第四章 信息率失真函数-习题答案

合集下载

ch04 信息率失真函数

ch04 信息率失真函数

P (Y X )
⎧0 xi = y j d ( xi , y j ) = ⎨ ⎩a xi ≠ y j
3
⎡ p ( y1 x1 ) p ( y2 x1 ) ... p ( ym x1 ) ⎤ ⎢ ⎥ ⎢ p ( y1 x2 ) p ( y2 x2 ) ... p ( ym x2 ) ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ p ( y1 xn ) p ( y2 xn ) ... p ( ym xn ) ⎦ ⎥ ⎣
⎡ d ( x1, y1 ) d ( x1, y2 ) ⎢d ( x , y ) d ( x , y ) 2 1 2 2 D= ⎢ ⎢ ⎢ ⎣d ( xn , y1 ) d ( xn , y2 )
d ( x1, ym ) ⎤ d ( x2 , ym )⎥ ⎥ ⎥ ⎥ d ( xn , ym )⎦
4
4.1 基本概念
i =1 j n
(
)
离散信源 连续信源
Dmin = ∑ p(xi )min d(xi , y j )
i=1 j
n
仅当失真矩阵每行均 有零元素时, Dmin= 0
R(Dmin ) = R(0) = H ( X )
R(Dmin ) = R(0) = H(x) =∞
12
4.1 基本概念
西华师范大学 物理与电子信息学院
失真函数d(αi,βj)
d(αi , β j ) = d(xi1 xi2
N k =1
xiN , yj1 yj2
= ∑d(xik , yjk )
D ≤ D ,D——允许失真的上界
7
平均失真度—— 单符号时的N倍
D( N ) = ND
8
4.1 基本概念
西华师范大学 物理与电子信息学院

信息论第四章失真率函数

信息论第四章失真率函数

D
q( x ) p( y
i i j
j
xi ) d i j D
(4-11)
式中D是预先给定的失真度,上式称为保真度准则。
根据[定理2.2],当信源q (x)一定时,平均互信息量I (X ; Y) 是信道转移概率函数 p(y∣x) 的∪型凸函数,这意味着可以 关于p(y∣x)对平均互信息量I (X ; Y)求得极小值,定义这个 极小值为率失真函数R(D),即:
d ii 0
d ij 1
i, j 1,2, , K
上述约定可以用矩阵表示为
0 1 1 1 0 1 d 1 1 0
式中di j ≥ 0 i, j = 1, 2, …, K为信源方发送符号xi而信宿方判为 yj引起的失真度。 对于矢量传输情况,若信道的输入、输出均为N 长序列X = X1 X2 … XN ,Y = Y1 Y2 … YN ,定义失真测度为
RD min I X ; Y : D D
p( y x)


(4-12)
式(4-12)的意义在于,选择p(y∣x)即选择某种编码方法在满足 的 D D前提下,使I (X ; Y) 达到最小值R(D) ,这就是满足平 均失真 D D 条件下的信源信息量可压缩的最低程度。
4.2
N
k J
p( x
k 1 i 1 j 1
ki
, ykj )d ( xki , ykj ) (4-5)
(4-5)式表明了离散无记忆N次扩展信道的输入输出符号之 间平均失真等于单个符号xki,ykj之间失真统计值的总和。
若矢量信源是原离散无记忆信道的N次扩展,且矢 量信道也是原离散无记忆信道的N次扩展,则每个 Dk

《信号处理原理》 第4章 信息失真率

《信号处理原理》 第4章  信息失真率

d(0,2)=d(1,2)=0.5
则得失真矩阵
d

0 1
1 0
0.5 0.5
4.1 平均失真和信息率失真函数
说明:失真函数d (xi, yj) 的数值是依据实际应 用情况,用 yj代替xi, 所导致的失真大小是人为决 定的。比如上例中,用y=2代替x=0和x=1所导致 的失真程度相同,用0.5表示;而用y=0代替x=1 所导致的失真程度要大,用1表示。失真函数d (xi, yj) 的函数形式可以根据需要任意选取,例如平方 代价函数、绝对代价函数、均匀代价函数等。
信源编码器的目的是使编码后所需的信 息传输率R尽量小,然而R越小,引起的平 均失真就越大。给出一个失真的限制值D,
在满足平均失真 D D的条件下,选择一种
编码方法使信息率R尽可能小。信息率R就 是所需输出的有关信源X的信息量。
16
4.1 平均失真和信息率失真函数
将此问题对应到信道,即为接收端Y需要 获得的有关X的信息量,也就是互信息 I(X;Y)。这样,选择信源编码方法的问题就 变成了选择假想信道的问题,符号转移概 率p(yj/xi)就对应信道转移概率。
输入符号集 X:{a1, a2, …, an}中有n种不同的符 号xi (i =1, 2, …, n) ;输出符号集Y:{b1, b2, …, bm}中有m种不同的符号yj (j =1, 2, …, m);对于 图所示的系统,对应于每一对(xi, yj)(i = 1, 2, …,n;j=1, 2, …, m),定义一个非负实值函数
平均失真D是对给定信源分布p(ai)经过某一种 转移概率分布为p(bj|ai)的有失真信源编码器后产 生失真的总体量度。
13
4.1 平均失真和信息率失真函数

