中考数学模拟试题(12)
2024年四川省乐山市市中区海棠实验中学中考数学模拟试卷+答案解析
2024年四川省乐山市市中区海棠实验中学中考数学模拟试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在实数0,,,中,最小的数是()A.0B.C.D.2.下列几何体中,三视图的三个视图完全相同的几何体是()A. B. C. D.3.在2023年“五一”期间,仙海旅游景区接待游客102200人次,将102200用科学记数法表示为()A. B. C. D.4.阅读可以丰富知识,拓展视野,在世界读书日月23日当天,某校为了解学生的课外阅读,随机调查了40名学生课外阅读册数的情况,现将调查结果绘制成如图.关于学生的读书册数,下列描述正确的是()A.极差是6B.中位数是5C.众数是6D.平均数是55.中,、、的对边分别为a、b、已知,,,则的值为()A. B. C. D.6.如图,中,,顶点A,C分别在直线m,n上,若,,则的度数为()A.B.C.D.7.若m、n是一元二次方程的两个根,则的值是()A.4B.5C.6D.128.如图,在等腰直角中,,,以点A为圆心,AC为半径画弧,交AB于点E,以点B为圆心,BC为半径画弧,交AB于点F,则图中阴影部分的面积是()A.B.C.D.9.如图,二次函数的图象与x轴交于,B两点,对称轴是直线,下列结论中,所有正确结论的序号为()①;②点B的坐标为;③;④对于任意实数m,都有A.①②B.②③C.②③④D.③④10.《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图,是以点O为圆心、OA为半径的圆弧,N是AB的中点“会圆术”给出的弧长l的近似值计算公式:当,时,则l的值为()A.B.C.D.二、填空题:本题共6小题,每小题3分,共18分。
11.函数的自变量x的取值范围是______.12.若一组数据1、3、x、5、8的众数为8,则这组数据的中位数为______.13.如图,已知直线:和直线:交于点,则关于x,y的二元一次方程组的解是______.14.如图,正八边形和正五边形按如图方式拼接在一起,则的度数为______.15.我国古代数学名著《九章算术》中有这样一道题:“今有圆材,径二尺五寸.欲为方版,令厚七寸,问广几何?”结合如图,其大意是:今有圆形材质,半径为寸,要做成方形板材,使其厚度达到7寸.则长方形的长是______.16.如图,,半径为2的与角的两边相切,点P是上任意一点,过点P向角的两边作垂线,垂足分别为E,F,设,则t的取值范围是______.三、解答题:本题共10小题,共102分。
2023年宜昌市中考数学模拟训练题(12)
2023年宜昌市中考数学模拟训练题(12)一.选择题(共11小题,满分33分,每小题3分)1.(3分)围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史.下列由黑白棋子摆成的图案是中心对称图形的是()A.B.C.D.2.(3分)用四舍五入法将0.06028精确到千分位,结果正确的是()A.0.0602B.0.06C.0.0603D.0.0603.(3分)如图是由几个小正方体组成的一个几何体,这个几何体从正面看到的平面图形是()A.B.C.D.4.(3分)若分式有意义,则x应满足的条件是()A.x≠2B.x≠1C.x≠﹣2D.x≠﹣15.(3分)如图所示为几何体的平面展开图,其对应的几何体名称为()A.正方体B.圆锥C.四棱柱D.三棱柱6.(3分)如图,一个大正方形的两个角被两个大小相同的小正方形覆盖,用图中所给的a,b来表示未被覆盖的阴影部分面积与空白部分面积的差为()A.4ab﹣3b2B.2a2﹣b2C.3a2﹣2ab D.4ab﹣a2﹣b2 7.(3分)如图,∠C=90°,AB的垂直平分线交BC于D,连接AD,若∠CAD=20°,则∠B=()A.20°B.30°C.35°D.40°8.(3分)如图,在△ABC中,AC=BC,点D在AC边上,点E在CB的延长线上,DE与AB相交于点F,若∠C=50°,∠E=25°,则∠BFD的度数为()A.100°B.120°C.140°D.150°9.(3分)如图⊙O的半径为5,弦AB=,C是圆上一点,则∠ACB的度数是()A.30°B.45°C.60°D.90°10.(3分)如图,太阳光线与水平线成α角,窗子高AB=m米,窗子外面上方0.2米的点C处安装水平遮阳板CD=n米,光线刚好不能直接射入室内,则m,n的关系式是()A.n=tanα•m﹣0.2B.n=tanα•m+0.2C.m=tanα•n﹣0.2D.n=cosα•m+0.211.(3分)某学校对教室采用药熏消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x(分钟)成正比例,药物燃烧完后,y与x成反比例(如图),现测得药物10分钟燃毕,此时室内空气中每立方米含药量为8毫克.研究表明,当空气中每立方米的含药量不低于4毫克才有效,那么此次消毒的有效时间是()A.11分钟B.12分钟C.15分钟D.20分钟二.填空题(共4小题,满分12分,每小题3分)12.(3分)化简:=.13.(3分)某人在面试时,其个人的基本知识、表达能力、工作态度的得分分别是80分,70分,85分,若依次按30%,30%,40%的比例确定成绩,则这个人面试成绩是分.14.(3分)如图,将周长为6cm的△ABC沿BC方向平移2cm,得到△DEF,则四边形ABFD的周长为cm.15.(3分)边长相等,各内角均为120°的六边形ABCDEF在直角坐标系内的位置如图所示,A(﹣2,0),点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60°,经过2021次旋转之后,点B的坐标是.三.解答题(共9小题)16.化简(1﹣)÷,再任取一个你喜欢的数代入求值.17.如图①,我们知道若直线l1∥l2.则三角形ABC与三角形ABD的面积相等;反之,若三角形ABC与三角形ABD的面积相等,则也可得到直线l1∥l2,利用此知识解答以下问题:如图②,已知AB∥CD,AD∥CB,P,Q分别是线段BC,CD上的点,CP=BC,CQ =CD,E,F分别是线段AB,AD上的点,AE=AB,AF=AD,连接PQ,EF,若三角形PCQ的面积是4.(1)求四边形ABCD的面积;(2)求证:PQ∥EF.18.关于勾股定理,有很多证法,在我国它们都是用拼图形面积方法来证明的.下面的证法是欧几里得证法.如图所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.(1)叙述勾股定理并结合图形写出已知、求证:(2)根据图中所添加的辅助线证明勾股定理.19.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?20.中国共产党的助手和后备军——中国共青团,担负着为中国特色社会主义事业培养合格建设者和可靠接班人的根本任务.成立一百周年之际,各中学持续开展了A:青年大学习;B:青年学党史;C:中国梦宣传教育;D:社会主义核心价值观培育践行等一系列活动,学生可以任选一项参加.为了解学生参与情况,进行了一次抽样调查,根据收集的数据绘制了两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生;(2)补全条形统计图;(3)若该校共有学生1280名,请估计参加B项活动的学生数;(4)小杰和小慧参加了上述活动,请用列表或画树状图的方法,求他们参加同一项活动的概率.21.如图,在四边形ABCD中,AC与BD相交于点O,且AO=CO,点E在BD上,满足∠EAO=∠DCO.(1)求证:四边形AECD是平行四边形;(2)若AB=BC,CD=13,AC=24,求四边形AECD的面积.22.随着农业技术的现代化,节水型灌溉得到逐步推广,喷灌和滴灌是比漫灌更节水的灌溉方式,喷灌和滴灌时每亩用水量分别是漫灌时的30%和20%.去年,新丰收公司用各100亩的三块试验分别采用喷灌、滴灌和漫灌的灌溉方式,共用水15000吨.(1)请问用漫灌方式每亩用水多少吨?去年每块试验田各用水多少吨?(2)今年该公司加大对农业灌溉的投入,喷灌和滴灌试验田的面积都增加了m%,漫灌试验田的面积减少了2m%.同时,该公司通过维修灌溉输水管道,使得三种灌溉方式下的每亩用水量都进一步减少了m%.经测算,今年的灌溉用水量比去年减少m%,求m 的值.23.如图,在正方形ABCD中,E是AC上一点,过A、B、E三点的⊙O与BC相交于点F,连接DE、AF.(1)求证:△ACF∽△DCE;(2)当AE=AD时,求证:直线DE是⊙O的切线.24.如图所示,二次函数y=k(x﹣1)2+2的图象与一次函数y=kx﹣k+2的图象交于A、B 两点,点B在点A的右侧,直线AB分别与x、y轴交于C、D两点,其中k<0.(1)求A、B两点的横坐标;(2)若△OAB是以OA为腰的等腰三角形,求k的值;(3)二次函数图象的对称轴与x轴交于点E,是否存在实数k,使得∠ODC=2∠BEC,若存在,求出k的值;若不存在,说明理由.。
中考数学考试模拟卷(带答案解析)
中考数学考试模拟卷(带答案解析)一、选择题(本题包括12道小题,每小题3分,共36分)1.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π2.(4.00分)某几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.长方体D.四棱锥3.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,54.(4.00分)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.65.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE 等于()A.15°B.30°C.45°D.60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于127.已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<68.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y 尺,则符合题意的方程组是()A.B.C.D.9.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD 等于()A.40°B.50°C.60°D.80°10.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根11.如图,正方形ABCD及其内切圆O,随机地往正方形内投一粒米,落在阴影部分的概率是()A.B.1﹣C.D.1﹣12.如图,点D是▱OABC内一点,AD与x轴平行,BD与y轴平行,BD=,∠BDC=120°,S=,若反比例函数y=(x<0)的图象经过C,D两点,则k的值是()△BCDA.﹣6B.﹣6 C.﹣12D.﹣12二、填空题(本题包括5道小题,每小题3分,共15分,将答案直接填在答题卡对应题的横线上)13.(3分)菱形ABCD中,对角线AC=8,BD=6,则菱形的边长为.14.(3分)如图,依据尺规作图的痕迹,求∠α的度数°.15.(3分)如图,在矩形ABCD中,E为AD上的点,AE=AB,BE=DE,则tan∠BDE=.16.(3分)在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=6,若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则AP的长为.17.(3分)如图,⊙O是△ABC的外接圆,AC为直径,若AB=2,BC=3,点P从B点出发,在△ABC内运动且始终保持∠CBP=∠BAP,当C,P两点距离最小时,动点P的运动路径长为.三、解答题(本题包括9道小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.(8.00分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.[来源:Z*xx*]19.(8.00分)先化简,再求值:(﹣1)÷,其中m=+1.20.(8.00分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;[来源:学§科§网]②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.21.(8.00分)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.22.(10.00分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.23.(10.00分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.24.(10分)如图,在Rt△AOB中,∠AOB=90°,以O为圆心,OB的长为半径的圆交边AB 于点D,点C在边OA上且CD=AC,延长CD交OB的延长线于点E.(1)求证:CD是圆的切线;(2)已知sin∠OCD=,AB=4,求AC长度及阴影部分面积.25.(10分)已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G在AD上,F在AB上,求的值为多少;(2)将正方形AFEG绕A点逆时针方向旋转α(0°<α<90°),如图2,求的值为多少;(3)AB=8,AG=AD,将正方形AFEG绕A逆时针方向旋转α(0°<α<360°),当C,G,E三点共线时,请直接写出DG的长度.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于C点,直线BC 方程为y=x﹣3.(1)求抛物线的解析式;(2)点P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;(3)点Q是抛物线上一点,若∠ACQ=45°,求点Q的坐标.参考答案与解析一、选择题1.【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.2.【分析】根据常见几何体的三视图逐一判断即可得.【解答】解:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.3.【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.4.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n.【解答】解:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.5.【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.6.【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.7.【分析】直接化简二次根式,得出的取值范围,进而得出答案.【解答】解:∵m=+=2+,1<<2,∴3<m<4,故选:B.8.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.10.【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.【解答】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.11.【分析】直接表示出各部分面积,进而得出落在阴影部分的概率.【解答】解:设圆的半径为a,则圆的面积为:πa2,正方形面积为:4a2,故随机地往正方形内投一粒米,落在阴影部分的概率为:.故选:B.12.【分析】过点C作CE⊥y轴,延长BD交CE于点F,易证△COE≌△ABD,求得OE=,根据S△BCD=,求得CF=9,得到点D的纵坐标为4,设C(m,),则D(m+9,4),由反比例函数y=(x<0)的图象经过C,D两点,从而求出m,进而可得k的值.【解答】解:过点C作CE⊥y轴,延长BD交CE于点F,∵四边形OABC为平行四边形,∴AB∥OC,AB=OC,∴∠COE=∠ABD,∵BD与y轴平行,∴∠ADB=90°,在△COE和△ABD中,,∴△COE≌△ABD(AAS),∴OE=BD=,∵S△BDC=BD•CF=,∴CF=9,∵∠BDC=120°,∴∠CDF=60°,∴DF=3,点D的纵坐标为4,设C(m,),则D(m+9,4),∵反比例函数y=(x<0)的图象经过C,D两点,∴k=m=4(m+9),∴m=﹣12,∴k=﹣12,故选:C.二、填空题13.(3分)菱形ABCD中,对角线AC=8,BD=6,则菱形的边长为 5 .【分析】根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.【解答】解:解:∵四边形ABCD是菱形,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5故答案为:514.(3分)如图,依据尺规作图的痕迹,求∠α的度数60 °.【分析】先根据矩形的性质得出AB∥DC,故可得出∠ABD的度数,由角平分线的定义求出∠EBF的度数,再由EF是线段BD的垂直平分线得出∠BEF的度数,根据三角形内角和定理得出∠BFE的度数,进而可得出结论.【解答】解:∵∠A=∠ABC=∠BCD=90°,∴四边形ABCD是矩形,∴AB∥DC,∴∠ABD=∠CDB=60°.由作法可知,BF是∠ABD的平分线,∴∠EBF=∠ABD=30°.由作法可知,EF是线段BD的垂直平分线,∴∠BEF=90°,∴∠BFE=90°﹣30°=60°,∴∠α=60°.故答案为:60.15.(3分)如图,在矩形ABCD中,E为AD上的点,AE=AB,BE=DE,则tan∠BDE=﹣1 .【分析】用含有AB的代数式表示AD,再根据锐角三角函数的定义进行计算即可.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∵AB=AE,设AB=a,则AE=a,BE==a=ED,∴AD=AE+DE=(+1)a,在Rt△ABD中,tan∠BDE===﹣1,故答案为:﹣1.16.(3分)在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=6,若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则AP的长为,9或3 .【分析】题中60°的锐角,可能是∠A也可能是∠B;∠PCB=30°可以分为点P在在线段AB上和P在线段AB的延长线上两种情况;直角三角形中30°角所对的直角边等于斜边的一半,同时借助勾股定理求得AP的长度.【解答】解:当∠A=30°时,∵∠C=90°,∠A=30°,∴∠CBA=60°,BC=AB=×6=3,由勾股定理得,AC=3,①点P在线段AB上,∵∠PCB=30°,∠CBA=60°∴∠CPB=90°,∴∠CPA=90°,在Rt△ACP中,∠A=30°,∴PC=AC=×3=.∴在Rt△APC中,由勾股定理得AP=.②点P在线段AB的延长线上,∵∠PCB=30°,∴∠ACP=90°+30°=120°,∵∠A=30°,∴∠CPA=30°.∵∠PCB=30°,∴∠PCB=∠CPA,∴BP=BC=3,∴AP=AB+BP=6+3=9.当∠ABC=30°时,∵∠C=90°,∠ABC=30°,∴∠A=60°,AC=AB=×6=3,由勾股定理得,BC=3,①点P在线段AB上,∵∠PCB=30°,∴∠ACP=60°,∴△ACP是等边三角形∴AP=AC=3.②点P在线段AB的延长线上,∵∠PCB=30°,∠ABC=30°,∴CP∥AP这与CP与AP交于点P矛盾,舍去.综上所得,AP的长为,9或3.故答案为:,9或3.17.(3分)如图,⊙O是△ABC的外接圆,AC为直径,若AB=2,BC=3,点P从B点出发,在△ABC内运动且始终保持∠CBP=∠BAP,当C,P两点距离最小时,动点P的运动路径长为π.【分析】如图,取AB的中点J,首先证明∠APB=90°,推出点P在以AB为直径的⊙J上运动,当J,P,C共线时,PC的值最小,解直角三角形求出∠CJB=60°可得结论.【解答】解:如图,取AB的中点J,∵AC是直径,∴∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠BAP=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙J上运动,当J,P,C共线时,PC的值最小,在Rt△CBJ中,BJ=,BC=3,∴tan∠CJB==,∴∠BJC=60°,∴当C,P两点距离最小时,动点P的运动路径长==π.故答案为:π.【点评】本题考查轨迹,解直角三角形,弧长公式等知识,解题的关键是正确判断出点P的运动轨迹,属于中考常考题型.三、解答题(本题包括9道小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.(8.00分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.【分析】由四边形ABCD是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.19.(8.00分)先化简,再求值:(﹣1)÷,其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===,当m=+1时,原式=.20.(8.00分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.【分析】(1)作∠A'B'C=∠ABC,即可得到△A'B′C′;(2)依据D是AB的中点,D'是A'B'的中点,即可得到=,根据△ABC∽△A'B'C',即可得到=,∠A'=∠A,进而得出△A'C'D'∽△ACD,可得==k.【解答】解:(1)如图所示,△A'B′C′即为所求;(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,求证:=k.证明:∵D是AB的中点,D'是A'B'的中点,∴AD=AB,A'D'=A'B',∴==,∵△ABC∽△A'B'C',∴=,∠A'=∠A,∵=,∠A'=∠A,[来源:学科网ZXXK]∴△A'C'D'∽△ACD,∴==k.21.(8.00分)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.【分析】(1)由旋转的性质得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)先判断出∠ADE=∠ACB,进而得出△ADE∽△ACB,得出比例式求出AE,即可得出结论.【解答】解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AB=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.22.(10.00分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.【分析】(1)根据概率公式计算可得;(2)分别根据平均数的定义及其意义解答可得.【解答】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)①甲公司各揽件员的日平均件数为=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=[40+]×4+×6=159.4元,因为159.4>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.23.(10.00分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.【分析】(1)设AB=xm,则BC=(100﹣2x)m,利用矩形的面积公式得到x(100﹣2x)=450,解方程得x1=5,x2=45,然后计算100﹣2x后与20进行大小比较即可得到AD的长;(2)设AD=xm,利用矩形面积得到S=x(100﹣x),配方得到S=﹣(x﹣50)2+1250,讨论:当a≥50时,根据二次函数的性质得S的最大值为1250;当0<a<50时,则当0<x≤a时,根据二次函数的性质得S的最大值为50a﹣a2.【解答】解:(1)设AB=xm,则BC=(100﹣2x)m,根据题意得x(100﹣2x)=450,解得x1=5,x2=45,当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10,答:AD的长为10m;(2)设AD=xm,∴S=x(100﹣x)=﹣(x﹣50)2+1250,当a≥50时,则x=50时,S的最大值为1250;当0<a<50时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣a2,综上所述,当a≥50时,S的最大值为1250;当0<a<50时,S的最大值为50a﹣a2.24.(10分)如图,在Rt△AOB中,∠AOB=90°,以O为圆心,OB的长为半径的圆交边AB 于点D,点C在边OA上且CD=AC,延长CD交OB的延长线于点E.(1)求证:CD是圆的切线;(2)已知sin∠OCD=,AB=4,求AC长度及阴影部分面积.【分析】(1)根据等腰三角形的性质,直角三角形的两锐角互余以及等量代换得出∠ODB+∠BDE=90°,即OD⊥EC,进而得出EC是切线;(2)根据直角三角形的边角关系可求出OD、CD、AC、OC,再根据相似三角形的性质可求出EC,根据S阴影部分=S△COE﹣S扇形进行计算即可.【解答】(1)证明:如图,连接OD,∵AC=CD,∴∠A=∠ADC=∠BDE,∵∠AOB=90°,∴∠A+∠ABO=90°,又∵OB=OD,∴∠OBD=∠ODB,∴∠ODB+∠BDE=90°,即OD⊥EC,∵OD是半径,∴EC是⊙O的切线;(2)解:在Rt△COD中,由于sin∠OCD=,设OD=4x,则OC=5x,∴CD==3x=AC,在Rt△AOB中,OB=OD=4x,OA=OC+AC=8x,AB=4,由勾股定理得,OB2+OA2=AB2,即:(4x)2+(8x)2=(4)2,解得x=1或x=﹣1(舍去),∴AC=3x=3,OC=5x=5,OB=OD=4x=4,∵∠ODC=∠EOC=90°,∠OCD=∠ECO,∴△COD∽△CEO,∴=,即=,∴EC=,∴S阴影部分=S△COE﹣S扇形=××4﹣=﹣4π=,答:AC=3,阴影部分的面积为.【点评】本题考查切线的判定,扇形面积的计算以及直角三角形的边角关系,掌握切线的判定方法,直角三角形的边角关系以及扇形、三角形面积的计算方法是正确解答的前提.25.(10分)已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G在AD上,F在AB上,求的值为多少;(2)将正方形AFEG绕A点逆时针方向旋转α(0°<α<90°),如图2,求的值为多少;(3)AB=8,AG=AD,将正方形AFEG绕A逆时针方向旋转α(0°<α<360°),当C,G,E三点共线时,请直接写出DG的长度.【分析】(1)由正方形性质知∠AGE=∠D=90°、∠DAC=45°,据此可得、GE∥CD,利用平行线分线段成比例定理可得;(2)连接AE,只需证△ADG∽△ACE即可得;(3)分两种情况画出图形,证明△ADG∽△ACE,根据相似三角形的判定和性质以及勾股定理即可得出答案.【解答】解:(1)∵四边形ABCD是正方形,四边形CEGF是正方形,∴∠AGE=∠D=90°,∠DAC=45°,∴,GE∥CD,∴,∴CE=DG,∴==2;(2)连接AE,由旋转性质知∠CAE=∠DAG=α,在Rt△AEG和Rt△ACD中,=cos45°=、=cos45°=,∴,∴△ADG∽△ACE,∴=,∴=;(3)①如图:由(2)知△ADG∽△ACE,∴,∴DG=CE,∵四边形ABCD是正方形,∴AD=BC=8,AC==16,∵AG=AD,∴AG=AD=8,∵四边形CEGF是矩形,∴∠AGE=90°,GE=AG=8,∵C,G,E三点共线.∴CG===8,∴CE=CG﹣EG=8﹣8,∴DG=CE=4﹣4;②如图:由(2)知△ADG∽△ACE,∴,∴DG=CE,∵四边形ABCD是正方形,∴AD=BC=8,AC==16,∵AG=AD,∴AG=AD=8,∵四边形CEGF是矩形,∴∠AGE=90°,GE=AG=8,∵C,G,E三点共线.∴∠AGC=90°∴CG===8,∴CE=CG+EG=8+8,∴DG=CE=4+4.综上,当C,G,E三点共线时,DG的长度为4﹣4或4+4.【点评】本题是四边形综合题,考查了正方形的判定与性质,直角三角形的性质,相似三角形的判定与性质,勾股定理,熟练掌握相似三角形的判定与性质是解题的关键.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于C点,直线BC 方程为y=x﹣3.(1)求抛物线的解析式;(2)点P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;(3)点Q是抛物线上一点,若∠ACQ=45°,求点Q的坐标.【分析】(1)求出B、C点坐标,并将其代入y=﹣x2+bx+c,即可求解;(2)过点P作PQ⊥x轴交BC于点Q,设P(t,﹣t2+4t﹣3),则Q(t,t﹣3),PQ=|﹣t2+3t|,由题意可求=×3×|﹣t2+3t|,求出t的值即可求解;(3)过点B作BE⊥BC交CQ于点E,过E点作EF⊥x轴交于F,由题意可得tan∠OCA=tan ∠BCE==,求出E(4,﹣1),用待定系数求出直线CE的解析式y=x﹣3,联立方程组,可求Q(,﹣).【解答】解:(1)在y=x﹣3中,令x=0,则y=﹣3,∴C(0,﹣3),令y=0,则x=3,∴B(3,0),将B、C两点代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2+4x﹣3;(2)令y=0,则﹣x2+4x﹣3=0,解得x=1或x=3,∴A(1,0),∴AB=2,∴S△ABC=×2×3=3,∵S△PBC=S△ABC,∴S△PBC=,过点P作PQ⊥x轴交BC于点Q,设P(t,﹣t2+4t﹣3),则Q(t,t﹣3),∴PQ=|﹣t2+3t|,∴=×3×|﹣t2+3t|,解得t=或t=,∴P点坐标为(,)或(,)或(,)或(,);(3)过点B作BE⊥BC交CQ于点E,过E点作EF⊥x轴交于F,∵OB=OC,∴∠OCB=45°,∵∠ACQ=45°,∴∠BCQ=∠OCA,∵OA=1,∴tan∠OCA=,∴tan∠BCE==,∵BC=3,∴BE=,∵∠OBC=45°,∴∠EBF=45°,∴EF=BF=1,∴E(4,﹣1),设直线CE的解析式为y=kx+b,∴,解得,∴y=x﹣3,联立方程组,解得(舍)或,∴Q(,﹣).。
北师大版九年级中考数学模拟考试试题(含答案)(山东地区)
九年级中考数学模拟考试试题满分150分时间:120分钟一、单选题。
(每小题4分,共40分)1.2023的相反数是()A.2023B.﹣2023C.﹣12023 D.120232.如图是由8个完全相同的小正方体组成的几何体,从正面看到的形状图是()3.我国自主研发的北斗系统技术世界领先,在西昌卫星发射中心成功发射最后一颗北斗三号卫星,该卫星发射升空的速度约7100米/秒,其中“7100”用科学记数法表示为()A.7100B.0.71×104C.7.1×103D.71×1024.将一副三角板按如图所示的方式放置,则∠AOB=()A.75°B.45°C.30°D.80°(第4题图)(第6题图)(第9题图)5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,下列既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图数轴上A,B两点表示的数分别为a,b,下列结论中,错误的是()A.a+b <0B.a -b <0C.ab <0D.ab <07.二十四节气是中华上古农耕文明的智意结晶,小明购买了二十四节气主题邮票,他要将立春,立夏,秋分,大寒四张邮票中的两张送给小鹏,小明将它们背面朝上放在桌面上,让小鹏从中随机抽取一张,(不放回),再从中随机抽取一张,则小鹏抽到的两张恰好是立夏和秋分的概率是( )A.12 B.16 C.13 D.34 8.函数y=ax 与y=ax -a 在同一坐标系中的大致图象是( )9.如图,在△ABC 中,∠C=90°,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E ,已知CE=3,BE=5,则AC 的长为( )A.8B.7C.6D.510.已知函数y=x 2-2ax+5,当x ≤2时,函数值随x 增大而减小,且对任意的1≤x 1≤a+1和1≤x 2≤a+1,x 1,x 2相对应的函数值为y 1,y 2,总满足|y 1-y 2|≤4,则实数a 的取值范围是( ) A.﹣1≤a ≤3 B.﹣1≤a ≤2 C.2≤a ≤3 D.2≤a ≤4 二.填空题。
中考数学模拟试题(附答案解析)
A. B. C. D.
6.在平面直角坐标系中,将直线 先向左平移2个单位长度,再向上平移5个单位长度,则平移后的新直线为()
A. B. C. D.
7.如图,在 中,M,N 上两点, ,连接 , , , ,添加一个条件,使四边形 是菱形,这个条件是()
A. B. C. D.
8.如图, 是 的内接三角形,作 与 相交于点C,且 ,则 的大小为()
二、填空题(本大题共4个小题,每小题3分,共12分)
11.比较大小: ______ .(填“>”、“<”或“=”)
12.圆内接正六边形的边长为6,则该正六边形的边心距为_____.
