八年级数学下册第16章二次根式16.3二次根式的加减第1课时二次根式的加减作业课件(新版)新人教版

合集下载

人教版数学八年级下册16.3《二次根式的加减》说课稿

人教版数学八年级下册16.3《二次根式的加减》说课稿

人教版数学八年级下册16.3《二次根式的加减》说课稿一. 教材分析人教版数学八年级下册16.3《二次根式的加减》这一节,是在学生已经掌握了二次根式的性质和运算法则的基础上进行讲解的。

本节内容主要让学生学会如何进行二次根式的加减运算,进一步培养学生的运算能力和数学思维能力。

教材通过例题和练习题的形式,让学生在实际操作中掌握二次根式加减的计算方法,并能够灵活运用。

二. 学情分析在教学这一节之前,学生已经学习了二次根式的性质,包括根号下的数可以分为完全平方数和非完全平方数,以及二次根式的乘除运算。

但是,对于二次根式的加减运算,学生可能还存在一定的困难,特别是在处理含有同类项和非同类项的二次根式加减时,容易出错。

因此,在教学过程中,需要引导学生理清思路,明确二次根式加减的规则。

三. 说教学目标1.让学生掌握二次根式的加减运算法则,能够正确进行二次根式的加减运算。

2.培养学生的运算能力和数学思维能力,使学生在解决实际问题时,能够灵活运用二次根式的加减运算法则。

3.通过二次根式的加减运算,让学生体会数学的规律性和逻辑性,提高学生的数学素养。

四. 说教学重难点1.教学重点:让学生掌握二次根式的加减运算法则,能够正确进行二次根式的加减运算。

2.教学难点:如何引导学生理解并处理含有同类项和非同类项的二次根式加减问题。

五. 说教学方法与手段1.采用启发式教学法,引导学生通过观察、分析、归纳总结,发现二次根式加减的规律。

2.使用多媒体教学手段,通过动画、图片等形式,直观地展示二次根式的加减过程,帮助学生理解。

3.学生进行小组讨论和合作交流,让学生在讨论中解决问题,提高学生的团队协作能力。

六. 说教学过程1.导入:通过一个实际问题,引出二次根式的加减运算,激发学生的学习兴趣。

2.新课讲解:讲解二次根式的加减运算法则,并通过例题演示如何进行二次根式的加减运算。

3.学生练习:让学生独立完成一些二次根式的加减运算题目,巩固所学知识。

八年级数学下第16章二次根式16.2二次根式的运算16.2.2二次根式的加减目标一二次根式的除法

八年级数学下第16章二次根式16.2二次根式的运算16.2.2二次根式的加减目标一二次根式的除法

诊断:
2×3与
1 互为倒数,在计算时容易感觉 2×3
后两个式子方便计算,就先计算后面的乘法运算,从而
得出错误答案 2 6.
正解:原式=2
2×3 ×
1 2×3 ×
1= 2×3
2= 2×3
2 2×23×3=
23×3=
6 3.
9
小东在学习了
a= b
ab后,认为
ab=
a也成立,因 b
此他认为一个化简过程:
3-1)+(
5+
5- 3 3)( 5-
3)+

7+
7- 5 5)( 7-
5)+…+

2n+1+
2n+1- 2n-1 2n-1)( 2n+1-
2n-1)=
32-1+
5- 2
3+
7- 2
5+…+
2n+1- 2
2n-1=
2n+1-1 2.
【点拨】 分母中有二次根式时,往往需要将分母有理化,
分母有理化的实质是利用二次根式的平方和平方差公 式化去根号.
3 【教材 P8 例 2 改编】计算 8÷ A.2 B.4 C. 4 D.6
12的结果是( B )
4 计算 6a÷ 3a的结果是( A )
A. 2
B.
2 2
C. 2a
D.
2a 2
5 小明的作业本上有以下四题:① 16a4=4a2;
② 5 a· 10a=5 2a;③a 1a= ④ 8a÷ 2a=4.做错的题是( D )
3 (1)2
223÷19
415;
解:原式=32÷19 83÷415=227 120=227×2 30=
27 30;
(2)
32÷

八年级数学下册目录

八年级数学下册目录

八年级数学下册目录教材是开展八年级数学教学活动的主要凭借,那么教材目录是哪些知识呢?小编整理了关于八年级数学下册目录,希望对大家有帮助!八年级数学下册课本目录第十六章二次根式16.1 二次根式16.2 二次根式的乘除16.3 二次根式的加减数学活动小结复习题16第十七章勾股定理17.1 勾股定理阅读与思考勾股定理的证明17.2 勾股定理的逆定理阅读与思考费马大定理数学活动小结复习题17第十八章平行四边形18.1 平行四边形18.2 特殊的平行四边形实验与探究丰富多彩的正方形数学活动小结复习题18第十九章一次函数19.1 函数阅读与思考科学家如何测算岩石的年龄19.2 一次函数信息技术应用用计算机画函数图象14.3 课题学习选择方案数学活动小结复习题19第二十章数据的分析20.1 数据的集中趋势20.2 数据的波动程度阅读与思考数据波动程度的几种度量20.3 课题学习体质健康测试中的数据分析数学活动小结复习题20部分中英文词汇索引八年级数学证明知识点一、对事情作出判断的句子,就叫做命题. 即:命题是判断一件事情的句子。

一般情况下:疑问句不是命题.图形的作法不是命题. 每个命题都有条件(condition)和结论(conclusion)两部分组成. 条件是已知的事项,结论是由已知事项推断出的事项. 一般地,命题都可以写成“如果……,那么……”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论. 要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例。

二、三角形内角和定理:三角形三个内角的和等于180度。

1、证明三角形内角和定理的思路是将原三角形中的三个角“凑”到一起组成一个平角.一般需要作辅助线.既可以作平行线,也可以作一个角等于三角形中的一个角.2、三角形的外角与它相邻的内角是互为补角.三、三角形的外角与它不相邻的内角关系是:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.四、证明一个命题是真命题的基本步骤是:(1)根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程.在证明时需注意:(1)在一般情况下,分析的过程不要求写出来.(2)证明中的每一步推理都要有根据. 如果两条直线都和第三条直线平行,那么这两条直线也相互平行。

