运筹学习题
运筹学习题
运筹学复习题第一章 线性规划及单纯形法一、单选题1. 线性规划具有无界解是指A. 可行解集合无界B. 有相同的最小比值C. 存在某个检验数0k λ>,且0(1,2,,)ik a i m ≤=D. 最优表中所有非基变量的检验数非零 2. 线性规划具有唯一最优解是指A. 最优表中非基变量检验数全部非零B. 不加入人工变量就可进行单纯形法计算C. 最优表中存在非基变量的检验数为零D. 可行解集合有界 3. 线性规划具有多重最优解是指A. 目标函数系数与某约束系数对应成比例B. 最优表中存在非基变量的检验数为零C. 可行解集合无界D. 基变量全部大于零 4. 使函数Z=-x 1+x 2+2x 3 减小最快的方向是A. (-1,1,2)B. (1,-1,-2)C. (1,1,2)D. (-1,-1,-2) 5. 当线性规划的可行解集合非空时一定 A. 包含点X =(0,0,···,0) B. 有界 C. 无界 D. 是凸集 6. 线性规划的退化基可行解是指A. 基可行解中存在为零的非基变量B. 基可行解中存在为零的基变量C. 非基变量的检验数为零D. 所有基变量不等于零 7. 线性规划无可行解是指A. 第一阶段最优目标函数值等于零B. 进基列系数非正C. 用大M 法求解时,最优解中还有非零的人工变量D. 有两个相同的最小比值 8. 若线性规划不加入人工变量就可以进行单纯形法计算A. 一定有最优解B. 一定有可行解C. 可能无可行解D. 全部约束是小于等于的形式 9. 设线性规划的约束条件为123124222401234 (,,,)jx x x x x x x j ⎧++=⎪++=⎨⎪≥=⎩ 则非退化基本可行解是A. (2, 0,0, 0)B. (0,2,0,0)C. (1,1,0,0)D. (0,0,2,4) 10. 设线性规划的约束条件为123124222401234 (,,,)jx x x x x x x j ⎧++=⎪++=⎨⎪≥=⎩ 则非可行解是A. (2,0,0, 0)B. (0,1,1,2)C. (1,0,1,0)D. (1,1,0,0) 11. 线性规划可行域的顶点一定是A. 可行解B. 非基本解C. 非可行解D. 是最优解 12. 1234min z x x =+1212124220,x x x x x ⎧+≥⎪+≤⎨⎪≥⎩ A. 无可行解 B.有唯一最优解 C.有无界解 D.有多重最优解13. 12122124432450,max z x x x x x x =-⎧+≤⎪≤⎨⎪≥⎩A. 无可行解B. 有唯一最优解C. 有多重最优解D. 有无界解 14. X 是线性规划的基本可行解则有A. X 中的基变量非负,非基变量为零B. X 中的基变量非零,非基变量为零C. X 不是基本解D. X 不一定满足约束条件 15. X 是线性规划的可行解,则错误的结论是A. X 可能是基本解B. X 可能是基本可行解C. X 满足所有约束条件D. X 是基本可行解 16. 下例错误的说法是A. 标准型的目标函数是求最大值 B 标准型的目标函数是求最小值 C. 标准型的常数项非正 D. 标准型的变量一定要非负 17. 为什么单纯形法迭代的每一个解都是可行解?答:因为遵循了下列规则 A. 按最小比值规则选择换出变量B. 先进基后出基规则C. 标准型要求变量非负规则D. 按检验数最大的变量选择换入变量 18. 线性规划标准型的系数矩阵A m×n ,要求A. 秩(A )=m 并且m <nB. 秩(A )=m 并且m <=nC. 秩(A )=m 并且m =nD. 秩(A )=n 并且n <m 19. 下例错误的结论是A. 检验数是用来检验可行解是否是最优解的数B. 检验数是目标函数用非基变量表达的系数C. 不同检验数的定义其检验标准也不同D. 检验数就是目标函数的系数 20. 对取值为无约束的变量j x ,通常令'''j j j x x x =-,其中''',0j j x x ≥;在用单纯形法求得的解中不可能出现A. '0j x =,''0j x ≥ B. '0j x =,''0j x = C. '0j x >,''0>j x D. '0j x >,''0j x =21.运筹学是一门A. 定量分析的学科B. 定性分析的学科C. 定量与定性相结合的学科D. 定量与定性相结合的学科,其中分析与应用属于定性分析,建立模型与求解属于定量分析二、设某种动物每天至少需要700克蛋白质、30克矿物质、100毫克维生素。
运筹学考试试题
运筹学考试试题一、选择题(每题2分,共10分)1. 线性规划的标准形式中,目标函数的系数应为:A. 正数B. 负数C. 任意非零数D. 零2. 在单纯形法中,如果某个非基变量的检验数大于零,则:A. 该变量不能进入基B. 该变量必须进入基C. 该变量的值可以增加D. 该变量的值可以减少3. 下列哪项不是运输问题的特殊矩阵?A. 平衡矩阵B. V型矩阵C. U型矩阵D. 散布矩阵4. 对于一个确定的线性规划问题,下列哪项是正确的?A. 只有一个最优解B. 有多个最优解C. 可能没有可行解D. 所有选项都是正确的5. 在动态规划中,状态转移方程的作用是:A. 确定初始状态B. 确定最终状态C. 确定中间状态D. 确定最优解二、简答题(每题5分,共20分)1. 简述单纯形法的基本步骤。
2. 解释什么是灵敏度分析,并说明其在运筹学中的应用。
3. 什么是网络流问题?请举例说明其在实际中的应用。
4. 描述动态规划的基本原理及其与分阶段决策过程的关系。
三、计算题(每题10分,共30分)1. 给定如下线性规划问题,请找出其最优解,并计算目标函数的最小值。
Maximize Z = 3x1 + 2x2Subject tox1 + 2x2 ≤ 103x1 + x2 ≤ 15x1, x2 ≥ 02. 考虑一个有三个仓库(A、B、C)和三个市场(D、E、F)的运输问题。
运输成本矩阵如下:| D E F ||--|--|--|A | 2 3 4 || B | 1 2 3 || C | 5 6 7 |每个仓库的供应量和每个市场的需求量如下:Supply/Demand: A: 10, B: 8, C: 5, D: 8, E: 10, F: 7使用北街角规则找出初始可行解。
3. 一个公司想要在三个城市(城市1、城市2、城市3)之间运输货物。