13.如图, 的顶点O在坐标原点上, ,若点B在反比例函数 的图象上,点A在反比例函数 的图象上,则k的值为______.
22.小红和小兵进行摸球试验,在一个不透明的空布袋中放有4个小球.分别标号1,2,3,4,小球除数字不同外其他都相同.试验规则:摸球前先搅拌均匀,每次随机摸一个小球,记下数字后,称为摸球一次.
(1)若小兵随机摸球一次,摸到标号为奇数的概率为__________________;
(2)若小红从袋中不放回地随机摸两次,请用列表法或画树状图法求出两球标号均为偶数的概率.
(1)请将两幅统计图补充完整,所抽取学生最感兴趣的吉祥物是____________;
(2)在这次调查中,A、B、C、D哪项选择人数少于调查总人数的平均数?
(3)若本校一共有2000名学生,请估计“对B.熊熊最感兴趣”的人数.
20.在学习了相似三角形 应用知识点后,小丽为了测量某建筑 的高度,在地面上的点D与同学们一同竖直放了一根标杆 ,并在地面上放置一块平面镜E,已知建筑底端B、E、D点在同一条水平直线上,在标杆顶端点C恰好通过平面镜E观测到建筑顶点A,在点C观测建筑顶点A的仰角为 ,平面镜E的俯角为 ,其中标杆 的长度为1米,问建筑 的高度为多少米?(结果精确到0.1米,参考数据: )
中考数学仿真模拟试卷(含答案)
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________满分150分,答题时间120分钟.一、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)22.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x24.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角8.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>09.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.2110.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3二、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是.13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为.三、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?参考答案四、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)2【解答】解:A、原式=﹣6,符合题意;B、原式=1,不符合题意;C、原式=5,不符合题意;D、原式=1,不符合题意.故选:A.2.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.【解答】解:从上面看,底层右边是一个小正方形,上层是两个小正方形.故选:B.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x2【解答】解:A,x3+x2≠x5,故A运算错误;B,(x3)2=x3×2=x6,故B运算错误;C,(x+y)2=x2+2xy+y2,故C运算错误;D,3x2+2x2=5x2,故D运算正确.故选:D.4.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角【解答】解:矩形具有而菱形不一定具有的性质是对角线相等,故选:B.5.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.【解答】解:根据题意画图如下:共有20种等情况数,其中两次摸出的球上的汉字是“不”“停”的有4种,则随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是=;故选:D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°【解答】解:∵A为中点,∴,∵AB=CD,∴,∴,∴∠ADB=∠CBD=∠ABD,∵∠ABC+∠ADC=180°,∴∠ADB+∠CBD+ABD=180°﹣∠BDC=180°﹣54°=126°,∴3∠ADB=126°,∴∠ADB=42°.故选:A.7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人【解答】解:由直方图可知,成绩低于60分的人数是1+2=3,故选:A.8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>0【解答】解:由a,b所表示的数在数轴上的位置可知,a<0且|a|>1,b>0且0<|b|<1,则ab<0,a+b<0则选项C,D不正确;∵b>0,﹣a>0,∴b﹣a=b+(﹣a)>0,则选项A不正确;∵a<0且|a|>1,b>0且0<|b|<1,∴0<|b﹣1|<1,∴|a|>1>|b﹣1,故选项B正确.故选:B.9.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.21【解答】解:连接OC,∵点O是边BC,AC的垂直平分线的交点,∴OB=OC,OA=OC,∴OA=OB,∵OB=5,∴OA=OB=5,∵AB=8,∴△AOB的周长是AB+OA+OB=8+5+5=18,故选:C.10.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3【解答】解:由二次函数y=ax2+bx+1知c=1,即二次函数和y轴交于点(0,1),而二次函数图象与x轴没有交点,故抛物线开口向上,点B、C的纵坐标相同,则二次函数的对称轴为直线x=(﹣3+1)=﹣1,而点离函数对称轴的距离从大到小的顺序是D、B(C)、A,故y3>y2>y1,故选:B.五、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是x≠0且x≠1.【解答】解:由题意得x(x﹣1)≠0,解得x≠0且x≠1,故答案为x≠0且x≠1.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是(﹣3,﹣1).【解答】解:如图所示:棋子③的坐标是(3,﹣1).故答案为:(3,﹣1).13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.【解答】解:根据题意画图如下:共有42种等情况数,其中摸出两个球为一个黑球和一个白球的有24种,则随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是=;故答案为:.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是16.【解答】解:∵PA、PB、EF分别与⊙O相切于点A、B、C,∴AE=CE,FB=CF,PA=PB=8,∴△PEF的周长=PE+EF+PF=PA+PB=16.故答案为:16.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为12.【解答】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵BD为AC边上的中线,∠ABC=90°,∴BD=DF=AC,∴四边形BGFD是菱形,∴BD=DF=GF=BG=10,则AF=AG﹣GF=26﹣10=16,AC=2BD=20,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即162+CF2=202,解得:CF=12.故答案是:12.六、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.【解答】解:(1)S=2m×2n﹣m(2n﹣n﹣0.5n)=4mn﹣0.5mn=3.5mn;(2)由题意得m﹣6=0,n﹣8=0,∴m=6,n=8,代入,可得原式=3.5×6×8=168.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.【解答】解:(1)由前三年六月份各天的最高气温数据,得到最高气温位于区间[20,25)和最高气温低于20的天数为2+16+36=54,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间[20,25),需求量为300瓶,如果最高气温低于20,需求量为200瓶,∴六月份这种酸奶一天的需求量不超过300瓶的概率p==;(2)∵当温度大于等于25℃时,需求量为500,Y=450×2=900元;当温度在[20,25)℃时,需求量为300,Y=300×2﹣(450﹣300)×2=300元;当温度低于20℃时,需求量为200,Y=400﹣(450﹣200)×2=﹣100元;∴当温度大于等于20时,Y>0,∵由前三年六月份各天的最高气温数据,得当温度大于等于20℃的天数有:90﹣(2+16)=72,∴估计Y大于零的概率P==.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DE,EF分别是△ABC 的中位线,∴DE∥AC,EF∥AB,∴DE∥AF,EF∥AD,∴四边形ADEF是平行四边形;(2)解:∵D是AB的中点,F是AC的中点,AB=10cm,AB=AC,∴AD=AF=AB=5(cm),∵四边形ADEF是平行四边形,∴四边形ADEF是菱形,∴四边形ADEF的周长为4AD=4×5=20(cm).19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.【解答】解:(1)任选一个景点,选中以人文景观为主的概率为=;(2)把自然风光记为A,人文景观记为B,画树状图如图:共有24个等可能的结果,亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的结果有4个,∴亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率为=.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【解答】解:(1)设计划调配36座新能源客车x辆,该校共有y名走读生.由题意,得,解得,答:计划调配36座新能源客车6辆,该校共有218名走读生.(2)设36座和22座两种车型各需m,n辆.由题意,得36m+22n=218,且m,n均为非负整数,经检验,只有m=3,n=5符合题意.答:需调配36座客车3辆,22座客车5辆.21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)【解答】解:(1)由题意可知:∠BAD=18°,在Rt△ABD中,AB=18≈≈5.6(m),答:应在地面上距点B约5.6m远的A处开始斜坡的施工;(2)能,理由如下:如图,过点C作CE⊥AD于点E,则∠ECD=∠BAD=18°,在Rt△CED中,CE=CD•cos18°≈2.8×0.95=2.66(m),∵2.66>2.5,∴能保证货车顺利进入地下停车场.22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.【解答】解:(1)∵点C(1,m)在一次函数y=x+3的图象上,∴m=1+3=4;(2)设一次函数图象l2相应的函数表达式为y=kx+b,把点A(3,0),C(1,4)代入得,解得,∴一次函数图象l2相应的函数表达式y=﹣2x+6;(3)∵一次函数y=x+3的图象l1与x轴交于点B,∴B(﹣3,0),∵A(3,0),C(1,4),∴AB=6,∴S△ABC=×6×4=12.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.【解答】(1)证明:如图1,连接BF,∴∠AFB=∠C,∵∠C=∠E,∴∠AFB=∠E,∴BF∥DE,∵DE为⊙O的切线,AD为⊙O的直径,∴AD⊥DE,∴AD⊥BF,∴AD平分BF,∴AB=AF;(2)解:如图2,连接BD,∴∠C=∠ADB,∵∠C=∠E,∴∠ADB=∠E,∵AD为⊙O的直径,∴∠ABD=90°,∴∠ABD=∠ADE,∴△ABD∽△ADE,∴=,∴AE=,∴DE==.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.【解答】解:(1)y=mx2+(m2﹣m)x﹣2m+1顶点D的横坐标为1,∴=1,解得m=﹣1,∴二次函数的表达式为y=﹣x2+2x+3,令y=0得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)过B作BH⊥AC于H,过F作FG⊥y轴于G,如图:∵二次函数y=﹣x2+2x+3与y轴交点C(0,3),且A(﹣1,0),B(3,0),∴AB=4,OC=3,AC=,BC=3,∵S△ABC=AB•OC=AC•BH,∴BH=,Rt△BHC中,sin∠HCB===,Rt△EFC中,EF=CF•sin∠HCB=CF,∴FE=•CF=CF,设P(n,﹣n2+2n+3),由B(3,0),C(0,3)得BC解析式为y=﹣x+3,∴△BCO是等腰直角三角形,F(n,﹣n+3),∴△GFC是等腰直角三角形,GF=n,∴CF=GF=n,∴CF=2n,即FE=2n,∴m=PF+FE=PF+2n=(﹣n2+2n+3)﹣(﹣n+3)+2n=﹣n2+5n,∴当n==时,m最大,最大为﹣()2+5×=,此时P(,);(3)直线y=kx+k﹣6总过(﹣1,﹣6),k<0时,它和新图象G不可能有4个公共点,如图:k>0时,若二次函数的表达式为y=﹣x2+2x+3刚好经过B(3,0),由(﹣1,﹣6),B(3,0)可得直线解析式为y=x﹣,此时直线y=x﹣与新图象G有3个交点,∴直线y=kx+k﹣6与新图象G有4个公共点,需满足k<,而抛物线y=﹣x2+2x+3关于x轴对称的抛物线解析式为y=x2﹣2x﹣3,若直线y=kx+k﹣6与抛物线y=x2﹣2x﹣3有两个交点,即是有两组解,∴x2﹣(2+k)x+3﹣k=0有两个不相等的实数根,∴△>0,即[﹣(2+k)]2﹣4(3﹣k)>0,解得k>﹣4+2或k<﹣4﹣2(小于0,舍去),∴k>﹣4+2,因此,直线y=kx+k﹣6与新图象G有4个公共点,﹣4+2<k<.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【解答】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+=7.(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD===1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t﹣3=3,∴t=2;如图7,当P点在AB上,Q在AC上,则AP=t﹣4,AQ=2t﹣8,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣4+2t﹣8=6,∴t=6,∴当t为2或6秒时,直线PQ把△ABC的周长分成相等的两部分.。
中考仿真模拟测试《数学试题》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣20162.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 904. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣85.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y66.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 37.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A.7B.38C.78D.589.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°10.已知二次函数的与的部分对应值如下表:-1 0 1 3 -3131下列结论:①抛物线开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二.填空题(共4小题)11.在实数117,-(-1),3π, 1.21,313113113,5中,无理数有______个.12.若正六边形的边长为3,则其面积为_____.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=.16.计算:8﹣(12)﹣1﹣|21-|17.如图,已知线段AB.(1)仅用没有刻度直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C处放置一块镜子,小明站在BC的延长线上,当小明在镜子中刚好看到树的顶点A时,测得小明到镜子的距离CD=2米,小明的眼睛E到地面的距离ED=1.5米;②将镜子从点C沿BC的延长线向后移动10米到点F处,小明向后移动到点H处时,小明的眼睛G又刚好在镜子中看到树的顶点A,这时测得小明到镜子的距离FH=3米;③计算树的高度AB;21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张. (1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由. 23.如图,AB 是⊙O 的直径,点C 、E 在⊙O 上,∠B =2∠ACE ,在BA 的延长线上有一点P ,使得∠P =∠BAC ,弦CE 交AB 于点F ,连接AE .(1)求证:PE 是⊙O 切线;(2)若AF =2,AE =EF =10,求OA 的长.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H. (1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.答案与解析一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣2016 【答案】B【解析】【分析】根据零次幂直接回答即可.【详解】解:20160=1.故选:B.【点睛】本题是对零次幂的考查,熟练掌握零次幂知识是解决本题的关键.2.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.【答案】A【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:它的俯视图为.故选A.点睛:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 90【答案】B【解析】∵∠DFE=135°,∴∠CFE=180°-135°=45°.∵AB∥CD,∴∠ABE=∠CFE=45°.故选B.4. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.5.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y6【答案】C【解析】【分析】根据整式运算依次判断即可.【详解】解:A、6x6÷2x3=3x3,故选项A错误;B、x2+x2=2x2,故选项B错误;C、﹣2x2y(x﹣y)=﹣2x3y+2x2y2,故选项C正确;D、(﹣3xy2)3=﹣27x3y6,故选项D错误;故选:C.【点睛】本题是对整式乘除的考查,熟练掌握积的乘方,单项式乘多项式及单项式除以单项式运算是解决本题的关键.6.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 3【答案】A 【解析】 【分析】如图,过点D 作DF ⊥AC 于F ,由角平分线的性质可得DF=DE=1,在Rt △BED 中,根据30度角所对直角边等于斜边一半可得BD 长,在Rt △CDF 中,由∠C=45°,可知△CDF 为等腰直角三角形,利用勾股定理可求得CD 的长,继而由BC=BD+CD 即可求得答案. 【详解】如图,过点D 作DF ⊥AC 于F ,∵AD 为∠BAC 的平分线,且DE ⊥AB 于E ,DF ⊥AC 于F , ∴DF=DE=1,在Rt △BED 中,∠B=30°, ∴BD=2DE=2,在Rt △CDF 中,∠C=45°, ∴△CDF 为等腰直角三角形, ∴CF=DF=1,∴22DF CF +2, ∴BC=BD+CD=22+, 故选A.【点睛】本题考查了角平分线的性质,含30度角的直角三角形的性质,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.7.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.【答案】D 【解析】 【分析】直接根据”上加下减”的原则进行解答即可.【详解】解:由”上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1, 解得n=2. 故选D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A. 7B.38C.78D.58【答案】C 【解析】 【分析】如图,过点D 作DG BE ⊥,垂足为G ,则GD 3=,首先证明AEB ≌GED ,由全等三角形的性质可得到AE EG =,设AE EG x ==,则ED 4x =-,在Rt DEG 中依据勾股定理列方程求解即可. 【详解】如图所示:过点D 作DG BE ⊥,垂足为G ,则GD 3=,A G ∠∠=,AEB GED ∠∠=,AB GD 3==,AEB ∴≌GED ,AE EG ∴=,设AE EG x ==,则ED 4x =-,在Rt DEG 中,222ED GE GD =+,222x 3(4x)+=-,解得:7x 8=, 故选C .【点睛】本题考查了矩形的性质、勾股定理的应用、全等三角形的判定与性质,依据题意列出关于x 的方程是解题的关键.9.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°【答案】B 【解析】 【分析】先根据等腰三角形得出OAB ∠的度数,再证的AOC ∆是等边三角形,最后根据圆周角定理求解即可. 【详解】连接OA ,∵o OBA 20∠=,OB OA = ∴o OAB=OBA 20∠∠= ∵AC OC =且OC OA = ∴AOC ∆是等边三角形 ∴6OA 0C ∠=︒∴BA OA OAB 60204=0C C =-︒-∠︒=∠∠︒ ∴=2=80BOC BAC ∠∠︒ 故选B.【点睛】本题主要考查了等腰三角形的性质,等边三角形的判定及性质,圆周角定理,正确作出辅助线证出AOC ∆是等边三角形是解本题的关键.10.已知二次函数的与的部分对应值如下表:-1 0 1 3-3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【详解】解:根据二次函数的图象具有对称性,由表格可知,二次函数y=ax2+bx+c有最大值,当x=033 22 +=时,取得最大值,可知抛物线的开口向下,故①正确;其图象的对称轴是直线x=32,故②错误;当x>32时,y随x的增大而减小,当x<32时,y随x的增大而增大,故③正确;根据x=0时,y=1,x=﹣1时,y=﹣3,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×32=3,小于3+1=4,故④错误.故选B.考点:1、抛物线与x轴的交点;2、二次函数的性质二.填空题(共4小题)11.在实数117,-(-1),3π1.21,3131131135中,无理数有______个.【答案】2【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】在所列实数中,无理数有π3,5这2个,故答案为2.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.若正六边形的边长为3,则其面积为_____.【答案】273 2【解析】【分析】根据题意画出图形,由正六边形的特点求出∠AOB的度数及OG的长,再由△OAB的面积即可求解.【详解】解:∵此多边形为正六边形,如图:∴∠AOB=3606︒=60°;∵OA=OB,∴△OAB是等边三角形,∴OA=AB=3,∴OG=OA•cos30°=3×3332∴S△OAB=12×AB×OG=12×3×332934∴S六边形=6S△OAB=6×9342732.2732;【点睛】此题主要考查正多边形的计算问题,关键是由正六边形的特点求出∠AOB的度数及OG的长.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.【答案】6+25【解析】详解】解:设E(x,x),∴B(2,x+2),∵反比例函数kyx=(k≠0,x>0)的图象过点B. E.∴x2=2(x+2),115x∴=+,215x=-(舍去),()2215625k x∴==+=+,故答案为625+14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.【答案】134.【解析】【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF=22F0G G+=413,∴EF=413﹣4,∴PD+PE的长度最小值为413﹣4,故答案为:413﹣4.【点睛】本题考查了正方形的性质和勾股定理,构直角三角形是解题的关键.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=【答案】21aa+,322【解析】【分析】先对括号内第一项因式分解同时将除法化为乘法,然后利用乘法分配律进行计算,再把结果相加,最后把a 的值代入计算即可.【详解】原式=2(1)1()(1) (1)(1)aaa a a-++ +-=11aaa+ -+=21aa+,当2a=时,原式=2(2)12+=322.16.计算:8﹣(12)﹣1﹣|21-|【答案】2﹣1【解析】【分析】先化简二次根式和绝对值,计算负整数幂,然后再计算得出结果即可.【详解】解:原式=22﹣2﹣(2﹣1)=22﹣2﹣2+1=2﹣1.【点睛】本题是对实数运算的考查,熟练掌握二次根式化简及负整数幂运算是解决本题的关键.17.如图,已知线段AB.(1)仅用没有刻度的直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.【答案】(1)见解析;(2)2.【解析】【分析】(1)以AB为边作等边三角形DAB,再以DB为边作等边三角形DBC,然后连接AC,则△ABC满足条件;(2)利用△ABD为等边三角形可确定等腰△ABC的外接圆的半径.【详解】解:(1)如图:△ABC为所求;(2)∵△ABD和△BCD为等边三角形,∴DA=DB=DC=AB,∴等腰△ABC的外接圆的半径为2,故答案2.点睛:本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.【答案】见解析【解析】【分析】先证四边形BDCE是平行四边形,再证CD=BD,即可证明是菱形.【详解】证明:∵BE∥CD,CE∥AB,∴四边形BDCE是平行四边形,∵∠ACB=90°,CD是AB边上的中线,∴CD=BD,∴平行四边形BDCE是菱形.【点睛】本题是对菱形判定的考查,熟练掌握菱形的判定是解决本题的关键.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?【答案】(1)详见解析;(2)432.【解析】【分析】(1)由阅读量为2本的人数及其百分比求得总人数,总人数剑气其他阅读数量的人数求得3本的人数,继而用阅读3本的人数除以总人数可得m的值;(2)用总人数乘以样本中阅读数量为3、4、5本人数所占的比例即可得.【详解】解:(1)被调查的学生人数为10÷20%=50人,阅读3本的人数为50﹣(4+10+14+6)=16,所以课外阅读量的众数是3本,则m%=1650×100%=32%,即m=32,补全图形如下:(2)估计该校600名学生中能完成此目标的有600×1614650++=432(人).