人教版八年级数学下册第16章 二次根式 教案

人教版八年级数学下册第16章 二次根式 教案

第十六章 二次根式16.1 二次根式第1课时 二次根式的概念1.理解二次根式的概念.2.≥0)的意义解答具体题目.自学指导:阅读教材第2页至3页,完成下列的问题.知识探究平方根的性质:正数有2个平方根,它们互为相反数;0的平方根是0;负数没有平方根.思考:用带有根号的式子填空,看看写出的结果有什么特点:(1)面积为S 的正方形的边长为__________;(2)要修建一个面积为6.28 m 2的圆形喷水池,它的半径约为__________m ;(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的高度h(单位:m)满足关系h=5t 2如果用含有h 的式子表示t ,则t=__________...开平方时,被开方数a 的取值范围是a ≥0(为什么?)自学反馈(1)下列式子,哪些是二次根式?哪些不是二次根式?1x 、、1x y +≥0,y ≥0).判断二次根式的依据是一个形式一个条件,二者缺一不可.(2)当a 是怎样的实数时,下列各式在实数范围内有意义?a≥1a≥-3 2a≤3a≥0a≤0任意实数a>3任意实数任意实数二次根式中求字母的取值范围的依据是:被开方数大于等于零.活动1 小组讨论例1 当x?解:x≥2.例2当x11x+在实数范围内有意义?解:x≥-32且x≠-1.有二次根式的要考虑二次根式的被开方数大于等于零,有分母的要考虑分母不为零.例3已知,求xy的值.解:2 5 .当被开方数互为相反数时被开方数只能为零.活动2 跟踪训练1.要画一个面积为18的长方形,使它的长宽之比为3∶2,它的长宽应取多长?解:长:2.用代数式表示:(1)面积为S的圆的半径.(2)面积为S且两条邻边的比为2∶3的长方形的长和宽.解:(2)3.教材第3页上框练习.活动3 课堂小结1.二次根式的概念.2.二次根式的判断方法.3.怎样求二次根式的被开方数中字母的取值范围.第2课时 二次根式的性质1.≥0)是一个非负数.2.理解二次根式的两个性质)2=a(a ≥0)≥0).3.会运用上述两个性质进行有关计算和化简.自学指导:阅读教材第3页至4页,完成下列的问题.知识探究(—)当a>0a ;当a=00概括:≥0)是一个非负数.知识探究(二)根据算术平方根的意义填空:)2=4;)2=2;2=13;)2=0.概括:一般地:2=a (a ≥0)知识探究(三)=2;=0.01;23=0.=a (a ≥0)二次根式的三个性质:≥0)是一个非负数;)2=a(a ≥0);≥0).自学反馈1.计算:2 )2 2 )2 解:(1)32;(2)45;(3)56;(4)74. 2.化简:解:(1)3;(2)4;(3)5;(4)3.3.代数式的概念:用基本运算符号(基本运算符号包括加、减、乘、除、开方等)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式.活动1 小组讨论例1 计算:(1) 2 (2)2解:(1)1.5;(2)20.例2 化简:( 2 (2解:(1)16;(2)5.一个非负数的算术平方根的平方等于它本身.一个负数的平方的算术平方根等于这个负数的相反数.例3 =0,求a2013+b2013的值.解:≥00,∴a=-1,b=1.∴a2013+b2013=0.二次根式本身具有非负性.活动2 跟踪训练1.计算:2)2解:(1)3;(2)18.2.说出下列各式的值:解:(1)0.3;(2)17;(3)-π;(4)-10.3.计算:22解:(1)5;(2)0.2;(3)0.6;(4)2 3 .4.教材第4页下框练习.活动3 课堂小结二次根式的性质:≥0)是一个非负数.2=a(a≥0)=a(a≥0)16.2 二次根式的乘除第1课时二次根式的乘法1.≥0,b≥0)并运用它进行计算.2.(a≥0,b≥0)并运用它进行解题和化简.自学指导:阅读教材第6页至7页,并完成预习内容.知识探究请同学们完成填空:=6,=6;=20,=20;=60,=60.参考上面的结果,用“>、<或=”填空.归纳:(a≥0,b≥0)反过来(a≥0,b≥0)自学反馈1.计算:解:.2.化简:解:(1)12;;(3)3|xy|;.活动1 小组讨论例1计算:×解:例2 化简:解:(2)36;;.(1)开方后可以移到根号外的因数或因式叫开得尽方的因数或因式.例3 计算:解:;;14写成7×2,同样(2)中写成10=5×2,方便开方.例4判断下列各式是否正确,不正确的请予以改正:=4.解:(1)不正确.(2)不正确..带分数的整数部分和分数部分是相加的关系,而不是相乘的关系.活动2 跟踪训练1.计算:解:(2)6;2.化简:解:(1)77;(2)15;3.和cm,则这个长方形的面积为4.教材第7页下框练习.活动3 课堂小结掌握二次根式的乘法规定和积的算术平方根的性质:≥0,b≥0)(a≥0,b≥0)及应用.第2课时 二次根式的除法1.≥0,b>0)(a ≥0,b>0)及利用它们进行计算和化简. 2.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.自学指导:阅读教材第8页至10页,并完成预习内容.知识探究请同学们完成填空:对二次根式的除法规定:两个二次根式相除,根指数不变,被开放数相除.自学反馈1.计算:解:(1)2;(2)2.下面利用这个规律来计算和化简一些题目.2.化简:解:(1)8;(2)83b a ;.活动1 小组讨论例1 计算:解:;(1)除了用除法公式外,还可进行分母有理化.例2 化简:解:. 例3 计算:(可以用两种方法计算)解:(1)5;(2)3(3)a.观察上面各小题的最后结果,比如等,这些二次根式有哪些特点: (1)被开方数的因数是整数,因式是整式;(2)被开方数不含能开得尽方的因数或因式.满足以上两点的二次根式,就叫做最简二次根式.在二次根式的运算中,一般要把最后结果化为最简,且结果的分母中不含二次根式.活动2 跟踪训练1.化简:解:(1)2;. 2.如图,在Rt △ABC 中,∠C=90°,AC=2.5cm ,BC=6cm ,求AB 的长.解:6.5cm.3.教材第10页的中框练习.活动3 课堂小结1.二次根式的除法规定.2.逆用法则.3.最简二次根式的概念.16.3 二次根式的加减第1课时二次根式的加减1.使学生知道怎样将根式化为最简二次根式.2.使学生通过合并被开方数相同的二次根式,会进行二次根式的加法与减法运算.自学指导:阅读教材第12页至13页的部分,完成以下问题.知识探究1.合并同类项:(1)2x+3x (2)2x2-3x2+5x2解:(1)5x;(2)4x2.这几道题你是运用什么知识做的?加减法则2.化简:(1(2(3解:(1;(2)(3)3.如何进行二次根式的加减计算?先化简,再合并.自学反馈计算:解:;;;活动1 小组讨论例1 计算:解:;.比较二次根式的加减与整式的加减,你能得出什么结论?例2计算:解:进行二次根式的加减运算时,必须先将其化简,是被开方数相同的二次根式才可合并. 活动2 跟踪训练1.下列计算是否正确?为什么?解:(1)不正确.此式结果为.(2)不正确.此式结果为5.(3)正确.2.计算:(6)a解:;;;(6)17a(7)0;. 3.教材第13页下框练习.计算结果中的二次根式必须是最简二次根式.活动3 课堂小结怎样进行二次根式的加减计算.第2课时 二次根式的混合运算1.含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.2.复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.自学指导:阅读教材第14页的部分,完成以下问题.知识探究1.计算:(1)(2x+y)·zx (2)(2x 2y+3xy 2)÷xy解:(1)2x 2z+xyz ;(2)2x+3y.2.计算:(1)(2x+3y)(2x-3y) (2)(2x+1)2+(2x-1)2解:(1)4x 2-9y 2;(2)8x 2+2.思考:如果把上面的x 、y 、z 改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.整式运算中的x 、y 、z 是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以整式中的运算规律也适用于二次根式.3.计算:))·) 2解:(1)43;(3)-6;在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.活动1 小组讨论例1 计算:)÷解:;(2)2-32例2 计算:-5) )解:;(2)2.活动2 跟踪训练1.计算:)2)2解:+;;(4)a-b;(5)9;(6)4;在进行二次根式加减混合运算时能用乘法公式的,运用公式会使计算简便.2.已知+1,,求下列各式的值:(1)x2+2xy+y2(2)x2-y2解:(1)12;这类计算的简便方法是先变形,再代入求值.3.教材第14页下框练习.活动3 课堂小结1.如何计算二次根式加减混合运算.2.计算结果中的二次根式必须是最简二次根式.。

