【2018最新】大学高等数学复习要点总结-精选word文档 (3页)

合集下载

大学全册高等数学知识点总结(全)

大学全册高等数学知识点总结(全)

大学高等数学知识点整理公式,用法合集极限与连续一. 数列函数: 1. 类型:(1)数列: *()n a f n =; *1()n n a f a += (2)初等函数:(3)分段函数: *0102()(),()x x f x F x x x f x ≤⎧=⎨>⎩; *0()(),x x f x F x x x a ≠⎧=⎨=⎩;* (4)复合(含f )函数: (),()y f u u x ϕ== (5)隐式(方程): (,)0F x y =(6)参式(数一,二): ()()x x t y y t =⎧⎨=⎩(7)变限积分函数: ()(,)xaF x f x t dt =⎰(8)级数和函数(数一,三): 0(),nn n S x a xx ∞==∈Ω∑2. 特征(几何):(1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ⇒∀--定号) (2)奇偶性与周期性(应用).3. 反函数与直接函数: 11()()()y f x x f y y f x --=⇔=⇒=二. 极限性质:1. 类型: *lim n n a →∞; *lim ()x f x →∞(含x →±∞); *0lim ()x x f x →(含0x x ±→)2. 无穷小与无穷大(注: 无穷量):3. 未定型:000,,1,,0,0,0∞∞∞-∞⋅∞∞∞4. 性质: *有界性, *保号性, *归并性 三. 常用结论:11n n →, 1(0)1n a a >→, 1()max(,,)nnn na b c a b c ++→, ()00!na a n >→1(0)x x→→∞, 0lim 1xx x +→=, lim 0n x x x e →+∞=, ln lim 0n x x x →+∞=, 0lim ln 0nx x x +→=, 0,xx e x →-∞⎧→⎨+∞→+∞⎩ 四. 必备公式:1. 等价无穷小: 当()0u x →时, sin ()()u x u x ; tan ()()u x u x ; 211cos ()()2u x u x -; ()1()u x eu x -; ln(1())()u x u x +; (1())1()u x u x αα+-;arcsin ()()u x u x ; arctan ()()u x u x2. 泰勒公式:(1)2211()2!xe x x o x =+++; (2)221ln(1)()2x x x o x +=-+;(3)341sin ()3!x x x o x =-+;(4)24511cos 1()2!4!x x x o x =-++;(5)22(1)(1)1()2!x x x o x αααα-+=+++.五. 常规方法: 前提: (1)准确判断0,,1,0M α∞∞∞(其它如:00,0,0,∞-∞⋅∞∞); (2)变量代换(如:1t x=) 1. 抓大弃小()∞∞, 2. 无穷小与有界量乘积 (M α⋅) (注:1sin1,x x≤→∞) 3. 1∞处理(其它如:00,∞)4. 左右极限(包括x →±∞):(1)1(0)x x→; (2)()xe x →∞; 1(0)x e x →; (3)分段函数: x , []x , max ()f x5. 无穷小等价替换(因式中的无穷小)(注: 非零因子)6. 洛必达法则 (1)先”处理”,后法则(00最后方法); (注意对比: 1ln lim 1x x x x →-与0ln lim 1x x x x→-)(2)幂指型处理: ()()ln ()()v x v x u x u x e=(如: 1111111(1)x x x x xee e e-++-=-)(3)含变限积分;(4)不能用与不便用7. 泰勒公式(皮亚诺余项): 处理和式中的无穷小 8. 极限函数: ()lim (,)n f x F x n →∞=(⇒分段函数)六. 非常手段 1. 收敛准则:(1)()lim ()n x a f n f x →+∞=⇒(2)双边夹: *?n n n b a c ≤≤, *,?n n b c a →(3)单边挤: 1()n n a f a += *21?a a ≥ *?n a M ≤ *'()0?f x >2. 导数定义(洛必达?): 00lim'()x ff x x→=3. 积分和: 10112lim [()()()]()n nf f f f x dx n n n n→∞+++=⎰,4. 中值定理: lim[()()]lim '()x x f x a f x a f ξ→+∞→+∞+-=5. 级数和(数一三):(1)1n n a ∞=∑收敛lim 0n n a →∞⇒=, (如2!lim n n n n n →∞) (2)121lim()n n n n a a a a ∞→∞=+++=∑,(3){}n a 与11()nn n aa ∞-=-∑同敛散七. 常见应用:1. 无穷小比较(等价,阶): *(),(0)?n f x kx x →(1)(1)()(0)'(0)(0)0,(0)n n f f f f a -=====⇔()()!!nn na a f x x x x n n α=+ (2)()xxn f t dtkt dt ⎰⎰2. 渐近线(含斜):(1)()lim,lim[()]x x f x a b f x ax x→∞→∞==-()f x ax b α⇒++(2)()f x ax b α=++,(10x→)3. 连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, '()f x 连续性) 八. [,]a b 上连续函数性质1. 连通性: ([,])[,]f a b m M = (注:01λ∀<<, “平均”值:0()(1)()()f a f b f x λλ+-=)2. 介值定理: (附: 达布定理)(1)零点存在定理: ()()0f a f b <0()0f x ⇒=(根的个数); (2)()0(())'0xaf x f x dx =⇒=⎰.第二讲:导数及应用(一元)(含中值定理)一. 基本概念:1. 差商与导数: '()f x =0()()limx f x x f x x→+-; 0'()f x =000()()lim x x f x f x x x →--(1)0()(0)'(0)limx f x f f x →-= (注:0()lim (x f x A f x→=连续)(0)0,'(0)f f A ⇒==)(2)左右导: ''00(),()f x f x -+;(3)可导与连续; (在0x =处, x 连续不可导; x x 可导) 2. 微分与导数:()()'()()'()f f x x f x f x x o x df f x dx =+-=+⇒=(1)可微⇔可导; (2)比较,f df ∆与"0"的大小比较(图示); 二. 求导准备:1. 基本初等函数求导公式; (注: (())'f x )2. 法则: (1)四则运算; (2)复合法则; (3)反函数1'dx dy y = 三. 各类求导(方法步骤):1. 定义导: (1)'()f a 与'()x a f x =; (2)分段函数左右导; (3)0()()limh f x h f x h h→+--(注: 0()(),x x F x f x x x a ≠⎧=⎨=⎩, 求:0'(),'()f x f x 及'()f x 的连续性) 2. 初等导(公式加法则):(1)[()]u f g x =, 求:0'()u x (图形题); (2)()()xaF x f t dt =⎰, 求:'()F x (注: ((,))',((,))',(())'x b baaaf x t dt f x t dt f t dt ⎰⎰⎰)(3)0102(),()x x f x y x x f x <⎧=⎨≥⎩,求''00(),()f x f x -+及0'()f x (待定系数)3. 隐式((,)0f x y =)导: 22,dy d y dx dx (1)存在定理;(2)微分法(一阶微分的形式不变性). (3)对数求导法.4. 参式导(数一,二): ()()x x t y y t =⎧⎨=⎩, 求:22,dy d ydx dx 5. 高阶导()()n f x 公式:()()ax n n axe a e =; ()11!()()n n n b n a bx a bx +=--; ()(sin )sin()2n n ax a ax n π=+⨯; ()(cos )cos()2n n ax a ax n π=+⨯()()1(1)2(2)()'"n n n n n n uv u v C uv C u v --=+++注: ()(0)n f与泰勒展式: 2012()nn f x a a x a x a x =+++++()(0)!n n f a n ⇒=四. 各类应用:1. 斜率与切线(法线); (区别: ()y f x =上点0M 和过点0M 的切线)2. 物理: (相对)变化率-速度;3. 曲率(数一二):ρ=曲率半径, 曲率中心, 曲率圆)4. 边际与弹性(数三): (附: 需求, 收益, 成本, 利润) 五. 单调性与极值(必求导) 1. 判别(驻点0'()0f x =): (1) '()0()f x f x ≥⇒; '()0()f x f x ≤⇒;(2)分段函数的单调性(3)'()0f x >⇒零点唯一; "()0f x >⇒驻点唯一(必为极值,最值). 2. 极值点:(1)表格('()f x 变号); (由0002'()'()''()lim0,lim 0,lim 00x x x x x x f x f x f x x x x x→→→≠≠≠⇒=的特点) (2)二阶导(0'()0f x =)注(1)f 与',"f f 的匹配('f 图形中包含的信息);(2)实例: 由'()()()()f x x f x g x λ+=确定点“0x x =”的特点. (3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明(()0f x ≥)(1)区别: *单变量与双变量? *[,]x a b ∈与[,),(,)x a x ∈+∞∈-∞+∞? (2)类型: *'0,()0f f a ≥≥; *'0,()0f f b ≤≥*"0,(),()0f f a f b ≤≥; *00"()0,'()0,()0f x f x f x ≥=≥ (3)注意: 单调性⊕端点值⊕极值⊕凹凸性. (如: max ()()f x M f x M ≤⇔=) 4. 函数的零点个数: 单调⊕介值六. 凹凸与拐点(必求导!): 1. "y ⇒表格; (0"()0f x =)2. 应用: (1)泰勒估计; (2)'f 单调; (3)凹凸. 七. 罗尔定理与辅助函数: (注: 最值点必为驻点) 1. 结论: ()()'()()0F b F a F f ξξ=⇒== 2. 辅助函数构造实例: (1)()f ξ⇒()()xaF x f t dt =⎰(2)'()()()'()0()()()f g f g F x f x g x ξξξξ+=⇒= (3)()'()()()'()0()()f x fg f g F x g x ξξξξ-=⇒= (4)'()()()0f f ξλξξ+=⇒()()()x dxF x e f x λ⎰=;3. ()()0()n ff x ξ=⇔有1n +个零点(1)()n f x -⇔有2个零点4. 特例: 证明()()n fa ξ=的常规方法:令()()()n F x f x P x =-有1n +个零点(()n P x 待定)5. 注: 含12,ξξ时,分家!(柯西定理)6. 附(达布定理): ()f x 在[,]a b 可导,['(),'()]c f a f b ∀∈,[,]a b ξ∃∈,使:'()f c ξ= 八. 拉格朗日中值定理1. 结论: ()()'()()f b f a f b a ξ-=-; (()(),'()0a b ϕϕξϕξ<⇒∃∍>)2. 估计:'()f f x ξ=九. 泰勒公式(连接,',"f f f 之间的桥梁) 1. 结论: 2300000011()()'()()"()()"'()()2!3!f x f x f x x x f x x x f x x ξ=+-+-+-; 2. 应用: 在已知()f a 或()f b 值时进行积分估计十. 积分中值定理(附:广义): [注:有定积分(不含变限)条件时使用] 第三讲: 一元积分学一. 基本概念: 1. 原函数()F x :(1)'()()F x f x =; (2)()()f x dx dF x =; (3)()()f x dx F x c =+⎰注(1)()()xaF x f t dt =⎰(连续不一定可导);(2)()()()()xx aax t f t dt f t dt f x -⇒⇒⎰⎰ (()f x 连续)2. 不定积分性质:(1)(())'()f x dx f x =⎰; (())()d f x dx f x dx =⎰(2)'()()f x dx f x c =+⎰; ()()df x f x c =+⎰二. 不定积分常规方法1. 熟悉基本积分公式2. 基本方法: 拆(线性性)1212(()())()()k f x k g x dx k f x dx k g x dx +=+⎰⎰⎰3. 凑微法(基础): 要求巧,简,活(221sin cos x x =+)如: 211(),,ln ,2dx dx d ax b xdx dx d x a x =+==2=(1ln )(ln )x dx d x x =+=4. 变量代换:(1)常用(三角代换,根式代换,倒代换): 1sin ,,,x t t t t x====(2)作用与引伸(化简):x t =5. 分部积分(巧用):(1)含需求导的被积函数(如ln ,arctan ,()xax x f t dt ⎰);(2)“反对幂三指”: ,ln ,n ax nx e dx x xdx ⎰⎰(3)特别:()xf x dx ⎰ (*已知()f x 的原函数为()F x ; *已知'()()f x F x =)6. 特例: (1)11sin cos sin cos a x b x dx a x b x ++⎰; (2)(),()sin kx p x e dx p x axdx ⎰⎰快速法; (3)()()n v x dx u x ⎰ 三. 定积分:1. 概念性质:(1)积分和式(可积的必要条件:有界, 充分条件:连续) (2)几何意义(面积,对称性,周期性,积分中值)*2(0)8a a π>=⎰; *()02baa bx dx +-=⎰ (3)附:()()baf x dx M b a ≤-⎰,()()()bbaaf xg x dx M g x dx ≤⎰⎰)(4)定积分与变限积分, 反常积分的区别联系与侧重2: 变限积分()()xax f t dt Φ=⎰的处理(重点)(1)f 可积⇒Φ连续, f 连续⇒Φ可导 (2)(())'xaf t dt ⎰()f x =; (()())'()x xaax t f t dt f t dt -=⎰⎰;()()()xaf x dt x a f x =-⎰(3)由函数()()xaF x f t dt =⎰参与的求导, 极限, 极值, 积分(方程)问题3. N L -公式:()()()baf x dx F b F a =-⎰(()F x 在[,]a b 上必须连续!)注: (1)分段积分, 对称性(奇偶), 周期性 (2)有理式, 三角式, 根式 (3)含()baf t dt ⎰的方程.4. 变量代换: ()(())'()baf x dx f u t u t dt βα=⎰⎰(1)00()()()aa f x dx f a x dx x a t =-=-⎰⎰,(2)()()()[()()]aaaaaf x dx f x dx x t f x f x dx --=-=-=+-⎰⎰⎰ (如:4411sin dx x ππ-+⎰)(3)2201sin n n n n I xdx I nπ--==⎰,(4)2200(sin )(cos )f x dx f x dx ππ=⎰⎰;20(sin )2(sin )f x dx f x dx ππ=⎰⎰,(5)(sin )(sin )2xf x dx f x dx πππ=⎰⎰,5. 分部积分(1)准备时“凑常数” (2)已知'()f x 或()xaf x =⎰时, 求()baf x dx ⎰6. 附: 三角函数系的正交性: 22200sin cos sin cos 0nxdx nxdx nx mxdx πππ===⎰⎰⎰220sin sin cos cos ()0nx mxdx nx mxdx n m ππ=≠=⎰⎰22220sin cos nxdx nxdx πππ==⎰⎰四. 反常积分: 1. 类型: (1)(),(),()aa f x dx f x dx f x dx +∞+∞-∞-∞⎰⎰⎰(()f x 连续)(2)()baf x dx ⎰: (()f x 在,,()x a x b x c a c b ===<<处为无穷间断)2. 敛散;3. 计算: 积分法⊕N L -公式⊕极限(可换元与分部)4. 特例: (1)11p dx x +∞⎰; (2)101p dx x⎰ 五. 应用: (柱体侧面积除外)1. 面积, (1)[()()];baS f x g x dx =-⎰(2)1()dcS f y dy -=⎰;(3)21()2S r d βαθθ=⎰; (4)侧面积:2(b a S f x π=⎰ 2. 体积: (1)22[()()]bx aV f x g x dx π=-⎰; (2)12[()]2()d by caV f y dy xf x dx ππ-==⎰⎰(3)0x x V =与0y y V =3. 弧长: ds =(1)(),[,]y f x x a b =∈ as =⎰(2)12(),[,]()x x t t t t y y t =⎧∈⎨=⎩ 21t t s =⎰(3)(),[,]r r θθαβ=∈:s βαθ=⎰4. 物理(数一,二)功,引力,水压力,质心,5. 平均值(中值定理): (1)1[,]()baf a b f x dx b a =-⎰;(2)0()[0)limx x f t dt f x→+∞+∞=⎰, (f 以T 为周期:0()Tf t dt fT=⎰)第四讲: 微分方程一. 基本概念1. 常识: 通解, 初值问题与特解(注: 应用题中的隐含条件)2. 变换方程:(1)令()'""x x t y Dy =⇒=(如欧拉方程)(2)令(,)(,)'u u x y y y x u y =⇒=⇒(如伯努利方程) 3. 建立方程(应用题)的能力 二. 一阶方程:1. 形式: (1)'(,)y f x y =; (2)(,)(,)0M x y dx N x y dy +=; (3)()y a b =2. 变量分离型: '()()y f x g y =(1)解法:()()()()dyf x dx G y F x Cg y =⇒=+⎰⎰(2)“偏”微分方程:(,)zf x y x∂=∂; 3. 一阶线性(重点): '()()y p x y q x +=(1)解法(积分因子法): 00()01()[()()]()xx p x dxx x M x e y M x q x dx y M x ⎰=⇒=+⎰ (2)变化: '()()x p y x q y +=;(3)推广: 伯努利(数一) '()()y p x y q x y α+= 4. 齐次方程: '()y y x=Φ (1)解法: '(),()ydu dxu u xu u x u u x =⇒+=Φ=Φ-⎰⎰(2)特例:111222a xb yc dy dx a x b y c ++=++ 5. 全微分方程(数一): (,)(,)0M x y dx N x y dy +=且N Mx y∂∂=∂∂ dU Mdx Ndy U C =+⇒=6. 一阶差分方程(数三): 1*()()x x x x x n xx y ca y ay b p x y x Q x b+=⎧-=⇒⎨=⎩ 三. 二阶降阶方程1. "()y f x =: 12()y F x c x c =++2. "(,')y f x y =: 令'()"(,)dpy p x y f x p dx=⇒== 3. "(,')y f y y =: 令'()"(,)dpy p y y pf y p dy=⇒== 四. 高阶线性方程: ()"()'()()a x y b x y c x y f x ++= 1. 通解结构:(1)齐次解: 01122()()()y x c y x c y x =+(2)非齐次特解: 1122()()()*()y x c y x c y x y x =++ 2. 