酶工程考试重点(第三版)
酶工程考试复习重点
![酶工程考试复习重点](https://img.taocdn.com/s3/m/b4b6cc677fd5360cba1adb2b.png)
盐析结晶 有机溶剂结晶 透析平衡结晶 等电点结晶
17. 酶干燥的主要方法?
在固体酶制剂的生产过程中,为了提高酶的稳定性,便于保存、运输和使用,一般都必须进行干燥。常用的干燥方法有:真空干燥、冷冻干燥、喷雾干燥、气流干燥、吸附干燥
18. 试述酶分子修饰的方法和意义。
酶固定化:借助各种物理或化学方法,将酶或细胞固定于水不溶性载体上的过程,称为酶与细胞固定化
固定化酶:固定在载体上,并在一定空间范围内进行催化反应的酶称为固定化酶
固定化菌体: 固定于载体上的菌体或菌体碎片, 称为固定化菌体,它是固定化酶的一种形式
包埋法:将酶或含酶菌体包埋于各种多孔载体中,使酶固定化的方法,称为包埋法。
酶活力:即酶活性,是指酶催化一定化学反应的能力。通常以测出的酶促反应速度表示
酶活力单位:在标准条件下(25 ℃ ,最适pH和最适底物浓度)一分钟内催化1微摩尔底物转化为产物所需的酶量。1 IU= 1 mol / min
比活力:表示酶的纯度和活力高低,是酶纯度的一个指标。指在特定条件下,单位质量(mg)酶蛋白或RNA所含的酶活力单位数。
12 酶提取的主要方法?
酶的提取是指在一定的条件下,用适当的溶剂或溶液处理含酶原料,使酶充分溶解到溶剂或溶液中的过程。也称为酶的抽提。盐溶液提取 用于提取在低浓度盐溶液中溶解度较大的酶.酸溶液提取 用于提取在稀酸溶液中溶解度大且稳定性好的酶碱溶液提取 用于提取那些与脂质结合牢固或含有较多非极性基团的酶
一、基本概念
酶:具有生物催化功能的生物大分子。蛋白质:催化体内99%以上的反应;核酸:ribozyme,小于1%
酶工程:是生物工程的主要内容之一,是随着酶学研究的迅速发展,特别是酶的应用推广使酶学和工程学相互渗透结合、发展而成的一门新的技术科学,是酶学、微生物学的基本原理与化学工程有机结合而产生的交叉科学技术。
酶工程重点
![酶工程重点](https://img.taocdn.com/s3/m/1428359f51e79b8968022661.png)
酶工程考点一、名词解释1.酶工程:把酶学基本原理与化学工程技术及基因重组技术有机结合而形成的新型应用技术,主要研究酶的生产、纯化、固定化技术,酶分子结构的修饰和改造,以及在工农业、医药卫生和理论研究等方面应用的一门技术。
2.酶的转换数:表示在单位时间内,酶分子中每个活性中心或每个分子酶所能转化的底物分子数,单位为min-,是酶催化效率的一个指标。
3.酶的发酵生产:为了经济有效利用细胞所生产特定酶,通过人工操作控制,利用细胞(包括微生物细胞、植物细胞和动物细胞)的生命活动,大规模发酵生产人们多需要的酶的技术过程。
4.酶的比活力:指在特定条件下,单位质量蛋白质或RNA所拥有的酶活力单位数:酶的比活力=酶的活力单位数(U)/酶蛋白质量(mg)。
5.酶的总活力:6.酶反应动力学:酶反应动力学是研究酶反应速度规律以及各种因素对酶反应速度影响的科学。
7.2-DE(双向电泳):又称二维电泳,是将等点聚焦和聚丙烯酰胺凝胶电泳技术联合使用的一种分离鉴定技术。
8.HPLC(高效液相色谱): HPLC 是以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。
9.诱导物:诱发诱导酶合成的物质称为诱导物。
10.固定化细胞:利用物理或化学手段将具有一定生理功能的生物细胞(微生物细胞、植物细胞或动物细胞)限制或定位在特定的空间区域,作为可重复使用的生物催化剂而加以利用,这些细胞称为固定化细胞。
11.细胞包埋法:将细胞包埋在多孔载体内部而制成固定化细胞的方法。
12.酶的包埋法:将酶分子截留在具有特定网状结构载体中的一种固定化方法。
13.酶活的国际单位:在标准条件下(25℃、最适pH、最适底物浓度)下,酶每分钟催化1μmol底物转化或催化1μmol底物产生多需要的酶量定义为一个国际单位(U)二、简答题1.目前世界上七大高新技术?答:现代生物技术、航天技术、信息技术、激光技术、自动化技术、新能源技术和新材料技术。
酶工程 考试重点
![酶工程 考试重点](https://img.taocdn.com/s3/m/37978a6add36a32d73758171.png)
第二章微生物发酵产酶名词解释酶生物合成的诱导作用:加入某些物质使酶的生物合成开始或加速进行的现象酶生物合成的反馈阻遏作用:又称产物阻遏作用,是指酶催化反应的产物或代谢途径的末端产物使该酶的生物合成受到阻遏的现象分解代谢物阻遏作用:是指某些物质(主要是指葡萄糖和其他容易利用的碳源等)经过分解代谢产生的物质阻遏某些酶(主要是诱导酶)生物合成的现象判断组成酶or诱导酶受什么阻遏固定化细胞:又称为固定化活细胞或固定化增殖细胞,指采用各种方法固定在载体上,在一定的空间范围进行生长、繁殖和新陈代谢的细胞固定化原生质体:是指固定在载体上,在一定的空间范围内进行新陈代谢的原生质体原生质体:是除去细胞壁后由细胞膜及包内物质组成的微球体。
原生质体由于除去细胞壁这一扩散屏障,有利于胞内物质透过细胞膜分泌到细胞外,可以用于胞内酶等胞内产物的生产。
问答题何为细胞产酶动力学,简述其动力学模型产酶动力学主要研究发酵过程中细胞产酶速率以及各种因素对产酶速率的影响规律,主要为宏观产酶动力学。
根据细胞产酶模式的不同,产酶速率和细胞生长速率的关系也有所不同。
1)同步合成型的酶:其产酶与细胞生长欧联,在平衡期产酶速率为零,即非生长偶联的比产酶速率β=0 方程: dE /dt=αμX2)中期合成型的酶:在培养液中有阻遏物存在,α=0,无酶产生。
在此阶段的产酶动力学方程与同步合成型相同3)滞后合成型:其合成模式为非生长偶联行,生长偶联的比产酶系数α=0 方程: dE/dt=βX4)延续合成型的酶:在细胞生长期和平衡期均可以产酶,产酶速率是生长偶联与非生长偶联产酶速率之和(最理想状态)方程: dE /dt=αμX+βX受mRNA抑制的模型:1)、2)原核生物中酶生物合成的调节主要是转录水平的调节,与酶的生物合成密切相关的基因有4种:调节基因、启动基因、操纵基因和结构基因。
结构基因与操纵基因、启动基因一起组成操纵子。
原核生物中有两种类型操纵子:诱导性,如乳糖操纵子;阻遏型操纵子,如色氨酸操纵子。
酶工程考试重点
![酶工程考试重点](https://img.taocdn.com/s3/m/bb5444e7172ded630b1cb6a5.png)
