七年级上册石家庄市石门实验学校数学期末试卷测试卷(含答案解析)
石家庄市七年级上学期期末数学试题及答案
石家庄市七年级上学期期末数学试题及答案一、选择题1.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5h t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( ) A .3秒B .4秒C .5秒D .6秒2.﹣3的相反数是( ) A .13-B .13C .3-D .33.根据等式的性质,下列变形正确的是( ) A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3bD .若23a b=,则2a =3b 4.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( ) A .30分钟B .35分钟C .42011分钟 D .36011分钟 5.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)36.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯7.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .5928.计算(3)(5)-++的结果是()A.-8 B.8 C.2 D.-29.有m 辆客车及n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘45 人,则还有 5 人不能上车.有下列四个等式:① 40m+25=45m+5 ;②2554045n n+-=;③2554045n n++=;④ 40m+25 = 45m- 5 .其中正确的是()A.①③B.①②C.②④D.③④10.下列变形不正确的是()A.若x=y,则x+3=y+3 B.若x=y,则x﹣3=y﹣3C.若x=y,则﹣3x=﹣3y D.若x2=y2,则x=y11.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x人到甲处,则所列方程是()A.2(30+x)=24﹣x B.2(30﹣x)=24+xC.30﹣x=2(24+x)D.30+x=2(24﹣x)12.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A.亏了10元钱B.赚了10钱C.赚了20元钱D.亏了20元钱二、填空题13.禽流感病毒的直径约为0.00000205cm,用科学记数法表示为_____cm;14.小马在解关于x的一元一次方程3232a xx-=时,误将- 2x看成了+2x,得到的解为x=6,请你帮小马算一算,方程正确的解为x=_____.15.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为_________.16.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.17.如图,某海域有三个小岛A,B,O,在小岛O处观测到小岛A在它北偏东61°的方向上,观测到小岛B在它南偏东38°的方向上,则∠AOB的度数是__________°.18.五边形从某一个顶点出发可以引_____条对角线.19.用“>”或“<”填空:13_____35;223-_____﹣3.20.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______. 21.若523m xy +与2n x y 的和仍为单项式,则n m =__________.22.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________. 23.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.24.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.三、压轴题25.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.26.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?27.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P和点Q一共相遇了几次.(直接写出答案)28.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.29.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.30.如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为-20和40.(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.①求整个运动过程中,P点所运动的路程.②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.31.(阅读理解)若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?32.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据题意直接把高度为102代入即可求出答案.【详解】由题意得,当h=102时,24.5=20.25 25=25 且20.25<20.4<25∴∴4.5<t<5∴与t最接近的整数是5.故选C.【点睛】本题考查的是估算问题,解题关键是针对其范围的估算.2.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.3.C解析:C【解析】【分析】利用等式的性质对每个式子进行变形即可找出答案.【详解】解:A、根据等式性质2,2a=3b两边同时除以2得a=32b,原变形错误,故此选项不符合题意;B、根据等式性质1,等式两边都加上1,即可得到a+=b+1,原变形错误,故此选项不符合题意;C 、根据等式性质1和2,等式两边同时除以﹣3且加上2应得2﹣3a =2﹣3b,原变形正确,故此选项符合题意;D 、根据等式性质2,等式两边同时乘以6,3a =2b ,原变形错误,故此选项不符合题意. 故选:C . 【点睛】本题主要考查等式的性质.解题的关键是掌握等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.4.D解析:D 【解析】 【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合. 设小强做数学作业花了x 分钟,根据分针追上时针时多转了180°列方程求解即可. 【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分. 设小强做数学作业花了x 分钟, 由题意得 6x -0.5x =180, 解之得x = 36011. 故选D.【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.A解析:A 【解析】 【分析】根据乘方和绝对值的性质对各个选项进行判断即可. 【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等. 故选A.6.B解析:B【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】604800的小数点向左移动5位得到6.048, 所以数字604800用科学记数法表示为56.04810⨯, 故选B . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值. 7.C解析:C 【解析】 【分析】由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项. 【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++, 第二行四个数分别为7,8,9,10x x x x ++++, 第三行四个数分别为14,15,16,17x x x x ++++, 第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C. 【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.8.C解析:C 【解析】 【分析】根据有理数加法法则计算即可得答案. 【详解】(3)(5)-++=5+-3- =2 故选:C.本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.9.A解析:A【解析】【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误;根据客车数列方程,应该为2554045n n++=,③正确,②错误;所以正确的是①③.故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.10.D解析:D【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:A、两边都加上3,等式仍成立,故本选项不符合题意.B、两边都减去3,等式仍成立,故本选项不符合题意.C、两边都乘以﹣3,等式仍成立,故本选项不符合题意.D、两边开方,则x=y或x=﹣y,故本选项符合题意.故选:D.【点睛】本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.11.D解析:D【解析】【分析】设应从乙处调x 人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x 的一元一次方程,此题得解. 【详解】设应从乙处调x 人到甲处,依题意,得: 30+x =2(24﹣x ). 故选:D . 【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.12.A解析:A 【解析】设一件的进件为x 元,另一件的进价为y 元, 则x (1+25%)=200, 解得,x =160, y (1-20%)=200, 解得,y =250,∴(200-160)+(200-250)=-10(元), ∴这家商店这次交易亏了10元. 故选A .二、填空题13.【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】 0解析:62.0510-⨯【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.00000205=62.0510-⨯ 故答案为62.0510-⨯【点睛】此题考查科学记数法,难度不大14.3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.15.6×【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 0解析:6×910【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.16.5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴解析:5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得:2(x﹣1)﹣1﹣1=x+1解得:x=5.故驴子原来所托货物的袋数是5.故答案为5.【点睛】解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.17.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.18.2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记知识点(从n边形的一个顶点出发有(n−3)条对角线)是解此题的关键.19.<>【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:<;>﹣3.故答解析:<>【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:13<35;223>﹣3.故答案为:<、>.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.20.【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解解析:5x =-【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解21.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.22.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.23.﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm 时水位变化记作﹣3cm .故答案为:﹣3解析:﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3cm.【点睛】此题主要考查有理数的应用,解题的关键是熟知有理数的意义.24.5【解析】【分析】把方程的解代入方程即可得出的值.【详解】把代入方程,得∴故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.解析:5【解析】【分析】把方程的解代入方程即可得出m的值.【详解】把1x=代入方程,得141m⨯-=∴5m=故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.三、压轴题25.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.26.(1)﹣4,6;(2)①4;②1319,22或【解析】【分析】(1)根据多项式的常数项与次数的定义分别求出a,b的值,然后在数轴上表示即可;(2)①根据PA﹣PB=6列出关于t的方程,解方程求出t的值,进而得到点P所表示的数;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)P在原点右边;(Ⅱ)P在原点左边.分别求出点P运动的路程,再除以速度即可.【详解】(1)∵多项式3x6﹣2x2﹣4的常数项为a,次数为b,∴a=﹣4,b=6.如图所示:故答案为﹣4,6;(2)①∵PA=2t,AB=6﹣(﹣4)=10,∴PB=AB﹣PA=10﹣2t.∵PA﹣PB=6,∴2t﹣(10﹣2t)=6,解得t=4,此时点P所表示的数为﹣4+2t=﹣4+2×4=4;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)如果P在原点右边,那么AB+BP=10+(6﹣3)=13,t=132;(Ⅱ)如果P在原点左边,那么AB+BP=10+(6+3)=19,t=192.【点睛】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.27.(1)25-,35(2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.【解析】【分析】(1)根据0+0式的定义即可解题;(2)设运动时间为x秒,表示出P,Q的运动路程,利用路程和等于AB长即可解题;(3)根据点Q达到A点时,点P,Q停止运动求出运动时间即可解题;(4)根据第三问点P运动了6个来回后,又运动了30个单位长度即可解题.【详解】解:(1)25-,35(2)设运动时间为x秒13x2x2535+=+解得x4=352427-⨯=答:运动时间为4秒,相遇点表示的数字为27(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P运动了6个来回后,又运动了30个单位长度,∵25305-+=,∴点P所在的位置表示的数为5 .(4)由(3)得:点P运动了6个来回后,又运动了30个单位长度,∴点P和点Q一共相遇了6+1=7次.【点睛】本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.28.(1)点P在线段AB上的13处;(2)13;(3)②MNAB的值不变.【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的13处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;(3)当点C停止运动时,有CD=12AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM=112AB.【详解】解:(1)由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的13处;(2)如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ=13 AB,∴13 PQ AB(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12 AB,∴CM=14 AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.【点睛】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.29.(1)-2;1;7;(2)4;(3)3+3t;9+5t;6+2t;(4)3.【解析】【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)分别写出点A、B、C表示的数为,用含t的代数式表示出AB、AC、BC即可;(4)由点B为AC中点,得到AB=BC,列方程,求解即可.【详解】(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得:a=﹣2,c=7.∵b是最小的正整数,∴b=1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A表示的数为:-2-t,点B表示的数为:1+2t,点C表示的数为:7+4t,则AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6.故答案为3t+3,5t+9,2t+6.(4)∵点B为AC中点,∴AB=BC,∴3t+3=2t+6,解得:t=3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.30.(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【解析】【分析】(1)根据数轴上两点间的距离公式结合A、B两点表示的数,即可得出结论;(2)①点P运动的时间与A、B相遇所用时间相等,根据路程=速度×时间即可求得;②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的;③点P与点A的距离越来越小,而点P与点B的距离越来越大,不存在PA=PB的时候.【详解】解:(1)∵A、B所对应的数值分别为-20和40,∴AB=40-(-20)=60,∵P是AB的中点,∴AP=60=30,∴点P表示的数是-20+30=10;∵如图,点A、B对应的数值分别是a和b,∴AB=b-a,∵P是AB的中点,∴AP=(b-a)∴点P表示的数是a+(b-a) =(a+b).(2)①点A和点B相向而行,相遇的时间为=20(秒),此即整个过程中点P运动的时间.所以,点P的运动路程为3×20=60(单位长度),故答案是60个单位长度.②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的.所以这个过程中0≤t≤7.5.P点经过t秒钟后,在数轴上对应的数值为10-3t.故答案是:10-3t,0≤t≤7.5.③不存在.由②可知,点P是和点A相向而行的,整个过程中,点P与点A的距离越来越小,而点P 与点B的距离越来越大,所以不存在相等的时候.故答案为:(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【点睛】本题考查了数轴上点与点的距离和动点问题.31.(1)2或10;(2)当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【解析】【分析】(1)设所求数为x,根据优点的定义分优点在M、N之间和优点在点N右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P为(A,B)的优点;②P为(B,A)的优点;③B为(A,P)的优点.设点P表示的数为x,根据优点的定义列出方程,进而得出t的值.【详解】解:(1)设所求数为x,当优点在M、N之间时,由题意得x﹣(﹣2)=2(4﹣x),解得x=2;当优点在点N右边时,由题意得x﹣(﹣2)=2(x﹣4),解得:x=10;故答案为:2或10;(2)设点P表示的数为x,则PA=x+20,PB=40﹣x,AB=40﹣(﹣20)=60,分三种情况:①P为(A,B)的优点.由题意,得PA=2PB,即x﹣(﹣20)=2(40﹣x),解得x=20,∴t=(40﹣20)÷4=5(秒);②P为(B,A)的优点.由题意,得PB=2PA,即40﹣x=2(x+20),解得x=0,∴t=(40﹣0)÷4=10(秒);③B为(A,P)的优点.由题意,得AB=2PA,即60=2(x+20)解得x=10,此时,点P为AB的中点,即A也为(B,P)的优点,∴t=30÷4=7.5(秒);综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【点睛】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.32.(1)见解析;(2)∠OQP=180°+12x°﹣12y°或∠OQP=12x°﹣12y°.【解析】【试题分析】(1)分下面两种情况进行说明;①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,(2)分两种情况讨论,如图3和图4.【试题解析】(1)分两种情况:①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,证明:∵四边形AOBP的内角和为(4﹣2)×180°=360°,∴∠APB=360°﹣∠MON﹣∠PAO﹣∠PBO;。
石家庄市七年级上学期期末数学试题及答案
直接应用:表示数a和2的两点之间的距离等于____,表示数a和-4的两点之间的距离等于____;
灵活应用:
(1)如果∣a+1∣=3,那么a=____;
(2)若数轴上表示数a的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;
(3)若∣a-2∣+∣a+4∣=10,则a =______;
A.30°B.40°C.50°D.90°
3.在 四个数中,属于无理数的是()