常系数方程: "'()ay by cy f x ++= (1)特征方程与特征根: 20a b c λλ++=(2)非齐次特解形式确定: 待定系数; (附: ()axf x ke =的算子法) (3)由已知解反求方程.3. 欧拉方程(数一): 2"'()ax y bxy cy f x ++=, 令2"(1),'tx e x y D D y xy Dy =⇒=-= 五. 应用(注意初始条件):1. 几何应用(斜率, 弧长, 曲率, 面积, 体积); 注: 切线和法线的截距2. 积分等式变方程(含变限积分); 可设()(),()0xaf x dx F x F a ==⎰3. 导数定义立方程: 含双变量条件()f x y +=的方程4. 变化率(速度)5. 22dv d x F ma dt dt === 6. 路径无关得方程(数一): Q Px y∂∂=∂∂ 7. 级数与方程:(1)幂级数求和; (2)方程的幂级数解法:201201,(0),'(0)y a a x a x a y a y =+++==8. 弹性问题(数三)第五讲: 多元微分与二重积分一. 二元微分学概念1. 极限, 连续, 单变量连续, 偏导, 全微分, 偏导连续(必要条件与充分条件), (1)000000(,),(,),(,)x y f f x x y y f f x x y f f x y y ∆=++∆=+∆=+ (2)lim ,lim,lim y x x y f ff f f x y∆∆∆==∆∆ (3)22,lim()()x y f df f x f ydf x y ∆-++ (判别可微性)注: (0,0)点处的偏导数与全微分的极限定义: 00(,0)(0,0)(0,)(0,0)(0,0)lim,(0,0)lim x y x y f x f f y f f f x y→→--==2. 特例:(1)22(0,0)(,)0,(0,0)xyx y fx y ⎧≠⎪+=⎨⎪=⎩: (0,0)点处可导不连续;(2)(0,0)(,)0,(0,0)f x y ≠==⎩: (0,0)点处连续可导不可微;二. 偏导数与全微分的计算:1. 显函数一,二阶偏导: (,)z f x y = 注: (1)yx 型; (2)00(,)xx y z ; (3)含变限积分2. 复合函数的一,二阶偏导(重点): [(,),(,)]z f u x y v x y =熟练掌握记号''"""12111222,,,,f f f f f 的准确使用3. 隐函数(由方程或方程组确定): (1)形式: *(,,)0F x y z =; *(,,)0(,,)0F x y zG x y z =⎧⎨=⎩ (存在定理)(2)微分法(熟练掌握一阶微分的形式不变性): 0x y z F dx F dy F dz ++= (要求: 二阶导) (3)注: 00(,)x y 与0z 的及时代入 (4)会变换方程. 三. 二元极值(定义?);1. 二元极值(显式或隐式): (1)必要条件(驻点); (2)充分条件(判别)2. 条件极值(拉格朗日乘数法) (注: 应用)(1)目标函数与约束条件: (,)(,)0z f x y x y ϕ=⊕=, (或: 多条件) (2)求解步骤: (,,)(,)(,)L x y f x y x y λλϕ=+, 求驻点即可. 3. 有界闭域上最值(重点).(1)(,){(,)(,)0}z f x y M D x y x y ϕ=⊕∈=≤ (2)实例: 距离问题四. 二重积分计算:1. 概念与性质(“积”前工作): (1)Dd σ⎰⎰,(2)对称性(熟练掌握): *D 域轴对称; *f 奇偶对称; *字母轮换对称; *重心坐标; (3)“分块”积分: *12D D D =; *(,)f x y 分片定义; *(,)f x y 奇偶2. 计算(化二次积分):(1)直角坐标与极坐标选择(转换): 以“D ”为主; (2)交换积分次序(熟练掌握). 3. 极坐标使用(转换): 22()f x y +附: 222:()()D x a y b R -+-≤; 2222:1x y D a b+≤;双纽线222222()()x y a x y +=- :1D x y +≤ 4. 特例:(1)单变量: ()f x 或()f y (2)利用重心求积分: 要求: 题型12()Dk x k y dxdy +⎰⎰, 且已知D 的面积DS与重心(,)x y5. 无界域上的反常二重积分(数三) 五: 一类积分的应用(():;;;;f M d D L σΩ⇒ΩΩΓ∑⎰):1. “尺寸”: (1)D Dd Sσ⇔⎰⎰;(2)曲面面积(除柱体侧面);2. 质量, 重心(形心), 转动惯量;3. 为三重积分, 格林公式, 曲面投影作准备.第六讲: 无穷级数(数一,三)一. 级数概念1. 定义: (1){}n a , (2)12n n S a a a =+++; (3)lim n n S →∞(如1(1)!n nn ∞=+∑)注: (1)lim n n a →∞; (2)n q ∑(或1n a∑); (3)“伸缩”级数:1()n n a a +-∑收敛{}n a ⇔收敛. 2. 性质: (1)收敛的必要条件: lim 0n n a →∞=;(2)加括号后发散, 则原级数必发散(交错级数的讨论); (3)221,0n n n n s s a s s s s +→→⇒→⇒→; 二. 正项级数1. 正项级数: (1)定义: 0n a ≥; (2)特征: nS ; (3)收敛n S M ⇔≤(有界)2. 标准级数: (1)1p n ∑, (2)ln k n n α∑, (3)1ln k n n∑3. 审敛方法: (注:222ab a b ≤+,ln ln ba ab =)(1)比较法(原理):np ka n(估计), 如10()n f x dx ⎰; ()()P n Q n ∑(2)比值与根值: *1limn n nu u +→∞*n (应用: 幂级数收敛半径计算)三. 交错级数(含一般项):1(1)n n a +-∑(0n a >)1. “审”前考察: (1)0?n a > (2)0?n a →; (3)绝对(条件)收敛?注: 若1lim1n n na a ρ+→∞=>,则n u ∑发散2. 标准级数: (1)11(1)n n +-∑; (2)11(1)n p n +-∑; (3)11(1)ln n p n+-∑ 3. 莱布尼兹审敛法(收敛?) (1)前提:na∑发散; (2)条件: ,0nn a a →; (3)结论:1(1)n n a +-∑条件收敛.4. 补充方法:(1)加括号后发散, 则原级数必发散; (2)221,0n n n n s s a s s s s +→→⇒→⇒→. 5. 注意事项: 对比 na∑;(1)n na-∑;na∑;2na∑之间的敛散关系四. 幂级数:1. 常见形式: (1)nna x∑, (2)()nna x x -∑, (3)20()nna x x -∑2. 阿贝尔定理:(1)结论: *x x =敛*0R x x ⇒≥-; *x x =散*0R x x ⇒≤- (2)注: 当*x x =条件收敛时*R x x ⇒=- 3. 收敛半径,区间,收敛域(求和前的准备) 注(1),n nn n a na x x n∑∑与n n a x ∑同收敛半径 (2)nna x∑与20()nna x x -∑之间的转换4. 幂级数展开法:(1)前提: 熟记公式(双向,标明敛域) 23111,2!3!xe x x x R =++++Ω= 24111()1,22!4!x x e e x x R -+=+++Ω= 35111(),23!5!x x e e x x x R --=+++Ω= 3511sin ,3!5!x x x x R =-+-Ω= 2411cos 1,2!4!x x x R =-++Ω=;211,(1,1)1x x x x =+++∈--; 211,(1,1)1x x x x=-+-∈-+ 2311ln(1),(1,1]23x x x x x +=-+-∈-2311ln(1),[1,1)23x x x x x -=----∈-3511arctan ,[1,1]35x x x x x =-+-∈-(2)分解: ()()()f x g x h x =+(注:中心移动) (特别: 021,x x ax bx c=++) (3)考察导函数: ()'()g x f x 0()()(0)xf xg x dx f ⇒=+⎰(4)考察原函数: 0()()xg x f x dx ⎰()'()f x g x ⇒=5. 幂级数求和法(注: *先求收敛域, *变量替换): (1)(),S x =+∑∑(2)'()S x =,(注意首项变化)(3)()()'S x =∑,(4)()"()"S x S x ⇒的微分方程 (5)应用:()(1)n nn n aa x S x a S ⇒=⇒=∑∑∑.6. 方程的幂级数解法7. 经济应用(数三):(1)复利: (1)nA p +; (2)现值: (1)nA p -+五. 傅里叶级数(数一): (2T π=)1. 傅氏级数(三角级数): 01()cos sin 2n n n a S x a nx b nx ∞==++∑ 2. Dirichlet 充分条件(收敛定理): (1)由()()f x S x ⇒(和函数) (2)1()[()()]2S x f x f x =-++ 3. 系数公式: 01()cos 1(),,1,2,3,1()sin n n a f x nxdx a f x dx n b f x nxdx πππππππππ---⎧=⎪⎪==⎨⎪=⎪⎩⎰⎰⎰4. 题型: (注: ()(),?f x S x x =∈) (1)2T π=且(),(,]f x x ππ=∈-(分段表示)(2)(,]x ππ∈-或[0,2]x π∈ (3)[0,]x π∈正弦或余弦 *(4)[0,]x π∈(T π=) *5. 2T l =6. 附产品: ()f x ⇒01()cos sin 2n n n a S x a nx b nx ∞==++∑ 00001()cos sin 2n n n a S x a nx b nx ∞=⇒=++∑001[()()]2f x f x =-++第七讲: 向量,偏导应用与方向导(数一)一. 向量基本运算1. 12k a k b +; (平行b a λ⇔=)2. a ; (单位向量(方向余弦) 01(cos ,cos ,cos )a a aαβγ=)3. a b ⋅; (投影:()a a b b a⋅=; 垂直:0a b a b ⊥⇔⋅=; 夹角:(,)a b a b a b⋅=)4. a b ⨯; (法向:,n a b a b =⨯⊥; 面积:S a b =⨯) 二. 平面与直线1.平面∏(1)特征(基本量): 0000(,,)(,,)M x y z n A B C ⊕=(2)方程(点法式): 000:()()()00A x x B y y C z z Ax By Cz D π-+-+-=⇒+++= (3)其它: *截距式1x y za b c++=; *三点式2.直线L(1)特征(基本量): 0000(,,)(,,)M x y z s m n p ⊕= (2)方程(点向式): 000:x x y y z z L m n p---== (3)一般方程(交面式): 111122220A xB yC zD A x B y C z D +++=⎧⎨+++=⎩(4)其它: *二点式; *参数式;(附: 线段AB 的参数表示:121121121()(),[0,1]()x a a a t y b b b t t z c c c t=+-⎧⎪=+-∈⎨⎪=+-⎩)3. 实用方法:(1)平面束方程: 11112222:()0A x B y C z D A x B y C z D πλ+++++++= (2)距离公式: 如点000(,)M x y到平面的距离d =(3)对称问题;(4)投影问题.三. 曲面与空间曲线(准备) 1. 曲面(1)形式∑: (,,)0F x y z = 或(,)z f x y =; (注: 柱面(,)0f x y =) (2)法向(,,)(cos ,cos ,cos )x y z n F F F αβγ=⇒ (或(,1)x y n z z =--)2. 曲线(1)形式():()()x x t y y t z z t =⎧⎪Γ=⎨⎪=⎩, 或(,,)0(,,)0F x y z G x y z =⎧⎨=⎩;(2)切向: {'(),'(),'()}s x t y t z t = (或12s n n =⨯)3. 应用(1)交线, 投影柱面与投影曲线;(2)旋转面计算: 参式曲线绕坐标轴旋转;(3)锥面计算.四. 常用二次曲面1. 圆柱面: 222x y R += 2. 球面: 2222x y z R ++=变形: 2222x y R z +=-,z =,2222x y z az ++=, 2222000()()()x x y y z z R -+-+-=3. 锥面: z =变形: 222x y z +=, z a = 4. 抛物面: 22z x y =+,变形: 22x y z +=, 22()z a x y =-+ 5. 双曲面: 2221x y z +=± 6. 马鞍面: 22z x y =-, 或z xy =五. 偏导几何应用 1. 曲面(1)法向: (,,)0(,,)x y z F x y z n F F F =⇒=, 注: (,)(,1)x y z f x y n f f =⇒=- (2)切平面与法线:2. 曲线(1)切向: (),(),()(',',')x x t y y t z z t s x y z ===⇒= (2)切线与法平面3. 综合: :Γ00F G =⎧⎨=⎩, 12s n n =⨯六. 方向导与梯度(重点) 1. 方向导(l 方向斜率):(1)定义(条件): (,,)(cos ,cos ,cos )l m n p αβγ=⇒ (2)计算(充分条件:可微):cos cos cos x y z uu u u lαβγ∂=++∂ 附: 0(,),{cos ,sin }z f x y l θθ==cos sin x y zf f lθθ∂⇒=+∂ (3)附: 2222cos 2sin cos sin xx xy yy f f f f lθθθθ∂=++∂2. 梯度(取得最大斜率值的方向) G :(1)计算:()(,)(,)x y a z f x y G gradz f f =⇒==; ()(,,)(,,)x y z b u f x y z G gradu u u u =⇒== (2)结论 ()a ul∂∂0G l =⋅; ()b 取l G =为最大变化率方向; ()c 0()G M 为最大方向导数值.第八讲: 三重积分与线面积分(数一)一. 三重积分(fdV Ω⎰⎰⎰)1. Ω域的特征(不涉及复杂空间域):(1)对称性(重点): 含: 关于坐标面; 关于变量; 关于重心 (2)投影法: 22212{(,)}(,)(,)xy D x y x y R z x y z z x y =+≤⊕≤≤ (3)截面法: 222(){(,)()}D z x y x y R z a z b =+≤⊕≤≤ (4)其它: 长方体, 四面体, 椭球 2. f 的特征:(1)单变量()f z , (2)22()f x y +, (3)222()f x y z ++, (4)f ax by cz d =+++ 3. 选择最适合方法: (1)“积”前: *dv Ω⎰⎰⎰; *利用对称性(重点)(2)截面法(旋转体): ()baD z I dz fdxdy =⎰⎰⎰(细腰或中空, ()f z , 22()f x y +)(3)投影法(直柱体): 21(,)(,)xyz x y z x y D I dxdy fdz =⎰⎰⎰(4)球坐标(球或锥体): 220sin ()RI d d f d παθϕϕρρ=⋅⋅⋅⎰⎰⎰,(5)重心法(f ax by cz d =+++): ()I ax by cz d V Ω=+++ 4. 应用问题:(1)同第一类积分: 质量, 质心, 转动惯量, 引力 (2)Gauss 公式二. 第一类线积分(Lfds ⎰)1. “积”前准备:(1)Lds L =⎰; (2)对称性; (3)代入“L ”表达式2. 计算公式:()[,]((),(()b aLx x t t a b fds f x t y t y y t =⎧∈⇒=⎨=⎩⎰⎰3. 补充说明: (1)重心法:()()Lax by c ds ax by c L ++=++⎰;(2)与第二类互换: LLA ds A dr τ⋅=⋅⎰⎰4. 应用范围(1)第一类积分 (2)柱体侧面积 (),Lz x y ds ⎰三. 第一类面积分(fdS ∑⎰⎰)1. “积”前工作(重点): (1)dS ∑=∑⎰⎰; (代入:(,,)0F x y z ∑=)(2)对称性(如: 字母轮换, 重心) (3)分片 2. 计算公式:(1)(,),(,)(,,(,xyxy D z z x y x y D I f x y z x y =∈⇒=⎰⎰(2)与第二类互换:A ndS A d S ∑∑⋅=⋅⎰⎰⎰⎰四: 第二类曲线积分(1):(,)(,)LP x y dx Q x y dy +⎰ (其中L 有向)1. 直接计算: ()()x x t y y t =⎧⎨=⎩,2112:['()'()]t t t t t I Px t Qy t dt →⇒=+⎰常见(1)水平线与垂直线; (2)221x y += 2. Green 公式: (1)()LDQ PPdx Qdy dxdy x y∂∂+=-∂∂⎰⎰⎰; (2)()L A B →⎰: *P Q y y ∂∂=⇒∂∂换路径; *P Q y y∂∂≠⇒∂∂围路径(3)L⎰(x y Q P =但D 内有奇点)*LL =⎰⎰(变形)3. 推广(路径无关性):P Q y y∂∂=∂∂ (1)Pdx Qdy du +=(微分方程)()BA L AB u →⇔=⎰(道路变形原理)(2)(,)(,)LP x y dx Q x y dy +⎰与路径无关(f 待定): 微分方程.4. 应用功(环流量):I F dr Γ=⋅⎰(Γ有向τ,(,,)F P Q R =,(,,)d r ds dx dy dz τ==)五. 第二类曲面积分: 1. 定义: Pdydz Qdzdx Rdxdy ∑++⎰⎰, 或(,,)R x y z dxdy ∑⎰⎰ (其中∑含侧)2. 计算:(1)定向投影(单项):(,,)R x y z dxdy ∑⎰⎰, 其中:(,)z z x y ∑=(特别:水平面);注: 垂直侧面, 双层分隔(2)合一投影(多项,单层): (,,1)x y n z z =-- [()()]xyPdydz Qdzdx Rdxdy P z Q z R dxdy ∑∑⇒++=-+-+⎰⎰⎰⎰(3)化第一类(∑不投影): (cos ,cos ,cos )n αβγ= (cos cos cos )Pdydz Qdzdx Rdxdy P Q R dS αβγ∑∑⇒++=++⎰⎰⎰⎰3. Gauss 公式及其应用: (1)散度计算: P Q R divA x y z∂∂∂=++∂∂∂ (2)Gauss 公式: ∑封闭外侧, Ω内无奇点Pdydz Qdzdx Rdxdy divAdv ∑Ω++=⎰⎰⎰⎰⎰(3)注: *补充“盖”平面:0∑∑+⎰⎰⎰⎰; *封闭曲面变形∑⎰⎰(含奇点)4. 通量与积分: A d S ∑Φ=⋅⎰⎰ (∑有向n ,(),,A P Q R =,(,,)d S ndS dydz dzdx dxdy ==)六: 第二类曲线积分(2):(,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz Γ++⎰1. 参数式曲线Γ: 直接计算(代入)注(1)当0rot A =时, 可任选路径; (2)功(环流量):I F dr Γ=⋅⎰2. Stokes 公式: (要求: Γ为交面式(有向), 所张曲面∑含侧) (1)旋度计算: (,,)(,,)R A P Q R x y z∂∂∂=∇⨯=⨯∂∂∂ (2)交面式(一般含平面)封闭曲线: 0F G =⎧⇒⎨=⎩同侧法向{,,}x y z n F F F =或{,,}x y z G G G ;(3)Stokes 公式(选择): ()A dr A ndS Γ∑⋅=∇⨯⋅⎰⎰⎰(a )化为Pdydz Qdzdx Rdxdy ∑++⎰⎰; (b )化为(,,)R x y z dxdy ∑⎰⎰; (c )化为fdS ∑⎰⎰高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(xa y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。