第一章:绪论◆酶:由生物体产生的具有生物催化功能的生物大分子,按照分子中起催化作用的主要组分的不同,自然界中天然存在的酶可以分为蛋白类酶(protein enzyme)和核酸类酶◆酶工程:酶的生产、改性与应用的技术过程称为酶工程◆锁与钥匙学说:底物结构必须与酶活性部位的结构非常互补,就像锁与钥匙一样,这样才能紧密结合,形成酶-底物复合物。
这个学说可以解释酶的绝对专一性,但是不能解释酶的相对专一性。
◆诱导契合理论:酶分子活性中心的结构并不与底物分子的结构互补,但活性中心有一定的柔性,当底物分子与酶分子相遇时可以诱导酶蛋白的构象发生相应的变化,使活性中心的各个结合基团与催化基团达到对底物结构正确的空间排布与定向,从而使酶与底物互补结合,产生酶-底物复合物,并使底物发生化学反应◆中间产物学说:酶首先与底物结合成酶-底物复合物,然后转变成酶-过渡态中间物复合物,然后,生成酶-产物复合物,最后从酶分子上释放产物,从而大大降低反应的活化能(分子由基态转变为过渡态即活化态所需的能量)。
◆Km 值是当酶反应速度为最大反应速度一半时的底物浓度◆竞争性抑制:抑制剂竞争性与酶的活性中心结合,从而阻止底物与酶的结合。
这是最常见的一种可逆抑制作用。
随着底物浓度增加,酶的抑制作用减弱。
Vm 不变,Km 增大◆非竞争性抑制:底物和抑制剂可以同时与酶结合,抑制剂结合于活性中心以外的部位,两者没有竞争作用,但影响产物的释放,Vm 降低,Km 不变◆反竞争性抑制Vm 降低,Km 减小◆酶活力:酶催化底物发生化学反应的能力。
测定酶活力,实际上就是测定酶促反应进行的速度。
酶促反应速度越快,酶活力就越大;反之,速度越慢,酶活力就越小。
◆酶的比活力:每毫克酶蛋白(酶制剂)所含的酶活力单位数称为酶的比活力,用U/mg 蛋白表示。
酶的比活力是酶制剂的一个纯度指标。
对同一种酶来说,比活力愈高,表明酶纯度愈高。
◆酶的生产方法:.提取分离法;生物合成法;化学合成法第二章:微生物发酵产酶结构基因、操纵基因与启动基因一起组成操纵子,分为诱导型与阻遏型。
酶工程复习要点
![酶工程复习要点](https://img.taocdn.com/s3/m/b79f27c7192e45361166f59b.png)
1、酶的催化作用特点:具有专一性,催化效率高和反应条件温和等显著特点。
2、酶研究的两个方向:理论研究方向和应用研究方向。
理论研究方向:酶的理化性质、催化性质、催化机制等。
应用研究:促进了酶工程的形成。
3、酶工程的定义:利用酶或者微生物细胞,动植物细胞,细胞器,借助于酶的催化作用,通过工程学手段生产产品或提供社会服务的科学体系。
4、酶工程的应用范围:①对生物资源中天然酶的开发和生产②自然酶的分离纯化与鉴定技术③酶的固定化技术④酶反应器的研制与应用⑤与其它生物技术领域的交叉与渗透。
5、酶工程的组成:①酶的发酵生产②酶的分离纯化③酶分子修饰④酶和细胞固定化⑤酶反应器和酶的应用等方面。
6、酶工程的主要任务:通过预先设计,经过人工操作控制而获得大量所需的酶,并通过各种方法使酶发挥其最大的催化功能。
8、酶的分类:第1类,氧化还原酶;第2类,转移酶;第3类,水解酶;第4类,裂合酶;第5类,异构酶;第6类,合成酶;第7类,核酸类酶。
9、酶的作用机制:酶的催化机理可能与几种因素有关:酶与底物结合时,两者构象的改变使它们互相契合,底物分子适当地向酶分子活性中心靠近,并且趋向于酶的催化部位,使活性中心这一局部地区额底物浓度大大增高,并使底物分子发生扭曲,易于断裂。
在另一些情况中,可能还有一些其他的因素使酶反应速度稍有一些提高,如酶与底物形成有一定稳定度的过渡态中间物——共价的ES中间物,这种ES中间物又可迅速地分解成产物,又如酶活性中心的质子供体和质子受体对底物分子进行了广义的酸碱催化等。
10、酶的催化能力:酶仅能改变化学反应的速度,并不不能改变化学反应的平衡点。
酶本身在反应前后也不发生变化例如肽键遇水自发地进行水解的反应极为缓慢,当有蛋白酶存在时,这个反应则进行得十分迅速,可降低反应的活化能。
在一个化学反应体系中,反应开始时,反应物(S)分子的平均能量水平较低为“初态”,在反应的任何一瞬间反应物中都有一部分分子具有了比初态更高一些的能量,高出的这一部分能量称为活化能,使这些分子进入“过渡态”,这时就能形成或打破一些化学键,形成新的物质——产物(P)。
酶工程考试复习题及答案
![酶工程考试复习题及答案](https://img.taocdn.com/s3/m/2f0d1284250c844769eae009581b6bd97f19bc91.png)
酶工程考试复习题及答案一、选择题1. 酶工程是指对酶进行改造和利用的科学,其主要目的不包括以下哪一项?A. 提高酶的稳定性B. 增强酶的催化效率C. 改变酶的底物专一性D. 降低酶的生产成本答案:D2. 在酶工程中,下列哪一项技术不属于酶的改造方法?A. 基因工程B. 蛋白质工程C. 酶的固定化D. 酶的纯化答案:D3. 固定化酶技术的优点不包括以下哪一项?A. 可重复使用B. 提高酶的稳定性C. 便于酶的分离和纯化D. 增加酶的底物专一性答案:D二、填空题4. 酶工程中常用的酶固定化方法包括_______、_______和_______。
答案:吸附法、包埋法、共价结合法5. 酶的催化效率通常用_______来表示,它是酶催化反应速率与_______的比值。
答案:kcat、底物浓度三、简答题6. 简述酶工程在工业生产中的应用。
答案:酶工程在工业生产中的应用主要包括食品加工、制药、生物燃料生产、环境保护等领域。
通过酶的改造和固定化技术,可以提高生产效率,降低成本,实现绿色生产。
7. 描述酶的改造方法之一——蛋白质工程的基本过程。
答案:蛋白质工程的基本过程包括:(1) 确定目标酶的氨基酸序列;(2) 设计预期的氨基酸序列变化;(3) 通过基因突变或基因合成技术实现氨基酸序列的改变;(4) 表达改造后的酶蛋白;(5) 评估改造酶的性能,如稳定性、催化效率等。
四、论述题8. 论述固定化酶在生物反应器中的应用及其优势。
答案:固定化酶在生物反应器中的应用主要包括连续流反应器和批式反应器。
固定化酶的优势包括:(1) 酶的稳定性提高,延长使用寿命;(2) 易于从反应体系中分离,便于回收和再利用;(3) 可以提高底物转化率,减少副反应;(4) 有助于实现工业化大规模生产。
五、案例分析题9. 某制药公司希望通过酶工程提高一种药物前体的合成效率。
请分析可能采取的策略,并讨论这些策略的潜在优势和局限性。
答案:可能采取的策略包括:(1) 利用基因工程技术改造酶的基因,提高酶的催化效率;(2) 通过蛋白质工程技术改变酶的结构,提高其稳定性和底物专一性;(3) 采用固定化技术,使酶在反应过程中易于分离和重复使用。
