有关的一对同位角相等,从而证明两条直线平行.(1)根据四边形内角和是3600,可以得出∠ADC=(2)BE∥DF.理由如下:∵∠A=∠C=90°(已知),∴∠ABC+∠ADC=180°(四边形的内角和等于360°).∵BE平分∠ABC,DF平分∠ADC,∴∠CBE=∠BED=∠ABC,∠ADF=∠FDE=∠ADC(角平分线的定义).∴∠DFB+∠FDE=(∠ABC+∠ADC)=×180°=90°(等式的性质).又∠CBE+∠CEB=90°(三角形的内角和等于180°),∴∠FDE=∠CEB(等量代换).∴BE∥DF(同位角相等,两直线平行).【考点】1.四边形内角和2.平行线的判定.4.如图,△ABC中BC边上的高为h1,AB边上的高为h2,△DEF中DE边上的高为h3,下列结论正确的是()A.h1=h2B.h2=h3C.h1=h3D.无法确定【答案】B【解析】△ABC中BC边上的高为h1,AB边上的高为h2,根据三角函数,,△DEF中DE边上的高为h3,根据三角函数得;又因为AC=3.6,EF=3.6,所以,因此【考点】三角函数点评:本题考查三角函数,本题要求掌握三角函数的定义,根据三角函数的定义来正确解答本题5.如图,已知∠EFD=∠BCA,BC=EF,AF=DC.则AB=DE.请说明理由.(填空)解:∵AF=DC(已知)∴AF+=DC+即在△ABC和△DEF中∴△ABC≌△DEF()∴则AB=DE【答案】FC,FC,AC=DF,已知,EFD,BCA,AC=DF,SAS【解析】由AF=DC可得AC=DF,再结合∠EFD=∠BCA,BC=EF可证得△ABC≌△DEF,问题得证.∵AF=DC(已知)∴AF+FC=DC+FC即AC=DF在△ABC和△DEF中∴△ABC≌△DEF(SAS)∴则AB=DE.【考点】全等三角形的判定和性质点评:全等三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.6.如图,在△ABC中,∠B=30°,∠C=50°,AE是∠BAC的平分线,AD是高.(1)求∠BAE的度数;(2)求∠EAD的度数.【答案】∠BAE为50°,∠EAD为10°。
初一数学认识三角形试题
初一数学认识三角形试题1.现有两根铁条,它们的长分别是30cm和50cm,如果要做成一个三角形铁架,那么在下列四根铁条中应选取()A.20cm的铁条;B.30cm的铁条;C.80cm的铁条;D.90cm的铁条.【答案】B【解析】根据三角形的三边关系即可判断。
由题意得,第三边长的范围是大于20cm且小于80cm,故选B.【考点】本题考查的是三角形的三边关系点评:解答本题的关键是熟练掌握三角形的三边关系:任两边之和大于第三边,任两边之差小于第三边.2.以下列长度的线段为边,可以作一个三角形的是()A.5㎝、10㎝、15㎝;B.5㎝、10㎝、20㎝;C.10㎝、15㎝、20㎝;D.5㎝、20㎝、25㎝.【答案】C【解析】根据三角形的三边关系依次分析各项即可判断。
A、,B、,D、,故错误;C、,可以作一个三角形。
【考点】本题考查的是三角形的三边关系点评:解答本题的关键是熟练掌握三角形的三边关系:任两边之和大于第三边,任两边之差小于第三边.3.已知三角形的三边长分别是3,8,x;若的值为偶数,则的值有()A.6个;B.5个;C.4个;D.3个.【答案】D【解析】先根据三角形的三边关系得到的范围,即可得到结果。
由题意得,∵的值为偶数,或8或10共3个,故选D.【考点】本题考查的是三角形的三边关系点评:解答本题的关键是熟练掌握三角形的三边关系:任两边之和大于第三边,任两边之差小于第三边.4.等腰三角形的两条边长分别为4cm和9cm,则第三边长为 cm.【答案】9【解析】题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.当4cm是底时,三边为4,9,9,且能构成三角形,则第三边长为9 cm;当9cm是底时,三边为9,4,4,,此时无法形成三角形.【考点】本题考查的是等腰三角形的性质,三角形的三边关系点评:已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.一木工师傅有两根长分别为80cm、150cm的木条,要找第三根木条,将它们钉成一个三角形,现有70cm、105cm、200cm、300cm四根木条,他可以选择长为__ __的木条.【答案】105cm、200cm【解析】根据三角形的三边关系即可判断。
七年级初一下学期数学 专题03 三角形(知识点串讲)(解析版)
专题03 三角形知识网络重难突破知识点一三角形的有关概念及分类1、三角形的有关概念名称内容图形三角形由3条不在同一条直线上的线段,首尾依次相接组成的图形叫作三角形.边组成三角形的线段叫作三角形的边.组成三角形的三条线段叫做三角形的三条边.三角形的边可以用一个小写字母或两个大写字母表示,如:a,b,c或BC,CA,AB.顶点相邻两边的公共端点叫作三角形的顶点.角相邻两条边所组成的角,叫作三角形的内角,简称三角形的角.三角形的记法三角形用符号“V”来表示,顶点是A,B,C的三角形记作ABCV,读作“三角形ABC”.2、三角形的分类(1)按角分类三个角都是锐角的三角形叫作锐角三角形,有一个角是直角的三角形叫作直角三角形,有一个角是钝角的三角形叫作钝角三角形.(2)按边分类注意:①任何一个三角形最多有三个锐角,最少有两个锐角,最多有一个钝角,最多有一个直角;②等边三角形是特殊的等腰三角形;③顶点是直角的等腰三角形叫做等腰直角三角形.典例1(2019春•东台市校级月考)若一个三角形三个内角度数的比为3:4:11,那么这个三角形是() A.锐角三角形B.直角三角形C.等腰三角形D.钝角三角形【解答】解:设这个三角形三个内角度数依次为3x︒,4x︒,11x︒,则3411180++=,x x x解得:10x=,∴这个三角形三个内角度数依次为30︒,40︒,110︒,则这个三角形是钝角三角形,故选:D . 典例2(2019春•徐州期中)ABC ∆中,若::1:2:3A B C ∠∠∠=,则ABC ∆的形状是( ) A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形【解答】解:Q 在ABC ∆中,::1:2:3A B C ∠∠∠=,∴设A x ∠=,则2B x ∠=,3C x ∠=.180A B C ∠+∠+∠=︒Q ,即23180x x x ++=︒,解得30x =︒, 390C x ∴∠==︒, ABC ∴∆是直角三角形.故选:A .知识点二 三角形的三边关系(1)对于任意的ABC V ,如果把其中任意两个顶点看成定点(假设B 、C 为定点),由“两点之间,线段最短”可得:b c a +>.同理可得:a b c +>,a c b +>.即:三角形任意两边之和大于第三边.推论:三角形任意两边之差小于第三边. 理论依据:两点之间,线段最短. (2)三角形三边关系的应用①已知三角形的两边长,求第三边的取值范围; ②判断三条线段能否组成三角形.注意:判断三条线段能否组成三角形时,首先找出三条边中的最长边,然后计算另外两边的长度和,若两条短边的长度之和大于最长边的长度,就能组成三角形.典例1(2019春•泰州市泰兴市期中)下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( ) A .3cm ,4cm ,8cm B .8cm ,7cm ,15cm C .5cm ,5cm ,11cmD .13cm ,12cm ,20cm【解答】解:A 、348+<,故以这三根木棒不可以构成三角形,不符合题意;B 、8715+=,故以这三根木棒不能构成三角形,不符合题意;C 、5511+<,故以这三根木棒不能构成三角形,不符合题意;D 、121320+>,故以这三根木棒能构成三角形,符合题意.故选:D .典例2(2019春•新吴区期中)有4根小木棒,长度分别为2cm 、3cm 、4cm 、5cm ,任意取3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为( ) A .1个B .2个C .3个D .4个【解答】解:可搭出不同的三角形为:2cm 、3cm 、4cm ;2cm 、4cm 、5cm ;3cm 、4cm 、5cm 共3个.故选:C .典例3(2019春•常熟市校级月考)已知三角形的三边长分别为4,5,x ,则x 不可能是( ) A .3B .5C .7D .9【解答】解:5454x -<<+,即19x <<,则x 的不可能的值是9,故选D .知识点三三角形的高、中线与角平分线名称图形定义几何语言三角形的高从三角形的一个顶点向它的对边所在的直线画垂线.顶点与垂足之间的线段叫作三角形的高线.简称三角形的高因为AD是ABCV的高(已知),所以AD BC⊥于点D (或90ADC ADB∠∠︒==)三角形的角平分线在三角形中,一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫作三角形的角平分线因为AD是ABCV的角平分线(已知),所以1122BAC∠∠∠==三角形的中线在三角形中,连接一个顶点和它的对边中点的线段叫作三角形的中线.三角形的三条中线相交于一点,交点叫作三角形的重心因为AD为ABCV的中线(已知),所以12BD DC BC==(或22BC BD DC==)注意:三角形的中线、角平分线、高都是一条线段;中线、角平分线都在三角形内部,三角形的高有两种特例:直角三角形中其中一条直角边的高就是另一条直角边;钝角三角形中锐角所对的边上的高在三角形的外部.(2019春•相城区期中)在ABC∆中,画出边AC上的高,下面4幅图中画法正确的是()A.B.C.D.【解答】解:如图,BE为AC边上的高.故选:D.典例2(2019春•盐城市东台市期中)下列说法中错误的是()A.三角形的中线、角平分线、高线都是线段B.任意三角形的内角和都是180︒C.三角形按边分可分为不等边三角形和等腰三角形D.三角形的一个外角大于任何一个内角【解答】解:A、正确,符合线段的定义;B、正确,符合三角形内角和定理;C、正确;D、三角形的一个外角大于任何一个和它不相邻的内角,错误.故选:D.(2019春•徐州期中)如图,在ABC ∆中,AD BC ⊥,AE 平分BAC ∠. (1)若70C ∠=︒,30B ∠=︒求DAE ∠的度数; (2)若20C B ∠-∠=︒,则DAE ∠= ︒.【解答】解:(1)如图,Q 在ABC ∆中70C ∠=︒,30B ∠=︒,180180703080BAC C B ∴∠=︒-∠-∠=︒-︒-︒=︒,AE Q 平分BAC ∠,11804022CAE BAC ∴∠=∠=⨯︒=︒;AD BC ⊥Q ,70C ∠=︒,90907020CAD C ∴∠=︒-∠=︒-︒=︒,40CAE ∠=︒Q ,402020DAE CAE CAD ∴∠=∠-∠=︒-︒=︒;(2)如图,AE Q 平分BAC ∠,1(180)2CAE C B ∴∠=︒-∠-∠,AD BC ⊥Q ,90CAD C ∴∠=︒-∠,11(90)(180)()1022DAE CAD CAE C C B C B ∴∠=∠-∠=︒-∠-︒-∠-∠=∠-∠=︒.故答案为:10.巩固训练一、单选题(共8小题)1.(2019春•靖江市期中)下列长度的三根木棒首尾相接,不能做成三角形框架的是( ) A .4cm 、7cm 、3cm B .7cm 、3cm 、8cmC .5cm 、6cm 、7cmD .2cm 、4cm 、5cm【解答】解:A 、437+=,不能组成三角形,故本选项正确;B 、738+>,能组成三角形,故本选项错误;C 、567+>,能组成三角形,故本选项错误;D 、425+>,能组成三角形,故本选项错误.故选:A .2.图中三角形的个数为( )A .5B .6C .7D .8【解答】解:图中是三角形的有:ABC ∆、ADE ∆、BDF ∆、DEF ∆、CEF ∆共5个. 故选:A .3.(2019春•邗江区校级月考)已知三角形三边分别为2,1a -,4,那么a 的取值范围是( ) A .15a <<B .26a <<C .37a <<D .46a <<【解答】解:依题意得:42142a -<-<+, 即:216a <-<, 37a ∴<<.故选:C . 4.下列说法:①三角形按边分类可分为三边不等的三角形、等腰三角形和等边三角形; ②等边三角形是特殊的等腰三角形; ③等腰三角形是特殊的等边三角形; ④有两边相等的三角形一定是等腰三角形;其中,说法正确的个数是( ) A .1个B .2个C .3个D .4个【解答】解:①三角形按边分类可分为三边不等的三角形、等腰三角形和等边三角形;错误. ②等边三角形是特殊的等腰三角形;正确. ③等腰三角形是特殊的等边三角形;错误. ④有两边相等的三角形一定是等腰三角形;正确, 故选:B .5.如图,若CD 是ABC ∆的中线,10AB =,则(AD = )A .5B .6C .8D .4【解答】解:Q 如图,若CD 是ABC ∆的中线,10AB =, 152AD BD AB ∴===. 故选:A .6.如图所示,ABC ∆中AC 边上的高线是( )A .线段DAB .线段BAC .线段BCD .线段BD【解答】解:由图可得,ABC ∆中AC 边上的高线是BD , 故选:D .7.(2019春•东台市校级月考)如图,AD 是ABC ∆的角平分线,点O 在AD 上,且OE BC ⊥于点E ,60BAC ∠=︒,80C ∠=︒,则EOD ∠的度数为( )A .20︒B .30︒C .10︒D .15︒【解答】解:60BAC ∠=︒Q ,80C ∠=︒, 40B ∴∠=︒.