(完整版)大一高数知识点,重难点整理,推荐文档

(完整版)大一高数知识点,重难点整理,推荐文档

n
( ) lim
为常数),
qn = 0 q 1 。
n→∞
若数列{an}没有极限,则称数列{an}发散。 数列极限不存在的两种情况: (1)数列有界,但当 n→∞时,数列通项不与任何常数无限接近,如:
1n1 ;
(2)数列无界,如数列{n²}。 二、当 x→0 时,函数 f(x)的极限
如果当 x 的绝对值无限增大(记作 x→∞)时,函数 f(x)无限地接近一个确定的常
(2) (u • v)′ = u′ v + u ,特别的,(k·u)’=k·u’,其中 k 为常数。
(3)若
v
0
,则
u v
u
vu v2
v
,特别的,
k v
k v v2
,,其中
k
是常
数。
推论 若函数 u1 u1x, u2 u2 x,..., um um x都可导,则
(1) u1 u2 um u1 u2 um ;
x
lim
f
x
A n
lim
f
x
A 。
建议收藏下载本文,以便随时学习! 三、当 X→Xo 时,函数 f(x)的极限 1、当 X→Xo 时,函数 f(x)的极限定义
如果当 x 无限接近 Xo(记作 X→Xo)时,函数 f(x)无限接近于一个确定的常数 A,则
称 A 为函数 f(x)当 X→Xo 时的极限,记作 lim f x A ,或当 X→Xo 时,f(x) →A。
续。 如果函数 f(x)在某个区间上连续,就称 f(x)是这个区间上的连续函数。
二、连续函数的运算与初等函数的连续性 1.连续函数的运算 如果两个函数பைடு நூலகம்某一点连续,那么它们的和、差、积、商(分母不为零)在这一点

大学全册高等数学知识点(全)

大学全册高等数学知识点(全)

大学高等数学知识点整理公式,用法合集极限与连续一. 数列函数: 1.类型:(1) 数列:* a n f(n);(2) 初等函数:⑶分段函数:*F(x)an 1f(a n)f i (x) x X of2(X ),X X o ; *F(X)⑷复合洽f )函数:y f(u), u (x)⑸隐式(方程): F(x, y) 0X ⑺变限积分函数:F(x) f(x,t)dta(8)级数和函数(数一,三):S(x)a n X n , Xn 02.特征(几何):,0 , 00, 1 1n n 1, a n (a 0) 1, (a n b nf(x) x X a 'x x 0(6)参式(数一,二):x x(t) y y(t)(1)单调性与有界性 (判别);(f(x)单调 X 0, (X (2)奇偶性与周期性 (应用).3.反函数与直接函数 y f(x) xf 2 3 4 1(y) 二.极限性质: 1.类型:* lim a n ;lim f (x)(含 xX);x °)( f (x) f (x 。

))定号)y f 1(x)f (x)洽 x X 0 )1 -(x 0) xlim x xx 01,limx0,n..ln x lim 0,x xlim xln n x 0,x 0 1.等价无穷小:当u (x ) sin u(x): u(x); tan u(x): u(x); cosu(x) : 1 u 2(x);e u(x) 1: u(x); ln(1 u(x)):u(x);(1 u(x))1: u(x);arcsin u (x): u(x);arcta n u(x): u(x)2.泰勒公式: x / (1) e 1 x (2) ln(1 x) (3) sinx (4) COSx 1 2x 2! 1 2 x x 2 1 3x3! 1 2 x2! o(x 2); o(x 2); o(x 4); ⑸(1 x ) 1 45x o(x ); 4!(1) 2 (2、x o(x ). 2!五•常规方法: 前提:(1)准确判断 ,M (其它如:,0,00,1); (2)变量代换(如: t )x1.抓大弃小(一),2.无穷小与有界量乘积 (注:sin 1 x1,x3. 1处理(其它如 :00, 0) 4.左右极限(包括 ):x /⑵e (x);1e x (x0);(3)分段函数:x , [x], max f (x)5. 无穷小等价替换6. 洛必达法则 (因式中的无穷小)(注:非零因子)(1)先”处理”后法则(最后方法);(注意对比:lim 与|im 凶竺)0 x 11 x x 0 1 x1 1 1 1 1(2) 幕指型处理:u(x)心 e v(x)lnu(x)(如:e 亍 e x (e^ ' 1))(3) 含变限积分;(4) 不能用与不便用 泰勒公式(皮亚诺余项):处理和式中的无穷小 极限函数:f (x) lim F (x, n)(分段函数)n非常手段 收敛准则: (1) a nf (n) lim f (x)x(2) 双边夹:* b n a n c n ?, *b n ,c na? (3) 单边挤:a n 1 f (a n ) * a 2a/ * a .M ? * f '(x) 0?7.8. 六. 1.2. 3. 4. 5.七. 1.2.3. 八.导数定义(洛必达?): limf '(X 。

高等数学知识点总结

高等数学知识点总结

高等数学是大学理工科学生的一门基础课程,涉及到数学分析、线性代数、概率论和数学物理方法等内容。

本文将对高等数学的知识点进行总结,以供参考。

一、数学分析1.极限与连续极限是数学分析的基础概念,主要研究函数在某一点的邻域内的性质。

极限的性质包括保号性、保序性等。

连续性是极限的一种特殊情况,一个函数在某一点的极限等于该点的函数值,则称该函数在该点连续。

2.导数与微分导数研究函数在某一点的切线斜率,是函数变化率的具体体现。

导数的计算方法包括定义法、导数法则和高阶导数等。

微分是导数的一种应用,主要研究函数在某一点的微小变化。

3.积分与不定积分积分是导数的逆运算,研究函数在某一区间内的累积变化。

积分的计算方法包括牛顿-莱布尼茨公式、换元积分法和分部积分法等。

不定积分是积分的一种扩展,没有明确的积分界限,主要用于求解原函数。

级数是数学分析中的重要部分,研究函数的和式。

常见的级数包括幂级数、泰勒级数和傅里叶级数等。

级数的收敛性判断是级数研究的关键,常用的判断方法有比较判别法、比值判别法和根值判别法等。

5.多元函数微分学多元函数微分学研究多个变量之间的函数关系。

主要内容包括偏导数、全微分、方向导数和雅可比矩阵等。

重积分是研究函数在空间区域上的累积变化。

重积分的计算方法包括一重积分、二重积分和三重积分等。

7.常微分方程常微分方程是描述自然界和工程技术中具有变化规律的数学模型。

常微分方程的解法包括分离变量法、常数变易法和线性微分方程组等。

二、线性代数矩阵是线性代数的基本工具,用于描述线性方程组和线性变换。

矩阵的运算包括加法、减法、数乘和矩阵乘法等。

矩阵的行列式用于判断线性方程组的解的情况。

2.线性方程组线性方程组是实际问题中常见的数学模型。

线性方程组的解法包括高斯消元法、矩阵求逆法和克莱姆法则等。

3.向量空间与线性变换向量空间是具有加法和数乘运算的向量集合。

线性变换是从一个向量空间到另一个向量空间的线性映射。

4.特征值与特征向量特征值和特征向量是描述矩阵性质的重要概念。

【2018最新】高数重点知识点-范文word版 (2页)