第四章信道率失真函数后续习题课

第四章信道率失真函数后续习题课
真传送要求信息率R为无穷大; •实际信道带宽是有限的,所以信道容量受限制。要 想无失真传输,所需的信息率大大超过信道容量 R>>C。
2018/10/13
Department of Communication China Ji Liang University
2
第四章 信息 率失真函数
• 实际中允许一定程度的失真
2018/10/13
Department of Communication China Ji Liang University
3
第四章 信息 率失真函数
• 问题:在允许一定程度的失真条件下,信
4.1.1 失真函数
源信息能够压缩到何种程度?至少需要多 少比特的信息率才能描述信源?
•香农信息率失真理论指出:
• 这样就将选择信源编码方法的问题转化为选择假想信道的问题,
2018/10/13
Department of Communication China Ji Liang University
13
第四章 信息 率失真函数
• 试验信道
4.1.3 信息率失真函数R(D)
平均失真 是信源统计特性p(xi) 、信道统计特性p(yj/xi ) 和失真度d(xi,yj)的函数 。当p(xi)和d(xi,yj)给定后,则可以 求出满足保真度准则 下的所有转移概率分布 pij,构 成一个信道集合PD,
i=n i=n i=n 2n 2n 2n
a1 a2 an
a n+1
an
n 1 2n
a 2n
输出熵H(Y)为: 1 1 1+n n+1 H(Y)=H( ,... , ) log 2n log(n 1) 2n 2n 2n 2n

《信息论与编码》习题解答-第四章(新)

《信息论与编码》习题解答-第四章(新)

《信息论与编码》习题解答第四章 信息率失真函数-习题答案4.1解:依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=0110d ,转移概率⎥⎦⎤⎢⎣⎡--=εεεε11)|(i j a b p 平均失真:εεεεε=⨯-⨯+⨯⨯+⨯⨯+⨯-⨯==∑∑==0)1(2/112/112/10)1(2/1),()|()(2121j i i j i j i b a d a b p a p D4.2解:依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=0210d , 0min =D ,∑=⨯+⨯=⨯+⨯===ij i i j j y x d x p D D )102/122/1(2/112/102/1),()(min min max 舍去当0min =D ,bit X H R D R 12log )()0()(min ====因为没有失真,此时的转移概率为⎥⎦⎤⎢⎣⎡=1001P当2/1max =D ,0)(max =D R因为取的是第二列的max D 值,所以输出符号概率:,1)(,0)(21==b p b p ,,2221b a b a →→因此编码器的转移概率为⎥⎦⎤⎢⎣⎡=1010P 4.3解:0min =D0041041041041),(min )(43041141141141),()(min min min max =⨯+⨯+⨯+⨯===⨯+⨯+⨯+⨯===∑∑i j i j i i j i i j j y x d x p D y x d x p D D 当0min =D ,bit X H R D R 24log )()0()(min ==== 因为没有失真,此时的转移概率为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000010000100001P 当4/3max =D ,0)(max =D R因为任何一列的max D 值均为3/4,所以取输出符号概率:0)(,0)(,0)(,1)(4321====b p b p b p b p ,即14131211,,,b a b a b a b a →→→→因此编码器的转移概率为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0001000100010001P 4.4解: 依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=4/1014/110d , 0min =D∑=⨯+⨯===ij i i j j y x d x p D D )2/12(4/1)4/12/14/12/1min(),()(min min max 个均为其它当0min =D ,bit X H R D R 12log )()0()(min ====因为没有失真,此时的转移概率为⎥⎦⎤⎢⎣⎡=010001P 当4/1max =D ,0)(max =D R因为取的是第三列的max D 值为1/4,所以取输出符号概率:1)(,0)(,0)(321===b p b p b p ,即3231,b a b a →→因此编码器的转移概率为⎥⎦⎤⎢⎣⎡=100100P 4.5解:(1)依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=0110d ,转移概率为:⎥⎦⎤⎢⎣⎡-=q q P 101 )1(0)1()1(1)1(1001),()|()(11p q q p q p p p y x d x y p x p D n i mj j i i j i -⨯=⨯-⨯-+⨯⨯-+⨯⨯+⨯⨯==∑∑==(2) 0min =D因为)(D R 是D 的递减函数,所以)1log()1(log )()()())(m ax (min min p p p p D H p H D R D R ----=-==当0=q 时可达到))(max(D R ,此时0=D(3) ∑-=⨯+⨯===iji i j j ,p p p p y x d x p D D )1(10),()(min min max 舍去更大另一个 因为)(D R 是D 的递减函数,所以0)()()())(m in(max max =-==D H p H D R D R当1=q 时可达到))(min(D R ,此时p D -=1(图略,见课堂展示)4.6解:依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡∞∞=1010d ,信源⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡2/12/110)(u p u 0min =D ,∑⨯+⨯⨯+∞⨯∞⨯+⨯===iji i j j y x d x p D D )12/112/1,02/12/1,2/102/1min(),()(min min max )(1]1,,m in[舍去另二个,∞=∞∞=10≤≤D因为二元等概信源率失真函数:⎪⎭⎫ ⎝⎛-=a D H n D R ln )( 其中1,2==a n ,所以率失真函数为:D D R -=1)(4.7解:失真矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=011101110d ,按照P81页方法求解。