酶工程 考试重点
![酶工程 考试重点](https://img.taocdn.com/s3/m/2b1e985c77232f60ddcca181.png)
第二章微生物发酵产酶名词解释酶生物合成的诱导作用:加入某些物质使酶的生物合成开始或加速进行的现象酶生物合成的反馈阻遏作用:又称产物阻遏作用,是指酶催化反应的产物或代谢途径的末端产物使该酶的生物合成受到阻遏的现象分解代谢物阻遏作用:是指某些物质(主要是指葡萄糖和其他容易利用的碳源等)经过分解代谢产生的物质阻遏某些酶(主要是诱导酶)生物合成的现象判断组成酶or诱导酶受什么阻遏固定化细胞:又称为固定化活细胞或固定化增殖细胞,指采用各种方法固定在载体上,在一定的空间范围进行生长、繁殖和新陈代谢的细胞固定化原生质体:是指固定在载体上,在一定的空间范围内进行新陈代谢的原生质体原生质体:是除去细胞壁后由细胞膜及包内物质组成的微球体。
原生质体由于除去细胞壁这一扩散屏障,有利于胞内物质透过细胞膜分泌到细胞外,可以用于胞内酶等胞内产物的生产。
问答题何为细胞产酶动力学,简述其动力学模型产酶动力学主要研究发酵过程中细胞产酶速率以及各种因素对产酶速率的影响规律,主要为宏观产酶动力学。
根据细胞产酶模式的不同,产酶速率和细胞生长速率的关系也有所不同。
1)同步合成型的酶:其产酶与细胞生长欧联,在平衡期产酶速率为零,即非生长偶联的比产酶速率β=0 方程: dE /dt=αμX2)中期合成型的酶:在培养液中有阻遏物存在,α=0,无酶产生。
在此阶段的产酶动力学方程与同步合成型相同3)滞后合成型:其合成模式为非生长偶联行,生长偶联的比产酶系数α=0 方程: dE/dt=βX4)延续合成型的酶:在细胞生长期和平衡期均可以产酶,产酶速率是生长偶联与非生长偶联产酶速率之和(最理想状态)方程: dE /dt=αμX+βX受mRNA抑制的模型:1)、2)原核生物中酶生物合成的调节主要是转录水平的调节,与酶的生物合成密切相关的基因有4种:调节基因、启动基因、操纵基因和结构基因。
结构基因与操纵基因、启动基因一起组成操纵子。
原核生物中有两种类型操纵子:诱导性,如乳糖操纵子;阻遏型操纵子,如色氨酸操纵子。
酶工程重点考试
![酶工程重点考试](https://img.taocdn.com/s3/m/28850b13c5da50e2524d7fe5.png)
1.酶作用专一性机理专一性:一种酶只能作用于一种或一类底物。
表现为锁钥模型认为整个酶分子的天然构象是具有刚性结构的,酶活性部位的形状与所需作用的底物形状相吻合,它们可以象钥匙与锁一样互相匹配。
此学说可以较好的解释酶的立体异构专一性;但不能解释酶的多底物现象、酶对正反方向的催化等诱导契合模型该学说认为酶的活性部位并不是和底物的形状正好互补的,而是在酶和底物结合的过程中,由于酶与底物相互诱导,使底物分子或酶分子,有时是两者的构象同时发生了一定的变化后才互补的,这个动态的辨认过程称为诱导契合。
2.抑制作用:通过与酶分子上的某些必需基团结合,使这些基团的结构和性质发生改变,从而引起酶活力下降或丧失,这种作用称为抑制作用。
3.别构效应:调节物与酶分子的调节中心结合之后,引起酶分子构象发生变化,从而改变催化中心对底物的亲和力。
4.酶活力:也称酶活性,指酶催化一定化学反应的能力。
其大小可用在一定条件下,它所催化的某一化学反应的反应速率来表示,两者呈线性关系。
所以测定酶的活力就是测定酶的反应速率酶反应速率:用单位时间内、单位体积中底物的减少量或产物的增加量来表示。
单位:浓度/单位时间5.酶的比活力:代表酶的纯度,用每mg蛋白质所含的酶活力单位数表示,对同一酶来说,比活力愈大,表示酶的纯度愈高。
6.细胞的破碎的方法:机械破碎法、物理破碎法、化学破碎法、酶促破碎法7.制备固定化酶的方法很多,有包埋法,吸附法,共价键结合法,以及交联法等8.交联法:用双功能或多功能试剂使酶分子之间、酶分子与惰性蛋白之间,酶分子与载体之间进行交联反应,形成网络结构的固定化方法。
9.酶化学修饰的方法酶分子内部化学修饰1、肽链有限水解修饰2、氨基酸置换修饰3、金属离子置换修饰酶分子表面化学修饰4、酶分子侧链基团的修饰5、大分子结合修饰6、化学固定修饰10.同工酶指具有同一底物专一性,并能催化同一种化学反应,但分子结构与理化性质不完全相同的一组酶判断题1、酶是具有生物催化特性的特殊蛋白质。
酶工程考试重点
![酶工程考试重点](https://img.taocdn.com/s3/m/710b3584f01dc281e43af0ad.png)
1.酶:是由活细胞产生的,具有高效、专一催化功能的生物大分子。
分为蛋白类酶(P酶)和核酸类酶(R酶)2.酶工程:是生物技术的重要分支,它是酶学和微生物学的基本原理与化学工程有机结合而产生的交叉科学技术,他是从应用的目的出发,研究酶的生产与应用的一门技术性科学。
3.可分为化学酶工程和生物酶工程。
化学酶工程主要指天然酶、化学修饰酶、固定化酶及化学人工酶的研究与应用;生物酶工程是酶学和以基因重组技术为主的现代分子生物学技术相结合的产物,主要包括①用基因工程技术大量生产酶(克隆酶)②修改酶基因产生遗传修饰酶(突变酶)③设计新的酶基因,合成自然界不曾有的新酶。
4.酶工程的主要任务是经过预先设计,通过人为操作,获得人们所需要的酶,并通过各种方法使酶充分发挥其催化功能。
5.食品酶工程是将酶工程的理论与技术应用于食品工业领域,将酶学基本原理与食品工程相结合,为新型食品及食品原料的发展提供技术支持。
6.锁钥学说:当底物契合到酶蛋白的活性中心时,很像一把钥匙插入到一把锁中,因而使底物发生催化反应。
中间产物学说:第五必须首先与酶形成中间复合物,然后再转变为产物,并重新释放出游离的酶。
诱导契合学说:酶分子的构象与底物原来并非恰当吻合,只有当底物分子与酶分子相碰撞时,可诱导酶蛋白的构象变得能与底物配合,才结合形成中间络合物,进而引起第五份子发生相应的化学变化。
7.核酸类酶:具有催化活性的RNA8.酶催化作用的特点:①酶的温和性②专一性③高效性④可调性机理:降低反应活化能。
9.酶活性的调节:《1》酶的可逆共价调节:指酶蛋白分子上的某些残基在另一种酶的催化下进行可逆的共价修饰,从而使酶在活性形式与非活性形式之间相互转变的过程;《2》酶的别构调节:指某些化合物(成为配给或效应物)与酶的活性中心以外的位点结合后,引起酶蛋白构象的变化,从而改变酶活性的方式,能发生别构效应的酶称为别构酶。
别构酶有多亚基,两中心(活性中心(负责对底物的结合与催化)、别构中心(可结合效应物,负责调解酶促反应的速率))10.协同效应:指蛋白质和一个配体(包括底物和效应物)结合之后,可以影响蛋白质和另一个配体之间的结合能力。