【2018最新】高数重点知识点-范文word版 (2页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==高数重点知识点整套试卷满分150分,考试时间180分钟,数学一和数学三试卷中高等数学占56%,分数值为82分,数学二试卷中高等数学占78%,分数值为116分。

试卷结构为单选题8道,填空题6道,解答题9道。

数学一和数学三试卷的择题1至4题、填空题9至12题、解答题15至19题考的是高等数学内容,数学二试卷的选择题1至6题、填空题9至13题、解答题15至21题考的是高等数学内容。

选择题和填空题:属于中等偏下难度的题目,重点考察大家对于三基的掌握。

解答题:主要考察中等难度和较高难度的题目,以四种题型为主:计算题、证明题、应用题(几何应用、物理应用、经济应用)、综合题。

解答题一般涉及多个知识点,比较综合。

·高数重点知识点具体的重点知识点如下:1、极限计算(数列和函数极限,等价无穷小代换、泰勒公式、洛必达法则等);2、导数及其应用(方程根的问题、极值最值、拐点、凹凸性、渐近线、不等式的证明等);3、中值定理相关的证明;4、不定积分、定积分的计算(换元法、分部积分法、有理函数积分的计算,变限积分函数求导公式、牛顿-莱布尼兹公式的应用等);5、定积分的几何应用(微元法,平面图形的面积、旋转体的表面、弧长、旋转体的体积等);6、多元函数的微分法(偏导数的计算、条件极值为重点);7、二重积分的计算(数二、数三的必考题);8、微分方程(特定类型的方程求解,应用题等);9、级数(敛散性判断、级数求和、函数的幂级数展开,傅立叶级数(数一));10、曲线曲面积分(数一必考,格林公式、高斯公式、斯托克斯公式的运用)。

只要大家平时注重基础知识的理解和掌握,并配合一定数量题目的练习,就一定能够在数学上拿到高分。

大学高数知识点总结

大学高数知识点总结

大学高数知识点总结大学高数知识点总结一、代数:1、函数及其图象:定义域、值域、增函数、减函数、奇函数、偶函数、有界函数、无界函数、相交函数、无穷小量的概念、函数的极限及其性质。

2、不等式:一元不等式与多元不等式的性质、解不等式的方法以及在几何中的应用。

3、导数:函数的导数的定义、性质、计算、利用导数解析函数的最值问题;高阶导数的概念以及利用它确定函数图象的单调性。

4、曲线的积分:曲线的面积、积分的定义、计算方法、利用积分求曲线面积、平面曲线的积分、特殊函数的积分。

5、复数:复数的概念、运算规则、虚部抽象概念、复数函数、复数解析函数及其图象、利用几何性质解决复数问题。

6、三角函数:三角函数的概念、函数表达式、图象、关系式、函数的性质、函数的变换、求解三角函数的方法、应用。

7、统计:概率的概念、抽样理论、统计分布、误差分析、检验理论。

二、初等数论:1、素数及其分解:素数的概念、素数的分解法、素数的基本性质、素数的充要条件。

2、同余理论:同余方程的概念、同余方程的解法、同余方程的性质、模的概念及其性质。

3、欧几里德算法:求最大公约数、求最小公倍数、求逆元、斯特林公式、欧几里得定理及其应用。

4、置换:置换的概念、置换的性质、置换的构成、置换的表示法、置换的应用。

5、图论:图的概念、图的构成、图的性质、图的表示法、图的生成算法、图的应用。

三、几何:1、几何形体:正n边形、正多边形、空间几何体、椭圆、圆锥、圆柱、圆台等几何形体的性质及其应用。

2、切线、切面:曲线的切线、曲面的切面、曲线的法线方向、曲面的法线方向、曲线的曲率、曲面的曲率及其定义。

3、投影:正射投影、透视投影、锥体投影等投影的概念及其应用。

4、立体视角:立体视角的概念、立体视角的定义及其应用。

四、空间几何:1、几何性质:投影的性质、平面的性质、空间的性质、直线的性质、平行线的性质、平面的性质、直线的性质、平行线的性质、面的性质、曲线的性质、曲面的性质、四边形的性质等。

大一高数知识点总结完整版

大一高数知识点总结完整版

大一高数知识点总结完整版导言:大学高级数学(简称高数)是一门对很多理工科学生来说非常重要的课程。

在大一期间,我们学习了高数的基础知识,这些知识对我们后续学习进一步的数学课程以及其他学科都有很大帮助。

下面将对大一高数的几个重要知识点进行总结,以便于我们复习巩固。

1. 一元函数的极限和连续性1.1 函数的极限:介绍了函数极限的概念、定义和性质。

包括左极限和右极限,无穷大极限等。

1.2 连续性:介绍了函数连续性的概念,以及一些函数连续性的判定方法,如闭区间上的连续函数必定有界。

1.3 中值定理:包括罗尔定理、拉格朗日中值定理和柯西中值定理等,讲述了函数导数和函数性质之间的关系。

2.1 导数的定义:介绍了导数的定义和性质,导数的图形意义以及几何意义。

2.2 导数的四则运算法则:讲述了求和、差、积和商的函数的导数的法则。

2.3 高阶导数:介绍了导数的概念,如一阶导数、二阶导数等。

2.4 微分:讲述了微分的定义、性质和微分形式。

3. 微分中值定理和泰勒级数3.1 罗尔中值定理和拉格朗日中值定理:介绍了导数中值定理的概念和应用。

3.2 泰勒级数:讲述了泰勒级数的概念、性质以及泰勒展开公式的推导。

4.1 不定积分的定义和常用公式:介绍了不定积分的定义和性质,以及一些基本的不定积分公式。

4.2 定积分和变量替换法:讲述了定积分的概念和性质,以及变量替换法在定积分中的应用。

5. 定积分的应用5.1 平均值、面积和弧长:介绍了定积分在求函数平均值、曲线下面积和弧长等方面的应用。

5.2 微分方程的应用:讲述了定积分在求解微分方程的问题中的应用。

6. 多元函数的极限与连续性6.1 多元函数的极限:讲述了多元函数的极限的定义和判定方法。

6.2 多元函数的偏导数:介绍了多元函数的偏导数的定义和计算方法。

6.3 多元函数的连续性:讲述了多元函数的连续性的概念和性质。

7. 重积分7.1 二重积分:介绍了二重积分的定义和性质,以及二重积分的计算方法。

高数复习重点

高数复习重点

高数复习重点高等数学(简称高数)是大多数理、工、经、管类专业的重要基础课程之一。

通过对高数的学习,可以培养学生的逻辑思维能力和抽象思维能力,为后续学习和工作打下坚实的基础。

在复习高数的过程中,掌握重点知识点是非常重要的。

本文将介绍高数复习的重点内容,帮助您更好地备战考试。

1. 极限和连续性在高数中,极限和连续性是最基础也是最重要的知识点之一。

掌握极限和连续性的概念、性质及相关运算法则是解题的关键。

在复习时,要重点掌握函数极限、无穷小与无穷大、导数和微分的定义与计算方法等内容。

2. 导数与微分导数与微分是高数中的核心内容,它们是研究函数变化率和函数在某点的切线斜率的重要工具。

在复习导数与微分时,要熟悉导数的基本定义和基本性质,掌握各种基本函数的导数公式,如幂函数、指数函数、对数函数以及三角函数等。

3. 微分中值定理与导数应用微分中值定理是高数中的一个重要定理,它是计算函数在某个区间上的平均变化率与瞬时变化率之间的关系的重要工具。

在复习微分中值定理时,要理解和掌握罗尔定理、拉格朗日中值定理和柯西中值定理等内容,同时要能灵活运用导数的应用,如解决最值问题、曲线的凸凹性和渐近线等。

4. 不定积分和定积分不定积分和定积分是高数中的重要概念,它们是求解函数的原函数和计算曲线下面积的重要工具。

在复习不定积分和定积分时,要掌握基本的求积分方法和常见函数的积分公式,如换元积分法、分部积分法、定积分的定义和性质等。

5. 微分方程微分方程是高数的一个重要章节,它可以描述自然界中的各种变化过程。

在复习微分方程时,要掌握常微分方程的基本概念和基本解法,如一阶和二阶常微分方程的求解方法、特殊微分方程的解法和初值问题的求解等。

6.级数和幂级数级数和幂级数是高数中的重要内容,也是进一步学习数学分析和物理等学科的基础。

在复习级数和幂级数时,要了解级数和幂级数的定义和性质,如收敛性、发散性以及级数的求和等方法。

以上是高数复习的重点内容,希望本文能够帮助您有针对性地复习高数。

大学数学知识点总结

大学数学知识点总结

大学数学知识点总结一、微积分1. 极限与连续性- 极限的定义与性质- 无穷小与无穷大- 连续函数的性质与分类2. 微分学- 导数的定义与计算- 高阶导数- 隐函数与参数方程的微分3. 积分学- 不定积分与定积分- 积分技巧(换元法、分部积分法等)- 积分的应用(面积、体积、弧长等)4. 微分方程- 常微分方程的基本概念- 可分离变量的微分方程- 一阶线性微分方程二、线性代数1. 向量与空间- 向量的运算与性质- 向量空间与子空间- 线性相关与线性无关2. 矩阵与变换- 矩阵的运算- 矩阵的逆与行列式- 线性变换与特征值问题3. 线性方程组- 线性方程组的解的结构- 高斯消元法- 克拉默法则三、概率论与数理统计1. 概率论基础- 随机事件与概率的定义- 条件概率与独立性- 随机变量与分布函数2. 描述性统计- 数据的集中趋势(均值、中位数、众数) - 数据的离散程度(方差、标准差、极差) - 数据的分布形状(偏度、峰度)3. 推断性统计- 抽样与抽样分布- 置信区间- 假设检验四、离散数学1. 集合论- 集合的基本概念与运算- 基数与序数- 有限集合与无限集合2. 图论- 图的基本概念(顶点、边、路径)- 图的遍历(深度优先搜索、广度优先搜索) - 欧拉图与哈密顿图3. 逻辑与布尔代数- 命题逻辑与谓词逻辑- 布尔代数的基本运算- 逻辑电路的设计五、数值分析1. 数值线性代数- 矩阵的数值分解(LU分解、QR分解等)- 线性方程组的数值解法- 特征值问题的数值方法2. 插值与逼近- 多项式插值- 样条插值- 最小二乘法3. 常微分方程的数值解- 欧拉方法与改进的欧拉方法- 龙格-库塔方法- 边界值问题的数值解法以上是大学数学课程中常见的几个主要领域的知识点概要。

每个领域都有其详细的理论基础和应用场景,需要通过系统的学习和大量的练习来掌握。

如果需要进一步的详细解释或示例,可以针对每个部分进行扩展。

高数大一最全知识点总结

高数大一最全知识点总结

高数大一最全知识点总结高等数学作为一门重要的学科,对于大一学生来说是一门必修课程。

掌握高等数学的基本知识点,不仅对于日后的学习打下了坚实的基础,也有助于理解其他相关学科的内容。

本文将对高数大一学习中的各个知识点进行总结和归纳,帮助读者更好地理解和应用这些知识。

一、微分与导数1. 函数与极限- 一元函数与多元函数- 函数的极限定义- 常见函数的极限计算方法2. 导数与微分- 导数的定义与性质- 常见函数的导数计算方法- 微分的概念与应用3. 高级导数- 高阶导数的定义- 高阶导数的性质- 隐函数与参数方程的高阶导数计算二、积分与微分方程1. 不定积分与定积分- 不定积分的定义与性质- 常见函数的积分计算方法- 定积分的定义与性质- 积分中值定理及其应用2. 微分方程基础- 微分方程的概念- 一阶常微分方程的解法- 高阶常微分方程的解法3. 微分方程的应用- 物理问题中的微分方程- 生活中的微分方程应用- 模型问题中的微分方程建立与求解三、级数与数列1. 数列与极限- 数列极限的定义与性质- 常见数列极限计算方法- 无穷大与无穷小2. 常数项级数- 级数的概念与性质- 常数项级数的敛散性判定- 常数项级数的收敛性判定方法3. 幂级数- 幂级数的概念与性质- 幂级数的收敛区间与收敛半径的计算 - 幂级数的应用四、空间解析几何1. 三维空间中的点、直线、平面- 点的坐标表示- 直线的参数方程与一般方程- 平面的点法式与一般方程2. 直线与平面的位置关系- 直线与平面的交点- 直线与平面的夹角- 平面与平面的位置关系3. 空间曲线与曲面- 空间曲线的参数方程- 隐函数方程与参数方程的相互转化 - 曲面方程的一般形式与特殊形式五、多元函数与偏导数1. 多元函数的概念与性质- 多元函数的定义- 多元函数的极限与连续性判定- 多元函数的偏导数与全微分2. 偏导数的计算- 偏导数的定义与性质- 偏导数的计算方法与应用- 高阶偏导数的定义与计算3. 多元函数极值与条件极值- 多元函数的极值判定条件- 多元函数的最值计算- 有条件的极值问题总结:通过对高数大一知识点的总结,我们了解了微分与导数、积分与微分方程、级数与数列、空间解析几何以及多元函数与偏导数等重要内容。