A. B. C. D.
4.如果﹣2xyn+2与3x3m-2y是同类项,则|n﹣4m|的值是()
A.3B.4C.5D.6
5.按一定规律排列的单项式:x3,-x5,x7,-x9,x11,……第n个单项式是( )
A.(-1)n-1x2n-1B.(-1)nx2n-1
(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为,取得最佳值最小值的数列为(写出一个即可);
(3)将2,-9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a的值.
32.结合数轴与绝对值的知识解决下列问题:
探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;
23.若关于 的方程 是一元一次方程,则这个方程的解是_______.
24.一个水库的水位变化情况记录:如果把水位上升5cm记作+5cm,那么水位下降3cm时水位变化记作_____.
三、解答题
25.计算:﹣6÷2+ ×12+(﹣3) .
26.先化简,再求值: ,其中 , .
石家庄市七年级上册数学期末试卷及答案-百度文库
石家庄市七年级上册数学期末试卷及答案-百度文库一、选择题1.购买单价为a元的物品10个,付出b元(b>10a),应找回()A.(b﹣a)元B.(b﹣10)元C.(10a﹣b)元D.(b﹣10a)元2.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106 3.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短 B.两点确定一条直线C.垂线段最短 D.两点之间直线最短4.已知关于x的方程mx+3=2(m﹣x)的解满足(x+3)2=4,则m的值是()A.13或﹣1 B.1或﹣1 C.13或73D.5或735.计算32a a⋅的结果是()A.5a;B.4a;C.6a;D.8a.6.将图中的叶子平移后,可以得到的图案是()A.B.C.D.7.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A.①④B.②③C.③D.④8.解方程121123x x+--=时,去分母得()A .2(x +1)=3(2x ﹣1)=6B .3(x +1)﹣2(2x ﹣1)=1C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=69.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱10.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cmB .2cmC .8cm 或2cmD .以上答案不对11.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .112.不等式x ﹣2>0在数轴上表示正确的是( ) A . B . C .D .13.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x )14.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==15.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( ) ①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB .A .1个B .2个C .3个D .4个二、填空题16.一个角的余角等于这个角的13,这个角的度数为________. 17.已知方程22x a ax +=+的解为3x =,则a 的值为__________. 18.把53°30′用度表示为_____.19.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.20.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.21.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.22.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______. 23.若α与β互为补角,且α=50°,则β的度数是_____.24.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm . 25.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.26.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.27.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米. 28.方程x +5=12(x +3)的解是________. 29.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .30.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.三、压轴题31.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ? 32.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.33.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.34.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?35.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d(d≥0),则称d 为点P 到点Q 的d 追随值,记作d[PQ].例如,在数轴上点P 表示的数是2,点Q 表示的数是5,则点P 到点Q 的d 追随值为d[PQ]=3. 问题解决:(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2; ②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.36.如图,在平面直角坐标系中,点M 的坐标为(2,8),点N 的坐标为(2,6),将线段MN 向右平移4个单位长度得到线段PQ (点P 和点Q 分别是点M 和点N 的对应点),连接MP 、NQ ,点K 是线段MP 的中点. (1)求点K 的坐标;(2)若长方形PMNQ 以每秒1个单位长度的速度向正下方运动,(点A 、B 、C 、D 、E 分别是点M 、N 、Q 、P 、K 的对应点),当BC 与x 轴重合时停止运动,连接OA 、OE ,设运动时间为t 秒,请用含t 的式子表示三角形OAE 的面积S (不要求写出t 的取值范围); (3)在(2)的条件下,连接OB 、OD ,问是否存在某一时刻t ,使三角形OBD 的面积等于三角形OAE 的面积?若存在,请求出t 值;若不存在,请说明理由.37.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C出发,以1cm/s的速度向右运动. 设它们同时出发,运动时间为s t. 当点P与点Q 、两点停止运动.第二次重合时,P Q(1)求AC,BC;=;(2)当t为何值时,AP PQ(3)当t为何值时,P与Q第一次相遇;PQ=.(4)当t为何值时,1cm38.问题一:如图1,已知A,C两点之间的距离为16 cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).(1)当甲追上乙时,x = .(2)请用含x的代数式表示y.当甲追上乙前,y= ;当甲追上乙后,甲到达C之前,y= ;当甲到达C之后,乙到达C之前,y= .问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.【参考答案】***试卷处理标记,请不要删除一、选择题1.D【解析】【分析】根据题意知:花了10a元,剩下(b﹣10a)元.【详解】购买单价为a元的物品10个,付出b元(b>10a),应找回(b﹣10a)元.故选D.【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】试题分析:384 000=3.84×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B. 4.A解析:A【解析】【分析】先求出方程的解,把x的值代入方程得出关于m的方程,求出方程的解即可.【详解】解:(x+3)2=4,x﹣3=±2,解得:x=5或1,把x=5代入方程mx+3=2(m﹣x)得:5m+3=2(m﹣5),解得:m=13,把x=﹣1代入方程mx+3=2(m﹣x)得:﹣m+3=2(1+m),解得:m=﹣1,【点睛】本题考查了解一元一次方程的解的应用,能得出关于m 的方程是解此题的关键.5.A解析:A 【解析】此题考查同底数幂的乘法运算,即(0)mnm na a a a +⋅=>,所以此题结果等于325a a +=,选A ;6.A解析:A 【解析】 【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案. 【详解】解:根据平移不改变图形的形状、大小和方向, 将所示的图案通过平移后可以得到的图案是A , 其它三项皆改变了方向,故错误. 故选:A . 【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.7.A解析:A 【解析】 【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案. 【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确; ②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误; ③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误; ④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确. 故选A . 【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.8.C解析:C【分析】方程两边都乘以分母的最小公倍数即可. 【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=, 故选:C . 【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.9.C解析:C 【解析】 【分析】三棱柱的侧面展开图是长方形,底面是三角形. 【详解】解:由图可得,该展开图是由三棱柱得到的, 故选:C . 【点睛】此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.10.C解析:C 【解析】 【分析】根据题意分两种情况讨论:①当点C 在线段AB 上时,②当点C 在线段AB 的延长线上时,分别根据线段的和差求出AC 的长度即可. 【详解】解:当点C 在线段AB 上时,如图,∵AC=AB−BC , 又∵AB=5,BC=3, ∴AC=5−3=2;②当点C 在线段AB 的延长线上时,如图,∵AC=AB+BC , 又∵AB=5,BC=3, ∴AC=5+3=8. 综上可得:AC=2或8.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.11.B解析:B【解析】【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.【详解】解:由题意可得,当x=1时,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,第六次输出的结果是1,第七次输出的结果是4,第八次输出的结果是2,第九次输出的结果是1,第十次输出的结果是4,……,∵2020÷3=673…1,则第2020次输出的结果是4,故选:B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.12.C解析:C【解析】【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.【详解】移项得,x>2,在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.13.D解析:D【解析】【分析】设应从乙处调x人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】设应从乙处调x人到甲处,依题意,得:30+x=2(24﹣x).故选:D.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.14.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.15.A解析:A【解析】①项,因为AP=BP,所以点P是线段AB的中点,故①项正确;②项,点P可能是在线段AB的延长线上且在点B的一侧,此时也满足BP=12AB,故②项错误;③项,点P可能是在线段BA的延长线上且在点A的一侧,此时也满足AB=2AP,故③项错误;④项,因为点P为线段AB上任意一点时AP+PB=AB恒成立,故④项错误.故本题正确答案为①.二、填空题16.【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解. 【详解】设这个角度的度数为x度,依题意得90-x=解得x=67.5故填【点睛】此题主要考查角度的求解,解题的关键是解析:67.5【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=1 3 x解得x=67.5故填67.5【点睛】此题主要考查角度的求解,解题的关键是熟知补角的性质. 17.2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.18.5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:5330’用度表示为53.5,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以解析:5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53︒30’用度表示为53.5︒,故答案为:53.5︒.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.19.﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣,m=2或﹣2,当m=2时,原式=2(a+b)解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a +b =0,c =﹣13,m =2或﹣2, 当m =2时,原式=2(a +b )﹣3c +2m =1+4=5; 当m =﹣2时,原式=2(a +b )﹣3c +2m =1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.20.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 21.100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100. 