信息率失真函数 第4章— 1

信息率失真函数 第4章— 1

② 均方失真: d(ai ,bj ) (ai bj )2
③ 绝对失真: d (ai ,bj ) | ai bj |
④ 相对失真: d (ai ,bj ) | ai bj | / | ai |

误码失真:
d
(ai
,bj
)
(ai
bj
)
0, 1,
ai bj 其他
9
4.1.2 平均失真
• xi和yj都是随机变量,所以失真函数d(xi,yj)也是随 机变量,限失真时的失真值只能用数学期望表示
11
4.1.3 信息率失真函数R(D)
• 若平均失真度 D 不大于我们所允许的失真,即
DD
• 则称此为保真度准则
• 当信源p(xi)给定,单个符号失真度d(xi,yj) 给定时, 选择不同的试验信道p(yj|xi),相当于不同的编码 方法,其所得的平均失真度不同。
• 试验信道
D D 满足保真度准则
D
>D
12
4.1.3 信息率失真函数R(D)
• 满足 D D 条件的所有转移概率分布pij ,构成 了一个信道集合
PD {p(bj | a)i :D D} • D失真允许的试验信道:
– 满足保真度准则的试验信道。
• PD:
– 所有D失真允许的试验信道组成的一个集合。
13
4.1.3 信息率失真函数R(D)
信道容量
• 信道容量:
– 假定信道固定的前提下,选择一种试验信源 使信息传输率最大。
– 它所反映的是信道传输信息的能力,是信道 可靠传送的最大信息传输率。
• 一旦找到了信道容量,它就与信源不再有关, 而是信道特性的参量,随信道特性的变化而变 化。

信息论考试答案

信息论考试答案

第4章作业1. 设输入符号表与输出符号表为X =Y ={0,1,2,3},且输入信号的分布为p (X = i ) = 1/4,i =0,1,2,3,设失真矩阵为0111101111011110⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦d 求D min 、D max 和R (D min )、R (D max )以及相应的编码器转移概率矩阵,并求出信源的R(D)函数,画出其曲线(取4至5个点)。

解:10110 41011A A n A P n A A n -⎡⎤⎢⎥⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥=↔==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥-⎣⎦d有114i p n ==得:()()111011i ji ij ijA AD p P d n n n A n n n-==-⨯⨯+⨯⨯=--∑∑所以1A D =-,进而:()()1111j i ji iA A q p P n n n n n-==+-⨯=-∑()()()()()()()()()1111 ,,,,,1111 ,,1,,,11 log 1log 11log11log ,1log 1 2,1log 3j ji R D H q H p AA H H A n n n n D D H H D n n n n D Dn D D n n n n H D D D n H D D D ==--⎛⎫⎛⎫=- ⎪ ⎪--⎝⎭⎝⎭⎛⎫⎛⎫=-- ⎪ ⎪--⎝⎭⎝⎭=+--+-⨯--=----=--- ()minmin 0,2D R D bit ==,此时1000010000100001⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦P()maxmax 3/4,0D R D ==,此时1000100010001000⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦P2. 设输入符号为X ={0,1},输出符号为Y ={0,1}。

输入信号的概率分布为P =(1/2,1/2),失真函数为d (0,0) = d (1,1) = 0,d (0,1) =d (1,0) =α。

第四章信息率失真函数-习题答案

第四章信息率失真函数-习题答案

4.1 一个四元对称信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡4/14/1324/14/110)(X P X ,接收符号Y = {0, 1, 2, 3},其失真矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0111101111011110,求D max 和D min 及信源的R(D)函数,并画出其曲线(取4至5个点)。

解: 0041041041041),(min )(43041141141141),()(min min min max =⨯+⨯+⨯+⨯===⨯+⨯+⨯+⨯===∑∑ij i j i i j i i j j y x d x p D y x d x p D D 因为n 元等概信源率失真函数:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+-+=a D a D n a Da D n D R 1ln 11ln ln )( 其中a = 1, n = 4, 所以率失真函数为:()()D D D D D R --++=1ln 13ln4ln )( 函数曲线:D 其中:sym bol nat D R D sym bol nat D R D sym bol nat D R D sym bolnat R D /0)(,43/12ln 214ln )(,21/316ln 214ln )(,41/4ln )0(,0==-==-==== 4.2 若某无记忆信源⎭⎬⎫⎩⎨⎧-=⎥⎦⎤⎢⎣⎡3/113/13/101)(X P X ,接收符号⎭⎬⎫⎩⎨⎧-=21,21Y ,其失真矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112211D 求信源的最大失真度和最小失真度,并求选择何种信道可达到该D max 和D min 的失真度。