运输成本和需求量如下表所示:| 城市1 城市2 城市3 ||--|--|--|| 2 3 5 || 1 2 4 || 3 4 6 |需求量:城市1: 4, 城市2: 3, 城市3: 2请使用匈牙利算法解决此问题。
运筹学20道习题
1.已知线性规划(15分)123123123max 3452102351,2,3jZ x x x x x x x x x x j =++⎧+-≤⎪-+≤⎨⎪≥=⎩0,(1)求原问题和对偶问题的最优解;(2)求最优解不变时c j 的变化范围36.解:(1)化标准型 2分 (2)单纯形法 5分(3)最优解X=(0,7,4);Z =48 (2分) (4)对偶问题的最优解Y =(3.4,2.8) (2分)(5)Δc 1≤6,Δc 2≥-17/2,Δc 3≥-6,则 1235(,9),,13c c c ∈-∞≥-≥-(4分)2.某公司要将一批货从三个产地运到四个销地,有关数据如下表所示。
现要求制定调运计划,且依次满足:(1)B 3的供应量不低于需要量; (2)其余销地的供应量不低于85%; (3)A 3给B 3的供应量不低于200; (4)A 2尽可能少给B 1;(5)销地B 2、B 3的供应量尽可能保持平衡。
(6)使总运费最小。
试建立该问题的目标规划数学模型。
3、请用表上作业法解下题,得到最优解,并计算此时总运费:现在有运价表如下:产地销地B1B2B3产量A1 5 1 6 12A2 2 4 0 14A3 3 6 7 4销量9 10 11 30 答案:根据上面运价表以及销量和产量的要求,使用表上作业法:5 1 62 4 03 6 79 10 11得到下面运输方案:检验空格:空格A检验:6 –(0+3) = 3 > 0空格B检验:7 – (3-2) = 6 > 0空格C检验:6 - (1-2) = 7 > 0空格D检验:4 – (1-3)= 6 > 0 故全部符合要求。
总运输费用:2×5 + 3× 2 + 4 × 3 + 10 × 1 + 11 × 0 = 38 答:上面的运输方案为最佳方案,总运费为38。
《运筹学》试题及答案大全
《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。
2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。
4、在图论中,称无圈的连通图为树。
5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。
2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。
⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。
(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。
运筹学试题及详细答案
运筹学试题及详细答案
一、选择题
1、Nash均衡的定义是:
A、每位参与者的行为均达到最佳利益的状态
B、每位参与者的行为均达到得到最大胜利的状态
C、每位参与者的行为均达到合作的最佳状态
D、每位参与者的行为均达到合作的最大胜利的状态
答案:A
2、决策就是参与者用来实现选择的:
A、计划
B、机构
C、程序
D、工具
答案:D
3、运筹学可以分为:
A、组合数学
B、运动学
C、博弈论
D、概率论
答案:A、B、C、D
4、非线性规划有:
A、分支定界法
B、梯度下降法
C、基于格法的解法
D、对偶法
答案:A、B、C、D
5、关于迭代法,下列表述正确的有:
A、可以求解非凸优化问题
B、单次迭代过程简单
C、收敛性较好
D、用于非线性规划
答案:A、B、C
二、填空题:
1、博弈论是研究__参与者之间的__的科学。
答案:多,竞争。
运筹学习题
习题一1.1 用图解法求解下列线性规划问题,并指出各问题是具有唯一最优解、无穷多最优解、无界解或无可行解。
(1) min z =6x1+4x2(2) max z =4x1+8x2st. 2x1+x2≥1 st. 2x1+2x2≤103x1+4x2≥1.5 -x1+x2≥8x1, x2≥0 x1, x2≥0(3) max z =x1+x2(4) max z =3x1-2x2st. 8x1+6x2≥24 st. x1+x2≤14x1+6x2≥-12 2x1+2x2≥42x2≥4 x1, x2≥0x1, x2≥0(5) max z =3x1+9x2(6) max z =3x1+4x2st. x1+3x2≤22 st. -x1+2x2≤8-x1+x2≤4 x1+2x2≤12x2≤6 2x1+x2≤162x1-5x2≤0 x1, x2≥0x1, x2≥01.2. 在下列线性规划问题中,找出所有基本解,指出哪些是基本可行解并分别代入目标函数,比较找出最优解。
(1) max z =3x1+5x2(2) min z =4x1+12x2+18x3st. x1+x3=4 st. x1+3x3-x4=32x2+x4=12 2x2+2x3-x5=53x1+2x2+x5=18 x j≥0 (j=1, (5)x j≥0 (j=1, (5)1.3. 分别用图解法和单纯形法求解下列线性规划问题,并对照指出单纯形法迭代的每一步相当于图解法可行域中的哪一个顶点。
(1) max z =10x1+5x2st. 3x1+4x2≤95x1+2x2≤8x1, x2≥0(2) max z =100x1+200x2st. x1+x2≤500x1≤2002x1+6x2≤1200x1, x2≥01.4. 分别用大M法和两阶段法求解下列线性规划问题,并指出问题的解属于哪一类:(1) max z =4x1+5x2+x3(2) max z =2x1+x2+x3st. 3x1+2x2+x3≥18 st. 4x1+2x2+2x3≥42x1+x2≤4 2x1+4x2≤20x1+x2-x3=5 4x1+8x2+2x3≤16x j≥0 (j=1,2,3)x j≥0 (j=1,2,3)(3) max z = x 1+ x 2 (4) max z =x 1+2x 2+3x 3-x 4 st. 8x 1+6x 2≥24 st. x 1+2x 2+3x 3=154x 1+6x 2≥-12 2x 1+ x 2+5x 3=202x 2≥4 x 1+2x 2+ x 3+ x 4=10x 1, x 2≥0 x j ≥0 (j =1, (4)(5) max z =4x 1+6x 2 (6) max z =5x 1+3x 2+6x 3 st. 2x 1+4x 2 ≤180 st. x 1+2x 2+ x 3≤183x 1+2x 2 ≤150 2x 1+ x 2+3x 3≤16 x 1+ x 2=57 x 1+ x 2+ x 3=10x 2≥22 x 1, x 2≥0,x 3无约束 x 1, x 2≥01.5 线性规划问题max z =CX ,AX =b ,X ≥0,如X*是该问题的最优解,又λ>0为某一常数,分别讨论下列情况时最优解的变化:(1) 目标函数变为max z =λCX ;(2) 目标函数变为max z =(C +λ)X ;(3) 目标函数变为max z =C X ,约束条件变为AX =λb 。