故答案解析:100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.故答案为100.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.23.130°.【解析】【分析】若两个角的和等于,则这两个角互补,依此计算即可.【详解】解:与互为补角,,.故答案为:.【点睛】此题考查了补角的定义.补角:如果两个角的和等于(平角),解析:130°.【解析】【分析】 若两个角的和等于180︒,则这两个角互补,依此计算即可.【详解】解:α与β互为补角,180αβ∴+=︒,180********βα∴=︒-=︒-︒=︒.故答案为:130︒.【点睛】此题考查了补角的定义.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.24.5或11【解析】【分析】由于C 点的位置不能确定,故要分两种情况考虑AC 的长,注意不要漏解.【详解】由于C 点的位置不确定,故要分两种情况讨论:当C 点在B 点右侧时,如图所示:AC=AB+解析:5或11【解析】【分析】由于C 点的位置不能确定,故要分两种情况考虑AC 的长,注意不要漏解.【详解】由于C 点的位置不确定,故要分两种情况讨论:当C 点在B 点右侧时,如图所示:AC=AB+BC=8+3=11cm ;当C 点在B 点左侧时,如图所示:AC=AB ﹣BC=8﹣3=5cm ;所以线段AC 等于11cm 或5cm.25.72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 26.8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.27.18×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原解析:18×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:118000=1.18×105,故答案为1.18×105.28.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.29.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.解析:5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.30.6【解析】如图,∵AB=2cm,BC=2AB ,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=6cm.故答案为:6.三、压轴题31.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.32.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB ,∠BON=12∠BOD ,再根据角的和差得∠AOD=∠AOB+∠BOD ,∠MON=∠BOM+∠BON ,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC ,∠BON=12∠BOD ,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC ,∠MON=∠MOC+∠BON-∠BOC 结合三式求解.【详解】解:(1)∵OM 平分∠AOB ,ON 平分∠BOD ,∴∠BOM=12∠AOB ,∠BON=12∠BOD , ∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD). ∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°; (2)∵OM 平分∠AOC ,ON 平分∠BOD ,∴∠MOC=12∠AOC ,∠BON=12∠BOD , ∵∠MON=∠MOC+∠BON-∠BOC ,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC. ∵∠AOD=∠AOB+∠BOD ,∠AOC=∠AOB+∠BOC, ∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC ,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键. 33.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.34.(1)﹣4,6;(2)①4;②1319,22或【解析】【分析】(1)根据多项式的常数项与次数的定义分别求出a,b的值,然后在数轴上表示即可;(2)①根据PA﹣PB=6列出关于t的方程,解方程求出t的值,进而得到点P所表示的数;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)P在原点右边;(Ⅱ)P在原点左边.分别求出点P运动的路程,再除以速度即可.【详解】(1)∵多项式3x6﹣2x2﹣4的常数项为a,次数为b,∴a=﹣4,b=6.如图所示:故答案为﹣4,6;(2)①∵PA=2t,AB=6﹣(﹣4)=10,∴PB=AB﹣PA=10﹣2t.∵PA﹣PB=6,∴2t﹣(10﹣2t)=6,解得t=4,此时点P所表示的数为﹣4+2t=﹣4+2×4=4;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)如果P在原点右边,那么AB+BP=10+(6﹣3)=13,t=132;(Ⅱ)如果P在原点左边,那么AB+BP=10+(6+3)=19,t=192.【点睛】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.35.(1)1+a或1-a;(2)12或52;(3)1≤b≤7.【解析】【分析】(1)根据d追随值的定义,分点N在点M左侧和点N在点M右侧两种情况,直接写出答案即可;(2)①分点A在点B左侧和点A在点B右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②【详解】解:(1)点N在点M右侧时,点N表示的数是1+a;点N在点M左侧时,点N表示的数是1-a;(2)①b=4时,AB相距3个单位,当点A在点B左侧时,t=(3-2)÷(3-1)=12,当点A在点B右侧时,t=(3+2)÷(3-1)=52;②当点B在点A左侧或重合时,即d≤1时,随着时间的增大,d追随值会越来越大,∵0<t≤3,点A到点B的d追随值d[AB]≤6,∴1-d+3×(3-1)≤6,解得d≥1,∴d=1,当点B在点A右侧时,即d>1时,在AB重合之前,随着时间的增大,d追随值会越来越小,∵点A到点B的d追随值d[AB]≤6,∴d≤7∴1<d≤7,综合两种情况,d的取值范围是1≤d≤7.故答案为(1)1+a或1-a;(2)①12或52;②1≤b≤7.【点睛】本题考查了数轴上两点之间的距离和动点问题.36.(1)(4,8)(2)S△OAE=8﹣t(3)2秒或6秒【解析】【分析】(1)根据M和N的坐标和平移的性质可知:MN∥y轴∥PQ,根据K是PM的中点可得K 的坐标;(2)根据三角形面积公式可得三角形OAE的面积S;(3)存在两种情况:①如图2,当点B在OD上方时②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,分别根据三角形OBD的面积等于三角形OAE的面积列方程可得结论.【详解】(1)由题意得:PM=4,∵K是PM的中点,∴MK=2,∵点M的坐标为(2,8),点N的坐标为(2,6),∴MN∥y轴,∴K(4,8);(2)如图1所示,延长DA交y轴于F,则OF⊥AE,F(0,8﹣t),∴OF=8﹣t,∴S△OAE=12OF•AE=12(8﹣t)×2=8﹣t;(3)存在,有两种情况:,①如图2,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,0),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△OBG+S四边形DBGH+S△ODH,=12OG•BG+12(BG+DH)•GH﹣12OH•DH,=12×2(6-t)+12×4(6﹣t+8﹣t)﹣12×6(8﹣t),=10﹣2t,∵S△OBD=S△OAE,∴10﹣2t=8﹣t,t=2;②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,8﹣t),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△ODH﹣S四边形DBGH﹣S△OBG,=12OH•DH﹣12(BG+DH)•GH﹣12OG•BG,=12×2(8-t)﹣12×4(6﹣t+8﹣t)﹣12×2(6﹣t),=2t﹣10,∵S△OBD=S△OAE,∴2t﹣10=8﹣t,t=6;综上,t的值是2秒或6秒.【点睛】本题考查四边形综合题、矩形的性质、三角形的面积、一元一次方程等知识,解题关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.37.(1)AC=4cm, BC=8cm;(2)当45t=时,AP PQ=;(3)当2t=时,P与Q第一次相遇;(4)35191cm.224t PQ=当为,,时,【解析】【分析】(1)由于AB=12cm,点C是线段AB上的一点,BC=2AC,则AC+BC=3AC=AB=12cm,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.38.问题一、(1)32;(2)3-2x ;2x -3;13-6x ;问题一、(1)35;120;24011. 【解析】【分析】问题一根据等量关系,路程=速度⨯时间,路程差=路程1-路程2,即可列出方程求解。
七年级上册石家庄市一中实验学校数学期末试卷测试卷 (word版,含解析)
七年级上册石家庄市一中实验学校数学期末试卷测试卷(word版,含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图1,已知∠AOB=140°,∠AOC=30°,OE是∠AOB内部的一条射线,且OF平分∠AOE.(1)若∠EOB=30°,则∠COF=________;(2)若∠COF=20°,则∠EOB=________;(3)若∠COF=n°,则∠EOB=________(用含n的式子表示).(4)当射线OE绕点O逆时针旋转到如图2的位置时,请把图补充完整;此时,∠COF与∠EOB有怎样的数量关系?请说明理由.【答案】(1)20°(2)40°(3)80°-2n°(4)如图所示:∠EOB=80°+2∠COF.证明:设∠COF=n°,则∠AOF=∠AOC-∠COF=30°-n°,又∵OF平分∠AOE,∴∠AOE=2∠AOF=60°-2n°.∴∠EOB=∠AOB-∠AOE=140°-(60°-2n°)=(80+2n)°即∠EOB=80°+2∠COF.【解析】【解答】(1)∵∠AOB=140°,∠EOB=30°,∴∠AOE=∠AOB-∠EOB=140°-30°=110°,∵OF平分∠AOE,∴∠AOF= ∠AOE= ×110°=55°,∴∠COF=∠AOF-∠AOC,=55°-30°,=25°;故答案为:25°;(2)∵∠AOC=30°,∠COF=20°,∴∠AOF=∠AOC+∠COF=30°+20°=50°,∵OF平分∠AOE,∴∠AOE=2∠AOF=2×50°=100°,∴∠EOB=∠AOB-∠AOE=140°-100°=40°;故答案为:40°;(3)∵∠AOC=30°,∠COF=n°,∴∠AOF=∠AOC+∠COF=30°+n°,∵OF平分∠AOE,∴∠AOE=2∠AOF=2(30°+n°)=60°+2n°,∴∠EOB=∠AOB-∠AOE=140°-(60°+2n°)=80°-2n°;故答案为:80°-2n°;【分析】(1)根据∠AOE=∠AOB-∠EOB先求出∠AOE,再根据角平分线的定义求出∠AOF,最后根据∠COF=∠AOF-∠AOC解答即可;(2)根据∠AOF=∠AOC+∠COF先求出∠AOF,再根据角平分线的定义求出∠AOE,最后根据∠EOB=∠AOB-∠AOE解答即可;(3)与(2)的思路相同求解即可;(4)设∠COF=n°,先表示出∠AOF,再根据角平分线的定义求出∠AOE,最后根据∠EOB=∠AOB-∠AOE解答即可.2.已知直线AB∥CD,直线EF与AB,CD分别相交于点E,F.(1)如图1,若∠1=60°,求∠2,∠3的度数.(2)若点P是平面内的一个动点,连结PE,PF,探索∠EPF,∠PEB,∠PFD三个角之间的关系.①当点P在图(2)的位置时,可得∠EPF=∠PEB+∠PFD请阅读下面的解答过程并填空(理由或数学式)解:如图2,过点P作MN∥AB则∠EPM=∠PEB(________)∵AB∥CD(已知)MN∥AB(作图)∴MN∥CD(________)∴∠MPF=∠PFD (________)∴________=∠PEB+∠PFD(等式的性质)即:∠EPF=∠PEB+∠PFD②拓展应用,当点P在图3的位置时,此时∠EPF=80°,∠PEB=156°,则∠PFD=________度.③当点P在图4的位置时,请直接写出∠EPF,∠PEB,∠PFD三个角之间关系________.【答案】(1)解:∵∠2=∠1,∠1=60°∴∠2=60°,∵AB∥CD∴∠3=∠1=60°(2)两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;∠EPM+∠MPF;124;∠EPF+∠PFD=∠PEB【解析】【解答】(2)①如图2,过点P作MN∥AB,则∠EPM=∠PEB(两直线平行,内错角相等)∵AB∥CD(已知),MN∥AB,∴MN∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∴∠MPF=∠PFD(两直线平行,内错角相等)∴∠EPM+∠MPF=∠PEB+∠PFD(等式的性质)即∠EPF=∠PEB+∠PFD;故答案为:两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;∠EPM+∠MPF;②过点P作PM∥AB,如图3所示:则∠PEB+∠EPM=180°,∠MPF+∠PFD=180°,∴∠PEB+∠EPM+∠MPF+∠PFD=180°+180°=360°,即∠EPF+∠PEB+∠PFD=360°,∴∠PFD=360°﹣80°﹣156°=124°;故答案为:124;③∠EPF+∠PFD=∠PEB.故答案为:∠EPF+∠PFD=∠PEB.【分析】(1)利用对顶角相等,可证∠1=∠2,可求出∠2的度数,再根据两直线平行,同位角相等,就可求出∠3的度数。
2020-2021石家庄市石门实验学校七年级数学上期末第一次模拟试题(带答案)
20.现在的时间是 9 时 20 分,此时钟面上时针与分针夹角的度数是_____度.
三、解答题
21.如图 1,点 O 为直线 AB 上一点,过点 O 作射线 OC,使∠AOC=60°.将一直角三角 板 MON 的直角顶点放在点 O 处,一边 OM 在射线 OB 上,另一边 ON 在直线 AB 的下 方. (1)求∠CON 的度数; (2)如图 2 是将图 1 中的三角板绕点 O 按每秒 15°的速度沿逆时针方向旋转一周的情况, 在旋转的过程中,第 t 秒时,三条射线 OA、OC、OM 构成两个相等的角,求此时的 t 值 (3)将图 1 中的三角板绕点 O 顺时针旋转至图 3(使 ON 在∠AOC 的外部),图 4(使 ON 在∠AOC 的内部)请分别探究∠AOM 与∠NOC 之间的数量关系,并说明理由.