4.3 某二元信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡2/12/110)(X P X 其失真矩阵为⎥⎦⎤⎢⎣⎡=a a D 00求这信源的D max 和D min 和R(D)函数。

解:0021021),(min )(202121),()(min min min max =⨯+⨯===⨯+⨯===∑∑ij i j i i j i i j j y x d x p D a a y x d x p D D 因为二元等概信源率失真函数:⎪⎭⎫ ⎝⎛-=a D H n D R ln )( 其中n = 2, 所以率失真函数为:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+-=a D a D a D a D D R 1ln 1ln 2ln )( 4.4 已知信源X = {0, 1},信宿Y = {0, 1, 2}。

4信息率失真函数-2

4信息率失真函数-2
p( y j ) i j
12
R(D)的定义域例子
x2 x1 α 0 例 二元信源 ,[ D] = 0.4 0.6 0 α 求R( D )的定义域和值域。 解: 由定义:Dmin = 0 D1 = 0.4α D2 = 0.6α = = Dmax min( D1 , D2 ) 0.4α = 当D=Dmin 0= 时,R( D ) H ( X , ) 无失真 当D ≥ Dmax时,R( D ) = 0
基础信息论
电子信息与通信学院 涂来 email: tulai@ 南一楼 东南角5楼
第4章 信息率失真函数
第4章 信息率失真函数
• 4.1 基本概念 • 4.2 离散信源的信息率失真函数 • 4.3 连续信源的信息率失真函数 • 4.4 保真度准则下的信源编码定理
3
第4章 信息率失真函数

d12 d 22 dn2
d1 m d 2m = [ D] d ij d nm
11
D max
= min ∑ p( y j )∑ p( x i )d ( x i , y j ) min ∑ p( y j ) D j
p( y j ) j i p( y j ) j
D max = min E d ( x, y ) p ( y | x )∈ P0
由于,X和Y相互独立,故有:
D max = min ∑
p( y j ) j
p( xx n )
= min ∑
p( y j ) j
d11 p( y j ) p( x i )d ( x i , y j ) d 21 i p( y j ) D j d n1
信源分布 失真函数 已经给定 上式是用不同的概率分布 p( y j ) 对 Dj 求数学期望, 取数学期望当中最小的一个作为Dmax

第四章 信息率失真函数

第四章 信息率失真函数
为什么要讨论信息率失真函数R(D) ?
失真在传输中是不可避免的。
连续信源输出的信息量为无穷大,不可能实现无失真信源编码. 接收者(信宿)无论是人还是机器设备,都有一定的分辨能力与 即使信宿能分辨、能判别,但对通信质量的影响不大,也可以
灵敏度,超过分辨能力与灵敏度的信息传送过程是毫无意义的。
因此 D 取决于以下几个因素:
) i=1,2, ,n) 1)信源的统计特性,即 p(ai(
2)信道的统计特性,即 p(b j / ai ) 3)失真函数,即 d (ai , b j ) 一般情况下,人们所允许的失真指的都是平均意义 上的失真。如果规定其平均失真度 D不能超过某一限 定的值D,即D就是允许失真的上界。
称它为允许范围内的失真。
如果R>C,就必须对信源压缩,使得压缩后的R*<C,但同时要 求引入的失真不能超过规定的限度。 对于给定的信源,在允许失真的条件下信源熵所能压缩的理论 极限值就是率失真函数R(D) 。
综上所述,一般可以对信源输出的信息进行限失真
处理,降低信息率,提高传输效率。
在允许一定程度的失真条件下,能够把信息压缩到 什么程度?需要多少比特的信息率才能描述信源? 本章主要讨论一定程度的失真情况下所需的最少的 信息率,即信息率失真函数R(D) 。 思路:从分析失真函数、平均失真出发求出信息率 失真函数R(D)。
失真函数的数值是依据实际应用情况,用bj代替ai所导致的失 真大小是人为决定的。上例中用b=2代替a=0和a=1所导致的失 真程度相同,均为0.5;而用b=0代替a=1所导致的失真程度要大 些,为1。
二、平均失真度
1. 离散随机变量平均失真度定义
失真函数的数学期望称为平均失真度。
n m n m