(完整版)《运筹学》习题集
第一章线性规划1.1将下述线性规划问题化成标准形式1)min z=-3x1+4x2-2x3+5 x4-x2+2x3-x4=-24xst. x1+x2-x3+2 x4 ≤14-2x1+3x2+x3-x4 ≥2x1,x2,x3≥0,x4无约束2)min z =2x1-2x2+3x3+x2+x3=4-xst. -2x1+x2-x3≤6x1≤0 ,x2≥0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。
1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)min z=5x1-2x2+3x3+2x4x1+2x2+3x3+4x4=7st2x1+2x2+x3 +2x4=3x1,x2,x3,x4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。
1) maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。
1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.61.7某班有男生30人,女生20人,周日去植树。
最全运筹学习题及答案
最全运筹学习题及答案共1 页运筹学习题答案)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。
(1)max z?x1?x25x1+10x2?50x1+x2?1x2?4x1,x2?0(2)min z=x1+1.5x2x1+3x2?3x1+x2?2x1,x2?0(3)+2x2x1-x2?-0.5x1+x2x1,x2?0(4)max z=x1x2x1-x2?03x1-x2?-3x1,x2?0(1)(图略)有唯一可行解,max z=14(2)(图略)有唯一可行解,min z=9/4(3)(图略)无界解(4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。
共2 页(1)min z=-3x1+4x2-2x3+5x4 4x1-x2+2x3-x4=-2x1+x2+3x3-x4?14 -2x1+3x2-x3+2x4?2x1,x2,x3?0,x4无约束(2zk?i??xk?1mxik?(1Max s. t .-4x1xx1,x2共3 页(2)解:加入人工变量x1,x2,x3,…xn,得:Max s=(1/pk)? i?1n?k?1m?ikxik-Mx1-Mx2-…..-Mxnm(1)max z=2x1+3x2+4x3+7x4 2x1+3x2-x3-4x4=8x1-2x2+6x3-7x4=-3x1,x2,x3,x4?0(2)max z=5x1-2x2+3x3-6x4共4 页x1+2x2+3x3+4x4=72x1+x2+x3+2x4=3x1x2x3x4?0(1)解:系数矩阵A是:?23?1?4??1?26?7? ??令A=(P1,P2,P3,P4)P1与P2线形无关,以(P1,P2有2x1+3x2=8+x3+4x4x1-2x2=-3-6x3+7x4令非基变量x3,x4解得:x1=1;x2=2基解0,0)T为可行解z1=8(2)同理,以(P=(45/13,0,-14/13,0)T是非可行解;3以(P1,P4X(3)=,,7/5)T是可行解,z3=117/5;(4)以(P2,P=(,45/16,7/16,0)T是可行解,z4=163/16;3以(P2,P4)为基,基解X(5)0,68/29,0,-7/29)T是非可行解;(6)TX以(P4,P)为基,基解=(0,0,-68/31,-45/31是非可行解;)3最大值为z3=117/5;最优解X(3)=(34/5,0,0,7/5)T。
运筹学试题及答案
运筹学试题及答案考试时间:120分钟命题人:XXX一、选择题(共60分)1. 运筹学的核心思想是:A. 尽可能地满足需求B. 确定最优决策C. 提高运营效率D. 预测未来趋势答案:B2. 下列哪个不是运筹学的应用领域?A. 生产调度B. 金融风险管理C. 市场营销D. 交通规划答案:C3. 线性规划是研究下列问题的数学方法:A. 最大化目标函数B. 最小化目标函数C. 求解等式系统D. 优化约束条件答案:D4. 整数规划是线性规划的扩展,其特点是:A. 变量只能取整数值B. 变量可以取任意实数值C. 目标函数必须是整数D. 约束条件必须是整数答案:A5. 运筹学中的最短路径问题是指:A. 在有向图中找到从起点到终点的最短路径B. 在无向图中找到连接所有节点的最短路径C. 在网络中找到连接所有节点的最短路径D. 在带权图中找到权值最小的路径答案:A二、计算题(共40分)1. 某工厂有3个生产车间,分别需要完成4个任务。
完成每个任务所需时间如下:车间1:10小时车间2:8小时车间3:6小时为了提高效率,每个车间只能同时进行一个任务。
请问应如何分配任务,才能使得所有任务完成的时间最短?答案:将任务按照时间从大到小排序分配,先将任务分配给车间1和车间2,然后再将任务分配给车间3。
具体分配如下:车间1:10小时(任务1)车间2:8小时(任务2)车间3:6小时(任务3)车间1:18小时(任务1+任务4)车间2:16小时(任务2+任务4)车间3:12小时(任务3)总时间为18小时。
2. 某物流公司需要将货物从发货仓库A送至目的地仓库B。