酶工程考试重点
![酶工程考试重点](https://img.taocdn.com/s3/m/96fab3e80975f46527d3e171.png)
酶工程考试重点第一章绪论1、什么是酶工程:是一项利用酶、含酶细胞器或细胞(微生物、动物植物)作为生物催化剂来完成重要的化学反应,并将相应底物转化成有用物资的应用型生物高新技术。
2、酶对日常生活生产的影响:①作为一种新的工业催化剂;②用于食品加工;③用作医药;④用作分析试剂;⑤用于筛选新的生理活性物质;⑥用作开发新能源;⑦用于污水处理。
3、固定化酶的优点:①稳定性高;②酶可反复利用;③产物纯度高,副产物少,从而有利于提纯;④生产可连续化,自动化;⑤设备小型化,节约能源等。
第二章和第三章1、酶的生产方法:①提取分离法;②生物合成法(发酵法);③化学合成法。
2、产酶的微生物:①细菌:无芽孢杆菌、芽孢杆菌、球菌;②放线菌:链霉菌(主要产胞外酶和抗生素);③酵母菌:酿酒酵母(真核生物);④霉菌:根霉、毛霉和犁头霉;⑤曲霉:青霉、木霉。
3、酶生物合成的模式:①生长偶联型:酶的合成与细胞生长同步进行,所以又称同步合成型。
当细胞进入生长期,酶即开始大量合成;当细胞生长进入平衡期后,酶的合成随即停止。
(根瘤生产脂肪酶和树状黄杆菌生产葡萄糖异构酶)②非生长偶联型:只有当细胞生长进入平衡期以后,酶才开始合成并大量积累,所以又称滞后合成型。
(黑曲霉产生的酸性蛋白酶)③部分生长偶然联型:又称连续合成型,酶的合成与细胞生长同步开始在细胞生长进入平衡期后,酶还可以继续合成。
(黑曲霉中聚乳糖醛酸酶)4、提高酶产量的策略:⑴条件控制:①添加诱导物:酶的作用底物、酶作用底物的前体、酶的反应产物、酶的底物类似物或底物修饰物等。
②降低阻遏物浓度:设法从培养基中除去其终产物,以消除反馈阻遏;向培养基中加入代谢途径的某个抑制因子,切断代谢途径通路,可限制细胞内末端产物的积累,便可达到缓解其反馈阻遏的目的;③促进分泌;④添加产酶促进剂。
⑵遗传控制:①改良菌种:使诱导型变为组成型;使阻遏型变成去阻遏型;②基因工程育种。
5、用于产酶细胞需具备哪些条件:①酶的产量高;②容易培养和管理;③产酶性能稳定;④利于酶产品的分离纯化;⑤安全可靠。
酶工程考试复习重点
![酶工程考试复习重点](https://img.taocdn.com/s3/m/07763903be23482fb5da4c0d.png)
名词解释1、酶:指活细胞产生具有催化活性和高度专一性的特殊生物大分子,包括蛋白质和核酸。
2、酶转换率(催化效率常数K cat):酶被底物完全饱和时,每单位时间内每个酶分子所能转化的底物分子数。
3、酶比活力:指每毫克蛋白质所含有酶的活力单位数,一般用IU/mg表示,一般来说,酶活力比越高,酶越纯。
4、酶活力:也称酶活性,是指酶催化一定化学反应的能力,是用在一定条件下,他所催化某一反应的反应初速度来表示。
5、固定化酶:是通过物理的或化学的手段,将酶束缚于水不溶的载体上,或将酶束缚在一定的空间内,限制酶分子的自由流动,但能使酶充分发挥催化作用。
6、酶分子的化学修饰:就是在分子水平上对酶进行改造,以达到改造和改性的目的。
即是在体外将酶分子通过人工的方法与一些化学基团,也别是具有生物相容性的物质,进行供价连接,从而改变酶的结构和性质。
7、生物反应器:在生物反应过程中,利用生物催化剂进行生化反应,将原料转化为产物的核心装置。
根据使对象不同,氛围酶反应器和细胞反应器。
8、生物传感器:是一种分析测试装置,具有转移、灵敏、快速、简便、准确的有点,用于测定混合物溶液中某种物质的浓度。
9、酶传感器:是以固定化酶作为感受器,以基础电极作为换能器的乘务传感器,是应用最早和最广的生物传感器。
10、半合成抗生素:指用化学法或酶法改造已知抗生素的化学结构,所产生的抗生素衍生物。
11、酶反应器:指以游离酶或固定化酶、固定化细胞作为生物催化剂,进行酶促反应的装置。
12、细胞反应器:指利用增殖细胞内的酶系将培养基中的成分转化成产品的装置。
13、固定化细胞:固定在载体上并在一定空间范围内进行生命活动的细胞。
14、组成酶:指机体中一直存在的,其合成仅受遗传物质控制,与外界环境无关的酶类。
15、诱导酶:指在通常情况下不合成或者合成很少,当加入诱导物后就大量合成的一类酶。
16、尾产物阻遏:指当有些酶的作用产物积累到一定浓度,并能满足机体需要后,酶的合成就受阻的一种现象。
酶工程(第三版)知识要点
![酶工程(第三版)知识要点](https://img.taocdn.com/s3/m/a3ae758ed4d8d15abe234ebf.png)
1、酶的定义与分类定义:酶是具有生物催化功能的生物大分子。
分类:蛋白类酶(P酶)和核酸类酶(R酶)2、生物催化剂的特点①易失活(温和性):酶是由细胞产生的生物大分子,凡能使生物大分子变性的因素,如高温、强碱、强酸、重金属盐等都能使酶失去催化活性。
②高效性:反应速度是无酶催化/普通人造催化剂催化反应速度的106——1016倍。
且无副反应③专一性:酶对催化的反应和反应物(底物)有严格的选择性,只能催化一种或一类反应,作用于一种或一类物质,而一般催化剂没有这样严格的选择性。
绝对专一性:一种酶只能催化一种底物进行一种反应,甚至只能作用于异构体的一种(立体异构专一性)相对专一性:一种酶能够催化一类结构相似的底物进行某种相同类型的反应。
④可调节性:(1)酶浓度的可调性(诱导或抑制酶的合成; 调节酶的降解)(2)通过激素调节酶活性(与细胞膜或细胞内受体相结合)(3)反馈抑制调节酶活性(如终端产物抑制)(4)抑制剂和激活剂对酶活性影响(5)别构调控、酶原的激活、共价修饰、同工酶等3、米氏常数Km的意义Km值等于酶促反应速度为最大反应速度一半时的底物浓度,单位是mol/L。
意义:①Km是酶的特性常数:与pH 、温度、离子强度、酶及底物种类有关,与酶浓度无关,可以鉴定酶。
②可以判断酶的专一性和天然底物。
1/Km近似表示酶对底物的亲和力:1/Km越大、亲和力越大—— Km较小者为主要底物③根据Km:判断某[s]时v与Vmax的关系判断抑制剂的类型④ Km可帮助判断某代谢反应的方向和途径催化可逆反应的酶对正/逆两向底物Km不同4、可逆抑制作用分类、特点(书)P8(1).不可逆抑制作用:抑制剂与酶的必需基团以共价键结合而引起酶活力丧失,不能用透析、超滤等物理方法除去抑制剂而使酶复活。
分为非专一性不可逆抑制剂,和专一性不可逆抑制剂。
很多为剧毒物质,如重金属、有机磷、有机汞、有机砷、氰化物、青霉素、毒鼠强等。
