信息论第四章失真率函数
合集下载
信息论第四章失真率函数
D
q( x ) p( y
i i j
j
xi ) d i j D
(4-11)
式中D是预先给定的失真度,上式称为保真度准则。
根据[定理2.2],当信源q (x)一定时,平均互信息量I (X ; Y) 是信道转移概率函数 p(y∣x) 的∪型凸函数,这意味着可以 关于p(y∣x)对平均互信息量I (X ; Y)求得极小值,定义这个 极小值为率失真函数R(D),即:
d ii 0
d ij 1
i, j 1,2, , K
上述约定可以用矩阵表示为
0 1 1 1 0 1 d 1 1 0
式中di j ≥ 0 i, j = 1, 2, …, K为信源方发送符号xi而信宿方判为 yj引起的失真度。 对于矢量传输情况,若信道的输入、输出均为N 长序列X = X1 X2 … XN ,Y = Y1 Y2 … YN ,定义失真测度为
RD min I X ; Y : D D
p( y x)
(4-12)
式(4-12)的意义在于,选择p(y∣x)即选择某种编码方法在满足 的 D D前提下,使I (X ; Y) 达到最小值R(D) ,这就是满足平 均失真 D D 条件下的信源信息量可压缩的最低程度。
4.2
N
k J
p( x
k 1 i 1 j 1
ki
, ykj )d ( xki , ykj ) (4-5)
(4-5)式表明了离散无记忆N次扩展信道的输入输出符号之 间平均失真等于单个符号xki,ykj之间失真统计值的总和。
若矢量信源是原离散无记忆信道的N次扩展,且矢 量信道也是原离散无记忆信道的N次扩展,则每个 Dk
第4章 信息率失真函数
原始图像和限失真图像
原始图像
红色图像
绿色图像
蓝色图像
香农首先定义了信息率失真函数R(D),并论述了关于这个 函数的基本定理。 定理指出:在允许一定失真度D的情况下,信源输出的信 息传输率可压缩到R(D)值,这就从理论上给出了信息传输率与 允许失真之间的关系,奠定了信息率失真理论的基础。 信息率失真理论是进行量化、数模转换、频带压缩和数据 压缩的理论基础。 本章主要介绍信息率失真理论的基本内容,重点讨论离散 无记忆信源。 给出信源的失真度和信息率失真函数的定义与性质; 讨论离散信源和连续信源的信息率失真函数计算; 在此基础上论述保真度准则下的信源编码定理。
XY i 1 j 1
r
s
• 若平均失真度D不大于我们所允许的失真D0,即: D D0 称此为保真度准则。
信源固定(即给定了p(x)),单个符号失真度固定时(即 给定了d(ai,bj)) ,选择不同试验信道,相当于不同的编码方 法,所得的平均失真度是不同的。 有些试验信道满足D D0,而有些试验信道D>D0。 凡满足保真度准则-----平均失真度D D0的试验信通称为 ----D失真许可的试验信道。 把所有D失真许可的试验信道组成一个集合,用符号PD表 示,则: PD={p (bj / ai): D D0}
则
0 1 D 1 0
1 2 1 2
[例3] 对称信源(s = r) 。信源X={a1,a2,…ar} ,接收Y= {b1,b2,…bs} 。若失真度定义为:
d (ai , bj ) (bj ai )2
如果信源符号代表信源输出信号的幅度值,这就是一种平 方误差失真度。它意味着幅度差值大的要比幅度差值小的所引 起的失真更为严重,其严重的程度用平方来表示。 当 r=3时, X={0,1,2},Y={0,1,2} ,则失真矩阵为:
《信号处理原理》 第4章 信息失真率
d(0,2)=d(1,2)=0.5
则得失真矩阵
d
0 1
1 0
0.5 0.5
4.1 平均失真和信息率失真函数
说明:失真函数d (xi, yj) 的数值是依据实际应 用情况,用 yj代替xi, 所导致的失真大小是人为决 定的。比如上例中,用y=2代替x=0和x=1所导致 的失真程度相同,用0.5表示;而用y=0代替x=1 所导致的失真程度要大,用1表示。失真函数d (xi, yj) 的函数形式可以根据需要任意选取,例如平方 代价函数、绝对代价函数、均匀代价函数等。
信源编码器的目的是使编码后所需的信 息传输率R尽量小,然而R越小,引起的平 均失真就越大。给出一个失真的限制值D,
在满足平均失真 D D的条件下,选择一种
编码方法使信息率R尽可能小。信息率R就 是所需输出的有关信源X的信息量。
16
4.1 平均失真和信息率失真函数
将此问题对应到信道,即为接收端Y需要 获得的有关X的信息量,也就是互信息 I(X;Y)。这样,选择信源编码方法的问题就 变成了选择假想信道的问题,符号转移概 率p(yj/xi)就对应信道转移概率。
输入符号集 X:{a1, a2, …, an}中有n种不同的符 号xi (i =1, 2, …, n) ;输出符号集Y:{b1, b2, …, bm}中有m种不同的符号yj (j =1, 2, …, m);对于 图所示的系统,对应于每一对(xi, yj)(i = 1, 2, …,n;j=1, 2, …, m),定义一个非负实值函数
平均失真D是对给定信源分布p(ai)经过某一种 转移概率分布为p(bj|ai)的有失真信源编码器后产 生失真的总体量度。
13
4.1 平均失真和信息率失真函数
第4章信息率失真函数
R( D) min p(ai ) p(b j / ai ) log
Pij PD i 1 j 1
n
m
p(b j / ai ) p(b j )