22.如图,OD 平分∠AOB,OE 平分 ∠BOC,∠COD=20°,∠AOB=140°,求∠DOE 的 度数.
23.先化简,后求值:
已知 x 32
y1 2
0
求代数式 2xy2 6x 42x 1 2xy2 9 的值
24.先化简,再求值: a2b 3ab2 a2b 2 2ab2 a2b ,其中 a 1, b 2.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C 解析:C 【解析】 【分析】 根据相反数的意义可求得 x 的值,根据绝对值的意义可求得 y 的值,然后再代入 x+y 中进 行计算即可得答案. 【详解】
∵ x 是 3 的相反数, y 5 ,
∴x=3,y=±5, 当 x=3,y=5 时,x+y=8, 当 x=3,y=-5 时,x+y=-2, 故选 C. 【点睛】 本题考查了相反数、绝对值以及有理数的加法运算,熟练掌握相关知识并运用分类思想是 解题的关键.
石家庄市七年级上学期期末数学试题及答案
石家庄市七年级上学期期末数学试题及答案一、选择题1.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 2.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5h t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( ) A .3秒B .4秒C .5秒D .6秒3.下列四个式子:9,327-,3-,(3)--,化简后结果为3-的是( ) A .9B .327-C .3-D .(3)--4.计算32a a ⋅的结果是( ) A .5a ;B .4a ;C .6a ;D .8a .5.将图中的叶子平移后,可以得到的图案是()A .B .C .D .6.已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中:①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( )A .1个B .2个C .3个D .4个7.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cmB .3cmC .3cm 或6cmD .4cm8.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠29.如果代数式﹣3a 2m b 与ab 是同类项,那么m 的值是( ) A .0B .1C .12D .310.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x )11.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( ) A .赚了10元B .赔了10元C .赚了50元D .不赔不赚12.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( ) A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱二、填空题13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 14.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.15.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 16.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.17.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________.18.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.19.计算:()222a -=____;()2323x x ⋅-=_____.20.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.21.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.22.已知一个角的补角是它余角的3倍,则这个角的度数为_____.23.方程x +5=12(x +3)的解是________. 24.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.三、解答题25.如图,O 为直线AB 上一点,130BOC ∠=︒,OE 平分BOC ∠,DO OE ⊥.(1)求BOD ∠的度数.(2)试判断OD 是否平分AOC ∠,并说明理由.26.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角.如图1,若1COD AOB 2∠∠=,则COD ∠是AOB ∠的内半角.()1如图1,已知AOB 70∠=,AOC 25∠=,COD ∠是AOB ∠的内半角,则BOD ∠=______;()2如图2,已知AOB 60∠=,将AOB ∠绕点O 按顺时针方向旋转一个角度α(0α60)<<至COD ∠,当旋转的角度α为何值时,COB ∠是AOD ∠的内半角.()3已知AOB 30∠=,把一块含有30角的三角板如图3叠放,将三角板绕顶点O 以3度/秒的速度按顺时针方向旋转(如图4),问:在旋转一周的过程中,射线OA ,OB ,OC ,OD 能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由. 27.如图,射线OM 上有三点A 、B 、C ,满足OA=20cm ,AB=60cm ,BC=10cm ,点P 从点O 出发,沿OM 方向以1cm/秒的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动. (1)若点Q 运动速度为2cm/秒,经过多长时间P 、Q 两点相遇?(2)当P 在线段AB 上且PA=3PB 时,点Q 运动到的位置恰好是线段AB 的三等分点,求点Q 的运动速度;28.先化简,再求值:()()223321325x x x x --+---,其中1x =-. 29. 计算: (1)(﹣16+34﹣512)×36 (2)(﹣3)2124÷×(﹣23)+4+22×8()3-30.东莞市出租车收费标准如下表所示,根据此收费标准,解决下列问题: 行驶路程 收费标准 不超出2km 的部分 起步价8元 超出2km 的部分2.6元/km(1)若行驶路程为5km ,则打车费用为______元;(2)若行驶路程为()km 6x x >,则打车费用为______元(用含x 的代数式表示); (3)某同学周末放学回家,已知打车费用为34元,则他家离学校多少千米?四、压轴题31.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C满足6a +|2b+12|+(c﹣4)2=0.(1)求B、C两点的坐标;(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的13?直接写出此时点P的坐标.32.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.33.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠C OE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据选项进行一一排除即可得出正确答案. 【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错; B 中、8-6y=0x ,可得出43x y =,故B 错; C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y=,交叉相乘得到34x y =,故D 对. 故答案为:D. 【点睛】本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.2.C解析:C 【解析】 【分析】根据题意直接把高度为102代入即可求出答案. 【详解】由题意得,当h=102时,24.5=20.25 25=25 且20.25<20.4<25∴∴4.5<t<5∴与t 最接近的整数是5.故选C.【点睛】本题考查的是估算问题,解题关键是针对其范围的估算.3.B解析:B 【解析】 【分析】由题意直接利用求平方根和立方根以及绝对值的性质和去括号分别化简得出答案. 【详解】解:,故排除A;=3-,选项B 正确; C. 3-=3,故排除C; D. (3)--=3,故排除D. 故选B. 【点睛】本题主要考查求平方根和立方根以及绝对值的性质和去括号原则,正确掌握相关运算法则是解题关键.4.A解析:A 【解析】此题考查同底数幂的乘法运算,即(0)mnm na a a a +⋅=>,所以此题结果等于325a a +=,选A ;5.A解析:A 【解析】 【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案. 【详解】解:根据平移不改变图形的形状、大小和方向, 将所示的图案通过平移后可以得到的图案是A , 其它三项皆改变了方向,故错误. 故选:A . 【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.6.D解析:D 【解析】 【分析】①把a=10代入方程组求出解,即可做出判断;②根据题意得到x+y=0,代入方程组求出a 的值,即可做出判断; ③假如x=y,得到a 无解,本选项正确;④根据题中等式得到x-3a=5,代入方程组求出a 的值,即可做出判断 【详解】①把a=10代入方程组得352025x y x y -=⎧⎨-=⎩ 解得155x y =⎧⎨=⎩,本选项正确 ②由x 与y 互为相反数,得到x+y=0,即y=-x 代入方程组得3+52+25x x ax x a =⎧⎨=-⎩解得:a=20,本选项正确③若x=y,则有-225x ax a=⎧⎨-=-⎩,可得a=a-5,矛盾,故不存在一个实数a使得x=y,本选项正确④方程组解得25-15x a y a=⎧⎨=-⎩由题意得:x-3a=5把25-15x ay a=⎧⎨=-⎩代入得25-a-3a=5解得a=5本选项正确则正确的选项有四个故选D【点睛】此题考查二元一次方程组的解,掌握运算法则是解题关键7.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC+-BC+12BC,=12 AB,=4,同理,当点C在线段AB上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4,,故选:D.【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.8.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.9.C解析:C【解析】【分析】根据同类项的定义得出2m=1,求出即可.【详解】解:∵单项式-3a2m b与ab是同类项,∴2m=1,∴m=12,故选C.【点睛】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.10.D解析:D【解析】【分析】设应从乙处调x人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】设应从乙处调x人到甲处,依题意,得:30+x=2(24﹣x).故选:D.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.11.A解析:A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用12.A解析:A【解析】设一件的进件为x元,另一件的进价为y元,则x(1+25%)=200,解得,x=160,y(1-20%)=200,解得,y=250,∴(200-160)+(200-250)=-10(元),∴这家商店这次交易亏了10元.故选A.二、填空题13.两点确定一条直线.将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.解析:两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线. 故答案为两点确定一条直线.14.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.15.-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、解析:-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,所以最小的整数是﹣3.故答案为:﹣3.【点睛】本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.16.﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣,m=2或﹣2,当m=2时,原式=2(a+b)解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣13,m=2或﹣2,当m=2时,原式=2(a+b)﹣3c+2m=1+4=5;当m=﹣2时,原式=2(a+b)﹣3c+2m=1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.17.3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把代入方程组得:,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【解析:3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把12xy=⎧⎨=⎩代入方程组得:2722a bb a+=⎧⎨+=⎩,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.18.20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB =90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a ∥b ,∠2=2∠1,∴∠3=∠1+∠CAB ,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.19.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a -=44a ()2323x x ⋅-=56x -【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键20.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2+2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.21.3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.22.45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.23.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.24.28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x 首,根据题意,可列方程为: 28x-20(x+13)=20,解析:28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x 首,根据题意,可列方程为: 28x-20(x+13)=20,故答案为: 28x-20(x+13)=20.【点睛】本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系.三、解答题25.(1)155°;(2)OD 平分AOC ∠,理由见详解.【解析】【分析】(1)由题意先根据角平分线定义求出∠BOE ,进而求出BOD ∠的度数;(2)由题意判断OD 是否平分AOC ∠即证明AOD DOC ∠=∠,以此进行分析求证即可.【详解】解:(1)∵130BOC ∠=︒,OE 平分BOC ∠,∴∠BOE =65°,∵DO OE ⊥,∴BOD ∠=90°+65°=155°.(2)OD 平分AOC ∠,理由如下:∵由(1)知BOD ∠=155°,∴AOD ∠=180°-155°=25°,∵130BOC ∠=︒,OE 平分BOC ∠,DO OE ⊥,∴DOC ∠=90°-65°=25°,∴AOD DOC ∠=∠=25°,即有OD 平分AOC ∠.【点睛】本题考查角的运算,利用角平分线定义以及垂直定义结合题意对角进行运算即可.26.(1)10°;(2) 20;(3)见解析.【解析】【分析】(1)根据内半角的定义解答即可;(2)根据内半角的定义解答即可;(3)根据根据内半角的定义列方程即可得到结论.【详解】 解:()1COD ∠是AOB ∠的内半角,AOB 70∠=,1COD AOB 352∠∠∴==, AOC 25∠=,BOD 70352510∠∴=--=,故答案为10,()2AOC BOD α∠∠==,AOD 60α∠∴=+,COB ∠是AOD ∠的内半角,()1BOC 60α60α2∠∴=+=-, α20∴=,∴旋转的角度α为20时,COB ∠是AOD ∠的内半角;()3在旋转一周的过程中,射线OA ,OB ,OC ,OD 能否构成内半角;理由:设按顺时针方向旋转一个角度α,旋转的时间为t ,如图1,BOC ∠是AOD ∠的内半角,AOC BOD α∠∠==,AOD 30α∠∴=+,()130302αα∴+=-, 解得:10α=,103t s ∴=; 如图2,BOC ∠是AOD ∠的内半角,AOC BOD ∠∠α==,30AOD ∠α∴=+,()130302αα∴+=-, 90α∴=,90303t s ∴==; 如图3,AOD ∠是BOC ∠的内半角,360AOC BOD ∠∠α==-,36030αBOC ∠∴=+-,()136030α360α302∴+-=--, α330∴=,330t 110s 3∴==, 如图4,AOD ∠是BOC ∠的内半角,AOC BOD 360α∠∠==-,BOC 36030α∠∴=+-,()()136030α303036030α2∴+-=+-+-, 解得:α350=,350t s 3∴=, 综上所述,当旋转的时间为10s 3或30s 或110s 或350s 3时,射线OA ,OB ,OC ,OD 能构成内半角.【点睛】本题考查了角的计算,角的和差,准确识图理清图中各角度之间的关系是解题的关键.27.(1)经过30秒时间P 、Q 两点相遇;(2)点Q 是速度为613cm/秒或1013cm/秒. 【解析】(1)设经过t 秒时间P 、Q 两点相遇,列出方程即可解决问题;(2)分两种情形求解即可.【详解】(1)设经过t 秒时间P 、Q 两点相遇,则t+2t=90,解得t=30,所以经过30秒时间P 、Q 两点相遇.(2)∵AB=60cm ,PA=3PB ,∴PA=45cm ,OP=65cm .∴点P 、Q 的运动时间为65秒,∵AB=60cm ,13AB=20cm , ∴QB=20cm 或40cm , ∴点Q 是速度为10+2065=613cm/秒或10+4065=1013cm/秒. 【点睛】本题考查两点间距离、路程、速度、时间之间的关系等知识,解题的关键是理解题意,学会构建方程解决问题,属于中考常考题型.28.23213x x -+-,-27【解析】【分析】先先去括号,再合并同类项得到最简结果,然后把x 的值代入计算即可求出值.【详解】解:原式=2229636153213x x x x x x -+-++=-+-当x=-1时,原式=-3-21-3=-27【点睛】本题考查了整式的加减和求值,能正确根据整式的加减法则进行化简是解此题的关键.29.(1)6;(2)﹣283. 【解析】【分析】第一题利用乘法分配律进行计算第二题按照混合运算的法则进行逐步计算【详解】(1)原式=1353636366271566412-⨯+⨯-⨯=-+-= (2)原式=428832289444933333⎛⎫⎛⎫⨯⨯-++⨯-=-+-=- ⎪ ⎪⎝⎭⎝⎭关于有理数的运算,运用运算律可以简便运算,对于混合运算,要严格按照运算的先后顺序进行运算.30.(1)15.8;(2)()2.6 2.8x +;(3)他家离学校12千米.【解析】【分析】(1)根据题意,分为不超过2km 的部分和超出2km 的部分,列式计算即可;(2)根据题意,分为不超过2km 的部分和超出2km 的部分,列式即可;(3)由(2)中的代数式列出方程,求解即可.【详解】(1)由题意,得8+2.6×(5-2)=15.8元;故答案为15.8;(2)由题意,得()8 2.628 2.6 5.2 2.6 2.8x x x +⨯-=+-=+故答案为()2.6 2.8x +;(3)设他家离学校x 千米由题意得:2.6 2.834x +=,解得:12x =,答:他家离学校12千米【点睛】此题主要考查一元一次方程的实际应用,解题关键是理解题意,列出等式.四、压轴题31.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6)【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.【详解】(1)∵|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.32.(1)3456;45678S S =+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】【分析】先找出前几项的钢管数,在推出第n 项的钢管数.【详解】(1)3456;45678S S =+++=++++(2)方法不唯一,例如:12S=+1233S=+++123444S=+++++12345555S=+++++++(3)方法不唯一,例如:()()12 (2)S n n n n=++++++()()()()=.....12.....1112n n n nn n n n+++++++=+++()312n n=+【点睛】此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.33.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE,进而求出即可;(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.【详解】(1)如图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.(2)如图2,∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),∴∠BOD=12∠AOD﹣12∠COE+12∠COE=12×108°=54°;(3)如图3,∠AOE=88°,∠BOD=30°,图中所有锐角和为∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=4∠AOB+4∠DOE=6∠BOC+6∠COD=4(∠AOE﹣∠BOD)+6∠BOD=412°.【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE、∠BOD和∠BOD的关系是解题的关键,。
石家庄市七年级上学期期末数学试题及答案
石家庄市七年级上学期期末数学试题及答案一、选择题1.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =2.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( ) A .0.1289×1011 B .1.289×1010 C .1.289×109D .1289×1073.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .34.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .5.-2的倒数是( ) A .-2B .12-C .12D .26.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒7.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=8.下列说法中正确的有( ) A .连接两点的线段叫做两点间的距离 B .过一点有且只有一条直线与已知直线垂直 C .对顶角相等D .线段AB 的延长线与射线BA 是同一条射线9.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 10.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( ) A .2 B .8 C .6 D .0 11.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣112.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x )13.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2或2.5 B .2或10 C .2.5 D .2 14.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒15.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A .a+b<0B .a+c<0C .a -b>0D .b -c<0二、填空题16.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 17.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____. 