大学高等数学复习要点总结

大学高等数学复习要点总结

大学高等数学复习要点总结在大学学习过程中,高等数学是一门非常重要的基础课程。

它为我们打下了数学思维和分析问题的基本能力。

然而,由于高等数学的内容较多且抽象,为了更好地复习和掌握这门课程,我们需要将重点知识点进行总结和归纳。

本文将从导数、积分、微分方程等几个方面介绍高等数学的复习要点。

一、导数导数是高等数学中一个重要的概念,它表示函数在某一点上的变化率。

常见的导函数有常函数、幂函数、指数函数、对数函数等。

在复习导数的过程中,需要掌握以下几个要点:1. 导数的定义:导数是函数在某一点上的极限。

对于函数f(x),它的导数可以表示为f'(x)。

2. 基本导数公式:常数的导数为零,幂函数的导数公式为nx^(n-1)。

3. 导数的运算法则:求导数的过程中,可以运用常数倍法则、和差法则、乘积法则和商法则等。

4. 高阶导数:函数的导数还可以进行多次求导,这就涉及到高阶导数的概念。

二、积分积分是导数的逆运算,它表示函数在一定区间上的累积和。

在复习积分的过程中,需要掌握以下几个要点:1. 不定积分和定积分:不定积分是求解原函数的过程,定积分是求解函数在一定区间上的面积。

2. 基本积分公式:根据导数的基本公式,可以得到一些基本的积分公式,如幂函数积分公式、三角函数积分公式等。

3. 积分的运算法则:积分具有线性性质,可以使用线性组合法则、分部积分法则等进行运算。

4. 曲线的长度和曲线下面积的计算:利用积分可以求解曲线的长度以及曲线下面积等问题。

三、微分方程微分方程是描述函数变化的方程,它在科学和工程问题中具有广泛的应用。

在复习微分方程的过程中,需要掌握以下几个要点:1. 一阶微分方程:一阶微分方程是关于未知函数及其导数的方程,可以使用分离变量法、一阶线性微分方程的求解等方法来解决。

2. 高阶微分方程:高阶微分方程是包含多个导数的方程,可以使用特征方程、常系数线性齐次微分方程等方法进行求解。

3. 常微分方程的应用:微分方程在物理、生物、经济等领域具有广泛的应用,如弹簧振动问题、生物种群增长问题等。

高等数学知识点总结

高等数学知识点总结

高等数学知识点总结1. 极限与连续性- 极限的定义与性质- 无穷小与无穷大- 极限的运算法则- 连续函数的定义与性质- 闭区间上连续函数的定理(确界存在定理、中值定理、罗尔定理等)2. 导数与微分- 导数的定义与几何意义- 导数的计算方法(基本导数公式、链式法则、乘积法则、商法则、隐函数求导等)- 高阶导数- 微分的定义与应用- 泰勒级数与麦克劳林级数3. 积分学- 不定积分的概念与性质- 基本积分表与积分技巧(换元法、分部积分法等)- 定积分的定义与性质- 定积分的应用(面积、体积、弧长、工作量等)- 微积分基本定理- 积分技巧(特殊技巧、积分表的使用等)4. 多元函数微分学- 多元函数的偏导数与全微分- 多元函数的极值问题与拉格朗日乘数法- 梯度、方向导数与切平面- 多重积分的概念与计算(二重积分、三重积分)5. 向量代数与空间解析几何- 向量的运算与性质- 点、直线与平面的方程- 空间曲线与曲面的方程6. 级数- 级数的基本概念(数项级数、幂级数、函数项级数)- 收敛性判断(柯西准则、比较判别法、比值判别法、根值判别法等)- 幂级数的收敛半径与收敛区间- 傅里叶级数7. 常微分方程- 微分方程的基本概念- 可分离变量的微分方程- 一阶线性微分方程- 二阶常系数线性微分方程- 特殊类型的微分方程(贝塞尔方程、勒让德方程等)8. 复变函数- 复数的基本概念与运算- 解析函数的概念与性质- 复变函数的积分与柯西积分定理- 留数定理与应用9. 泛函分析初步- 赋范线性空间与内积空间- 线性算子与线性泛函- 正交性与谱理论初步10. 概率论与数理统计- 随机事件与概率的定义- 随机变量与分布函数- 多维随机变量及其分布- 大数定律与中心极限定理- 统计量的分布与假设检验以上是高等数学的主要知识点概要。

每个部分都需要深入学习并通过大量的练习来掌握。

这些知识点构成了高等数学的基础,对于理解和应用更高级的数学概念至关重要。

高等数学复习要点总结(完整)..

高等数学复习要点总结(完整)..

高等数学复习要点总结★高等数学复习要点总结希望有参考作用★张宇下面是我给一个朋友写的,大概是今年4月份写的,发给同学们做个参考:我把高数的东西整理了一下,按照这个复习,保证可以串起来,同时别忘了把基本功打好!!高等数学1)洛必达法则求极限,最常用,要熟练;2)无穷小代换求极限,在解题中非常有用,几个等价公式要倒背如流;3)求含参数的极限,关键是把握常量变量的关系,求解过程体现你极限计算的基本功;4)1的∞次方的极限是重点,多练几个题;5)函数连续计算中要会对点进行修改定义、补充定义,看看书上怎么写的,给你说句话你体会一下,“连续的概念是逐点概念”,所以问题就是围绕特殊点展开的,这是数学思想了;6)闭区间连续函数性质四定理非常重要,把它们背下来,然后结合例题搞定;7)记住趋向不同,结果就大不一样的极限;8)两个重要极限、两个基本极限把它们的推倒过程多写写,记住;关键还是刚才的要点,一个是用e的抬头法,一个是注意“趋向不同,结果就大不一样的极限”,还有注意lnx的定义域>0;9)要注意存在与任意的关系,存在就是说只要有一个符合就成立,任意是说只要有一个不符合就不成立,你体会体会。

例题:无穷大无穷小有界变量无界变量;10)注意夹逼定理的条件很强,不要漏掉要点;11)“见根号差,用有理化”这是思维定势,很管用;第二章1)导数的概念非常重要一定会在解答题(主观题)中让你展现出你对它的理解是透彻的,所以这里不要用什么特殊化思想,就是严格按照定义来演算推理;2)导数公式倒背如流的要求不算过分吧呵呵;3)连续可导的要求一个弱一个强,只要改变条件的强弱就会有截然不同的做法,你做题的时候一定要总结一下,回顾一下,看看条件的强弱问题,然后在每个题上标记出来,便于以后再复习;4)由于有些函数求导会出现x在分母上出现,所以要知道:即使不是分段函数,有时也要用定义去求导,而且乘积中某个因子在某点不可导,但乘积在该点也可能可导;5)中值定理的难点在于构造辅助函数,构造函数是根据题目的要求来的,除了陈文灯等人写的方法外,关键是多看例题,熟练了,自然就会了(我上次给同学们说的是“微分方程法”和“凑”法,这两个掌握了就足够了);6)函数性态部分是基本功,一定要耐心的按照函数作图的几大步骤认真做几个题,这样就可以把函数的各种性态串起来了,方法:抄例题,然后背下来,自己默一遍;7)三个式子的不等事,即A 8)能用微分中值定理的,一般用积分中值定理也可以搞定,你也试试吧,体会一下数学思想和定理的联系,是有好处的;9)这部分的经济应用题不难,关键是仔细一些,对弹性等概念理解好,你经济学的好的多了,我就不说了:);第三章1)一元函数积分是高等数学中最重要的部分之一,一元函数的积分不学扎实,后面的多元函数的积分就是空中楼阁,要熟练掌握各种积分方法和几种常见的积分类型,如有理函数,三角函数的有理式和简单无理函数的积分;2)给你说几个准公式:;;,作题时相当有用的哦,关键是反过来用你要有意识;3)这里特别提醒注意积分限函数,一句话:“积分限x在积分过程中是常量,在积分完毕后是变量”,这是核心的东西,抓住它就不会迷失方向;4)旋转体的体积看来是一定要考了,当然是重点,关键:一个是公式记清,应该是绕x轴还是y轴都要搞的清清楚楚,另一个就是体会移图和移轴的不同,这里要用到积分的计算,是体现基本功的地方;5)积分在经济中的应用也是重重之重,记清概念,把握公式,清醒审题,仔细答题,搞定;6)广义积分关键是计算,不是证明记住重点;7)广义积分中积分函数是加减函数时不能将加减函数拆开分别积分,应将加减函数整体积分。

大一高数各章知识点总结

大一高数各章知识点总结

大一高数各章知识点总结高等数学是大一学生必修的一门课程,它是数学的基础,也是以后学习更高级数学的重要基石。

下面是对大一高数各章的知识点总结,帮助大家复习和梳理知识。

第一章:函数与极限1. 函数的概念与性质函数是一种数学对象,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

函数的性质包括定义域、值域、单调性、奇偶性等。

2. 极限的概念与性质极限是函数在某一点或无穷远处的趋势或趋近情况。

极限的性质包括有界性、单调性、保号性、极值等。

3. 函数极限的计算方法通过代入法、夹逼准则、柯西收敛准则等方法可以计算函数的极限。

第二章:微分学1. 导数的概念与性质导数是函数在某一点的变化率或斜率,代表函数曲线上某一点的切线斜率。

导数的性质包括可导性、对称性、四则运算法则等。

2. 导数的计算方法通过基本导数公式、求导法则、链式法则等方法可以计算函数的导数。

3. 高阶导数与隐函数求导高阶导数表示导数的导数,通过连续求导可以求得函数的高阶导数。

隐函数求导是一种通过方程求导的方法。

第三章:积分学1. 不定积分的概念与性质不定积分是导数的逆运算,表示函数的原函数。

不定积分具有线性性、积分换元法、分部积分法等性质。

2. 定积分的概念与性质定积分是函数在一定区间上的累积量,表示曲线下的面积或变量的累积。

定积分具有线性性、区间可加性、积分中值定理等性质。

3. 积分的计算方法通过不定积分的基本公式、换元积分法、分部积分法等可以计算函数的积分。

第四章:微分方程1. 微分方程的概念与分类微分方程是含有未知函数及其导数的方程,分为常微分方程和偏微分方程两类。

常微分方程涉及未知函数和自变量的一阶或高阶导数,偏微分方程涉及未知函数和多个自变量的各种导数。

2. 一阶常微分方程一阶常微分方程是只涉及未知函数的一阶导数的常微分方程,通过分离变量、变量代换等方法可以求解。

3. 二阶常微分方程二阶常微分方程是涉及未知函数的二阶导数的常微分方程,通过特征方程法、变量代换法等方法可以求解。

知识点总结高等数学

知识点总结高等数学

知识点总结高等数学高等数学是大学数学的一个重要分支,它涵盖了微积分、线性代数、概率论与数理统计等内容,是大学理工科专业的必修课程之一,也是其他学科的学科基础。

在这篇文章中,我们将对高等数学的主要知识点进行总结,包括微积分的基本概念与方法、线性代数的基本理论与应用、概率论与数理统计的基本原理与技巧等内容。

1.微积分微积分是研究函数的变化规律与量的积累变化的数学学科,它可以分为微分与积分两个部分。

微分主要研究函数的变化率与切线方程,而积分则研究量的积累与函数的面积、体积等概念。

微积分的主要知识点包括函数的极限、导数与微分、定积分与不定积分、微分方程等内容。

1.1 函数极限函数极限是微积分的基本概念之一,它描述了函数在某一点处的局部性质。

函数f(x)在x=a处的极限定义为:当x趋近于a时,函数f(x)的取值趋近于某一确定的常数L。

极限计算的方法包括直接代入、夹逼定理、洛必达法则等。

1.2 导数与微分导数是函数在某一点处的变化率,它描述了函数的局部性质。

函数f(x)在x处的导数定义为:f'(x)=lim((f(x+Δx)-f(x))/Δx) 当Δx趋近于0时。

微分是导数的积分形式,它描述了函数在某一点处的线性近似。

函数f(x)的微分df(x)定义为:df(x)=f'(x)dx。

1.3 定积分与不定积分定积分描述了函数在某一区间上的积累效应,它可以表示为对函数的积分求和。

函数f(x)在区间[a, b]上的定积分定义为:∫[a, b]f(x)dx=lim(Σf(xi)Δx) 当Δx趋近于0时。

不定积分是定积分的逆运算,它可以表示为对函数的积分运算。

1.4 微分方程微分方程是描述变化规律的数学模型,它描述了未知函数与其导数之间的关系。

微分方程的求解方法包括分离变量、同解、特解等方法。

微分方程的类型包括常微分方程与偏微分方程,它们在物理、工程、生物等领域有重要的应用。

2.线性代数线性代数是研究向量空间与线性变换的数学学科,它包括了向量、矩阵、行列式、特征值与特征向量等内容。

大学高等数学最全复习内容汇总

大学高等数学最全复习内容汇总

例(P128) 3 ; (P130) 5、6
3、弹性函数 在点 x0 处的弹性为
Ey Ex x x0
f ( x0 )
x0 f ( x0 )
函数y=f(x)在点x0处的弹性反映了当自变量变化1%时, 函数y变化的百分数为 Ey %.
Ex x x0
例(P79) 3,2(思考题)
5、导数的计算 (1)(u v) u v;
(2)(u
(4)设
v) uv
y f (u),
uv;
u
(3) u
( x),v
uv uv v2
,(v
0).
y'x y'u u'x 或
例 ( P43) 2 (4) (5)
dy dy du dx du dx
6、高阶导数 y ( y), y ( y)
x1 x
y x x ( ln x 1 ) 2x x
9、微分 (1)点微分
dy x x0 y x x0 x或 df ( x0 ) f '( x0 )x
(2)函数微分 dy ydx或 df ( x) f ( x)dx
( P51) 例2 ( P54) 1、2
10、微分的应用
(1) y x x0 dy x x0 f ( x0 ) x.
0
(3) lim f ( x) A (或), 则 lim f ( x) lim f ( x) A(或).
xa g( x)
xa g( x) xa g( x)
0 型