货物可通过3条不同的路径运送,分别需要的运输时间为:路径1:6小时路径2:8小时路径3:10小时若考虑各路径的运输成本,路径1的运输成本为100元/小时,路径2的运输成本为150元/小时,路径3的运输成本为120元/小时。
请问应如何选择路径,使得运输成本最低?答案:计算各路径的单位成本,并选择单位成本最低的路径。
运筹学试题及答案
运筹学试题及答案运筹学试题及答案一、选择题:从下列四个选项中选择正确的答案。
1. 运筹学一词最初来自于哪个国家?A. 中国B. 美国C. 英国D. 德国答案:B. 美国2. 运筹学的主要目标是什么?A. 提高企业的生产效率B. 降低企业的成本C. 提高企业的利润D. 优化资源的利用答案:D. 优化资源的利用3. 下列哪个不是运筹学的研究方法?A. 线性规划B. 动态规划C. 模拟D. 微积分答案:D. 微积分4. 下列哪个是运筹学的一个应用领域?A. 人力资源管理B. 市场营销C. 金融投资D. 以上都是答案:D. 以上都是二、填空题:根据题目要求,在空格中填入正确的答案。
1. 线性规划是运筹学中的一种常用方法,其目标是在一定的约束条件下,______线性目标的最优解。
答案:最大化或最小化2. 动态规划是一种解决_______过程中的最优化问题的方法。
答案:多阶段决策3. 供应链管理中,______是指将不同的物流节点连接起来,实现物流流程的顺畅和高效。
答案:协调4. 在项目管理中,______图是一种重要的工具,用于展示项目活动与任务之间的依赖关系。
答案:网络三、问答题:根据题目要求,回答问题。
1. 什么是线性规划?请简要解释线性规划的基本原理。
答:线性规划是一种数学优化方法,通过建立线性数学模型,以线性目标函数和线性约束条件为基础,寻找使目标函数最大或最小的决策变量值。
其基本原理是通过确定目标函数的优化方向和约束条件,使用线性代数和数学规划理论进行求解,得出最优解。
2. 动态规划在运筹学中的应用有哪些?请举例说明。
答:动态规划在运筹学中有广泛的应用,例如在资源分配、生产计划、货物调度等方面。
举个例子就是在货物调度中,通过动态规划的方法可以确定最优的调度方案,使得货物的运输成本最小化,货物的运输时间最短化。
3. 什么是供应链管理?为什么供应链管理对企业的重要性?答:供应链管理是指协调各个物流节点,包括原材料供应、生产、仓储、运输和客户服务等环节,实现产品或服务的流动和交付。
(完整版)《运筹学》习题集
第一章线性规划1.1将下述线性规划问题化成标准形式1)min z=-3x1+4x2-2x3+5 x4-x2+2x3-x4=-24xst. x1+x2-x3+2 x4 ≤14-2x1+3x2+x3-x4 ≥2x1,x2,x3≥0,x4无约束2)min z =2x1-2x2+3x3+x2+x3=4-xst. -2x1+x2-x3≤6x1≤0 ,x2≥0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。
1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)min z=5x1-2x2+3x3+2x4x1+2x2+3x3+4x4=7st2x1+2x2+x3 +2x4=3x1,x2,x3,x4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。
1) maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。
1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.61.7某班有男生30人,女生20人,周日去植树。
运筹学练习题
运筹学练习题1、 用图解法求下列线性规划问题:⎪⎩⎪⎨⎧≥≥+≥++=0,42366432min 21212121x x x x x x x x z2、用单纯形法求下列线性规划问题:1212312123max 10534952 8,,0z x x x x x x x x x x =+++=⎧⎪+≤⎨⎪≥⎩ 3、 线性规划问题0,,max ≥==X b AX CX z ,设)0(X为问题的最优解。
若目标函数中用*C 代替C 后,问题的最优解变为*X ,证明:0)*)(*()0(≥--X X C C4、某饲养场饲养动物出售,设没头动物每天至少需700g 蛋白质、30g 矿物质、100g 维生素。
要求确定既满足动物生长的营养需要,又使费用最省的选用饲料的方案。
(只建立模型,不求解)5、 某医院护士值班班次、每班工作时间及各班所需护士数如下表,每班护士值班开始向病房报到,试决定:(1) 若护士上班后连续工作8h ,该医院最少需要多少名护士? (2) 若除22:00上班的护士连续工作8h 外(取消第6班),其它护士班次由医院排定上6、⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≤++≤++≤+≤+++++=)4,3,2,1(096628342max 321432214214321j x x x x x x x x x x x x x x x x z j要求:(1)写出对偶问题;(2)已知对偶问题的最优解为)0,4,2,2(*=X ,试根据对偶理论直接求出对偶问题的最优解。
7、下表给出了各产地和各销地的产量和销量,以及各产地至各销地的单位运价,试用表上作业法求最优解:10个井位的代号为12310,,s s s s ,相应的钻井费用为1210,,,c c c ,并且井位选择上要满足下列限制条件:①选择了1s 和7s 就不能选择钻探8s ;反过来也一样;②选择了3s 或4s 就不能选5s ;反过来也一样;③在5678,,,s s s s 中最多只能选两个;试建立这个问题的整数规划模型。
运筹学试题及答案