18.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.19.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.20.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.21.五边形从某一个顶点出发可以引_____条对角线. 22.化简:2x+1﹣(x+1)=_____.23.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.24.当x= 时,多项式3(2-x )和2(3+x )的值相等. 25.用“>”或“<”填空:13_____35;223-_____﹣3.26.观察“田”字中各数之间的关系:则c 的值为____________________.27.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.28.若4a +9与3a +5互为相反数,则a 的值为_____. 29.已知7635a ∠=︒',则a ∠的补角为______°______′. 30.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.三、压轴题31.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.32.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______; ()3求当t 为何值时,1PQ AB 2=?()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.33.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____; 灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____; (3)若∣a-2∣+∣a+4∣=10,则a =______; 实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
石家庄市石门实验学校七年级数学上册期末压轴题汇编
石家庄市石门实验学校七年级数学上册期末压轴题汇编一、七年级上册数学压轴题1.如图 1,射线OC 在∠AOB 的内部,图中共有 3 个角:∠AOB 、∠AOC 和∠BOC ,若其中有一个角的度数是另一个角度数的两倍,则称射线OC 是∠AOB 的奇妙线.(1)一个角的角平分线这个角的奇妙线.(填是或不是)(2)如图 2,若∠MPN = 60︒,射线PQ 绕点P 从PN 位置开始,以每秒10︒的速度逆时针旋转,当∠QPN 首次等于180︒时停止旋转,设旋转的时间为t(s) .①当t 为何值时,射线PM 是∠QPN 的奇妙线?②若射线PM 同时绕点P 以每秒6︒的速度逆时针旋转,并与PQ 同时停止旋转.请求出当射线PQ 是∠MPN 的奇妙线时t 的值.2.已知在数轴上,一动点P从原点出发向左移动4个单位长度到达点A,再向右移动7个单位长度到达点B.(1)求点A、B表示的数;(2)数轴上是否存在点P,使点P到点A和点B的距离之和为9,若存在,写出点P 表示的数;若不存在,说明理由;(3)若小虫M从点A出发,以每秒0.5个单位长度沿数轴向右运动,另一只小虫N从点B出发,以每秒0.2个单位长度沿数轴向左运动.设两只小虫在数轴上的点C处相遇,点C 表示的数是多少?n+(n为正整数)个单3.在数轴上,点A向右移动1个单位得到点B,点B向右移动()1位得到点C,点A,B,C分别表示有理数a,b,c;n=时,(1)当1①点A,B,C三点在数轴上的位置如图所示,a,b,c三个数的乘积为正数,数轴上原点的位置可能()A.在点A左侧或在A,B两点之间 B.在点C右侧或在A,B两点之间C.在点A左侧或在B,C两点之间 D.在点C右侧或在B,C两点之间②若这三个数的和与其中的一个数相等,求a的值;(2)将点C向右移动()2+n个单位得到点D,点D表示有理数d,若a、b、c、d四个数的积为正数,这四个数的和与其中的两个数的和相等,且a为整数,请写出n与a的关系式.4.如图,图中数轴的单位长度为1,请回答下列问题:(1)如果点A,B表示的数是互为相反数,那么点C表示的数是_______,在此基础上,在数轴上与点C 的距离是3个单位长度的点表示的数是__________(2)如果点D ,B 表示的数是互为相反数,那么点E 表示的数是_______(3)在第(1)问的基础上解答:若点P 从点A 出发,以每秒1个单位长度的速度向点B 的方向匀速运动;同时,点Q 从点B 出发,以每秒2个单位长度的速度向点A 的方向匀速运动.则两个点相遇时点P 所表示的数是多少?5.在数轴上,点A 代表的数是-12,点B 代表的数是2,AB 表示点A 与点B 之间的距离. (1)①若点P 为数轴上点A 与点B 之间的一个点,且AP=6,则BP=_____;②若点P 为数轴上一点,且BP=2,则AP=_____;(2)若C 点为数轴上一点,且点C 到点A 点的距离与点C 到点B 的距离的和是20,求C 点表示的数;(3)若点M 从点A 出发,点N 从点B 出发,且M 、N 同时向数轴负方向运动,M 点的运动速度是每秒6个单位长度,N 点的运动速度是每秒8个单位长度,当MN=2时求运动时间t 的值.6.数轴上有,,A B C 三点,给出如下定义;若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的:“关联点”(1)例图,数轴上点,,A B C 三点所表示的数分别为1,3,4,点B 到点A 的距离AB = ,点B 到点C 的距离是 ,因为AB 是BC 的两倍,所以称点B 是点,A C 的“关联点”.(2)若点A 表示数2,-点B 表示数1,下列各数1,2,4,6-所对应的点分别是1234,,,C C C C ,其中是点,A B 的“关联点”的是 ;(3)点A 表示数10-,点B 表示数为15,P 数轴上一个动点;若点P 在点B 的左侧,且点P是点AB 、的“关联点”,求此时点Р表示的数;若点P 在点B 的右侧,点P A B 、、中,有一个点恰好是其它两个点的“关联点”.请直接写出此时点Р表示的数7.如图:在数轴上A 点表示数a ,B 点表示数b ,C 点表示数c ,且a ,c 满足|a +3|+(c ﹣9)2=0,b =1.(1)a = ,c = ;(2)若将数轴折叠,使得A 点与点C 重合,则点B 与数 表示的点重合.(3)在(1)的条件下,若点P 为数轴上一动点,其对应的数为x ,求当x 取何值时代数式|x ﹣a |﹣|x ﹣c |取得最大值,并求此最大值.(4)点P 从点A 处以1个单位/秒的速度向左运动;同时点Q 从点C 处以2个单位/秒的速度也向左运动,在点Q 到达点B 后,以原来的速度向相反的方向运动,设运动的时间为t (秒),求第几秒时,点P 、Q 之间的距离是点C 、Q 之间距离的2倍?8.已知射线OC 在AOB ∠的内部,射线OE 平分AOC ∠,射线OF 平分COB ∠.(1)如图1,若120,32AOB AOC ∠=︒∠=︒,则EOF ∠=__________度;(2)若,AOB AOC αβ∠=∠=,①如图2,若射线OC 在AOB ∠的内部绕点O 旋转,求EOF ∠的度数;②若射线OC 在AOB ∠的外部绕点O 旋转(旋转中AOC ∠、BOC ∠均是指小于180°的角),其余条件不变,请借助图3探究EOF ∠的大小,直接写出EOF ∠的度数. 9.已知数轴上的A 、B 、C 、D 四点所表示的数分别是a 、b 、c 、d ,且(a +16)2+(d +12)2=﹣|b ﹣8|﹣|c ﹣10|.(1)求a 、b 、c 、d 的值;(2)点A ,B 沿数轴同时出发相向匀速运动,4秒后两点相遇,点B 的速度为每秒2个单位长度,求点A 的运动速度;(3)A ,B 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,C 点以每秒1个单位长度的速度向数轴正方向开始运动,若t 秒时有2AB =CD ,求t 的值; (4)A ,B 两点以(2)中的速度从起始位置同时出发,相向而行当A 点运动到C 点时,迅速以原来速度的2倍返回,到达出发点后,保持改变后的速度又折返向C 点运动;当B 点运动到A 点的起始位置后停止运动.当B 点停止运动时,A 点也停止运动.求在此过程中,A ,B 两点同时到达的点在数轴上对应的数.10.如果两个角的差的绝对值等于60°,就称这两个角互为“伙伴角”,其中一个角叫做另一个角的“伙伴角”(本题所有的角都指大于0°小于180°的角),例如180∠=,220∠=,|12|60-=∠∠,则1∠和2∠互为“伙伴角”,即1∠是2∠的“伙伴角”,2∠也是1∠的“伙伴角”.(1)如图1.O 为直线AB 上一点,90AOC EOD ∠=∠=,60∠AOE=,则AOE ∠的“伙伴角”是_______________.(2)如图2,O 为直线AB 上一点,AOC 30∠=,将BOC ∠绕着点O 以每秒1°的速度逆时针旋转得DOE ∠,同时射线OP 从射线OA 的位置出发绕点O 以每秒4°的速度逆时针旋转,当射线OP 与射线OB 重合时旋转同时停止,若设旋转时间为t 秒,求当t 何值时,POD ∠与POE ∠互为“伙伴角”.(3)如图3,160AOB ∠=,射线OI 从OA 的位置出发绕点O 顺时针以每秒6°的速度旋转,旋转时间为t 秒170(0)3t <<,射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.问:是否存在t 的值使得AOI ∠与POI ∠互为“伙伴角”?若存在,求出t 值;若不存在,请说明理由.11.已知∠AOB ,过顶点O 作射线OP ,若∠BOP =12∠AOP ,则称射线OP 为∠AOB 的“好线”,因此∠AOB 的“好线”有两条,如图1,射线OP 1,OP 2都是∠AOB 的“好线”. (1)已知射线OP 是∠AOB 的“好线”,且∠BOP =30°,求∠AOB 的度数.(2)如图2,O 是直线MN 上的一点,OB ,OA 分别是∠MOP 和∠PON 的平分线,已知∠MOB =30°,请通过计算说明射线OP 是∠AOB 的一条“好线”.(3)如图3,已知∠MON =120°,∠NOB =40°.射线OP 和OA 分别从OM 和OB 同时出发,绕点O 按顺时针方向旋转,OP 的速度为每秒12°,OA 的速度为每秒4°,当射线OP 旋转到ON 上时,两条射线同时停止.在旋转过程中,射线OP 能否成为∠AOB 的“好线”.若不能,请说明理由;若能,请求出符合条件的所有的旋转时间.12.如图,点O 在直线AB 上,90COD ∠=︒.(1)如图①,当COD ∠的一边射线OC 在直线AB 上(即OC 与OA 重合),另一边射线OD 在直线AB 上方时,OF 是BOD ∠的平分线,则COF ∠的度数为_______.(2)在图①的基础上,将COD ∠绕着点O 顺时针方向旋转(旋转角度小于360︒),OE 是AOC ∠的平分线,OF 是BOD ∠的平分线,试探究EOF ∠的大小.①如图②,当COD ∠的两边射线OC 、OD 都在直线AB 的上方时,求EOF ∠的度数. 小红、小英对该问题进行了讨论:小红:先求出AOC ∠与BOD ∠的和,从而求出EOC ∠与FOD ∠的和,就能求出EOF ∠的度数.小英:可设AOC ∠为x 度,用含x 的代数式表示EOC ∠、FOD ∠的度数,也能求出EOF ∠的度数.请你根据她们的讨论内容,求出EOF ∠的度数.②如图③,当COD ∠的一边射线OC 在直线AB 的上方,另一边射线OD 在直线AB 的下方时,小红和小英认为也能求出EOF ∠的度数.你同意她们的看法吗?若同意,请求出EOF ∠的度数;若不同意,请说明理由.③如图④,当COD ∠的两边射线OC 、OD 都在直线AB 的下方时,能否求出EOF ∠的度数?若不能求出,请说明理由;若能求出,请直接写出EOF ∠的度数.13.已知将一副三角尺(直角三角尺OAB 和OCD )的两个顶点重合于点O ,90AOB ∠=︒,30COD ∠=︒(1)如图1,将三角尺COD 绕点O 逆时针方向转动,当OB 恰好平分COD ∠时,求AOC ∠的度数;(2)如图2,当三角尺OCD 摆放在AOB ∠内部时,作射线OM 平分AOC ∠,射线ON 平分BOD ∠,如果三角尺OCD 在AOB ∠内绕点O 任意转动,MON ∠的度数是否发生变化?如果不变,求其值;如果变化,说明理由.14.(学习概念) 如图1,在∠AOB 的内部引一条射线OC ,则图中共有3个角,分别是∠AOB 、∠AOC 和∠BO C .若其中有一个角的度数是另一个角度数的两倍,则称射线OC 是∠AOB 的“好好线”.(理解运用)(1)①如图2,若∠MPQ =∠NPQ ,则射线PQ ∠MPN 的“好好线”(填“是”或“不是”);②若∠MPQ ≠∠NPQ ,∠MPQ =α,且射线PQ 是∠MPN 的“好好线”,请用含α的代数式表示∠MPN ;(拓展提升)(2)如图3,若∠MPN =120°,射线PQ 绕点P 从PN 位置开始,以每秒12°的速度逆时针旋转,旋转的时间为t 秒.当PQ 与PN 成110°时停止旋转.同时射线PM 绕点P 以每秒6°的速度顺时针旋转,并与PQ 同时停止. 