0 1 , 或 0 0 1.
0
转换求商的极限.
1 1 通分 0 0 .
00
00
00、1、0 型
00 1
3、积分上限函数及其导数

大学全册高等数学知识点(全)(精品范文).doc

大学全册高等数学知识点(全)(精品范文).doc

【最新整理,下载后即可编辑】大学高等数学知识点整理公式,用法合集极限与连续 一. 数列函数: 1. 类型:(1)数列: *()n a f n =; *1()n n a f a +=(2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤⎧=⎨>⎩; *0()(),x x f x F x x x a ≠⎧=⎨=⎩;* (4)复合(含f )函数: (),()y f u u x ϕ==(5)隐式(方程): (,)0F x y = (6)参式(数一,二): ()()x x t y y t =⎧⎨=⎩(7)变限积分函数: ()(,)xa F x f x t dt =⎰ (8)级数和函数(数一,三):0(),n n n S x a x x ∞==∈Ω∑2. 特征(几何):(1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ⇒∀--定号)(2)奇偶性与周期性(应用).3. 反函数与直接函数: 11()()()y f x x f y y f x --=⇔=⇒= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞(含x →±∞); *0lim ()x x f x →(含0x x ±→) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型:000,,1,,0,0,0∞∞∞-∞⋅∞∞∞4. 性质: *有界性, *保号性, *归并性 三. 常用结论:11nn →,1(0)1na a >→,1()max(,,)n nn na b c a b c ++→,()00!na a n >→ 1(0)x x→→∞, 0lim 1xx x +→=,lim 0nxx x e →+∞=,ln lim 0n x x x→+∞=, 0lim ln 0n x x x +→=, 0,x x e x →-∞⎧→⎨+∞→+∞⎩四. 必备公式:1. 等价无穷小: 当()0u x →时, sin ()()u x u x ;tan ()()u x u x ; 211cos ()()2u x u x -;()1()u x e u x -;ln(1())()u x u x +;(1())1()u x u x αα+-;arcsin ()()u x u x ; arctan ()()u x u x2. 泰勒公式: (1)2211()2!x e x x o x =+++; (2)221ln(1)()2x x x o x +=-+;(3)341sin ()3!x x x o x =-+;(4)24511cos 1()2!4!x x x o x =-++;(5)22(1)(1)1()2!x x x o x αααα-+=+++.五. 常规方法:前提: (1)准确判断0,,1,0M α∞∞∞(其它如:00,0,0,∞-∞⋅∞∞); (2)变量代换(如:1t x=) 1. 抓大弃小()∞∞,2. 无穷小与有界量乘积 (M α⋅) (注:1sin 1,x x≤→∞) 3. 1∞处理(其它如:000,∞) 4. 左右极限(包括x →±∞):(1)1(0)x x→; (2)()xex →∞; 1(0)xe x →;(3)分段函数: x , []x ,max ()f x5. 无穷小等价替换(因式中的无穷小)(注: 非零因子)6. 洛必达法则(1)先”处理”,后法则(00最后方法); (注意对比:1ln lim1x x x x→-与ln lim1x x xx→-) (2)幂指型处理: ()()ln ()()v x v x u x u x e =(如: 1111111(1)x x x x xe e e e -++-=-)(3)含变限积分;(4)不能用与不便用7. 泰勒公式(皮亚诺余项): 处理和式中的无穷小 8. 极限函数: ()lim (,)n f x F x n →∞=(⇒分段函数) 六. 非常手段 1. 收敛准则: (1)()lim ()n x a f n f x →+∞=⇒ (2)双边夹: *?n n n b a c ≤≤, *,?n n b c a →(3)单边挤: 1()n n a f a += *21?a a ≥ *?n a M ≤ *'()0?f x > 2. 导数定义(洛必达?): 00lim'()x ff x x→= 3. 积分和:10112lim [()()()]()n nf f f f x dx n n n n→∞+++=⎰, 4. 中值定理: lim[()()]lim '()x x f x a f x a f ξ→+∞→+∞+-= 5. 级数和(数一三): (1)1nn a∞=∑收敛lim 0n n a →∞⇒=, (如2!lim n n n n n→∞)(2)121lim()n n n n a a a a ∞→∞=+++=∑,(3){}n a 与11()n n n a a ∞-=-∑同敛散七. 常见应用:1. 无穷小比较(等价,阶): *(),(0)?n f x kx x →(1)(1)()(0)'(0)(0)0,(0)n n f f f f a -=====⇔()()!!nn na a f x x x x n n α=+ (2)0()xxn f t dtkt dt ⎰⎰2. 渐近线(含斜): (1)()lim,lim[()]x x f x a b f x ax x→∞→∞==-()f x ax b α⇒++(2)()f x ax b α=++,(10x→) 3. 连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, '()f x 连续性) 八. [,]a b 上连续函数性质1. 连通性: ([,])[,]f a b m M = (注:01λ∀<<, “平均”值:0()(1)()()f a f b f x λλ+-=)2. 介值定理: (附: 达布定理)(1)零点存在定理: ()()0f a f b <0()0f x ⇒=(根的个数); (2)()0(())'0xaf x f x dx =⇒=⎰.第二讲:导数及应用(一元)(含中值定理) 一. 基本概念: 1. 差商与导数: '()f x =0()()limx f x x f x x→+-;0'()f x =000()()limx x f x f x x x →--(1)()(0)'(0)limx f x f f x→-= (注:()lim(x f x A f x→=连续)(0)0,'(0)f f A ⇒==)(2)左右导: ''00(),()f x f x -+;(3)可导与连续; (在0x =处, x 连续不可导; x x 可导)2. 微分与导数: ()()'()()'()f f x x f x f x x o x df f x dx =+-=+⇒= (1)可微⇔可导; (2)比较,f df ∆与"0"的大小比较(图示); 二. 求导准备:1. 基本初等函数求导公式; (注: (())'f x )2. 法则: (1)四则运算; (2)复合法则; (3)反函数1'dx dy y = 三. 各类求导(方法步骤):1. 定义导: (1)'()f a 与'()x a f x =; (2)分段函数左右导; (3)0()()limh f x h f x h h→+--(注: 00()(),x x F x f x x x a≠⎧=⎨=⎩, 求:0'(),'()f x f x 及'()f x 的连续性)2. 初等导(公式加法则):(1)[()]u f g x =, 求:0'()u x (图形题); (2)()()xa F x f t dt=⎰, 求:'()F x (注:((,))',((,))',(())'x b baaaf x t dt f x t dt f t dt ⎰⎰⎰)(3)0102(),()x x f x y x x f x <⎧=⎨≥⎩,求''00(),()f x f x -+及0'()f x (待定系数)3. 隐式((,)0f x y =)导: 22,dy d ydx dx(1)存在定理;(2)微分法(一阶微分的形式不变性). (3)对数求导法. 4. 参式导(数一,二):()()x x t y y t =⎧⎨=⎩, 求:22,dy d y dx dx5. 高阶导()()n f x 公式: ()()ax n n axe a e=;()11!()()n n n b n a bx a bx +=--;()(sin )sin()2n n ax a ax n π=+⨯;()(cos )cos()2n n ax a ax n π=+⨯()()1(1)2(2)()'"n n n n nn uv u v C u v C u v --=+++ 注: ()(0)n f 与泰勒展式:2012()nn f x a a x a x a x =+++++()(0)!n n f a n ⇒=四. 各类应用:1. 斜率与切线(法线); (区别: ()y f x =上点0M 和过点0M 的切线)2. 物理: (相对)变化率-速度;3. 曲率(数一二):ρ=(曲率半径, 曲率中心, 曲率圆)4. 边际与弹性(数三): (附: 需求, 收益, 成本, 利润) 五. 单调性与极值(必求导) 1. 判别(驻点0'()0f x =):(1) '()0()f x f x ≥⇒; '()0()f x f x ≤⇒; (2)分段函数的单调性(3)'()0f x >⇒零点唯一; "()0f x >⇒驻点唯一(必为极值,最值). 2. 极值点:(1)表格('()f x 变号); (由002'()'()''()lim0,lim 0,lim 00x x x x x x f x f x f x x x x x →→→≠≠≠⇒=的特点) (2)二阶导(0'()0f x =)注(1)f 与',"f f 的匹配('f 图形中包含的信息);(2)实例: 由'()()()()f x x f x g x λ+=确定点“0x x =”的特点.(3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明(()0f x ≥)(1)区别: *单变量与双变量? *[,]x a b ∈与[,),(,)x a x ∈+∞∈-∞+∞?(2)类型: *'0,()0f f a ≥≥; *'0,()0f f b ≤≥*"0,(),()0f f a f b ≤≥; *00"()0,'()0,()0f x f x f x ≥=≥ (3)注意: 单调性⊕端点值⊕极值⊕凹凸性. (如: max ()()f x M f x M ≤⇔=)4. 函数的零点个数: 单调⊕介值六. 凹凸与拐点(必求导!): 1. "y ⇒表格; (0"()0f x =)2. 应用: (1)泰勒估计; (2)'f 单调; (3)凹凸. 七. 罗尔定理与辅助函数: (注: 最值点必为驻点) 1. 结论: ()()'()()0F b F a F f ξξ=⇒== 2. 辅助函数构造实例: (1)()f ξ⇒()()xa F x f t dt =⎰(2)'()()()'()0()()()f g f g F x f x g x ξξξξ+=⇒=(3)()'()()()'()0()()f x fg f g F x g x ξξξξ-=⇒=(4)'()()()0f f ξλξξ+=⇒()()()x dxF x e f x λ⎰=;3. ()()0()n f f x ξ=⇔有1n +个零点(1)()n f x -⇔有2个零点4. 特例: 证明()()n f a ξ=的常规方法:令()()()n F x f x P x =-有1n +个零点(()n P x 待定)5. 注: 含12,ξξ时,分家!(柯西定理)6. 附(达布定理): ()f x 在[,]a b 可导,['(),'()]c f a f b ∀∈,[,]a b ξ∃∈,使:'()f c ξ=八. 拉格朗日中值定理1. 结论: ()()'()()f b f a f b a ξ-=-; (()(),'()0a b ϕϕξϕξ<⇒∃∍>)2. 估计: '()f f x ξ=九. 泰勒公式(连接,',"f f f 之间的桥梁) 1. 结论:2300000011()()'()()"()()"'()()2!3!f x f x f x x x f x x x f x x ξ=+-+-+-;2. 应用: 在已知()f a 或()f b 值时进行积分估计十. 积分中值定理(附:广义): [注:有定积分(不含变限)条件时使用]第三讲: 一元积分学 一. 基本概念: 1. 原函数()F x :(1)'()()F x f x =; (2)()()f x dx dF x =; (3)()()f x dx F x c =+⎰ 注(1)()()xaF x f t dt =⎰(连续不一定可导);(2)()()()()xxa ax t f t dt f t dt f x -⇒⇒⎰⎰ (()f x 连续)2. 不定积分性质:(1)(())'()f x dx f x =⎰; (())()d f x dx f x dx =⎰ (2)'()()f x dx f x c =+⎰; ()()df x f x c =+⎰ 二. 不定积分常规方法 1. 熟悉基本积分公式2. 基本方法: 拆(线性性)1212(()())()()k f x k g x dx k f x dx k g x dx +=+⎰⎰⎰ 3. 凑微法(基础): 要求巧,简,活(221sin cos x x =+) 如:211(),,ln ,2dx dx d ax b xdx dx d x a x =+==2=(1ln )(ln )x dx d x x =+=4. 变量代换:(1)常用(三角代换,根式代换,倒代换):1sin ,,,x t t t t x====(2)作用与引伸(化简):x t = 5. 分部积分(巧用):(1)含需求导的被积函数(如ln ,arctan ,()xa x x f t dt ⎰);(2)“反对幂三指”: ,ln ,n ax nx e dx xxdx ⎰⎰(3)特别:()xf x dx ⎰ (*已知()f x 的原函数为()F x ; *已知'()()f x F x =)6. 特例: (1)11sin cos sin cos a x b xdxa xb x++⎰; (2)(),()sin kx p x e dx p x axdx ⎰⎰快速法;(3)()()nv x dx u x ⎰三. 定积分: 1. 概念性质:(1)积分和式(可积的必要条件:有界, 充分条件:连续) (2)几何意义(面积,对称性,周期性,积分中值) *20(0)8a aπ>=⎰; *()02ba a bx dx +-=⎰ (3)附:()()baf x dx M b a ≤-⎰,()()()bbaaf xg x dx M g x dx ≤⎰⎰)(4)定积分与变限积分, 反常积分的区别联系与侧重2: 变限积分()()xa x f t dt Φ=⎰的处理(重点)(1)f 可积⇒Φ连续,f连续⇒Φ可导 (2)(())'xa f t dt ⎰()f x =;(()())'()xxaax t f t dt f t dt-=⎰⎰;()()()xaf x dt x a f x =-⎰(3)由函数()()xa F x f t dt =⎰参与的求导, 极限, 极值, 积分(方程)问题3. N L -公式: ()()()ba f x dx Fb F a =-⎰(()F x 在[,]a b 上必须连续!) 注: (1)分段积分, 对称性(奇偶), 周期性 (2)有理式, 三角式, 根式 (3)含()baf t dt ⎰的方程.4. 变量代换: ()(())'()ba f x dx f u t u t dt βα=⎰⎰(1)00()()()aaf x dx f a x dx x a t =-=-⎰⎰,(2)0()()()[()()]aaaa a f x dx f x dx x t f x f x dx --=-=-=+-⎰⎰⎰ (如:4411sin dx xππ-+⎰)(3)2201sin n n n n I xdx I nπ--==⎰, (4)2200(sin )(cos )f x dx f x dx ππ=⎰⎰; 20(sin )2(sin )f x dx f x dx ππ=⎰⎰,(5)0(sin )(sin )2xf x dx f x dx πππ=⎰⎰,5. 分部积分(1)准备时“凑常数” (2)已知'()f x 或()x a f x =⎰时, 求()ba f x dx ⎰6. 附: 三角函数系的正交性:222000sin cos sin cos 0nxdx nxdx nx mxdx πππ===⎰⎰⎰2200sin sin cos cos ()0nx mxdx nx mxdx n m ππ=≠=⎰⎰ 222200sin cos nxdx nxdx πππ==⎰⎰四. 反常积分: 1. 类型: (1)(),(),()aa f x dx f x dx f x dx +∞+∞-∞-∞⎰⎰⎰(()f x 连续)(2)()baf x dx ⎰:(()f x 在,,()x a x b x c a c b ===<<处为无穷间断)2. 敛散;3. 计算: 积分法⊕N L -公式⊕极限(可换元与分部)4. 特例: (1)11p dx x+∞⎰; (2)11p dx x⎰ 五. 应用: (柱体侧面积除外) 1. 面积,(1)[()()];ba S f x g x dx =-⎰ (2)1()dc S f y dy -=⎰;(3)21()2S r d βαθθ=⎰; (4)侧面积:2(ba S f x π=⎰2. 体积: (1)22[()()]bx a V fx g x dx π=-⎰;(2)12[()]2()dby c aV fy dy xf x dx ππ-==⎰⎰(3)0x x V =与0y y V =3. 弧长: ds = (1)(),[,]y f x x a b =∈as =⎰(2)12(),[,]()x x t t t t y y t =⎧∈⎨=⎩21t ts =⎰(3)(),[,]r r θθαβ=∈:s βαθ=⎰4. 物理(数一,二)功,引力,水压力,质心,5. 平均值(中值定理): (1)1[,]()ba f ab f x dx b a=-⎰; (2)0()[0)lim x x f t dt f x→+∞+∞=⎰, (f 以T 为周期:0()Tf t dt f T=⎰)第四讲: 微分方程一. 基本概念1. 常识: 通解, 初值问题与特解(注: 应用题中的隐含条件)2. 变换方程:(1)令()'""x x t y Dy =⇒=(如欧拉方程)(2)令(,)(,)'u u x y y y x u y =⇒=⇒(如伯努利方程) 3. 建立方程(应用题)的能力 二. 一阶方程:1. 形式: (1)'(,)y f x y =; (2)(,)(,)0M x y dx N x y dy +=; (3)()y a b =2. 变量分离型: '()()y f x g y =(1)解法: ()()()()dyf x dx G y F x Cg y =⇒=+⎰⎰(2)“偏”微分方程: (,)zf x y x∂=∂; 3. 一阶线性(重点):'()()y p x y q x +=(1)解法(积分因子法): 00()01()[()()]()xx p x dxx x M x ey M x q x dx y M x ⎰=⇒=+⎰ (2)变化: '()()x p y x q y +=;(3)推广: 伯努利(数一) '()()y p x y q x y α+=4. 齐次方程: '()yy x =Φ(1)解法: '(),()ydu dxu u xu u xu u x =⇒+=Φ=Φ-⎰⎰(2)特例:111222a xb yc dy dx a x b y c ++=++ 5. 全微分方程(数一): (,)(,)0M x y dx N x y dy +=且N Mx y∂∂=∂∂dU Mdx Ndy U C =+⇒=6.一阶差分方程(数三): 1*()()x x x x x n xxy ca y ay b p x y x Q x b +=⎧-=⇒⎨=⎩ 三. 二阶降阶方程1. "()y f x =: 12()y F x c x c =++2. "(,')y f x y =: 令'()"(,)dpy p x y f x p dx =⇒== 3."(,')y f y y =:令'()"(,)dpy p y y p f y p dy=⇒==四. 高阶线性方程: ()"()'()()a x y b x y c x y f x ++= 1. 