p(ai),i=1,2,…,n 是信源符号概率分布; p(bj/ai),i=1,2,…,n,j=1,2,…,m 是转移概率分布; p(bj),j=1,2,…,m 是接收端收到符号概率分布。
如果选取对压缩更为有利的编码方案,则压缩的 效果可能更好。但一旦达到最小互信息这个极限 值,就是R(D)的值,或超过这个极限值,那么失 真就要超过失真限度,如果需要压缩的信息率更 大,则可容忍的平均失真就要更大。
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
17
4.1.4 信息率失真函数的性质
1 L d L (x i , y j ) d ( xil , y jl ) L l 1
其中d(xil,yjl)是信源输出L长符号样值xi中的第l个符号xil
时,编码输出L长符号样值yj中的第l个符号yjl的失真函数。
7
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
4.1.2
以R(D)也是一个非负函数,它的下限值为0。当 R(D)=0意
味着什么呢? 不需传输任何信息。显然D越大,直至无限大都能满足这
样的情况。
选择所有满足R(D)=0中D的最小值,定义为R(D)定义域 的上限Dmax,即 Dmax min D
R ( D ) 0
因此可以得到R(D)的定义域为
n
D 0, Dmax
第4章
信息率失真函数
本章主要讨论在信源允许一定失真情况下所需的最少
信息率,从分析失真函数、平均失真出发,求出信息 率失真函数R(D) 。 平均失真和信息率失真函数 离散信源和连续信源的R(D)计算
第4章信息率失真函数
4.1
第4章 信息率失真函数
定义: 信源序列的失真函数
N
基
d ( x, y) d (i , j ) d (ail , bjl )
本 概
l 1
x X, y Y;i X N , j Y N ;ail X ,bjl Y
念
信源序列失真函数等于信源序列中对应的
单符号失真函数之和。也可写成rN sN阶矩阵形 式。
Page 6
4..1.1
第4章 信息率失真函数
4.1 基本概念
失 4.1.1失真函数(失真度)
真
函 为什么引入失真函数?
数
在实际问题中,信号有一定的失真是可 以容忍的,但是当失真大于某一限度后,将 丧失其实用价值。
要规定失真限度,必须先有一个定量的 失真测度。为此可引入失真函数.
Page 7
4.1.1
i1 j1
Page 19
4.1.2
第4章 信息率失真函数
(3)均方失真函数
适用于连续 信源
平 均
d(a,b) (a b)2
(a X ,b Y 或 a,b R)
失
真 在均方失真函数下,平均失真度就是均方误差。
度
rs
离散信源的均方误差 D (a b)2 P(a,b) i1 j1
连续信源的均方误差D: (a b)2 P(a, b)dxdy
1.离散信源单个符号的失真函数
定义:设离散无记忆信源输出变量X {a1, a2,L , ar},
失 真
概率分布为P(X ) [P(a1), P(a2),L , P(ar )],经过有失真的
函 数
信源编码器,输出的随机变量 Y {b1,b2,L ,bs}。
将所有的 d(ai ,bj ) 0 (ai X ,bj Y ) 排列起来,用
ch4信息率失真函数
j
/
ai
)
p 1
(b
j
/
ai
)
(1
)
p
2
(b
j
/
ai
)
nm
D
p(ai ) p(bj / ai )d (ai ,bj )
i1 j1
D1 (1 )D2
满足保真 度准则
D' (1 )D'' D
I ( X ;Y ) R ( D ) R[D ' (1 ) D '' ]
由 I ( X ;Y ) 对 p(b j ai )的下凸性: I ( X ;Y ) I ( X ;Y1 ) (1 ) I ( X ;Y2 )
nm
D(S )
p(a ) p(b )eSd(ai ,bj )d (a , b )
ii
j
ij
4
i1 j 1
(4.2.5)
n
R(S)
m
p(a
)
p(b
)eSd (ai ,bj )
ln
i
p(b )eSd(ai ,bj ) j
ii
j
i1 j1
p(b ) j
n
SD(S ) p(a ) ln
n
1
Dm a x
min j
Dj
min j
i 1
p(ai )d (ai , bj )
n
2
i p (ai )e Sd (ai ,b j ) 1
i
i 1
3
1
i
m j 1
p(b j )eSd (ai ,bj )
p(bj )
4 p(bj ai ) p(bj )ieSd(ai ,bj )
信息论基础与编码课件第四章 信息率失真函数
同样,可得Pij时的平均互信息为 I''(X;Y)0.37b9i/t符号
从此例我们可以看到,若固定P(x)不变时,平均互信息量随信
道的转移概率的变化而变化。这是因为信道受到干扰的作用 不同,传递的信息量也不同。可以证明这样一个结论:P(x)一 定时,平均互信息量I(X;Y)是关于信道的转移概率的下凸函数, 即存在一极小值。
m × n个 p i j 的值,代入平均失真的公式中,可解出随S参数值变
化的D值,即
D (S ) p ip j id ij p ip ij ie S d ijd ij (4-16)
ij
ij
25
离散信源的R(D)函数及其计算(续)
信源的信息率失真函数R(D)为
R (S ) i
j
pi p j i e Sdij
源输出符号序列 X (X 1 ,X 2 , ,X L ) ,其中L长符号序列样