又AD Q 是BAC ∠的角平分线, 1302BAD BAC ∴∠=∠=︒,70ADE ∴∠=︒,又OE BC ⊥Q , 20EOD ∴∠=︒.故选:A .8.如图,ABC ∆中,12∠=∠,G 为AD 中点,延长BG 交AC 于E ,F 为AB 上一点,且CF AD ⊥于H ,下列判断,其中正确的个数是( ) ①BG 是ABD ∆中边AD 上的中线;②AD 既是ABC ∆中BAC ∠的角平分线,也是ABE ∆中BAE ∠的角平分线; ③CH 既是ACD ∆中AD 边上的高线,也是ACH ∆中AH 边上的高线.A .0B .1C .2D .3【解答】解:①G 为AD 中点,所以BG 是ABD ∆边AD 上的中线,故正确;②因为12∠=∠,所以AD 是ABC ∆中BAC ∠的角平分线,AG 是ABE ∆中BAE ∠的角平分线,故错误; ③因为CF AD ⊥于H ,所以CH 既是ACD ∆中AD 边上的高线,也是ACH ∆中AH 边上的高线,故正确. 故选:C .二、填空题(共3小题)9.(2019春•东台市校级月考)已知等腰三角形两边的长分别是15和7,则其周长为.【解答】解:①7cm是腰长时,三角形的三边分别为7、7、15,Q,771415+=<∴不能组成三角形,②7cm是底边时,三角形的三边分别为7、15、15,能组成三角形,周长7151537=++=,综上所述,它的周长是37.故答案为:37.10.已知三角形的三边长都是整数,其中两条边长分别是1cm和3cm,则第三条边长_____cm.【解答】解:Q两条边长分别是1cm和3cm,<,∴第三边的取值范围是2<第三边4Q三边均为整数,∴第三边的长为3cm,故答案为:3.11.已知三角形的三边长均为整数,其中两边长分别为1和3,则第三边长为.【解答】解:设第三边长为a,则3131-<<+,a即24<<,aQ是整数,a∴=.a3故答案为:3.三、解答题(共3小题)12.(2019春•大丰区期中)如图,在ABC∆中,点D在BC上,且BAD CAD∠=∠,E是AC的中点,BE 交AD于点F.图中哪条线段是哪个三角形的角平分线?哪条线段是哪个三角形的中线?【解答】解:AD是ABC∆的角平分线;∆的角平分线,AF是ABEBE是ABC∆的中线,DE是ADC∆的中线.13.(2018秋•丹阳市期中)如图,ABC∆中,90∆的高、中线、角ACB∠=︒,CD、CE、CF分别是ABC平分线.求证:12∠=∠.【解答】证明:CFQ是ACB∠的平分线,∴∠=∠.ACF BCF∠=︒,CD ABACBQ,90⊥∴∠=∠(同角的余角相等).ACD BCEQ是AB边上的中线,∴=,BE CE∴∠=∠(等边对等角),BCE B1ACF ACD ACF B∴∠=∠-∠=∠-∠,∠=∠-∠=∠-∠,2BCF BCE ACF B∴∠=∠.1214.如图,ABC∆中,点D在AC上,点P在BD上,求证:AB AC BP CP+>+.【解答】证明:在ABD+>,∆中,AB AD BD 在PDC+>,∆中,CD PD PCAB AD CD PD BD PC∴+++>+∴+>+.AB AC BP CP。
初一数学三角形试题
初一数学三角形试题1.在△ABC中,已知∠ABC=66°,∠ACB=54°,BE⊥AC,CF⊥AB,垂足分别为E、F,H是BE、CF的交点.求:(1)∠ABE的度数;(2)∠BHC的度数.【答案】(1)30°;(2)120°.【解析】(1)先根据三角形内角和定理求出∠A的度数,再由BE⊥AC得出∠AEB=90°,由直角三角形的性质即可得出结论;(2)直接根据三角形外角的性质即可得出结论.试题解析:(1)∵∠ABC=66°,∠ACB=54°,∴∠A=180°-66°-54°=60°,∵BE⊥AC,∴∠AEB=90°,∴∠A+∠ABE=90°,∴∠ABE=90°-60°=30°;(2)∵∠BHC是△BFH的一个外角,∴∠BHC=∠BFH+∠ABE,∵CF⊥AB,∴∠BFH=90°,∴∠BHC=90°+30°=120°.【考点】1.三角形的外角性质;2.三角形内角和定理.2.下列命题中,真命题的是( )A.相等的两个角是对顶角B.若a>b,则>C.两条直线被第三条直线所截,内错角相等D.等腰三角形的两个底角相等【答案】D【解析】A.相等的两个角不定是对顶角,所以是假命题;B.若a、b为负数时,则有<,是假命题;C.两条直线被第三条直线所截,内错角不一定相等,是假命题;D.正确【考点】命题与定理3.在△ABC中,已知两条边a=3,b=4,则第三边c的取值范围是_________.【答案】1<c<7【解析】根据三角形的三边关系可知b-a<c<a+b,即可得第三边c的取值范围.【考点】三角形的三边关系4.如图所示,在△ABC中,∠B=∠C,∠BAD=40°,并且∠ADE=•∠AED,•求∠CDE的度数.【答案】20°【解析】可以设∠DAE=x°,然后根据三角形的内角和是180°以及等腰三角形的性质用x分别表示∠C和∠AED,再根据三角形的一个外角等于和它不相邻的两个内角和进行求解.试题解析:设∠DAE=x,则∠BAC=40°+x.-因为∠B=∠C,所以2∠2=180°-∠BAC,-∠C=90°-∠BAC=90°-(40°+x).-同理∠AED=90°-∠DAE=90°-x.-∠CDE=∠AED-∠C=(90°-x)-[90°-(40°+x)]=20°.【考点】三角形外角性质;三角形内角和定理5.如下图,在△ABC中,∠B=600,∠C=400,AD⊥BC于D,AE平分∠BAC;则∠DAE= .【答案】10°.【解析】∵△ABC中,∠B=60°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,∵AE平分∠BAC,∴∠CAE=∠BAC=×80°=40°,∵AD⊥BC,∴∠CAD=90°﹣∠C=90°﹣40°=50°,∴∠DAE=∠CAD﹣∠CAE=50°﹣40°=10°.故答案是10°.【考点】三角形内角和定理.6.在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于______度.【答案】230°.【解析】首先根据三角形内角和可以计算出∠A+∠B的度数,再根据四边形内角和为360°可算出∠1+∠2的结果.试题解析:∵△ABC中,∠C=50°,∴∠A+∠B=180°-∠C=130°,∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°-130°=230°.考点: 1.多边形内角与外角;2.三角形内角和定理.7.下列长度的三条线段,能组成三角形的是A.1cm,2cm,3cm B.2cm,3cm,6cmC.4cm,6cm,8cm D.5cm,6cm,12cm【答案】C【解析】三角形的三边关系:三角形的任两边之和大于第三边,任两边之差小于第三边.解:A、,B、, D、,均不能组成一个三角形,故错误;C、,能组成一个三角形,本选项正确.【考点】三角形的三边关系点评:本题属于基础应用题,只需学生熟练掌握三角形的三边关系,即可完成.8.如图:PC、PB是∠ACB、∠ABC的平分线,∠A=40º,∠BPC=()A.∠BPC=70ºB.∠BPC=140ºC.∠BPC=110ºD.∠BPC=40º【答案】C【解析】在中,∠A=40º,则;因为PC、PB是∠ACB、∠ABC的平分线,所以,所以= ,在中,∠BPC=,选C【考点】平分线点评:本题考查平分线,解答本题的重点是掌握平分线的概念和性质,熟悉三角形内角和定理,本题难度一般9.一个三角形最多有a个锐角,b个直角,c个钝角,则a+b+c= .【答案】5【解析】根据三角形的基本性质可得a、b、c的值,从而求得结果.由题意得,,,则.【考点】三角形的基本性质点评:本题属于基础应用题,只需学生熟练掌握三角形的基本性质,即可完成.10.等腰三角形两边长分别是5cm和8cm,则其周长是 .【答案】18cm或21cm【解析】题中没有明确腰和底,故要分情况讨论,再结合等腰三角形的性质求解即可.当5cm为腰时,三边长为5、5、8,其周长为当8cm为腰时,三边长为5、8、8,其周长为所以则其周长是18cm或21cm.【考点】等腰三角形的性质点评:等腰三角形的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.11.如图,在中,,是的垂直平分线,交于点,交于点.已知,则的度数为()A.B.C.D.【答案】B【解析】根据垂直平分线的性质的性质可得AE=CE,即得∠EAD=∠ECD,再结合∠BAE=10°根据三角形的内角和定理求解即可.∵是的垂直平分线∴AE=CE∴∠EAD=∠ECD∵,∴∠C=40°故选B.【考点】垂直平分线的性质,三角形的内角和定理点评:三角形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.12.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整,若调整木条的夹角时不破坏此木框,则任两螺丝的距离的最大值是( )A.5B.6C.7D.10【答案】C【解析】若两个螺丝的距离最大,则此时这个木框的形状为三角形,可根据三条木棍的长来判断有几种三角形的组合,然后分别找出这些三角形的最长边即可.已知4条木棍的四边长为2、3、4、6;①选2+3、4、6作为三角形,则三边长为5、4、6;6-5<4<6+5,能构成三角形,此时两个螺丝间的最长距离为6;②选3+4、6、2作为三角形,则三边长为2、7、6;6-2<7<6+2,能构成三角形,此时两个螺丝间的最大距离为7;③选4+6、2、3作为三角形,则三边长为10、2、3;2+3<10,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为7.故选C.【考点】三角形的三边关系点评:能够正确的判断出调整角度后三角形木框的组合方法是解答的关键.13.如图,C、F在BE上,∠A=∠D,AB∥DE,BF=EC.求证:AB=DE.【答案】可证明△ABC≌△DEF(AAS)则AB=DE.【解析】解: ∵AB∥DE ∴∠B=∠E ∵BF=EC ∴BF+FC=EC+FC 即BC=EF在△ABC和△DEF中∵∴△ABC≌△DEF(AAS)∴AB=DE.【考点】全等三角形判定与性质。
初一数学_几何_三角形基础知识和基本练习题讲解
第七章三角形(一)——三角形的基本概念学习目标:1、明确三角形的相关概念;能正确对三角形进行分类;2、能利用三角形三边关系进行有关计算。
学习过程:三角形的有关概念——阅读课本第63至64页,回答以下问题:(1)三角形概念:由不在同一直线上的条线段连接所组成的图形。
(2)三角形的表示法(如图1)三角形ABC可表示为:;(3)ΔABC的顶点分别为A、、;(3)ΔABC的内角分别为∠ABC,,;(4)ΔABC的三条边分别为AB,,;或a,、;(5)顶点A的对边是,顶点B的对边分别是,顶点C的对边分别是。
三角形的分类:(1)下图中,每个三角形的内角各有什么特点?(2)下图中,每个三角形的三边各有什么特点?(3)结合以上图形你认为三角形可以如何分类?试一试①按角分类:②按边分类:第1题3、三角形的三边关系问题1:如图,现有三块地,问从A 地到B 地有几种走法,哪一种走法的距离最近?请将你的设计方案填写在下表中:(3)阅读课本第64页,填写:三角形两边的和 (4)用式子表示:BC + AC AB (填上“> ”或“ < ” ) ① BC + AB AC (填上“> ”或“ < ” ) ②AB + AC BC (填上“> ”或“ < ” ) ③4、三角形的稳定性问题2:盖房子时,在窗框未安装好前,木工师傅常先在窗框上斜钉一根木条,为什么?5、例题:用一条长为18cm 的细绳围成一个等腰三角形,如果腰长是底边的2倍,那么各边的长是多少? 解:设底边长为xcm ,则腰长是 cm 因为三角形的周长为 cm所以: 所以x= cm答:三角形的三边分别是 、 、课堂练习: A 组A 地(6)(5)(4)(3)(2)(1)1.①图中有 个三角形,分别为 ②△ABC 的三个顶点是 、 、 ; 三个内角是 、 、 ; 三条边是 、 、 ;2、如图中有 个三角形,用符号表示 3.判断下列线段能否组成三角形:①4,5,6 ( )②1,2,3 ( ) ③2,2,6 ( )④8,8,2 ( ) 4、下列的图形中具有稳定性的是 (写编号)5、等腰三角形一腰长为6,底边长为7,则另一腰为 ,周长为 。
初中数学三角形专题训练50题(含答案)
