运筹学习题精选
运筹学习题

运筹学复习题第一章 线性规划及单纯形法一、单选题1. 线性规划具有无界解是指A. 可行解集合无界B. 有相同的最小比值C. 存在某个检验数0k λ>,且0(1,2,,)ik a i m ≤=D. 最优表中所有非基变量的检验数非零 2. 线性规划具有唯一最优解是指A. 最优表中非基变量检验数全部非零B. 不加入人工变量就可进行单纯形法计算C. 最优表中存在非基变量的检验数为零D. 可行解集合有界 3. 线性规划具有多重最优解是指A. 目标函数系数与某约束系数对应成比例B. 最优表中存在非基变量的检验数为零C. 可行解集合无界D. 基变量全部大于零 4. 使函数Z=-x 1+x 2+2x 3 减小最快的方向是A. (-1,1,2)B. (1,-1,-2)C. (1,1,2)D. (-1,-1,-2) 5. 当线性规划的可行解集合非空时一定 A. 包含点X =(0,0,···,0) B. 有界 C. 无界 D. 是凸集 6. 线性规划的退化基可行解是指A. 基可行解中存在为零的非基变量B. 基可行解中存在为零的基变量C. 非基变量的检验数为零D. 所有基变量不等于零 7. 线性规划无可行解是指A. 第一阶段最优目标函数值等于零B. 进基列系数非正C. 用大M 法求解时,最优解中还有非零的人工变量D. 有两个相同的最小比值 8. 若线性规划不加入人工变量就可以进行单纯形法计算A. 一定有最优解B. 一定有可行解C. 可能无可行解D. 全部约束是小于等于的形式 9. 设线性规划的约束条件为123124222401234 (,,,)jx x x x x x x j ⎧++=⎪++=⎨⎪≥=⎩ 则非退化基本可行解是A. (2, 0,0, 0)B. (0,2,0,0)C. (1,1,0,0)D. (0,0,2,4) 10. 设线性规划的约束条件为123124222401234 (,,,)jx x x x x x x j ⎧++=⎪++=⎨⎪≥=⎩ 则非可行解是A. (2,0,0, 0)B. (0,1,1,2)C. (1,0,1,0)D. (1,1,0,0) 11. 线性规划可行域的顶点一定是A. 可行解B. 非基本解C. 非可行解D. 是最优解 12. 1234min z x x =+1212124220,x x x x x ⎧+≥⎪+≤⎨⎪≥⎩ A. 无可行解 B.有唯一最优解 C.有无界解 D.有多重最优解13. 12122124432450,max z x x x x x x =-⎧+≤⎪≤⎨⎪≥⎩A. 无可行解B. 有唯一最优解C. 有多重最优解D. 有无界解 14. X 是线性规划的基本可行解则有A. X 中的基变量非负,非基变量为零B. X 中的基变量非零,非基变量为零C. X 不是基本解D. X 不一定满足约束条件 15. X 是线性规划的可行解,则错误的结论是A. X 可能是基本解B. X 可能是基本可行解C. X 满足所有约束条件D. X 是基本可行解 16. 下例错误的说法是A. 标准型的目标函数是求最大值 B 标准型的目标函数是求最小值 C. 标准型的常数项非正 D. 标准型的变量一定要非负 17. 为什么单纯形法迭代的每一个解都是可行解?答:因为遵循了下列规则 A. 按最小比值规则选择换出变量B. 先进基后出基规则C. 标准型要求变量非负规则D. 按检验数最大的变量选择换入变量 18. 线性规划标准型的系数矩阵A m×n ,要求A. 秩(A )=m 并且m <nB. 秩(A )=m 并且m <=nC. 秩(A )=m 并且m =nD. 秩(A )=n 并且n <m 19. 下例错误的结论是A. 检验数是用来检验可行解是否是最优解的数B. 检验数是目标函数用非基变量表达的系数C. 不同检验数的定义其检验标准也不同D. 检验数就是目标函数的系数 20. 对取值为无约束的变量j x ,通常令'''j j j x x x =-,其中''',0j j x x ≥;在用单纯形法求得的解中不可能出现A. '0j x =,''0j x ≥ B. '0j x =,''0j x = C. '0j x >,''0>j x D. '0j x >,''0j x =21.运筹学是一门A. 定量分析的学科B. 定性分析的学科C. 定量与定性相结合的学科D. 定量与定性相结合的学科,其中分析与应用属于定性分析,建立模型与求解属于定量分析二、设某种动物每天至少需要700克蛋白质、30克矿物质、100毫克维生素。
运筹试题

一、回答下面问题(每小题3分)1.在单纯形法计算中,如果不按最小比值规则确定换基变量,则在下一个解中一定会出现。
2. 原问题无界时,其对偶问题,反之,当对偶问题无可行解时,原问题。