(2)、可逆抑制作用:抑制剂与酶以非共价键结合而引起酶活力降低或丧失,能用物理方法除去抑制剂而使酶复活。
酶工程考试重点
![酶工程考试重点](https://img.taocdn.com/s3/m/9ecda4350740be1e640e9a01.png)
WHU生科院酶工程考试重点蝉整理O(∩_∩)O~生物催化剂:1. 更高的催化效率:酶催化的反应速率是相应的无催化反应速率的108~1020倍,并且至少高出非酶催化反应速率几个数量级。
2. 更高的反应专一性:酶分子特定的空间结构决定了其特定的底物专一性。
3. 温和的反应条件:一般的化学催化往往需要高温、高压和极端的pH条件。
4. 具有调节能力:许多酶的催化活性可受到多种调节机制的灵活调节,如别构调节、酶的共价修饰调节、酶合成与降解的调节。
5. 酶的本质是蛋白质:易变性和降解。
酶:酶是一种高效、高度专一、和生命活动密切相关的、蛋白质性质的生物催化剂。
1)所有的酶都是由生物体产生的(甚至病毒)2)酶和生命活动密切相关a. 酶参与了生物体内所有的生命活动和生命过程①执行具体的生理功能②清除有害物质,起保护作用③协同激素等生理活性物质在体内发挥信号转换、传递和放大作用,调节生理过程和生命活动。
④催化代谢反应,建立各种各样代谢途径和代谢体系。
b. 酶的组成和分布是生物进化与组织功能分化的基础c. 酶能在多种水平上进行调节以适应生命活动的需要酶的本质:酶的化学本质是蛋白质.绝大部分酶是蛋白质。
或主要是蛋白质为核心的酶作为催化剂,但随科学发展不排斥有其他类型的催化剂存在。
活性中心:酶分子上与催化活性直接相关的少数氨基酸残基组成的催化区域,称作酶的活性中心(active center).包括结合部位(binding site)和催化部位(catalytic site)。
1. 活性中心在种系进化上的严格保守性2. 酶活性中心构象的维持依赖于酶分子空间结构的完整性3. 酶活性中心各基团的相对位置得以维持,就能保全酶的活力比活力:酶的比活力(specific activity):每毫克蛋白所含的酶单位数,用U/mg蛋白表示。
活力:酶活力(enzyme activity)也称为酶活性,是指酶催化一定化学反应的能力。
酶活力的大小可用在一定条件下,酶催化某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高,反之活力愈低。
酶工程考试重点整理
![酶工程考试重点整理](https://img.taocdn.com/s3/m/76f20ce2551810a6f4248601.png)
第一章绪论:酶学(Enzymology)是研究酶的性质、酶的作用规律、酶的结构和功能、酶的生物学功能及酶的应用的科学。
酶工程(Enzyme engineering) 又称酶技术,是酶制剂的大批量生产和应用的技术。
是酶学、微生物学的基本原理与化学工程有机结合而产生的交叉科学技术。
生物催化剂(改变生化反应的速率,不改变反应的平衡点和性质以及反应方向,本身在反应前后也不发生变化的生物活性分子,外在因素),酶:酶是一种高效、高度专一、和生命活动密切相关的、蛋白质性质的生物催化剂(更高的催化效率,更高的反应专一性,温和的反应条件,具有调节能力,本质是蛋白质;)酶的本质(具有生物活性的蛋白质或RNA),第二章酶的分类和命名酶的分类(根据催化作用分为六大类:氧化还原酶类,转移酶类,水解酶类,裂合酶类,异构酶类,合成酶类)酶分子结构与功能:①酶的蛋白质本质为酶的催化活性提供了多种功能性残基。
②酶的一级结构一方面为酶准备了功能片段,另一方面又为酶形成特定的活性构象奠定基础。
③酶通过高级结构将相应的功能基团组织在酶分子的特定区域(如凹穴),形成活性中心;活性中心指直接参与和底物结合并参与催化底物转化的各有关氨基酸按特定构象分布组成的活性结构。
④活性中心的这种活性结构也要求活性中心以外的其他氨基酸残基共同维系;这些残基被修饰、改变,或相互间连接被破坏,活性中心就会瓦解,酶失活。
活性中心(与催化作用直接相关的少数氨基酸残基组成的催化区域,具有严格保守性,构象依赖于酶分子空间结构的完整性,活性中心各基团的相对位置得以维持,就可以保证全酶的活力)结合部位(binding site)和催化部位(catalytic site)。
催化过程:酶和底物的结合;催化底物进行转化。
酶分子是在一级结构基础上,通过二、三级的折叠盘绕,形成了具有催化功能的特定活性构象结构域;酶分子是以这个活性构象结构域参与和底物结合,参与对底物进行催化,这个结构域就是“活性中心”第三章酶促反应动力学:比活力specific activity(每毫克蛋白里面所含有的酶活力单位数U/mg),活力(又叫酶活力单位,一个标准单位:在特定条件下,如25摄氏度,pH和底物浓度等其他条件都是最适条件时,一分钟能转化一微摩尔底物所需的酶量),Km,米氏常数,在特定的反应条件下,是个特征常数,描述酶反应性质,反应条件对酶反应速度的影响。
酶工程复习要点
![酶工程复习要点](https://img.taocdn.com/s3/m/a211675b77232f60ddcca186.png)
酶工程复习要点名词解释:1、酶活性中心:只有少数特异的氨基酸残基与底物结合及催化作用。
这些特异的氨基酸残基比较集中的区域,即与酶活力直接相关的区域称为没得活性中心或活性部位。
2、酶别构调节的定义:某些小分子物质与酶的非催化部位或别位特异地结合,引起酶蛋白构象的变化,从而改变酶活性的方式。
能发生别构效应的酶称为别构酶。
3、效应物:与别构酶的别构中心结合,能调节酶的反应速率和代谢过程的物质。
4、同促效应和异促效应:当一个效应物分子和酶结合后,影响另一个相同的效应物分子与酶的另一部位结合称为同促效应;如果一分子效应物和酶结合后,影响另一不同的效应物分子与酶的另一部位结合则称为异促效应。
一个效应物分子与别构酶的别构中心结合后对第二个效应物分子结合的影响称为协同效应。
当一个效应物分子与酶蛋白的一个部位结合后,可使另一部位对效应物亲和力增高的效应称为正协同效应,反之称为负协同效应。
5、酶的专一性:酶对催化的反应和反应物有严格的选择性。
1、结构专一性:分为绝对专一性和相对专一性2、立体异构专一性:分为光学专一性和几何专一性6、酶原的激活:分子内肽键的一处或多处断裂,进而使分子构象发生某种改变,形成酶的活性中心。
7、酶原:有些酶在细胞内合成及初分泌时是没有活性的酶的前体,称为酶原。
8、酶活力:又称为酶活性,是指酶催化某一化学反应的能力。
9、抑制剂:能降低酶的活性,使酶促反应速率减慢的物质10、分解代谢物阻遏:是指细胞内同时有两种分解底物(碳源或氮源)存在时,利用快的那种分解底物会阻遏利用慢的底物有关酶合成的现象。