初中数学三角形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知⊙O的半径为R,C、D是直径AB的同侧圆周上的两点,AC的度数为100°,BC=2BD,动点P在线段AB上,则PC+PD的最小值为()C D RA.R B2.如图,在⊙ABCD中,连接AC,⊙ABC=⊙CAD=45°,AB=2,则BC的长是()AB.2C.D.43.如图点P是⊙BAC内一点,PE⊙AB于点E,PF⊙AC于点F,PE=PF,则直接得到⊙PEA⊙⊙PFA的理由是()A.HL B.ASA C.AAS D.SAS【答案】A【详解】解:⊙PE⊙AB于点E,PF⊙AC于点F,⊙⊙PEA=⊙PFA=90°,⊙PE=PF,AP=AP,⊙⊙PEA⊙⊙PFA(HL);4.如图,在平面直角坐标系中,菱形ABCD 的顶点A 在y 轴上,已知B(﹣3,0)、C(2,0),则点D 的坐标为( )A .(4,5)B .(5,4)C .(5,3)D .(4,3)5.适合下列条件的ABC ∆中,是直角三角形的共有( )⊙6a =,45A ∠=︒;⊙32A ∠=,58B ∠=︒;⊙2a =,2b =,4c =;⊙7a =,24b =,25c =.A .1个B .2个C .3个D .4个【答案】B 【分析】根据构成直角三角形三边关系的条件:三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角,判定即可.【详解】⊙6a =,45A ∠=︒,不能判定ABC ∆中是直角三角形;⊙3258A B ︒︒==∠,∠,A B ∠∠=︒+90,是直角三角形;⊙2222222a b c +=+≠,不能判定ABC ∆中是直角三角形;⊙()()22222272425a b c +=+==,是直角三角形;【点睛】此题主要考查构成直角三角形条件的判定,熟练掌握,即可解题.=,点N在CD上,且6.如图,已知四边形ABCD是矩形,点M在BC上,BM CD=与BN交于点P,则:DN CM DM,DM BN=()A2B.C D.27.如图,已知正方形的面积为25,且AB比AC大1,BC的长为()A.3B.4C.5D.6【答案】A8.如图,在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,若ABC A B C ''△≌△,且点A '恰好落在AB 上,则ACA ∠'的度数为( )A .30°B .45°C .50°D .60° 【答案】D 【分析】根据全等三角形的性质可得A C AC '=,从而得到60AA CA ,即可求解.【详解】解:⊙90ACB ∠=︒,30ABC ∠=︒,⊙⊙A =60°,⊙ABC A B C ''△≌△,⊙A C AC '=,⊙60AA C A ,⊙60ACA '∠=︒.故选:D【点睛】本题主要考查了全等三角形的性质,等腰三角形的性质,熟练掌握全等三角形的性质,等腰三角形的性质是解题的关键.9.如图,将三角板的直角顶点放在直尺的一边上,1=30∠︒,2=50∠︒,3=∠( )度A .10B .20C .30D .50 【答案】B 【分析】根据两直线平行,同位角相等求出⊙2的同位角,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.【详解】解:如图:⊙⊙2=50°,直尺的两边互相平行,⊙⊙4=⊙2=50°,⊙⊙1=30°,⊙⊙3=⊙4-⊙1=50°-30°=20°.故选:B .【点睛】本题考查了两直线平行,同位角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.10.在ABC 中,若90A C ∠+∠=︒,则( ).A .BC AB AC =+B .222AC AB BC =+ C .222AB AC BC =+D .222BC AB AC =+【答案】B【分析】由⊙A +⊙C =90°可得⊙B =90°,于是可确定AC 是Rt⊙ABC 的斜边,再根据勾股定理即得答案.【详解】解:⊙⊙A +⊙C =90°,⊙⊙B =90°,⊙AC 是Rt⊙ABC 的斜边,222【点睛】本题考查了勾股定理和三角形的内角和定理,由题意确定AC 是Rt ⊙ABC 的斜边是解题的关键.11.如图,直线AB CD ∥,AE CE ⊥于点E ,若140EAB ∠=︒,则ECD ∠的度数是( )A .120°B .130°C .150°D .160° 【答案】B 【分析】延长AE ,与DC 的延长线交于点F ,根据平行线的性质,求出⊙AFC 的度数,再利用外角的性质求出⊙ECF ,从而求出⊙EC D .【详解】解:延长AE ,与DC 的延长线交于点F ,⊙AB ⊙CD ,⊙⊙A +⊙AFC =180°,⊙⊙EAB =140°,⊙⊙AFC =40°,⊙AE ⊙CE ,⊙⊙AEC =90°,而⊙AEC =⊙AFC +⊙ECF ,⊙⊙ECF =⊙AEC -⊙F =50°,⊙⊙ECD =180°-50°=130°,故选:B .【点睛】本题考查平行线的性质和外角的性质,正确作出辅助线和正确利用平行线的性质是解题的关键.12.如图,在ABC 中,AB AC =,AD 是BAC ∠的平分线,DE AB ⊥,DF AC ⊥,垂足分别是E 、F ,下面给出的四个结论,其中正确的有( ).距离相等的点到DE 、DF 的距离也相等.A .1个B .2个C .3个D .4个 【答案】D 【分析】由等腰三角形“三线合一”可知AD⊙BC ,BD=DC ,得到AD 上的点到B 、C 两点的距离相等,根据角平分线性质定理可知DE=DF ,根据HL 证直角三角形全等,得到AE=AF ,从而得到AD 平分EDF ∠,即可得出答案.【详解】解:⊙AB AC =,AD 是BAC ∠的平分线,⊙AD⊙BC ,BD=DC ,⊙AD 上的点到B 、C 两点的距离相等,⊙⊙正确;⊙AD 是BAC ∠的平分线,DE AB ⊥,DF AC ⊥,⊙DE=DF ,⊙EDA=⊙FDA ,⊙AD 平分⊙EDF ,⊙⊙正确;在直角△AED 和直角△AFD 中,AD AD DE DF=⎧⎨=⎩ ⊙⊙AED⊙⊙AFD ,⊙AE=AF ,⊙AD 平分⊙BAC ,又⊙AD 是BAC ∠的平分线,⊙到AE 、AF 距离相等的点到DE 、DF 的距离也相等,⊙⊙、⊙正确,故选D .【点睛】本题考查了全等三角形的证明和性质,角平分线性质,等腰三角形的性质的应用,对条件的合理利用是解题的关键.13.如图,BO 、CO 分别平分⊙ABC 、⊙ACB ,OD ⊙BC 于点D ,OD =2,⊙ABC 的周长为28,则⊙ABC 的面积为( )A .28B .14C .21D .7在BOD 和△OEB OBE BO ∠=∠∠==BOD △≌△OE =OD =21122AB OE BC OD AC OF ++ )AB BC AC OD ++ 282⨯故选:A.【点睛】本题考查了角平分线的性质定理,求三角形的面积等知识,关键是根据条件构造适合角平分线性质定理条件的辅助线.14.如图,菱形ABCD的对角线AC与BD相交于点O,AE垂直平分CD,垂足为点E,则BAD∠=()A.100°B.120°C.135°D.150°【答案】B【分析】直接利用线段垂直平分线的性质得出AC=AD,再利用菱形的性质以及等边三角形的判定与性质得出答案.【详解】解:⊙AE垂直且平分边CD,⊙AC=AD,⊙四边形ABCD是菱形,⊙AD=DC,⊙ACB=⊙ACD,⊙⊙ACD是等边三角形,⊙⊙ACD=60︒,⊙⊙BCD=120︒.⊙⊙BAD=⊙BCD=120︒,故选:B.【点睛】此题主要考查了菱形的性质以及等边三角形的判定与性质,得出⊙ACD是等边三角形是解题关键.15.如图中字母A所代表的正方形的面积为()【详解】试题分析:根据勾股定理的几何意义解答.解:根据勾股定理以及正方形的面积公式知:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,所以A=289﹣225=64.故选D.16.三角形的三边长为a,b,c,且满足22-=-,则这个三角形是()()2a b c abA.等边三角形B.钝角三角形C.直角三角形D.锐角三角形【答案】C【分析】先利用完全平方公式化简已知等式,再根据勾股定理的逆定理即可得.【详解】由22a b c ab-=-得:222()2-+=-,a ab bc ab22即222a b c,+=,,a b c为三角形的三边长,∴这个三角形是直角三角形,故选:C.【点睛】本题考查了完全平方公式、勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题关键.17.如图,⊙ABC的两边AB和AC的垂直平分线分别交BC于D,E,若⊙BAC+⊙DAE=150°,则⊙BAC的度数是()A.105B.110C.115D.120【答案】B【分析】根据垂直平分线性质,⊙B=⊙DAB,⊙C=⊙EAC.则有⊙B+⊙C+2⊙DAE=150°,即180°-⊙BAC+2⊙DAE=150°,再与⊙BAC+⊙DAE=150°联立解方程组即可.【详解】⊙⊙ABC的两边AB,AC的垂直平分线分别交BC于D,E,⊙DA=DB,EA=EC,⊙⊙B=⊙DAB,⊙C=⊙EAC.⊙⊙BAC+⊙DAE=150°,⊙⊙⊙B+⊙C+2⊙DAE=150°.⊙⊙B+⊙C+⊙BAC=180°,⊙180°-⊙BAC+2⊙DAE=150°,即⊙BAC-2⊙DAE=30°.⊙由⊙⊙组成的方程组150230BAC DAEBAC DAE∠+∠=︒⎧⎨∠-∠=︒⎩,解得⊙BAC=110°.故选B.【点睛】此题考查了线段的垂直平分线、等腰三角形的性质、三角形内角和定理等知识点,解题的关键是得到⊙BAC和⊙DAE的数量关系.18.如图,在平面直角坐标系中,已知A(﹣2,4)、P(﹣1,0),B为y轴上的动点,以AB为边构造⊙ABC,使点C在x轴上,⊙BAC=90°,M为BC的中点,则PM 的最小值为()A B C D【答案】C【分析】作AH⊙y轴,CE⊙AH,证明⊙AHB⊙⊙CEA,根据相似三角形的性质得到AE =2BH,求出点M的坐标,根据两点间的距离公式用x表示出PM,根据二次函数的性质解答即可.【详解】解:如图,过点A作AH⊙y轴于H,过点C作CE⊙AH于E,则四边形CEHO是矩形,⊙OH=CE=4,⊙⊙BAC=⊙AHB=⊙AEC=90°,19.如图,在ABC 和ADE 中,36CAB DAE ∠=∠=︒,AB AC =,AD AE =.连接CD ,连接BE 并延长交AC ,AD 于点F ,G .若BE 恰好平分ABC ∠,则下列结论错误的是( )A .ADC AEB ∠=∠B .//CD ABC .DE GE=D .2BF CF AC =⋅ 【答案】C 【分析】根据SAS 即可证明DAC EAB △≌△,再利用全等三角形的性质以及等腰三角形的性质,结合相似三角形的判定和性质,即可一一判断【详解】,,36AB AC AD AE CAB DAE ==∠=∠=︒DAC EAB ∴∠=∠AB AC=∴∠=ABCBE平分∴∠=ABEDAC△≌△∴∠ACD∴∠=ACDAD AE=∴∠=ADE∠=DGE∠即ADE∴≠DE GE∠=ABCCFB∴∠=∴=BC BF∴△∽△ABCBF CF∴=AB BC=AB ACBF CF∴=AC BF2=BF CF故答案选:【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,相似三角20.如图,在Rt△ABC中,⊙ACB=90°,点D是AB边的中点,过D作DE⊙BC于点E,点P是边BC上的一个动点,AP与CD相交于点Q.当AP+PD的值最小时,AQ 与PQ之间的数量关系是()A.AQ=52PQ B.AQ=3PQ C.AQ=83PQ D.AQ=4PQ⊙MN =PE ,ND =PC ,在△DNQ 和△CPQ 中,NDQ QCP NQD PQC DN PC ∠=∠⎧⎪∠=∠⎨⎪=⎩,⊙⊙DNQ ⊙⊙CPQ ,⊙NQ =PQ ,⊙AN =NP ,⊙AQ =3PQ故选:B .【点睛】本题考查轴对称最短问题、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是利用对称找到点P 位置,熟练掌握平行线的性质,属于中考常考题型.解两条线段之和最小(短)类问题,一般是运用轴对称变换将处于直线同侧的点转化为直线异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短来确定方案,使两条线段之和转化为一条线段.二、填空题21.在Rt⊙ABC 中,⊙C =90°,若a =6,b =8,则c =________.【答案】10【详解】根据勾股定理2223664100c a b =+=+=c 为三角形边长,故c=10.22.在半径为5的圆中,弧所对的圆心角为90°,则弧所对的弦长是________.【点睛】本题考查利用半径和圆心角求弦长,难度不大,掌握勾股定理是解题的关键.23.在ABC 中,AB AC =,CD 是AB 边上的高,40ACD ∠=︒,则B ∠的度数为______.【答案】65︒或25︒【分析】分两种情况:当D 在线段AB 上时,根据题意,得出90ADC ∠=︒,再根据三角形的内角和定理,得出50A ∠=︒,再根据等边对等角,得出B ACB ∠=∠,再根据三角形的内角和定理,计算即可得出B ∠的度数;当D 在线段AB 的延长线上时,根据题意,得出90ADC ∠=︒,再根据三角形的内角和定理,得出50A ∠=︒,再根据等边对等角,得出B ACB ∠=∠,再根据三角形的外角的性质,计算即可得出B ∠的度数,综合即可得出答案.【详解】解:如图,当D 在线段AB 上时,⊙CD 是AB 边上的高,⊙90ADC ∠=︒,又⊙40ACD ∠=︒,⊙180904050A ∠=︒-︒-︒=︒,⊙AB AC =,⊙B ACB ∠=∠,⊙218018050130B A ∠=︒-∠=︒-︒=︒,⊙65B ∠=︒;如图,当D 在线段BA 的延长线上时,⊙CD 是AB 边上的高,⊙90ADC ∠=︒,又⊙40ACD ∠=︒,⊙180904050DAC ∠=︒-︒-︒=︒,⊙AB AC =,⊙B ACB ∠=∠,又⊙2DAC B ACB B ∠=∠+∠=∠,⊙250B ∠=︒,⊙25B ∠=︒,综上所述,B ∠的度数为65︒或25︒.故答案为:65︒或25︒.【点睛】本题考查了三角形的内角和定理、等边对等角、三角形的外角的性质,解本题的关键在熟练掌握相关的性质定理,分类讨论.24.如图,分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为4,则勒洛三角形的周长为:_________.25.边长为2的等边三角形的高与它的边长的比值为___________.【详解】解:等边三角形的边长是26.在Rt⊙ABC中,⊙C=90°,⊙A=30°,BC=2,则AC=_______ .27.如图,在四边形ABCD中,90∠=︒,2A==,BC=CD=AD AB∠的度数为________.ABC28.