当PQ 、PM 其中一条射线是另一条射线与射线PN 的夹角的“好好线”时,则t = 秒.15.如图,∠AOB=150°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每秒6°;射线OD从OB开始,绕点O顺时针旋转,旋转的速度为每秒14°,OC和OD同时旋转,设旋转的时间为t秒(0≤t≤25).(1)当t为何值时,射线OC与OD重合;(2)当t为何值时,∠COD=90°;(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC、OB与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请直接写出所有满足题意的t的取值,若不存在,请说明理由.16.已知点C在线段AB上,AC=2BC,点D,E在直线AB上,点D在点E的左侧.(1)若AB=15,DE=6,线段DE在线段AB上移动.①如图1,当E为BC中点时,求AD的长;②点F(异于A,B,C点)在线段AB上,AF=3AD,CF=3,求AD的长;(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式AD ECBE=32,求CDBD的值.17.(阅读理解)射线OC是∠AOB内部的一条射线,若∠COA=12∠BOC,则我们称射线OC是射线OA关于∠AOB的伴随线.例如,如图1,若∠AOC=12∠BOC,则称射线OC是射线OA关于∠AOB的伴随线;若∠BOD =12∠COD,则称射线OD是射线OB关于∠BOC的伴随线.(知识运用)如图2,∠AOB =120°.(1)射线OM 是射线OA 关于∠AOB 的伴随线.则∠AOM =_________°(2)射线ON 是射线OB 关于∠AOB 的伴随线,射线OQ 是∠AOB 的平分线,则∠NOQ 的度数是_________°.(3)射线OC 与射线OA 重合,并绕点O 以每秒2°的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒3°的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止. ①是否存在某个时刻t (秒),使得∠COD 的度数是20°,若存在,求出t 的值,若不存在,请说明理由.②当t 为多少秒时,射线OC 、OD 、OA 中恰好有一条射线是其余两条射线组成的角的一边的伴随线.18.如图①,O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)若30AOC ∠=︒,则BOD ∠=____________°,DOE ∠=____________°; (2)将图①中的COD ∠绕顶点O 顺时针旋转至图②的位置,其他条件不变,若AOC α∠=,求DOE ∠的度数(用含α的式子表示);(3)将图①中的COD ∠绕顶点O 顺时针旋转至图③的位置,其他条件不变,直接写出AOC ∠和DOE ∠的度数之间的关系:__________________.(不用证明)19.如图,已知120AOB ∠=︒,COD △是等边三角形(三条边都相等、三个角都等于60︒的三角形),OM 平分BOC ∠.(1)如图1,当30AOC ∠=︒时,DOM ∠=_________;(2)如图2,当100AOC ∠=︒时,DOM ∠=________;(3)如图3,当()0180AOC αα∠=<︒<︒时,求DOM ∠的度数,请借助图3填空. 解:因为AOC α∠=,120AOB ∠=︒,所以120BOC AOC AOB α∠=∠-∠=-︒,因为OM 平分BOC ∠,所以MOC ∠=________BOC ∠=_________(用α表示),因为COD △为等边三角形,所以60DOC ∠=︒,所以DOM MOC DOC ∠=∠+∠=_______(用α表示).(4)由(1)(2)(3)问可知,当()0180AOC ββ∠=︒<<︒时,直接写出DOM ∠的度数(用β来表示,无需说明理由)20.如图,已知∠AOB =120°,射线OP 从OA 位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ 以每秒6°的速度,从OB 位置出发逆时针向射线OA 旋转,到达射线OA 后又以同样的速度顺时针返回,当射线OQ 返回并与射线OP 重合时,两条射线同时停止运动. 设旋转时间为t 秒.(1)当t =2时,求∠POQ 的度数;(2)当∠POQ =40°时,求t 的值;(3)在旋转过程中,是否存在t 的值,使得∠POQ =12∠AOQ ?若存在,求出t 的值;若不存在,请说明理由. 【参考答案】***试卷处理标记,请不要删除一、七年级上册数学压轴题1.(1)是;(2)①9或12或18;②或或【分析】 (1)根据奇妙线定义即可求解;(2)①分3种情况,QPN=2MPN ;MPN=2QPM ;QPM =2MPN .列出方程求解即可;②分解析:(1)是;(2)①9或12或18;②52或307或 203 【分析】(1)根据奇妙线定义即可求解;(2)①分3种情况,∠QPN=2∠MPN;∠MPN=2∠QPM;∠QPM =2∠MPN.列出方程求解即可;②分3种情况,∠MPN=2∠QPN;∠MPQ=2∠QPN;∠QPN =2∠MPQ.列出方程求解即可.【详解】(1)设∠α被角平分线分成的两个角为∠1和∠2,则有∠α=2∠1,∴一个角的平分线是这个角的“奇妙线”;故答案是:是;(2)①由题意可知射线 PM 在∠QPN的内部,∴∠QPN=(10t)︒,∠QPM=(10t-60)︒,(a)当∠QPN=2∠MPN时,10t=2×60,解得t=12;(b)当∠MPN=2∠QPM时,60=2×(10t-60),解得t=9;(c)当∠QPM =2∠MPN时,(10t-60)=2×60,解得t=18.故当t为9或12或18时,射线PM是∠QPN的“奇妙线”;②由题意可知射线 PQ 在∠MPN的内部,∴∠QPN=(10t)︒,∠MPN=(60+6t)︒,∠QPM=∠MPN-∠QPN=(60-4t)︒,(a)当∠MPN=2∠QPN时,60+6t=2×10t,解得t=307;(b)当∠MPQ=2∠QPN时,60-4t=2×10t,解得t=52;(c)当∠QPN =2∠MPQ时,10t=2×(60-4t),解得t=203.故当射线PQ是∠MPN的奇妙线时t的值为52或307或203.【点睛】本题考查了角之间的关系及一元一次方程的应用,奇妙线定义,学生的阅读理解能力及知识的迁移能力.理解“奇妙线”的定义是解题的关键.2.(1);(2)或;(3)【分析】(1)由数轴上的点的移动规律,左减右加,从而可得答案;(2)由题意得:再分当时,当<<时,当时,三种情况讨论,从而可得答案; (3)设两只小虫的相遇时运动时解析:(1)4-,3;(2)4x =或5x =-; (3)1. 【分析】(1)由数轴上的点的移动规律,左减右加,从而可得答案;(2)由题意得:439x x ++-=,再分当3x ≥时,当4-<x <3时,当4x ≤-时,三种情况讨论,从而可得答案;(3)设两只小虫的相遇时运动时间为ts ,结合题意可得:40.530.2t t -+=-,解方程求解时间t ,再求C 点对应的数即可.【详解】解:(1)动点P 从原点出发向左移动4个单位长度到达点A ,则点A 对应的数为:044-=-,再向右移动7个单位长度到达点B ,则点B 对应的数为:473-+=,(2)存在,理由如下:设P 对应的数为:x ,则由题意得: 439,x x ++-=当3x ≥时,439,x x ++-=28,x ∴=4,x ∴=经检验:4x =符合题意,当4-<x <3时,方程左边4379,x x ++-=≠此时方程无解,当4x ≤-时,439,x x --+-=210,x ∴-=5.x ∴=-经检验:5x =-符合题意,综上:点P 到点A 和点B 的距离之和为9时,4x =或 5.x =-(3)设两只小虫的相遇时运动时间为ts ,结合题意可得:40.530.2t t -+=-,0.77t ∴=,10,t ∴=C ∴点对应的数为:40.510 1.-+⨯=【点睛】本题考查的是数轴上动点问题,数轴上两点之间的距离,绝对值方程的解法,一元一次方程的应用,掌握数轴上点运动后对应的数的表示规律,两点间的距离,分类讨论是解题的关键.3.(1)①C ;②-2或或;(2)当为奇数时,,当为偶数时,【分析】(1)把代入即可得出,,再根据、、三个数的乘积为正数即可选择出答案; (2)分两种情况讨论:当为奇数时;当为偶数时;用含的代数式表解析:(1)①C ;②-2或32-或12-;(2)当n 为奇数时,32n a +=-,当n 为偶数时,22n a +=- 【分析】(1)把1n =代入即可得出1AB =,2BC =,再根据a 、b 、c 三个数的乘积为正数即可选择出答案;(2)分两种情况讨论:当n 为奇数时;当n 为偶数时;用含n 的代数式表示a 即可.【详解】解:(1)①把1n =代入即可得出1AB =,2BC =, a 、b 、c 三个数的乘积为正数,∴从而可得出在点A 左侧或在B 、C 两点之间.故选C ;②1b a =+,3c a =+,当13a a a a ++++=时,2a =-,当131a a a a ++++=+时,32a =-, 当133a a a a ++++=+时,12a =-; (2)依据题意得,1b a =+,12c b n a n =++=++,224d c n a n =++=++. a 、b 、c 、d 四个数的积为正数,且这四个数的和与其中的两个数的和相等, 0a c ∴+=或0b c +=.22n a +∴=-或32n a +=-; a 为整数, ∴当n 为奇数时,32n a +=-,当n 为偶数时,22n a +=-. 【点睛】本题考查了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.4.(1)-1;-4或2;(2);(3)-1【分析】(1)由的长度结合点,表示的数是互为相反数,即可得出点,表示的数,由且点在点的右边可得出点表示的数,再利用数轴上两点间的距离公式可求出在数轴上与点解析:(1)-1;-4或2;(2)72-;(3)-1 【分析】(1)由AB 的长度结合点A ,B 表示的数是互为相反数,即可得出点A ,B 表示的数,由2AC =且点C 在点A 的右边可得出点C 表示的数,再利用数轴上两点间的距离公式可求出在数轴上与点C 的距离是3个单位长度的点表示的数;(2)由BD 的长度结合点D ,B 表示的数是互为相反数,即可得出点D 表示的数,由1DE =且点E 在点D 的右边可得出点E 表示的数;(3)当运动时间为t 秒时,点P 表示的数为3t -,点Q 表示的数为23t -+,由点P ,Q 相遇可得出关于t 的一元一次方程,解之即可得出t 的值,再将其代入(23)t -+中即可得出两个点相遇时点P 所表示的数.【详解】解:(1)6AB =,且点A ,B 表示的数是互为相反数,∴点A 表示的数为3-,点B 表示的数为3,∴点C 表示的数为321-+=-.134--=-,132-+=,∴在数轴上与点C 的距离是3个单位长度的点表示的数是4-或2.故答案为:1-;4-或2.(2)9BD =,且点D ,B 表示的数是互为相反数,∴点D 表示的数为92-,∴点E 表示的数为97122-+=-. 故答案为:72-. (3)当运动时间为t 秒时,点P 表示的数为3t -,点Q 表示的数为23t -+,323t t -=-+,2t ∴=,31t ∴-=-.答:两个点相遇时点P 所表示的数是1-.【点睛】本题考查了一元一次方程的应用、数轴以及相反数,解题的关键是:(1)由线段AB 的长度结合点A ,B 表示的数互为相反数,找出点A 表示的数;(2)由线段BD 的长度结合点D ,B 表示的数互为相反数,找出点D 表示的数;(3)找准等量关系,正确列出一元一次方程.5.(1)①8;②16;(2)-15或5;(3)6或8【分析】(1)①根据题目要求,P 在数轴上点A 与B 之间,所以根据BP=AB-AP 进行求解②需要考虑两种情况,即P在数轴上点A与B之间时和当P不在解析:(1)①8;②16;(2)-15或5;(3)6或8【分析】(1)①根据题目要求,P在数轴上点A与B之间,所以根据BP=AB-AP进行求解②需要考虑两种情况,即P在数轴上点A与B之间时和当P不在数轴上点A与B之间时.当P在数轴上点A与B之间时,AP=AB-BP.当P不在数轴上点A与B之间时,此时有两种情况,一种是超越A点,在A点左侧,此时BP>14,不符合题目要求.另一种情况是P在B点右侧,此时根据AP=AB+BP作答.(2)根据前面分析,C不可能在AB之间,所以,C要么在A左侧,要么在B右侧.根据这两种情况分别进行讨论计算.(3)分点M在点N的左侧和点M在点N的右侧,两种情况分别列出方程求解.【详解】解:(1)①∵AB总距离是2-(-12)=14,P在数轴上点A与B之间,∴BP=AB-AP=14-6=8,故答案为:8.②P在数轴上点A与B之间时,AP=AB-BP=14-2=12;当P不在数轴上点A与B之间时,因为AB=14,所以P只能在B右侧,此时BP=2,AP=AB+BP=14+2=16,故答案为:16.(2)假设C为x,当C在A左侧时,AC=-12-x,BC=2-x,AC+BC=20,则-12-x+2-x=20,解得x=-15,当C在B右侧时,AC=x-(-12),BC=x-2,AC+BC=20,则x-(-12)+x-2=20,解得x=5,∴点C表示的数为-15或5;(3)当M在点N左侧时,2-8t-(-12-6t)=2,解得:t=6;当M在点N右侧时,-12-6t-(2-8t)=2,解得:t=8,∴MN=2时,t的值为6或8.