【点睛】此题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C 处放置一块镜子,小明站在BC 的延长线上,当小明在镜子中刚好看到树的顶点A 时,测得小明到镜子的距离CD =2米,小明的眼睛E 到地面的距离ED =1.5米; ②将镜子从点C 沿BC 的延长线向后移动10米到点F 处,小明向后移动到点H 处时,小明的眼睛G 又刚好在镜子中看到树的顶点A ,这时测得小明到镜子的距离FH =3米; ③计算树高度AB ;【答案】树的高度AB 为15米 【解析】 【分析】设AB =x 米,BC =y 米,先证△ABC ∽△EDC ,得到1.52x y =,再证△ABF ∽△GHF ,得到101.53x y +=,从而求出x 的值即可.【详解】解:设AB =x 米,BC =y 米, ∵∠ABC =∠EDC =90°,∠ACB =∠ECD , ∴△ABC ∽△EDC ,∴AB BCED DC =, ∴1.52x y =, ∵∠ABF =∠GHF =90°,∠AFB =∠GFH , ∴△ABF ∽△GHF ,∴AB BFGH HF =, ∴101.53x y +=, ∴1023y y +=, 解得:y =20, 把y =20代入1.52x y =中得201.52x =, 解得x =15,∴树的高度AB 为15米.【点睛】本题是对相似三角形的综合考查,熟练掌握相似三角形判定及相似比是解决本题的关键.21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?【答案】(1)y=20﹣6x(x>0);(2)这时山顶的温度大约是14.21℃;(3)飞机离地面的高度为9千米【解析】【分析】(1)根据等量关系:高出地面x千米处的温度=地面温度-6℃×高出地面的距离,列出函数关系式;(2)把给出的自变量高出地面的距离0.965km代入一次函数求得;(3)把给出的函数值高出地面x千米处的温度-34℃代入一次函数求得x.【详解】解:(1)由题意得,y与x之间的函数关系式y=20﹣6x(x>0);(2)由题意得,x=0.965km,∴y=20﹣6×0.965=14.21(℃),则这时山顶温度大约是14.21℃;(3)由题意得,y=﹣34℃时,代入y=20﹣6x得,﹣34=20﹣6x,解得x=9km,答:飞机离地面的高度为9千米.【点睛】本题考查了一次函数的应用,比较简单,读懂题目信息,理解随着高度的增加,温度降低列出关系式是解题的关键.22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字的一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张.(1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由.【答案】(1)14;(2)这个游戏公平.【解析】【分析】(1)将所有可能的情况在图中表示出来,再根据概率公式计算可得;(2)计算出和为大于32和不大于32的概率,即可得到游戏是否公平【详解】解:(1)画树状图如下:由树状图知共有16种等可能结果,其中两次都恰好抽到2的有4种结果,所以两次都恰好抽到2的概率为14.(2)这个游戏公平.因为P(小贝获胜)=P(小晶获胜)=12.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.如图,AB是⊙O的直径,点C、E在⊙O上,∠B=2∠ACE,在BA的延长线上有一点P,使得∠P=∠BAC,弦CE交AB于点F,连接AE.(1)求证:PE是⊙O的切线;(2)若AF=2,AE=EF10,求OA的长.【答案】(1)见解析;(2)OA=5【解析】【分析】(1)连接OE,根据圆周角定理得到∠AOE=∠B,根据圆周角定理得到∠ACB=90°,求得∠OEP=90°,于是得到结论;(2)根据等腰三角形的性质得到∠OAE=∠OEA,∠EAF=∠AFE,再根据相似三角形的性质即可得到结论.【详解】解:(1)连接OE ,∴∠AOE =2∠ACE ,∵∠B =2∠ACE ,∴∠AOE =∠B ,∵∠P =∠BAC ,∴∠ACB =∠OEP ,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠OEP =90°,∴PE 是⊙O 的切线;(2)∵OA =OE ,∴∠OAE =∠OEA ,∵AE =EF ,∴∠EAF =∠AFE ,∴∠OAE =∠OEA =∠EAF =∠AFE ,∴△AEF ∽△AOE , ∴AE AF OA AE=, ∵AF =2,AE =EF 10∴OA =5.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定,切线的判定,正确的作出辅助线是解题的关键.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y 轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H.(1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.【答案】(1)2y x 2x 3=--+,(-1,4) (2)(-2,3),31711722⎛⎫-+-+ ⎪ ⎪⎝⎭,,31711722⎛--- ⎝⎭, (3)(-4,-5),(23-,359) 【解析】分析】 (1)将A(-3,0)、B(1,0)、D(0,3),代入y=ax 2+bx+3求出即可;(2)求出直线AD 的解析式,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,利用△ADE 与△ACD 面积相等,得出直线EC 和直线EH 的解析式,联立出方程组求解即可;(3) (3)分两种情况讨论:①点P 在对称轴左侧;②点P 在对称轴右侧.【详解】(1)设抛物线的解析式为2y ax bx c(a 0)=++<,∵抛物线过点A(-3,0),B(1,0),D(0,3), ∴93003a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得,a=-1,b=-2,c=3,∴抛物线解析式为2y x 2x 3=--+,顶点C(-1,4);(2)如图1,∵A(-3,0),D(0,3),∴直线AD 的解析式为y=x+3,设直线AD 与CH 交点为F ,则点F 的坐标为(-1,2)∴CF=FH,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,由平行间距离处处相等,平行线分线段成比例可知,△ADE 与△ACD 面积相等,∴直线EC 的解析式为y=x+5,直线EH 的解析式为y=x+1,分别与抛物线解析式联立,得25x 23y x y x =+⎧⎨=--+⎩,21x 23y x y x =+⎧⎨=--+⎩,解得点E 坐标为(-2,3),⎝⎭,⎝⎭; (3)①若点P 在对称轴左侧(如图2),只能是△CPQ∽△ACH,得∠PCQ=∠CAH, ∴PQ CH 2CQ AH==, 分别过点C 、P 作x 轴的平行线,过点Q 作y 轴的平行线,交点为M 和N ,由△CQM∽△QPN, 得PQ PN QN CQ MQ CM===2, ∵∠MCQ=45°,设CM=m ,则MQ=m ,PN=QN=2m ,MN=3m ,∴P 点坐标为(-m-1,4-3m),将点P 坐标代入抛物线解析式,得()()2m 12m 1343m -++++=-,解得m=3,或m=0(与点C 重合,舍去)∴P 点坐标为(-4,-5);②若点P 在对称轴右侧(如图①),只能是△PCQ∽△ACH,得∠PCQ=∠ACH, ∴PQ AH 1CQ CH 2==, 延长CD 交x 轴于M ,∴M(3,0)过点M 作CM 垂线,交CP 延长线于点F ,作FNx 轴于点N , ∴PQ FM 1CQ CM 2==, ∵∠MCH=45°,CH=MH=4∴MN=FN=2,∴F 点坐标为(5,2),∴直线CF 的解析式为y=111x 33-+, 联立抛物线解析式,得211133x 23y x y x ⎧=-+⎪⎨⎪=--+⎩,解得点P 坐标为(23-,359), 综上所得,符合条件的P 点坐标为(-4,-5),(23-,359).【点睛】本题考查了二次函数的综合应用以及相似三角形的应用,二次函数的综合应用是初中阶段的重点题型,特别注意分类讨论思想的应用.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD 中,P 为CD 边上的一个动点,当点P 位于何处时,∠APB 最大?并说明理由;问题解决(3)如图③,在一幢大楼AD 上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.【答案】(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)410米.【解析】【分析】(1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小(2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB 均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;(3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.【详解】解:(1)∠AEB>∠ACB,理由如下:如图1,过点E作EF⊥AB于点F,∵在矩形ABCD中,AB=2AD,E为CD中点,∴四边形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案为>;(2)当点P位于CD的中点时,∠APB最大,理由如下:假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故点P位于CD的中点时,∠APB最大:(3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,由题意知DP=OQ=,∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,BD=11.6米, AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小刚与大楼AD之间的距离为4米时看广告牌效果最好.【点睛】本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.。
中考数学综合模拟测试题(附答案解析)
三、解答题(本大题共9小题,共90分)
19.计算:(π﹣3.14)0+|1﹣2 |﹣ +( )﹣1
20.先化简,再求值: ﹣ ÷ ,其中x=2.
21.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.
(1)求证:△ABC≌△DFE;
(2)连接AF、BD,求证:四边形ABDF是平行四边形.
A. 102°B. 54°C. 48°D. 78°
5.一件服装标价200元,若以六折销售,仍可获利20℅,则这件服装进价是
A. 100元B. 105元C. 108元D. 118元
6.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以下同),
23.某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);
(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?
【答案】D
【解析】
【详解】试题分析:主视图是三角形,俯视图是两个矩形,左视图是一个矩形,
人教版九年级数学下册模拟测试题 (12)
2017年安徽省宿州市埇桥区中考数学二模试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)的相反数是()A.﹣B.C.﹣ D.2.(4分)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x53.(4分)在下面的四个几何体中,它们各自的左视图与主视图不相同的是()A.正方体B.三棱柱C.圆柱D.圆锥4.(4分)下列因式分解正确的是()A.x2+9=(x+3)2B.a2+2a+4=(a+2)2C.a3﹣4a2=a2(a﹣4)D.1﹣4x2=(1+4x)(1﹣4x)5.(4分)如图,在4×4正方形网格中,任选一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.6.(4分)设n=﹣1,那么n值介于下列哪两数之间()A.1与2 B.2与3 C.3与4 D.4与57.(4分)分式方程的解是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣28.(4分)如图的实线部分是由Rt△ABC经过两次折叠得到的,首先将Rt△ABC沿BD折叠,使点C落在斜边上的点C′处,再沿DE折叠使点A落在DC′延长线上的点A′处,若图中,∠A=30°,BC=5cm,则折痕DE的长为()A.B.2C.2D.9.(4分)如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()A.B.C.D.10.(4分)有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8,继续依次操作下去,问:从数串3,9,8开始操作第100次以后所产生的那个新数串的所有数之和是多少()A.500 B.520 C.780 D.2000二、填空题(本小题共4小题,每小题5分,共20分)(5分)PM2.5是指每立方米大气中直径小于或等于0.000 0025 11.米的颗粒粉尘,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害,将0.000 0025米用科学记数法表示为米.12.(5分)某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请x个队参赛,则x满足的方程为.13.(5分)小聪,小玲,小红三人参加“普法知识竞赛”,其中前5题是选择题,每题10分,每题有A、B两个选项,且只有一个选项是正确的,三人的答案和得分如下表,试问:这五道题的正确答案(按1~5题的顺序排列)是.题号1 2 3 4 5 得分答案选手小聪 B A A B A 40小玲 B A B A A 40小红 A B B B A 3014.(5分)如图,已知正方形ABCD的对角线交于O点,点E、F 分别是AO、CO的中点,连接BE、BF、DE、DF,则下列结论中一定成立的是(把所有正确结论的序号都填在横线上)①BF=DE;②∠ABO=2∠ABE;③S△AED=S△ACD;④四边形BFDE是菱形.三、解答题(本题共2小题,每小题8分,共16分)15.(8分)计算:(﹣1)﹣1﹣+(﹣)0+|1﹣3|16.(8分)先化简,再求值:(1﹣)÷﹣,其中x2+2x ﹣15=0.四、解答题(本题共2小题,每小题8分,共16分)17.(8分)禁渔期间,我渔政船在A处发现正北方向B处有一艘可以船只,测得A、B两处距离为200海里,可疑船只正沿南偏东45°方向航行,我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).18.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.五、解答题(本题共2小题,每小题10分,共20分)19.(10分)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.20.(10分)如图,点D为⊙O上的一点,点C在直径BA的延长线上,并且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作O的切线,交CD的延长线于点E,若BC=12,tan ∠CDA=,求BE的长.六、解答题(本题共1小题,共12分)21.(12分)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是人;(2)图2中α是度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于 1.5小时有人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.七、解答题(本题共1小题,共12分)22.(12分)某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y1(元/件),销量y2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价﹣成本)×销量)(1)求y1与y2的函数表达式;(2)求每天的销售利润w与x的函数关系表达式;(3)销售这种文化衫的第多少天,每天销售利润最大,最大利润是多少?八、解答题(本题共1小题,共14分)23.(14分)在图1至图4中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边和AD在同一直线上.操作示例:当AE<a时,如图1,在BA上选取适当的点G,使BG=b,连接FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置,恰好构成四边形FGCH.思考发现:小明在操作后发现:该剪拼方法是先将△FAG绕点F逆时针旋转90°到△FEH的位置,已知EH与AD在同一直线上,连接CH.由剪拼方法可得DH=BG,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图1所示),实践探究:(1)小明判断出四边形FGCH是正方形,请你给出判断四边形FGCH是正方形的方法.(2)经测量,小明发现图1中BG是AE一半,请你证明小明的发现是正确的.(提示:过点F作FM⊥AH,垂足为点M);拓展延伸:(3)类比图1的剪拼方法,请你就图2至图4的三种情形分别画出剪拼成一个新正方形的示意图.2017年安徽省宿州市埇桥区中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2008•乌鲁木齐)的相反数是()A.﹣B.C.﹣ D.【分析】由于互为相反数的两个数和为0,由此即可求解.【解答】解:∵+(﹣)=0,∴的相反数是﹣.故选A.【点评】此题主要考查了求无理数的相反数,无理数的相反数和有理数的相反数的意义相同,无理数的相反数是各地中考的重要考点.2.(4分)(2017•天桥区三模)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x5【分析】根据同底数幂的乘法的性质,同底数幂的除法,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、同底数幂的除法底数不变指数相减,故B正确;C、积的乘方等于乘方的积,故C错误;D、不是同类项不能合并,故D错误;故选:B.【点评】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,积的乘方,理清指数的变化是解题的关键.3.(4分)(2017•埇桥区二模)在下面的四个几何体中,它们各自的左视图与主视图不相同的是()A.正方体B.三棱柱C.圆柱D.圆锥【分析】根据主视图、左视图的定义,可得答案.【解答】解:A、主视图、左视图都是正方形,故A不符合题意;B、主视图是两个矩形,两个矩形的邻边是虚线,左视图是一个矩形,故B符合题意;C、主视图、左视图都是矩形,故C不符合题意;D、主视图、左视图都是三角形,故D不符合题意;故选:B.【点评】本题考查了简单几何体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.4.(4分)(2017•埇桥区二模)下列因式分解正确的是()A.x2+9=(x+3)2B.a2+2a+4=(a+2)2C.a3﹣4a2=a2(a﹣4)D.1﹣4x2=(1+4x)(1﹣4x)【分析】各项利用提取公因式法及公式法分解得到结果,即可作出判断.【解答】解:A、原式不能分解,错误;B、原式不能分解,错误;C、原式=a2(a﹣4),正确;D、原式=(1+2x)(1﹣2x),错误,故选C【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5.(4分)(2017•埇桥区二模)如图,在4×4正方形网格中,任选一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选B.【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.6.(4分)(2017•埇桥区二模)设n=﹣1,那么n值介于下列哪两数之间()A.1与2 B.2与3 C.3与4 D.4与5【分析】由于3<<4,由不等式性质可得﹣1的范围可得答案.【解答】解:∵3<<4,∴2<﹣1<3.故选:B.【点评】本题考查了估算无理数大小的知识,注意夹逼法的运用是解题关键.7.(4分)(2008•安徽)分式方程的解是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣2【分析】观察式子可得最简公分母为2(x+1).方程两边同乘最简公分母,转化为整式方程求解.结果要检验.【解答】解:方程两边乘2(x+1),得:2x=x+1,解得x=1.将x=1代入2(x+1)=4≠0.∴方程的解为x=1.故选A.【点评】本题考查的是解分式方程的能力.确定最简公分母是解此类方程的第一步,而求出未知数后进行检验是解分式方程必不可少的一步.8.(4分)(2017•埇桥区二模)如图的实线部分是由Rt△ABC经过两次折叠得到的,首先将Rt△ABC沿BD折叠,使点C落在斜边上的点C′处,再沿DE折叠使点A落在DC′延长线上的点A′处,若图中,∠A=30°,BC=5cm,则折痕DE的长为()A.B.2C.2D.【分析】根据直角三角形两锐角互余求出∠ABC=60°,翻折前后两个图形能够互相重合可得∠BDC=∠BDC′,∠CBD=∠ABD=30°,∠ADE=∠A′DE,然后求出∠BDE=90°,再解直角三角形求出BD,然后求出DE即可.【解答】解:∵△ABC是直角三角形,∠A=30°,∴∠ABC=90°﹣30°=60°,∵将Rt△ABC沿BD折叠,使点C落在斜边上的点C′处,∴∠BDC=∠BDC′,∠CBD=∠ABD=∠ABC=30°,∵沿DE折叠点A落在DC′的延长线上的点A′处,∴∠ADE=∠A′DE,∴∠BDE=∠ABD+∠A′DE=×180°=90°,在Rt△BCD中,BD=BC÷cos30°=5÷=cm,在Rt△BDE中,DE=BD•tan30°=×=cm.故选:D.【点评】本题考查了翻折变换的性质,解直角三角形,熟记性质并分别求出有一个角是30°角的直角三角形是解题的关键.9.(4分)(2015•资阳)如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()A.B.C.D.【分析】根据图示,分三种情况:(1)当点P沿O→C运动时;(2)当点P沿C→D运动时;(3)当点P沿D→O运动时;分别判断出y的取值情况,进而判断出y与点P运动的时间x(单位:秒)的关系图是哪个即可.【解答】解:(1)当点P沿O→C运动时,当点P在点O的位置时,y=90°,当点P在点C的位置时,∵OA=OC,∴y=45°,∴y由90°逐渐减小到45°;(2)当点P沿C→D运动时,根据圆周角定理,可得y=90°÷2=45°;(3)当点P沿D→O运动时,当点P在点D的位置时,y=45°,当点P在点0的位置时,y=90°,∴y由45°逐渐增加到90°.故选:B.【点评】(1)此题主要考查了动点问题的函数图象,解答此类问题的关键是通过看图获取信息,并能解决生活中的实际问题,用图象解决问题时,要理清图象的含义即学会识图.(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.10.(4分)(2015•芜湖校级自主招生)有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8,继续依次操作下去,问:从数串3,9,8开始操作第100次以后所产生的那个新数串的所有数之和是多少()A.500 B.520 C.780 D.2000【分析】首先具体地算出每一次操作以后所产生的那个新数串的所有数之和,从中发现规律,进而得出操作第100次以后所产生的那个新数串的所有数之和.【解答】解:设A=3,B=9,C=8,操作第n次以后所产生的那个新数串的所有数之和为S n.n=1时,S1=A+(B﹣A)+B+(C﹣B)+C=B+2C=(A+B+C)+1×(C ﹣A);n=2时,S2=A+(B﹣2A)+(B﹣A)+A+B+(C﹣2B)+(C﹣B)+B+C=﹣A+B+3C=(A+B+C)+2×(C﹣A);…故n=100时,S100=(A+B+C)+100×(C﹣A)=﹣99A+B+101C=﹣99×3+9+101×8=520.故选B.【点评】本题中理解每一次操作的方法是前提,得出每一次操作以后所产生的那个新数串的所有数之和的规律是关键.二、填空题(本小题共4小题,每小题5分,共20分)11.(5分)(2017•埇桥区二模)PM2.5是指每立方米大气中直径小于或等于0.000 0025米的颗粒粉尘,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害,将0.000 0025米用科学记数法表示为 2.5×10﹣6米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0025米用科学记数法表示为2.5×10﹣6;故答案为:2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(5分)(2015•巴彦淖尔)某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请x个队参赛,则x满足的方程为x(x﹣1)=2×5 .【分析】关系式为:球队总数×每支球队需赛的场数÷2=2×5,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=2×5.故答案是:x(x﹣1)=2×5.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.13.(5分)(2014•永州)小聪,小玲,小红三人参加“普法知识竞赛”,其中前5题是选择题,每题10分,每题有A、B两个选项,且只有一个选项是正确的,三人的答案和得分如下表,试问:这五道题的正确答案(按1~5题的顺序排列)是BABBA .1 2 3 4 5 得分题号答案选手小聪 B A A B A 40小玲 B A B A A 40小红 A B B B A 30【分析】根据得分可得小聪和小玲都是只有一个错,小红有2个错误,首先从三人答案相同的入手分析,然后从小聪和小玲不同的题目入手即可分析.【解答】解:根据得分可得小聪和小玲都是只有一个错,小红有2个错误.第5题,三人选项相同,若不是选A,则小聪和小玲的其它题目的答案一定相同,与已知矛盾,则第5题的答案是A;第3个第4题小聪和小玲都不同,则一定在这两题上其中一人有错误,则第1,2正确,则1的答案是:B,2的答案是:A;则小红的错题是1和2,则3和4正确,则3的答案是:B,4的答案是:B.总之,正确答案(按1~5题的顺序排列)是BABBA.故答案是:BABBA.【点评】本题考查了命题的推理与论证,正确确定问题的入手点,理解题目中每个题目只有A和B两个答案是关键.14.(5分)(2017•埇桥区二模)如图,已知正方形ABCD的对角线交于O点,点E、F分别是AO、CO的中点,连接BE、BF、DE、DF,则下列结论中一定成立的是①③④(把所有正确结论的序号都填在横线上)①BF=DE;②∠ABO=2∠ABE;③S△AED=S△ACD;④四边形BFDE是菱形.【分析】根据正方形的性质、平行四边形的判定和性质以及菱形的判定方法逐项分析即可.【解答】解:∵点E、F分别是AO、CO的中点,∴OE=OF,∵四边形ABCD是正方形,∴OD=OB,AC⊥BD,∴四边形BEDF是平行四边形,∴BF=DE,故选项①正确;∵四边形BEDF是平行四边形,AC⊥BD,∴四边形BFDE是菱形,故选项④正确;∵△AED的一边AE是△ACD的边AC的,且此边的高相等,∴S△ABD=S△ACD;故选项③正确,∵AB>BO,BE不垂直于AO,∴BE不是∠ABO的角平分线,∴∠ABO≠2∠ABE;故选项②没有足够的条件证明成立,故答案为:①③④.【点评】本题考查了正方形的性质、平行四边形的判定和性质以及菱形的判定方法,题目的综合性较强,难度不大,熟记各种特殊的四边形的判定方法和性质是解题关键.