值 Y(Y 1,Y 2, ,Y L) ,经信源编码后,输出符号序
列 x i (x i1 ,x i2 , ,x iL )
,其中L长符号序列样
值 y i (y i1 ,y i2 , ,y iL ),则失真函数定义为:
1L
dL(xi,yj)Ll1d(xil,yjl)
其中d(xil,yjl)是信源输出L长符号样值 x i 中的第l个符号xil时,
编码输出L长符号样值 中的y i 第l个符号yjl的失真函数。
7
平均失真
定义平均失真度为失真函数的数学期望,即 d ( xi , yj ) 在 X 和 Y的 联合概率空间 P(XY ) 中的统计平均值
nm
D E [d (x i,y j)] p (x i)p (y j|x i)d (x i,y j) (4-4) i 1j 1
第4章 信息率失真理论
R[D1 (1 )D2 ] R(D1 ) (1 )R(D2 )
③对D具有单调递减性
由R(D)对D具有的非负性、严格下凸性及R(Dmax) =0说明
信息率失真理论
当Dmin=0时,信息率失真函数R(D)的大致曲线 R(D) H(X)
Dmin
Dmax D
信息率失真理论
3、信息率失真函数的表达式
ˆ P( x j / x i ) i ˆ ln Sd( x i , x j ) 0 ˆ P( x j ) P( x i ) i 1,2,, n j 1,2,, n
i 令 ln i P( x i ) ˆ P( x j / x i ) ˆ Sd ( x i , x j ) ln ln i e ˆ P( x j )
信息率失真理论
第2个实验信道满足D2条件下R(D)的定义 ˆ ˆ P (X / X) {P(X / X) : D D }
D2 2
ˆ ˆ R (D 2 ) min I(X; X) I 2 (X; X) ˆ
PD2 ( X / X )
取一个新的实验信道
ˆ ˆ PD1 (X / X) (1 )PD2 (X / X) ˆ {P(X / X) : D D1 (1 )D 2 }
ˆ ... d( x1 , x n ) ˆ ... d( x 2 , x n ) ... ... ˆ ... d( x n , x n )
汉明失真矩阵
0 1 [ D] ... 1 1 0 ... 1 ... ... ... ... 1 1 ... 0
R[D1 (1 )D2 ] R(D1 ) (1 )R(D2 )
设第1个实验信道满足D1条件下R(D)的定义
第四章信息率失真函数
其失真程度要比再现为其他接收符号的失真程度少一半。
若二元删除信源s =2,r=3, U={0,1},V={0,1 ,2} 。 失真度为:
d(0,0)=d(1,2)=0
d(0,2)=d(1,0)=1 则
d(0,1)=d(1,1)=1/2
0 D
1
1
2 1
1
0
2
[例3] 对称信源(s = r) 。信源变量U={u1,u2,…ur} ,接收变量 V= {v1,v2,…vs} 。失真度定义为:
[例5]有一个二元等概平稳无记忆信X源 X0,1,0接,1收符号集为
Y 0,1,2
且失真矩阵为
[d
]
0
0
1 1
求率失真函数R(D)
。
解:由
Dmin
x
p(x) mind(x, y) 0 y
Dmax
min y
x
p(x)d(x, y) 1
由于信源等概分布,失真函数具有对称,因此,存在 着与失真矩阵具有同样对称性的转移概率分布达到率失 真R(D) ,该转移概率矩阵可写为:
P(v j / ui )
i1 j1
其约束条件为:
P(ui )P(v j / ui )
i1
P(v j / ui ) 0
s
P(v j / ui ) 1
j 1
rs
P(ui )P(v j / ui )d(ui , v j ) D
i1 j1
一、等概率、对称失真信源的计算
对于等概、对称失真的信源,存在一个与失真矩阵具有 同样对称性的转移概率分布达到率失真R(D)。
p(x)d(x, y)
x
• 允许失真度D的下限可以是零,即不允许任何失真的情况。
若二元删除信源s =2,r=3, U={0,1},V={0,1 ,2} 。 失真度为:
d(0,0)=d(1,2)=0
d(0,2)=d(1,0)=1 则
d(0,1)=d(1,1)=1/2
0 D
1
1
2 1
1
0
2
[例3] 对称信源(s = r) 。信源变量U={u1,u2,…ur} ,接收变量 V= {v1,v2,…vs} 。失真度定义为:
[例5]有一个二元等概平稳无记忆信X源 X0,1,0接,1收符号集为
Y 0,1,2
且失真矩阵为
[d
]
0
0
1 1
求率失真函数R(D)
。
解:由
Dmin
x
p(x) mind(x, y) 0 y
Dmax
min y
x
p(x)d(x, y) 1
由于信源等概分布,失真函数具有对称,因此,存在 着与失真矩阵具有同样对称性的转移概率分布达到率失 真R(D) ,该转移概率矩阵可写为:
P(v j / ui )
i1 j1
其约束条件为:
P(ui )P(v j / ui )
i1
P(v j / ui ) 0
s
P(v j / ui ) 1
j 1
rs
P(ui )P(v j / ui )d(ui , v j ) D
i1 j1
一、等概率、对称失真信源的计算
对于等概、对称失真的信源,存在一个与失真矩阵具有 同样对称性的转移概率分布达到率失真R(D)。
p(x)d(x, y)
x
• 允许失真度D的下限可以是零,即不允许任何失真的情况。
第四章 信息率失真函数
为什么要讨论信息率失真函数R(D) ?