如图,在O 中,弦2BC =,点A 是圆上一点,且30BAC ∠=︒,则O 的半径是________.【答案】2【分析】连接OB ,OC ,先由圆周角定理求出BOC ∠的度数,再由OB OC =判断出BOC 是等边三角形,故可得出结论.【详解】解:连接OB ,OC ,⊙30BAC ∠=︒,⊙260BOC BAC ∠=∠=︒,⊙OB OC =,⊙BOC 是等边三角形,⊙2OB BC ==.故答案为:2【点睛】本题考查了圆周角定理,根据题意作出辅助线,构造出圆心角是解答此题的关键.29.如果等腰三角形的两边长分别为5cm 和10cm ,那么它的周长等于___________cm .【答案】25【分析】分5cm为腰和10cm为腰,两种情况求解.【详解】解:因为等腰三角形的两边长分别为5cm和10cm,当腰长为5cm时,三边长分别为5cm,5cm,10cm,+,因为55=10所以三角形不存在;当腰长为10cm时,三边长分别为5cm,10cm,10cm,+>,因为51010所以三角形存在;++=,所以三角形的周长为5101025(cm)故答案为:25.【点睛】本题考查了等腰三角形周长的分类计算,正确进行分类和判定三角形的存在性是解题的关键.30.等腰三角形的一边长为3,周长为15,则该三角形的腰长是______.31.如图,⊙O的半径为5cm,△ABC内接于⊙O,BC=5cm,则⊙A的度数为_____°.【答案】3032.如图,AD 、AE 分别是⊙ABC 的角平分线和高,⊙B =60°,⊙C =70°,则⊙EAD =______.【答案】5︒【分析】根据角平分线的性质及三角形内角和定理进行求解.【详解】解:由题意可知,⊙B =60°,⊙C =70°,所以18013050A ∠=-=°,所以25BAD ∠=°,在三角形BAE 中,906030BAE ∠=-=°,所以⊙EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识,解题的关键是进行变换求解.33.如图,正方形ABCD的对角线AC、BD相交于点O,点E、F分别在边AB、BC 上,且⊙EOF=90°,则S四边形OEBF⊙S正方形ABCD=___.34.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD (点A与点B重合),点O是夹子转轴位置,O E⊙AC于点E,OF⊙BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大值时,以点A,B,C,D为顶点的四边形的周长是_____cm.(2)当夹子的开口最大(点C与点D重合)时,A,B两点的距离为_____cm.35.如图,直线L 1、L 2、L 3分别过正方形ABCD 的三个顶点A 、D 、C ,且相互平行,若L 1、L 2的距离为1,L 2、L 3的距离为2,则正方形的边长为__________.AED DFC ≌,从而可得度.【详解】如图,过D ⊙123////L L L⊙13,EF L EF L ⊥⊥⊙AED DFC ≌1,DE CF AE DF ===22AD AE ED =+=故答案为:5.【点睛】本题考查了正方形与平行线的问题,掌握平行线的性质、全等三角形的性质以及判定定理、勾股定理是解题的关键.36.正方形ABCD 中.E 是AD 边中点.连接CE .作⊙BCE 的平分线交AB 于点F .则以下结论:⊙⊙ECD =30°.⊙⊙BCF 的外接圆经过点E ;⊙四边形AFCD 的面积是⊙BCF⊙BF AB =.其中正确的结论有 _____.(请填写所有正确结论的序号),易证BCF GCF ≅37.菱形ABCD中,AD=4,⊙DAB=60°,E、F、G、H分别是AD、AB、BC、CD上的点,且DH=FB,DE=BG,当四边形EFGH为正方形时,DH=____.38.已知菱形ABCD中,AC=6cm,BD=4cm.若以BD为边作正方形BDEF,则AF=__cm.⊙如图1,正方形BDEF在点A一侧时,延长CA交EF于点M.39.如图,正方形ABCD中,2AB=,AC,BD交于点O.若E,F分别是边AB,BC上的动点,且OE OF∆周长的最小值是__________.⊥,则OEF40.如图,在平行四边形ABCD 中,AC =3cm ,BD ,AC ⊙CD ,⊙O 是△ABD 的外接圆,则AB 的弦心距等于_____cm .【答案】116##516【分析】设AC、BD的交点为G,作圆的直径AN,连接BN,过点O作OF⊙AB于点三、解答题41.如图,AD⊙BC,⊙BAC=70°,DE⊙AC于点E,⊙D=20°.(1)求⊙B的度数,并判断⊙ABC的形状;(2)若延长线段DE恰好过点B,试说明DB是⊙ABC的平分线.【答案】(1)⊙ABC是等腰三角形,⊙B=40°;(2)见解析.【详解】分析:(1)、根据Rt⊙ADE的内角和得出⊙DAC=70°,根据平行线的性质得出⊙C=70°,从而根据有两个角相等的三角形是等腰三角形得出答案;(2)、根据等腰三角形底边上的三线合一定理得出DB为顶角的角平分线.详解:解:(1)⊙DE⊙AC于点E,⊙D=20°,⊙⊙CAD=70°,⊙AD⊙BC,⊙⊙C=⊙CAD=70°,又⊙⊙BAC=70°,⊙⊙BAC=⊙C,⊙AB=BC,⊙⊙ABC是等腰三角形,⊙⊙B=180°-⊙BAC-⊙C=180°-70°-70°=40°.(2)⊙延长线段DE恰好过点B,DE⊙AC,⊙BD⊙AC,⊙⊙ABC是等腰三角形,⊙DB是⊙ABC的平分线.点睛:本题主要考查的是等腰三角形的判定及性质,属于基础题型.明确等腰三角形底边上的三线合一定理是解决这个问题的关键.42.如图,小雪坐着轮船由点A出发沿正东方向AN航行,在点A处望湖中小岛M,测得小岛M在点A的北偏东60°,航行100米到达点B时,此时测得小岛M在点B的北偏东30°,求小岛M到航线AN的距离.Rt BDM 中,12BD MB ==2MD MB =答:小岛M 到航线【点睛】本题考查了方向角问题,勾股定理,等腰三角形的判定,含43.如图,BD 是⊙ABC 的高,AE 是⊙ABC 的角平分线,BD 交AE 于F ,若⊙BAC =44°,⊙C =80°,求⊙BEF 和⊙AFD 的度数.【答案】⊙BEF=102°;⊙AFD=68°【分析】根据BD是⊙ABC的高,AE是⊙ABC的角平分线,求得⊙ADB=90°,⊙BAE=⊙EAD=22°,根据三角形内角和定理即可求得⊙BEF和⊙AFD的度数.【详解】解:⊙BD是⊙ABC的高,AE是⊙ABC的角平分线,⊙BAC=44°,⊙C=80°,⊙⊙ADB=90°,⊙BAE=⊙EAD=22°,⊙⊙CBA=180°﹣44°﹣80°=56°,⊙⊙BEF=180°﹣22°﹣56°=102°,⊙AFD=180°﹣90°﹣22°=68°.【点睛】本题考查了三角形的高,角平分线,三角形内角和定理的应用,掌握三角形的高,角平分线的意义是解题的关键.44.(1)如图,90∠=∠=︒,O是AC的中点,求证:OB ODABC ADC=.(2)解方程:2430-+=.x x⊙()()130x x --=,即10,30x x -=-=,解得:121,3x x ==.【点睛】本题主要考查了直角三角形的性质,解一元二次方程,熟练掌握直角三角形斜边中线等于斜边的一半,一元二次方程的解法是解题的关键.45.如图,点E 在边长为10的正方形ABCD 内,6AE =,8BE =,请求出阴影部分的面积,AEB S =四边形ABCD =10ABCD ⨯AEB S =【点睛】本题主要考查了勾股定理的逆定理,熟知勾股定理的逆定理是解题的关键.46.图(a )、图(b )是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a )、图(b )中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.具体要求如下:(1)画一个底边长为4,面积为8的等腰三角形;(2)画一个面积为16的等腰直角三角形.47.如图,点A,B,C,D在同一条直线上,AB=DC,在四个论断“EA=ED,EF⊙AD,AB=DC,FB=FC”中选择二个作为已知条件,另一个作为结论,构成真命题(补充已知和求证),并进行证明.已知、如图,点A,B,C,D在同一条直线上,.求证、.证明、.【答案】见解析【分析】已知:EA=ED ,EF⊙AD ,AB=DC ,求证FB=FC .想办法证明EF 是线段BC 的垂直平分线即可.(答案不唯一)【详解】已知:如图,EA=ED ,EF⊙AD ,AB=DC ,求证FB=FC .理由:延长EF 交BC 于H .⊙EA=ED ,EF⊙AD ,⊙AH=HD ,⊙AB=DC ,⊙BH=CH ,⊙FH⊙BC ,⊙FB=FC .故答案为EA=ED ,EF⊙AD ,AB=DC ;FB=FC ;延长EF 交BC 于H .⊙EA=ED ,EF⊙AD ,⊙AH=HD ,⊙AB=DC ,⊙BH=CH ,⊙FH⊙BC ,⊙FB=FC .【点睛】此题考查等腰三角形的判定和性质,线段的垂直平分线的性质,解题的关键是理解题意,灵活运用所学知识解决问题,属于开放性题目.48.如图,已知60AOB ∠︒=,OC 平分AOB ∠,CD ⊥OA 于点D .(1)实践与操作:作OC的垂直平分线分别交OA于点E;(要求:尺规作图,保留作图痕迹,不写作法)(2)连接CE,若DE的长为1,求OC的长.(1)解:如图所示,49.正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,A(-2,3),B(-3,1),C(-1,2),现将△ABC平移先向右平移3个单位长度,再向下平移2单位长度.(1)请画出平移后的A B C '''(点B C ''、分别是B 、C 的对应点);(2)写出点A B C '''、、三点的坐标;(3)求A B C '''的面积. 【答案】(1)画图见解析 (2)A '(1,1),B '(0,-1),C '(2,0)(3)1.5【分析】(1)根据所给的平移方式作图即可;(2)根据平移方式即可求出A 、B 、C 对应点A B C '''、、三点的坐标;(3)用A B C '''所在的正方形面积减去周围三个小三角形面积即可得到答案. (1)解:如图所示,A B C '''即为所求;(2)解:⊙A B C '''是△ABC 向右平移3个单位长度,向下平移2个单位长度得到的,A (-2,3),B (-3,1),C (-1,2),⊙A '(1,1),B '(0,-1),C '(2,0);(3)50.如图1,Rt⊙ABC中,⊙ABC=90°,P是斜边AC上一个动点,以BP为直径作⊙O交BC于点D,与AC的另一个交点为E(点E在点P右侧),连结DE、BE,已知AB=3,BC=6.(1)求线段BE的长;(2)如图2,若BP平分⊙ABC,求⊙BDE的正切值;(3)是否存在点P,使得⊙BDE是等腰三角形,若存在,求出所有符合条件的CP的长;若不存在,请说明理由.。
初中数学三角形专题训练50题含参考答案
初中数学三角形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知△ABC的六个元素,则图中甲、乙、丙三个三角形中和△ABC全等的图形个数是A.1B.2C.3D.02.如图,以点P为圆心,以x轴交于A,B两点,点A的坐标为(2,0),点B的坐标为(6,0),则圆心P的坐标为()A.B.(4,2)C.(4,4)D.(2,3.如图,等腰△ABC,BA=BC,点P是腰AB上一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与原三角形相似,满足这样条件的直线最多有()A.1个B.2个C .3个D .4个4.在学习“三角形的内角和外角”时,老师在学案上设计了以下内容:下列选项正确的是( )A .①处填ECD ∠B .①处填ECD ∠C .①处填A ∠D .①处填B ∠ 5.如图,在一块长方形草地上修速两条互相垂直且宽度相同的平行四边形通道,其中60KHB ∠=︒,已知20AB =米,30BC =米,四块草地总图积为2503m ,设GH 为x 米,则可列方程为( )A .2030503⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭B .(20)(30)503x x --=C .2203097x x x +-=D .232030974x x x +-= 6.下列四个命题中,是假命题的是( )A .过直线外一点,有且只有一条直线与已知直线平行B .两条直线被第三条直线所截,同位角相等C .三角形任意两边之和大于第三边D .如果a b =,a c =,那么b c =7.如图,BD 是①O 的直径,点A 、C 在圆上,且CD =OB ,则①BAC =( )A.120°B.90°C.60°D.30°8.已知:在平行四边形ABCD中,点M是BC的中点,MAD MDA∠=∠,则B∠=()A.60°B.90°C.100°D.120°9.两个直角三角形中:①有两条边相等;①一锐角和斜边对应相等;①斜边和一直角边对应相等;①两个锐角对应相等.能使这两个直角三角形全等的是()A.①①①B.①①C.①①D.①①①①10.如图,已知点O是正六边形ABCDEF的中心,扇形AOE的面积是12π,则正六边形的边长为()A.6B.C.D.1211.如图,△ABC和△DCE都是等边三角形,点B、C、E在同一条直线上,BC=1,CE=2,连接BD,则BD的长为()A.3B.C.D12.如图,在△ABC中,①ACB=90°,①B=40°,分别以点A和点B为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交BC 于点E ,连接CD ,则①CDE 等于( )A .8°B .10°C .15°D .20° 13.