三、解答题(本题共2小题,每小题8分,共16分)15.(8分)(2017•埇桥区二模)计算:(﹣1)﹣1﹣+(﹣)0+|1﹣3|【分析】原式利用零指数幂、负整数指数幂法则,二次根式性质,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣1﹣3+1+3﹣1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.(8分)(2016•齐齐哈尔)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.【分析】先算括号里面的,再算除法,最后算减法,根据x2+2x ﹣15=0得出x2+2x=15,代入代数式进行计算即可.【解答】解:原式=•﹣=﹣=,∵x2+2x﹣15=0,∴x2+2x=15,∴原式=.【点评】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.四、解答题(本题共2小题,每小题8分,共16分)17.(8分)(2016•内江)禁渔期间,我渔政船在A处发现正北方向B处有一艘可以船只,测得A、B两处距离为200海里,可疑船只正沿南偏东45°方向航行,我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).【分析】先过点C作CD⊥AB,垂足为点D,设BD=x海里,得出AD=(200﹣x)海里,在Rt△BCD中,根据tan45°=,求出CD,再根据BD=CD求出BD,在Rt△BCD中,根据cos45°=,求出BC,从而得出答案.【解答】解:过点C作CD⊥AB,垂足为点D,设BD=x海里,则AD=(200﹣x)海里,∵∠ABC=45°,∴BD=CD=x,∵∠BAC=30°,∴tan30°=,在Rt△ACD中,则CD=AD•tan30°=(200﹣x),则x=(200﹣x),解得,x=100﹣100,即BD=100﹣100,在Rt△BCD中,cos45°=,解得:BC=100﹣100,则(100﹣100)÷4=25(﹣)(海里/时),则该可疑船只的航行速度约为25(﹣)海里/时.【点评】此题考查了解直角三角形的应用,用到的知识点是方向角含义、三角函数的定义,关键是根据题意画出图形,构造直角三角形.18.(8分)(2015•枣庄)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0);(3)△A2B2C2的面积是10 平方单位.【分析】(1)利用平移的性质得出平移后图象进而得出答案;(2)利用位似图形的性质得出对应点位置即可;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.【解答】解:(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.故答案为:10.【点评】此题主要考查了位似图形的性质以及平移的性质和三角形面积求法等知识,得出对应点坐标是解题关键.五、解答题(本题共2小题,每小题10分,共20分)19.(10分)(2017•埇桥区二模)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.【分析】(1)把A坐标代入直线解析式求出m的值,确定出A坐标,即可确定出双曲线解析式;(2)设P(x,0),表示出PC的长,高为A纵坐标,根据三角形ACP面积求出x的值,确定出P坐标即可.【解答】解:(1)把A(m,3)代入直线解析式得:3=m+2,即m=2,∴A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=;(2)对于直线y=x+2,令y=0,得到x=﹣4,即C(﹣4,0),设P(x,0),可得PC=|x+4|,∵△ACP面积为3,∴|x+4|•3=3,即|x+4|=2,解得:x=﹣2或x=﹣6,则P坐标为(﹣2,0)或(﹣6,0).【点评】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,以及三角形面积求法,熟练掌握待定系数法是解本题的关键.20.(10分)(2017•埇桥区二模)如图,点D为⊙O上的一点,点C在直径BA的延长线上,并且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作O的切线,交CD的延长线于点E,若BC=12,tan ∠CDA=,求BE的长.【分析】(1)连OD,OE,根据圆周角定理得到∠ADO+∠1=90°,而∠CDA=∠CBD,∠CBD=∠1,于是∠CDA+∠ADO=90°;(2)根据切线的性质得到ED=EB,OE⊥BD,则∠ABD=∠OEB,得到tan∠CDA=tan∠OEB=,易证Rt△CDO∽Rt△CBE,得到,求得CD,然后在Rt△CBE中,运用勾股定理可计算出BE的长.【解答】(1)证明:连OD,OE,如图,∵AB为直径,∴∠ADB=90°,即∠ADO+∠1=90°,又∵∠CDA=∠CBD,而∠CBD=∠1,∴∠1=∠CDA,∴∠CDA+∠ADO=90°,即∠CDO=90°,∴CD是⊙O的切线;(2)解:∵EB为⊙O的切线,ED是切线,∴ED=EB,∵OB=OD,∴OE⊥DB,∴∠ABD+∠DBE=90°,∠OEB+∠DBE=90°,∴∠ABD=∠OEB,∴∠CDA=∠OEB.而tan∠CDA=,∴tan∠OEB==,∵Rt△CDO∽Rt△CBE,(1)证明:连OD,OE,如图,∵AB为直径,∴∠ADB=90°,即∠ADO+∠1=90°,又∵∠CDA=∠CBD,而∠CBD=∠1,∴∠1=∠CDA,∴∠CDA+∠ADO=90°,即∠CDO=90°,∴CD是⊙O的切线;∴===,∴CD=×12=8,在Rt△CBE中,设BE=x,∴(x+8)2=x2+122,解得x=5.即BE的长为5.【点评】本题考查了切线的判定与性质:过半径的外端点与半径垂直的直线是圆的切线;也考查了圆周角定理的推论以及三角形相似的判定与性质,熟练应用切线判定是解题的关键.六、解答题(本题共1小题,共12分)21.(12分)(2017•埇桥区二模)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是40 人;(2)图2中α是54 度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于 1.5小时有330 人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.【分析】(1)由自主学习的时间是1小时的有12人,占30%,即可求得本次调查的学生人数;(2)由×360°=54°,40×35%=14;即可求得答案;(3)首先求得这40名学生自主学习时间不少于1.5小时的百分比,然后可求得该校九年级学生自主学习时间不少于1.5小时的人数;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小亮A的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵自主学习的时间是1小时的有12人,占30%,∴12÷30%=40,故答案为:40;…(2分)(2)×360°=54°,故答案为:54;40×35%=14;补充图形如图:故答案为:54;(3)600×=330;…(2分)故答案为:330;(4)画树状图得:∵共有12种等可能的结果,选中小亮A的有6种,∴P(A)=.…(2分)【点评】本题考查的是用列表法或画树状图法求概率与扇形统计图、条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.七、解答题(本题共1小题,共12分)22.(12分)(2017•埇桥区二模)某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y1(元/件),销量y2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价﹣成本)×销量)(1)求y1与y2的函数表达式;(2)求每天的销售利润w与x的函数关系表达式;(3)销售这种文化衫的第多少天,每天销售利润最大,最大利润是多少?【分析】(1)待定系数法分别求解可得;(2)根据:销售利润=(售价﹣成本)×销量,分1≤x<50、50≤x<90两种情况分别列函数关系式可得;(3)当1≤x<50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x<90时,依据一次函数性质可得最值情况,比较后可得答案.【解答】解:(1)当1≤x<50时,设y1=kx+b,将(1,41)、(50,90)代入,得:,解得:,∴y1=x+40,当50≤x<90时,y1=90,故y1与x的函数关系式为:y1=;设y2与x的函数关系式为:y2=mx+n (1≤x<90),将(50,100)、(90,20)代入,得:,解得:,故y2与x的函数关系式为:y2=﹣2x+200(1≤x<90);(2)由(1)知,当1≤x<50时,W=(x+40﹣30)(﹣2x+200)=﹣2x2+180x+2000;当50≤x<90时,W=(90﹣30)(﹣2x+200)=﹣120x+12000;综上,W=;(3)当1≤x<50时,∵W=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,∴当x=45时,W取得最大值,最大值为6050元;当50≤x<90时,W=﹣120x+12000,∵﹣120<0,W随x的增大而减小,∴当x=50时,W取得最大值,最大值为6000元;综上,当x=45时,W取得最大值6050元,答:销售这种文化衫的第45天,每天销售利润最大,最大利润是6050元.【点评】本题考查了待定系数法求一次函数解析式、二次函数的应用,由自变量的范围分情况依据相等关系建立二次函数模型是解题的关键.八、解答题(本题共1小题,共14分)23.(14分)(2017•埇桥区二模)在图1至图4中,正方形ABCD 的边长为a,等腰直角三角形FAE的斜边和AD在同一直线上.操作示例:当AE<a时,如图1,在BA上选取适当的点G,使BG=b,连接FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置,恰好构成四边形FGCH.思考发现:小明在操作后发现:该剪拼方法是先将△FAG绕点F逆时针旋转90°到△FEH的位置,已知EH与AD在同一直线上,连接CH.由。
数学中考模拟卷12 (1)(1)
九年级数学中考模拟卷十二一、选择题(共10小题每题3分,共30分)1.下列运算中,计算正确的是()A.m2+m3=2m5B.(﹣2a2)3=﹣6a6 C.(a﹣b)2=a2﹣b2 D.÷=2.已知b>a>0,则分式与的大小关系是()A.<B.=C.>D.不能确定3.一组数据:2,4,4,4,6,若去掉一个数据4,则下列统计量中发生变化的是()A.众数B.中位数C.平均数D.方差4.有一个人患了流行性感冒,经过两轮传染后共有144人患了流行性感冒,则每轮传染中平均一个人传染的人数是()A.14B.11C.10D.95.为迎接2022年北京冬奥会,某校开展了以迎冬奥为主题的演讲活动,计划拿出180元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件15元,乙种奖品每件10元,则购买方案有()A.5种B.6种C.7种D.8种6.如图,在平面直角坐标系中,菱形ABCD的边AD⊥y轴,垂足为E,顶点A在第二象限,顶点B在y轴正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C、D.若点C的横坐标为5,BE=2DE,则k的值为()A.B.C.D.(6)(7)(8)7.由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体的个数最多为()A.7个B.8个C.9个D.10个8.如图,平行四边形ABFC的对角线AF、BC相交于点E,点O为AC的中点,连接BO并延长,交FC的延长线于点D,交AF于点G,连接AD、OE,若平行四边形ABFC的面积为48,则S△AOG的面积为()A.5.5B.5C.4D.39. 如图,在正方形ABCD中,对角线AC与BD相交于点O,点E在BC的延长线上,连接DE,点F是DE的中点,连接OF交CD于点G,连接CF,若CE=4,OF=6.则下列结论:①GF=2;②OD=OG;③tan∠CDE=;④∠ODF=∠OCF=90°;⑤点D到CF的距离为.其中正确的结论是()A.①②③④B.①③④⑤C.①②③⑤D.①②④⑤10.如图,二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图象给出下列结论:①a+b+c=0;②a﹣2b+c<0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图象上,则y1<y2<y3;⑤a﹣b<m(am+b)(m为任意实数).其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题每题4分,共24分)11.关于x的一元一次不等式组无解,则a的取值范围是.12.在矩形ABCD中,AB=2cm,将矩形ABCD沿某直线折叠,使点B与点D重合,折痕与直线AD交于点E,且DE=3cm,则矩形ABCD的面积为cm2.13.如图,点A是反比例函数y=(x<0)图象上一点,AC⊥x轴于点C且与反比例函数y=(x<0)的图象交于点B,AB=3BC,连接OA,OB.若△OAB的面积为6,则k1+k2=.14.如图,在Rt△AOB中,∠AOB=90°,OA=4,OB=6,以点O为圆心,3为半径的⊙O,与OB 交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点,则PC+PD的最小值为.(13)(14)(16)15.三个数3,1﹣a,1﹣2a在数轴上从左到右依次排列,且以这三个数为边长能构成三角形,则a的取值范围为.16.如图,菱形ABCD中,∠ABC=120°,AB=1,延长CD至A1,使DA1=CD,以A1C为一边,在BC的延长线上作菱形A1CC1D1,连接AA1,得到△ADA1;再延长C1D1至A2,使D1A2=C1D1,以A2C1为一边,在CC1的延长线上作菱形A2C1C2D2,连接A1A2,得到△A1D1A2…按此规律,得到△A2020D2020A2021,记△ADA1的面积为S1,△A1D1A2的面积为S2…,△A2020D2020A2021的面积为S2021,则S2021=.三、解答题(共6小题)17.计算:(x﹣2)2﹣x(x﹣1)+ .18.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABO的三个顶点坐标分别为A(﹣1,3),B(﹣4,3),O(0,0).(1)画出△ABO关于x轴对称的△A1B1O,并写出点A1的坐标;(2)画出△ABO绕点O顺时针旋转90°后得到的△A2B2O,并写出点A2的坐标;(3)在(2)的条件下,求点A旋转到点A2所经过的路径长(结果保留π).19.在等腰△ADE中,AE=DE,△ABC是直角三角形,∠CAB=90°,∠ABC =∠AED,连接CD、BD,点F是BD的中点,连接EF.(1)当∠EAD=45°,点B在边AE上时,如图①所示,求证:EF =CD;(2)当∠EAD=45°,把△ABC绕点A逆时针旋转,顶点B落在边AD上时,如图②所示,当∠EAD =60°,点B在边AE上时,如图③所示,猜想图②、图③中线段EF和CD又有怎样的数量关系?请直接写出你的猜想,不需证明.20.23.(8分)如图,点A(a,2)在反比例函数y=的图象上,AB∥x轴,且交y轴于点C,交反比例函数y=于点B,已知AC=2BC.(1)求直线OA的解析式;(2)求反比例函数y=的解析式;(3)点D为反比例函数y=上一动点,连接AD交y轴于点E,当E为AD中点时,求△OAD的面积.21.如图,AB为⊙O的直径,C为⊙O上的一点,AE和过点C的切线CD互相垂直,垂足为E,AE与⊙O相交于点F,连接AC(1)求证:AC平分∠EAB;(2)若AE=12,tan∠CAB=,求OB的长.22.如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.(1)求抛物线的解析式;(2)抛物线上C、D两点之间的距离是;(3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.。
中考数学模拟试题及答案
中考数学模拟试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是正整数?A. -3B. 0C. 1D. -12. 如果一个角的度数是45°,那么它的补角是:A. 45°B. 135°C. 90°D. 180°3. 一个数的平方根是它本身,这个数是:A. 1B. -1C. 0D. 44. 以下哪个选项不是二次根式?A. √2B. √(3x)C. √x/2D. √x²5. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π二、填空题(每题2分,共10分)6. 一个数的绝对值是5,这个数可能是______。
7. 一个三角形的三边长分别为3、4、5,那么它的周长是______。
8. 如果一个数的立方根是2,那么这个数是______。
9. 一个直角三角形的两条直角边分别为6和8,那么它的斜边长是______。
10. 一个数的倒数是1/4,那么这个数是______。
三、解答题(共80分)11. 解一元一次方程:3x - 5 = 14(10分)12. 证明:如果一个三角形的两边长分别是a和b,且a > b,那么这个三角形的第三边c满足b - a < c < a + b。
(15分)13. 已知一个长方形的长是10cm,宽是5cm,求它的周长和面积。
(15分)14. 计算:(2 + √3)²(15分)15. 一个圆的直径是14cm,求它的半径、直径和面积。
(25分)四、附加题(10分)16. 一个数列的前三项是1,1,2,从第四项开始,每一项都是它前三项的和。
求这个数列的第10项。
答案:一、选择题1. C2. B3. C4. D5. B二、填空题6. ±57. 128. 89. 1010. 4三、解答题11. 解:3x - 5 = 14,移项得3x = 19,两边同时除以3得x = 19/3。
2021-2022学年湖北省宜昌市秭归县中考数学模拟试题含解析
2021-2022中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.对于不为零的两个实数a,b,如果规定:a★b=()()a b a baa bb+<⎧⎪⎨-≥⎪⎩,那么函数y=2★x 的图象大致是()A.B.C.D.2.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.613B.513C.413D.3133.﹣3的绝对值是()A.﹣3 B.3 C.-13D.134.cos30°=()A.12B.22C.32D35.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个B.2个C.3个D.4个6.在0,-2,5,14,-0.3中,负数的个数是().A.1 B.2 C.3 D.47.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:尺码/cm 21.5 22.0 22.5 23.0 23.5 人数 2 4 3 8 3学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是()A.平均数B.加权平均数C.众数D.中位数8.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是()A.将l1向左平移2个单位B.将l1向右平移2个单位C.将l1向上平移2个单位D.将l1向下平移2个单位9.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA的值为()A.B.C.D.10.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.11.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是()A .B .C .D .12.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49B .13C .29D .19二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,线段 AB 的长为 4,C 为 AB 上一个动点,分别以 AC 、BC 为斜边在 AB 的同侧作两个等腰直角三角形 ACD 和 BCE , 连结 DE , 则 DE 长的最小值是_____.14.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (3a ,a )是反比例函数ky x=(k >0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为 ▲ .15.2(2)-=__________16.比较大小:13 ___1.(填“>”、“<”或“=”)17.已知,直接y=kx+b (k >0,b >0)与x 轴、y 轴交A 、B 两点,与双曲线y=16x(x >0)交于第一象限点C ,若BC=2AB ,则S △AOB =________.18.阅读材料:设a =(x 1,y 1),b =(x 2,y 2),如果a ∥b ,则x 1•y 2=x 2•y 1.根据该材料填空:已知a =(2,3),b =(4,m),且a∥b,则m=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?20.(6分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线.(2)如果⊙O的半径为5,sin∠ADE=45,求BF的长.21.(6分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,求证:AF=DC;若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.22.(8分)在眉山市樱花节期间,岷江二桥一端的空地上有一块矩形的标语牌ABCD(如图).已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1m,参考数据:2≈1.41,3≈1.73)23.(8分)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.24.(10分)已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.(1)若点D的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?25.(10分)关于x的一元二次方程mx2+(3m﹣2)x﹣6=1.(1)当m为何值时,方程有两个不相等的实数根;(2)当m为何整数时,此方程的两个根都为负整数.26.(12分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距20千米时,求x的值.27.(12分)如图,已知四边形ABCD是平行四边形,延长BA至点E,使AE=AB,连接DE,AC (1)求证:四边形ACDE为平行四边形;(2)连接CE交AD于点O,若AC=AB=3,cosB=13,求线段CE的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】先根据规定得出函数y=2★x的解析式,再利用一次函数与反比例函数的图象性质即可求解.【详解】由题意,可得当2<x,即x>2时,y=2+x,y是x的一次函数,图象是一条射线除去端点,故A、D错误;当2≥x,即x≤2时,y=﹣2x,y是x的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0<x≤2,故B错误.故选:C.【点睛】本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y=2★x的解析式是解题的关键.2、B【解析】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:513.故选B.3、B【解析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.4、C【解析】直接根据特殊角的锐角三角函数值求解即可.【详解】3cos30︒=故选C.【点睛】考点:特殊角的锐角三角函数点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.5、A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.6、B【解析】根据负数的定义判断即可【详解】解:根据负数的定义可知,这一组数中,负数有两个,即-2和-0.1.故选B.7、C【解析】根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【详解】解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,则商店经理的这一决定应用的统计量是这组数据的众数.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.8、C【解析】根据“上加下减”的原则求解即可.【详解】将函数y=2x﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y=2x.故选:C.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.9、C【解析】先根据勾股定理求出BC得长,再根据锐角三角函数正弦的定义解答即可.【详解】如图,根据勾股定理得,BC==12,∴sinA=.故选C.【点睛】本题考查了锐角三角函数的定义及勾股定理,熟知锐角三角函数正弦的定义是解决问题的关键.10、D【解析】试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得.故选D.考点:由实际问题抽象出二元一次方程组11、C【解析】先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,后面一排分别有2个、3个、1个小正方体搭成三个长方体,并且这两排右齐,故从正面看到的视图为:.故选:C.【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.12、A【解析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2【解析】试题分析:由题意得,;C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,AD=CD;CE=BE;由勾股定理得,解得;而AC+BC=AB=4,,∵=16;,∴,,得出考点:不等式的性质点评:本题考查不等式的性质,会用勾股定理,完全平方公式,不等关系等知识,它们是解决本题的关键14、3yx =.【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(2a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=3.∵正方形的中心在原点O,∴直线AB的解析式为:x=2.∵点P(2a,a)在直线AB上,∴2a=2,解得a=3.∴P(2,3).∵点P在反比例函数3yx=(k>0)的图象上,∴k=2×3=2.∴此反比例函数的解析式为:.15、2;【解析】试题解析:先求-2的平方42-2=4=2().16、<.【解析】根据算术平方根的定义即可求解.【详解】1,1,1.故答案为<.【点睛】考查了算术平方根,非负数a 的算术平方根a 有双重非负性:①被开方数a 是非负数;②算术平方根a 本身是非负数.17、43【解析】根据题意可设出点C 的坐标,从而得到OA 和OB 的长,进而得到△AOB 的面积即可.