人教版初中数学八年级下册第十六章:二次根式(全章教案)

人教版初中数学八年级下册第十六章:二次根式(全章教案)

第十六章二次根式教材简析本章的内容主要包括:二次根式的概念和性质、二次根式的乘除、二次根式的加减.在中考中,本章重在考查二次根式的概念和性质以及运用二次根式的运算法则进行化简、求值.教学指导【本章重点】二次根式的性质和运算.【本章难点】灵活运用二次根式的性质及运算法则进行相关的化简与实数的简单运算.【本章思想方法】1.掌握类比思想.如:类比算术平方根的概念理解二次根式的性质,类比整式的运算法则理解二次根式的运算法则.2.掌握分类讨论思想.如:在进行二次根式的化简时,当被开方数中有字母且没有给出字母的取值范围时,应考虑对字母的取值进行分类讨论.3.体会整体思想.如:在求含有二次根式的代数式的值时,有时从整体角度考虑,将已知条件和待求值的式子进行变形后整体代入求值.课时计划16.1二次根式2课时16.2二次根式的乘除2课时16.3二次根式的加减2课时16.1二次根式第1课时二次根式的概念教学目标一、基本目标【知识与技能】理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围.【过程与方法】经历观察、比较、总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.【情感态度与价值观】经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用意识.二、重难点目标【教学重点】二次根式的概念,二次根式有意义的条件.【教学难点】求二次根式中字母的取值范围.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P2~P3的内容,完成下面练习.【3 min反馈】1.一个正数有两个平方根;0的平方根为0;在实数范围内,负数没有平方根.因此,在实数范围内开平方时,被开方数只能是正数或0.2.一般地,我们把形如a(a≥0)的式子叫做二次根式,“”称为二次根号.3.下列式子中,不是二次根式的是(B)A.45B.-3C.a2+3D.2 3环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】下列各式中,哪些是二次根式,哪些不是二次根式?11,-5,(-7)2,313,15-16,3-x(x≤3),-x(x≥0),(a-1)2,-x2-5,(a-b)2(ab≥0).【互动探索】(引发学生思考)要判断一个根式是不是二次根式,一是看根指数是不是2,二是看被开方数是不是非负数.【解答】因为11,(-7)2,15-16=130,3-x(x≤3),(a-1)2,(a-b)2(ab≥0)中的根指数都是2,且被开方数均为非负数,所以都是二次根式.313的根指数不是2,-5,-x(x≥0),-x2-5的被开方数都小于0,所以不是二次根式.【互动总结】(学生总结,老师点评)判断一个式子是不是二次根式,要看所给的式子是否具备以下条件:(1)带二次根号;(2)被开方数是非负数.【例2】当x________,x+3+1x+1在实数范围内有意义.【互动探索】(引发学生思考)二次根式有意义要满足什么条件?本题是否还要考虑其他条件?【分析】要使x+3+1x+1在实数范围内有意义,必须同时满足被开方数x+3≥0和分母x+1≠0,解得x≥-3且x≠-1.【答案】≥-3且x≠-1【互动总结】(学生总结,老师点评)使一个代数式有意义的未知数的取值范围通常要考虑三种情况:一是分母不为零,二是偶次方根的被开方数为非负数,三是零次幂的底数不为零.活动2巩固练习(学生独学)1.下列式子中,是二次根式的是(A)A.-7B.3 7C.x D.x 2.使式子-(x-5)2有意义的未知数x有(B) A.0 个B.1 个C.2 个D.无数个3.当x是多少时,2x+3x+x2在实数范围内有意义?解:依题意,得⎩⎪⎨⎪⎧2x +3≥0,x ≠0,解得⎩⎪⎨⎪⎧x ≥-32,x ≠0.∴当x ≥-32且x ≠0时,2x +33+x 2在实数范围内没有意义.活动3 拓展延伸(学生对学)【例3】若实数x 、y 满足y >x -2+6-3x +3,求|y -3|-(x -y )2的值.【互动探索】要求|y -3|-(x -y )2的值,需确定出x 、y 的取值范围.根据式子y >x -2+6-3x +3,可以确定出x 、y 的取值范围.【解答】由题意,得x -2≥0且6-3x ≥0, 解得x =2,则y >3.故|y -3|-(x -y )2=y -3-y +2=2-3=-1.【互动总结】(学生总结,老师点评)利用二次根式有意义的条件求出x 的值,从而确定y 的取值范围,然后利用二次根式的性质化简代数式.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式⎩⎪⎨⎪⎧概念有意义的条件——被开方数是非负数练习设计请完成本课时对应训练!第2课时 二次根式的性质教学目标一、基本目标 【知识与技能】理解a (a ≥0)是一个非负数、(a )2=a (a ≥0)和a 2=a (a ≥0),并利用它们进行计算和化简;了解代数式的概念.【过程与方法】在明确(a )2=a (a ≥0)和a 2=a (a ≥0)的算理的过程中,感受数学的实用性;通过小组合作交流,培养学生的合作意识.【情感态度与价值观】通过二次根式的相关计算,进而解决一些实际问题,培养学生解决问题的能力. 二、重难点目标 【教学重点】 二次根式的性质. 【教学难点】运用二次根式的性质进行有关计算.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P3~P4的内容,完成下面练习. 【3 min 反馈】1.(1)当a >0时,a 表示a ;(2)当a =0时,a 表示0概括:一般地,a (a ≥0)是一个非负数.2.教材P3“探究”,根据算术平方根的意义填空: (1)(4)2=4; (2)2=2;⎝⎛⎭⎫132=13; (0)2=0. (2)一般地,(a )2=a (a ≥0). 3.教材P4“探究”,填空: (1)22=2;0.012=0.01; ⎝⎛⎭⎫232=23; 02=0.(2)一般地,a 2=a (a ≥0).教师点拨:二次根式的三个性质:(1)a (a ≥0)是一个非负数;(2)(a )2=a (a ≥0);(3)a 2=a (a ≥0).4.用基本运算符号把数或表示数的字母连结起来的式子,我们称这样的式子为代数式. 5.计算:0.019 6×22 500=21;549=73. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:(1)( 1.5)2; (2)(25)2; (3)16; (4)(-5)2.【互动探索】(引发学生思考)一个非负数的算术平方根的平方等于什么?当二次根式的被开方数是一个完全平方数,开方时有什么规则?【解答】(1)()1.52 =1.5. (2)(25)2=22×(5)2=4×5=20. (3)16=(42)=4. (4)()-52=52=5.【互动总结】(学生总结,老师点评)一个非负数的算术平方根的平方等于这个非负数.当二次根式的被开方数是一个完全平方数时,a 2=||a =⎩⎨⎧a ()a ≥0;-a()a <0.【例2】化简下列二次根式. (1)8a 3b (a ≥0,b ≥0); (2)(-36)×169×(-9).【互动探索】(引发学生思考)根据开方的定义化简.注意:二次根式的结果是最简二次根式.【解答】(1)8a 3b =22·a 2·2ab =(2a )2·2ab =2a 2ab . (2)(-36)×169×(-9)=36×169×9=6×13×3=234.【互动总结】(学生总结,老师点评)(1)若被开方数中含有负因数,则应先化成正因数;(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(式),即化为最简二次根式.活动2 巩固练习(学生独学) 1.下列各式正确的是( D ) A .(-4)×(-9)=-4×-9 B .16+94=16×94C .449=4×49D .4×9=4×92.计算:(1)(9)2; (2)-(3)2; (3)64; (4)a 2+2a +1. 解:(1)9. (2)-3. (3)8. (4)a 2+2a +1=()a +12=||a +1.当a ≥-1时,原式=a +1;当a <-1时,原式=-a-1.3.已知实数a 、b 在数轴上的位置如图所示,化简:(a +1)2+2(b -1)2-|a -b |.解:从数轴上a 、b 的位置关系,可知-2<a <-1,1<b <2,且b >a ,故a +1<0,b -1>0,a -b <0,原式=|a +1|+2|b -1|-|a -b |=-(a +1)+2(b -1)+(a -b )=b -3.