已知菱形ABCD ,E 、F 是动点,边长为5,BE AF =,120BAD ∠=︒,则下列命题中正确的是( )①BEC AFC ≌;①ECF △为等边三角形;①ECF △的边长最小值为①若2AF =,则23FGC EGC S S =△△.A .①①B .①①C .①①①D .①①① 14.如图,在直角①O 的内部有一滑动杆AB ,当端点A 沿直线AO 向下滑动时,端点B 会随之自动地沿直线OB 向左滑动,如果滑动杆从图中AB 处滑动到A ′B ′处,那么滑动杆的中点C 所经过的路径是( )A .直线的一部分B .圆的一部分C .双曲线的一部分D .抛物线的一部分15.如图,平面内三点A 、B 、C ,AB =,AC =BC 为对角线作正方形BDCE ,连接AD ,则AD 的最大值是()A.5B.C.7D.16.在ABCD中,O是对角线AC,BD的交点.若AOB的面积是8,则ABCD□的面积是()A.16B.24C.32D.4017.如图,已知半圆O的直径8AB=,C是半圆上一点,沿AC折叠半圆得到弧ADC,交直径AB于点D,若DA、DB的长均不小于2,则AC的长可能是()A.7B.6C.5D.418.梯形的对角线互相垂直,其中一条对角线长为5,梯形的高为4,则梯形的面积为()A.5B.10C.503D.25319.如图,抛物线y=x2+bx+c与x轴的交点为A(x1,0)和B(x2,0),与y轴负半轴交点为C,点D为线段OC上一点.且满足c=x1+b,①ACO=①DBO,则下列说法:①b-c=1;①①AOC①①DOB;①若①DBC=30°,则抛物线的对称轴为直线x①当点B绕点D顺时针旋转90°后得到的点B'也在抛物线上,则抛物线的解析式为y=x2-2x-3.正确的是()A .①①①B .①①①C .①①①D .①①①①二、填空题20.如图,P 是MON ∠的平分线上一点,PA ON ⊥于点A ,Q 是射线OM 上一个动点,若8PA =,则PQ 的最小值为______.21.△ABC 中,①A=40o ,①B=60o ,则与①C 相邻外角的度数是______.22.在ABC 中,15,13AB AC ==,高12AD =,则ABC 的周长是 _____. 23.如图,已知ABC BAD ≌,A 和B ,C 和D 分别是对应顶点,且60C ∠=︒,35ABD ∠=︒,则BAD ∠ 的度数是_______24.工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在AOB ∠的两边OA 、OB 上分别在取OC OD =,移动角尺,使角尺两边相同的刻度分别与点C 、D 重合,这时过角尺顶点M 的射线OM 就是AOB ∠的平分线.利用所学知识可知他构造全等三角形的依据是________.25.等腰三角形的周长18cm ,其中一边长为8cm ,则底边长为 ___________cm . 26.如图,在①ABC 中,AD 、AE 分别是BC 边上的中线和高,AE =6,S △ABD =15,则CD =_____.27.如图,为了防止门板变形,小明在门板上钉了一根加固木条,从数学的角度看,这样做的理由是利用了三角形的________.28.如图,在Rt △ABC 中,AB =BC ,①B =90°,AC =BDEF 是△ABC 的内接正方形(点D ,E ,F 在三角形的边上),则此正方形的面积是_______.29.如图, 正方形ABCD 和等边AEF △都内接于O EF ⊙,与BC CD ,分别相交于点G , H . 若6AE =, 则EG 的长为________.30.如图,在等边①ABC 中,BC =9,点O 是AC 上的一点,点D 是BC 上的一点,若①APO ①①COD ,AO =2.7,则BP =__________.31.平行四边形ABCD 中,E 为BA 延长线上的一点,CE 交AD 于F 点,若:1:3AE AB =,则:CDF ABCF S S =四边形________.32.如图,在Rt ①ABC 中,①ACB =90°,点D 是边AB 的中点,连接CD ,将①BCD 沿直线CD 翻折得到①ECD ,连接AE .若AC =6,BC =8,则①ADE 的面积为____.33.已知:如图,以Rt ABC 的三边为斜边分别向外作等腰直角三角形,若斜边AB=5,则图中阴影部分的面积为__.34.如图,在菱形ABCD 中,点E 是BC 上的点,AE ①BC ,若sin B =35,EC =3,P 是AB 边上的一个动点,则线段PE 最小时,BP 长为_____.35.如图,AB 为①O 的直径,弦CD①AB 于E ,已知CD =12,BE =2,则①O 半径为________.36.如图,在Rt①ABC 中,①ACB =90°,①B =35°,CD 是斜边AB 上的中线,如果将①BCD 沿CD 所在直线翻折,点B 落在点E 处,联结AE ,那么①CAE 的度数是_____度.37.如图,在菱形ABCD 中,=60B ∠︒,E 在CD 上,将ADE ∆沿AE 翻折至AD E '∆,且AD '刚好过BC 的中点P ,则D EC '∠=_________.38.如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C ,点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A ,以22O A 为边作正方形2222O A B C ,,则点2020B 的坐标______.三、解答题39.如图,在ABC 中,44ABC ∠=︒,BD 平分ABC ∠,60C ∠=︒,22BDE ∠=︒.(1)求证:DE//AB;∠的度数.(2)求ADB40.如图,菱形ABCD对角线AC,BD相交于点O,点E是AD的中点,过点A作对角线AC的垂线,与OE的延长线交于点F,连接FD.(1)求证:四边形AODF是矩形;(2)若AD=10,①ABC=60°,求OF和OA的长.=,D是BC边上的中点,连结AD,BE平分①ABC交41.如图,在①ABC中,AB ACAC于点E,过点E作EF//BC交AB于点F.(1)若36∠=︒,求①BAD的度数;C(2)求证:点F在BE的垂直平分线上.42.如图,已知EF①BC,AD①BC,①1=①2,①判断DM与AB的位置关系,并说明理由;①若①BAC=70°,DM平分①ADC,求①ACB的度数.43.如图1,线段AD,BC相交于点O,32B︒∠=,38∠=.D︒(1)若60A ︒∠=,求AOB ∠和C ∠的度数;(2)在(1)的条件下,如图2,若BAO ∠、DCO ∠的平分线AM ,CM 相交于点M ,求M ∠度数;(3)若改变条件,设B α∠=,D β∠=,试用含αβ,的代数式表示M ∠的大小. 44.已知抛物线y =x 2+(12m ﹣2)x ﹣3,抛物线与坐标轴交于点A (3,0)、B 两点.(1)求抛物线解析式;(2)当点P (2,a )在抛物线上时.①如图1,过点P 不与坐标轴平行的直线l 1与抛物线有且只有一个交点,求直线l 1的方程;①如图2,若直线l 2:y =2x +b 交抛物线于M ,点M 在点P 的右侧,过点P (2,a )作PQ ①y 轴交直线l 2于点Q ,延长MQ 到点N 使得MQ =NQ ,试判断点N 是否在抛物线上?请说明理由.45.已知:如图,已知点B 、E 、F 、C 在同一直线上,AB =CD ,AE ⊥BC ,DF ⊥BC ,E ,F 是垂足,CE =BF ,求证:AB //CD .46.已知:如图所示,在Rt ABC ∆中,90ACB ∠=︒,AC BC =,点D 是BC 的中点,CE AD⊥,垂足为点E,BF AC交CE的延长线于点F,求证:AB垂直平分DF.47.求证:顶角是锐角的等腰三角形腰上的高与底边夹角等于其顶角的一半.(1)根据题意补全下图,并根据题设和结论,结合图形,用符号语言补充写出“已知”和“求证”.=,______;已知:在锐角ABC中,AB AC求证:______.(2)证明:48.如图,已知①ABC中,AB=AC,①A=108°,BD平分①ABC.求证:BC=AB+CD.参考答案:1.B【分析】根据全等三角形判定方法进行判断即可【详解】解:由已知,甲全等条件不具备,乙和△ABC满足两角夹边,故全等,丙和△ABC满足两角和其中一角的对边,故全等,因此,有两个三角形可以判定三角形全等. 2.C【分析】作PC①AB于C,如图,由点A和点B坐标得到AB=4,再根据垂径定理得到AC=BC=2,然后根据勾股定理计算出PC=4,于是可确定P点坐标.【详解】解:作PC①AB于C,如图,①点A的坐标为(2,0),点B的坐标为(6,0),①OA=2,OB=6,①AB=OB-OA=4,①PC①AB,①AC=BC=2,在Rt△P AC中,①P A AC=2,①PC,①OC=OA+AC=4,①P点坐标为(4,4).故选:C.【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、坐标与图形性质.3.C【分析】根据相似三角形的判定,过点P分别BC,AC的平行线即可得到与原三角形相似的三角形,过点P作以点P为顶点的角与①A相等的角也可以得到原三角形相似的三角形.【详解】解:①BA=BC,①①A=①C,①作PE①BC,可得①APE①①ABC.①作PF①AC,可得①BPF①①BAC.①作①APG=①A,可得①AGP①①ABC,故选:C.【点睛】本题考查相似三角形的判定质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题.4.B【分析】延长BC到点D,过点C作CE①AB.依据平行线的性质以及平角的定义,即可得到①A+①B+①ACB=180°.【详解】延长BC到点D,过点C作CE①AB,①CE①AB.①①A=①ACE(两直线平行,内错角相等).①B=①ECD(两直线平行,同位角相等).①①ACB+①ACE+①ECD=180°(平角定义).①①A+①B+①ACB=180°(等量代换).故选:B.【点睛】本题主要考查了平行线的性质以及三角形内角和定理,解题时注意:两直线平行,内错角相等;两直线平行,同位角相等.5.D【分析】设GH为x米,根据矩形和平行四边形的面积公式,即可得出关于x的一元二次方程,此题得解.【详解】解:过H 作HM ①LG 于M ,①①KHB =60°,//LG KH ,①①HGM =①KHB =60°,①①HMG =90°,①HM , ①长方形的面积=20×30=600(cm )2,①四块草地总面积为503m 2,①通道的面积为:20x +30x -34x 2=97, 故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.B【分析】根据平行公理,平行线的性质及三角形三边关系等逐项判断.【详解】A.过直线外一点,有且只有一条直线与已知直线平行,故A 不符合题意;B.两条平行线被第三条直线所截,同位角相等,故B 符合题意;C.三角形任意两边之和大于第三边,故C 不符合题意;D.如果a =b ,a =c ,那么b =c ,故D 不符合题意.故选:B .【点睛】本题考查命题与定理,解题的关键是掌握平行公理,平行线的性质及三角形三边关系等教材上的相关结论.7.C【分析】根据题意得OCD ∆为等边三角形,则60COD ∠=︒,根据圆周角定理得出BAC ∠的度数.【详解】解:连接OC ,CD OB =,OCD ∴∆为等边三角形,60COD ∴∠=︒,180120BOC COD ∴∠=︒-∠=︒,111206022BAC BOC ∴∠=∠=⨯︒=︒, 故选:C .【点睛】本题考查了圆周角定理、等边三角形的判定,解题的关键是掌握圆周角定理的内容.8.B【分析】由MAD MDA ∠=∠,得AM =DM ,再由平行四边形的性质得AB =CD ,AB ∥CD ,则①B +①C =180°,然后证△ABM ①△DCM (SSS ),得①B =①C ,即可求得①B 度数.【详解】解:如图,过点M 作MN ①AD 于N ,①MAD MDA ∠=∠,①AM =DM ,①平行四边形ABCD ,①AB =CD ,AB ∥CD ,①①B +①C =180°,①点M 是BC 的中点,在△ABM 与△DCM 中,AB DC BM CM AM DM =⎧⎪=⎨⎪=⎩,①△ABM ①△DCM (SSS ),①①B =①C ,①2①B =180°,①①B =90°,故选:B .【点睛】本题考查平行四边形的性质,等腰三角形的判定,全等三角形的判定与性质,熟练掌握相关性质与判定是解题的关键.9.B【分析】根据直角三角形全等的判定条件逐一分析即可得到答案.【详解】解:①两个直角三角形中有两条边相等,不能证明两个直角三角形全等,如一条直角边相等,另一个直角边与斜边相等;①两个直角三角形中一锐角和斜边对应相等,可用AAS 证明两个直角三角形全等; ①两个直角三角形中斜边和一直角边对应相等,可用HL 证明两个直角三角形全等; ①两个直角三角形中两个锐角对应相等,不能证明两个直角三角形全等;故选B .【点睛】本题主要考查了直角三角形全等的判定定理,熟知直角三角形的判定定理有AAS SAS ASA SSS HL ,,,,是解题的关键.10.A【分析】先求出中心角120AOE ∠︒=,证得OAF △是等边三角形,得到AF R =,根据扇形的面积求出圆的半径,即可得到正六边形的边长.【详解】解:连接OF ,设①O 的半径为R ,①O 是正六边形ABCDEF 的中心, ①360606AOF EOF ︒∠=∠==︒, ①120AOE ∠︒=,①OAF △是等边三角形,①AF OA R ==,①扇形AOE 的面积是12π, ①212012360R ππ=, ①236R = ,①6AF R ==,①正六边形的边长是6,故选:A .