【详解】∵直接y=kx+b 与x 轴、y 轴交A 、B 两点,与双曲线y=16x 交于第一象限点C ,若BC=2AB ,设点C 的坐标为(c,16c) ∴OA=0.5c,OB=1163c ⨯=163c, ∴S △AOB =1·2OA OB =1160.523c c ⨯⨯=43 【点睛】此题主要考查反比例函数的图像,解题的关键是根据题意设出C 点坐标进行求解.18、6【解析】根据题意得,2m=3×4,解得m=6,故答案为6.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、1人【解析】解:设九年级学生有x 人,根据题意,列方程得:19361936?0.8x x 88⋅=+,整理得0.8(x+88)=x ,解之得x=1. 经检验x=1是原方程的解.答:这个学校九年级学生有1人.设九年级学生有x 人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款1936元”可得每个文具包的花费是:1936x元,根据“若多买88个,就可享受8折优惠,同样只需付款1936元”可得每个文具包的花费是:1936?x88+,根据题意可得方程19361936?0.8x x88⋅=+,解方程即可.20、(1)答案见解析;(2)907.【解析】试题分析:(1)连接OD,AB为⊙O的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;(2)由∠DAC=∠DAB,根据等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可计算出AD=8,在Rt△ADE中可计算出AE=325,然后由OD∥AE,得△FDO∽△FEA,再利用相似比可计算出BF.试题解析:(1)证明:连结OD∵OD=OB∴∠ODB=∠DBO又AB=AC∴∠DBO=∠C∴∠ODB =∠C∴OD ∥AC又DE⊥AC∴DE ⊥OD∴EF是⊙O的切线.(2)∵AB是直径∴∠ADB=90 °∴∠ADC=90 °即∠1+∠2=90 °又∠C+∠2=90 °∴∠1=∠C∴∠1 =∠3∴4sin sin35AD ADEAB ∠==∠=∴4510AD =∴AD=8在Rt△ADB中,AB=10∴BD=6在又Rt△AED中,4sin5AE ADEAD ∠==∴483255 AE⨯==设BF=x∵OD ∥AE∴△ODF∽△AEF∴OD OFAE AF=,即5532105xx+=+,解得:x=90 721、(1)见解析(2)见解析【解析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四边形ADCF是菱形,证明如下:∵AF∥BC,AF=DC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形22、7.3米【解析】:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,推出AH=HF,设AH=HF=x,则EF=2x,EH=3x,在Rt△AEB中,由∠E=30°,AB=5米,推出AE=2AB=10米,可得x+3x =10,解方程即可.【详解】解:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,∴AH=HF,设AH=HF=x,则EF=2x,EH=x,在Rt△AEB中,∵∠E=30°,AB=5米,∴AE=2AB=10米,∴x+x=10,∴x=5﹣5,∴EF=2x=10﹣10≈7.3米,答:E与点F之间的距离为7.3米【点睛】本题考查的知识点是解直角三角形的应用-仰角俯角问题,解题的关键是熟练的掌握解直角三角形的应用-仰角俯角问题.23、(1)40;(2)72;(3)1.【解析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去A景点的人数所占的百分比即可.【详解】(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为840×360°=72°; (3)800×1440=1,所以估计“最想去景点B“的学生人数为1人. 24、(1)y=﹣(x+3)(x ﹣1)=﹣x 2﹣2x+3;(2)(﹣4,﹣)和(﹣6,﹣3)(3)(1,﹣4). 【解析】试题分析:(1)根据二次函数的交点式确定点A 、B 的坐标,求出直线的解析式,求出点D 的坐标,求出抛物线的解析式;(2)作PH ⊥x 轴于H ,设点P 的坐标为(m ,n ),分△BPA ∽△ABC 和△PBA ∽△ABC ,根据相似三角形的性质计算即可;(3)作DM ∥x 轴交抛物线于M ,作DN ⊥x 轴于N ,作EF ⊥DM 于F ,根据正切的定义求出Q 的运动时间t=BE+EF 时,t 最小即可.试题解析:(1)∵y=a (x+3)(x ﹣1),∴点A 的坐标为(﹣3,0)、点B 两的坐标为(1,0),∵直线y=﹣x+b 经过点A , ∴b=﹣3, ∴y=﹣x ﹣3,当x=2时,y=﹣5,则点D 的坐标为(2,﹣5), ∵点D 在抛物线上,∴a (2+3)(2﹣1)=﹣5,解得,a=﹣, 则抛物线的解析式为y=﹣(x+3)(x ﹣1)=﹣x 2﹣2x+3;(2)作PH ⊥x 轴于H ,设点P 的坐标为(m ,n ), 当△BPA ∽△ABC 时,∠BAC=∠PBA ,∴tan∠BAC=tan∠PBA,即=,∴=,即n=﹣a(m﹣1),∴,解得,m1=﹣4,m2=1(不合题意,舍去),当m=﹣4时,n=5a,∵△BPA∽△ABC,∴=,即AB2=AC•PB,∴42=•,解得,a1=(不合题意,舍去),a2=﹣,则n=5a=﹣,∴点P的坐标为(﹣4,﹣);当△PBA∽△ABC时,∠CBA=∠PBA,∴tan∠CBA=tan∠PBA,即=,∴=,即n=﹣3a(m﹣1),∴,解得,m1=﹣6,m2=1(不合题意,舍去),当m=﹣6时,n=21a,∵△PBA∽△ABC,∴=,即AB2=BC•P B,∴42=•,解得,a1=(不合题意,舍去),a2=﹣,则点P的坐标为(﹣6,﹣),综上所述,符合条件的点P的坐标为(﹣4,﹣)和(﹣6,﹣);(3)作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,则tan∠DAN===,∴∠DAN=60°,∴∠EDF=60°,∴DE==EF,∴Q的运动时间t=+=BE+EF,∴当BE和EF共线时,t最小,则BE⊥DM,E(1,﹣4).考点:二次函数综合题.25、(1) m≠1且m≠2-3;(2) m=-1或m=-2.【解析】(1)由方程有两个不相等的实数根,可得△>1,列出关于m的不等式解之可得答案;(2) 解方程,得:12x=m,2x=-3,由m为整数,且方程的两个根均为负整数可得m的值. 【详解】解:(1) △=2b-4ac=(3m-2)2+24m=(3m+2)2≥1当m≠1且m≠2-3时,方程有两个不相等实数根.(2)解方程,得:12x =m,2x =-3, m 为整数,且方程的两个根均为负整数,∴m=-1或m=-2.∴m=-1或m=-2时,此方程的两个根都为负整数【点睛】本题主要考查利用一元二次方程根的情况求参数.26、(1)30;(2)当x =3.9时,轿车与货车相遇;(3)在两车行驶过程中,当轿车与货车相距20千米时,x 的值为3.5或4.3小时.【解析】(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;(2)先求出线段CD 对应的函数关系式,再根据两直线的交点即可解答;(3)分两种情形列出方程即可解决问题.【详解】解:(1)根据图象信息:货车的速度V 货=300605=, ∵轿车到达乙地的时间为货车出发后4.5小时,∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),此时,货车距乙地的路程为:300﹣270=30(千米).所以轿车到达乙地后,货车距乙地30千米.故答案为30;(2)设CD 段函数解析式为y =kx+b (k≠0)(2.5≤x≤4.5).∵C (2.5,80),D (4.5,300)在其图象上,2.5804.5300k b k b +=⎧⎨+=⎩,解得110195k b =⎧⎨=-⎩, ∴CD 段函数解析式:y =110x ﹣195(2.5≤x≤4.5);易得OA :y =60x ,11019560y x y x =-⎧⎨=⎩,解得 3.9234x y ==, ∴当x =3.9时,轿车与货车相遇;(3)当x=2.5时,y货=150,两车相距=150﹣80=70>20,由题意60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,解得x=3.5或4.3小时.答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.【点睛】本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.27、(1)证明见解析;(2)42.【解析】(1)已知四边形ABCD 是平行四边形,根据平行四边形的性质可得AB∥CD,AB=CD,又因AE=AB,可得AE=CD,根据一组对边平行且相等的四边形是平行四边形即可判定四边形ACDE 是平行四边形;(2)连接EC,易证△BEC 是直角三角形,解直角三角形即可解决问题.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB∥CD,AB=CD,∵AE=AB,∴AE=CD,∵AE∥CD,∴四边形ACDE 是平行四边形.(2)如图,连接EC.∵AC=AB=AE,∴△EBC 是直角三角形,∵cosB==,BE=6,∴BC=2,∴EC===4.【点睛】本题考查平行四边形的性质和判定、直角三角形的判定、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
中考模拟测试《数学试题》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-7的绝对值是( )A. 7B. -7C. 17D. -172.把如图所示的几何体组合中的正方体放到正方体的上面,则下列说法正确的是()A 主视图不变B. 俯视图不变C 左视图不变D. 三种视图都不变3.如图,DE 与ABC 的底边AB 平行,OF 是COE ∠的角平分线,若62,B ∠=︒则1∠的度数为()A. 54B. 59C. 62D. 644.已知正比例函数(0)y kx k =≠的图象经过点()2,3,-则的值为() A. 32 B. 23- C. 32- D. 235.下列运算正确是() A. 428a a a ⋅= B. 221a a -= C. 2222a a a -+= D. ()325x x =6.如图,在ABC 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A.B. 23C. 33D.7.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A. B.C. D.8.如图,,AB BC 为O 中异于直径的两条弦,OA 交BC 于点,D 若50,35,AOC C ∠=︒∠=︒则A ∠的度数为()A. 35B. 50C. 60D. 709.如图,是矩形ABCD 中AD 边的中点,BE 交AC 于点,F ABF 的面积为,则四边形CDEF 的面积为()A.B.C.D.10.已知抛物线2221)0(y ax ax a a =-++≠.当3x ≥时,随的增大而增大;当20x -≤≤时,的最大值为.那么与抛物线2221y ax ax a =-++关于轴对称的抛物线在23x -≤≤内的函数最大值为()A. B. C. D. 二、填空题(每题3分,满分12分,将答案填在答题纸上)11.5_.12.如图,在正六边形ABCDEF 中,CAD ∠的度数为____.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC 交于,E F 两点,且,A C 两点在轴上,点的坐标为()2,4,则点的坐标为_____.14.如图,在平行四边形ABCD 中,10,16,60,AB AD A P ==∠=︒为AD 的中点,是边AB 上不与点,A B 重合的一个动点,将APF 沿PF 折叠,得到',A PF 连接',BA 则'BA F 周长的最小值为___.三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.计算:()1082 3.146012cos π-⎛⎫+⎭- ⎪⎝︒. 16.化简:2222111a a a a a--⎛⎫-÷ ⎪-+⎝⎭ 17.如图,在ABC 中,90,BAC ∠=︒请用尺规作图法,作ABC 绕点逆时针旋转45︒后的11AB C △.(不写作法,保留作图痕迹)18.如图,在ABC 中,为BC 边上一点,过点作//,FD AC 且,FD AC =延长BC 至点,E 使,BF CE =连接DE .求证://AB DE .19.某校为了解该校初三学生居家学习期间参加”网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加”网络自习室”自主学习的天数,并用得到的数据绘制了如下两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加”网络自习室”自主学习天数的众数为______,中位数为________;(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加”网络自习室”自主学习的天数不少于天.20.如图1所示的是宝鸡市文化景观标志”天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量”天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部,O 他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点,A 并在点处安装了测量器,AB 在点处测得该灯的顶点P 的仰角为60︒;再在OA 的延长线上确定一点,C 使15AC =米,在点处测得该灯的顶点的仰角为45︒.若测量过程中测量器的高度始终为1.6米,求”天下第一灯”的高度.2 1.414,31(.732≈≈,最后结果取整数)21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量3162m 及以下,终端水价为3.80元/3m .第二阶梯:年用水量33162275m m -(含),终端水价为4.65元/3m .第三阶梯:年用水量3275m 以上,终端水价为7.18元/3m .城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为()3x m ,应缴水费为 (元). (1)写出该户居民2019年的年用水量为331622(75m m -含)的与之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.23.如图,O 与Rt ABF 的边,BF AF 分别交于点,C D ,连接,,AC CD 90,BAF ∠=︒点在CF 上,且DEC BAC ∠=∠.(1)试判断DE 与O 的位置关系,并说明理由.(2)若,4,6,AB AC CE EF ===求O 的直径. 24.如图,抛物线2y x bx c =-++与轴交于点和点()3,0B ,与轴交于点()0,3C ,点是抛物线的顶点,过点作轴的垂线,垂足为,E 连接DB .(1)求此抛物线的解析式.(2)点M 是抛物线上的动点,设点M 的横坐标为.当MBA BDE ∠=∠时,求点M 的坐标.25.[问题发现]如图1,半圆的直径10,AB P =是半圆上的一个动点,则PAB △面积的最大值是_.[问题解决]如图2所示的是某街心花园的一角.在扇形OAB 中,90,12AOB OA ∠=︒=米,在围墙OA 和OB 上分别有两个入口和,D 且4AC =米,是OB 的中点,出口在AB 上.现准备沿,CE DE 从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口设在距直线OB 多远处可以使四边形CODE 面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE 所用的普通石材每米的造价是200元,铺设小路DE 所用的景观石材每米的造价是400元问:在AB 上是否存在点,使铺设小路CE 和DE 的总造价最低?若存在,请求出最低总造价和出口距直线OB 的距离;若不存在,请说明理由.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-7的绝对值是( )A. 7B. -7C. 17D. -17【答案】A【解析】【分析】根据绝对值的性质解答,当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】|﹣7|=7.故选A.【点睛】本题考查了绝对值的性质①当a是正数时,a的绝对值是它本身a;②当a是负数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.把如图所示的几何体组合中的正方体放到正方体的上面,则下列说法正确的是()A. 主视图不变B. 俯视图不变C. 左视图不变D. 三种视图都不变【答案】C【解析】【分析】分别得到将正方体A移动前后的三视图,依次即可作出判断.【详解】将正方体放到正方体的上面后,主视图改变,左视图不变,俯视图改变.故选:C .【点睛】此题主要考查立体组合体的三视图,熟练画立体图形的三视图是解题关键.3.如图,DE 与ABC 的底边AB 平行,OF 是COE ∠的角平分线,若62,B ∠=︒则1∠的度数为()A. 54B 59C. 62D. 64【答案】B【解析】【分析】先根据平行线的性质求出62,BOE ∠=︒再根据邻补角求得118,COE ∠=︒然后根据角平分线即可求解.【详解】解:∵DE AB∴62,BOE B ∠=∠=︒∴118,COE ∠=︒∵OF 是COE ∠的角平分线∴1∠=59︒故选:B【点睛】此题主要考查平行线的性质、邻补角的性质和角平分线的定义,熟练掌握性质定理是解题关键. 4.已知正比例函数(0)y kx k =≠的图象经过点()2,3,-则的值为() A. 32 B. 23- C. 32- D. 23【答案】C直接把()2,3-代入(0)y kx k =≠即可求解.【详解】解:把()2,3-代入(0)y kx k =≠ 解得:3k 2=-故选:C【点睛】此题主要考查待定系数法求正比例函数解析式中的参数k ,正确理解函数的图象和性质是解题关键. 5.下列运算正确的是()A. 428a a a ⋅=B. 221a a -=C. 2222a a a -+=D. ()325x x =【答案】C【解析】【分析】直接根据同底数幂的乘法法则、合并同类项法则和幂的乘方法则即可求解.【详解】解:A. 426a a a ⋅=,此选项错误B. 22a a -=-,此选项错误C. 2222a a a -+=,此选项正确D. ()326x x =,此选项错误 故选:C【点睛】此题主要考查同底数幂的乘法法则、合并同类项法则和幂的乘方法则,熟练掌握法则是解题关键. 6.如图,在ABC 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A.B. 3C. 33D.【分析】先利用相似三角形的相似比证明点D 是AB 的中点,再解直角三角形求得AB ,最后利用直角三角形斜边中线性质求出DF .【详解】解:∵//DE BC ,∴ADE ~ABC ,∵2DE BC =,∴点D 是AB 的中点,∵,30AF BC ADE ⊥∠=︒,33BF =,∴∠B =30°,∴AB 6cos30BF ==︒, ∴DF=3,故选:D .【点睛】此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练掌握性质的运用是解题关键.7.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A. B.C. D.【分析】根据函数图象易知k 0<,可得32k 0-+<,所以函数图象沿y 轴向下平移可得.【详解】解:根据函数图象易知k 0<,∴32k 0-+<,故选:C .【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键. 8.如图,,AB BC 为O 中异于直径的两条弦,OA 交BC 于点,D 若50,35,AOC C ∠=︒∠=︒则A ∠的度数为()A. 35B. 50C 60D. 70【答案】C【解析】【分析】根据同弧所对的圆心角等于圆周角的2倍,可得出∠B=25︒,然后根据三角形的内角和为180︒即可求解.【详解】解:∵50AOC ∠=︒,∴∠B=25︒,∵35C ∠=︒,∠ADB=∠CDO ,∴A ∠+∠B=∠C+∠AOC ,即∠A=355025︒+︒-︒=60︒,故选:C .【点睛】此题主要考查同弧所对的圆心角与圆周角之间的关系及三角形的内角和,熟练掌握性质是解题关键.9.如图,是矩形ABCD 中AD 边的中点,BE 交AC 于点,F ABF 的面积为,则四边形CDEF 的面积为()A.B.C.D.【答案】B【解析】【分析】设AEF S x =△,根据相似三角形的面积比等于相似比的平方,得出4BCF Sx =,求出x 即可解答. 【详解】解:∵AD ∥BC ,是矩形ABCD 中AD 边的中点,∴AEF ~CBF ,设AEF S x =△,那么4BCF Sx =, ∵2ABF S =, ∴()1x 2422x +=+, 解得:x 1=,∴325CDEF S x =+=四边形,故选:B.【点睛】此题主要考查相似三角形的相似比与面积比之间的关系,灵活运用关系是解题关键. 10.已知抛物线2221)0(y ax ax a a =-++≠.当3x ≥时,随的增大而增大;当20x -≤≤时,的最大值为.那么与抛物线2221y ax ax a =-++关于轴对称的抛物线在23x -≤≤内的函数最大值为()A.B. C. D. 【答案】B【解析】【分析】由题意,得抛物线2221y ax ax a =-++的对称轴是直线1x =,根据当3x ≥时,随的增大而增大,得到0,a >且1x ≤时,随的增大而减小,再根据当20x -≤≤时,的最大值为,得到当2x =-时,28110a a ++=,求出1a =,那么2(1)1y x =-+关于轴对称的抛物线为()211y x =++,即可求解. 【详解】解:由题意,得抛物线2221y ax ax a =-++的对称轴是直线1x =.当3x ≥时,随的增大而增大,0,a ∴>且1x ≤时,随的增大而减小.当20x -≤≤时,的最大值为10,当2x =-时,28110,a a ++= 1a 或9a =-(舍去),2222()11y x x x ∴=-+=-+关于轴对称的抛物线为()211,y x =++函数()211y x =++在23x -≤≤内的最大值在3x =处取得,最大值为17,y =故选.【点睛】此题主要考查二次函数的性质,熟练掌握二次函数的图象和性质是解题关键. 二、填空题(每题3分,满分12分,将答案填在答题纸上)11._.【答案】2【解析】【分析】估算得出所求即可.【详解】解:∵459,∴23<<,2,故答案为:2.【点睛】此题主要考查无理数的估算,熟练掌握估算方法是解题关键.12.如图,在正六边形ABCDEF中,CAD∠的度数为____.【答案】30【解析】【分析】根据正六边形得到∠ABC=∠BCD=∠CDE=120︒,AB=BC=CD,进而得到∠ACB=30,∠ACD=90︒,∠ADC=60︒,即可求解.【详解】解:在正六边形ABCDEF中,∠ABC=∠BCD=∠CDE=120︒,AB=BC,∴∠ACB=30,∠ACD=90︒,∠ADC=60︒,∴∠CAD=30,故答案为:30.【点睛】此题主要考查正六边形的性质,灵活运用性质是解题关键.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC交于,E F两点,且,A C两点在轴上,点的坐标为()2,4,则点的坐标为_____.【答案】4 6,3⎛⎫ ⎪⎝⎭【解析】【分析】先根据待定系数法求得8y x =,再根据OA=6即可求解. 【详解】解:令y k x =,E (2,4), ∴k=8,即8y x=, ∵OA =OC+AC =2+4=6,∴F(6,43), 故答案为:46,3⎛⎫ ⎪⎝⎭.【点睛】此题主要考查待定系数法求反比例函数解析式,然后根据函数解析式确定点的坐标,熟练掌握待定系数法是解题关键.14.如图,在平行四边形ABCD 中,10,16,60,AB AD A P ==∠=︒为AD 的中点,是边AB 上不与点,A B 重合的一个动点,将APF 沿PF 折叠,得到',A PF 连接',BA 则'BA F 周长的最小值为___.【答案】2212+【解析】【分析】BFA'的周长=FA'+BF+BA'=AF+BF+BA'=AB+BA'=10+BA',推出当BA'最小时,BFA'的周长最小,由此即可求解.【详解】解:如图,作BH AD ⊥于点,连接BP ,∵10,16,60AB AD A ==∠=︒,8,5PA AH ==,853PH ∴=-=, 5BH =PB ∴===由翻折可知'8,'PA PA FA FA ===,'BFA ∴的周长''''10'FA BF BA AF BF BA AB BA BA =++=++=+=+, 当'BA 的长度最小时,'BFA 的周长最小,''BA PB PA ∴≥-,'8BA ∴≥,'BA ∴的最小值为8,'BFA ∴的周长的最小值为1082+=.故答案为:2.【点睛】此题主要考查平行四边形的性质,翻折不变性,勾股定理,含30度直角三角形的性质等,灵活运用性质是解题关键.三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.计算:()103.146012cos π-⎛⎫+⎭- ⎪⎝︒. 【答案】12-【解析】【分析】 根据负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值即可求解.【详解】解:原式12412=-++ 12=- 【点睛】此题主要考查负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值,熟练掌握法则是解题关键.16.化简:2222111a a a a a--⎛⎫-÷ ⎪-+⎝⎭ 【答案】a【解析】【分析】 根据分式的加减乘除混合运算法则即可求解.【详解】解:原式()()()()()22211122111111a a a a a a a a a a a a a -+--+-÷=⋅=-++--. 【点睛】此题主要考查分式的加减乘除运算,熟练掌握运算法则是解题关键.17.如图,在ABC 中,90,BAC ∠=︒请用尺规作图法,作ABC 绕点逆时针旋转45︒后的11AB C △.(不写作法,保留作图痕迹)【答案】见解析【解析】【分析】作CAB ∠的平分线,在平分线上截取1,AB AB =分别以1A B 、为圆心,AC BC 、的长为半径作弧,两弧交于点111,C AB C 即为所求.【详解】解:如图,作CAB ∠的平分线,在平分线上截取1,AB AB =分别以1A B 、为圆心,AC BC 、的长为半径作弧,两弧交于点111,C AB C 即为所求.【点睛】此题主要考查旋转的性质,尺规作图,正确理解作图依据是解题关键.18.如图,在ABC 中,为BC 边上一点,过点作//,FD AC 且,FD AC =延长BC 至点,E 使,BF CE =连接DE .求证://AB DE .【答案】见解析【解析】【分析】根据//FD AC ,得到ACB DFE ∠=∠,再根据BF CE =,得到BC EF =,加上AC FD =,得到ACB DFE △≌△,进而得到B E ∠=∠,即可证明.【详解】证明://FD AC ,ACB DFE ∴∠=∠,BF CE =,BF FC CE FC ∴+=+BC EF ∴=.,AC FD =,ACB DFE ∴≌,B E ∴∠=∠//∴.AB DE【点睛】此题主要考查全等三角形的判定和性质、平行线的性质和判定,灵活运用判定定理和性质定理是解题关键.19.某校为了解该校初三学生居家学习期间参加”网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加”网络自习室”自主学习的天数,并用得到的数据绘制了如下两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加”网络自习室”自主学习天数的众数为______,中位数为________;(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加”网络自习室”自主学习的天数不少于天.