3.已知y0为线性规划的对偶问题的最优解,若y0>0,说明在最优生产计划中对应的资源。
4.已知y0为线性规划的对偶问题的最优解,若y0=0,说明在最优生产计划中对应的资源。
5.已知线形规划问题的原问题有无穷多最优解,则其对偶问题的最优解一定是。
6.m个产地n个销地的产销平衡运输问题的模型其决策变量的个数是个;基变量的个数是个;决策变量的系数列向量的特点是。
7.用位势法求解运输问题,位势的含义是;行位势与列位势中有一个的取值是任意的,这是因为。
8.用割平面法求解整数规划,割平面割去了;但未割去。
9.按教材中的符号写出最大流问题的数学模型。
10.什么是截集,何谓最小截集?二、(10分)下表是用单纯形法计算到某一步的表格,已知该线性规划的目标函数值为z=14表1c j x1x2x3x4x3 x12acde11/51σj b-1f g(1)求a—g的值;(8分)(2)表中给出的解是否为最优解。
(2分)三、(每小题6分共12分)车间为全厂生产一种零件,其生产准备费是100元,存贮费是0.05元/天·个,需求量为每天30个,而且要保证供应。
(1)设车间生产所需零件的时间很短(即看成瞬时供应);(2)设车间生产零件的生产率是50个/天。
要求在(1)(2)条件下的最优生产批量Q*,生产间隔期t*和每天的总费用C*。
四、(18分)某公司下属甲、乙两个厂,有A原料360斤,B原料640斤。
甲厂用A、B两种原料生产x1,x2两种产品,乙厂也用A、B两种原料生产x3,x4两种产品。
每种单位产品所消耗各种原料的数量及产值、分配等如下工厂甲分配原料乙分配原料产品x1 x2x3 x4原料AB 8 46 101603305 810 4200310产值(百元) 4 3 3 41.求各厂最优生产计划;(12分)2.问公司能否制定新的资源分配方案使产值更高?(6分)五、(10分)已知有六个村庄,相互间道路的距离如图所示,已知各村庄的小学生数为:A村50人,B村40人,C村40人,D村60人,E村50人,F村90人。
运筹学20道习题

1.已知线性规划(15分)123123123max 3452102351,2,3jZ x x x x x x x x x x j =++⎧+-≤⎪-+≤⎨⎪≥=⎩0,(1)求原问题和对偶问题的最优解;(2)求最优解不变时c j 的变化范围36.解:(1)化标准型 2分 (2)单纯形法 5分(3)最优解X=(0,7,4);Z =48 (2分) (4)对偶问题的最优解Y =(3.4,2.8) (2分)(5)Δc 1≤6,Δc 2≥-17/2,Δc 3≥-6,则 1235(,9),,13c c c ∈-∞≥-≥-(4分)2.某公司要将一批货从三个产地运到四个销地,有关数据如下表所示。
现要求制定调运计划,且依次满足:(1)B 3的供应量不低于需要量; (2)其余销地的供应量不低于85%; (3)A 3给B 3的供应量不低于200; (4)A 2尽可能少给B 1;(5)销地B 2、B 3的供应量尽可能保持平衡。
(6)使总运费最小。
试建立该问题的目标规划数学模型。
3、请用表上作业法解下题,得到最优解,并计算此时总运费:现在有运价表如下:产地销地B1B2B3产量A1 5 1 6 12A2 2 4 0 14A3 3 6 7 4销量9 10 11 30 答案:根据上面运价表以及销量和产量的要求,使用表上作业法:5 1 62 4 03 6 79 10 11得到下面运输方案:检验空格:空格A检验:6 –(0+3) = 3 > 0空格B检验:7 – (3-2) = 6 > 0空格C检验:6 - (1-2) = 7 > 0空格D检验:4 – (1-3)= 6 > 0 故全部符合要求。
总运输费用:2×5 + 3× 2 + 4 × 3 + 10 × 1 + 11 × 0 = 38 答:上面的运输方案为最佳方案,总运费为38。
《运筹学》试题及答案大全

《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。
2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。
4、在图论中,称无圈的连通图为树。
5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。
2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。
⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。