活动3 拓展延伸(学生对学)【例3】 已知a 、b 、c 是△ABC 的三边长,化简(a +b +c )2-(b +c -a )2+(c -b -a )2. 【互动探索】根据三角形的三边关系,得出b +c >a ,b +a >c .根据二次根式的性质得出含有绝对值的式子,然后去绝对值符号合并即可.【解答】∵a 、b 、c 是△ABC 的三边长,∴b +c >a ,b +a >c ,∴原式=|a +b +c |-|b +c -a |+|c -b -a |=a +b +c -(b +c -a )+(b +a -c )=a +b +c -b -c +a +b +a -c =3a +b -c .【互动总结】(学生总结,老师点评)解答本题的关键是根据三角形的三边关系得出不等关系,进行变换后,结合二次根式的性质进行化简.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式的性质⎩⎪⎨⎪⎧a ≥0(a ≥0)(a )2=a (a ≥0)a 2=|a |=⎩⎪⎨⎪⎧a (a ≥0)a (a <0)练习设计请完成本课时对应训练!16.2二次根式的乘除第1课时二次根式的乘法教学目标一、基本目标【知识与技能】理解a·b=ab(a≥0,b≥0),ab=a·b(a≥0,b≥0),并利用它们进行计算和化简.【过程与方法】经历“探索——发现——猜想——验证”的过程,引导学生体会合情推理与演绎推理的相互依赖、相互补充的关系;培养学生用规范的数学语言进行表达的习惯和能力.【情感态度与价值观】鼓励学生积极参与数学活动,激发学生的好奇心和求知欲,体验数学活动中的探索和创新,感受数学的严谨性.二、重难点目标【教学重点】二次根式的乘法运算法则.【教学难点】运用二次根式的乘法运算法则进行简单的运算.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P6~P7的内容,完成下面练习.【3 min反馈】1.教材P6“探究”,计算下列各式,观察计算结果,你能发现什么规律?(1)4×9=6,4×9=6;(2)16×25=20,16×25=20;(3)25×36=30,25×36=30.a≥0,b≥0.规律:一般地,二次根式的乘法法则是a·b=ab()2.把a·b=ab反过来,就得到ab=a·b,利用它可以进行二次根式的化简.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)3×5; (2)13×27; (3)9×27; (4)12× 6. 【互动探索】(引发学生思考)利用二次根式的乘法运算法则进行计算. 【解答】(1)3×5=15. (2)13×27=13×27=9=3. (3)9×27=9×27=92×3=9 3. (4)12×6=12×6= 3. 【互动总结】(学生总结,老师点评)利用二次根式的乘法运算法则进行计算时,注意被开方数必须是非负数.【例2】化简:(1)9×16; (2)16×81; (3)81×100; (4)4a 2b 3; (5)54.【互动探索】(引发学生思考)利用二次根式积的算术平方根的性质进行化简时,需要注意什么?【解答】(1)9×16=9×16=3×4=12. (2)16×81=16×81=4×9=36. (3)81×100=81×100=9×10=90. (4)4a 2b 3=4·a 2·b 3=2·a ·b 2·b =2ab b . (5)54=9×6=32×6=3 6.【互动总结】(学生总结,老师点评)积的算术平方根是二次根式乘法法则的逆用,注意被开方数必须是非负数.活动2 巩固练习(学生独学)1.等式x +1·x -1=x 2-1成立的条件是( A ) A .x ≥1 B .x ≥-1 C .-1≤x ≤1 D .x ≥1或x ≤-12.计算: (1)12×3; (2)23×315; (3)23×3512×5936. 解:(1)6. (2)310. (3)18.3.判断下列各式是否正确,不正确的请予以改正: (1)(-4)×(-9)=-4×-9; (2)41225×25=4×1225×25=4×1225×25=412=8 3. 解:(1)不正确.改正:(-4)×(-9)=4×9=36=6. (2)不正确. 改正:41225×25=11225×25=11225×25=112=47. 活动3 拓展延伸(学生对学) 【例3】比较大小:(1)35与53; (2)-413与-511.【互动探索】由于根号外的因数不为1,可以将根号外的因数移到根号内,再比较被开方数的大小.【解答】(1)35=9×5=45, 53=25×3=75. 因为45<75,所以35<5 3. (2)-413=-16×13=-208, -511=-25×11=-275.因为208<275,所以-208>-275,所以-413>-511.【互动总结】(学生总结,老师点评)要比较两个二次根式的大小,可以先运用二次根式的乘法运算法则,将根号外的数移到根号内,再比较被开方数的大小.环节3 课堂小结,当堂达标 (学生总结,老师点评)练习设计请完成本课时对应训练!第2课时二次根式的除法教学目标一、基本目标【知识与技能】1.理解ab=ab(a≥0,b>0)和ab=ab(a≥0,b>0)及利用它们进行运算;2.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.【情感态度与价值观】在经历二次根式除法运算法则的过程中,获得成就感,建立学习数学的信心和兴趣.二、重难点目标【教学重点】最简二次根式的概念,二次根式的除法运算法则.【教学难点】二次根式商的算术平方根的运用.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P8~P10的内容,完成下面练习.【3 min反馈】(一)二次根式的除法1.教材P8“探究”,计算下列各式,观察计算结果,你能发现什么规律?(1)49=23,49=23;(2)1625=45,1625=45;(3)3649=67,3649=67.规律:一般地,二次根式的除法法则是ab=ab()a≥0,b>0.2.把ab=ab反过来,就得到ab=ab()a≥0,b>0,利用它可以进行二次根式的化简.(二)最简二次根式1.观察教材P8~P9例4、例5、例6中各小题的最后结果,比如22,310,2aa等,可以发现这些式子有如下两个特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.2.在二次根式的运算中,一般要把最后结果化为最简二次根式,并且分母中不含二次根式.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)123;(2)32÷18;(3)14÷116;(4)648.【互动探索】(引发学生思考)利用二次根式的除法运算法则进行计算.【解答】(1)原式=123=4=2 .(2)原式=32÷18=32×8=3×4=2 3.(3)原式=14÷116=14×16=4=2.(4)原式=648=8=2 2.【互动总结】(学生总结,老师点评)利用二次根式的除法运算法则进行计算时,注意被开方数必须是非负数,结果必须是最简二次根式.【例2】化简:(1)364;(2)64b29a2;(3)35;(4)22-1.【互动探索】(引发学生思考)利用二次根式的除法运算法则和商的算术平方根的性质将二次根式进行化简.【解答】(1)原式=364=38.(2)原式=64b29a2=8b3a.(3)原式=35=3×55×5=155.(4)原式=2×()2+1()2-1()2+1=2+22-1=2+ 2. 【互动总结】(学生总结,老师点评)利用二次根式的除法运算法则和商的算术平方根的性质将二次根式进行化简时,注意将结果化为最简二次根式.活动2 巩固练习(学生独学) 1.计算113÷213÷125的结果是( A ) A .27 5B .27C . 2D .272.如果xy(y >0)是二次根式,那么化为最简二次根式是( C ) A .xy(y >0) B .xy (y >0) C .xyy(y >0) D .以上都不对3.化简: (1)483; (2)0.7; (3)23-1; (4)6-56+5. 解:(1)4. (2)7010. (3)3+1. (4)11-230. 活动3 拓展延伸(学生对学) 【例3】已知9-x x -6=9-xx -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值.【互动探索】等式形式符合商的算术平方根公式→确定x 的取值范围→化简所求式子【解答】由题意,得⎩⎪⎨⎪⎧ 9-x ≥0,x -6>0,即⎩⎪⎨⎪⎧x ≤9,x >6,∴6<x ≤9.