【答案】(1)见解析;(2)5天,6天;(3)600人【解析】【分析】(1)根据9天和9天以上的3人,占5,可求得总人数为60人,求出8天的人数即可补全条形统计图;(2)根据众数和中位数的概念即可求解.(3)先求出7天、8天、9天和9天以上的人数的比例,再用样本估计总体即可求解.÷=(人),【详解】解:()135%60----=(人),6024121536补全统计图如图所示:()2参加”网络自习室”自主学习天的人数最多,所以众数是天;60人中,按照参加”网络自习室”自主学习的天数从少到多排列,第人和人都是天,所以中位数是天; ()15633150060060++⨯=(人) 答:估计全校初三可能有600名学生参加”网络的自习室”自主学习的天数不少于天.【点睛】此题主要考查条形统计图与扇形统计图的综合应用,众数、中位数和用样本估计总体,正确理解概念是解题关键.20.如图1所示是宝鸡市文化景观标志”天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量”天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部,O 他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点,A 并在点处安装了测量器,AB 在点处测得该灯的顶点P 的仰角为60︒;再在OA 的延长线上确定一点,C 使15AC =米,在点处测得该灯的顶点的仰角为45︒.若测量过程中测量器的高度始终为1.6米,求”天下第一灯”的高度.231.732≈≈,最后结果取整数)【答案】37米【解析】【分析】根据题意,得BD OP ⊥于点','60O PBO ∠=︒,'45PDO ∠=︒,15BD AC ==米,' 1.6OO AB ==米,在'Rt PO B 中,'90,'60PO B PBO ∠=︒∠=︒,得到3''3O B P =,在'Rt PO D 中,'90,'45PO B PDO ∠=︒∠=︒,得到''O D O P =,进而得到3''1'15BD O D O B O P ⎛=-== ⎝⎭米,'35.4931O P =≈-米,最后根据''OP OO O P =+即可求解.【详解】解:根据题意,得BD OP ⊥于点','60O PBO ∠=︒,'45PDO ∠=︒,15BD AC ==米,' 1.6OO AB ==米.在'Rt PO B 中,'90,'60,PO B PBO ∠=︒∠=︒3''3O B P ∴= 在'Rt PO D 中,'90,'45PO B PDO ∠=︒∠=︒,''O D O P ∴=, 3''1'153BD O D O B O P ⎛∴=-=-= ⎝⎭米,'35.49O P ∴=≈米,''37.09OP OO O P ∴=+=米37≈米,答:”天下第一灯”的高度约为37米.【点睛】此题主要考查解直角三角形的应用,正确地构造直角三角形和解直角三角形是解题关键. 21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量3162m 及以下,终端水价为3.80元/3m .第二阶梯:年用水量33162275m m -(含),终端水价为4.65元/3m .第三阶梯:年用水量3275m 以上,终端水价为7.18元/3m .城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为()3x m ,应缴水费为 (元). (1)写出该户居民2019年的年用水量为331622(75m m -含)的与之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.【答案】(1) 4.65137.7y x =-;(2)3300m【解析】【分析】(1)根据实际问题列出函数表达式即可.(2)先判断用水量在哪一阶梯,再计算.详解】解:()()1 3.80162 4.65162y x =⨯+-,即 4.65137.7y x =-.()2由()1知,当162275x <≤时, 4.65137.7,y x =-当275x =时,1141.05y =.1141.051320.55y =<,该户居民2019年的年用水量在3275m 以上,终端水价为7.18元/3m .当275x >时,()1141.057.18275,y x =+-即7.18 833.45,y x =-7.18 833.451320.55,x∴-=解得300x=.答:该户居民2019年的年用水量为3300m.【点睛】此题主要考查根据实际问题列函数解析式,找出实际问题中的等量关系是解题关键.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图的方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.【答案】(1)图表见解析,14;(2)不公平,理由见解析【解析】【分析】(1)先用列表法列出所有可能的结果,再求概率.(2)比较两种结果的概率即可求解.【详解】解:()1列表如下从表格可以看出,总共有种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有种,所以两人抽取相同数字的概率为1 4()2不公平.从()1中表格可以看出,两人抽取数字和为的倍数的结果有种,两人抽取数字和为的倍数的结果有种, 所以甲获胜的概率为38,乙获胜的概率为31633816> 甲获胜的概率大,游戏不公平.【点睛】此题主要考查列表法或画树状图法求概率,正确理解概率的概念是解题关键.23.如图,O 与Rt ABF 的边,BF AF 分别交于点,C D ,连接,,AC CD 90,BAF ∠=︒点在CF 上,且DEC BAC ∠=∠.(1)试判断DE 与O 的位置关系,并说明理由.(2)若,4,6,AB AC CE EF ===求O 的直径. 【答案】(1)相切,理由见解析;(2)35【解析】【分析】(1)连接BD ,根据90BAD ∠=︒,得出点在BD 上,即BD 是直径,进而得到90BCD ∠=︒,90DEC CDE ∠+∠=︒,再根据DEC BAC ∠=∠,得出90BAC CDE ∠+∠=︒,由同弧所对的圆周角相等,得到90BDC CDE ∠+∠=︒,即可求证.(2)根据90BAF BDE ∠=∠=︒,得到90F ABC FDE ADB ∠+∠=∠+∠=,由AB AC =,得到A ABC CB =∠∠,再根据ADB ACB ∠=∠,得到,ABC ADB F EDF ∠=∠∠=∠,进而得到6DE EF ==,再根据4,90CE BCD =∠=︒,得到2290,25DCE CD DE CE ∠=︒=-=90,BDE CD BE ∠=︒⊥,得到CDECBD ,最后根据对应边成比例即可求解. 【详解】解:()1DE 与O 相切.理由:如图,连接BD .90,BAD ∠=︒点在BD 上,即BD 是直径,90BCD ∴∠=︒,90DEC CDE ∴∠+∠=︒.,DEC BAC ∠=∠90BAC CDE ∴∠+∠=︒.,BAC BDC ∠=∠90,BDC CDE ∴∠+∠=︒90,BDE ∴∠=︒即BD DE ⊥.点在O 上,DE ∴是O 的切线.()290BAF BDE ∠=∠=︒.90F ABC FDE ADB ∴∠+∠=∠+∠=.,AB AC =ABC ACB ∴∠=∠.,ADB ACB ∠=∠,,ABC ADB F EDF ∴∠=∠∠=∠6.DE EF ∴==4,90CE BCD =∠=︒,2290,2 5.DCE CD DE CE ∴∠=︒=-=90,BDE CD BE ∠=︒⊥,,CDE CBD ∴ CD BD CE DE ∴= O ∴的直径256354BD ⨯== 【点睛】此题主要考查圆周角定理,勾股定理,切线的判定和相似三角形的判定及性质,熟练掌握判定定理和性质定理是解题关键.24.如图,抛物线2y x bx c =-++与轴交于点和点()3,0B ,与轴交于点()0,3C ,点是抛物线的顶点,过点作轴的垂线,垂足为,E 连接DB .(1)求此抛物线的解析式.(2)点M 是抛物线上的动点,设点M 的横坐标为.当MBA BDE ∠=∠时,求点M 的坐标.【答案】(1)2y x 2x 3=-++;(2)点M 的坐标为17,24⎛⎫-⎪⎝⎭或39,24⎛⎫-- ⎪⎝⎭【解析】【分析】(1)利用待定系数法即可解决问题; (2)根据223tan 3m m MG MBA BG m-++∠==-,1tan 2BE BDE DE ∠==,由∠MBA=∠BDE ,构建方程即可解决问题.【详解】解:()1把点()()3,0,0,3B C 代入2,y x bx c =-++ 得到930,3,b c c -++=⎧⎨=⎩解得2,3,b c =⎧⎨=⎩抛物线的解析式为2y x 2x 3=-++.()2如图,作MG x ⊥轴于点,G 连接,BM 则90MGB ∠=︒.()2,23,M m m m -++223,3,MG m m BG m ∴=-++=-2233m m MG tan MBA BG m-++∴∠==- ()222314y x x x =-++=--+,顶点的坐标为()1,4 DE x ⊥∵轴,90,4,1DEB DE OE ∴∠=︒==()3,0B ,2BE ∴=12BE tan BDE DE ∴∠== ,MBA BDE ∠=∠223132m m m -++∴=-当点M 在轴上方时223132m m m -++=- 解得112m =-,23m =(舍弃), 17,24M ⎛⎫∴- ⎪⎝⎭当点M 在轴下方时,223132m m m -++=-- 解得123,32m m ==-(舍弃),点39,24M ⎛⎫-- ⎪⎝⎭综上所述,满足条件的点M 的坐标为17,24⎛⎫- ⎪⎝⎭或39,24⎛⎫-- ⎪⎝⎭ 【点睛】此题主要考查待定系数法求二次函数解析式和利用三角函数解直角三角形,熟练掌握二次函数的性质是解题关键.25.[问题发现]如图1,半圆的直径10,AB P =是半圆上的一个动点,则PAB △面积的最大值是_.[问题解决]如图2所示的是某街心花园的一角.在扇形OAB 中,90,12AOB OA ∠=︒=米,在围墙OA 和OB 上分别有两个入口和,D 且4AC =米,是OB 的中点,出口在AB 上.现准备沿,CE DE 从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口设在距直线OB 多远处可以使四边形CODE 的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE 所用的普通石材每米的造价是200元,铺设小路DE 所用的景观石材每米的造价是400元问:在AB 上是否存在点,使铺设小路CE 和DE 的总造价最低?若存在,请求出最低总造价和出口距直线OB 的距离;若不存在,请说明理由.【答案】[问题发现]25;[问题解决]①出口设在距直线7.2OB 米处可以使四边形CODE 的面积最大,最大为60平方米;②总造价的最小值为160010元,出口距直线OB 的距离为36665-米 【解析】【分析】 [问题发现]PAB 的底边一定,面积最大也就是P 点到AB 的距离最大,故当OP AB ⊥时底边AB 上的高最大,再计算此时PAB 面积即可.[问题解决]①根据四边形CODE 面积=CDO CDE S S +,求出CDE S △最大时即可,然后作'E H OB ⊥,证明COD OHE ',利用相似三角形的性质求出E H '即可;②先利用相似三角形将费用问题转化为CE+2DE=CE+QE ,求CE+QE 的最小值问题,然后利用相似三角形性质和勾股定理求解即可.【详解】解:[问题发现]:如图1,点运动至半圆中点时,底边AB 上的高最大,即' 5.P O r ==此时PAB △的面积最大,最大值为1105252⨯⨯=; [问题解决]①如图2,连接,CD 作OG CD ⊥,垂足为,G 延长OG 交AB 于点,则此时CDE △的面积最大.12,4,OA OB AC D ===为OB 的中点,8,6OC OD ∴==,在Rt COD 中,10, 4.8CD OG ==,'12 4.87.2GE ∴=-=,四边形CODE 面积的最大值为1168107.26022CDO CDE SS '+=⨯⨯+⨯⨯=, 作',E H OB ⊥垂足为, ''90,'90,E OH OE H E OH ODC ∠+∠=︒∠+∠='OE H ODC ∴∠=∠.又'90COD E HO ∠=∠=︒,CODOHE '∴, ''OD E H CD OE ∴= 6'1012E H ∴= '7.2E H ∴=,出口设在距直线7.2OB 米处可以使四边形CODE 的面积最大,最大为60平方米;②铺设小路CE 和DE 的总造价为()2004002002.CE DE CE DE +=+如图3,连接,OE 延长OB 到点,Q 使12BQ OB ==,连接EQ在EOD △与QOE 中,EOD QOE =∠,且12OD OE OE OQ ==, ,EOD QOE ∴故2,QE DE =2CE DE CE QE ∴+=+,问题转化为求CE QE +的最小值,连接,CQ 交AB 于点,此时CE QE +取得最小值为CQ .在Rt COQ 中,8,24CO OQ ==,810CQ ∴= 故总造价的最小值为10作',E H OB ⊥垂足为,连接'OE .设',E H x =则3QH x =.在'Rt E OH 中,222'OH HE OE '+=,()22224312,x x ∴-+= 解得13666x -=,23666x +=舍去), 总造价的最小值为10OB 的距离为36665-米. 【点睛】此题考查圆的综合问题,涉及圆的基本性质,相似三角形的判定和性质,勾股定理等知识,综合程度较高,需要灵活运用知识,解题关键是:利用对称或相似灵活地将折线和转化为线段长,从而求折线段的最值.。
中考数学模拟试题(含答案和解析)
中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分)1.(4分)给出四个实数.2.0.﹣1.其中负数是()A.B.2 C.0 D.﹣1 2.(4分)移动台阶如图所示.它的主视图是()A.B.C.D.3.(4分)计算a6•a2的结果是()A.a3B.a4C.a8D.a124.(4分)某校九年级“诗歌大会”比赛中.各班代表队得分如下(单位:分):9.7.8.7.9.7.6.则各代表队得分的中位数是()A.9分B.8分C.7分D.6分5.(4分)在一个不透明的袋中装有10个只有颜色不同的球.其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球.是白球的概率为()A.B.C.D.6.(4分)若分式的值为0.则x的值是()A.2 B.0 C.﹣2 D.﹣5 7.(4分)如图.已知一个直角三角板的直角顶点与原点重合.另两个顶点A.B的坐标分别为(﹣1.0).(0.).现将该三角板向右平移使点A与点O重合.得到△OCB′.则点B的对应点B′的坐标是()A.(1.0)B.(.)C.(1.)D.(﹣1.)8.(4分)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆.刚好坐满.设49座客车x 辆.37座客车y辆.根据题意可列出方程组()A.B.C.D.9.(4分)如图.点A.B在反比例函数y=(x>0)的图象上.点C.D 在反比例函数y=(k>0)的图象上.AC∥BD∥y轴.已知点A.B 的横坐标分别为1.2.△OAC与△ABD的面积之和为.则k的值为()A.4 B.3 C.2 D.10.(4分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形.得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理.如图所示的矩形由两个这样的图形拼成.若a=3.b=4.则该矩形的面积为()A.20 B.24 C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:a2﹣5a=.12.(5分)已知扇形的弧长为2π.圆心角为60°.则它的半径为.13.(5分)一组数据1.3.2.7.x.2.3的平均数是3.则该组数据的众数为.14.(5分)不等式组的解是.15.(5分)如图.直线y=﹣x+4与x轴、y轴分别交于A.B两点.C 是OB的中点.D是AB上一点.四边形OEDC是菱形.则△OAE的面积为.16.(5分)小明发现相机快门打开过程中.光圈大小变化如图1所示.于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形.若PQ所在的直线经过点M.PB=5cm.小正六边形的面积为cm2.则该圆的半径为cm.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:(﹣2)2﹣+(﹣1)0.(2)化简:(m+2)2+4(2﹣m).18.(8分)如图.在四边形ABCD中.E是AB的中点.AD∥EC.∠AED =∠B.(1)求证:△AED≌△EBC.(2)当AB=6时.求CD的长.19.(8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店.该市蛋糕店数量的扇形统计图如图所示.其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店.请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率.决定在该市增设蛋糕店.在其余蛋糕店数量不变的情况下.若要使甲公司经营的蛋糕店数量达到全市的20%.求甲公司需要增设的蛋糕店数量.20.(8分)如图.P.Q是方格纸中的两格点.请按要求画出以PQ为对角线的格点四边形.(1)画出一个面积最小的▱P AQB.(2)画出一个四边形PCQD.使其是轴对称图形而不是中心对称图形.且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.21.(10分)如图.抛物线y=ax2+bx(a≠0)交x轴正半轴于点A.直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x =2.交x轴于点B.(1)求a.b的值.(2)P是第一象限内抛物线上的一点.且在对称轴的右侧.连接OP.BP.设点P的横坐标为m.△OBP的面积为S.记K=.求K关于m的函数表达式及K的范围.22.(10分)如图.D是△ABC的BC边上一点.连接AD.作△ABD的外接圆.将△ADC沿直线AD折叠.点C的对应点E落在⊙O上.(1)求证:AE=AB.(2)若∠CAB=90°.cos∠ADB =.BE=2.求BC的长.23.(12分)温州某企业安排65名工人生产甲、乙两种产品.每人每天生产2件甲或1件乙.甲产品每件可获利15元.根据市场需求和生产经验.乙产品每天产量不少于5件.当每天生产5件时.每件可获利120元.每增加1件.当天平均每件利润减少2元.设每天安排x 人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元.求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下.增加生产丙产品.要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品).丙产品每件可获利30元.求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.24.(14分)如图.已知P为锐角∠MAN内部一点.过点P作PB⊥AM 于点B.PC⊥AN于点C.以PB为直径作⊙O.交直线CP于点D.连接AP.BD.AP交⊙O于点E.(1)求证:∠BPD=∠BAC.(2)连接EB.ED.当tan∠MAN=2.AB=2时.在点P的整个运动过程中.①若∠BDE=45°.求PD的长.②若△BED为等腰三角形.求所有满足条件的BD的长.(3)连接OC.EC.OC交AP于点F.当tan∠MAN=1.OC∥BE时.记△OFP的面积为S1.△CFE的面积为S2.请写出的值.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数.2.0.﹣1.其中负数是:﹣1.故选:D.【点评】此题主要考查了实数.正确把握负数的定义是解题关键.2.【分析】根据从正面看得到的图形是主视图.可得答案.【解答】解:从正面看是三个台阶.故选:B.【点评】本题考查了简单组合体的三视图.从正面看得到的图形是主视图.3.【分析】根据同底数幂相乘.底数不变.指数相加进行计算.【解答】解:a6•a2=a8.故选:C.【点评】此题主要考查了同底数幂的乘法.关键是掌握同底数幂的乘法的计算法则.4.【分析】将数据重新排列后.根据中位数的定义求解可得.【解答】解:将数据重新排列为6、7、7、7、8、9、9.所以各代表队得分的中位数是7分.故选:C.【点评】本题主要考查中位数.解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列.如果数据的个数是奇数.则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数.则中间两个数据的平均数就是这组数据的中位数.5.【分析】根据概率的求法.找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有10个小球.其中白球有2个.∴摸出一个球是白球的概率是=.故选:D.【点评】此题主要考查了概率的求法.如果一个事件有n种可能.而且这些事件的可能性相同.其中事件A出现m种结果.那么事件A的概率P(A)=.6.【分析】分式的值等于零时.分子等于零.【解答】解:由题意.得x﹣2=0.解得.x=2.经检验.当x=2时.=0.故选:A.【点评】本题考查了分式的值为零的条件.注意.分式方程需要验根.7.【分析】根据平移的性质得出平移后坐标的特点.进而解答即可.【解答】解:因为点A与点O对应.点A(﹣1.0).点O(0.0). 所以图形向右平移1个单位长度.所以点B的对应点B'的坐标为(0+1.).即(1.).故选:C.【点评】此题考查坐标与图形变化.关键是根据平移的性质得出平移后坐标的特点.8.【分析】本题中的两个等量关系:49座客车数量+37座客车数量=10.两种客车载客量之和=466.【解答】解:设49座客车x辆.37座客车y辆.根据题意可列出方程组.故选:A.【点评】考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时.要注意抓住题目中的一些关键性词语.找出等量关系.列出方程组.9.【分析】先求出点A.B的坐标.再根据AC∥BD∥y轴.确定点C.点D的坐标.求出AC.BD.最后根据.△OAC与△ABD的面积之和为.即可解答.【解答】解:∵点A.B在反比例函数y=(x>0)的图象上.点A.B 的横坐标分别为1.2.∴点A的坐标为(1.1).点B的坐标为(2.).∵AC∥BD∥y轴.∴点C.D的横坐标分别为1.2.∵点C.D在反比例函数y=(k>0)的图象上.∴点C的坐标为(1.k).点D的坐标为(2.).∴AC=k﹣1.BD=.∴S△OAC=(k﹣1)×1=.S△ABD=•×(2﹣1)=.∵△OAC与△ABD的面积之和为.∴.解得:k=3.故选:B.【点评】本题考查了反比例函数系数k的几何意义.解决本题的关键是求出AC.BD的长.10.【分析】欲求矩形的面积.则求出小正方形的边长即可.由此可设小正方形的边长为x.在直角三角形ACB中.利用勾股定理可建立关于x的方程.利用整体代入的思想解决问题.进而可求出该矩形的面积.【解答】解:设小正方形的边长为x.∵a=3.b=4.∴AB=3+4=7.在Rt△ABC中.AC2+BC2=AB2.即(3+x)2+(x+4)2=72.整理得.x2+7x﹣12=0.而长方形面积为x2+7x+12=12+12=24∴该矩形的面积为24.故选:B.【点评】本题考查了勾股定理的证明以及运用和一元二次方程的运用.求出小正方形的边长是解题的关键.二、填空题(本题有6小题.每小题5分.共30分)11.【分析】提取公因式a进行分解即可.【解答】解:a2﹣5a=a(a﹣5).故答案是:a(a﹣5).【点评】考查了因式分解﹣提公因式法:如果一个多项式的各项有公因式.可以把这个公因式提出来.从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.12.【分析】根据弧长公式直接解答即可.【解答】解:设半径为r.2.解得:r=6.故答案为:6【点评】此题考查弧长公式.关键是根据弧长公式解答.13.【分析】根据平均数的定义可以先求出x的值.再根据众数的定义求出这组数的众数即可.【解答】解:根据题意知=3.解得:x=3.则数据为1、2、2、3、3、3、7.所以众数为3.故答案为:3.【点评】本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.14.【分析】先求出不等式组中每一个不等式的解集.再求出它们的公共部分即可.【解答】解:.解①得x>2.解②得x>4.故不等式组的解集是x>4.故答案为:x>4.【点评】考查了解一元一次不等式组.一元一次不等式组的解法:解一元一次不等式组时.一般先求出其中各不等式的解集.再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.【分析】延长DE交OA于F.如图.先利用一次函数解析式确定B (0.4).A(4.0).利用三角函数得到∠OBA=60°.接着根据菱形的性质判定△BCD为等边三角形.则∠BCD=∠COE=60°.所以∠EOF=30°.则EF=OE=1.然后根据三角形面积公式计算.【解答】解:延长DE交OA于F.如图.当x=0时.y=﹣x+4=4.则B(0.4).当y=0时.﹣x+4=0.解得x=4.则A(4.0).在Rt△AOB中.tan∠OBA==.∴∠OBA=60°.∵C是OB的中点.∴OC=CB=2.∵四边形OEDC是菱形.∴CD=BC=DE=CE=2.CD∥OE.∴△BCD为等边三角形.∴∠BCD=60°.∴∠COE=60°.∴∠EOF=30°.∴EF=OE=1.△OAE的面积=×4×1=2.故答案为2.【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b.(k≠0.且k.b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣.0);与y轴的交点坐标是(0.b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.16.【分析】设两个正六边形的中心为O.连接OP.OB.过O作OG⊥PM.OH⊥AB.由正六边形的性质及邻补角性质得到三角形PMN为等边三角形.由小正六边形的面积求出边长.确定出PM的长.进而求出三角形PMN的面积.利用垂径定理求出PG的长.在直角三角形OPG中.利用勾股定理求出OP的长.设OB=xcm.根据勾股定理列出关于x的方程.求出方程的解即可得到结果.【解答】解:设两个正六边形的中心为O.连接OP.OB.过O作OG ⊥PM.OH⊥AB.由题意得:∠MNP=∠NMP=∠MPN=60°.∵小正六边形的面积为cm2.∴小正六边形的边长为cm.即PM=7cm.∴S△MPN=cm2.∵OG⊥PM.且O为正六边形的中心.∴PG=PM=cm.OG=PM=.在Rt△OPG中.根据勾股定理得:OP==7cm.设OB=xcm.∵OH⊥AB.且O为正六边形的中心.∴BH=x.OH=x.∴PH=(5﹣x)cm.在Rt△PHO中.根据勾股定理得:OP2=(x)2+(5﹣x)2=49. 解得:x=8(负值舍去).则该圆的半径为8cm.故答案为:8【点评】此题考查了正多边形与圆.熟练掌握正多边形的性质是解本题的关键.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)本题涉及零指数幂、乘方、二次根式化简3个考点.在计算时.需要针对每个考点分别进行计算.然后根据实数的运算法则求得计算结果.(2)根据完全平方公式和去括号法则计算.再合并同类项即可求解.【解答】解:(1)(﹣2)2﹣+(﹣1)0=4﹣3+1=5﹣3;(2)(m+2)2+4(2﹣m)=m2+4m+4+8﹣4m=m2+12.【点评】本题主要考查了实数的综合运算能力.是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、二次根式、完全平方公式、去括号法则、合并同类项等考点的运算.18.【分析】(1)利用ASA即可证明;(2)首先证明四边形AECD是平行四边形.推出CD=AE=AB即可解决问题;【解答】(1)证明:∵AD∥EC.∴∠A=∠BEC.