(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。
(完整版)《运筹学》习题集

第一章线性规划1.1将下述线性规划问题化成标准形式1)min z=-3x1+4x2-2x3+5 x4-x2+2x3-x4=-24xst. x1+x2-x3+2 x4 ≤14-2x1+3x2+x3-x4 ≥2x1,x2,x3≥0,x4无约束2)min z =2x1-2x2+3x3+x2+x3=4-xst. -2x1+x2-x3≤6x1≤0 ,x2≥0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。
1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)min z=5x1-2x2+3x3+2x4x1+2x2+3x3+4x4=7st2x1+2x2+x3 +2x4=3x1,x2,x3,x4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。
1) maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。
1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.61.7某班有男生30人,女生20人,周日去植树。
(完整版)运筹学习题集

销地
产地
1
2
3
产量
1
5
1
8
12
2
2
4
1
14
3
3
6
7
4
销量
9
10
11
表3-4
销地
产地
1
2
3
4
5
产量
1
10
2
3
15
9
25
2
5
20
15
2
4
30
3
15
5
14
7
15
20
4
20
15
13
M
8
30
销量
20
20
30
10
25
解:
(1)在表3-3中分别计算出各行和各列的次最小运费和最小运费的差额,填入该表的最右列和最下列。得到:
+ = + +
+ =
建立数学模型:
Max z=(1.25-0.25)*( + )+(2-0.35)*( + )+(2.8-0.5) -(5 +10 )300/6000-(7 +9 +12 )321/10000-(6 +8 )250/4000-(4 +11 )783/7000-7 *200/4000
s.t
2.确定 的范围,使最优解不变;取 ,求最优解;
3.确定 的范围,使最优基不变,取 求最优解;
4.引入 求最优解;
解1.由单纯形方法得
即,原问题的最优解为
例求下面运输问题的最小值解:
1
运筹学习题集

二、填空选择题:(每空格2分,共16分)1、线性规划的解有划的唯一最优解、无穷多最优解、无界解和无可行解四种。
2、在求运费最少的调度划的运划的输问题中,如划的果某划的一非基变量的检验数为4,则说明如果在该空格中增加一个运量运费将增加划的4 。
3、“如果线性规划的原问题存在可行解,则其对划的偶问题一定存在可行解”,这句话对还是划的错?错4、如果某一整数规划:MaxZ=X划的1+X2划的X1+9/1划的2≤1/3X1,X2≥0且均为整数所对应的线性规划(松弛问题)的最优划的解为X1=3/2,X2=10/3,MaxZ=6/29,我们现在划的要对X1进行分枝,划的应该分为X1≤1和X1≥2。
5、在用逆向解法求动态规划时,f k(s k)的含义是:从第k个阶段到第n个阶段的最优解。
6.假设某线性规划的可行解的集合为D,而其所对应的整数规划的可行解集合为B,那么D 和B的关系为 D 包含 B7.已知下表是制订生产计划问题的一张LP最优单纯形表(极大化问题,约束条问:(1)写出B-1=⎪⎪⎪⎭⎫⎝⎛---13/20.3/1312(2)对偶问题的最优解: Y=(5,0,23,0,0)T8. 线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_无解_________;10. 若整数规划的松驰问题的最优解不符合整数要求,假设Xi =bi不符合整数要求,INT(bi )是不超过bi的最大整数,则构造两个约束条件:Xi≥INT(bi)+1 和 Xi≤INT(bi),分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。