∵x 为偶数,∴x =8, ∴原式=(1+x )(x -4)(x -1)(x +1)(x -1)=(1+x )x -4x +1=(1+x )x -4(x +1)=(1+x )(x -4). ∴当x =8时,原式=4×9=6.【互动总结】(学生总结,老师点评)根据商的算术平方根的性质化简时,分子中被开方数是非负数,分母中被开方数是正数.环节3课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对应训练!16.3二次根式的加减第1课时二次根式的加减教学目标一、基本目标【知识与技能】通过合并被开方数相同的二次根式,会进行二次根式的加法与减法运算.【过程与方法】在分析问题的过程中,渗透对二次根式加减法的理解,再总结经验,用它来指导二次根式的计算和化简.【情感态度与价值观】鼓励学生积极参与数学活动,体会合作学习的先进性.二、重难点目标【教学重点】会将二次根式化为最简二次根式,掌握二次根式加减法的运算.【教学难点】运用二次根式的加减运算解决问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P12~P13的内容,完成下面练习.【3 min反馈】1.一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.2.计算下列各式.(1)22+32;(2)28-38+58;(3)7+27+9×7;(4)33-23+ 2.解:(1)原式=(2+3)2=5 2.(2)原式=(2-3+5)8=48=8 2.(3)原式=7+27+37=(1+2+3)7=67.(4) 原式=(3-2)3+2=3+ 2.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算: (1)27+13+12; (2)32+48-8+3; (3)3⎝⎛⎭⎫22-63+ 1.5-223;(4)()6-222+()23-1()23+1.【互动探索】(引发学生思考)运用二次根式的加减法法则及乘法公式进行计算,在计算时要注意哪些问题?【解答】(1)27+13+12=33+33+23=1633. (2)32+48-8+3=32+43-22+3=2+5 3. (3)3⎝⎛⎭⎫22-63+ 1.5-223=26-2+62-223=326-53 2.(4)()6-222+()23-1()23+1=6-412+8+()12-1=25-8 3.【互动总结】(学生总结,老师点评)计算二次根式的加减法时,先把二次根式化为最简二次根式,再合并同类二次根式.计算二次根式的混合运算时,注意运算顺序.【例2】已知a -5-2+b -5+2=0,求a 2+b 2+7的值.【互动探索】(引发学生思考)根据算术平方根的非负性,可得a =5+2,b = 5-2,然后再代入求值即可.【解答】由题意,得a -5-2=0,b -5+2=0,解得a =5+2,b =5-2,a 2+b 2+7=5+4+45+5+4-45+7=5.【互动总结】(学生总结,老师点评)此题主要考查了二次根式的加减,关键是掌握算术平方根具有非负性.活动2 巩固练习(学生独学) 1.计算32-2的值是( D ) A .2 B .3 C . 2D .2 22.若最简二次根式3a -8与17-2a 可以合并,则a =5. 3.计算: (1)348-913+312; (2)(48+20)+(12-5). 解:(1)=15 3. (2)63+ 5. 活动3 拓展延伸(学生对学)【例3】已知4x 2+y 2-4x -6y +10=0,求23x 9x +y 2x y 3-x 21x -5x yx的值. 【互动探索】先将已知等式进行变形,把它配成完全平方式,得(2x -1)2+(y -3)2=0,即可求出x 、y 的值.再根据二次根式的加减运算,先把各项化成最简二次根式,再合并同类二次根式,最后代入求值.【解答】∵4x 2+y 2-4x -6y +10=4x 2-4x +1+y 2-6y +9=(2x -1)2+(y -3)2=0,∴x =12,y =3. 原式=23x 9x +y 2x y3-x 21x+5x y x=2x x +xy -x x +5xy =x x +6xy . 当x =12,y =3时,原式=12×12+632=24+3 6. 【互动总结】(学生总结,老师点评)化简求值时一般是先化简为最简二次根式,再代入求值.化简时不能跨度太大,缺少必要的步骤易造成错解.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式的加减法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.练习设计请完成本课时对应训练!第2课时 二次根式的混合运算教学目标一、基本目标 【知识与技能】掌握含有二次根式的混合运算和含有二次根式的乘法公式的应用. 【过程与方法】复习整式运算知识并将该知识应用于含有二次根式的混合运算. 【情感态度与价值观】理解知识间的类比,进一步体会数学学习方法的重要性. 二、重难点目标 【教学重点】熟练地进行二次根式的混合运算,进一步提高运算能力. 【教学难点】正确地运用二次根式混合运算法则及运算律进行运算,并把结果化简.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P14的内容,完成下面练习. 【3 min 反馈】1.二次根式的混合运算顺序与整式的混合运算顺序一样,即先乘方,再乘除,最后加减,有括号的先算括号里面的.2.在二次根式的运算中,多项式乘法法则和乘法公式仍然适用. 3.计算: (1)13×27; (2)35; (3)80-45; (4)(25-2)2. 解:(1)3. (2)155. (3) 5. (4)22-410. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)12223×9145÷35; (2)⎝⎛⎭⎫312-213+48÷23+⎝⎛⎭⎫132;(3)2-(3+2)÷3.【互动探索】(引发学生思考)如何进行二次根式的混合运算? 【解答】(1)原式=12×9×83×145×53=12×9×229= 2. (2)原式=⎝⎛⎭⎫63-233+43÷23+13=2833×123+13=143+13=5. (3)原式=2-3+23=2-1-233.【互动总结】(学生总结,老师点评)二次根式的混合运算顺序与整式的混合运算顺序一样,即先乘方,再乘除,最后加减,有括号的先算括号里面的.【例2】计算:(1)(2+3-6)(2-3+6); (2)(2-1)2+22(3-2)(3+2); (3)⎝⎛⎭⎫6-1332-3424×(-26).【互动探索】(引发学生思考)(1)利用平方差公式进行计算即可;(2)先利用完全平方公式和平方差公式进行计算即可;(3)利用乘法分配律进行计算即可.【解答】(1)原式=[2+(3-6)][2-(3-6)]=(2)2-(3-6)2=2-(9-218)=2-9+62=-7+6 2.(2)原式=2-22+1+22×(3-2)=2-22+1+22=3. (3)原式=⎝⎛⎭⎫6-66-326×(-26)=-236×(-26)=8. 【互动总结】(学生总结,老师点评)利用乘法公式进行二次根式混合运算的关键是熟记常见的乘法公式;在二次根式的混合运算中,整式乘法的运算律同样适用.活动2 巩固练习(学生独学) 1.下列计算:①(2)2=2;② (-2)2=2;③(-23)2=12;④(2+3)( 2-3)=-1.其中正确的有( D )A .1个B .2个C .3个D .4个2.如果(2+2)2=a +b 2(a ,b 为有理数),则a = 6,b = 4. 3.计算: (1)(6+8)×3; (2)(46-32)÷22; (3)(5+6)(3-5); (4)(10+7)(10-7).解:(1)32+2 6.(2)23-32.(3)13-3 5.(4)3.活动3拓展延伸(学生对学)【例3】先化简,再求值:1x+y+1y+yx x+y,其中x=5+12,y=5-12.【互动探索】化简式子→代入x、y的值进行计算【解答】1x+y+1y+yx(x+y)=xyxy(x+y)+x(x+y)xy(x+y)+y2xy(x+y)=xy+x(x+y)+y2xy(x+y)=(x+y)2xy(x+y)=x+y xy.当x=5+12,y=5-12时,x+y=5,xy=1,所以原式= 5.【互动总结】(学生总结,老师点评)求代数式的值,如果直接代入计算比较繁琐,可以根据式子特点,整体代入进行计算.环节3课堂小结,当堂达标(学生总结,老师点评)二次根式的混合运算同整式的混合运算顺序相同,乘法公式和乘法法则同样适用.练习设计请完成本课时对应训练!。