∵E是AB中点.∴AE=EB.∵∠AED=∠B.∴△AED≌△EBC.(2)解:∵△AED≌△EBC.∴AD=EC.∵AD∥EC.∴四边形AECD是平行四边形.∴CD=AE.∵AB=6.∴CD=AB=3.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识.解题的关键是正确寻找全等三角形解决问题.属于中考常考题型.19.【分析】(1)由乙公司蛋糕店数量及其占总数的比例可得总数量.再用总数量乘以甲公司数量占总数量的比例可得;(2)设甲公司增设x家蛋糕店.根据“该市增设蛋糕店数量达到全市的20%”列方程求解可得.【解答】解:(1)该市蛋糕店的总数为150÷=600家.甲公司经营的蛋糕店数量为600×=100家;(2)设甲公司增设x家蛋糕店.由题意得:20%×(600+x)=100+x.解得:x=25.答:甲公司需要增设25家蛋糕店.【点评】本题主要考查扇形统计图与一元一次方程的应用.解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数及根据题意确定相等关系.并据此列出方程.20.【分析】(1)画出面积是4的格点平行四边形即为所求;(2)画出以PQ为对角线的等腰梯形即为所求.【解答】解:(1)如图①所示:(2)如图②所示:【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知.对应角都相等都等于旋转角.对应线段也相等.由此可以通过作相等的角.在角的边上截取相等的线段的方法.找到对应点.顺次连接得出旋转后的图形.也考查了轴对称变换.21.【分析】(1)根据直线y=2x求得点M(2.4).由抛物线的对称轴及抛物线上的点M的坐标列出关于a、b的方程组.解之可得;(2)作PH⊥x轴.根据三角形的面积公式求得S=﹣m2+4m.根据公式可得K的解析式.再结合点P的位置得出m的范围.利用一次函数的性质可得答案.【解答】解:(1)将x=2代入y=2x.得:y=4.∴点M(2.4).由题意.得:.∴;(2)如图.过点P作PH⊥x轴于点H.∵点P的横坐标为m.抛物线的解析式为y=﹣x2+4x.∴PH=﹣m2+4m.∵B(2.0).∴OB=2.∴S=OB•PH=×2×(﹣m2+4m)=﹣m2+4m.∴K==﹣m+4.由题意得A(4.0).∵M(2.4).∴2<m<4.∵K随着m的增大而减小.∴0<K<2.【点评】本题主要考查抛物线与x轴的交点.解题的关键是掌握待定系数法求函数解析式及一次函数的性质等知识点.22.【分析】(1)由折叠得出∠AED=∠ACD、AE=AC.结合∠ABD =∠AED知∠ABD=∠ACD.从而得出AB=AC.据此得证;(2)作AH⊥BE.由AB=AE且BE=2知BH=EH=1.根据∠ABE =∠AEB=∠ADB知cos∠ABE=cos∠ADB==.据此得AC=AB=3.利用勾股定理可得答案.【解答】解:(1)由折叠的性质可知.△ADE≌△ADC.∴∠AED=∠ACD.AE=AC.∵∠ABD=∠AED.∴∠ABD=∠ACD.∴AB=AC.∴AE=AB;(2)如图.过A作AH⊥BE于点H.∵AB=AE.BE=2.∴BH=EH=1.∵∠ABE=∠AEB=∠ADB.cos∠ADB=.∴cos∠ABE=cos∠ADB=.∴=.∴AC=AB=3.∵∠BAC=90°.AC=AB.∴BC=3.【点评】本题主要考查三角形的外接圆.解题的关键是掌握折叠的性质、圆周角定理、等腰三角形的性质及三角函数的应用等知识点.23.【分析】(1)根据题意列代数式即可;(2)根据(1)中数据表示每天生产甲乙产品获得利润根据题意构造方程即可;(3)根据每天甲、丙两种产品的产量相等得到m与x之间的关系式.用x表示总利润利用二次函数性质讨论最值.【解答】解:(1)由已知.每天安排x人生产乙产品时.生产甲产品的有(65﹣x)人.共生产甲产品2(65﹣x)130﹣2x件.在乙每件120元获利的基础上.增加x人.利润减少2x元每件.则乙产品的每件利润为120﹣2(x﹣5)=130﹣2x.故答案为:65﹣x;130﹣2x;130﹣2x;(2)由题意15×2(65﹣x)=x(130﹣2x)+550∴x2﹣80x+700=0解得x1=10.x2=70(不合题意.舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m人W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200∵2m=65﹣x﹣m∴m=∵x、m都是非负整数∴取x=26时.m=13.65﹣x﹣m=26即当x=26时.W最大值=3198答:安排26人生产乙产品时.可获得的最大利润为3198元.【点评】本题以盈利问题为背景.考查一元二次方程和二次函数的实际应用.解答时注意利用未知量表示相关未知量.24.【分析】(1)由PB⊥AM、PC⊥AN知∠ABP=∠ACP=90°.据此得∠BAC+∠BPC=180°.根据∠BPD+∠BPC=180°即可得证;(2)①由∠APB=∠BDE=45°、∠ABP=90°知BP=AB=2.根据tan∠BAC=tan∠BPD==2知BP=PD.据此可得答案;②根据等腰三角形的定义分BD=BE、BE=DE及BD=DE三种情况分类讨论求解可得;(3)作OH⊥DC.由tan∠BPD=tan∠MAN=1知BD=PD.据此设BD=PD=2a、PC=2b.从而得出OH=a、CH=a+2b、AC=4a+2b.证△ACP∽△CHO得=.据此得出a=b及CP=2a、CH=3a、OC=a.再证△CPF∽△COH.得=.据此求得CF=a、OF=a.证OF为△PBE的中位线知EF=PF.从而依据=可得答案.【解答】解:(1)∵PB⊥AM、PC⊥AN.∴∠ABP=∠ACP=90°.∴∠BAC+∠BPC=180°.又∠BPD+∠BPC=180°.∴∠BPD=∠BAC;(2)①如图1.∵∠APB=∠BDE=45°.∠ABP=90°.∴BP=AB=2.∵∠BPD=∠BAC.∴tan∠BPD=tan∠BAC.∴=2.∴BP=PD.∴PD=2;②当BD=BE时.∠BED=∠BDE.∴∠BPD=∠BPE=∠BAC.∴tan∠BPE=2.∵AB=2.∴BP=.∴BD=2;当BE=DE时.∠EBD=∠EDB.∵∠APB=∠BDE、∠DBE=∠APC.∴∠APB=∠APC.∴AC=AB=2.过点B作BG⊥AC于点G.得四边形BGCD是矩形.∵AB=2、tan∠BAC=2.∴AG=2.∴BD=CG=2﹣2;当BD=DE时.∠DEB=∠DBE=∠APC.∵∠DEB=∠DPB=∠BAC.∴∠APC=∠BAC.设PD=x.则BD=2x.∴=2.∴.∴x=.∴BD=2x=3.综上所述.当BD=2、3或2﹣2时.△BDE为等腰三角形;(3)如图3.过点O作OH⊥DC于点H.∵tan∠BPD=tan∠MAN=1.∴BD=PD.设BD=PD=2a、PC=2b.则OH=a、CH=a+2b、AC=4a+2b.∵OC∥BE且∠BEP=90°.∴∠PFC=90°.∴∠P AC+∠APC=∠OCH+∠APC=90°.∴∠OCH=∠P AC.∴△ACP∽△CHO.∴=.即OH•AC=CH•PC.∴a(4a+2b)=2b(a+2b).∴a=b.即CP=2a、CH=3a.则OC=a.∵△CPF∽△COH.∴=.即=.则CF=a.OF=OC﹣CF=a.∵BE∥OC且BO=PO.∴OF为△PBE的中位线.∴EF=PF.∴==.【点评】本题主要考查圆的综合问题.解题的关键是掌握圆周角定理、相似三角形的判定与性质、中位线定理、勾股定理及三角函数的应用等知识点.。
2018-2020年安徽省中考数学复习各地区模拟试题分类(合肥专版)(12)——图形的变换及答案
2018-2020年安徽省中考数学复习各地区模拟试题分类(合肥专版)(12)——图形的变换一.选择题(共6小题) 1.(2020•包河区二模)如图,在矩形ABCD 中,点H 为边BC 的中点,点G 为线段DH 上一点,且∠BGC =90°,延长BG 交CD 于点E ,延长CG 交AD 于点F ,当CD =4,DE =1时,则DF 的长为( )A .2B .32C .√5D .952.(2020•肥东县二模)如图,正方形ABCD 的边长为2,延长AB 至E ,使得AB =BE ,连接CE ,P 为CE 上一动点,分别连接P A 、PB ,则P A +PB 的最小值为( )A .4B .5C .2√2D .2√53.(2020•肥东县二模)如图,在△ABC 中,AB =AC =6,D 是AC 中点,E 是BC 上一点,BE =52,∠AED=∠B ,则CE 的长为( )A .152B .223C .365D .6494.(2020•包河区校级一模)如图,在△ABC 中,BC =6,AA AA=AA AA,动点P 在射线EF 上,BP 交CE 于点D ,∠CBP 的平分线交CE 于点Q ,当CQ =14CE 时,EP +BP 的值为( )A .9B .12C .18D .24 5.(2020•肥东县一模)用一些完全一样的小正方体搭成一个几何体,它的主视图、俯视图与左视图都是如图所示的图形,则小正方体的个数可能是( )A .9B .8C .5D .4 6.(2020•蜀山区校级模拟)如图,等边△ABC 的边长为4,点D 是边AC 上的一动点,连接BD ,以BD 为斜边向上作等腰Rt △BDE ,连接AE ,则AE 的最小值为( )A .1B .√2C .2D .2√2−1 二.填空题(共14小题) 7.(2020•包河区二模)已知,Rt △ABC 中,∠ACB =90°,∠B =30°,AC =1,点P 是AB 上一点,连接CP ,将∠B 沿CP 折叠,使点B 落在B ′处.以下结论正确的有 . ①当AB ′⊥AC 时,AB ′的长为√2;②当点P 位于AB 中点时,四边形ACPB ′为菱形; ③当∠B 'P A =30°时,AA AA=12;④当CP ⊥AB 时,AP :AB ′:BP =1:2:3.8.(2020•长丰县一模)将一副三角尺如图所示叠放在一起,则AA AA的值是 .9.(2019•蜀山区校级三模)如图,在矩形ABCD 中,AB :BC =3:5,点E 是对角线AC 上一动点(不与点A ,C 重合),将矩形沿过点E 的直线MN 折叠,使得点A ,B 的对应点A 1,B 1分别落在直线AD 与BC 上,当△A 1CE 为直角三角形时,AN :DN 的值为 .10.(2019•庐阳区校级一模)如图,在矩形ABCD 中,AD =8,AB =14,E 为DC 上的一个点,将△ADE 沿AE 折叠,使得点D 落在D '处,若以C 、B 、D '为顶点的三角形是等腰三角形,则DE 的长为 .11.(2019•庐阳区校级模拟)如图,在Rt △ABC 中,∠C =90°,AC =8,BC =6,点D 是AB 的中点,点P 是直线AC 上一点,将△ADP 沿DP 所在的直线翻折后,点A 落在A 1处,若A 1D ⊥AC ,则点P 与点A 之间的距离为 .12.(2019•合肥模拟)在△ABC中,∠ACB=90°,AC=4,AB=5,点E、F分别在AC、AB上,连接EF,将△ABC沿EF折叠,使点A落在BC边上的点D处.若△DEF有一边垂直BC,则EF=13.(2019•瑶海区二模)在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm,点P为边AC上一点,且AP =5cm.点Q为边AB上的任意一点(不与点A,B重合),若点A关于直线PQ的对称点A'恰好落在△ABC的边上,则AQ的长为cm.14.(2019•合肥二模)如图,在等边△ABC中,AB=4cm,点M为边BC的中点,点N为边AB上的任意一点(不与点A,B重合).若点B关于直线MN的对称点B'恰好落在等边△ABC的边上,则BN的长为cm.15.(2019•长丰县模拟)如图,在矩形ABCD中,AB:BC=3:5,点E是对角线BD上一动点(不与点B,D重合),将矩形沿过点E的直线MN折叠,使得点A,B的对应点G,F分别在直线AD与BC上,当△DEF为直角三角形时,CN:BN的值为.16.(2018•包河区一模)如图,在△ABC中,已知:AB=AC=6,BC=8,P是BC边上一点(P不与点B,C重合),∠DPE=∠B,且DP边始终经过点A,另一边PE交AC于点F,当△APF为等腰三角形时,则PB的长为.17.(2018•包河区二模)如图,在矩形ABCD中,AB=1,BC=6,将矩形折叠,使A落在BC(含端点)上点M处,这时折痕EF与AD或边CD(含端点)交于F,然后展开铺平,以A、M、F为顶点作△AMF,当△AMF的面积最大时,CM的长度为.18.(2018•长丰县一模)一个小球沿着坡度为1:3的坡面向下滚动了10米,此时小球下降的垂直高度为 米. 19.(2018•长丰县一模)如图,在△ABC 中,D 、E 分别为边AB 、AC 上的点.AA AA=AA AA,点F 为BC 边上一点,添加一个条件: ,可以使得△FDB 与△ADE 相似.(只需写出一个)20.(2018•蜀山区一模)如图示意图,A 点的坐标为(2,2),点C 在线段OA 上运动(点C 不与O 、A 重合),过点C 作CD ⊥x 轴于D ,再以CD 为一边在CD 右侧画正方形CDEF .连接AF 并延长交x 轴于B ,连接OF .若△BEF 与△OEF 相似,则点B 的坐标是 .三.解答题(共14小题) 21.(2020•肥东县二模)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点)和格点O .(1)平移△ABC ,使得点A 与点O 重合,画出平移后的△A ′B ′C ′; (2)画出△ABC 关于点O 对称的△DEF ;(3)判断△A ′B ′C ′与△DEF 是否成中心对称?22.(2020•包河区一模)如图,无人机在600米高空的P 点,测得地面A 点和建筑物BC 的顶端B 的俯角分别为60°和70°,已知A 点和建筑物BC 的底端C 的距离为286√3米,求建筑物BC 的高.(结果保留整数,参考数据:√3≈1.73,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)23.(2020•蜀山区一模)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,已知点O 、A 、B 均为格点.(1)在给定的网格中,以点O 为位似中心将线段AB 放大为原来的2倍,得到线段A ′B ′.(点A 、B的对应点分别为点A ′、B ′),画出线段A ′B ′.(2)以线段A ′B ′为一边,作一个格点四边形A ′B ′CD ,使得格点四边形A ′B ′CD 是轴对称图形(作出一个格点四边形即可).24.(2020•庐阳区校级一模)(1)【操作发现】如图1,在△OAB 和△OCD 中,OA =OB ,OC =OD ,∠AOB =∠COD =40°,连接AC ,BD 交于点M . ①AA AA的值为 ;②∠AMB 的度数为 . (2)【类比探究】如图2,在△OAB 和△OCD 中,∠AOB =∠COD =90°,∠OAB =∠OCD =30°,连接AC 交BD 的延长线于点M .计算AA AA的值及∠AMB 的度数;(3)【实际应用】在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD =1,OB =√7,请直接写出当点C 与点M 重合时AC 的长.25.(2020•瑶海区一模)如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上.(1)将△ABC 向下平移5个单位再向右平移1单位后得到对应的△A 1B 1C 1,画出△A 1B 1C 1; (2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2;(3)P (a ,b )是△ABC 的AC 边上一点,请直接写出经过两次变换后在△A 2B 2C 2中对应的点P 2的坐标.26.(2020•包河区校级一模)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C的应点C₁的坐标为(4,﹣1),画出△A1B1C1并写出顶点A,B对应点A1,B1的坐标;(2)将△ABC绕着点O按顺时针方向旋转90°得到△A2B2C2,画出△A2B2C2.27.(2020•长丰县一模)通过学习锐角三角比,我们知道在直角三角形中,一个锐角的大小与两条边长的比值是一一对应的,因此,两条边长的比值与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图(1)在△ABC中,AB=AC,底角B的邻对记作canB,这时canB=底边腰=AAAA,容易知道一个角的大小与这个角的邻对值也是一一对应的.根据上述角的邻对的定义,解下列问题:(1)can30°=;(2)如图(2),已知在△ABC中,AB=AC,canB=85,S△ABC=24,求△ABC的周长.28.(2019•包河区校级二模)如图,以AB为斜边作Rt△ABE和Rt△ACB,∠AEB=∠ACB=90°,EF⊥AB,垂足为点F,点D是线段BF上一点,连接AC分别交EF、ED、BE于P、H、Q,过点E作EG⊥DE,交BC延长线于点G,BF=6,BG=5.(1)求证:△AEH∽△BEG;(2)若EF=3,求AH的长;(3)若cos∠FBG=35,FD=43,求线段EF的长.29.(2019•包河区校级二模)在正方形网格中建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标是(4,4),请解答下列问题:(1)将△ABC向左平移5个单位长度,画出平移后的△A1B1C1,并写出点A的对应点A1的坐标;(2)点O为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△A1B1C1相似,且△A2B2C2与△A1B1C1的位似比为1:1;(3)sin∠B2A2C2=(直接写出答案).30.(2019•包河区校级二模)广宇同学想测量一栋楼上竖立的旗杆的长(图中线段EF的长),已知直线EF 垂直于地面,垂足为点C,在地面A处测得点E的仰角为31°,在B处测得点E的仰角为61°、点F的仰角为45°,AB=48米,且A、B、C三点在一条直线上,请你根据以上数据帮助广宇同学求旗杆EF的长(参考数据:sin31°=0.52,cos31°=0.86,tan31°=0.60,sin61°=0.87,cos61°=0.48,tan61°=1.80)31.(2019•庐江县模拟)某校九(1)班开展数学活动,李明和张华两位同学合作用测角仪测量学校旗杆的高度,李明站在B点测得旗杆顶端E点的仰角为45°,张华站在D(D点在直线FB上)测得旗杆顶端E 点仰角为15°,已知李明和张华相距(BD)30米,李明的身高(AB)1.6米,张华的身高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1.参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)32.(2019•合肥二模)在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点)(1)画出△ABC绕点O逆时针方向旋转90°得到的△A1B1C1;(2)求点A在(1)的图形变换过程中所经过的路径长.33.(2018•蜀山区一模)我们把菱形的顶点及其对称中心称作如图1所示基本图的特征点,显然这样的基本图共有5个特征点.将此基本图不断复制并按如下方式摆放,使得相邻两个基本图的一个顶点重合,这样得到图2、图3,…,…(1)观察以上图形并完成下表:图形的名称基本图的个数特征点的个数图1 1 5图2 2 9图3 3 13图4 4………猜想:在图n中,特征点的个数为(用n的式子表示);(2)如图n,将当菱形的一个锐角为60°时,将图n放在直角坐标系中(第一个基本图的两个顶点分别落在坐标轴上,且菱形较短的对角线与x轴垂直),设其中第一个基本图的对称中心O1的坐标为(x1,1),则x1=;图2018的对称中心的横坐标为.34.(2018•合肥二模)在如图所示的网格中,每个小三角形均为等边三角形,点A、B、C、D都在格点上.(1)将△ADC向左平移,使点C与点B重合,画出平移后的△EFB;(2)将△ADC绕点C逆时针旋转60°,点D的对应点为点G,画出旋转后的三角形;(3)若点P是△ABC内一点,且满足P A2+PC2=PB2,则∠APC=°.2018-2020年安徽省中考数学复习各地区模拟试题分类(合肥专版)(12)——图形的变换参考答案与试题解析一.选择题(共6小题) 1.【解答】解:如图,延长AD ,BE 相交于点M ,∵DF ∥CH ,∴△DFG ∽△HCG , ∴AA AA =AA AA ,∵DM ∥BH ,∴△DMG ∽△HBG , ∴AA AA=AA AA,∵CH =BH , ∴DF =DM ,又∵△MDE ∽△CDF , ∴AA AA =AA AA , ∴AA AA=AA AA,∴DF 2=DE •CD =1×4=4, ∴AA =√4=2. 故选:A . 2.【解答】解:作点B 关于直线EC 的对称点T ,连接PT ,AT .∵四边形ABCD 是正方形, ∴∠ABC =∠CBE =90°, ∵AB =BC =BE =2, ∴∠CEB =45°,∵EB =ET ,∠CEB =∠CET =45°, ∴∠AET =90°,∴AT =√AA 2+AA 2=√42+22=2√5, ∴PB =PT ,∴P A +PB =P A +PT ≥AT , ∴P A +PB ≥2√5,∴P A +PB 的最小值为2√5, 故选:D . 3.【解答】解:∵AB =AC , ∴∠B =∠C ,∵∠AEC =∠AED +∠DEC =∠B +∠BAE ,∠AED =∠B ,∴∠DEC =∠BAE ,∴△BAE ∽△CED ,∴AA AA=AA AA , ∵AB =AC =6,AD =DC =3,BE =52, ∴6AA =523, ∴CE =365,故选:C . 4.【解答】解:如图,延长EF 交BQ 的延长线于G . ∵AA AA =AA AA ,∴EG ∥BC ,∴∠G =∠GBC ,∵∠GBC =∠GBP ,∴∠G =∠PBG ,∴PB =PG ,∴PE +PB =PE +PG =EG ,∵CQ =14EC , ∴EQ =3CQ ,∵EG ∥BC ,∴△EQG ∽△CQB ,∴AA AA =AA AA =3,∵BC =6,∴EG =18,∴EP +PB =EG =18,故选:C .5.【解答】解:由俯视图易得最底层有4个小正方体,第二层最多有4个小正方体,那么搭成这个几何体的小正方体最多为4+2+2=8个.故选:B .6.【解答】解:如图,过点B 作BH ⊥AC 于H 点,作射线HE ,∵△ABC 是等边三角形,BH ⊥AC ,∴AH =2=CH ,∵∠BED =∠BHD =90°,∴点B ,点D ,点H ,点E 四点共圆,∴∠BHE =∠BDE =45°,∴点E 在∠AHB 的角平分线上运动,∴当AE ⊥EH 时,AE 的长度有最小值,∵∠AHE =45°,∴AH =√2AE =2,∴AE 的最小值为√2,故选:B .二.填空题(共14小题)7.【解答】解:①AC =1,∠B =30°可知BC =√3,由翻折可知:B ′C =BC =√3,因为AB '⊥AC ,由勾股定理可知:AB '=√A′A 2−AA 2=√2,正确.②当点P 位于AB 中点时,CP =PB =P A =AC =PB ′,∠B 'P A =P AC =60°,PB '∥AC ,所以四边形ACPB '是平行四边形,又PC =AC ,所以四边形ACPB '是菱形,正确.③当∠B 'P A =30°时,可知四边形BCB ′P 是菱形,BP =BC =√3;AP =2−√3,AA AA =12不成立,故不正确.④当CP ⊥AB 时,∠B '=∠B 'CA =30°,AC =AB ',∠ACP =∠B =30°,设AP =a ,则AB '=AC =2a ;AB =4a ,PB =3a ;所以:AP :AB ':BP =a :2a :3a =1:2:3,正确.故答案为:①②④.8.【解答】解:设AC =BC =x ,则CD =AA AAAA =A√33=√3x ,∵∠BAC =∠ACD =90°,∴∠BAC +∠ACD =180°,∴AB ∥CD ,∴△ABE ∽△DCE ,∴AAAA =AA AA =√3A=√33, 故答案为:√33 9.【解答】解:∵AB :BC =3:5,设AB =3x ,BC =5x ,∵四边形ABCD 是矩形,∴CD =AB =3x ,AD =BC =5x ,分两种情况:①当∠CA 1E =90°时,△A 1CE 为直角三角形,如图1所示:∵∠DCA 1+∠DA 1C =∠DA 1C +∠EA 1N =90°,∴∠DCA 1=∠EA 1N ,由折叠的性质得:AN =A 1N ,AE =A 1E ,∠EAN =∠EA 1N ,∴∠DCA 1=∠DAC ,∵∠CDA 1=∠ADC =90°,∴△CDA 1∽△ADC ,∴AA 1AA =AA AA ,即AA′3A =3A5A , ∴DA 1=95x ,∴AN =5A −95A 2=85x , DN =95x +85x =175x ,∴AN :DN =817; ②当∠A 1CE =90°时,△A 1CE 为直角三角形,如图2所示:∵∠A 1CD +∠CA 1D =∠A 1CD +∠ACD =90°,∴∠CA 1D =∠ACD ,∵∠A 1DC =∠CDA =90°,∴△A 1DC ∽△CDA ,∴A 1A AA =AA AA ,即A 1A 3A =3A 5A ,∴A 1D =95x ,由折叠的性质得:AN =A 1N ,∴DN =12(A 1A ﹣2A 1D )=12(95x +5x ﹣2×95x )=85x , AN =AD ﹣DN =5x −85x =175x ,∴AN :DN =178,综上所述,AN :DN 的值为817或178,故答案为:817或178.10.【解答】解:①:CD '=BD '时,如图,由折叠性质,得AD =AD ′,∠DAE =∠D ′AE ,∵四边形ABCD 是矩形,∴AB =CD ,∠ABC =∠DCB =90°,∵△BCD ′为等腰三角形,∴D ′B =D ′C ,∠D ′BC =∠D ′CB ,∴∠DCD ′=∠ABD ′,在△DD ′C 和△AD ′B 中,{AA =AAAAAA′=AAAA′AA′=AA′,∴△DD ′C ≌△AD ′B ,∴DD ′=AD ′,∴DD ′=AD ′=AD ,∴△ADD ′是等边三角形,∴∠DAD ′=60°,∴∠DAE =30°,∴DE =12AE , 设DE =x ,则AE =2x ,(2x )2﹣x 2=82,解得:x =8√33,即DE =8√33.②:当CD '=CB 时,如图,连接AC ,由于AD '=8,CD '=8,而AC =√142+82=2√65>8+8;故这种情况不存在.③当BD '=BC 时,如图过D '作AB 的垂线,垂足为F ,延长D 'F 交CD 于G ,由于AD '=BD ',D 'F =D 'F ;易知AF =BF ,从而由勾股定理求得D 'F =√AA′2−AA 2=√82−72=√15,又易证△AD 'F ∽△D 'EG ,设DE =x ,D 'E =x ,∴A′A AA′=A′A AA ,即A 8=8−√157; 解得x =64−8√157, 故答案为:8√33或64−8√157.11.【解答】解:分两种情况:①若点A 1在AC 左侧,如图1所示:∵∠C =90°,AC =8,BC =6,∴AB =√AA 2+AA 2=√82+62=10,∵点D 是AB 的中点,∴AD =12AB =5,∵A 1D ⊥AC ,∠C =90°∴A 1D ∥BC∴AA AA =AA AA =AA AA =12, ∴AE =EC =12AC =4,DE =12BC =3, ∵将△ADP 沿DP 所在的直线翻折得△A 1DP ,∴A 1D =AD =5,A 1P =AP ,∴A 1E =A 1D ﹣DE =5﹣3=2,∴在Rt △A 1PE 中,A 1P 2=A 1E 2+PE 2,∴AP 2=22+(4﹣AP )2,∴AP =52;②若点A 1在AC 右侧,延长A 1D 交AC 于E ,如图2所示:则A 1E =DE +A 1D =3+5=8,在Rt △EA 1P 中,A 1P 2=A 1E 2+EP 2,∴AP 2=82+(AP ﹣4)2,∴AP =10,故答案为:52或10.12.