运筹学试题及答案运筹学试题及答案一、选择题1. 运筹学是一门综合应用学科,它的研究对象是哪些问题?A. 经济决策问题B. 工程管理问题C. 交通运输问题D. 能源问题E. 以上都是答案:E. 以上都是2. 下列哪项不是运筹学的研究方法?A. 数学规划B. 数据分析C. 模拟仿真D. 统计推断答案:D. 统计推断3. 运筹学中的线性规划是一种用于解决什么类型的问题?A. 最小化问题B. 最大化问题C. 平衡问题D. 优化问题答案:D. 优化问题4. 运筹学中使用的线性规划求解算法有哪些?A. 单纯形法B. 整数规划法C. 动态规划法D. 匈牙利算法答案:A. 单纯形法5. 运筹学中的最优化问题可以分为哪两类?A. 离散最优化和连续最优化B. 线性最优化和非线性最优化C. 线性最优化和整数最优化D. 线性最优化和动态最优化答案:B. 线性最优化和非线性最优化二、判断题1. 运筹学只研究最优化问题,不研究约束条件。
答案:错误2. 运筹学只能用于解决企业管理问题,不适用于其他领域。
答案:错误3. 数学规划是运筹学的重要方法之一,但并不是唯一的方法。
答案:正确4. 运筹学的研究对象只包括一些实际运作困难的问题。
答案:错误5. 线性规划只适用于线性关系,不能处理非线性关系。
答案:正确三、简答题1. 什么是运筹学?答:运筹学是一门综合应用学科,通过数学建模和优化方法来解决经济、工程、管理、交通运输等领域中的优化问题。
它体现了一种科学的决策方法和管理思维,可以帮助人们做出最优决策。
2. 运筹学的主要研究方法有哪些?答:运筹学的主要研究方法包括数学规划、数据分析、模拟仿真和统计推断。
其中,数学规划是运筹学中最重要的方法之一,包括线性规划、整数规划、动态规划等。
数据分析通过对大量数据的统计和分析来揭示内在的规律,模拟仿真通过模拟现实场景进行实验和推演来验证决策方案的可行性,统计推断通过对样本数据进行概率分析和推断来进行决策。
运筹学习题精选
运筹学习题精选第一章线性规划及单纯形法选择1.在线性规划模型中,没有非负约束的变量称为……………………………………………………( C )A.多余变量 B.松弛变量 C.自由变量 D.人工变量2.约束条件为0AX的线性规划问题的可行解集b,≥=X 是………………………………………( B )A.补集 B.凸集 C.交集 D.凹集3.线性规划问题若有最优解,则一定可以在可行域的( C)上达到。
A.内点 B.外点 C.顶点 D.几何点4.线性规划标准型中bi(i=1,2,……m)必须是…………………………………………………( B)A.正数 B.非负数 C.无约束 D.非零的5.线性规划问题的基本可行解X对应于可行域D 的………………………………………………( D)A.外点 B.所有点 C.内点 D.极点6.基本可行解中的非零变量的个数小于约束条件数时,该问题可求得……………………………( B ) A.基本解 B.退化解 C.多重解 D.无解7.满足线性规划问题全部约束条件的解称为…………………………………………………( C )A.最优解 B.基本解 C.可行解 D.多重解8.线性规划一般模型中,自由变量可以用两个非负变量的(B )代换。
A.和 B.差 C.积 D.商9.当满足最优检验,且检验数为零的变量的个数大于基变量的个数时,可求得………………………( A )A .多重解B .无解C .正则解D .退化解 10.若线性规划问题有最优解,则必定存在一个( D )是最优解。
A .无穷多解 B. 基解 C. 可行解 D. 基可行解 填空计算 1. 某厂生产甲、乙、丙三种产品,已知有关数据如下表所示,求使该厂获利最大的生产计划。
2. 目标函数为max Z =28x4+x5+2x6,约束形式为“≤”,且x1,x2,x3为松弛变量,表中的解代入目标函数中得Z=14,求出a~g 的值,并判断是否→j c 0 0 0 28 1 2B C 基 b 1x 2x 3x 4x5x 6x 2 6x A 3 0 -14/3 0 1 1 0 2x 5 6 D 2 0 5/2 0 28 4x 0 0 E F 1 0 0 j j z c - B C 0 0 -1 G3. 某工厂生产A 、B 两种产品,已知生产A 每公斤要用煤6吨、电4度、劳动力3个;生产B 每公斤要用煤4吨、电5度、劳动力10个。
运筹学试题及答案4套汇总
《运筹学》试卷一一、(15分)用图解法求解下列线性规划问题二、(20分)下表为某求极大值线性规划问题的初始单纯形表及迭代后的表,、为松弛变量,试求表中到的值及各变量下标到的值。
-1311611 -2 002 -111/21/214 07三、(15分)用图解法求解矩阵对策,其中四、(20分)(1)某项工程由8个工序组成,各工序之间的关系为工序 a b c d e f g h —— a a b,c b,c,d b,c,d e 紧前工序试画出该工程的网络图。
(2)试计算下面工程网络图中各事项发生的最早、最迟时间及关键线路(箭线下的数字是完成该工序的所需时间,单位:天)五、(15分)已知线性规划问题其对偶问题最优解为,试根据对偶理论求原问题的最优解。
六、(15分)用动态规划法求解下面问题:七、(30分)已知线性规划问题用单纯形法求得最优单纯形表如下,试分析在下列各种条件单独变化的情况下,最优解将如何变化。
2-11 02311311111610-3-1-2(1)目标函数变为;(2)约束条件右端项由变为;(3)增加一个新的约束:八、(20分)某地区有A、B、C三个化肥厂向甲、乙、丙、丁四个销地供应同一种化肥,已知产地产量、销地需求量和各产地运往不同销地单位运价如下表,试用最小元素法确定初始调运方案,并调整求最优运输方案销地甲乙丙丁产量产地A 4 12 4 11 16B 2 10 3 9 10C 8 5 11 6 22 需求量8 14 12 14 48《运筹学》试卷二一、(20分)已知线性规划问题:(a)写出其对偶问题;(b)用图解法求对偶问题的解;(c)利用(b)的结果及对偶性质求原问题的解。
二、(20分)已知运输表如下:销地B1B2B3B4供应量产地A1 3 2 7 6 50A2 7 5 2 3 60A3 2 5 4 5 25需求量60 40 20 15(1)用最小元素法确定初始调运方案;(2)确定最优运输方案及最低运费。
运筹学考试试题
运筹学考试试题
问题一:线性规划
某食品公司有两种包装酱油的产品,产品 A 和产品 B。
产品 A 需
要 2 包的玻璃瓶和 3 包的金属瓶,产品 B 需要 4 包的玻璃瓶和 1 包的金属瓶。
公司每天共有 60 包玻璃瓶和 50 包金属瓶可用于生产。
产品
A 毛利为 10 元/包,产品
B 毛利为 15 元/包。
为了最大限度地提高公司的毛利,请问公司每天应该生产多少包产品 A 和产品 B?