沪科版八年级数学下册目录

沪科版八年级数学下册目录

沪科版八年级数学下册目录
数学教材是八年级数学学习的重要组成部分,其中课本目录收录了哪些知识呢?小编整理了关于沪科版八年级数学下册的目录,希望对大家有帮助!
沪科版八年级数学下册课本目录
第16章二次根式
16.1 二次根式
16.2二次根式的运算
第17章一元二次方程
17.1 一元二次方程
17.2一元二次方程的解法
17.3一元二次方程的根的判别式
17.4一元二次方程的根与系数的关系
17.5 一元二次方程的应用
第18章勾股定理
18.1 勾股定理
18.2 勾股定理的逆定理
第19章四边形
19.1 多边形内角和
19.2平行四边形
19.3 矩形菱形正方形
19.4 中心对称图形
19.5梯形
第20章数据的初步分析
20.1数据的频数分布
20.2数据的集中趋势与离散程度
20.3综合与实践体重指数
泸科版八年级数学下册知识点:二次根式的加法和减法
1 同类二次根式
一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。

2 合并同类二次根式
把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。

3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。

二次根式的混合运算
1确定运算顺序
2灵活运用运算定律
3正确使用乘法公式
4大多数分母有理化要及时
5在有些简便运算中也许可以约分,不要盲目有理化。

八年级数学下册二次根式 . 二次根式的运算 二次根式的加减

八年级数学下册二次根式 . 二次根式的运算 二次根式的加减

(2)3 2-2 48-4
18+3 12.
第六页,共十三页。
16.2.2 第1课时 二次根式(gēnshì)的加减
解:(1)3 18+15 50-4
1 2
=9 2+ 2-2 2
=8 2.
(2)3 2-2 48-4
1 8+3 12=3 2-8 3- 2+6 3=2 2-2 3.
第七页,共十三页。
16.2.2
在熟练进行二次根式化简的基础上,通过类比整式加减的方 法,掌握二次根式的加减运算.
第三页,共十三页。
16.2.2 第1课时(kèshí) 二次根式的加减
目标突破
目标 掌握(zhǎngwò)二次根式的加减运算
例 1 教材补充例题 计算: (1)2 12+ 27; (2) 18- 32.
第四页,共十三页。
1课时 第
(kèshí)
二次根式的加减
【归纳总结】二次根式加减运算的“三步法”: 化 →将二次根式化为最简二次根式 ↓ 找 →找出被开方数相同的二次根式 ↓ 合 →合并被开方数相同的二次根式
第八页,共十三页。
16.2.2 1 第 课时(kèshí) 二次根式的加减
总结(zǒngjié)反思
知识点一 同类(tónglèi)二次根式的定义
解:不正确.错在 7 2与 3 正解: 18+ 32+ 27 =3 2+4 2+3 3 =7 2+3 3.
3不能合并.
第十二页,共十三页。
第16章 二次根式(gēnshì)
内容(nèiróng)总结
第十三页,共十三页。
几个二次根式化成___最__简_二__次_根__式___以后,如果__被_开__方__数___相 同,那么这几个二次根式叫做同类二次根式.

16.3(1)二次根式的加法和减法

16.3(1)二次根式的加法和减法

75 )
1 3 2 解 : 原式 2 25 3 2 3 3 4 2 2
2 2 2 3 5 3 2 2 3 4 2 2 2 3 5 3 2 3 4 1 1 2 ( ) 2 ( 5) 3 2 4 3 1 13 2 3 4 3
计算
1)
2 1 125 3 4 216 3 27 5 3) ( 24 0.5 2 2 ) ( 1 6) 3 8 3 2 4) 2 x 8 x 2 18 xy
2)
5) 1 75a 10 ab 4 2 3a 3 ab 2 121
3
a
a
6)
1 (4 0.5 2 ) 4( 0.125 12) 3
计算
2 3 (1) 9m 16m 3 4
(3) 50( p q )
1 x 1 (2) 36 x 6 2 x 2 4 x
8 pq
8 解: (3)∵ ≥0且p q≠0,∴p q 0 pq
2 ∴原式=5 2( p q) pq 2 p q
2 系数为多项式, =(5 p q ) 2 p q
3 3 16 3 9 3 3 二次根式的化简 要细心
2 43 4
归纳
4 3 12 3 解:原式 4 3 9 4 ( 4 12 ) 3 9 根号前的有理因式 要写成假分数,不 140 3 能写成带分数 9
计算:(
1 1 0.5 2 )( 3 8
根式化简时错将 分母作分子
计算: 2 12 4 1 3 48
27
试一试: 学生乙: 3 12 3 解:原式 4 3 4 9 化简后漏写乘号,
乘法关系被误认为 3 16 3 4 带分数关系 9 8 3 书写不规范 11 9

16.3 二次根式的加减(第1课时)(课件)八年级数学下册(人教版)

16.3 二次根式的加减(第1课时)(课件)八年级数学下册(人教版)

知识点一 同类二次根式
活动1 观察下列二次根式的被开数有什么共同特征:
(1) 2,3 2,-
2
5
1
2,
3
2 ···
2
(2) 3,17 3,- 5 3, ·
3··
13
每组的二次根式的被开方数相同
活动2 思考下列二次根式具有的被开数以上特征吗?你怎样发现的?:
9
(3) 2, 8, 18, 32, 0.5,2
2 10
8
2
3
5
3
2
ab
2
b
(1) 75 =____;(2) 8a b =_______;(3) =_____.
5
5
问题 现有一块长 7.5 dm、宽 5 dm 的木板,能否采用如图的方式,在这
块木板上截出两个分别是 8 dm2 和 18 dm2 的正方形木板?
5 dm
5 dm
8 18
8
18
2
2
2
5
2
1 4.
课堂总结
一般地,二次根式的


加减时,可以先将二次根
式化成最简二次根式,再
将被开方数相同的二次根
二次根
式加减
式进行合并.