失真在传输中是不可避免的。
连续信源输出的信息量为无穷大,不可能实现无失真信源编码. 接收者(信宿)无论是人还是机器设备,都有一定的分辨能力与 即使信宿能分辨、能判别,但对通信质量的影响不大,也可以
灵敏度,超过分辨能力与灵敏度的信息传送过程是毫无意义的。
因此 D 取决于以下几个因素:
) i=1,2, ,n) 1)信源的统计特性,即 p(ai(
2)信道的统计特性,即 p(b j / ai ) 3)失真函数,即 d (ai , b j ) 一般情况下,人们所允许的失真指的都是平均意义 上的失真。如果规定其平均失真度 D不能超过某一限 定的值D,即D就是允许失真的上界。
称它为允许范围内的失真。
如果R>C,就必须对信源压缩,使得压缩后的R*<C,但同时要 求引入的失真不能超过规定的限度。 对于给定的信源,在允许失真的条件下信源熵所能压缩的理论 极限值就是率失真函数R(D) 。
综上所述,一般可以对信源输出的信息进行限失真
处理,降低信息率,提高传输效率。
在允许一定程度的失真条件下,能够把信息压缩到 什么程度?需要多少比特的信息率才能描述信源? 本章主要讨论一定程度的失真情况下所需的最少的 信息率,即信息率失真函数R(D) 。 思路:从分析失真函数、平均失真出发求出信息率 失真函数R(D)。
失真函数的数值是依据实际应用情况,用bj代替ai所导致的失 真大小是人为决定的。上例中用b=2代替a=0和a=1所导致的失 真程度相同,均为0.5;而用b=0代替a=1所导致的失真程度要大 些,为1。
二、平均失真度
1. 离散随机变量平均失真度定义
失真函数的数学期望称为平均失真度。
n m n m
失真在传输中是不可避免的。
连续信源输出的信息量为无穷大,不可能实现无失真信源编码. 接收者(信宿)无论是人还是机器设备,都有一定的分辨能力与 即使信宿能分辨、能判别,但对通信质量的影响不大,也可以
灵敏度,超过分辨能力与灵敏度的信息传送过程是毫无意义的。
因此 D 取决于以下几个因素:
) i=1,2, ,n) 1)信源的统计特性,即 p(ai(
2)信道的统计特性,即 p(b j / ai ) 3)失真函数,即 d (ai , b j ) 一般情况下,人们所允许的失真指的都是平均意义 上的失真。如果规定其平均失真度 D不能超过某一限 定的值D,即D就是允许失真的上界。
称它为允许范围内的失真。
如果R>C,就必须对信源压缩,使得压缩后的R*<C,但同时要 求引入的失真不能超过规定的限度。 对于给定的信源,在允许失真的条件下信源熵所能压缩的理论 极限值就是率失真函数R(D) 。
综上所述,一般可以对信源输出的信息进行限失真
处理,降低信息率,提高传输效率。
在允许一定程度的失真条件下,能够把信息压缩到 什么程度?需要多少比特的信息率才能描述信源? 本章主要讨论一定程度的失真情况下所需的最少的 信息率,即信息率失真函数R(D) 。 思路:从分析失真函数、平均失真出发求出信息率 失真函数R(D)。
失真函数的数值是依据实际应用情况,用bj代替ai所导致的失 真大小是人为决定的。上例中用b=2代替a=0和a=1所导致的失 真程度相同,均为0.5;而用b=0代替a=1所导致的失真程度要大 些,为1。
二、平均失真度
1. 离散随机变量平均失真度定义
失真函数的数学期望称为平均失真度。
n m n m
信息论与编码---第4章信息率失真函数
6
[D]称为信道 {X-P(Y/X)-Y} 的失真矩阵. 称为信道 失真矩阵.
长江大学电信学院
X
4.1 基本概念
常用的失真函数有 (1)
d ( xi , y j ) = a 0, i= j a > 0, i ≠ j
7
当i = j时,x和y的消息符号都是 i,说明收发 的消息符号都是x 时 和 的消息符号都是 之间没有失真,所以失真函数 之间没有失真,所以失真函数dij = 0;反之, ;反之, 当i ≠ j时,信宿收到的消息不是信源发出的符 时 而是y 出现了失真,所以失真函数d 号xi,而是 j,出现了失真,所以失真函数 ij 值的大小可以表示这种失真的程度. ≠0,而dij值的大小可以表示这种失真的程度. ,
长江大学电信学院
X
4.1 基本概念
d (a i , b j ) = d ( x i1 x i2 L x i N , y j1 y j2 L y j N ) = d ( x i1 , y j1 ) + d ( x i2 , y j2 ) + L + d ( x i N , y j N ) = ∑ d ( x i k , y jk )
长江大学电信学院
X
4.1 基本概念
2. 平均失真度的定义 若信源和信宿的消息集合分别为X:{x1, 若信源和信宿的消息集合分别为 x2, …, xn}和Y:{y1, y2, …, ym},其概率分别为 和 , p(xi)和p(yj) (i=1, 2, …, n ; j=1, 2, …, n ),信道 和 , 的转移概率为p(y ,失真函数为d 的转移概率为 j|xi),失真函数为 (xi,yj),则 , 称随机变量X和 的联合概率 的联合概率p(x 称随机变量 和Y的联合概率 i yj )对失真函数 对失真函数 的统计平均值为该通信系统的平均失真 d (xi, yj)的统计平均值为该通信系统的平均失真 的统计平均值为该通信系统的 度.