【点睛】本题考查了正多边形与圆,扇形的面积计算,解题的关键是求出正多边形的边长等于圆的半径.11.D【分析】作DF①CE 于F ,构建两个直角三角形,运用勾股定理逐一解答即可.【详解】过D 作DF①CE 于F ,根据等腰三角形的三线合一,得:CF=1,在直角三角形CDF 中,根据勾股定理,得:DF 2=CD 2-CF 2=22-12=3,在直角三角形BDF 中,BF=BC+CF=1+1=2,根据勾股定理得:故选D.【点睛】本题考查了等边三角形的性质,勾股定理等,正确添加辅助线、熟练应用相关的性质与定理是解题的关键.12.B【分析】由题意得MN 垂直平分AB ,得到AD =BD ,①ADE =90°,证得CD =AD =BD ,求出①ADC =2①B =80°,即可得到①CDE 的度数.【详解】解:由题意得MN 垂直平分AB ,①AD =BD ,①ADE =90°,①①ACB =90°,①CD =AD =BD ,①①BCD =①B =40°,①①ADC =2①B =80°,①①CDE =①ADE -①ADC =10°,故选:B .【点睛】此题考查了线段垂直平分线的作图方法,直角三角形斜边中线等于斜边一半的性质、等腰三角形的性质、三角形的外角性质,正确理解线段垂直平分线的作图是解题的关键.13.C【分析】根据菱形的性质可得AB =BC ,AD ①BC ,①BAC =①DAC =12①BAD =60°,从而可得①B =60°,进而证明△ABC 是等边三角形,然后得出BC =AC ,即可判断①;利用①的结论可得CE =CF ,①BCE =①ACF ,从而可得①BCA =①ECF =60°,即可判断①;当CE ①AB 时,ECF △的边长取最小值,根据含30度角的直角三角形的性质求出BE ,再利用勾股定理求出CE 即可判断①;过点E 作EM ①BC ,交AC 于点M ,求出EM =3,然后利用平行线分线段成比例求出23FG AF EG EM ==即可判断①. 【详解】解:①四边形ABCD 是菱形,120BAD ∠=︒,①AB =BC ,AD ①BC ,①BAC =①DAC =12①BAD =60°,①①B =180°−①BAD =60°,①①ABC 是等边三角形,①BC =AC ,①ACB =60°,在△BEC 和△AFC 中,BE AF B FAC BC AC =⎧⎪∠=∠⎨⎪=⎩,①①BEC ①①AFC (SAS ),①正确; ①CE =CF ,①BCE =①ACF ,①①BCE +①ACE =①ACF +①ACE , ①①BCA =①ECF =60°,①①ECF 是等边三角形,①正确; ①△ABC 是等边三角形,AB =BC =5, ①当CE ①AB 时,ECF △的边长取最小值, ①①B =60°,①此时①BCE =30°,①BE =1522BC =, ①CE①ECF △,①错误; 过点E 作EM ①BC ,交AC 于点M ,①①BEC ①①AFC ,①AF =BE =2,①AB =5,①AE =AB −BE =5−2=3,①EM ①BC ,①①AEM =①B =60°,①AME =①ACB =60°, ①①AEM 是等边三角形,①AE =EM =3,①AD①BC,①AF①EM①23 FG AFEG EM==,①23FGC EGCS S=△△,①正确;故选:C.【点睛】本题考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定与性质,含30度角的直角三角形的性质,勾股定理以及平行线分线段成比例,灵活运用各性质进行推理是解题的关键.14.B【详解】连接OC、OC′,如图,①①AOB=90°,C为AB中点,①OC=12AB=12A′B′=OC′,①当端点A沿直线AO向下滑动时,AB的中点C到O的距离始终为定长,①滑动杆的中点C所经过的路径是一段圆弧.故选B.【点睛】考点:①圆的定义与性质;①直角三角形的性质.15.C【分析】如图,将①BDA绕点D顺时针旋转90°得到①CDM,由旋转的性质可得①ADM是等腰直角三角形,根据勾股定理推出AD,可知当AM的值最大时,AD的值最大,利用三角形的三边关系求出AM的最大值,即可解决问题.【详解】解:如图,将BDA△绕点D顺时针旋转90°得到CDM由旋转的性质可知:4AB CM ==,DA DM =,90ADM ∠=︒①ADM △是等腰直角三角形,①根据勾股定理222AD MD AM +=,①AD AM =, ①当AM 的值最大时,AD 的值最大,①AM AC CM ≤+,AC CM AB ===①AM ≤①AM 的最大值为①AD 的最大值为7,故选C .【点睛】本题考查了正方形的性质,旋转的性质,等腰直角三角形的判定和性质,勾股定理以及两点之间线段最短.解题的关键在于根据旋转的性质构造等腰直角三角形. 16.C【分析】根据平行四边形的性质可得BO =DO ,AO =CO ,由此可得8AOB AOD BOC COD S S S S ∆∆∆∆====,从而可得结论.【详解】解:①四边形ABCD 是平行四边形,①BO =DO ,AO =CO ,①8AOB AOD BOC COD S S S S ∆∆∆∆====,①平行四边形ABCD 的面积=4×8=32,故选:C【点睛】本题考查了平行四边形的性质和三角形中线的性质,解决本题的关键是理解平行四边形的对角线互相平分.17.A【分析】分如解图①,当点D 在圆心O 的左侧且2AD =时,如解图①,当点D 在圆心O 的右侧且2BD =时,两种情况求出AC 的长,从而确定AC 的取值范围即可得到答案.【详解】如解图①,当点D 在圆心O 的左侧且2AD =时,过C 作CE AB ⊥,垂足为E ,连接CD 、CO 、CB ,①AC ADC =,①CDB CBD ∠=∠,①CD CB =,①3DE BE ==,①2DO =,①1OE =,①5AE =,22215CE CO OE =-=,①AC =如解图①,当点D 在圆心O 的右侧且2BD =时,过C 作CE AB ⊥,垂足为E ,连接CD 、CO 、CB ,①AC ADC =,①CDB CBD ∠=∠,①CD CB =,①1DE BE ==,①3OE =,①7AE =,2227CE CO OE =-=,①AC =①若DA 、DB 的长均不小于2AC ≤①AC 的长可能是7,故选A .【点睛】本题主要考查了圆周角定理,等腰三角形的性质与判定,勾股定理,无理数的估算等等,利用分类讨论的思想求解是解题的关键.18.C【分析】过B 作BE AC ∥交DC 延长线于E ,过B 作BF DC ⊥于F ,如图所示,根据题意,分两种情况讨论:①当5BD =时;①当5AC =时,根据双垂直模型得到BDF EBF ∽△△,利用相似比得到未知线段,然后根据BDE ABCD S S =△梯形代值求解即可得到答案.【详解】解:过B 作BE AC ∥交DC 延长线于E ,过B 作BF DC ⊥于F ,如图所示:4BF ∴=,①当5BD =时,对角线相互垂直,即AC BD ⊥,BE BD ∴⊥,90DBF EBF ∴∠+∠=︒,BF DC ⊥,在Rt BDF △中,90,5,4DFB BD BF ∠=︒==,则3DF =, 90DBF BDF ∴∠+∠=︒,BDF EBF ∴∠=∠,90BFD BFE ∠=∠=︒,∴BDF EBF ∽△△,BD DF BE BF ∴=,即534BE =,203BE ∴=, ,AB CE AC BE ∥∥,∴四边形ABEF 是平行四边形,AB CE ∴=, ∴()()11111205052222233BDE ABCD S AB DC BF CE DC BF DE BF S BD BE =+⋅=+⋅=⋅==⋅=⨯⨯=△梯形;①当5AC =时,对角线相互垂直,即AC BD ⊥,BE BD ∴⊥,90DBF EBF ∴∠+∠=︒,BF DC ⊥,在Rt BEF △中,90,5,4EFB BE BF ∠=︒==,则3EF =, 90DBF BDF ∴∠+∠=︒,BDF EBF ∴∠=∠,90BFD BFE ∠=∠=︒,∴BDF EBF ∽△△,BD BF BE EF∴=,即453BD =, 203BD ∴=, ,AB CE AC BE ∥∥,∴四边形ABEF 是平行四边形,AB CE ∴=, ∴()()11111205052222233BDE ABCD S AB DC BF CE DC BF DE BF S BD BE =+⋅=+⋅=⋅==⋅=⨯⨯=△梯形;综上所述,梯形的对角线互相垂直,其中一条对角线长为5,梯形的高为4,则梯形的面积为503,【点睛】本题属于几何综合问题,考查梯形性质、梯形面积公式、勾股定理、两个三角形相似的判定与性质、平行四边形的判定与性质、三角形面积及双垂直模型等知识,熟练掌握相关几何图形的性质是解决问题的关键.19.B【分析】利用已知条件分别求得点A,B,C的坐标,表示出线段OA,OB,OC的长度,利用二次函数的性质,待定系数法与全等三角形的判定定理对每个结论进行逐一判断即可得出结论.【详解】解:将A(x1,0)代入物线y=x2+bx+c得:x12+bx1+c=0.①c=x1+b,①x12+bx1+x1+b=0,①x1(x1+1)+b(x1+1)=0,①(x1+b)(x1+1)=0,①c=x1+b≠0,①x1+1=0,①x1=-1,①A(-1,0),①OA=1,①c=-1+b,①b-c=1.①①的结论正确;①c=-1+b,①y=x2+bx+b-1,令y=0,则x2+bx+b-1=0,解得:x=-1或x=1-b,①B(1-b,0),①抛物线的对称轴在y轴的右侧,①b<0,①OB=1-b,①C(0,b-1),①OB =OC ,在△AOC 和△DOB 中,90ACO DBO OC OB AOC DOB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ①①AOC ①①DOB (ASA ).①①的结论正确;若①DBC =30°,过点D 作DH ①BC 于点H ,如图,①①AOC ①①DOB ,①OA =OD =1,AC =BD ,①CD =OC -OD =-b ,①OB =OC ,①①OCB =①OBC =45°,①DH ①BC ,①DH, ①DH ①BC ,①DBC =30°,①BD =2DH,①ACb ,①OA 2+OC 2=AC 2,①12+(1−b ) 2=b ) 2.解得:b①b①抛物线的对称轴为直线x== ①①的结论不正确;当点B 绕点D 顺时针旋转90°后得到的点B '也在抛物线上时,过点B ′作B ′M ①y 轴于点M ,如图,由题意:DB =DB ′,①BDB ′=90°,①①MDB ′+①ODB =90°,①①ODB +①OBD =90°,①①MDB ′=①OBD ,在△MDB ′和△OBD 中,90DMB BOD MDB OBD DB BD ''∠=∠=︒⎧⎪∠=∠⎨⎪=⎩',①①MDB ′①①OBD (AAS ),①MD =OB =1-b ,MB ′=OD =1,①OM =OD +DM =2-b ,①B ′(1,b -2),①1+b +b -1=b -2,解得:b =-2,①c =b -1=-3,①此时抛物线的解析式为y=x2-2x-3,①①的结论正确;综上,正确的结论是:①①①.故选:B.【点睛】本题主要考查了待定系数法,数形结合法,二次函数的性质,抛物线与x轴的交点,抛物线上点的坐标的特征,图形的旋转的性质,全等三角形的判定与性质,勾股定理,含30°角的直角三角形的性质,熟练掌握二次函数的性质是解题的关键.20.8【分析】根据角平分线的性质定理解答.【详解】解:当PQ①OM时,PQ最小,①P是①MON角平分线上的一点,PA①ON,PQ①OM,①PQ=PA=8,故答案为:8.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.21.100°##100度【分析】先根据三角形的内角和求出①C的度数,即可求出与①C相邻外角的度数【详解】①C=180°-①A-①B=80°,①①C相邻外角的度数为180°-80°=100°.故答案为:100°【点睛】此题主要考查邻补角的求解,解题的关键是熟知三角形的内角和为180°. 22.42或32##32或42【分析】分两种情况讨论:当高AD在ABC的内部时,当高AD在ABC的外部时,结合勾股定理,即可求解.【详解】解:当高AD在ABC的内部时,如图,在Rt ABD中,9BD,在Rt ACD中,5CD==,①14BC BD CD =+=,此时ABC 的周长是15141342AB BC AC ++=++=;当高AD 在ABC 的外部时,如图,在Rt ABD中,9BD ,在Rt ACD中,5CD ==,①4BC BD CD =-=,此时ABC 的周长是1541332AB BC AC ++=++=;综上所述,ABC 的周长是42或32.故答案为:42或32【点睛】此题考查了勾股定理的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.23.85︒【分析】根据全等三角形的性质和三角形内角和定理计算即可;【详解】①ABC BAD ≌,60C ∠=︒,35ABD ∠=︒,①60C D ∠=∠=︒,35DBA CAB ∠=∠=︒,①180180603585DAB D DBA ∠=︒-∠-∠=︒-︒-︒=︒.故答案是:85︒.【点睛】本题主要考查了全等三角形的性质和三角形内角和定理,准确分析计算是解题的关键.24.SSS【分析】根据全等三角形的判定定理SSS 推出①COM ①①DOM ,根据全等三角形的性质得出①COM =①DOM ,根据角平分线的定义得出答案即可.