11、反馈阻遏作用:是指酶催化作用的产物或代谢途径的末端产物使该酶的生物合成受阻的过程。
12、操纵子:原核基因组中,由几个功能相关的结构基因及其调控区组成一个基因表达的协同单位,这种单位称为操纵子。
操纵子分:诱导型操纵子、阻遏型操纵子13、效应物:效应物是一类低相对分子质量的信号物质(如糖类及其衍生物、氨基酸和核苷酸等),包括诱导物和辅阻遏物两种。
酶工程考试重点(第三版)
![酶工程考试重点(第三版)](https://img.taocdn.com/s3/m/bcb61efcb8f3f90f76c66137ee06eff9aef8498e.png)
酶工程考试重点(第三版)1、酶工程的定义,研究的主要内容酶的生产、改性与应用的技术过程称为酶工程研究的主要内容包括:微生物细胞发酵产酶,动植物细胞培养产酶,酶的提取与分离纯化,酶分子修饰,酶、细胞、原生质体固定化,酶非水相催化,酶定向进化,酶反应器和酶的应用等酶工程的主要任务是经过预先设计,通过人工操作获得人们所需的酶,并通过各种方法使酶的催化特性得以改进,充分发挥其催化功能。
2、酶的基本特征,酶命名的方法有哪些,蛋白类酶的分类方法基本特征:专一性强,催化效率高,作用条件温和等每一种具体的酶都有其具体的推荐名和系统命名。
推荐名是在惯用名称的基础上,加以选择和修改而成的。
酶的推荐名由两部分组成,第一部分为底物名称,第二部分为催化反应的类型,后面加一个酶字,不管酶的催化是正反应还是逆反应,都用同一个名,如葡萄糖氧化酶,表明该酶的作用底物是葡萄糖催化反应类型是氧化反应。
酶的系统命名更加详细更准确地反映出该酶所催化的反应。
系统命名包括了酶的作用底物酶作用的基团及催化反应的类型,如上述葡萄糖氧化酶的系统命名“β-D-葡萄糖:氧1-氧化还原酶”,表明该酶所催化的反应以β-D-葡萄糖为脱氢的供体,氧为氢受体,催化作用在第一个碳原子基团上进行,所催化反应属于氧化还原反应。
蛋白酶类的分类1、按照酶催化作用的类型,将蛋白酶类分为六大类,氧化还原酶,转移酶,水解酶裂合酶,异构酶,合成酶2、每个大类中,按照酶作用的底物、化学键或者基团的不同,分为若干亚类3、每一亚类再分为若干小类4、每一小类包含若干个具体的酶、3、酶的生产方法有哪些酶的生产是指通过人工操作而获得所需的酶的技术过程酶的生产方法分为提取分离法、生物合成法、化学合成法3种,其中提取分离法是最早采用并沿用至今的方法,生物合成法是20世纪50年代以来酶生产的主要方法,而化学合成法至今仍停留在实验室阶段4、酶的生产合成调节理论,包括操纵子,诱导作用,阻遏作用1、操纵子在原核基因组中,由几个功能相关的结构基因及其调控区组成的一个基因表达的协同单位.①结构基因是决定某一多肽的DNA 模板,可根据其上的碱基顺序转录出相应的mRNA,然后再可通过核糖体转译出相应的酶②启动子:能被依赖于DNA的RNA聚合酶所识别的碱基顺序,是RNA聚合酶的结合部位和转录起点③操纵基因:位于启动基因和结构基因之间的一段碱基顺序,是阻遏蛋白的结合位点,能通过与阻遏物相结合来决定结构基因的转录是否能进行④调节基因:用于编码组成型调节蛋白的基因,一般远离操纵子,但在原核生物中,可以位于操纵子旁边,编码调节蛋白。
酶工程-考试重点
![酶工程-考试重点](https://img.taocdn.com/s3/m/22a65261f121dd36a22d8264.png)
第二章微生物发酵产酶名词解释酶生物合成的诱导作用:加入某些物质使酶的生物合成开始或加速进行的现象酶生物合成的反馈阻遏作用:又称产物阻遏作用,是指酶催化反应的产物或代谢途径的末端产物使该酶的生物合成受到阻遏的现象分解代谢物阻遏作用:是指某些物质(主要是指葡萄糖和其他容易利用的碳源等)经过分解代谢产生的物质阻遏某些酶(主要是诱导酶)生物合成的现象判断组成酶or诱导酶受什么阻遏固定化细胞:又称为固定化活细胞或固定化增殖细胞,指采用各种方法固定在载体上,在一定的空间范围进行生长、繁殖和新陈代谢的细胞固定化原生质体:是指固定在载体上,在一定的空间范围内进行新陈代谢的原生质体原生质体:是除去细胞壁后由细胞膜及包内物质组成的微球体。
原生质体由于除去细胞壁这一扩散屏障,有利于胞内物质透过细胞膜分泌到细胞外,可以用于胞内酶等胞内产物的生产。
问答题何为细胞产酶动力学,简述其动力学模型产酶动力学主要研究发酵过程中细胞产酶速率以及各种因素对产酶速率的影响规律,主要为宏观产酶动力学。
根据细胞产酶模式的不同,产酶速率和细胞生长速率的关系也有所不同。
1)同步合成型的酶:其产酶与细胞生长欧联,在平衡期产酶速率为零,即非生长偶联的比产酶速率β=0 方程: dE /dt=αμX2)中期合成型的酶:在培养液中有阻遏物存在,α=0,无酶产生。
在此阶段的产酶动力学方程与同步合成型相同3)滞后合成型:其合成模式为非生长偶联行,生长偶联的比产酶系数α=0 方程: dE/dt=βX4)延续合成型的酶:在细胞生长期和平衡期均可以产酶,产酶速率是生长偶联与非生长偶联产酶速率之和(最理想状态)方程: dE /dt=αμX+βX受mRNA抑制的模型:1)、2)原核生物中酶生物合成的调节主要是转录水平的调节,与酶的生物合成密切相关的基因有4种:调节基因、启动基因、操纵基因和结构基因。
结构基因与操纵基因、启动基因一起组成操纵子。
原核生物中有两种类型操纵子:诱导性,如乳糖操纵子;阻遏型操纵子,如色氨酸操纵子。
酶工程罗贵民第三版考试重点
![酶工程罗贵民第三版考试重点](https://img.taocdn.com/s3/m/d30f20582379168884868762caaedd3382c4b549.png)
酶工程罗贵民第三版考试重点
摘要:
1.酶工程概述
2.酶工程的发展历程
3.酶工程的基本原理与技术
4.酶工程的应用领域
5.罗贵民第三版考试重点内容解析
正文:
一、酶工程概述
酶工程是一门研究酶的结构、功能、制备、改造和应用的学科,它结合了生物化学、生物物理、分子生物学等多个领域,对酶的研究具有重要意义。
酶工程的发展为我国的生物技术产业、医药产业、食品产业等带来了巨大的推动力。
二、酶工程的发展历程
酶工程的发展可以分为三个阶段:第一个阶段是酶的发现和研究,主要集中在20 世纪初;第二个阶段是酶的工业化生产,主要集中在20 世纪50 年代至70 年代;第三个阶段是酶的基因工程和蛋白质工程,主要集中在20 世纪80 年代至今。
三、酶工程的基本原理与技术
酶工程的基本原理包括酶的结构与功能关系、酶的动力学、酶的调控等。
酶工程的技术包括酶的制备、酶的改造、酶的应用等。
四、酶工程的应用领域