信息论与编码---第4章信息率失真函数

信息论与编码---第4章信息率失真函数

6
[D]称为信道 {X-P(Y/X)-Y} 的失真矩阵. 称为信道 失真矩阵.
长江大学电信学院
X
4.1 基本概念
常用的失真函数有 (1)
d ( xi , y j ) = a 0, i= j a > 0, i ≠ j
7
当i = j时,x和y的消息符号都是 i,说明收发 的消息符号都是x 时 和 的消息符号都是 之间没有失真,所以失真函数 之间没有失真,所以失真函数dij = 0;反之, ;反之, 当i ≠ j时,信宿收到的消息不是信源发出的符 时 而是y 出现了失真,所以失真函数d 号xi,而是 j,出现了失真,所以失真函数 ij 值的大小可以表示这种失真的程度. ≠0,而dij值的大小可以表示这种失真的程度. ,
长江大学电信学院
X
4.1 基本概念
d (a i , b j ) = d ( x i1 x i2 L x i N , y j1 y j2 L y j N ) = d ( x i1 , y j1 ) + d ( x i2 , y j2 ) + L + d ( x i N , y j N ) = ∑ d ( x i k , y jk )
长江大学电信学院
X
4.1 基本概念
2. 平均失真度的定义 若信源和信宿的消息集合分别为X:{x1, 若信源和信宿的消息集合分别为 x2, …, xn}和Y:{y1, y2, …, ym},其概率分别为 和 , p(xi)和p(yj) (i=1, 2, …, n ; j=1, 2, …, n ),信道 和 , 的转移概率为p(y ,失真函数为d 的转移概率为 j|xi),失真函数为 (xi,yj),则 , 称随机变量X和 的联合概率 的联合概率p(x 称随机变量 和Y的联合概率 i yj )对失真函数 对失真函数 的统计平均值为该通信系统的平均失真 d (xi, yj)的统计平均值为该通信系统的平均失真 的统计平均值为该通信系统的 度.

第四章总结习题.

第四章总结习题.


信息率失真函数也是一个界限。只要信息率大于这个界限, 译码失真就可限制在给定的范围内。即通信的过程中虽然有 失真,但仍能满足要求,否则就不能满足要求。
2018/8/6
11
第四章 信息率失真函数

研究信道编码和率失真函数的意义
对偶问题:信道容量和信息率失真函数的问题,都是求平均 互信息极值问题。分三个方面说明:

求极值问题

平均互信息I(X;Y)是信源概率分布p(xi)(i=1,2,…,n) 的上凸函数, 信道容量就是在固定信道情况下,求平均互信息极大值的问题, 即 I(X;Y) 又是信道转移概率分布 p(yj /xi)(i=1,2,…,n;j=1,2,…,m) 的下 凸函数,信息率失真函数就是在试验信道(满足保真度准则的信 道)中寻找平均互信息极小值的问题,即
4
2018/8/6
第四章 信息率失真函数



允许平均失真度:率失真函数中的自变量 D,也就 是人们规定的平均失真度 D 的上限值。 率失真函数的定义域问题就是在信源和失真函数已 知的情况下,讨论允许平均失真度 D 的最小和最大 值问题。 D 的选取必须根据固定信源 X 的统计特性 P(X) 和选 定的失真函数 d(xi , yj),在平均失真度 D 的可能取 值范围内。
这个最小值 R(D) 称为信息率失真函数,简称率失真函数。

在信源给定以后,总希望在允许一定失真的情况下,传送信源所 必须的信息率越小越好。从接收端来看,就是在满足保真度准则 的条件下,寻找再现信源消息必须的最低平均信息量,即平均互 信息的最小值。
2018/8/6
7
第四章 信息率失真函数

求信息率失真函数的方法
信息率失真函数 R(D) 是假定信源给定的情况下,在用户 可以容忍的失真度内再现信源消息所必须获得的最小平 均信息量。它反映的是信源可压缩程度。率失真函数一 旦找到,就与求极值过程中选择的试验信道不再有关, 而只是信源特性的参量。不同的信源,其 R(D)是不同的。

信息论与纠错编码(电子工业出版社)第四章率失真编码 参考答案

信息论与纠错编码(电子工业出版社)第四章率失真编码 参考答案

4.1 当率失真函数R (D )取什么值的时候,表示不允许有任何失真。

解:当D=0时,表示不允许有任何失真,此时R (D )= H (X ), 即R max ((D )= H (X )4.2 说明信源在不允许失真时,其信息率所能压缩到的极限值是什么?当允许信源存在一定的失真时,其信息率所能压缩到的极限值又是什么?解:不允许失真时,信息率压缩极限值R (D )= H (X );不允许失真时,信息率压缩极限值 R (D )= 04.3 在例4.8中,当允许D= 0.5δ时,请问每个信源符号至少需要几个二进制符号来对其编码?解:因为二元信源率失真函数:⎪⎭⎫⎝⎛-=a D H p H D R )()(其中a = 1(汉明失真), 所以二元信源率失真函数为:)()()(D H p H D R -=当D= 2P 时[]symbol nat p p p p p p p p p H p H p R /21ln 212ln 2)1ln()1(ln 2)(2⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-++--+-=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛4.4 给定信源分布⎥⎦⎤⎢⎣⎡)(q X X = ⎥⎦⎤⎢⎣⎡25.025.05.0x 321x x ,失真测度矩阵[d]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011302120,求率失真函数R (D )。