问题二:整数规划
某快递公司需要派送多个包裹,在不同的送货地点停靠。
每个派送地点需要 1 辆专门的送货车。
快递公司最多可以使用 5 辆送货车。
每辆车的容量为 30 个包裹。
每个送货地点的包裹量如下:地点 1 需要 12 个包裹,地点 2 需要 8 个包裹,地点 3 需要 15 个包裹,地点 4 需要 10 个包裹。
每个送货地点停靠一辆车后,可以继续往下一个地点派送。
请问如何安排送货车来最大化送货量?
问题三:动态规划
假设有一个 3×3 的方格矩阵,每个格子里都写有一个正整数。
从左上角出发,每次只能向右或向下移动,直到达到右下角。
路线上所有经过的格子的数字加起来就是这条路径的价值。
求最优路径和的最大值。
问题四:网络流
某市有 4 座工厂,生产不同种类的零件。
每座工厂每天的生产能力不同,且每种零件的需求也不相同。
如何设计一个合理的生产调度方案,使得所有工厂的产量最大化,且满足市场对不同零件的需求?
以上考试试题仅供参考,实际考试内容以试卷内容为准。
祝考试顺利!。
运筹学习题
运筹学习题一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2、图解法适用于含有两个变量的线性规划问题。
3、线性规划问题的可行解是指满足所有约束条件的解。
4、在线性规划问题的基本解中,所有的非基变量等于零。
5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7、线性规划问题有可行解,则必有基可行解。
8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。
9、满足非负条件的基本解称为基本可行解。
10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11、将线性规划模型化成标准形式时,“期约束条件要在不等式左_端加入松弛变量。
12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13、线性规划问题可分为目标函数求极大值和极小_值两类。
14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。
17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj同时令Xj=Xj-Xj。
20、表达线性规划的简式中目标函数为ijij21 、、(2 、1 P5)) 线性规划一般表达式中,aij 表示该元素位置在二、单选题1、如果一个线性规划问题有n 个变量,m 个约束方程(m<n) ,系数矩阵的数为m,则基可行解的个数最为_C_ ’A、m个B、n 个C、CnD、Cm 个2、下列图形中阴影部分构成的集合是凸集的是A mn3、线性规划模型不包括下列_ D要素。
(完整word版)运筹学习题及答案
34。某个常数bi波动时,最优表中引起变化的有(A)
A.B-1bB。 C.B-1D.B-1N
35.某个常数bi波动时,最优表中引起变化的有(C)
A. 检验数 B。CBB-1C。CBB-1b D。系数矩阵
36.任意一个容量的网络中,从起点到终点的最大流的流量等于分离起点和终点的任一割集的容量.(B)A.正确B。错误C.不一定D。无法判断
9.对偶单纯形法迭代中的主元素一定是负元素( )A
A。正确B.错误C。不一定D。无法判断
10。对偶单纯形法求解极大化线性规划时,如果不按照最小化比值的方法选取什么变量则在下一个解中至少有一个变量为正( )B
A。换出变量B.换入变量C.非基变量D。基变量
11.对 问题的标准型: ,利用单纯形表求解时,每做一次换基迭代,都能保证它相应的目标函数值 必为()B
A.换出变量B.换入变量C。非基变量D。基变量
29。可行解是满足约束条件和非负条件的决策变量的一组取值.( )A
A。正确B。错误C。不一定D。无法判断
30。 连通图G有n个点,其部分树是T,则有(C)
A。T有n个点n条边 B.T的长度等于G的每条边的长度之和
C.T有n个点n-1条边 D。T有n-1个点n条边
47.通过什么方法或者技巧可以把产销不平衡运输问题转化为产销平衡运输问题(C)
A。非线性问题的线性化技巧B.静态问题的动态处理
C.引入虚拟产地或者销地D。引入人工变量
48.为什么单纯形法迭代的每一个解都是可行解?因为遵循了下列规则 (A)
A。按最小比值规则选择出基变量 B。先进基后出基规则
C。标准型要求变量非负规则 D。按检验数最大的变量进基规则
运筹学习题
一、判断1、在线性规划的模型中全部变量要求是整数。
( × )2、如果在单纯形表中,所有的检验数都为正,则对应的基本可行解就是最优解。
( × )3、一个图中的最短边一定包含在最短路内。
( × )4、如线性规划问题存在最优解,则最优解一定对应可行域边界上的一个点。
( √ )5、在二元线性规划问题中,如问题有可行解,则一定有最优解。
( × ) 1、在线性规划的模型中全部变量要求是整数。
( × ) 2、产地数与销地数相等的运输问题是产销平衡运输问题。
( × )3、如果在单纯形表中,所有的检验数都为正,则对应的基本可行解就是最优解。
( × )4、如线性规划问题存在最优解,则最优解一定对应可行域边界上的一个点。
( √ )5、无圈且连通简单图G 是树图。
( √ )1、运筹学主要研究对象是各种有组织系统的管理问题及生产经营活动。
( √ )2、运筹学的目的在于针对所研究的系统求得一个合理应用人才,物力和财力的最佳方案。
( √ )3、如果在单纯形表中,所有的检验数都为正,则对应的基本可行解就是最优解。
( × ) 5、运筹学最早是应用在生产管理方面。