11. 知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条问:(1)对偶问题的最优解: Y =(4,0,9,0,0,0)T (2)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛611401102二、计算题(60分)1、已知线性规划(20分)MaxZ=3X 1+4X 2 1+X 2≤5 2X 1+4X 2≤12 3X 1+2X 2≤81,X 2≥02)若C 2从4变成5,最优解是否会发生改变,为什么?3)若b 2的量从12上升到15,最优解是否会发生变化,为什么?4)如果增加一种产品X 6,其P 6=(2,3,1)T ,C 6=4该产品是否应该投产?为什么? 解:1)对偶问题为Minw=5y1+12y2+8y3 y1+2y2+3y 3≥3y1+4y2+2y 3≥4 y1,y2≥02)当C 2从4变成5时, σ4=-9/8 σ5=-1/4由于非基变量的检验数仍然都是小于0的,所以最优解不变。
最全运筹学习题及答案

最全运筹学习题及答案共1 页运筹学习题答案)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。
(1)max z?x1?x25x1+10x2?50x1+x2?1x2?4x1,x2?0(2)min z=x1+1.5x2x1+3x2?3x1+x2?2x1,x2?0(3)+2x2x1-x2?-0.5x1+x2x1,x2?0(4)max z=x1x2x1-x2?03x1-x2?-3x1,x2?0(1)(图略)有唯一可行解,max z=14(2)(图略)有唯一可行解,min z=9/4(3)(图略)无界解(4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。
共2 页(1)min z=-3x1+4x2-2x3+5x4 4x1-x2+2x3-x4=-2x1+x2+3x3-x4?14 -2x1+3x2-x3+2x4?2x1,x2,x3?0,x4无约束(2zk?i??xk?1mxik?(1Max s. t .-4x1xx1,x2共3 页(2)解:加入人工变量x1,x2,x3,…xn,得:Max s=(1/pk)? i?1n?k?1m?ikxik-Mx1-Mx2-…..-Mxnm(1)max z=2x1+3x2+4x3+7x4 2x1+3x2-x3-4x4=8x1-2x2+6x3-7x4=-3x1,x2,x3,x4?0(2)max z=5x1-2x2+3x3-6x4共4 页x1+2x2+3x3+4x4=72x1+x2+x3+2x4=3x1x2x3x4?0(1)解:系数矩阵A是:?23?1?4??1?26?7? ??令A=(P1,P2,P3,P4)P1与P2线形无关,以(P1,P2有2x1+3x2=8+x3+4x4x1-2x2=-3-6x3+7x4令非基变量x3,x4解得:x1=1;x2=2基解0,0)T为可行解z1=8(2)同理,以(P=(45/13,0,-14/13,0)T是非可行解;3以(P1,P4X(3)=,,7/5)T是可行解,z3=117/5;(4)以(P2,P=(,45/16,7/16,0)T是可行解,z4=163/16;3以(P2,P4)为基,基解X(5)0,68/29,0,-7/29)T是非可行解;(6)TX以(P4,P)为基,基解=(0,0,-68/31,-45/31是非可行解;)3最大值为z3=117/5;最优解X(3)=(34/5,0,0,7/5)T。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学习题精选运筹学习题精选第一章线性规划及单纯形法选择1.在线性规划模型中,没有非负约束的变量称为……………………………………………………( C ) A.多余变量 B.松弛变量 C.自由变量 D.人工变量2.约束条件为0AX的线性规划问题的可行解集b,≥=X 是………………………………………( B )A.补集 B.凸集 C.交集 D.凹集3.线性规划问题若有最优解,则一定可以在可行域的( C)上达到。
A.内点 B.外点 C.顶点 D.几何点4.线性规划标准型中bi(i=1,2,……m)必须是…………………………………………………( B) A.正数 B.非负数 C.无约束 D.非零的5.线性规划问题的基本可行解X对应于可行域D 的………………………………………………( D)A.外点 B.所有点 C.内点 D.极点6.基本可行解中的非零变量的个数小于约束条件数时,该问题可求得……………………………( B ) A.基本解 B.退化解 C.多重解 D.无解7.满足线性规划问题全部约束条件的解称为…………………………………………………( C )A.最优解 B.基本解 C.可行解 D.多重解8.线性规划一般模型中,自由变量可以用两个非负变量的(B )代换。