第四章:信息率失真函数
信息率失真函数
R( D)
p ( y j / xi )PD
min I ( X ;Y )
I ( X ; Y ) NR( D)
N N
对于离散无记忆信源的N次扩展信源和离散无记忆 信道的N次扩展信道:
RN ( D)
p (b j / ai )PD ( N )
min
信息率失真函数
在研究R(D)时,引用的条件概率p(y/x)并没有 实际信道的含义。只是为了求平均互信息的 最小值而引用的、假想的可变试验信道。实 际上这些信道反映的仅是不同的有失真信源 编码或信源压缩。所以改变试验信道求平均 互信息的最小值,实质上是选择一种编码方 式使信息传输率最小。
信息率失真函数的性质
基本概念
失真函数与平均失真度
失真函数 常用的失真函数 平均失真度 离散无记忆信道的N次扩展信道的平均失真
基本概念
失真函数
X {x1...xn} Y { y1... ym} P( yj / xi )
对任一 ( xi, yj ) 指定一个非负数d ( xi, yj ) 0 称 d ( xi, yj ) 为单个符号的失真度或失真函数。
p ( xi1 ) p( xiN ) p( y j1 / xi1 ) p( y jN / xiN ) d ( xik , y jk )
i1 1 n iN 1 j1 1 jN 1 k 1
n
m
m
N
p ( xi1 ) p( y j1 / xi1 )d ( xi1 , y j1 ) p( xi2 ) p( y j2 / xi2 ) d ( xi2 , y j2 )
i 1 j 1
n
m
p( xi ) p( y j / xi )d ( xi , y j )
信息论与编码(清华出版社)第4章信息率失真函数-Qtech
{
i = 1,2, L , n; j = 1,2, L , m
}
14
信息率失真函数R(D) 信息率失真函数
由于互信息取决于信源分布和信道转移概率分布, 根据2-2 由于互信息取决于信源分布和信道转移概率分布 , 根据 节所述, 一定时, 是关于p(y 型凸函数, 节所述,当p(xi)一定时,互信息 是关于 j/xi) 的U型凸函数, 一定时 互信息I是关于 型凸函数 存在极小值。因而在上述允许信道P 存在极小值。因而在上述允许信道 D中,可以寻找一种信道 pij,使给定的信源 i)经过此信道传输后,互信息 ;Y)达 使给定的信源p(x 经过此信道传输后 互信息I(X; 达 经过此信道传输后, 到最小。该最小的互信息就称为信息率失真函数R(D),即 到最小。该最小的互信息就称为信息率失真函数 ,
3
4.1 平均失真和信息率失真函数
4.1.1 4.1.2 4.1.3 4.1.4 失真函数 平均失真 信息率失真函数R(D) 信息率失真函数 信息率失真函数的性质
4
4.1 平均失真和信息率失真函数
在实际问题中, 在实际问题中,信号有一定的失真是可以容 忍的。但是当失真大于某一限度后, 忍的。但是当失真大于某一限度后,信息质量将 被严重损伤,甚至丧失其实用价值。要规定失真 被严重损伤,甚至丧失其实用价值。 限度,必须先有一个定量的失真测度。 限度,必须先有一个定量的失真测度。为此可引 入失真函数。 入失真函数。
如何减小失真,允许失真到什么程度; 如何减小失真,允许失真到什么程度; 在允许一定程度的失真条件下, 在允许一定程度的失真条件下,把信源信息压 缩到什么程度。 缩到什么程度。
2
第4章 在信源允许一定失真情况下 所需的最少信息率, 从分析失真函数、 所需的最少信息率 , 从分析失真函数 、 平 均失真出发,求出信息率失真函数R(D) 。 均失真出发,求出信息率失真函数 4.1 平均失真和信息率失真函数 4.2 离散信源的R(D)计算 离散信源的 ( )
第4章 信息率失真函数 《信息论与编码》经典PPT课件
失真矩阵
d(a1,b1) d(a1,bm )
d
d(an,b1) d(an,bm )
• 例:设信源符号序列为X={0,1},接收端收到符号
序列为Y= {0,1,2},规定失真函数为
失真矩阵
d(0,0)=d(1,1)= 0 d(0,1)=d(1,0)= 1 d(0,2)=d(1,2)= 0.5
d
没有失真
0
• d(xi , y j ) 0
x ≠ y xi y ji
j
产生失真
失xi 真 yj 的大小,用一个量来表示,即失真函数d(xi,yj),
以衡量用yj代替xi所引起的失真程度。
• 失真函数定义为:
0
d(xi, yj )
xi y j
0 xi y j
4
失真函数
• 将所有的d(xi,yj)排列起来,用矩阵表示为:
• 如果对信源进行不失真编码,平均每个符号至少需 要log2n个二进制码元。
• 现在假定允许有一定失真,假设失真限度为D=1/2 设想采用下面的编码方案:
a1→a1, a2→a2, …an→an
an+1→an ,an+2→ an ,…a2n→ an
21
• 平均失真
D
i
j
p(ai
)
p(a j
|
ai
8
L长序列编码
• 如果假定离散信源输出符号序列X={X1X2… Xl… Xn},其中L长符号序列xi =[xi1xi2…xiL],经信源 编码后,输出符号序列Y={Y1Y2…Yl…Ym},其中L