【详解】解:在①COM 和①DOM 中,,OC OD OM OM MC MD =⎧⎪=⎨⎪=⎩. ①①COM ①①DOM (SSS ),①①COM=①DOM,即OM是①AOB的平分线,故答案为:SSS.【点睛】本题考查了全等三角形的判定定理和性质定理,能熟记全等三角形的判定定理是解此题的关键.25.2或8.【详解】试题分析:由题意知,应分两种情况:当腰长为8cm时,则另一腰也为8cm,底边为18-2×8=2cm,①0<2<8+8,①边长分别为8cm,8cm,2cm,能构成三角形;当底边长为8cm时,腰的长=(18-8)÷2=5cm,①0<8<5+5=13,①边长为5cm,5cm,8cm,能构成三角形.故答案为2或8.考点:等腰三角形的性质.26.5【分析】由利用三角形的面积公式可求得BD的长,再由中线的定义可得CD=BD,从而得解.【详解】解:①S△ABD=15,AE是BC边上的高,BD•AE=15,①12×6BD=15,则12解得:BD=5,①AD是BC边上的中线,①CD=BD=5.故答案为:5.【点睛】本题主要考查三角形的中线,三角形的高,解答的关键是由三角形的面积公式求得BD的长.27.稳定性【分析】根据三角形的三边一旦确定,则形状大小完全确定,即三角形的稳定性.【详解】解:这样做的原因是:利用三角形的稳定性使门板不变形.故答案为:三角形具有稳定性.【点睛】本题主要考查三角形的稳定性在实际生活中的应用.28.36【分析】由△ABC 是等腰直角三角形,可得①A =①C =45°,从而证明△AEF 也是等腰直角三角形,设AF =x ,则BF =12﹣x ,列出方程并求出x 的值,再根据正方形的面积公式即可求得.【详解】解:①①ABC 是等腰直角三角形,①①A =①C =45°,①四边形BDEF 是△ABC 的内接正方形,①EF ①BC ,①①AEF =①C =45°,①①AEF 也是等腰直角三角形,①AF =EF ,设AF =x ,则BF =12﹣x ,①12﹣x =x ,①x =6,①此正方形的面积为6×6=36.故答案为:36.【点睛】本题考查了正方形的性质、等腰三角形的性质及判定.解题的关键是熟练掌握正方形的性质.29.3【分析】连接AC ,CE ,CF ,正方形ABCD 和等边AEF △都内接于O ,得证AC 是O 的直径,45ACG ∠=,60AEF AFE ∠=∠=,AE AF =,从而得证90AEC AFC ∠=∠=,30CEF CFE ∠=∠=,得到CE CF =,直线AC 是线段EF 的垂直平分线,从而得到90GMC ∠=,45CGM ∠=,得证CM GM =,30EAM ∠=,从而得证132EM AE ==,AM =2AC EC =,结合222AC EC AE =+,确定AC =CM GM AC AM ==-==,根据EG EM GM =-计算即可.【详解】如图,连接AC ,CE ,CF ,因为正方形ABCD 和等边AEF △都内接于O , 所以AC 是O 的直径,45ACG ∠=,60AEF AFE ∠=∠=,AE AF =,所以90AEC AFC ∠=∠=,30CEF CFE ∠=∠=,所以CE CF =,所以直线AC 是线段EF 的垂直平分线,所以90GMC ∠=,45CGM ∠=,所以CM GM =,30EAM ∠=,所以132EM AE ==,AM ==2AC EC =, 因为222AC EC AE =+, 所以2221()62AC AC =+,解得AC =所以CM GM AC AM ==-=所以EG EM GM =-=3故答案为:3【点睛】本题考查了正方形的性质,等边三角形的性质,线段垂直平分线的判定和性质,圆的基本性质,直角三角形的性质,勾股定理,等腰直角三角形的判定和性质,熟练掌握正方形的性质,圆的性质,等边三角形的性质,勾股定理是解题的关键.30.2.7【分析】根据全等可得OC =AP ,再根据等边三角形的性质可得AC =AB ,从而可得AO =BP ,即可得出结论【详解】解:①①ABC 为等边三角形,①AC =AB =BC =9,①①APO ①①COD ,AO =2.7,①AP =OC ,①BP =AO =2.7.故答案为:2.7.【点睛】本题考查全等三角形的性质,等边三角形的性质.正确理解性质得出线段之间的关系是解题关键.31.5:3.【分析】过C 做CG ①AD 交AD 延长线于G ,根据四边形ABCD 为平行四边形,可得CD∥AB 且CD =AB ,AD =BC ,利用平行线性质可得①CDF =①EAF ,①DCF =①E ,可证△DCF ①①AEF ,根据相似三角形性质可得31DF DC AF AE ==,设AF =m ,DF =3m ,则BC =AD = 4m ,求三角形与四边形面积S △CDF =1322DF CG mCG ⋅=,S 四边形ABCF =()()1154222AF BC CG m m CG mCG +⋅=+⋅=,再求两面积比即可. 【详解】解:过C 做CG ①AD 交AD 延长线于G ,①四边形ABCD 为平行四边形,①CD∥AB 且CD =AB ,AD =BC ,①①CDF =①EAF ,①DCF =①E ,①△DCF ①①AEF , ①31DF DC AF AE ==, 设AF =m ,DF =3m ,则BC =AD =AF +DF =4m ,①S △CDF =1322DF CG mCG ⋅=, S 四边形ABCF =()()1154222AF BC CG m m CG mCG +⋅=+⋅=, ①53::5:322CDF ABCF S S mCG mCG ==四边形. 故答案为5:3.【点睛】本题考查平行四边形的性质,三角形相似判定与性质,三角形面积与四边形面积,掌握平行四边形的性质,三角形相似判定与性质,三角形面积与四边形面积是解题关键.32.6.72【分析】连接BE,延长CD交BE与点H,作CF①AB,垂足为F.首先证明DC垂直平分线段BE,△ABE是直角三角形,利用三角形的面积求出EH,得到BE的长,在Rt△ABE 中,利用勾股定理即可解决问题.【详解】解:如图,连接BE,延长CD交BE与点H,作CF①AB,垂足为F.①①ACB=90°,AC=6,BC=8.①AB,①D是AB的中点,①AD=BD=CD=5,①S△ABC=12AC•BC=12AB•CF,①12×6×8=12×10×CF,解得CF=4.8.①将△BCD沿直线CD翻折得到△ECD,①BC=CE,BD=DE,①CH①BE,BH=HE.①AD=DB=DE,①①ABE为直角三角形,①AEB=90°,①S△ECD=S△ACD,①12DC•HE=12AD•CF,①DC=AD,①HE=CF=4.8.①BE=2EH=9.6.①①AEB=90°,①AE.①S△ADE=12EH•AE=12×2.8×4.8=6.72.故答案为:6.72.【点睛】本题考查了翻折变换(折叠问题),直角三角形斜边上的中线的性质,勾股定理,三角形的面积等知识,解题的关键是学会利用面积法求高,属于中考常考题型.33.【详解】试题分析:根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.解:在Rt①ABC中,AB2=AC2+BC2,AB=5,S阴影=S△AHC+S△BFC+S△AEB=×+×+×,=(AC2+BC2+AB2),=AB2,=×52=.故答案为.点评:本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.34.48 5【分析】根据垂线段最短可知当EP①AB时,线段EP最短.根据12•AB•PE=12×BE×AE,只要求出AB、AE、BE、PE,即可解决问题.【详解】解:根据垂线段最短可知当PE①AB时,线段PE最短.①AE①BC于E,sinB=35=AEAB,设AE=3k,AB=BC=5k,则BE=4k,EC=k,①EC=3,①k=3,①BE=12,AB=15,AE=9,当PE①AB时,12•AB•PE=12×BE×AE,①PE=AE BEAB⨯=365,①线段PE的最小值为365,①BP 485.故答案为:485.【点睛】本题考查菱形的性质、解直角三角形、垂线段最短、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.35.10.【分析】连结OC,设①O半径为r,则OC=r,OE=r-2,根据垂径定理得到CE=DE=1 2CD=6,在Rt△OCE中,利用勾股定理列出关于r的等式,然后解方程求出r即可.【详解】解:连结OC,设①O半径为r,则OC=r,OE=r-BE=r-2,①CD①AB,CD=12①CE=DE=12CD=6,。
初一数学《三角形》全章复习与巩固(基础)《三角形》全章复习与巩固(基础)知识讲解
《三角形》全章复习与巩固(基础)责编:康红梅【学习目标】1. 理解三角形有关的概念,掌握三角形内角和定理的证明,能应用内角和定理进行相关的计算及证明问题.2. 理解并会应用三角形三边关系定理;3.了解三角形中三条重要的线段并能正确的作图.4.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式,而且要用利用图形全等的解决实际生活中存在的问题.5. 掌握常见的尺规作图方法,并根据三角形全等判定定理利用尺规作一个三角形与已知三角形全等.【知识网络】【要点梳理】要点一、三角形的内角和三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.要点二、三角形的分类【高清课堂:与三角形有关的线段三角形的分类】1.按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.2.按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底边和腰不相等的等腰三角形等腰三角形等边三角形要点诠释:①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;③等边三角形:三边都相等的三角形.要点三、三角形的三边关系1.定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.2.三角形的重要线段:一个三角形有三条中线,它们交于三角形内一点,这点称为三角形的重心.一个三角形有三条角平分线,它们交于三角形内一点.三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.要点四、全等三角形的性质与判定1.全等三角形的性质全等三角形对应边相等,对应角相等.2.全等三角形的判定定理全等三角形判定1——“边边边”:三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”). “全等三角形判定2——“角边角”:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).全等三角形判定3——“角角边”:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)全等三角形判定4—— “边角边”:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).要点诠释:(1)如何选择三角形证全等,可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.要点五、用尺规作三角形1.基本作图利用尺规作图作一条线段等于已知线段、作一个角等于已知角,并利用全等三角形的知识作一个三角形与已知三角形全等;要点诠释:要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达.【典型例题】类型一、三角形的内角和1.在△ABC中,∠B=20°+∠A,∠C=∠B-10°,求∠A的度数.【思路点拨】由三角形的内角和,建立方程解决.【答案与解析】∵∠C=∠B-10°=∠A+10°,由三角形的内角和定理, 得∠A+∠B+∠C=∠A+∠A+20°+∠A+10°=180°,∴∠A=50°.【总结升华】本题根据三角形的内角和定理列出以∠A为未知数的方程,解方程即可求得∠A.建立方程求解,是本章求解角度数的常用方法.举一反三【变式】若∠C=50°,∠B-∠A=10°,那么∠A=________,∠B=_______【答案】60°,70°.类型二、三角形的三边关系及分类2.一个若三角形的两边长分别是2和7,则第三边长c的取值范围是_______.【思路点拨】三角形的两边a、b,那么第三边c的取值范围是│a-b│<c<a+b.【答案与解析】三角形的两边长分别是2和7, 则第三边长c的取值范围是│2-7│<c<2+7,即5<c<9.【总结升华】三角形任意两边之差小于第三边,若这两边之差是负数时需加绝对值.举一反三【变式】(2015•泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值( ) A.11B.5C.2D.1【答案】B.解:根据三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5.3.一个三角形的三个内角分别是75°、30°、75°,这个三角形是()A 锐角三角形B 等腰三角形C 等腰锐角三角形【答案】C举一反三【变式】一个三角形中,一个内角的度数等于另外两个内角的和的2倍,这个三角形是()三角形A 锐角B 直角C 钝角 D无法判断【答案】C【解析】利用三角形内角和是180°以及已知条件,可以得到其中较大内角的度数为120°,所以三角形为钝角三角形.类型三、三角形的重要线段4.