解:定义域:D min =0×0.5+0×0.25+0×0.25=0D max =min{2×0.25+1×0.25,2×0.5+1×0.25,1×0.5+3×0.25}=0.75值域:R (D min )= -0.5log0.5-0.25log0.25-0.25log0.25=0.45 R (D max )= 04.5 给定二元信源⎥⎦⎤⎢⎣⎡)(q X X = ⎥⎦⎤⎢⎣⎡5.05.0x x 21, 失真测度矩阵为[d]=⎥⎦⎤⎢⎣⎡00αα,求率失真函数R(D)。

华侨大学工学院信息论Chapter 4 信息率失真函数

华侨大学工学院信息论Chapter 4 信息率失真函数

,
y1
)
d (x1, y2 ) d (x2 , y2 )
d (x1, y3 )
d
(
x2
,
y3
)
d (0, 0) d (0,1) d (0, 2) 0 1 0.5
d (1, 0)
d (1,1)
d
(1, 2)
1
0
0.5
注:失真函数的函数形式可以根据需要任意选取,例如平方
代价函数、绝对代价函数、均匀代价函数等。
如果预先规定的限定失真度为D,则称信源压缩后的平均失真度D 不大于D的准则为保真度准则,即保真度准则满足D D。
信息压缩问题就是对于给定的信源,在满足保真度准则的前提下, 使信息率尽可能小。
将满足保真度准则的所有信道称为失真度D许可信道
(也称D允许的试验信道),记为
PD p y | x : D D
17
4.1.3 信息率失真函数R(D)
X 信源编码器
X a1, a2 ,L an
Y
Y b1,b2 ,L bn
假想信道
将信源编码器看作信道
信源编码器的目的:使编码后所需的信息传输率 R 尽量小; 然而R越小,引起的平均失真就越大;
2020/4/13
Chapter 4 信息率失真函数
18
D失真许可信道(试验信道)
dL (xi ,
yj)
1 L
L l 1
d (xil ,
y jl )
其中d(xil,yjl)是信源输出L长符号样值xi中的第l个符号xil 时,经编码输出L长符号样值yj中的第l个符号yjl时的失真 函数。
202失0/4真/13函数矩阵共有nLC×hapmterL4个信息元率素失真。函数

信息论与编码(清华出版社)第4章信息率失真函数-Qtech

信息论与编码(清华出版社)第4章信息率失真函数-Qtech

{
i = 1,2, L , n; j = 1,2, L , m
}
14
信息率失真函数R(D) 信息率失真函数
由于互信息取决于信源分布和信道转移概率分布, 根据2-2 由于互信息取决于信源分布和信道转移概率分布 , 根据 节所述, 一定时, 是关于p(y 型凸函数, 节所述,当p(xi)一定时,互信息 是关于 j/xi) 的U型凸函数, 一定时 互信息I是关于 型凸函数 存在极小值。因而在上述允许信道P 存在极小值。因而在上述允许信道 D中,可以寻找一种信道 pij,使给定的信源 i)经过此信道传输后,互信息 ;Y)达 使给定的信源p(x 经过此信道传输后 互信息I(X; 达 经过此信道传输后, 到最小。该最小的互信息就称为信息率失真函数R(D),即 到最小。该最小的互信息就称为信息率失真函数 ,
3
4.1 平均失真和信息率失真函数
4.1.1 4.1.2 4.1.3 4.1.4 失真函数 平均失真 信息率失真函数R(D) 信息率失真函数 信息率失真函数的性质
4
4.1 平均失真和信息率失真函数
在实际问题中, 在实际问题中,信号有一定的失真是可以容 忍的。但是当失真大于某一限度后, 忍的。但是当失真大于某一限度后,信息质量将 被严重损伤,甚至丧失其实用价值。要规定失真 被严重损伤,甚至丧失其实用价值。 限度,必须先有一个定量的失真测度。 限度,必须先有一个定量的失真测度。为此可引 入失真函数。 入失真函数。
如何减小失真,允许失真到什么程度; 如何减小失真,允许失真到什么程度; 在允许一定程度的失真条件下, 在允许一定程度的失真条件下,把信源信息压 缩到什么程度。 缩到什么程度。
2
第4章 在信源允许一定失真情况下 所需的最少信息率, 从分析失真函数、 所需的最少信息率 , 从分析失真函数 、 平 均失真出发,求出信息率失真函数R(D) 。 均失真出发,求出信息率失真函数 4.1 平均失真和信息率失真函数 4.2 离散信源的R(D)计算 离散信源的 ( )