长符号序列yj=[yj1yj2…yjN ],则失真函数定义为
1
dL (xi , y j ) L j d (xiL , y jL )
[理学]信息论与编码原理_第4章_信息率失真函数
概
念 实际生活中,人们一般并不要求获得完全无失真的消息,通常只
要求近似地再现原始消息,即允许一定的失真存在。
打电话:即使语音信号有一些失真,接电话的人也能听懂。人耳接 收信号的带宽和分辨率是有限的。
放电影:理论上需要无穷多幅静态画面,由于人眼的“视觉暂留 性”,实际上只要每秒放映 24 幅静态画面。
第11页
4.1.2 失真度与平均失真度
4.1 (1) 信息率与失真的关系
基
本 信道中固有的噪声和不可避免的干扰,使信源的消息通过
概
念 信道传输后造成误差和失真。
误差或失真越大,接收者收到消息后对信源存在的不确定 性就越大,获得的信息量就越小,信道传输消息的信息率
也越小。
24.11.2020
返回目录
信息率失真理论是量化(模数转换)、数模转换、频带 压缩和数据压缩的理论基础。
24.11.2020
h
第8页
4.1.1 引 言
4.1 (3) 信息率失真理论
基
本 信息率失真函数极小值问题
概
念 I(X;Y) 是 P(X) 和 P(Y/X) 的二元函数;
在讨论信道容量时:规定了P(Y/X) , I(X;Y) 变成了P(X)
nm
D p(xi)p(yj/xi)d(xi,yj) i1j1
24.11.2020
h
第19页
4.1.2 失真度与平均失真度
4.1 (4) 平均失真度
基
本 平均失真度的意义
概
念 D 是在平均意义上,从总体上对整个系统失真情况的 描述。它是信源统计特性 p(xi) 、信道统计特性 p(yj/xi ) 和 失真度 d(xi,yj) 的函数 。
h
第12页
念 实际生活中,人们一般并不要求获得完全无失真的消息,通常只
要求近似地再现原始消息,即允许一定的失真存在。
打电话:即使语音信号有一些失真,接电话的人也能听懂。人耳接 收信号的带宽和分辨率是有限的。
放电影:理论上需要无穷多幅静态画面,由于人眼的“视觉暂留 性”,实际上只要每秒放映 24 幅静态画面。
第11页
4.1.2 失真度与平均失真度
4.1 (1) 信息率与失真的关系
基
本 信道中固有的噪声和不可避免的干扰,使信源的消息通过
概
念 信道传输后造成误差和失真。
误差或失真越大,接收者收到消息后对信源存在的不确定 性就越大,获得的信息量就越小,信道传输消息的信息率
也越小。
24.11.2020
返回目录
信息率失真理论是量化(模数转换)、数模转换、频带 压缩和数据压缩的理论基础。
24.11.2020
h
第8页
4.1.1 引 言
4.1 (3) 信息率失真理论
基
本 信息率失真函数极小值问题
概
念 I(X;Y) 是 P(X) 和 P(Y/X) 的二元函数;
在讨论信道容量时:规定了P(Y/X) , I(X;Y) 变成了P(X)
nm
D p(xi)p(yj/xi)d(xi,yj) i1j1
24.11.2020
h
第19页
4.1.2 失真度与平均失真度
4.1 (4) 平均失真度
基
本 平均失真度的意义
概
念 D 是在平均意义上,从总体上对整个系统失真情况的 描述。它是信源统计特性 p(xi) 、信道统计特性 p(yj/xi ) 和 失真度 d(xi,yj) 的函数 。
h
第12页
第四章 信道失真率函数
D( N ) E[d (ai , b j )] p(ai ) p(b j | ai )d (ai , b j )
n n
N p(ai ) k 1 p( xik ) N p(b j | ai ) k 1 p( y jk | xik )
nN m N
i1 1 m
i N 1 j1 1
6
常用的失真函数
失真函数是根据人们的实际需要和失真引起的损失、风险、 主观感觉上的差别等因素人为规定的,可以有多种形式 平方误差失真函数 d ( xi , y j ) ( y j xi )2 适用于 d ( x , y ) | y x | 绝对误差失真函数 i j j i 连续信源 相对误差失真函数 d ( xi , y j ) | y j xi | | xi |
率失真函数的定义域 (D 的下界)
允许失真度 D 是平均失真度的上限,而 D 是非负函数 d ( xi , y j ) 的数学期望,因此 D 的下界至多为 0,对应于无失真的情况, 此时信息传输率应等于信源输出的信息熵,即 Dmin 0 时: 离散信源:R( Dmin ) R(0) H ( X ) 连续信源:R( Dmin ) lim R( D )
N
由于 N 次扩展信源和 N 次扩展信道都是无记忆的,因此:
p(ai ) p( xi1 xi2
N xiN ) k 1 p( xik )
p(b j | ai ) p( y j1 y j2
y jN | xi1 xi2
N xiN ) k 1 p( y jk | xik )
9
符号序列的 平均失真度
i 1, 2, j 1, 2,
,n ,m