( × ) 6、在线性规划的模型中全部变量要求是整数。
( × )7、在二元线性规划问题中,如问题有可行解,则一定有最优解。
( × )二、单项选择题1、线性规划问题的数学模型由目标函数、约束条件和( D )三个部分组成。
A. 非负条件 B. 顶点集合 C. 最优解 D. 决策变量2、对于线性规划121231241234max 24..3451,,,0z x x s t x x x x x x x x x x =-+-+=⎧⎪++=⎨⎪≥⎩如果取基1110B ⎛⎫= ⎪⎝⎭,则对于基B 的基解为( B )。
A.(0,0,4,1)T X =B.(1,0,3,0)TX =C.(4,0,0,3)TX=- D.(23/8,3/8,0,0)TX=-3、已知x1= ( 2, 4), x2=(4, 8)是某线性规划问题的两个最优解,则( B )也是该线性规划问题的最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章思考题、主要概念及内容图解法、图解法的灵敏度分析1. 考虑下面的线性规划问题:max z=2x1+3x2;约束条件:x1+2x2≤6,5x1+3x2≤15,x1,x2≥0.(1) 画出其可行域.(2) 当z=6时,画出等值线2x1+3x2=6.(3) 用图解法求出其最优解以及最优目标函数值.2. 用图解法求解下列线性规划问题,并指出哪个问题具有惟一最优解、无穷多最优解、无界解或无可行解.(1) min f=6x1+4x2;约束条件:2x1+x2≥1,3x1+4x2≥3,x1,x2≥0.(2) max z=4x1+8x2;约束条件:2x1+2x2≤10,-x1+x2≥8,x1,x2≥0.(3) max z=3x1-2x2;约束条件:x1+x2≤1,2x1+2x2≥4,x1,x2≥0.(4) max z=3x1+9x2;约束条件:x1+3x2≤22,-x1+x2≤4,x2≤6,2x1-5x2≤0,x1,x2≥03. 将下述线性规划问题化成标准形式:(1) max f=3x1+2x2;约束条件:9x1+2x2≤30,3x1+2x2≤13,2x1+2x2≤9,x1,x2≥0.(2) min f=4x1+6x2;约束条件:3x1-x2≥6,x1+2x2≤10,7x1-6x2=4,x1,x2≥0.(3) min f=-x1-2x2;约束条件:3x1+5x2≤70,-2x1-5x2=50,-3x1+2x2≥30,x1≤0,-∞≤x2≤∞.(提示:可以令x′1=-x1,这样可得x′1≥0.同样可以令x′2-x″2=x2,其中x′2,x″2≥0.可见当x′2≥x″2时,x2≥0;当x′2≤x″2时,x2≤0,即-∞≤x2≤∞.这样原线性规划问题可以化为含有决策变量x′1,x′2,x″2的线性规划问题,这里决策变量x′1,x′2,x″2≥0.)4. 考虑下面的线性规划问题:min f=11x1+8x2;约束条件:10x1+2x2≥20,3x1+3x2≥18,4x1+9x2≥36,x1,x2≥0.(1) 用图解法求解.(2) 写出此线性规划问题的标准形式.(3) 求出此线性规划问题的三个剩余变量的值.5. 考虑下面的线性规划问题:max f=2x1+3x2;约束条件:x1+x2≤10,2x1+x2≥4,x1+3x2≤24,2x1+x2≤16,x1,x2≥0.(1) 用图解法求解.(2) 假定c2值不变,求出使其最优解不变的c1值的变化范围.(3) 假定c1值不变,求出使其最优解不变的c2值的变化范围.(4) 当c1值从2变为4,c2值不变时,求出新的最优解.(5) 当c1值不变,c2值从3变为1时,求出新的最优解.(6) 当c1值从2变为25,c2值从3变为25时,其最优解是否变化?为什么?6. 某公司正在制造两种产品,产品Ⅰ和产品Ⅱ,每天的产量分别为30个和120个,利润分别为500元/个和400元/个.公司负责制造的副总经理希望了解是否可以通过改变这两种产品的数量而提高公司的利润.公司各个车间的加工能力和制造单位产品所需的加工工时如表2-4(25页)所示.(1) 假设生产的全部产品都能销售出去,用图解法确定最优产品组合,即确定使得总利润最大的产品Ⅰ和产品Ⅱ的每天的产量.(2) 在(1)所求得的最优产品组合中,在四个车间中哪些车间的能力还有剩余?剩余多少?这在线性规划中称为剩余变量还是松弛变量?(3) 四个车间加工能力的对偶价格各为多少?即四个车间的加工能力分别增加一个加工时数时能给公司带来多少额外的利润?(4) 当产品Ⅰ的利润不变时,产品Ⅱ的利润在什么范围内变化,此最优解不变?当产品Ⅱ的利润不变时,产品Ⅰ的利润在什么范围内变化,此最优解不变?(5) 当产品Ⅰ的利润从500元/个降为450元/个,而产品Ⅱ的利润从400元/个增加为430元/个时,原来的最优产品组合是否还是最优产品组合?如有变化,新的最优产品组合是什么?第四章人力资源的分配问题;生产计划的问题;套裁下料问题;配料问题;投资问题。