第4章 信息率失真理论

第4章 信息率失真理论

R[D1 (1 )D2 ] R(D1 ) (1 )R(D2 )
③对D具有单调递减性
由R(D)对D具有的非负性、严格下凸性及R(Dmax) =0说明
信息率失真理论
当Dmin=0时,信息率失真函数R(D)的大致曲线 R(D) H(X)
Dmin
Dmax D
信息率失真理论
3、信息率失真函数的表达式
ˆ P( x j / x i ) i ˆ ln Sd( x i , x j ) 0 ˆ P( x j ) P( x i ) i 1,2,, n j 1,2,, n
i 令 ln i P( x i ) ˆ P( x j / x i ) ˆ Sd ( x i , x j ) ln ln i e ˆ P( x j )
信息率失真理论
第2个实验信道满足D2条件下R(D)的定义 ˆ ˆ P (X / X) {P(X / X) : D D }
D2 2
ˆ ˆ R (D 2 ) min I(X; X) I 2 (X; X) ˆ
PD2 ( X / X )
取一个新的实验信道
ˆ ˆ PD1 (X / X) (1 )PD2 (X / X) ˆ {P(X / X) : D D1 (1 )D 2 }
ˆ ... d( x1 , x n ) ˆ ... d( x 2 , x n ) ... ... ˆ ... d( x n , x n )
汉明失真矩阵
0 1 [ D] ... 1 1 0 ... 1 ... ... ... ... 1 1 ... 0
R[D1 (1 )D2 ] R(D1 ) (1 )R(D2 )
设第1个实验信道满足D1条件下R(D)的定义

[工学]信息论基础 --率失真函数 --练习与思考

[工学]信息论基础   --率失真函数 --练习与思考
凸函数,信息率失真函数就是在试验信道(满足保真度准则的信 道)中寻找平均互信息极小值的问题,即
2021/8/26
10
第四章 信息率失真函数
• 特性
– 信道容量 C一旦求出后,就只与信道转移概率 p(yj /xi) 有关,
反映信道特性,与信源特性无关;
– 信息率失真函数 R(D)一旦求出后,就只与信源概率分布 p(xi)
v
j
)
{
4 3
,
43}
i 1
nm
D
p(xi ) p( y j / xi )d (xi , y j )
i1 j1
Dmax min(D1, D2 ,
, Dm )
4 3
I (U,V ) 0
达到Dmax的信道为
1 1 ,0 1 1
1 0 1 0 1 0
达到Dmin的信道为 0
1 , 1
知的情况下,讨论允许平均失真度 D 的最小和最大
值问题。
• D 的选取必须根据固定信源 X 的统计特性D P(X) 和选
定的失真函数 d(xi , yj),在平均失真度
值范围内。
的可能取
2021/8/26
6
• 常用的失真函数
– 第一种
第四章 信息率失真函数
0 a a a
0
i j
d (xi , y j ) a a 0 i j
对偶问题:信道容量和信息率失真函数的问题,都是求平均互 信息极值问题。分三个方面说明:
• 求极值问题 – 平均互信息I(X;Y)是信源概率分布p(xi)(i=1,2,…,n) 的上凸函数,信
道容量就是在固定信道情况下,求平均互信息极大值的问题,即
– I(X;Y) 又是信道转移概率分布 p(yj /xi)(i=1,2,…,n;j=1,2,…,m) 的下

ch4信息率失真函数

ch4信息率失真函数

j
/
ai
)
p 1
(b
j
/
ai
)
(1
)
p
2
(b
j
/
ai
)
nm
D
p(ai ) p(bj / ai )d (ai ,bj )
i1 j1
D1 (1 )D2
满足保真 度准则
D' (1 )D'' D
I ( X ;Y ) R ( D ) R[D ' (1 ) D '' ]
由 I ( X ;Y ) 对 p(b j ai )的下凸性: I ( X ;Y ) I ( X ;Y1 ) (1 ) I ( X ;Y2 )
nm
D(S )
p(a ) p(b )eSd(ai ,bj )d (a , b )
ii
j
ij
4
i1 j 1
(4.2.5)
n
R(S)
m
p(a
)
p(b
)eSd (ai ,bj )
ln
i
p(b )eSd(ai ,bj ) j
ii
j
i1 j1
p(b ) j
n
SD(S ) p(a ) ln
n
1
Dm a x
min j
Dj
min j
i 1
p(ai )d (ai , bj )
n
2
i p (ai )e Sd (ai ,b j ) 1
i
i 1
3
1
i
m j 1
p(b j )eSd (ai ,bj )
p(bj )
4 p(bj ai ) p(bj )ieSd(ai ,bj )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.1 一个四元对称信源⎭
⎬⎫
⎩⎨
⎧=⎥⎦⎤⎢
⎣⎡
4/14
/132
4/14/110)(X P X ,接收符号Y = {0, 1, 2, 3},其失真
矩阵为⎥⎥⎥⎥⎦
⎤⎢⎢⎢
⎢⎣⎡01
1
1
10111101
1110,求D max 和D min 及信源的R(D)函数,并画出其曲线(取4至5个点)。