运算原理
运算律仍然适用
运算顺序
与实数的运
算顺序一样

(乘法分配律逆用)
5 2
(有理数的加减)
归纳知识
2.二次根式的加减法法则
将二次根式化成最简二次根式,再将同类二次根式进行合并.
简记:一化、二找、三合并
典例精析
【例3】计算:
(1) 80 45;
1

人教版八年级数学下册课件 16-3 第1课时 二次根式的加减

人教版八年级数学下册课件 16-3 第1课时  二次根式的加减

b
2a+3b
如果把a,b用二次根式来替代,能得到什么呢?
当a= 2 ,b= 8 时,得2a+3b= 2 2 3 8 .
因为 3 8 3 22 2 6 2,由前面知两者可以合并.
你又发现
了什么?
2a+3b=2 2+6 2=8 2
我们发现:要将二次根式化成最简式,如果被开方数相同,
则这样的二次根式可以合并.
归纳总结
将二次根式化成最简式,如果被开方数相同,
则这样的二次根式可以合并.
注意:判断几个二次根式是否可以合并,一定都要
化为最简二次根式再判断.
合并的方法与合并同类项类似,把根号外的因数(式)
相加,根指数和被开方数(式)不变.如:
m a n a m n a
例题讲解
例1 若最简根式
3 − 2 与 3 可以合并,
2
4 5 , 3 5, 2 5 .
化简后被开方数相同
获取新知
知识点一:同类二次根式
同类二次根式:几个二次根式化成最简二次根式后,它们
的被开方数相同, 这些二次根式就称为同类二次根式
备注:
1.同类二次根式首先必须是最简二次根式;
2.同类二次根式再次必须是被开方数相同
例题讲解
例1 下列根式中,与 3 不是同类二次根式的是( C )
第十六章 二次根式
16.3 第1课时 二次根式的加减
知识回顾
问题1 满足什么条件的根式是最简二次根式?
(1)被开方数不含分母;
(2)被开方数中不含能开得尽方的因数或因式.
问题2 化简下列两组二次根式,每组化简后有什么共同特点?
(1) 8 ,18 ,0.5;

(完整版)八年级数学下册电子版教案

(完整版)八年级数学下册电子版教案

老师结合学生的回答 , 强调二次根式的非负性.
当 a> 0 时, a表示 a 的算术平方根 ,因此 a> 0;
当 a= 0 时, a表示 0 的算术平方根 , 因此 a= 0.
也就是说 ,当 a≥ 0 时 , a≥ 0.
三、例题讲解
【例】 当 x 是怎样的实数时 , x- 2在实数范围内有意义? 解:由 x-2≥ 0, 得 x≥ 2.
8= 2a
2 a
a;
(4)
xx23y=
xy y.
教师点评:上面这些式子的结果具有如下两个特点:
1. 被开方数不含分母.
2. 被开方数中不含能开得尽方的因数或因式.
师:我们把满足上述两个条件的二次根式 , 叫做最简二次根式. (教师板书 )
教师强调:在二次根式的运算中 , 一般要把最后结果化为最简二次根式.
重点 最简二次根式的运用. 难点 会判断这个二次根式是否是最简二次根式.
一、复习导入
( 学习活动 )请同学们完成下列各题. ( 请四位同学上台板书 )
计算: (1)
2; (2)2 6;(3)
3
18
8 ; (4) 2a
x3
x2
. y
教师点评:
(1)
2= 3
36;
2 (2)
6= 18
2
3 3; (3)
二、新课教授
所以当 x≥2 时 , x- 2在实数范围内有意义.
四、巩固练习
1. 已知 a- 2+
b+
1= 2
0,
求-
a2b
的值.
【答案】 a- 2≥ 0, b+21≥0, 又∵它们的和为 1
2, b=- 2. ∴- a2b=- 22× (-12)=2.

人教版数学八年级下册16.3.1二次根式的加减运算(教案)

人教版数学八年级下册16.3.1二次根式的加减运算(教案)
三、教学难点与重点
1.教学重点
-理解并掌握二次根式的加减运算规则,能够准确进行相关计算。
-学会化简二次根式,提高运算速度和准确度。
-将二次根式的加减运算应用于解决实际问题。
举例解释:
-重点一:讲解并练习如何将不同二次根式进行加减,如√18 + √50,要求学生掌握合并同类项的方法,理解根号内数的分解对简化运算的重要性。
2.提高学生的逻辑思维能力和运算能力,通过化简二次根式和计算二次根式加减,锻炼学生分析问题和解决问题的能力。
3.培养学生的数感和符号意识,让学生在二次根式加减运算过程中,更加熟悉数学符号的使用,增强对数学表达式的理解和运用。
4.培养学生的合作意识和团队精神,通过小组讨论和互助学习,使学生学会倾听、交流、分享,提高合作解决问题的能力。
-在运算过程中,保持对数的敏感度和对运算符号的准确使用。
举例解释:
-难点一:学生对合并同类项时,如何处理根号内数的分解和合并感到困惑,例如将√18和√50合并时,需要先将√18分解为√9×√2,√50分解为√25×√2,然后再进行合并。
-难点二:在解决应用题时,学生可能难以将问题中的长度、宽度等转化为二次根式,例如需要将长方形的长度和宽度表示为√20 cm和√15 cm。
人教版数学八年级下册16.3.1二次根式的加减运算(教案)
一、教学内容
人教版数学八年级下册16.3.1二次根式的加减运算。本节课主要内容包括:
理解二次根式的概念,掌握二次根式的性质。
2.学习二次根式的加减运算规则,能够正确进行二次根式的加减运算。
3.掌握化简二次根式的方法,提高运算速度和准确度。
五、教学反思
今天我们在课堂上探讨了二次根式的加减运算,整个教学过程让我有了以下几点思考。

16.3二次根式的加减(第1课时)

16.3二次根式的加减(第1课时)
计算下列各式:
问题:1.什么是同类项? 2.同类项怎样合并?
a b ab ab a b(a≥0,b≥0)
a b
a b
a b
a (a≥0,b>0) b
1.被开方数中不 含分母; 下列根式中,哪些是最简二次根式? 2.被开方数中 不含开得尽方 的因数或因式
15a , 18, x 1, 5 x y , 24abc,
2 3