通解结构:(1)齐次解: 01122()()()y x c y x c y x =+(2)非齐次特解: 1122()()()*()y x c y x c y x y x =++ 2. 常系数方程: "'()ay by cy f x ++=(1)特征方程与特征根: 20a b c λλ++=(2)非齐次特解形式确定: 待定系数; (附: ()ax f x ke =的算子法)(3)由已知解反求方程.3. 欧拉方程(数一): 2"'()ax y bxy cy f x ++=, 令2"(1),'t x e x y D D y xy Dy =⇒=-=五. 应用(注意初始条件):1. 几何应用(斜率, 弧长, 曲率, 面积, 体积); 注: 切线和法线的截距2. 积分等式变方程(含变限积分); 可设 ()(),()0xa f x dx F x F a ==⎰ 3. 导数定义立方程:含双变量条件()f x y +=的方程4. 变化率(速度)5.22dv d xF ma dt dt ===6. 路径无关得方程(数一):Q Px y∂∂=∂∂ 7. 级数与方程:(1)幂级数求和; (2)方程的幂级数解法:201201,(0),'(0)y a a x a x a y a y =+++== 8. 弹性问题(数三)第五讲: 多元微分与二重积分 一. 二元微分学概念1. 极限, 连续, 单变量连续, 偏导, 全微分, 偏导连续(必要条件与充分条件),(1)000000(,),(,),(,)x y f f x x y y f f x x y f f x y y ∆=++∆=+∆=+ (2)lim ,lim,lim y x x y f ff f f x y∆∆∆==∆∆(3),limx y f x f y df + (判别可微性)注: (0,0)点处的偏导数与全微分的极限定义:00(,0)(0,0)(0,)(0,0)(0,0)lim ,(0,0)lim x y x y f x f f y f f f x y→→--== 2. 特例: (1)22(0,0)(,)0,(0,0)xyx yf x y ⎧≠⎪+=⎨⎪=⎩: (0,0)点处可导不连续; (2)(0,0)(,)0,(0,0)f x y ≠==⎩: (0,0)点处连续可导不可微;二. 偏导数与全微分的计算:1. 显函数一,二阶偏导: (,)z f x y =注: (1)y x 型; (2)0(,)x x y z ; (3)含变限积分2. 复合函数的一,二阶偏导(重点): [(,),(,)]z f u x y v x y =熟练掌握记号''"""12111222,,,,f f f f f 的准确使用3. 隐函数(由方程或方程组确定):(1)形式: *(,,)0F x y z =; *(,,)0(,,)0F x y zG x y z =⎧⎨=⎩(存在定理)(2)微分法(熟练掌握一阶微分的形式不变性): 0x y z F dx F dy F dz ++= (要求: 二阶导) (3)注: 00(,)x y 与0z 的及时代入 (4)会变换方程. 三. 二元极值(定义?);1. 二元极值(显式或隐式): (1)必要条件(驻点); (2)充分条件(判别)2. 条件极值(拉格朗日乘数法) (注: 应用)(1)目标函数与约束条件: (,)(,)0z f x y x y ϕ=⊕=, (或: 多条件)(2)求解步骤: (,,)(,)(,)L x y f x y x y λλϕ=+, 求驻点即可. 3. 有界闭域上最值(重点).(1)(,){(,)(,)0}z f x y M D x y x y ϕ=⊕∈=≤ (2)实例: 距离问题四. 二重积分计算:1. 概念与性质(“积”前工作): (1)Dd σ⎰⎰,(2)对称性(熟练掌握): *D 域轴对称; *f 奇偶对称; *字母轮换对称; *重心坐标;(3)“分块”积分: *12D D D =; *(,)f x y 分片定义; *(,)f x y 奇偶2. 计算(化二次积分):(1)直角坐标与极坐标选择(转换): 以“D ”为主; (2)交换积分次序(熟练掌握). 3. 极坐标使用(转换): 22()f x y + 附:222:()()D x a y b R-+-≤;2222:1x y D a b+≤; 双纽线222222()()x y a x y +=- :1D x y +≤4. 特例:(1)单变量: ()f x 或()f y(2)利用重心求积分: 要求: 题型12()Dk x k y dxdy +⎰⎰, 且已知D 的面积D S 与重心(,)x y5. 无界域上的反常二重积分(数三)五: 一类积分的应用(():;;;;f M d D L σΩ⇒ΩΩΓ∑⎰):1. “尺寸”: (1)D Dd S σ⇔⎰⎰; (2)曲面面积(除柱体侧面);2. 质量, 重心(形心), 转动惯量;3. 为三重积分, 格林公式, 曲面投影作准备.第六讲: 无穷级数(数一,三) 一. 级数概念1. 定义: (1){}n a , (2)12n n S a a a =+++;(3)lim n n S →∞(如1(1)!n nn ∞=+∑)注: (1)lim n n a →∞; (2)n q ∑(或1na ∑); (3)“伸缩”级数:1()n n a a +-∑收敛{}n a ⇔收敛.2. 性质: (1)收敛的必要条件: lim 0n n a →∞=; (2)加括号后发散, 则原级数必发散(交错级数的讨论); (3)221,0n n n n s s a s s s s +→→⇒→⇒→; 二. 正项级数1. 正项级数: (1)定义: 0n a ≥; (2)特征: n S ; (3)收敛n S M ⇔≤(有界)2. 标准级数: (1)1pn ∑, (2)ln k n n α∑,(3)1ln kn n∑ 3. 审敛方法: (注:222ab a b ≤+,ln ln b a a b =)(1)比较法(原理):n p ka n (估计), 如10()n f x dx ⎰;()()P n Q n ∑(2)比值与根值: *1lim n n nu u +→∞*n (应用: 幂级数收敛半径计算)三. 交错级数(含一般项): 1(1)n n a +-∑(0n a >)1. “审”前考察: (1)0?n a > (2)0?n a →; (3)绝对(条件)收敛? 注: 若1lim1n n na a ρ+→∞=>,则n u ∑发散 2. 标准级数: (1)11(1)n n+-∑; (2)11(1)n pn +-∑;(3)11(1)ln n p n+-∑ 3. 莱布尼兹审敛法(收敛?)(1)前提: n a ∑发散; (2)条件: ,0n n a a →; (3)结论: 1(1)n n a +-∑条件收敛. 4. 补充方法:(1)加括号后发散, 则原级数必发散; (2)221,0n n n n s s a s s s s +→→⇒→⇒→.5. 注意事项: 对比 n a ∑; (1)n n a -∑; n a ∑; 2n a ∑之间的敛散关系 四. 幂级数: 1. 常见形式:(1)n n a x ∑, (2)0()n n a x x -∑, (3)20()n n a x x -∑ 2. 阿贝尔定理:(1)结论: *x x =敛*0R x x ⇒≥-; *x x =散*0R x x ⇒≤- (2)注: 当*x x =条件收敛时*R x x ⇒=- 3. 收敛半径,区间,收敛域(求和前的准备) 注(1),n nn n a na x x n∑∑与n n a x ∑同收敛半径 (2)n n a x ∑与20()n n a x x -∑之间的转换 4. 幂级数展开法:(1)前提: 熟记公式(双向,标明敛域) 23111,2!3!x e x x x R =++++Ω=24111()1,22!4!x x e e x x R -+=+++Ω=35111(),23!5!x x e e x x x R --=+++Ω= 3511sin ,3!5!x x x x R =-+-Ω=2411cos 1,2!4!x x x R =-++Ω=;211,(1,1)1x x x x =+++∈--;211,(1,1)1x x x x=-+-∈-+ 2311ln(1),(1,1]23x x x x x +=-+-∈-2311ln(1),[1,1)23x x x x x -=----∈-3511arctan ,[1,1]35x x x x x =-+-∈-(2)分解:()()()f xg xh x =+(注:中心移动) (特别:021,x x ax bx c=++)(3)考察导函数: ()'()g x f x 0()()(0)xf xg x dx f ⇒=+⎰(4)考察原函数:()()xg x f x dx ⎰()'()f x g x ⇒=5. 幂级数求和法(注: *先求收敛域, *变量替换): (1)(),S x =+∑∑(2)'()S x =,(注意首项变化) (3)()()'S x =∑,(4)()"()"S x S x ⇒的微分方程(5)应用:()(1)n n n n a a x S x a S ⇒=⇒=∑∑∑. 6. 方程的幂级数解法7. 经济应用(数三):(1)复利: (1)n A p +; (2)现值: (1)n A p -+五. 傅里叶级数(数一): (2T π=) 1. 傅氏级数(三角级数):01()cos sin 2n n n a S x a nx b nx ∞==++∑2. Dirichlet 充分条件(收敛定理):(1)由()()f x S x ⇒(和函数) (2)1()[()()]2S x f x f x =-++3. 系数公式:01()cos 1(),,1,2,3,1()sin n n a f x nxdx a f x dx n b f x nxdx πππππππππ---⎧=⎪⎪==⎨⎪=⎪⎩⎰⎰⎰4. 题型: (注: ()(),?f x S x x =∈)(1)2T π=且(),(,]f x x ππ=∈-(分段表示) (2)(,]x ππ∈-或[0,2]x π∈ (3)[0,]x π∈正弦或余弦 *(4)[0,]x π∈(T π=) *5. 2T l = 6. 附产品:()f x ⇒01()cos sin 2n n n a S x a nx b nx ∞==++∑00001()cos sin 2n n n a S x a nx b nx ∞=⇒=++∑001[()()]2f x f x =-++第七讲: 向量,偏导应用与方向导(数一) 一. 向量基本运算1. 12k a k b +; (平行b a λ⇔=)2. a; (单位向量(方向余弦) 01(cos ,cos ,cos )a aaαβγ=)3. a b⋅; (投影:()a a b b a⋅=; 垂直:0a b a b ⊥⇔⋅=; 夹角:(,)a b a b a b⋅=)4.a b ⨯; (法向:,n a b a b =⨯⊥; 面积:S a b =⨯)二. 平面与直线 1.平面∏(1)特征(基本量): 0000(,,)(,,)M x y z n A B C ⊕= (2)方程(点法式):000:()()()00A x x B y y C z z Ax By Cz D π-+-+-=⇒+++=(3)其它: *截距式1x y za b c++=; *三点式2.直线L(1)特征(基本量): 0000(,,)(,,)M x y z s m n p ⊕= (2)方程(点向式):000:x x y y z z L m n p---==(3)一般方程(交面式): 111122220A xB yC zD A x B y C z D +++=⎧⎨+++=⎩(4)其它: *二点式; *参数式;(附: 线段AB 的参数表示:121121121()(),[0,1]()x a a a t y b b b t t z c c c t=+-⎧⎪=+-∈⎨⎪=+-⎩) 3. 实用方法:(1)平面束方程: 11112222:()0A x B y C z D A x B y C z D πλ+++++++=(2)距离公式: 如点000(,)M x y到平面的距离d =(3)对称问题;(4)投影问题.三. 曲面与空间曲线(准备) 1. 曲面(1)形式∑: (,,)0F x y z = 或(,)z f x y =; (注: 柱面(,)0f x y =) (2)法向(,,)(cos ,cos ,cos )x y z n F F F αβγ=⇒ (或(,1)x y n z z =--)2. 曲线(1)形式():()()x x t y y t z z t =⎧⎪Γ=⎨⎪=⎩,或(,,)0(,,)0F x y zG x y z =⎧⎨=⎩;(2)切向: {'(),'(),'()}s x t y t z t = (或12s n n =⨯)3. 应用(1)交线, 投影柱面与投影曲线;(2)旋转面计算: 参式曲线绕坐标轴旋转;(3)锥面计算.四. 常用二次曲面1. 圆柱面: 222x y R +=2. 球面: 2222x y z R ++=变形:2222x y R z +=-, z =, 2222x y z az ++=,2222000()()()x x y y z z R -+-+-= 3. 锥面:z =变形:222x y z +=, z a = 4. 抛物面: 22z x y =+,变形: 22x y z +=, 22()z a x y =-+ 5. 双曲面: 2221x y z +=±6. 马鞍面: 22z x y =-, 或z xy =五. 偏导几何应用 1. 曲面(1)法向: (,,)0(,,)x y z F x y z n F F F =⇒=, 注:(,)(,1)x y z f x y n f f =⇒=- (2)切平面与法线:2. 曲线(1)切向: (),(),()(',',')x x t y y t z z t s x y z ===⇒= (2)切线与法平面3. 综合: :Γ0F G =⎧⎨=⎩ , 12s n n =⨯六. 方向导与梯度(重点) 1. 方向导(l 方向斜率):(1)定义(条件):(,,)(cos ,cos ,cos )l m n p αβγ=⇒(2)计算(充分条件:可微): cos cos cos x y z uu u u lαβγ∂=++∂附: 0(,),{cos ,sin }z f x y l θθ==cos sin x y zf f lθθ∂⇒=+∂(3)附: 2222cos 2sin cos sin xx xy yy ff f f lθθθθ∂=++∂2. 梯度(取得最大斜率值的方向) G : (1)计算:()(,)(,)x y a z f x y G gradz f f =⇒==; ()(,,)(,,)x y z b u f x y z G gradu u u u =⇒== (2)结论 ()a ul∂∂0G l =⋅; ()b 取l G =为最大变化率方向;()c 0()G M 为最大方向导数值.第八讲: 三重积分与线面积分(数一) 一. 三重积分(fdV Ω⎰⎰⎰)1. Ω域的特征(不涉及复杂空间域):(1)对称性(重点): 含: 关于坐标面; 关于变量; 关于重心 (2)投影法: 22212{(,)}(,)(,)xy D x y x y R z x y z z x y =+≤⊕≤≤ (3)截面法: 222(){(,)()}D z x y x y R z a z b =+≤⊕≤≤ (4)其它: 长方体, 四面体, 椭球 2. f 的特征:(1)单变量()f z , (2)22()f x y +, (3)222()f x y z ++,(4)f ax by cz d =+++ 3. 选择最适合方法:(1)“积”前: *dv Ω⎰⎰⎰; *利用对称性(重点)(2)截面法(旋转体):()baD z I dz fdxdy=⎰⎰⎰(细腰或中空,()f z ,22()f x y +)(3)投影法(直柱体):21(,)(,)xyz x y z x y D I dxdy fdz =⎰⎰⎰(4)球坐标(球或锥体):220sin ()RI d d f d παθϕϕρρ=⋅⋅⋅⎰⎰⎰,(5)重心法(f ax by cz d =+++): ()I ax by cz d V Ω=+++ 4. 应用问题:(1)同第一类积分: 质量, 质心, 转动惯量, 引力 (2)Gauss 公式二. 第一类线积分(Lfds ⎰)1. “积”前准备:(1)Lds L =⎰; (2)对称性; (3)代入“L ”表达式2. 计算公式:()[,]((),(()baLx x t t a b fds f x t y t y y t =⎧∈⇒=⎨=⎩⎰⎰ 3. 补充说明:(1)重心法: ()()Lax by c ds ax by c L ++=++⎰;(2)与第二类互换: LLA ds A dr τ⋅=⋅⎰⎰4. 应用范围 (1)第一类积分(2)柱体侧面积 (),Lz x y ds ⎰三. 第一类面积分(fdS ∑⎰⎰)1. “积”前工作(重点):(1)dS ∑=∑⎰⎰; (代入:(,,)0F x y z ∑=)(2)对称性(如: 字母轮换, 重心) (3)分片 2. 计算公式:(1)(,),(,)(,,(,xyxy D z z x y x y D I f x y z x y =∈⇒=⎰⎰(2)与第二类互换:A ndS A d S ∑∑⋅=⋅⎰⎰⎰⎰四: 第二类曲线积分(1): (,)(,)LP x y dx Q x y dy +⎰ (其中L 有向)1. 直接计算: ()()x x t y y t =⎧⎨=⎩,2112:['()'()]t t t t t I Px t Qy t dt →⇒=+⎰常见(1)水平线与垂直线; (2)221x y += 2. Green 公式:(1)()LDQ PPdx Qdy dxdy x y ∂∂+=-∂∂⎰⎰⎰; (2)()L A B →⎰:*P Qy y∂∂=⇒∂∂换路径; *P Q y y∂∂≠⇒∂∂围路径 (3)L⎰(x y Q P =但D 内有奇点) *LL =⎰⎰(变形)3. 推广(路径无关性):P Q y y∂∂=∂∂ (1)Pdx Qdy du +=(微分方程)()BA L AB u →⇔=⎰(道路变形原理)(2)(,)(,)LP x y dx Q x y dy +⎰与路径无关(f 待定): 微分方程. 4. 应用功(环流量):I F dr Γ=⋅⎰ (Γ有向τ,(,,)F P Q R =,(,,)d r ds dx dy dz τ==)五. 第二类曲面积分:1. 定义: Pdydz Qdzdx Rdxdy ∑++⎰⎰, 或(,,)R x y z dxdy ∑⎰⎰ (其中∑含侧)2. 计算:(1)定向投影(单项):(,,)R x y z dxdy ∑⎰⎰, 其中:(,)z z x y ∑=(特别:水平面);注: 垂直侧面, 双层分隔(2)合一投影(多项,单层): (,,1)x y n z z =--[()()]x y Pdydz Qdzdx Rdxdy P z Q z R dxdy ∑∑⇒++=-+-+⎰⎰⎰⎰(3)化第一类(∑不投影): (cos ,cos ,cos )n αβγ=(cos cos cos )Pdydz Qdzdx Rdxdy P Q R dS αβγ∑∑⇒++=++⎰⎰⎰⎰3. Gauss 公式及其应用: (1)散度计算:P Q R divA x y z∂∂∂=++∂∂∂(2)Gauss 公式: ∑封闭外侧, Ω内无奇点Pdydz Qdzdx Rdxdy divAdv ∑Ω++=⎰⎰⎰⎰⎰(3)注: *补充“盖”平面:0∑∑+⎰⎰⎰⎰; *封闭曲面变形∑⎰⎰(含奇点)4. 通量与积分:A d S ∑Φ=⋅⎰⎰ (∑有向n ,(),,A P Q R =,(,,)d S ndS dydz dzdx dxdy ==)六: 第二类曲线积分(2): (,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz Γ++⎰1. 参数式曲线Γ: 直接计算(代入)注(1)当0rot A =时, 可任选路径; (2)功(环流量):I F dr Γ=⋅⎰2. Stokes 公式: (要求: Γ为交面式(有向), 所张曲面∑含侧) (1)旋度计算:(,,)(,,)R A P Q R x y z∂∂∂=∇⨯=⨯∂∂∂ (2)交面式(一般含平面)封闭曲线:0F G =⎧⇒⎨=⎩同侧法向{,,}x y z n F F F =或{,,}x y z G G G ;(3)Stokes 公式(选择):()A dr A ndS Γ∑⋅=∇⨯⋅⎰⎰⎰(a )化为Pdydz Qdzdx Rdxdy ∑++⎰⎰; (b )化为(,,)R x y z dxdy ∑⎰⎰; (c )化为fdS ∑⎰⎰高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(xa y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。