1、某锅炉制造厂,要制造一种新型锅炉10台,需要原材料为63.5×4 mm的锅炉钢管,每台锅炉需要不同长度的锅炉钢管数量如表4-12所示.库存的原材料的长度只有5 500 mm一种规格,问如何下料,才能使总的用料根数最少?需要多少根原材料?答案:296.667根2、某快餐店坐落在一个旅游景点中.这个旅游景点远离市区,平时游客不多,而在每个星期六游客猛增.快餐店主要为旅客提供低价位的快餐服务.该快餐店雇佣了两名正式职工,正式职工每天工作8小时.其余工作由临时工来担任,临时工每班工作4个小时.在星期六,该快餐店从上午11时开始营业到下午10时关门.根据游客就餐情况,在星期六每个营业小时所需职工数(包括正式工和临时工)如表4-13所示.已知一名正式职工11点开始上班,工作4个小时后,休息1个小时,而后再工作4个小时;另一名正式职工13点开始上班,工作4个小时后,休息1个小时,而后再工作4个小时.又知临时工每小时的工资为4元.(1) 在满足对职工需求的条件下,如何安排临时工的班次,使得使用临时工的成本最小?(2) 这时付给临时工的工资总额为多少?一共需要安排多少临时工的班次?请用剩余变量来说明应该安排一些临时工的3小时工作时间的班次,可使得总成本更小.(3) 如果临时工每班工作时间可以是3小时,也可以是4小时,那么应如何安排临时工的班次,使得使用临时工的总成本最小?这样比(1)能节省多少费用?这时要安排多少临时工班次?答案:(2)工资总额为320元;一共需要安排80个班次;(3)此时总成本为264元;需要安排66个临时班次;3、前进电器厂生产A,B,C三种产品,有关资料如表4-14所示.(1) 在资源限量及市场容量允许的条件下,如何安排生产使获利最多?(2) 说明A,B,C三种产品的市场容量的对偶价格以及材料、台时的对偶价格的含义,并对其进行灵敏度分析.如要开拓市场应当首先开拓哪种产品的市场?如要增加资源,则应在什么价位上增加机器台时数和材料数量?答案:该厂的最大利润为6400元第五章单纯形法的基本思路和原理单纯形法的表格形式求目标函数值最小的线型规划的问题的单纯形表解法用单纯形法或大M法解下列线性规划问题,并指出问题的解属于哪一类.(1) maxz = 3 x1 + 12 x2;约束条件:2 x1 + 2 x2 ≤ 11,- x1 + x2 ≥ 8,x1,x2 ≥ 0.(2) min4 x1 + 3 x2;约束条件:2 x1 + 1/2 x2 ≥ 10,2 x1 ≥ 4,4 x1 + 4 x2 ≥ 32,x1,x2 ≥ 0.(3) max2 x1 + 3 x2;约束条件:8 x1 + 6 x2 ≥ 24,3 x1 + 6 x2 ≥ 12,x2 ≥ 5,x1,x2 ≥ 0.(4) maxz = 2 x1 + x2 + x3;约束条件:4 x1 + 2 x2 + 2 x3 ≥ 4,2 x1 + 4 x2 ≤20,4 x1 + 8 x2 + 2 x3 ≤16,x1,x2,x3 ≥0.第七章思考题、主要概念及内容运输模型运输问题的计算机求解运输问题的运用运输问题的表上作业法第八章整数规划的图解法整数规划的计算机求解整数规划的应用整数规划的分枝定界法1. 有四个工人,要分别指派他们完成四项不同的工作,每人做各项工作所消耗的时间如下表所示,问应如何指派工作,才能使总的消耗时间为最少。
(试建立该问题的整数规划数学模型,不用求解)2. 某钻井队要从以下10个可供选择的井位中确定5个钻井探油,使总的钻探费用为最小。
若10个井位的代号为S1, S2,…, S10,相应的钻探费用为C1, C2,…, C10,并且井位选择方面要满足下列限制条件:或选择S1和S7,或选择钻探S8;选择了S3或S4就不能选S5,或反过来也一样;在S5,S6,S7,S8中最多只能选两个;试建立这个问题的整数规划模型并求解。
3. 某畜产品公司计划在市区的东、西、南、北四区建立销售门市部,拟议中有10个位置Ai (i=1,2,3,…,10)可供选择,考虑到各地区居民的消费水平及居民居住密集度,规定:在东区由A1,A2,A3三个点中至少选择两个;在西区由A4,A5两个点中至少选一个;在南区由A6,A7两个点中至少选一个;在北区由A8,A9,A10三个点中至多选两个。
Ai各点的设备投资及每年可获利润由于地点不同都是不一样的,预测情况见下表(单位:万元)所示。
但投资总额不能超过820万元,问应选择哪几个销售点,可使年利润为最大?建立上述问题的整数规划模型并求解。
第十章基本概念、基本方程与最优化原理第十一章图与网络最短路问题最小生成树问题最大流问题与最小费用最大流问题第十六章决策分析不确定情况下的决策风险性情况下的决策效用理论在决策中的应用层次分析法第十二章车间作业计划模型统筹方法练习(p279 习题1)在一台车床上要加工7个零件,表12-18(p279)列出它们的加工时间,请确定其加工顺序,以使各零件在车间里停留的平均时间最短.练习(p279 习题2)有7个零件,先要在钻床上钻孔,然后在磨床加工.表12-19(p279)列出了各个零件的加工时间.确定各零件加工顺序,以使总加工时间最短,并画出相应的线条图.各台机器的停工时间是多少?第十三章经济订购批量存储模型经济生产批量模型允许缺货的经济订货批量模型允许缺货的经济生产批量模型经济订货批量折扣模型需求随记的单一周期的存储模型需求为随机变量的订货批量、在订货点模型需求为随机变量的定期检查存储量模型物料需求计划(MRP)与准时化生产方式(JIT)简介1. 某医院每年需要某种药品35600瓶,每次定购费用需要500元,若每瓶药单价为2.5元,每瓶药的年保管费用为36.5元,设对药品的需求是连续均匀的,且不能缺货,制药厂对定购(每次)600瓶以上时优惠5%,定购1200瓶以上时优惠10%,如果当天订货可当天付货,该医院应取什么样的采购策略可满足全年需求。
2. 在确定性存贮问题中,记C1为订货费,C2为存贮费,C3为缺货费,R为需求率,设C1、C2和R均为常数,不需要提前订货,且一订货即可全部供货。
(1)请分别写出不允许缺货和允许缺货(缺货要补)两种条件下最佳批量相应的总费用表达式,并说明允许缺货时的费用不会超过不允许缺货时的费用。
(2)若R=50箱/月,C1=60元/次,C2=40元/月,允许缺货且缺货要补,C3=40元/箱.周。
求最佳订货批量及订货间隔时间。
3. 某菜场每天售货量r(单位:万斤)的经验分布函数为:若每百斤进货价为120元,售出价为150元,若当天不能售出,则剩余的菜按每百斤30元处理,求菜场的每天的最佳进货量。