×

×
×
ab 3xy 2 2 2 x y, , , 6(a b ) 3 3
2

×


二次根式在什么条件下可以合并?
探究
如何计算 8
2 4 2 呢?
分析: 类似8a+4a=12a,我们可以 根据乘法分配律的逆用来进行运算。 解: 8 2 4 2
(8 4) 2
12 2
下列计算哪些正确,哪些不正确? (不正确) 3 2 5
a b a b
a b a b
(不正确) (不正确)

a a b a (a b) a
1 3a 2 2a a
(正确)
a 0 (不正确)
1 ⑸ 3
下列解答是否正确?为什么?
(1)2 75 3 27 3 2 75 9 3 3 10 3 10 3 0
注意:被开方数不相同的二次根式 (如 2 与 3 )不能合并
例题讲解
(2) 80 45 计算: (1) 9a 25a
解: (1) 9a 25a
(2) 80 45
3 a 5 a
4 5 3 5
(3 5) a
(4 3) 5

最新人教版八年级数学下册十六章二次根式16.3二次根式的加减教学设计

最新人教版八年级数学下册十六章二次根式16.3二次根式的加减教学设计

16.3 二次根式的加减(1)第一课时教学内容二次根式的加减教学目标理解和掌握二次根式加减的方法.先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.重难点关键1.重点:二次根式化简为最简根式.2.难点关键:会判定是否是最简二次根式.教学过程一、问题引入现有一块长为7.5dm ,宽为5dm 的木板,能否采用如图16.3-1的方式,在这块木板上戳出两个面积分别是8dm 3和18dm 3的正方形木板?二、探索新知1.学生活动:列出代数式8+18 利用前面所学知识将其化简得到2+32.教师提问同类项以及合并同类项的知识,学生复习回答问题老师点评:所以如果被开方数相同,则这样的二次根式可以利用分配律合并一般地,二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.所以上面问题2+3=25,由2<1.5可知52<7.5,即两个正方形的边长的和小于木板的长,因此可以用这块木板按要求截出所需要的木板。

例1.计算(1)80-45 (2)a 9+a 25 (3)+(4)+分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.、例2.计算(1)483316-122+ (4)(2012+)+(5-3)比较二次根式的加减与整式的加减,你能得到什么结论?三、展示交流教材P13练习1、2.四、堂清巩固例3.已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值.分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值.解:∵4x2+y2-4x-6y+10=0∵4x2-4x+1+y2-6y+9=0∴(2x-1)2+(y-3)2=0∴x=,y=3原式=+y2-x2+5x=2x+-x+5=x+6当x=,y=3时,原式=×+6=+3五、课堂小结本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.六、布置作业1.教材P21习题21.3 1、2、3、5.2.选作课时作业设计.3.课后作业:《同步训练》七、板书设计16.3 二次根式的加减(1)先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.八、课后回顾16.3 二次根式的加减(2)第二课时教学内容含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.教学目标含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用. 复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算. 重难点关键重点:二次根式的乘除、乘方等运算规律;难点关键:由整式运算知识迁移到含二次根式的运算.教学过程一、复习引入学生活动:请同学们完成下列各题:1.计算(1)(2x+y )·zx (2)(2x 2y+3xy 2)÷xy2.计算(1)(2x+3y )(2x-3y ) (2)(2x+1)2+(2x-1)2老师点评:这些内容是对整式运算的再现.它主要有(1)•单项式×单项式;(2)单项式×多项式;(3)多项式÷单项式;(4)完全平方公式;(5)平方差公式的运用.二、探索新知如果把上面的x 、y 、z 改写成二次根式呢?以上的运算规律是否仍成立呢?•仍成立. 整式运算中的x 、y 、z 是一种字母,它的意义十分广泛,可以代表所有一切,•当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.例1.计算:(1)(+)× (2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.例2.计算(1)()()5-232+ (2)()()3-535+ 分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.三、展示交流课本P 14练习1、2.四、堂清巩固例3.已知=2-,其中a 、b 是实数,且a+b ≠0,化简+,并求值.分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可.解:原式=+=+=(x+1)+x-2+x+2=4x+2∵=2-∴b(x-b)=2ab-a(x-a)∴bx-b2=2ab-ax+a2∴(a+b)x=a2+2ab+b2∴(a+b)x=(a+b)2∵a+b≠0∴x=a+b∴原式=4x+2=4(a+b)+2五、课堂小结本节课应掌握二次根式的乘、除、乘方等运算.六、布置作业1.教材P21习题16.3 4、6、8、9.2.课后作业:《练习册》七、板书设计16.3 二次根式的加减(2)八、课后回顾作业设计一、选择题1.(-3+2)×的值是().A.-3 B.3-C.2- D.-2.计算(+)(-)的值是().A.2 B.3 C.4 D.1二、填空题1.(-+)2的计算结果(用最简根式表示)是________.2.(1-2)(1+2)-(2-1)2的计算结果(用最简二次根式表示)是_______.3.若x=-1,则x2+2x+1=________.4.已知a=3+2,b=3-2,则a2b-ab2=_________.三、综合提高题1.化简2.当x=时,求+的值.(结果用最简二次根式表示)课外知识1.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,•这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式.练习:下列各组二次根式中,是同类二次根式的是().A.与 B.与C.与 D.与2.互为有理化因式:•互为有理化因式是指两个二次根式的乘积可以运用平方差公式(a+b)(a-b)=a2-b2,同时它们的积是有理数,不含有二次根式:如x+1-与x+1+就是互为有理化因式;与也是互为有理化因式.练习:+的有理化因式是________;x-的有理化因式是_________.--的有理化因式是_______.3.分母有理化是指把分母中的根号化去,通常在分子、•分母上同乘以一个二次根式,达到化去分母中的根号的目的.练习:把下列各式的分母有理化(1);(2);(3);(4).4.其它材料:如果n是任意正整数,那么=n理由:==n练习:填空=_______;=________;=_______.答案:一、1.A 2.D二、1.1- 2.4-24 3.2 4.4三、1.原式====-(-)=-2.原式==== 2(2x+1)∵x==+1 原式=2(2+3)=4+6.。

(人教版)初二下册数学第16章知识点汇总

(人教版)初二下册数学第16章知识点汇总

(人教版)初二下册数学第16章知识点汇

16.1 二次根式
gt;gt;gt;gt;点击查看全文:二次根式
16.2 二次根式的乘除
1.乘法规定:(a≥0,b≥0)
二次根式相乘,把被开方数相乘,根指数不变。

(1)(a≥0,b≥0,c≥0)
(2)(b≥0,d≥0)
2.乘法逆用:(a≥0,b≥0)
积的算术平方根等于积中各因式的算术平方根的积。

注意:公式中的a、b可以是数,也可以是代数式,但必须满足a≥0,b≥0;
gt;gt;gt;gt;点击查看全文:二次根式的乘除法
16.3 二次根式的加减
知识点1:同类二次根式
(Ⅰ)几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如这样的二次根式都是同类二次根式。

(Ⅱ)判断同类二次根式的方法:(1)首先将不是最简形式的二次根式化为最简二次根式以后,再看被开方数是否相同。

(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关。

gt;gt;gt;gt;点击查看全文:二次根式的加减法初二下册数学第16章知识点就到这儿了,体会每篇文章的不同,摘取自己想要的,友情提醒,理解最重要哦!!!数学知识点帮助大家轻松愉快地总结功课~。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档