酶工程在许多领域都有广泛的应用,如生物医药、生物能源、生物材料、环境保护等。
例如,酶工程在生物医药领域的应用包括酶作为药物、酶作为生物催化剂等;在生物能源领域的应用包括酶解糖、酶解脂肪等。
五、罗贵民第三版考试重点内容解析
罗贵民第三版的酶工程教材涵盖了酶工程的基本原理、技术及其应用,其中重点内容包括:
1.酶的结构与功能关系:包括酶的活性中心、酶的结构域等。
2.酶的制备与改造:包括酶的纯化、酶的结晶、酶的基因工程等。
3.酶的应用:包括酶在生物医药、生物能源、生物材料、环境保护等领域的应用。
酶工程罗贵民第三版考试重点[001]
![酶工程罗贵民第三版考试重点[001]](https://img.taocdn.com/s3/m/57da789ef424ccbff121dd36a32d7375a417c6ab.png)
酶工程罗贵民第三版考试重点酶工程是现代生物技术领域的一个重要分支,它通过对酶的研究和应用,促进了工业生产的发展和优化。
作为酶工程的权威,罗贵民教授的《酶工程》第三版是学生们学习这门课程的重要教材。
那么,在备战考试时,我们应该重点掌握哪些内容呢?首先,我们必须了解酶的基本特性和结构。
酶是生物体内的一类特殊蛋白质,它能够加速和调控化学反应的速率,起到催化剂的作用。
在考试中,我们需要熟悉酶的命名规则、酶的工作原理以及酶的催化机制。
同时,还要了解酶的特性如催化活性、稳定性和选择性等。
其次,我们需要对酶工程的基本原理有一个清晰的认识。
酶工程主要通过DNA重组技术、蛋白工程技术以及代谢工程来改造和优化酶的性能。
在考试中,我们需要掌握酶的基因工程和蛋白工程的基本技术方法,如基因克隆、表达、纯化以及蛋白质结构预测和改造等。
此外,了解酶的固定化技术和酶反应工程原理也是考试的重点内容。
再次,我们还要了解酶工程在不同领域的应用。
酶在生物制药、食品工业、环境保护和能源产业等领域都有广泛的应用。
在备考时,我们需要了解酶在不同领域中的具体应用案例,如酶的医药应用、酶在食品加工中的应用以及工业废水处理中酶的应用等。
此外,还要了解酶工程的发展趋势和未来的研究方向,包括酶的高通量筛选、酶的定制和酶的产业化等。
最后,备考中还要注重实践能力的培养。
酶工程是一个实践性较强的学科,我们应该注重实验操作的细节和实验数据的处理。
在备考中,可以多进行实验模拟和实验设计,提高我们的操作能力和实验思维能力。
综上所述,酶工程罗贵民教授第三版的考试重点包括酶的基本特性和结构、酶工程的基本原理、酶工程在不同领域的应用以及实践能力的培养。
通过系统地学习和掌握这些知识,我们能够在考试中取得好成绩,并为将来的酶工程研究和实践打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、酶工程的定义,研究的主要内容酶的生产、改性与应用的技术过程称为酶工程研究的主要内容包括:微生物细胞发酵产酶,动植物细胞培养产酶,酶的提取与分离纯化,酶分子修饰,酶、细胞、原生质体固定化,酶非水相催化,酶定向进化,酶反应器和酶的应用等酶工程的主要任务是经过预先设计,通过人工操作获得人们所需的酶,并通过各种方法使酶的催化特性得以改进,充分发挥其催化功能。
2、酶的基本特征,酶命名的方法有哪些,蛋白类酶的分类方法基本特征:专一性强,催化效率高,作用条件温和等每一种具体的酶都有其具体的推荐名和系统命名。
推荐名是在惯用名称的基础上,加以选择和修改而成的。
酶的推荐名由两部分组成,第一部分为底物名称,第二部分为催化反应的类型,后面加一个酶字,不管酶的催化是正反应还是逆反应,都用同一个名,如葡萄糖氧化酶,表明该酶的作用底物是葡萄糖催化反应类型是氧化反应。
酶的系统命名更加详细更准确地反映出该酶所催化的反应。
系统命名包括了酶的作用底物酶作用的基团及催化反应的类型,如上述葡萄糖氧化酶的系统命名“β-D-葡萄糖:氧1-氧化还原酶”,表明该酶所催化的反应以β-D-葡萄糖为脱氢的供体,氧为氢受体,催化作用在第一个碳原子基团上进行,所催化反应属于氧化还原反应。
蛋白酶类的分类1、按照酶催化作用的类型,将蛋白酶类分为六大类,氧化还原酶,转移酶,水解酶裂合酶,异构酶,合成酶2、每个大类中,按照酶作用的底物、化学键或者基团的不同,分为若干亚类3、每一亚类再分为若干小类4、每一小类包含若干个具体的酶、3、酶的生产方法有哪些酶的生产是指通过人工操作而获得所需的酶的技术过程酶的生产方法分为提取分离法、生物合成法、化学合成法3种,其中提取分离法是最早采用并沿用至今的方法,生物合成法是20世纪50年代以来酶生产的主要方法,而化学合成法至今仍停留在实验室阶段4、酶的生产合成调节理论,包括操纵子,诱导作用,阻遏作用1、操纵子在原核基因组中,由几个功能相关的结构基因及其调控区组成的一个基因表达的协同单位.①结构基因是决定某一多肽的DNA 模板,可根据其上的碱基顺序转录出相应的mRNA,然后再可通过核糖体转译出相应的酶②启动子:能被依赖于DNA的RNA聚合酶所识别的碱基顺序,是RNA聚合酶的结合部位和转录起点③操纵基因:位于启动基因和结构基因之间的一段碱基顺序,是阻遏蛋白的结合位点,能通过与阻遏物相结合来决定结构基因的转录是否能进行④调节基因:用于编码组成型调节蛋白的基因,一般远离操纵子,但在原核生物中,可以位于操纵子旁边,编码调节蛋白。
2、酶合成调节的类型:诱导和阻遏诱导:凡能促进酶生物合成的现象。
阻遏:凡能阻碍酶生物合成的现象。
1) 酶合成的诱导•组成酶(固有酶):不依赖底物或底物结构类似物的存在而合成的酶。
如:EMP途径的一些酶。
•诱导酶:依赖于底物或底物结构类似物的存在而合成的酶。
如:乳糖酶。
•诱导物:促进诱导酶产生的物质。
底物或结构类似物,如:异丙基-β-D-硫代半乳糖苷•诱导作用的类型–同时诱导:诱导物加入后,微生物能同时诱导出几种酶的合成,主要存在于短的代谢途径中。
–顺序诱导:先合成能分解底物的酶,再合成分解各中间代谢物的酶达到对复杂代谢途径的分段调节。
2) 阻遏•分解代谢物阻遏:当微生物在含有两种能够分解底物的培养基中生长时,利用快的那种分解底物会阻遏利用慢的底物的有关酶的合成的现象。
–最早发现于大肠杆菌生长在含葡萄糖和乳糖的培养基时,故又称葡萄糖效应。
分解代谢物阻遏导致出现“二次生长–直接作用者是优先利用的碳源的中间代谢物—实质是:因代谢反应链中某些中间代谢物或末端代谢物的过量积累而阻遏代谢中一些酶的合成的现象。
•反馈阻遏:也称末端产物阻遏:催化作用的产物或代谢途径的末端产物使酶的生物合成受阻的现象。
–引起反馈阻遏的物质,称为共阻遏物(辅阻遏物)。
–组氨酸对组氨酸合成途径中的10种酶的生物合成均起反馈作用–过量的精氨酸阻遏了参与合成精氨酸的许多酶的合成。