【解答】解:分两种情况:①当DF ⊥BC 时,如图1所示:则DF ∥AC ,∴∠DFE =∠AEF ,∵∠ACB =90°,AC =4,AB =5,∴BC =3,由折叠的性质得:∠DEF =∠AEF ,DE =AE ,DF =AF ,∴∠DFE =∠DEF ,∴DE =DF ,∴DE =DF =AF =AE ,设DE =DF =AF =AE =x ,∵DF ∥AC ,∴△BDF ∽△BCA ,∴AA AA =AA AA , ∴AA 3=A 4,解得:BD =34x ,在Rt △CDE 中,由勾股定理得:(4﹣x )2+(3−34x )2=x 2, 解得:x =209,或x =20(舍去), ∴AF =209,BD =53, ∴CD =BC ﹣BD =43, 作FG ⊥AE 于G ,则FG =CD =43, ∴AG =√AA 2−AA 2=169, ∴EG =AE ﹣AG =209−169=49,∴EF =√AA 2+AA 2=4√109; ②当DE ⊥BC 时,如图2所示:此时D 与C 重合,E 为AC 的中点,F 为AB 的中点,∴EF 为△ABC的中位线, ∴EF =12BC =32;综上所述,若△DEF 有一边垂直BC ,则EF 为4√109或32; 故答案为:4√109或2.13.【解答】解:在Rt △ABC 中,∠C =90°,AB =10cm ,AC =8cm ,∴BC =6cm ,①若点A '落在BC 上,如图:点A 关于直线PQ 的对称点A ',∵点A 关于直线PQ 的对称点A ',∴A 'Q =AQ ,AP =A 'P ,∵AP =5,∴PC =3,A 'C =4,A 'B =2,∴A 'A =4√5,作A 'H 垂直AB ,由勾股定理可得:{A ′A 2−AA 2=A′A 2A′A 2−AA 2=A′A 2A′A 2−AA 2=A′A 2,设AQ =AQ '=x ,BH =y ,∴{4−A 2=(4√5)2−(10−A )2A 2−(10−A −A )2=4−A 2, 解得:{A =5011A =65, 故AQ 的长为5011.②若点A '落在AB 上,如图:∵点A 关于直线PQ 的对称点A ',∴PQ ⊥AB ,∴△APQ ~△ABC ,∴AA AA =AA AA , ∴510=AA 8,∴AQ =4. 综上所述:若点A 关于直线PQ 的对称点A '恰好落在△ABC 的边上,则AQ 的长为5011或4cm .故答案为5011或4..14.【解答】解:如图1,当点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边AB 上时, 则MN ⊥AB ,BN =B ′N ,∵△ABC 是等边三角形,∴AB =AC =BC ,∠ABC =60°,∵点M 为边BC 的中点,∴BM =12BC =12AB =2, ∴BN =12BM =1, 如图2,当点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边AC 上时,则MN ⊥BB ′,四边形BMB ′N 是菱形,∵∠ABC =60°,点M 为边BC 的中点,∴BN =BM =12BC =12AB =2,故答案为:1或2.15.【解答】解:∵AB :BC =3:5,设AB =3x ,BC =5x ,∵四边形ABCD 是矩形,∴CD =AB =3x ,AD =BC =5x ,分两种情况:①如图所示,当∠DFE =90°时,△DEF 为直角三角形,∵∠CDF +∠CFD =∠EFN +∠CFD =90°,∴∠CDF =∠EFN ,由折叠可得,EF =EB ,∴∠EFN =∠EBN ,∴∠CDF =∠CBD ,又∵∠DCF =∠BCD =90°,∴△DCF ∽△BCD ,∴AA AA =AA AA ,即AA 3A =3A 5A ,∴CF =95x , ∴FN =5A −95A 2=8A 5, ∴CN =CF +NF =95x +85x =175x , ∴BN =5x −175x =85x ,∴CN :BN =178; ②如图所示,当∠EDF =90°时,△DEF 为直角三角形,∵∠CDF +∠CDB =∠CDF +∠CBD =90°,∴∠CDF =∠CBD ,又∵∠DCF =∠BCD =90°,∴△DCF ∽△BCD ,∴AA AA =AA AA ,即AA 3A =3A 5A ,∴CF =95x ,∴NF =5A +95A 2=175x , ∴CN =NF ﹣CF =85x ,∴BN =5x −85x =175x , ∴CN :BN =817, 综上所述,CN :BN 的值为178或817,故答案为:178或817.16.【解答】解:①当AP =PF 时,易得△ABP ≌△PCF ,则PC =AB =6,故PB =2. ②当AF =PF 时,△ABC ∽△F AP ,∴AA AA =AA AA =68,即PC =92. ∴PB =72. ③当AF =AP 时,点P 与点B 重合,不合题意.综上所述,PB 的长为2或72.故答案是:2或72. 17.【解答】解:当点F 在AD 上时,S △AMF =12AF •AB =12×1×AF ,∴当AF 取最大值时,△AMF 的面积最大,∴AF =6即点F 与点D 重合.如图所示:由翻折的性质可知:FM =AF =6.在Rt △FMC 中,MC =√AA 2−AA 2=√62−12=√35.故答案为:√35.18.【解答】解:小球沿着坡面向下前进了10m 假设到A 处,过C 作CB ⊥AB , ∵i =1:3,∴tan A =AA AA =13, 设BC =xcm ,AB =3xcm ,x 2+(3x )2=102,解得:x =√10或x =−√10(不合题意,舍去),故答案为:√10.19.【解答】解:DF ∥AC ,或∠BFD =∠A .理由:∵∠A =∠A ,AA AA =AA AA ,∴△ADE ∽△ACB ,∴①当DF ∥AC 时,△BDF ∽△BAC ,∴△BDF ∽△EAD .②当∠BFD =∠A 时,∵∠B =∠AED ,∴△FBD ∽△AED .故答案为DF ∥AC ,或∠BFD =∠A .20.【解答】解:要使△BEF 与△OFE 相似,设OD =t , ∵∠FEO =∠FEB =90°,∴只要AA AA =AA AA 或AA AA =AA AA ,即:BE =2t 或AA =12t , ①当BE =2t 时,BO =4t ,∵△BEF ~△OFE ,∴AA AA =AA AA ,∴2A 2−A =4A ,∴t 1=0(舍去)或t 2=1.5,∴B (6,0).②当AA =12t 时, (ⅰ)当B 在E 的左侧时,AA =AA −AA =32A , ∵△BEF ~△OFE ,∴AA AA =AA AA , ∴2A 2−A =32A ,∴t 1=0(舍去)或t 2=23.∴B (1,0).(ⅱ)当B 在E 的右侧时,AA =AA +AA =52A , ∵△BEF ~△OFE ,∴AA AA =AA AA , ∴2A 2−A =52A ,∴t 1=0(舍去)或t 2=65, ∴B (3,0).综上,B (1,0)(3,0)(6,0).故答案为:(1,0)(3,0)(6,0).三.解答题(共14小题)21.【解答】解:(1)如图,△A ′B ′C ′即为所求.(2)如图,△DEF 即为所求.(3)△A ′B ′C ′与△DEF 成中心对称,对称中心是线段OD 与线段FC ′的交点.22.【解答】解:如图,过B 作BE ⊥PD 于E ,在Rt △APD 中,由tan60°=600AA,得AD =600÷tan60°=200√3(米), CD =BE =286√3−200√3=86√3(米),在Rt △PBE 中,由tan70°=AA AA 得,PE =86×1.73×2.75≈409.1(米),∴BC =600﹣409.1≈191(米),答:建筑物BC 的高为191米.23.【解答】解:(1)如图,线段A ′B ′即为所求.(2)如图,矩形A ′B ′CD 即为所求(答案不唯一).24.【解答】解:(1)【问题发现】①如图1,∵∠AOB =∠COD =40°,∴∠COA =∠DOB ,∵OC =OD ,OA =OB ,∴△COA ≌△DOB (SAS ),∴AC =BD ,∴AA AA =1;②∵△COA ≌△DOB ,∴∠CAO =∠DBO ,∵∠AOB =40°,∴∠OAB +∠ABO =140°,在△AMB 中,∠AMB =180°﹣(∠CAO +∠OAB +∠ABD )=180°﹣(∠DBO +∠OAB +∠ABD )=180°﹣140°=40°,故答案为:①1;②40°;(2)【类比探究】如图2,AA AA =√3,∠AMB =90°,理由是: Rt △COD 中,∠DCO =30°,∠DOC =90°, ∴AA AA =tan30°=√33, 同理得:AA AA =tan30°=√33, ∴AA AA =AA AA ,∵∠AOB =∠COD =90°,∴∠AOC =∠BOD ,∴△AOC ∽△BOD ,∴AA AA =AA AA =√3,∠CAO =∠DBO ,在△AMB 中,∠AMB =180°﹣(∠MAB +∠ABM )=180°﹣(∠OAB +∠ABM +∠DBO )=90°;(3)【实际应用】①点C 与点M 重合时,如图3,同理得:△AOC ∽△BOD ,∴∠AMB =90°,AA AA =√3,设BD =x ,则AC =√3x ,Rt △COD 中,∠OCD =30°,OD =1,∴CD =2,BC =x ﹣2,Rt △AOB 中,∠OAB =30°,OB =√7,∴AB =2OB =2√7,在Rt △AMB 中,由勾股定理得:AC 2+BC 2=AB 2,∴(√3x )2+(x ﹣2)2=(2√7)2,x 2﹣x ﹣6=0,∴(x ﹣3)(x +2)=0,∴x 1=3,x 2=﹣2,∴AC =3√3;②点C 与点M 重合时,如图4,同理得:∠AMB =90°,AA AA =√3,设BD =x ,则AC =√3x ,在Rt △AMB 中,由勾股定理得:AC 2+BC 2=AB 2,∴(√3x )2+(x +2)2=(2√7)2,∴x 2+x ﹣6=0,∴(x +3)(x ﹣2)=0,∴x 1=﹣3,x 2=2,∴AC =2√3;综上所述,AC 的长为3√3或2√3.25.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)∵P(a,b)是△ABC的AC边上的一点,∴将△ABC向右平移1个单位再向下平移5个单位后得到对应的点的坐标为:(a+1,b﹣5),∴(a+1,b﹣5)关于y轴对称点的坐标为:(﹣a﹣1,b﹣5).26.【解答】解:(1)△A₁B₁C₁如下图所示;A₁的坐标为(2,1),B₁的坐标为(3,﹣3).(2)△A₂B₂C₂如下图所示:27.【解答】解:(1)过点A 作AD ⊥BC 于点D ,∵∠B =30°,∴cos ∠B =AA AA =√32, ∴BD =√32AB ,∵△ABC 是等腰三角形,∴BC =2BD =√3AB ,故can 30°=AA AA =√3;(2)过点A 作AE ⊥BC 于点E ,∵canB =85,则可设BC =8x ,AB =5x ,∴AE =√AA 2−AA 2=3x ,∵S △ABC =24,∴12BC ×AE =12x 2=24, 解得:x =√2,故AB =AC =5√2,BC =8√2,从而可得△ABC 的周长为18√2.28.【解答】(1)证明:如图1,∵∠AEB =90°,EG ⊥DE ,∴∠AEB =∠DEG =90°,∴∠AEH =∠BEG ,∵BC ⊥AQ ,∴∠AEQ =∠BCQ =90°,∵∠AQE =∠BQC ,∴∠EAH =∠EBG ,∴△AEH ∽△BEG ;(2)解:∵∠BFE =∠AEB =90°,∴tan ∠EBF =AA AA =AA AA , ∵△AEH ∽△BEG , ∴AA AA =AA AA , ∴AA AA=AA AA ∵BF =6,BG =5.EF =3, ∴36=AA 5,∴AH =52:(3)如图2,延长FE 、BC ,交于点M ,作GN ⊥EF 于点N ,∵BF =6,cos ∠FBG =35,∴cos ∠FBG =AA AA =35, ∴6AA =35 ∴BM =10,∴MF =√AA 2−AA 2=8,∵BG =5,∴点G 为BM 中点∴点N 为MF 的中点,∴NG =12BF =12×6=3,NF =12MF =12×8=4, ∵∠ENG =∠DEG =∠DFE =90°,∴∠NEG +∠NGE =90°,∠NEG +∠FED =90°,∴∠NGE =∠FED ,∴△ENG ∽△DFE ,∴AA AA=AA AA 设EF =a , ∴3A =4−A AA∴DF =13A (4﹣a )=43 解得a =2∴EF =2.29.【解答】解:(1)如图所示,△A 1B 1C 1即为所求,点A 的对应点A 1的坐标为(﹣1,4)(2)如图所示,△A 2B 2C 2即为所求;(3)由题可得,△A 2B 2C 2中,A 2B 2边上的高为:√13=4√1313, ∴sin ∠B 2A 2C 2=4√1313√5=4√6565. 故答案为:4√6565.30.【解答】解:在R △BCF 中,∠CBF =45°,∴BC =FC ,在Rt △CBE 中,设BC =FC =x ,∵∠CBE =61°,∴CE =BC tan ∠CBE =1.8x ,在Rt △CAE 中,AAA ∠AAA =AAAA ,∵∠CAE =31°,AB =48,∴0.6=1.8A A +48, ∴x =24,∴EF =CE ﹣FC =0.8x =19.2(米),答:旗杆EF 的长为19.2米.31.【解答】解:过点A 作AM ⊥EF 于M ,过点C 作CN ⊥EF 于N ,∵AB =1.6米,CD =1.75米,∴MN =0.15米,∵∠EAM =45°,∴AM =ME ,设AM =ME =x 米,∵BD =30米∴CN =(x +30)米,EN =(x ﹣0.15)米,∵∠ECN =15°, ∴tan ∠ECN =AA AA =A −0.15A +30,解得:x ≈11.3,则EF =EM +MF =11.3+1.6=12.9(米). 答:旗杆的高EF 为12.9米.32.【解答】解:(1)如图所示:(2)点A 在(1)的图形变换过程中所经过的路径是一段圆弧,其半径为2√5,圆心角为90°, 所以长度为90⋅A ×2√5180=√5A .33.【解答】解:(1)图4中,特征点的个数为17,在n 个图中,特征点个数为4n +1.故答案为17.4n +1.(2)由题意可知x 1=√3,x 2=2√3,x 3=3√3,…,x n =n √3,∴图2018的对称中心的横坐标为2018√3,故答案为√3,2018√3.34.【解答】解:(1)如图所示,△EFB 即为所求;(2)如图所示,△BCG 即为所求;(3)如图所示,将△ABP 绕点A 顺时针旋转60°得到△ACD ,连接PD ,∴△ADP 是等边三角形,CD =BP ,∴∠APD =60°,AP =DP ,∵P A 2+PC 2=PB 2,∴PD 2+PC 2=CD 2,∴△CPD 是直角三角形,∴∠CPD =90°,∴∠APC =∠APD +∠CPD =60°+90°=150°.故答案为:150.。
内蒙古包头市固阳县2023届九年级中考模拟数学试卷(含答案)
2023年内蒙古包头市固阳县中考数学模拟试卷一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列等式成立的是( )A. 25=±5B. ±0.16=±0.4C. (―6)2=―6D. 3(―3)3=32. 2023年2月14日,襄阳市召开2022年襄阳市经济运行情况新闻发布会,公布了相关数据:2022年全市实现地区生产总值5827.81亿元,稳居全省第2位.其中5827.81亿用科学记数法表示为( )A. 5.82781×109B. 5.82781×1010C. 5.82781×1011D. 5.82781×10123. 中学生骑电动车上学给交通安全带来隐患,为了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查了400个家长,结果有360个家长持反对态度,则下列说法正确的是( )A. 这种调查不是抽样调查B. 样本容量是360C. 估计该校约有90%的家长持反对态度D. 总体是中学生4. 下列运算中,正确的是( )A. 3a2+a2=4a4B. (―a3)2=―a6C. (2a2b)3=8a5b3D. ―2a8÷a2=―2a65. 函数y=3x―1+12x―4的自变量x的取值范围是( )A. x≥1且x≠2B. x≠2C. x>1且x≠2D. 全体实数6. 如图,AB是⊙O的直径,C、D是圆上的点,若∠D=20°,则∠BAC的值是( )A. 20°B. 60°C. 70°D. 80°7. 方程(m―2)x2―3―m x+14=0有两个实数根,则m的取值范围为( )A. m>52B. m≤52且m≠2 C. m≥3 D. m≤3且m≠28. 如图,在▱ABCD中,已知AD=7cm,AB=5cm,DE平分∠ADC交BC边于点E,则BE等于( )A. 2cmB. 3cmC. 4cmD. 5cm9. 某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x台机器,则下列方程正确的是( )A. 400x ―450x―50=1 B. 450x―50―400x=1C. 400x ―450x+1=50 D. 450x+1―400x=510. 下列命题的逆命题是真命题的是( )A. 若a>0,则a2=aB. 如果两个实数相等,那么它们的绝对值相等C. 如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2D. 三角形的中位线平行于三角形的第三边11. 如图,已知点A、B在反比例函数y=kx(k>0,x>0)的图象上,点P沿C→A→B→O的路线(图中“→”所示路线)匀速运动,过点P作PM⊥x轴于点M,设点P的运动时间为t,△POM 的面积为S,则S关于t的函数图象大致为( )A. B.C. D.12. 在平面直角坐标系中,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②2a+b=0;③9a+3b+c>0;④b2>4ac;⑤am2+bm≤a+b.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共8小题,共24.0分)13. (14)―2―sin60°+(π+1)0=.14. 把ab2―2ab+a分解因式的结果是______.15. 计算:m2―2mn+n2mn ÷(nm―mn)=.16.已知x=2,y=1是二元一次方程组ax+by=7,ax―by=1的解,则a―b的值为.17. 若数a 使关于x <1+x32≥x +a 有且只有四个整数解,则符合条件的整数a 有______.18. 已知⊙O 的直径AB 与弦AC 的夹角为30°,过C 点的切线PC与AB 的延长线交于点P ,且PC =12,则⊙O 的半径为______.19. 如图,在矩形ABCD 中,若AE =2,AC =10,AFFC =14,则AB的长为 .20. 如图,在平面直角坐标系中,点A ,B 分别在x 轴负半轴和y 轴正半轴上,点C 在OB 上,OC :OB =1:3,连接AC ,过点O 作OP//AB 交AC 的延长线于点P.若P(1,1),则tan ∠ACO 的值是 。
2022年山东省滨州市阳信县中考数学模拟试题及答案解析
2022年山东省滨州市阳信县中考数学模拟试卷一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列计算结果是a8的是( )A. a3+a5B. a16÷a2C. −a3⋅(−a)5D. (−a4)42. 下列平面图案中,既是轴对称又是中心对称的是( )A. B. C. D.3. 代数式3有意义,则x的取值范围在数轴上表示正确的是( )√1−xA. B.C. D.4. 我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的左视图是( )A. B. C. D.5. 下列说法中,正确的有个.( )①两点之间线段最短;②两个数,绝对值大的反而小;③等角的补角相等;④若PA=PB,则点P为线段AB的中点.A. 1B. 2C. 3D. 46. 在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,随机取出两个球,取出1个黑球1个白球的概率是( )A. 23B. 12C. 13D. 167. 下列一元二次方程中,有实数根的是( )A. x2=−2B. x2−x=√2C. x2−√2x+1=0D. (x+1)(x+2)=−18. 如图,AB是⊙O的直径,点D,C在⊙O上,∠DOC=90°,AD=√2,BC=1,则⊙O的半径为( )A. √3B. √52C. √102D. √2+129. 如图,为了测量某风景区内一座塔AB的高度,小明分别在塔的对面一楼房CD的楼底C,楼顶D处,测得塔顶A的仰角为45°和30°,已知楼高CD为10m,则塔高为( )A. 15+5√3B. 10+5√3C. 10√2+5√3D. 15+5√210. 如图,反比例函数y=kx的图象与直线y=mx相交于A,B两点,点B的坐标为(−2,−3),则点A的坐标为( )A. (−2,−3)B. (2,3)C. (−2,3)D. (2,−3)11. 如图,将5个大小完全相同的正方形,剪拼成一个矩形,则图中AB:CD=( )A. 1:1B. 2:√5C. 4:√10D. (√5−1):212. 如图,△ABC中,AB=AC,BC=24,AD⊥BC于点D,AD=5,P是半径为3的⊙A上一动点,连结PC,若E是PC的中点,连结DE,则DE长的最大值为( )A. 8B. 8.5C. 9D. 9.5二、填空题(本大题共6小题,共24.0分)13. 计算2−1+|−3|−(√3−√2)0=______.214. 如图,在Rt△ACB中,∠C=90°,AC=3,BC=4,则sinB的值是______.15. 若将抛物线y=2x2−4x−1先向左平移3个单位,再向上平移2个单位,所得抛物线的函数关系式为______.16. 疫情无情人有情,某制药厂要为抗击疫情第一线捐赠一种急救药品,有两种包装,大瓶比小瓶可多装20克该药品,已知120克这一药品单独装满小瓶的瓶数是单独装满大瓶瓶数的1.5倍.设小瓶每个可装这一药品x克,则可列方程为______.17. 有甲、乙两组数据,如表所示:甲 10 12 13 14 16 乙1212131414甲、乙两组数据的方差分别为s 甲2,s 乙2,则s 甲2______s 乙2(填“>”、“<”或“=”).18. 下列图形由同样的棋子按一定规律组成,图①有3颗棋子,图②有9颗棋子,图③有18颗棋子,…,图④有 颗棋子,图ⓝ有 颗棋子(用含n 的式子表示).三、解答题(本大题共6小题,共60.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年中考数学模拟试题(12)
(考试时间100分钟,满分120分)
一、选择题(本大题满分42分,每小题3分) 1.如果零上5℃记 +5℃,那么零下记作( )
A. –6
B. –5
C. –5℃
D. –6℃
2. 某地煤矿储量储量约为273000000吨,数据273 000 000用科学记数法表示为2.73×10n
,则n 的值是( )
A. 5
B.6
C. 7
D. 8 3. 下列运算,正确的是( )
A. 2a a a =+
B.22a a a =⋅
C. 623)(a a =
D. 236a a a =÷ 4.一次函数32-+=x y 的图象不经过...
( ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限 5.不等式-2x -<0的解集是( )
A.x >2-
B.x <2-
C.x >2
D.x <2
6.在Rt ABC ∆中, 90=∠C ,如果2=AB ,1=BC ,那么A sin 的值是( )
A. 3
B.23
C.33
D. 2
1 7.由几个大小相同的小正方体组成的立体图形的俯视..
图如图1所示,则这个立体图形应是下图1 A B C D 8. 某服装店新进一批裤子,每件进货价为120元,试销两天的情况如下:
为了增加销售量,你认为该店确定这批裤子单价时应更关心这组数据的( ) A. 平均数 B. 中位数 C. 众数 D. 方差
9. 在一个不透明的袋中装有3个红球和2个白球,它们除颜色外没有其他区别,从袋中任
意摸出一个球,然后不放回搅匀,再从袋中任意摸出一个球,那么两次都摸到白球的概率是( )
A. 81
B. 101
C. 121
D. 14
1
图3D
10.如图2,已知21∠=∠,那么添加下列一个条件后,仍无法..判定ABC ∆∽ADE ∆的是 A. B ∠BC AB AED ∠= D. AE
AC
AD AB =
11. 如图3点为圆心、AB 长为半径作⋂
AC ,则图中阴影
部分的面积为( )
A. )42(-π C. 2)2(cm -π D. 2)8(cm π- 12.182万个.设该厂五、六月份 平 ) A .182)1(502
=+x B .182)1(50)1(50502
=++++x x
C . 182)21(50=+x
D .182)21(50)1(5050=++++x x
13.如图4,已知等腰梯形ABCD 的中位线EF 的长为5,腰AD 的长为4,则这个等腰梯形
的周长为( )
A.14
B.16
C. 18
D. 20
图 4 图5 14.如图5,ABC ∆沿DE 折叠后,点A 落在BC 边上的A '处,若点D 为AB 边的中点,
50=∠B ,则A BD '∠的度数为( )
A.65º
B.70º
C. 75º
D. 80º
二、填空题(本大题满分16分,每小题4分)
15.分解因式=-3mn mn .
16.已知b a 、为两个连续自然数,且a <28<b ,则=+b a .
17.如图6,在ABC ∆中,cm AC AB 5==,AB 的垂直平分线交AC 于点N ,BCN
∆的周长是cm 8,则BC 的长等于 cm .
图3
A
图6 图7
18.如图7,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,连结BC 交⊙O 点于D ,
若∠=AOD 80º,则∠=C °.
三、解答题(本大题满分62分)
19.(满分10分,每小题5分)
(1
1
12sin 45(2)3-⎛⎫
-+-π- ⎪⎝⎭ (2)化简:2411422
x x x ⎛⎫+÷ ⎪-+-⎝⎭
20. (满分8分) 小东以每平方米30元的价格买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米³无盖长方体箱子,且此长方体箱子的底面长比宽多2米,求小东买回这块铁皮花了多少钱?
21. (满分8分) 针对“酒后驾车”容易引发车祸,国家出台了不准酒后驾车的禁令.某记者在一停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:①偶尔喝点酒后开车;②已戒酒或从来不喝酒;③喝酒后不开车或请专业司机代驾;④平时喝酒,但开车当天不喝酒.将这次调查悄况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题
(1)该记者本次一共调查了 名司机. (2)求图甲中④所在扇形的圆心角,并补全图乙.
(3)在本次调查中,记者随机采访其中的一名司机.求他属第②种情况的概率. (4)请估计开车的10万名司机中,不违反“洒驾“禁令的人数.
80°
22. (满分8分) 如图,已知ABC △的三个顶点的坐标分别为(23)A -,、(60)B -,、
(10)C -,.
(1)请直接写出点A 关于y 轴对称的点的坐标;
(2)将ABC △绕坐标原点O 逆时针旋转90°.
画出图形,并求出点B 在旋转过程当中所经过的路径长; (3)请直接写出:以A B C 、、为顶点的平行四
边形的第四个顶点D 的坐标.
23.(满分13分) 在□ABCD 中,∠A =∠DBC , 过点D 作DE =DF , 且∠EDF=∠ABD , 连接
EF 、 EC ,
N 、P 分别为EC 、BC 的中点,连接NP .
(1)如图1,若点E 在DP 上, EF 与DC 交于点M ,①求证:NP =NM
②试探究∠ABD 与∠MNP 满足的等量关系,并加以证明。
(2)如图2,若点M 在线段EF 上, 当点M 在何位置时,你在(1)中得到的结论仍然
成立,写出你确定的点M 的位置,并证明(1)中的结论.
图1 图2
24. (满分15分)已知抛物线2y x bx c =++的顶点为P ,与y 轴交于点A ,与直线OP 交于
点B .
(1)如图1,若点P 的横坐标为1,点B 的坐标为(3,6),试确定抛物线的解析式; (2)在(1)的条件下,若点M 是直线AB 下方抛物线上的一点,且3ABM
S ∆=, 求
点M 的坐标;
(3)如图2,若点P 在第一象限,且PA =PO ,过点P 作PD ⊥x 轴于点D . 将抛物线
2y x bx c =++平移,平移后的抛物线经过点A 、D ,该抛物线与x 轴的另一个交
点为C ,请探究四边形OABC 的形状,并说明理由。
M
B
D
C
E A
N
P
P
N
A E F
C
D
B。