上述非负的失真函数共有 n m 个,可以整体表示成失真矩阵 d ( x1 , ym ) d ( x1 , y1 ) d ( x1 , y2 ) d ( x , y ) d ( x , y ) d ( x , y ) 2 1 2 2 2 m D d ( x n , ym ) d ( xn , y1 ) d ( xn , y2 ) 由于信源发出的符号 X 和信宿收到(再现)的符号 Y 均是随机 变量,因此单个符号的失真函数 d ( xi, yj ) 也是随机变量(的一 次实现)
n n
N p(ai ) k 1 p( xik ) N p(b j | ai ) k 1 p( y jk | xik )
nN m N
i1 1 m
i N 1 j1 1
6
常用的失真函数
失真函数是根据人们的实际需要和失真引起的损失、风险、 主观感觉上的差别等因素人为规定的,可以有多种形式 平方误差失真函数 d ( xi , y j ) ( y j xi )2 适用于 d ( x , y ) | y x | 绝对误差失真函数 i j j i 连续信源 相对误差失真函数 d ( xi , y j ) | y j xi | | xi |
率失真函数的定义域 (D 的下界)
允许失真度 D 是平均失真度的上限,而 D 是非负函数 d ( xi , y j ) 的数学期望,因此 D 的下界至多为 0,对应于无失真的情况, 此时信息传输率应等于信源输出的信息熵,即 Dmin 0 时: 离散信源:R( Dmin ) R(0) H ( X ) 连续信源:R( Dmin ) lim R( D )
N
由于 N 次扩展信源和 N 次扩展信道都是无记忆的,因此:
p(ai ) p( xi1 xi2
N xiN ) k 1 p( xik )
p(b j | ai ) p( y j1 y j2
y jN | xi1 xi2
N xiN ) k 1 p( y jk | xik )
9
符号序列的 平均失真度
i 1, 2, j 1, 2,
,n ,m
上述非负的失真函数共有 n m 个,可以整体表示成失真矩阵 d ( x1 , ym ) d ( x1 , y1 ) d ( x1 , y2 ) d ( x , y ) d ( x , y ) d ( x , y ) 2 1 2 2 2 m D d ( x n , ym ) d ( xn , y1 ) d ( xn , y2 ) 由于信源发出的符号 X 和信宿收到(再现)的符号 Y 均是随机 变量,因此单个符号的失真函数 d ( xi, yj ) 也是随机变量(的一 次实现)
信息论与编码原理_第4章_信息率失真函数
性”,实际上只要每秒放映 24 幅静态画面。
有些失真没有必要完全消除。 既然允许一定的失真存在,对信息率的要求便可降低。
返回目录
2019/1/17
Department of Electronics and Information, NCUT
Song Peng
பைடு நூலகம்
第7页
4.1.1 引
言
信息率与允许失真之间的关
4.1 基 本 概 念
(3) 常用的失真函数
第一种:
i j 0 d ( xi , y j ) a a 0 i j 0 a D a a a a a 0 a a a 0 a 0 a a 0
特点:对角线上的元素均为 0,对角线以外的其它元素都为常数
2019/1/17
Department of Electronics and Information, NCUT
Song Peng
第14页
4.1.2 失真度与平均失真度
4.1 基 本 概 念
(2) 失真度
失真矩阵
失真度还可表示成矩阵的形式
d ( x1 , y1 ) d ( x1 , y2 ) d ( x1 , ym ) d ( x , y ) d ( x , y ) d ( x , y ) 2 1 2 2 2 m D d ( x , y ) d ( x , y ) d ( x , y ) n 1 n 2 n m
以定义失真度为 0;
当 i≠j 时,用 Y 代表 X 就有误差。 这种定义认为对所有不同的 i 和 j 引起的误差都一样,所以定义
失真度常数 a。
2019/1/17
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ij
式中D是预先给定的失真度,上式称为保真度准则。
根据[定理2.2],当信源q (x)一定时,平均互信息量I (X ; Y) 是信道转移概率函数p(y∣x)的∪型凸函数,这意味着可以 关于p(y∣x)对平均互信息量I (X ; Y)求得极小值,定义这个
极小值为率失真函数R(D),即:
RD min I X ;Y : D D p(y x)
第4章 率失真编码
第4章 率失真编码
内容提要 数据压缩是信息传输和处理的重要研究内容,率失 真理论研究的就是在允许一定失真的前提下,对信 源的压缩编码。率失真信源编码定理(香农第三定
理)指出:率失真函数R (D) 就是在给定失真测度
条件下,对信源熵可压缩的最低程度。 本章只限于研究率失真理论最基本的内容,失真测 度,率失真函数,率失真函数的定义域,值域,性
dii 0 i, j 1,2, , K dij 1
上述约定可以用矩阵表示为
0
d 1
1 0
1 1
1 1 0