大一高数知识点归纳

大一高数知识点归纳

大一高数知识点归纳高等数学是大学课程中的重要基础学科,对于大一新生来说,掌握好这门课程的知识点至关重要。

以下是对大一高数主要知识点的归纳。

一、函数与极限1、函数的概念函数是两个非空数集之间的一种对应关系。

函数的要素包括定义域、值域和对应法则。

理解函数的定义,能够判断函数的类型,如奇函数、偶函数、周期函数等。

2、极限的概念极限是高等数学中非常重要的概念,它描述了函数在某个点或者趋于无穷时的趋势。

极限分为数列极限和函数极限。

数列极限:对于数列{an},如果当 n 趋向于无穷大时,an 无限趋近于一个常数 A,则称数列{an} 的极限为 A。

函数极限:分为自变量趋于有限值时的函数极限和自变量趋于无穷大时的函数极限。

3、极限的运算极限的四则运算法则:如果 lim f(x) 和 lim g(x) 都存在,则 lim f(x) ± g(x) = lim f(x) ± lim g(x);lim f(x) × g(x) = lim f(x) × lim g(x);lim f(x) / g(x) = lim f(x) / lim g(x) (lim g(x) ≠ 0)4、两个重要极限(1)lim (sin x / x) = 1 (x → 0)(2)lim (1 + 1 / x) ^ x = e (x → ∞)5、无穷小与无穷大无穷小是以 0 为极限的变量。

无穷大是绝对值无限增大的变量。

无穷小与无穷大的关系:在自变量的同一变化过程中,如果 f(x) 为无穷大,则 1 / f(x) 为无穷小;反之,如果 f(x) 为无穷小,且f(x) ≠ 0,则1 / f(x) 为无穷大。

6、函数的连续性函数在某点连续的定义:函数 f(x) 在点 x0 处连续,当且仅当 lim (x → x0) f(x) = f(x0)。

二、导数与微分1、导数的定义函数 y = f(x) 在点 x0 处的导数 f'(x0) 等于函数在该点的瞬时变化率,即 f'(x0) = lim (Δx → 0) f(x0 +Δx) f(x0) /Δx2、导数的几何意义函数在某点的导数就是该点切线的斜率。

大一高数知识点总计总结

大一高数知识点总计总结

大一高数知识点总计总结大一高数知识点总结在大一的高数课程中,我们学习了很多重要的数学知识点。

这些知识点涵盖了微积分、数列与数学归纳法、极限与连续等方面。

下面将对这些知识点进行总结,希望对大家复习和巩固所学知识有所帮助。

1.微积分1.1 导数与函数在微积分中,我们学习了导数的概念和计算方法。

导数可以用来描述函数在某一点的变化率。

在计算导数时,我们使用了一系列的导数运算法则,比如求和法则、乘积法则和链式法则等。

此外,我们也学习了函数的极值和函数的图像。

1.2 积分与微分方程积分是导数的逆运算,用于计算曲线下面的面积或求解定积分。

在微积分中,我们学习了不定积分和定积分的概念与计算方法。

此外,我们还学习了微分方程的基本概念和解法,包括常微分方程和偏微分方程。

2.数列与数学归纳法2.1 数列数列是按照一定规律排列的一系列数。

在大一的高数课程中,我们学习了等差数列和等比数列的性质与求和公式。

此外,我们还学习了数列极限的定义和性质,包括单调有界数列的极限。

2.2 数学归纳法数学归纳法是一种证明数学命题的有效方法。

通过归纳假设和归纳证明两个步骤,我们可以证明诸如等差数列求和公式、等比数列性质等命题。

理解和掌握数学归纳法对于解决数列和递推关系问题至关重要。

3.极限与连续3.1 极限极限是微积分的基本概念之一,用于描述函数的趋势和无穷大的概念。

在大一的高数课程中,我们学习了函数极限和数列极限的定义,以及极限的计算方法,如洛必达法则等。

此外,我们还学习了无穷小量和无穷大量的概念。

3.2 连续一元函数的连续性是指函数在定义域上无间断点的性质。

在大一的高数课程中,我们学习了连续函数的性质和判定方法,如闭区间上的连续性定理和介值定理等。

同时,我们也学习了导数与连续性之间的关系。

通过对以上知识点的总结,我们可以回顾和梳理所学过的重要数学概念和定理。

这些知识将为我们今后学习更深入的数学知识奠定坚实的基础。

希望大家能够认真复习和巩固这些知识,提高数学水平,并在接下来的学习中有更好的表现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
大学高等数学复习要点总结
导语:大学高等数学指相对于初等数学而言,数学的对象及方法较为繁杂
的一部分。

下面就由小编为大家带来大学高等数学复习要点总结,大家一起去
看看怎么做吧!
第一章
1)洛必达法则求极限,最常用,要熟练;
2)无穷小代换求极限,在解题中非常有用,几个等价公式要倒背如流;
3)求含参数的极限,关键是把握常量变量的关系,求解过程体现你极限计算的基本功;
4)1的∞次方的极限是重点,多练几个题;
5)函数连续计算中要会对点进行修改定义、补充定义,看看书上怎么写的,给你说句话你体会一下,“连续的概念是逐点概念”,所以问题就是围绕特殊
点展开的,这是数学思想了;
6)闭区间连续函数性质四定理非常重要,把它们背下来,然后结合例题搞定;
7)记住趋向不同,结果就大不一样的极限;
8)两个重要极限、两个基本极限把它们的推倒过程多写写,记住;关键
还是刚才的要点,一个是用e的抬头法,一个是注意“趋向不同,结果就大不
一样的极限”,还有注意lnx的定义域>0;
9)要注意存在与任意的关系,存在就是说只要有一个符合就成立,任意是说只要有一个不符合就不成立,你体会体会。

例题:无穷大无穷小有界变量无界变量;
10)注意夹逼定理的条件很强,不要漏掉要点;
11)“见根号差,用有理化”!!!这是思维定势,很管用;
第二章
1)导数的概念非常重要!!!一定会在解答题(主观题)中让你展现出
你对它的理解是透彻的,所以这里不要用什么特殊化思想,就是严格按照定义
来演算推理;
2)导数公式倒背如流的要求不算过分吧呵呵;
3)连续可导的要求一个弱一个强,只要改变条件的强弱就会有截然不同
的做法,你做题的时候一定要总结一下,回顾一下,看看条件的强弱问题,然
后在每个题上标记出来,便于以后再复习;
4)由于有些函数求导会出现x在分母上出现,所以要知道:即使不是分
段函数,有时也要用定义去求导,而且乘积中某个因子在某点不可导,但乘积
在该点也可能可导;
5)中值定理的难点在于构造辅助函数,构造函数是根据题目的要求来的,除了陈文灯等人写的方法外,关键是多看例题,熟练了,自然就会了(我上次
给同学们说的是“微分方程法”和“凑”法,这两个掌握了就足够了);
6)函数性态部分是基本功,一定要耐心的按照函数作图的几大步骤认真
做几个题,这样就可以把函数的各种性态串起来了,方法:抄例题,然后背下来,自己默一遍;
7)三个式子的不等事,即A 8)能用微分中值定理的,一般用积分中值
定理也可以搞定,你也试试吧,体会一下数学思想和定理的联系,是有好处的;
9)这部分的经济应用题不难,关键是仔细一些,对弹性等概念理解好,
你经济学的好的多了,我就不说了:);
第三章
1)一元函数积分是高等数学中最重要的部分之一,一元函数的积分不学
扎实,后面的多元函数的积分就是空中楼阁,要熟练掌握各种积分方法和几种
常见的积分类型,如有理函数,三角函数的有理式和简单无理函数的积分;
2)给你说几个准公式:;;,作题时相当有用的哦,关键是反过来用你要有意识;
3)这里特别提醒注意积分限函数,一句话:“积分限x在积分过程中是
常量,在积分完毕后是变量”,这是核心的东西,抓住它就不会迷失方向;
4)旋转体的体积看来是一定要考了,当然是重点,关键:一个是公式记清,应该是绕x轴还是y轴都要搞的清清楚楚,另一个就是体会移图和移轴的
不同,这里要用到积分的计算,是体现基本功的地方;。

相关文档
最新文档