A.和 B.差 C.积 D.商9.当满足最优检验,且检验数为零的变量的个数大于基变量的个数时,可求得………………………( A )第 2 页共 30 页第 3 页 共 30 页A .多重解B .无解C .正则解D .退化解 10.若线性规划问题有最优解,则必定存在一个( D )是最优解。
A .无穷多解 B. 基解 C. 可行解 D. 基可行解 填空计算 1. 某厂生产甲、乙、丙三种产品,已知有关数据如下表所示,求使该厂获利最大的生产计划。
2. 目标函数为max Z =28x4+x5+2x6,约束形式为“≤”,且x1,x2,x3为松弛变量,表中的解代入目标函数中得Z=14,求出a~g 的值,并判断→j c 0 0 0 28 1 2B C 基 b 1x 2x 3x 4x5x 6x 2 6x A 3 0 -14/3 0 1 1 0 2x 5 6 D 2 0 5/2 0 28 4x 0 0 E F 1 0 0 j j z c - B C 0 0 -1 G3.某工厂生产A、B两种产品,已知生产A每公斤要用煤6吨、电4度、劳动力3个;生产B每公斤要用煤4吨、电5度、劳动力10个。
又知每公斤A、B的利润分别为7万元和12万元。
现在该工厂只有煤360吨、电200度、劳动力300个。
问在这种情况下,各生产A、B多少公斤,才能获最大利润,请建立模型[仅建立模型,不求解]。
4.已知单纯形表如下,其中x1,x2,x3表示三种产品的产量,x4,x5是松弛变量(目标函数为max Z)(1)、写出此时生产方案,并判断是否最优生产方案。
(2)、该生产方案下每种产品的机会费用。
(3)、以此表为基础,请求出最优生产方案。
答:(1)生产方案是:不生产1、3两种产品,只生产第2种产品100/3个单位,不是最优方案。
(2)30,45,15.(3)最优生产方案:不生产第3种产品,1、第 4 页共 30 页第 5 页 共 30 页2两种产品各生产20个单位,最大利润1700。
5.给出下面线性规划的标准形式,并用图解法求解122121212max 25156224..5,z x x x x x s t x x x x =+≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩解:标准形式如右下:122312412515max 25156224..5,,z x x x x x x x s t x x x x x =++=⎧⎪++=⎪⎨++=⎪⎪≥⎩L 最优解为:x1=2,x2=3z*=8 资源2剩余66.某公司生产两种产品,其耗材获利情况如下表,问如何获利最大?产品1 产品2资源量原料1 0.4 0.5 20 原料2 0 0.2 6 原料3 0.6 0.3 21 获利 40 30请你(1)建立线性规划模型,(2)并用单纯形法求解,(3)根据单纯形表最终结果分析,若第 6 页 共 30 页产品1的获利上升到56,最优解是否会变化?若同时产品2的获利下降到24,最优解是否会变化? 解:(1)设产品1、2的产量分别为x 1、x 2,可得如下模型:121221212max 40300.40.5200.26..0.60.321,z x x x x x s t x x x x =++≤⎧⎪≤⎪⎨+≤⎪⎪≥⎩(2)单纯形表求解结果为:0 0 4 10 甲 0 1 1 0 乙 12 00 6 丙 130 丁A B C D1225,20,2x x ==资源剩余2通过代入参数到最终单纯形表,结合检验数可得:(3)若产品1的获利上升到56,最优解不会变化第 7 页 共 30 页若同时产品2的获利下降到24,最优解会变化7.已知某线性规划问题的初始单纯形表和用单纯形迭代后得到的表如下,运用单纯形法的向量矩阵的方法求格中的未知数l k j i h g f e d c b a ,,,,,,,,,,,。
P47-1.8解:8.已知某线性规划问题用单纯形迭代时得到中间某两步的单纯形表如下表所示,试将表中空白处数字填上。
P48-1.10→jc 3 5 4 0 0 0B C 基 b 1x 2x 3x 4x5x 6x 5 2x 8/3 2/3 1 0 1/3 0 0 0 5x 14/3 -4/3 0 5 -2/3 1 0 0 6x 29/3 5/3 0 4 -2/3 0 11x 2x 3x 4x 5x 4x 6 b c d 1 05x 1 -1 3 E 0 1 jjz c - a -1 2 0 01x 2x 3x 4x 5x 1x f g 2 -1 1/2 0 5x 4 h i 1 1/2 1 jjz c - 0 -7 j k l第 8 页 共 30 页jj z c --1/3 04 -5/3 0 05 2x 15/41 8/41 -10/41 4 3x -6/41 5/41 4/41 3 1x -2/41 -12/41 15/41 jj z c -证明1. 证明若线性规划问题存在可行解,则问题的可行域必定是凸集。