式中di j ≥ 0 i, j = 1, 2, …, K为信源方发送符号xi而信宿方判为 yj引起的失真度。
对于矢量传输情况,若信道的输入、输出均为N 长序列X = X1 X2 … XN ,Y = Y1 Y2 … YN ,定义失真测度为
质及定量计算。R (D) 的计算很烦琐,文中通过二 个例子介绍了几种特殊情况下R (D )的求法,一般
情况只能用参数法求解。
第4章 率失真编码
信息率失真函数R(D)——香农1959年提出 ✓ 在允许一定失真度D的情况下,
信源输出的信息率可压缩为R(D)值 ✓ 数据压缩的理论基础 I(X;Y)——H(X)、H(Y/X)的二元函数 ➢ 固定H(Y/X) ,改变H(X)得I(X;Y)最大值
(4-12)
式(4-12)的意义在于,选择p(y∣x)即选择某种编码方法在满足
的 D D前提下,使I (X ; Y) 达到最小值R(D) ,这就是满足平 均失真 D D 条件下的信源信息量可压缩的最低程度。
4.2 信息率失真函数R(D)
补充:试验信道(D允许信道)PD 1.定义:固定信源(H(X)时,满足失真度准则 (D D) 的所有转移概率p(y/x)的集合 2.单符号信源、单符号信道的试验信道
i1 j1
i1 j1
平均失真D 是对在给定信源分布q(x)条件下,通过 有扰信道传输而引起失真的统计平均度量。
平均失真说明:
①是在平均意义上,对系统失真的总体描述
②是信源统计特性p(xi)的函数 是信道统计特性p(yj / xi)的函数 是规定失真度 d(xi, yj)的函数 若保持p(xi)、d(xi, yj) 不变,则平均失真 度就是信道特性p(yj / xi)的函数
x1 q( x1
)
x2 q(x2 )
xI q(xI
)
,经有扰信
道传输,信道输出符号为Y = {y1, y2, …, yJ},平均失真即对d i j(i =1, 2, …,I; j = 1, 2, …, J)求统计平均值,记为
IJ
IJ
D
p(xi y j )di j
q(xi ) p( y j xi )di j (4-4)
d d 21 d 22
d1J
d
2
J
(4-1)
d I 1 d I 2 d I J
【例4.1】 汉明(Hamming)失真测度
信源输出符号X = {x1, x2, …, xK},信道输出符号Y = {y1, y2, …,
yK},约定失真测度
yi xi
无误码
y
j
xi (i
j)
误码
J
p(xki , ykj )d (xki , ykj )(4-5)
j 1
(4-5)式表明了离散无记忆N次扩展信道的输入输出符号之 间平均失真等于单个符号xki,ykj之间失真统计值的总和。
若矢量信源是原离散无记忆信道的N次扩展,且矢
量信道也是原离散无记忆信道的N次扩展,则每个 Dk
k 1,2,...,N 对一位信源信道所取的均值相等,即
N次扩展信道
对于矢量传输情况,若信道的输入、输出符号均为
N长序列X=X1,…,Xk,…,XN,X k {x1, x2 ,..., xI } , Y=Y1,…,Yk,…,YN, Yk {y1, y2 ,..., yJ } ,
平均失真定义为
D( N )
1 N
N
Dk
k 1
1 N
N k 1
I i 1
d (N ) (X ,Y )
1 N
N
d ( X k ,Yk )
k 1
(4-2)
【例4.2】 平方误差失真测度
信源输出符号X = {0, 1, 2}, 信道输出符号Y = {0, 1, 2} , 给
出失真测度d i j = (xi - yj )2 i, j = 0, 1, 2
则失真测度矩阵为
0
d 1
1 0
4 1
4 1 0
【例4.3】 绝对值误差失真测度
信源输出符号X = {0, 1, 2},信道输出符号Y = {0, 1, 2} ,给出
失真测度
d i j = ︱xi - yj ︱
则失真测度矩阵为
0 1 2
d 1 0 1
2 1 0
i, j = 0, 1, 2
2.平均失真
ቤተ መጻሕፍቲ ባይዱ
离散信源
q
X (X
)
1.失真测度d( x,
给定离散信源
y)
X
q( X
)
x1 q(x1
)
x2 q(x2 )
xI q(xI
)
,信道
输出符号yj引起的失真用 d (xi ,y j)(i =1, …,I j = 1, …, J)
表示,简记为d i j,将所有的d i j列出来,可以得到下面的失真
测度矩阵
d11 d12
——信道容量 ➢ 固定H(X),改变H(Y/X) 得I(X;Y)最小值
——率失真函数
4.1 失真测度与平均失真
在允许一定失真的前提下,从提高传输效率的角度出发, 可以对信源信息量事先进行压缩再予传输,这章要讨论的 问题就是给定一个失真度,求出在平均失真小于给定值的
条件下,信源所能压缩的最低程度,即率失真函数R(D)。
从而, D1 ... Dk ... DN D
D(N) D
4.2 信息率失真函数R(D)
4.2.1 率失真函数的定义
给定信源,即信源概率分布q (x) 一定,给定失真测度矩阵
[d]=[dij],寻找信道,记它的转移概率矩阵为 P [ p( y j xi )]
,要求满足
D
q(xi )p( y j xi )di j D (4-11)