解:
04
104
104
1041),(min )(4
304
114
114
114
1),()(min
min m in m ax =⨯+⨯+⨯+
⨯=
=
=
⨯+
⨯+
⨯+⨯=
==∑

i
j i j
i i
j i i j
j y x d x p D y x d x p D D
因为n 元等概信源率失真函数:
⎪⎭

⎝⎛-⎪⎭⎫ ⎝⎛-+-+
=a D a D n a D
a D n D R 1ln 11ln
ln )(
其中a = 1, n = 4, 所以率失真函数为:
()()D D D D D R --++=1ln 13
ln
4ln )(
函数曲线:
D
其中:
symbol
nat D R D symbol
nat D R D symbol
nat D R D symbol nat R D /0)(,4
3/12ln 214ln )(,21/3
16ln 214ln )(,41/4ln )0(,0==
-
==-====
4.2 若某无记忆信源⎭⎬⎫⎩⎨⎧-=⎥⎦⎤⎢
⎣⎡3/113/13
/10
1)(X P X
,接收符号⎭
⎬⎫⎩⎨⎧-=21,21Y ,其失真矩阵⎥⎥⎥


⎢⎢⎢⎣⎡=112211D 求信
源的最大失真度和最小失真度,并求选择何种信道可达到该D max 和D min 的失真度。

4.3 某二元信源⎭
⎬⎫⎩⎨⎧=⎥⎦⎤⎢
⎣⎡2/12
/110)(X
P X
其失真矩阵为⎥⎦


⎣⎡=a a
D 0
0求这信源的D max 和D min 和R(D)
函数。

解:
02
1021),(min )(2
02
12
1),()(min
min m in m ax =⨯+
⨯=
=
=
⨯+
⨯=
==∑

i
j i j
i i
j i i j
j y x d x p D a a y x d x p D D
因为二元等概信源率失真函数:
⎪⎭

⎝⎛-=a D H n D R ln )(
其中n = 2, 所以率失真函数为:
⎥⎦⎤
⎢⎣
⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+-=a D a D a D a D D R 1ln 1ln 2ln )(
4.4 已知信源X = {0, 1},信宿Y = {0, 1, 2}。

设信源输入符号为等概率分布,而且失真函数⎥⎦


⎣⎡∞∞=1100D ,求信源的率失真函数R(D)。

4.5 设信源X = {0, 1, 2, 3},信宿Y = {0, 1, 2, 3, 4, 5, 6}。

且信源为无记忆、等概率分布。

失真函数定义为
⎪⎪⎩
⎪⎪⎨
⎧∞======其他
且且53,2141,01
0),(j i j i j i y x d j i 证明率失真函数R(D)如图所示。

log2
2log2
D
4.6 设信源X = {0, 1, 2},相应的概率分布p (0) = p (1) = 0.4,p (2) = 0.2。

且失真函数为
)2,1,0,(1
),(=⎩⎨
⎧≠==j i j
i j i y x d j i
(1) 求此信源的R(D);
(2) 若此信源用容量为C 的信道传递,请画出信道容量C 和其最小误码率P k 之间的曲线关系。

4.7 设0 < α, β < 1, α + β = 1。

试证明:αR(D ’) +βR(D ”) ≥ R(αD ’ +βD ”)
4.8 试证明对于离散无记忆N 次扩展信源,有R N (D) = NR(D)。

其中N 为任意正整数,D ≥ D min 。

4.9 设某地区的“晴天”概率p (晴) = 5/6,“雨天”概率p (雨) = 1/6,把“晴天”预报为“雨天”,把“雨天”预报为“晴天”造成的损失为a 元。

又设该地区的天气预报系统把“晴天”预报为“晴天”,“雨天”预报为“雨天”的概率均为0.9;把把“晴天”预报为“雨天”,把“雨天”预报为“晴天”的概率均为0.1。

试计算这种预报系统的信息价值率v (元/比特)。

4.10 设离散无记忆信源⎭
⎬⎫
⎩⎨
⎧=⎥⎦⎤⎢
⎣⎡
3/13/13/1)(32
1x x x X P X
其失真度为汉明失真度。

(1) 求D min 和R(D min ),并写出相应试验信道的信道矩阵; (2) 求D max 和R(D max ),并写出相应试验信道的信道矩阵;
(3) 若允许平均失真度D = 1/3,试问信源的每一个信源符号平均最少有几个二进制符号表示?
解:
⎪⎪⎩⎪
⎪⎨⎧
≠-+=-+==⨯+
⨯+
⨯=
=

j i e
n e j i e n x y p y x d x p D sa
sa
sa i j i
j i j
i ,)1(1,)1(11)/(0
03
103
103
1),(min )(m in
4.11 设信源⎭
⎬⎫
⎩⎨⎧-=⎥⎦⎤⎢
⎣⎡
p p x x X P X
1)(21
(p
< 0.5),其失真度为汉明失真度,试问当允许平均失真度D = 0.5p 时,每一信源符号平均最少需要几个二进制符号表示?
解:
因为二元信源率失真函数:
⎪⎭

⎝⎛-=a D H p H D R )()(
其中a = 1(汉明失真), 所以二元信源率失真函数为:
)()()(D H p H D R -=
当2
p D =

[]symbol nat p p p p p p p p p H p H p R /21ln 212ln 2
)1ln()1(ln 2)(2⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-++--+-=⎪⎭⎫
⎝⎛-=⎪⎭⎫ ⎝⎛。

相关文档
最新文档