2.第二章 线性规划的对偶理论 选择1.对偶问题的对偶是……………………………………………………………………( )A .基本问题B .解的问题C .其它问题D .原问题 正确答案为:42.若原问题是一标准型,则对偶问题的最优解值就等于原问题最优表中松弛变量的( )A .值 B .个数 C .机会费用 D .检验数 正确答案为:3 3.若原问题中xI 为自由变量,那么对偶问题中的第i 个约束一定为………………( ) A .等式约束 B .“≤”型约束 C .“≥”约束 D .无法确定正确答案为:14.原问题的第i个约束方程是“=”型,则对偶问题的变量qi是…………………… ( )A.多余变量 B.自由变量 C.松弛变量 D.非负变量正确答案为:B5.若原问题求目标最小,则对偶问题的最优解值就等于原问题最优表中多余变量的……………( )A.机会费用 B.个数 C.值 D.机会费用的相反数正确答案为:D6.原问题与对偶问题的最优()相同。
A.解 B.目标值 C.解结构 D.解的分量个数正确答案为:B填空1.对偶理论中,如原问题具有无界解,则其对偶问题的解的情况为。
2.对偶理论中,如原问题无可行解时,其对偶问题的解的情况为。
3.对偶理论中,若线性规划问题的最优解中,对应某一约束条件的对偶变量值为非零,则该约束条件一定是严格的 (等式或不等式),反之,如果约束条件取严格不等式,则其对应的对偶变量一定(为零或不为零)。
计算1.写出该线性规划问题的对偶问题,求出原问题的最第 9 页共 30 页第 10 页 共 30 页优解。
对偶问题的最优解为(0,0,4,4),原问题的最优解为(6/5,1/5)2. 若某线性规划问题的标准模型为:⎪⎪⎩⎪⎪⎨⎧≥≤≤≤++=0,15516 41222..32 max 21212121x x x x x x t s x x z 且按单纯形法求解的其最优单纯形表为:→j c 2 3 0 0 0BC 基 b 1x 2x 3x 4x5x 2 1x 3 1 0 1/2 0 -1/5 0 4x 4 0 0 -2 1 4/5 3 2x 3 0 1 0 0 1/5 jj z c - 0 0 -1 0 -1/5(1) 21,c c 由2,3分别变为2132λλ++和,试运用灵敏度分析知识分析21λλ和分别在什么范围变化,问题的最优解不变。
(2) 如果标准模型中的常数列由32115,16,1215,16,12λλλ+++分别变为,试运用灵敏度分析知识分析321λλλ和和分别在什么范围变化,问题的最优基不变。
(3) 如标准模型中增加了一个变量6x ,且相应的目标系数,46=c 最初单纯形表中的TP )5,4,2(6=,试运用灵敏度分析的知识分析问题最优解的变化。
(4) 如在标准模型中增加了一个约束条件142321≤+x x ,试运用灵敏度分析知识分析最优解的变化。
(5) 若相应的目标系数21,c c 由2,3分别变为λλ++322和,试运用参数线性规划的知识分析最优解随参数变化情况,并画出目标函数最优值随参数变化图。
(6) 如果标准模型中的常数列中第三个约束的常数由λ+1515变为,试运用参数线性规划的知识分析最优解随参数变化情况,并画出目标函数)(λz 最优值随参数λ变化图。
3. 已知线性规划问题⎪⎩⎪⎨⎧≥≤+++≤+++++=0,,,1222282..652 max 432143214314321x x x x x x x xx x x t s x x x x z 若其对偶问题的最优解为1,421==y y(1) 写出线性规划问题的对偶问题(2) 运用对偶理论分析求解原线性规划问题的最优解。
4. 已知线性规划问题⎪⎩⎪⎨⎧≥+≤++++≤++++++++=0,,,,3..00)( max 54321225323222121214313212111543322111x x x x x t b x x a x a x a t b x x a x a x a t s x x x c x c x t c z 当011==t t时,求得问题的最终单纯形表为:P78-2.111x 2x 3x 4x 5x 3x 5/2 0 1/2 1 1.2 0 1x 5/2 1 -1/2 0 -1/6 1/3 jj z c - 0 -4 0 -4 -2(1) 21321232221131211,,,,,,,,,,b b c c c a a a a a a 的值。