5、酶生物合成的诱导机制加入某些物质使酶的生物合成开始或加速进行的现象,称酶生物合成的诱导作用能够引起诱导作用的物质称诱导物,诱导物一般是酶催化作用的底物或其底物类似物如,β-半乳糖苷酶的作用底物乳糖及其底物类似物异丙基-β-D-硫代半乳糖苷诱导,β-半乳糖苷酶的生物合成。
一般来说不同的酶有各自不同的诱导物,但有些诱导物可以同一酶系的若干种酶,如,,β-半乳糖苷酶可以同时诱导,β-半乳糖苷酶透过酶和,β-半乳糖乙酰化酶、6、酶生物合成的模式及特点同步合成型;是酶的生物合成与细胞生长同步进行的一种酶生物合成模式,该类酶的生物合成可以由其诱导物诱导生成,但是不受分解代谢物的阻遏作用,也不受产物的反阻遏作用。
延续合成型;是酶的生物合成在细胞的生长阶段开始,在细胞生长进入平衡期后酶还可以延续合成一段较长时间的一种生物合成模式,该类酶的生物合成可以由其诱导物诱导生成,一般不受分解代谢物的阻遏作用,该类酶在细胞生长达到平衡期后,仍然可以延续合成,说明这些酶所对应的mRNA相当稳定,在平衡期以后的相当长的一段时间内仍可以通过翻译而合成其所对应的酶中期合成型;在细胞生长一段时间后才开始,而在细胞进入平衡期以后,酶的生物合成也随之停止。
该类酶的生物合成受到产物的反阻遏作用或分解代谢物的阻遏作用,而酶所对应的mRNA的稳定性较差。
滞后合成型;是在细胞生长一段时间或者进入平衡期后才开始生物合成并大量积累,该类酶所对应的mRNA稳定性好,可以在细胞生长进入平衡期后相当长一段时间内,继续进行酶的生物合成。
7、何谓细胞产酶动力学产酶动力学主要研究发酵过程中细胞产酶速率以及各种因素对产酶速率的影响规律,产酶动力学可以从整个发酵系统着眼,研究群体细胞的产酶速率以及其影响因素,称为宏观产酶动力学,也可以慈宁宫细胞内部着眼,研究细胞中酶合成速率及其影响因素,谓之微观产酶动力学。
8、培养基的定义及作用是发酵过程或动植物细胞大量培养中供微生物或动、植物细胞的生长、繁殖或积累代谢产物,以合成生物化工产品所必需的营养基质。
按用途分类:①基础培养基,营养需求相似的一些生物其所需的营养物大体相同,因之可配制一种适合于它们共同需要的含有基本营养成分的基础培养基;②增殖培养基,又称丰富培养基,常用于菌种选育方面。
它是由基础培养基,再加入特殊的营养物质,以使某种差异型微生物在其中迅速生长繁殖;③鉴别培养基,即在培养基中加入某种试剂,从而在培养过程中表现出特殊反应,用以鉴别不同类型的微生物,如无菌试验用的酚红肉汤培养基,就是一种鉴别培养基;④选择培养基,根据某些微生物具有特殊营养要求,或对某些化学物质具有抗性而设计的,例如在配方中加入某种化学药物,以限制对敏感菌的生长繁殖,而将对其不敏感的所需的微生物分离出来。
如在分离酵母菌时,可加入青霉素、链霉素等以抑制细菌的生长。
培养基还可根据其形态分成液体或固体培养基。
例如用于无菌试验的肉汤培养基为液体培养基。
用于培养青霉菌孢子的小米或大米为固体培养基,在培养基中加入适量琼脂而形成的凝胶培养基,也称固体培养基。
9、提高没产量的措施有哪些1、添加诱导物,诱导物一般分为三类;酶的作用底物、酶的催化反应物和作用底物的类似物2、控制阻遏物的浓度3、添加表面活性剂4、添加产酶促进剂10、酶失活和变性的定义就是由于外界环境(高温、PH等)的改变而导致酶的蛋白质分子结构发生改变,从而导致具有催化作用的酶的作用效果消失酶失活外界条件发生变化,如温度过低等(一定范围内),酶的活性暂时丧失,没有了催化能力。
失活有可能复活。
如温度回复到常温等。
变性基本上就是发生了结构性的变化,一般是不可逆转的;就是由于外界环境(高温、PH 等)的改变而导致酶的蛋白质分子结构发生改变,从而导致具有催化作用的酶的作用效果消失、11、酶提取的定义及提取方法酶的提取是在一定的条件下,用适当的溶剂或溶液处理含酶原料,使酶充分溶解到溶剂或溶液中的过程、酶的提取方法有盐溶液提取、酸溶液提取、碱溶液提取和有机溶剂提取等12、酶分离纯化的一般程序及对应常用的一些方法酶的分离纯化一般包括三个基本步骤:即抽提、纯化、结晶或制剂。
首先将所需的酶从原料中引入溶液,此时不可避免地夹带着一些杂质,然后再将此酶从溶液中选择性地分离出来,或者从此溶液中选择性地除去杂质,然后制成纯化的酶制剂。
对应常用的一些方法如下:一、预处理及固液分离技术1.细胞破碎高压均质器法:此法可用于破碎酵母菌、大肠菌、假单胞菌、杆菌甚至黑曲霉菌。
将细胞悬浮液在高压下通入一个孔径可调的排放孔中,菌体从高压环境转到低压环境,细胞就容易破碎。
2.离心离心分离过程可分为离心过滤、离心沉淀、离心分离3种类型,所使用的设备有过滤式离心机、沉降式离心机和离心机。
过滤式离心机的转鼓壁上开有小孔,壁上有过滤介质,一般可用于处理悬浮固体颗粒较大、固体含量较高的场合。
沉降式离心机用于分离固体浓度较低的固液分离,如发酵液中的菌体,用盐析法或有机溶剂处理过的蛋白质等。
分离机用于分离两种互不相溶的、密度有微小差别的乳浊液或含微量固体微粒的乳浊液。
3.膜分离技术在蛋白质纯化过程中主要用到的膜分离技术多为超滤。
在静压作用下降溶液通过孔径非常小的滤膜,使溶液中分子量较小的溶质透过薄膜,而大分子被截留于膜表面。
大多数超滤膜是由一层非常薄的功能膜与较厚的支撑膜结合在一起而组成的。
4.泡沫分离原理:将气体通入含多种组分的溶液中,由于这些组分的表面活性由差异,因此在溶液的表面,某些组分将形成泡沫,泡沫的稳定性取决于操作条件及溶液的生物学特性。
泡沫中含有更多的表面活性成分,故泡沫的组分种类及其含量与溶液中的不相同。
这样,溶液中的组分舅得以分离。
二、抽提沉淀1. 盐析常用的盐析剂是硫酸铵,其溶解度大、价格便宜。
硫酸铵沉淀蛋白质的能力很强,其饱和溶液能使大多数的蛋白质沉淀下来。
对酶没有破坏作用。
pH的控制:应从酶的溶解度与稳定性两个方面考虑,在酶等电点时其溶解度最小易沉淀,但有些酶再等电点时稳定性较差,因此要选择最佳pH值.一般要求在酶最稳定的pH值的前提下再考虑最适宜酶沉淀的pH值。
在操作中一旦确定最佳pH值后,在添加硫酸铵之前甲酸或碱调节好酶液的pH值,要尽量避免溶液pH值的波动以免破坏酶的稳定性。
在添加硫酸铵时要注意搅拌,并注意硫酸铵的加入速度,一般是由少到多,缓慢加入,硫酸铵尽可能磨成细粉。
温度的控制:有些酶在较高温度下稳定性能较好,可在常温下进行盐析操作,而对于大多数酶,尽可能在低温下操作。
酶液的净置:加完硫酸铵后,酶液要静置一段时间,使酶蛋白完全沉淀下来,酶静置后,就不要再加以搅拌。
2.有机溶剂沉淀有机溶剂选择:可用于酶蛋白沉淀的有机溶剂包括醇类物质等,如甲醇、乙醇、异丙醇。