(2015•常德)如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= .【思路点拨】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2);最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【答案】70°.【解析】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=110°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=70°.故答案为:70°.【总结升华】此题主要考查了三角形内角和定理以及角平分线的性质,熟练应用角平分线的性质是解题关键.举一反三【变式】在△ABC中,∠B=60°,∠C=40°,AD、AE分别是△ABC的高线和角平分线, 则∠DAE 的度数为_________.【答案】10°.类型四、全等三角形的性质和判定5.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE .【思路点拨】△ABE与△ACD中,已经有两边,夹角可以通过等量代换找到,从而证明△ABE≌△ACD;通过全等三角形的性质,通过倒角可证垂直.【答案与解析】解:(1)△ABE≌△ACD 证明:∠BAC=∠EAD=90° ∠BAC+∠CAE=∠EAD+∠CAE 即∠BAE=∠CAD 又AB=AC,AE=AD, △ABE≌△ACD(SAS)(2)由(1)得∠BEA=∠CDA, 又∠COE=∠AOD ∠BEA+∠COE=∠CDA+∠AOD=90° 则有∠DCE=180°- 90°=90°, 所以DC⊥BE.【总结升华】我们可以试着从变换的角度看待△ABE与△ACD,后一个三角形是前一个三角形绕着A点逆时针旋转90°得到的,对应边的夹角等于旋转的角度90°,即DC⊥BE.举一反三【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.【答案】证明:∵AE⊥AB,AD⊥AC,∴∠EAB=∠DAC=90°∴∠EAB+∠DAE=∠DAC+∠DAE ,即∠DAB=∠EAC.在△DAB 与△EAC 中,DAB EAC AB ACB C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB≌△EAC (ASA )∴BD=CE.6.己知:在ΔABC 中,AD 为中线.求证:AD <()12AB AC+【答案与解析】证明:延长AD 至E ,使DE =AD ,∵AD 为中线,∴BD=CD在△ADC 与△EDB 中DC DB ADC BDEAD ED =⎧⎪∠=∠⎨⎪=⎩∴△ADC≌△EDB(SAS )∴AC=BE在△ABE 中,AB +BE >AE ,即AB +AC >2AD∴AD<.()12AB AC +【总结升华】用倍长中线法可将线段AC ,2AD ,AB 转化到同一个三角形中,把分散的条件集中起来.倍长中线法实际上是绕着中点D旋转180°.举一反三【变式】若三角形的两边长分别为5和7, 则第三边的中线长的取值范围是( )x A.1 << 6 B.5 << 7 C.2 << 12 D.无法确定x x x 【答案】A ;提示:倍长中线构造全等三角形,7-5<<7+5,所以选A 选项.2x 类型五、全等三角形判定的实际应用 7.如图,小叶和小丽两家分别位于A 、B 两处隔河相望,要测得两家之间的距离,请你设计出测量方案.【答案与解析】本题的测量方案实际上是利用三角形全等的知识构造两个全等三角形,是一个三角形在河岸的同一边,通过测量这个三角形中与AB 相等的线段的长,从而得知两家的距离.解:在点B 所在的河岸上取点C ,连结BC ,使CD=CB ,利用测角仪器使得∠B=∠D ,且A 、C 、E 三点在同一直线上,测量出DE 的长,就是AB 的长.在△ABC 和△ECD 中B D CD CBACB ECD ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△ABC ≌△ECD (ASA )∴AB=DE .【总结升华】对于实际应用问题,首先要能将它化成数学模型,再根据数学知识去解决. 由已知易证△ABC ≌△ECD ,可得AB=DE ,所以测得DE 的长也就知道两家的距离是多少.类型六、用尺规作三角形8.作图:请你作出一个以线段a 为底边,以∠α为底角的等腰三角形(要求:用尺规作图,并写出已知,求作,保留作图痕迹,不写作法和结论)已知:求作:【思路点拨】可先画线段BC=a,进而在BC的同侧作∠MBC=∠α,∠NCB=∠α,MB,CN交于点A,△ABC就是所求的三角形.【答案与解析】解:已知:线段a,∠α.求作:△ABC,使BC=a,AB=AC,∠ABC=∠α.△ABC就是所求作的三角形.【总结升华】考查等腰三角形的画法;会作一个角等于已知角是解决本题的突破点;注意画图的顺序为边,角,角.举一反三【变式】作图题:(要求:用直尺、圆规作图,保留作图痕迹,不写作法.)已知:线段a与线段b.求作:线段AB,使AB=2a﹣b.【答案】解:如图所示:作线段AB即为所求.。
初一数学三角形试题答案及解析
初一数学三角形试题答案及解析1.“直角三角形的两个锐角互余”的逆命题是.【答案】如果三角形有两个角互余,那么这个三角形是直角三角形【解析】因为“直角三角形两锐角互余”的题设是“三角形是直角三角形”,结论是“两个锐角互余”,【考点】命题与定理2.小亮截了四根长分别为5cm,6cm,10cm,13cm的木条,任选其中三条组成一个三角形,这样拼成的三角形共有()A.1个B.2个C.3个D.4个【答案】C.【解析】选其中3根组成一个三角形,不同的选法有5cm,6cm,10cm;5cm,10cm,13cm;6cm,10cm,13cm;共3种.故选C.【考点】三角形三边关系.3.如图,在△ABC中,AB=AC=10厘米,∠B=∠C,BC=8厘米,点D为AB的中点,如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动,当一个点停止运动时,另一个点也随之停止运动,当点Q的运动速度为时,能够在某一时刻使△BPD与△CQP全等.【答案】3或厘米/秒.【解析】求出BD,根据全等得出要使△BPD与△CQP全等,必须BD=CQ或BP=CP,得出方程5=8-3x或3x=8-3x,求出方程的解即可.试题解析:设经过x秒后,使△BPD与△CQP全等,∵AB=AC=24厘米,点D为AB的中点,∴BD=12厘米,∵∠ABC=∠ACB,∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,即5=8-3x或3x=8-3x,解得:x=1,x=,x=1时,BP=CQ=3,3÷1=3;x=时,BD=CQ=5,5÷=;即点Q的运动速度是3或厘米/秒.【考点】1.全等三角形的判定;2.等腰三角形的性质.4.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,则ΔABD的周长为____cm。
【解析】要求周长,就要求出三角形的三边,利用垂直平分线的性质计算. 试题解析:因为DE ⊥AC ,AE=CE , 则DA=DC ,于是C △ABD =AB+BD+DA=AB+(BD+DC )=AB+BC=10+11=21. ∴△ABD 的周长为21.【考点】线段垂直平分线的性质.5. 已知三角形的两边长分别为4和9,则此三角形的第三边长可以是( ) A . B . C . D .【答案】C .【解析】根据三角形的三边关系,得:第三边大于5,而小于13. 故选C .【考点】三角形三边关系.6. 已知三角形的两边长分别为3、5,且周长为整数,则这样的三角形共有 个。
初一数学三角形练习题及答案
初一数学三角形练习题及答案1. 在下列三角形中,哪些是等腰三角形?a) △ABC,其中AB = BC = 5 cm,AC = 6 cmb) △DEF,其中DE = 7 cm,DF = 8 cm,EF = 9 cmc) △GHI,其中GH = 5 cm,GI = 6 cm答案:a) 是。
b) 不是。
c) 不是。
2. 解答下列问题:a) 如果一个三角形的两个角度分别是60°和70°,第三个角度是多少?b) 一个三角形的三个角度分别是45°、45°和90°,这个三角形属于什么类型?答案:a) 50°。
b) 直角三角形。
3. 计算下列三角形的周长:a) △JKL,其中JK = 9 cm,KL = 6 cm,JL = 8 cmb) △MNO,其中MN = 12 cm,NO = 10 cm,MO = 7 cm答案:a) 周长为 23 cm。
b) 周长为 29 cm。
4. 已知△PQR 是等边三角形,边长为 10 cm。
计算△PQR 的高度。
答案:△PQR 的高度为 8.66 cm。
5. 判断下列三角形的形状:a) △STU,其中ST = TU = US,且∠STU = 60°b) △VWX,其中VW = WX = XV,且∠VWX = 90°c) △YZA,其中YAZ = ZAY,且∠YZA = 45°答案:a) 等边三角形。
b) 等腰直角三角形。
c) 等腰等角三角形。
6. 根据下列信息判断△ABC 是什么类型的三角形:a) AB = BC,且∠BAC = 90°b) AB = BC,且∠BAC = 75°c) AB = AC,且∠ABC = 45°答案:a) 直角等腰三角形。
b) 等腰锐角三角形。
c) 等边等角三角形。
7. 计算下列三角形的面积:a) △DEF,其中DE = 8 cm,DF = 10 cm,EF = 12 cmb) △GHI,其中GH = 7 cm,GI = 5 cm,∠GHI = 60°答案:a) 面积为 39.69 cm²。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一三角形练习题
1.一个三角形的三个内角中 ( )
A 、至少有一个钝角
B 、至少有一个直角
C 、至多有一个锐角
D 、 至少有两个锐角 2.
下列长度的三条线段能组成三角形的是 ( )
A 、 3,4,8
B 、 5,6,11
C 、 1,2,3
D 、 5,6,10
3. 如图在△ABC 中,∠ACB=900,CD 是边AB 上的高。
图中与∠A 相等的角是( )
A 、 ∠
B B 、 ∠ACD
C 、 ∠BC
D D 、 ∠BDC 4.如图,AC⊥BD,DE⊥AB,下列叙述正确的是()
A、∠A=∠B B、∠B=∠D C、∠A=∠D D、∠A+∠D=900
5.如图,∠A+∠B+∠C+∠D+∠E+∠F 的和为( ) A.180° B.360° C.540° D.720°
4题图 5题图 7题图 10题图
6.等腰三角形两边长分别为 3,7,则它的周长为 ( ) A 、 13 B 、 17 C 、 13或17 D 、 不能确定
7.如图所示,在△ABC 中,∠B=∠C,FD ⊥BC,DE ⊥AB,∠AFD=158°, 则∠EDF=________度.
A .58°
B .68°
C .78°
D .32°
8.一个多边形的内角和等于它的外角和,这个多边形是 ( )
第(5)题
D
C
B
A
第(7)题
E
D
C
B
A
D
F
A
E
C
B F
E
D
C
B
A
第(6)题
D
C
B
A
A 、三角形
B 、 四边形
C 、 五边形
D 、 六边形 9.能将三角形面积平分的是三角形的()
A 、 角平分线
B 、 高
C 、 中线
D 、外角平分线 10.如图,AB ∥CD ,∠A=700,∠B=400,则∠ACD=() A 、 550 B 、 700 C 、 400 D 、 1100
11.长为11,8,6,4的四根木条,选其中三根组成三角形有 种选法,它们分别是
12.一个多边形的内角和是外角和的3倍,它是( )边形;一个多边形的各内角都等于1200,它是( )边形。
13.已知△ABC 为等腰三角形,①当它的两个边长分别为8 cm 和3 cm 时,
它的周长为_____;②如果它的周长为18 cm ,一边的长为4 cm ,则腰长为_____.
14.如果一个多边形的每一外角都是240,那么它 边形
15.如图,∠1=∠2=300,∠3=∠4,∠A=800,则=x ,=y 16.如图飞机要从A 地飞往B 地,因受大风影响,一开始就偏离航线(AB)18°(即∠A=18°),飞到了C 地,已知∠ABC=10°,现在飞机要达到B 地需以_____的角飞行(即∠BCD 的度数).
15题图 16题图 17.如图,△ABC 中,高AD 与CE 的长分别为2㎝,4㎝ 求AB 与BC 的比是多少?
A
800
y
x
4
321
第(17
)题E
D C B A
18.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于E,∠A=60°,∠BDC=95°,求△BDE各内角的度数.
19.如图,△ABC中,∠A=36°,∠ABC=40°,BE平分∠ABC,∠E=18°,CE平分
∠ACD吗?为什么?
20.如图所示,已知∠1=∠2,∠3=∠4,∠C=32°,∠D=28°,求∠P的度数.
4
3P
2
1D
C
B
A
1-5.DBCCB 6-10BBBCB 11. 4 ① 4、6、8 ②4、6、11 ③4、8、11. ④6、8、11 12. 8,6;
13.19;7 14. 十五 15.110°130°16.28°
17 因为AD BC CE AB s ABC ⋅=⋅=∆2
12
1高AD=2㎝CE=4㎝所以
2
1
42===CE AD BC AB 18.略
19. ∠ P=()D C ∠⊕∠2
1。