【点睛】本题考查了动点问题,一元一次方程的应用.在充分理解题目要求的基础上,可借助数轴用数形结合的方法求解.在解答过程中,注意动点问题的多解可能,并针对每一种可能进行讨论分析.6.(1)2,1;(2);;(3)当P在点B的左侧时,P表示的数为-35或或;若点P在点B的右侧,P表示的数为40或或.【分析】(1)利用数轴上两点之间的距离公式直接可求得;(2)根据题意求得CA解析:(1)2,1;(2)13,C C ;;(3)当P 在点B 的左侧时,P 表示的数为-35或5-3或203;若点P 在点B 的右侧,P 表示的数为40或65或552. 【分析】(1)利用数轴上两点之间的距离公式直接可求得;(2)根据题意求得CA 与BC 的关系,得到答案;(3)根据PA=2PB 或PB=2PA 列方程求解;分当P 为A 、B 关联点、A 为P 、B 关联点、B 为A 、P 关联点三种情况列方程解答.【详解】解:(1),,A B C 三点所表示的数分别为1,3,4,∴AB=3-1=2;BC=4-3=1,故答案是:2,1;(2)点A 表示的数为-2,点B 表示的数为1,1C 表示的数为-1∴1AC =1 ,1BC =2∴1C 是点A,B 的“关联点”点A 表示的数为-2,点B 表示的数为1,2C 表示的数为2∴2AC =4 ,2BC =1∴2C 不是点A,B 的“关联点”点A 表示的数为-2,点B 表示的数为1,3C 表示的数为4∴3AC =6 ,3BC =3∴3C 是点A,B 的“关联点”点A 表示的数为-2,点B 表示的数为1,4C 表示的数为6∴4AC =8 ,4BC =5∴4C 不是点A,B 的“关联点”故答案为:13,C C(3)①若点P 在点B 的左侧,且点P 是点A,B 的“关联点”,设点P 表示的数为x (I ) 当P 在点A 的左侧时,则有:2PA=PB ,即2(-10-x )=15-x解得 x =-35(II )当点P 在A,B 之间时,有2PA=PB 或PA=2PB既有2(x +10)=15-x 或x +10=2(15-x )解得x =5-3或203x = 因此点P 表示的数为-35或5-3或203②若点P在点B的右侧(I)若点P是A,B的“关联点”则有2PB=PA即2(x-15)=x+10解得x=40(II)若点B是A,P的“关联点”则有2AB=PB或AB=2PB 即2(15+10)=x-15或15+10=2(x-15)解得x=65或552 x(III)若点A是B,P的“关联点”则有2AB=AP 即2(15+10)=x+10解得x=40因此点P表示的数为40或65或55 2【点睛】本题考查了一元一次方程的应用,数轴及数轴上两点的距离、动点问题,认真理解关联点的概念,分情况讨论列式是解题关键.7.(1)-3,9;(2)5;(3)当x≥9时,|x-a|﹣|x﹣c|取得最大值为12;(4)第秒,第秒,第28秒时,点P、Q之间的距离是点C、Q之间距离的2倍.【分析】(1)根据绝对值和偶次方的非解析:(1)-3,9;(2)5;(3)当x≥9时,|x-a|﹣|x﹣c|取得最大值为12;(4)第12 5秒,第367秒,第28秒时,点P、Q之间的距离是点C、Q之间距离的2倍.【分析】(1)根据绝对值和偶次方的非负性求解即可.(2)根据折叠点为点A与点C的中点,列式求解即可.(3)将(1)中所得的a与c的值代入代数式|x﹣a|﹣|x﹣c|,再根据数轴上两点之间的距离与绝对值的关系可得出答案.(4)先求得线段BC的长,再求得其一半的长,然后分类计算即可:当0<t≤4时,点P表示的数为﹣3﹣t,点Q表示的数为9﹣2t;当t>4时,点P表示的数为﹣3﹣t,点Q表示的数为1+2(t﹣4).【详解】解:(1)∵|a+3|+(c﹣9)2=0,又∵|a+3|≥0,(c﹣9)2≥0,∴a+3=0,c﹣9=0,∴a=﹣3,c=9.故答案为:﹣3,9.(2)∵将数轴折叠,使得点A与点C重合,∴折叠点表示的数为:392-+=3, ∴2×3﹣1=5, ∴点B 与数5表示的点重合.故答案为:5.(3)∵a =﹣3,c =9.∴|x ﹣a |﹣|x ﹣c |=|x +3|﹣|x ﹣9|,∵代数式|x +3|﹣|x ﹣9|表示点P 到点A 的距离减去点P 到点C 的距离,∴当x ≥9时,|x +3|﹣|x ﹣9|取得最大值为9﹣(﹣3)=12.(4)∵BC =9﹣1=8,∴8÷2=4,当0<t ≤4时,点P 表示的数为﹣3﹣t ,点Q 表示的数为9﹣2t ,∴PQ =9﹣2t ﹣(﹣3﹣t )=9﹣2t +3+t=12﹣t ,CQ =2t ,∵PQ =2CQ ,∴12﹣t =2×2t ,∴5t =12,∴t =125. 当t >4时,点P 表示的数为﹣3﹣t ,点Q 表示的数为1+2(t ﹣4),∴CQ =|9﹣[1+2(t ﹣4)]|,PQ =1+2(t ﹣4)﹣(﹣3﹣t )=1+2t ﹣8+3+t=3t ﹣4,∵PQ =2CQ ,∴3t ﹣4=2|9﹣[1+2(t ﹣4)]|=2|16﹣2t |,∴当3t ﹣4=2(16﹣2t )时,3t ﹣4=32﹣4t ,∴7t =36,∴t =367; 当3t ﹣4=2(2t ﹣16)时,3t ﹣4=4t ﹣32,∴t =28.∴第125秒,第367秒,第28秒时,点P 、Q 之间的距离是点C 、Q 之间距离的2倍. 【点睛】本题考查了数轴上的两点之间的距离、绝对值与偶次方的非负性及一元一次方程在数轴上的动点问题中的应用,熟练掌握相关运算性质及正确列式是解题的关键.8.(1)60;(2)①∠EOF=α;②当射线OE,OF只有1条在∠AOB外部时,∠EOF=α;当射线OE,OF都在∠AOB外部时,∠EOF=180°-α.【分析】(1)先求出∠BOC度数,根据角平解析:(1)60;(2)①∠EOF=12α;②当射线OE,OF只有1条在∠AOB外部时,∠EOF=12α;当射线OE,OF都在∠AOB外部时,∠EOF=180°-12α.【分析】(1)先求出∠BOC度数,根据角平分线定义求出∠EOC和∠FOC的度数,求和即可得出答案;(2)①根据角平分线定义得出∠COE=12∠AOC,∠COF=12∠BOC,求出∠EOF=∠EOC+∠FOC=12∠AOB,代入求出即可;②分两种情况:当射线OE,OF只有1条在∠AOB外部时,根据角平分线定义得出∠COE=12∠AOC,∠COF=12∠BOC,求出∠EOF=∠FOC-∠COE=12∠AOB;当射线OE,OF都在∠AOB外部时,根据角平分线定义得出∠EOF=12∠AOC,∠COF=12∠BOC,求出∠EOF=∠EOC+∠COF=12(360°-∠AOB),代入求出即可.【详解】解:(1)∵∠AOB=120°,∠AOC=32°,∴∠BOC=∠AOB-∠AOC=88°,∵OE,OF分别是∠AOC和∠COB的角平分线,∴∠EOC=12∠AOC=16°,∠FOC=12∠BOC=44°,∴∠EOF=∠EOC+∠FOC=16°+44°=60°.故答案为:60;(2)①∵OE,OF分别是∠AOC和∠COB的角平分线,∴∠EOC=12∠AOC,∠FOC=12∠BOC,∴∠EOF=∠EOC+∠FOC=12∠AOB=12α;②分以下两种情况:当射线OE,OF只有1条在∠AOB外部时,如图3①,∠EOF=∠FOC-∠COE=12∠BOC-12∠AOC=12(∠BOC-∠AOC)=12∠AOB=12α.当射线OE,OF都在∠AOB外部时,如图3②,∠EOF=∠EOC+∠COF=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12(360°-∠AOB)=180°-12α.综上所述,当射线OE,OF只有1条在∠AOB外面时,∠EOF=12α;当射线OE,OF都在∠AOB外部时,∠EOF=180°-12α.【点睛】本题考查的是角的计算,角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.注意分类思想的运用.9.(1)a=﹣16,b=8,c=10,d=﹣12;(2)点A的运动速度为每秒4个单位长度;(3)t的值是秒或秒;(4)A,B两点同时到达的点在数轴上表示的数为:0或9或10.2.【分析】(1)根据解析:(1)a=﹣16,b=8,c=10,d=﹣12;(2)点A的运动速度为每秒4个单位长度;(3)t的值是703秒或265秒;(4)A,B两点同时到达的点在数轴上表示的数为:0或9或10.2.【分析】(1)根据平方和绝对值的非负性即可求出结论;(2)设点A的运动速度为每秒v个单位长度,根据题意,列出一元一次方程即可求出结论;(3)根据题意,画出对称轴,然后用t表示点A、B、C表示的数,最后分类讨论列出方程即可求出结论;(4)求出B点运动至A点所需的时间,然后根据点A和点B相遇的情况分类讨论,列出方程求出t的值即可求出结论.【详解】(1)∵(a+16)2+(d+12)2=﹣|b﹣8|﹣|c﹣10|,(a+16)2+(d+12)2+|b﹣8|+|c﹣10|=0,∴a=﹣16,b=8,c=10,d=﹣12;(2)设点A的运动速度为每秒v个单位长度,4v+4×2=8+16,v=4,答:点A的运动速度为每秒4个单位长度;(3)如图1,t秒时,点A表示的数为:﹣16+4t,点B表示的数为:8+2t,点C表示的数为:10+t.∵2AB=CD,①2[(﹣16+4t)﹣(8+2t)]=10+t+12,2(﹣24+2t)=22+t,﹣48+4t=22+t,3t=70,t703 =;②2[(8+2t)﹣(﹣16+4t)]=10+t+12,2(24﹣2t)=22+t,5t=26,t265 =,综上,t的值是703秒或265秒;(4)B点运动至A点所需的时间为()8162--=12(s),故t≤12,①由(2)得:当t=4时,A,B两点同时到达的点表示的数是﹣16+4×4=0;②当点A从点C返回出发点时,若与B相遇,由题意得:10164+=6.5(s),10168+=3.25(s),∴点A到C,从点C返回到出发点A,用时6.5+3.25=9.75(s),则2×4×(t﹣6.5)=10﹣8+2t,t=9<9.75,此时A,B两点同时到达的点表示的数是8﹣9×2=﹣10;③当点A第二次从出发点返回点C时,若与点B相遇,则8(t﹣9.75)+2t=16+8,解得:t=10.2;综上所述:A ,B 两点同时到达的点在数轴上表示的数为:0或9或10.2.【点睛】此题考查的是一元一次方程的应用、数轴与动点问题,掌握平方、绝对值的非负性、行程问题公式和分类讨论的数学思想是解决此题的关键.10.(1);(2)t 为35或15;(3)存在,当t=或时,与互为“伙伴角”.【分析】(1)按照“伙伴角”的定义写出式子,解方程即可求解;(2)通过时间t 把与表示出来,根据与互为“伙伴角”,列出方程解析:(1)EOB ∠;(2)t 为35或15;(3)存在,当t=1009或4309时,AOI ∠与POI ∠互为“伙伴角”.【分析】(1)按照“伙伴角”的定义写出式子,解方程即可求解;(2)通过时间t 把AOI ∠与POI ∠表示出来,根据AOI ∠与POI ∠互为“伙伴角”,列出方程,解出时间t ;(3)根据OI 在∠AOB 的内部和外部以及∠AOP 和∠AOI 的大小分类讨论,分别画出对应的图形,由旋转得出经过t 秒旋转角的大小,角的和差,利用角平分线的定义分别表示出∠AOI 和∠POI 及“伙伴角”的定义求出结果即可.【详解】解:(1)∵两个角差的绝对值为60°,则此两个角互为“伙伴角”,而60∠AOE=,∴设其伙伴角为x ∠,||60AOE x ∠-∠=,则120x ∠=,由图知120EOB ∠=,∴AOE ∠的伙伴角是EOB ∠.(2)∵BOC ∠绕O 点,。
石家庄市七年级上册数学期末试题及答案解答
石家庄市七年级上册数学期末试题及答案解答 一、选择题1.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104 C .3.84×105 D .3.84×1062.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( )A .0.1289×1011B .1.289×1010C .1.289×109D .1289×1073.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠ B .132122∠-∠ C .12()12∠-∠ D .21∠-∠4.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .5925.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2 B .22 C .2 D .326.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( )A .410 +415x -=1B .410 +415x +=1 C .410x + +415=1 D .410x + +15x =1 7.下列因式分解正确的是() A .21(1)(1)x x x +=+- B .()am an a m n +=- C .2244(2)m m m +-=- D .22(2)(1)a a a a --=-+8.下列方程变形正确的是( )A .方程110.20.5x x --=化成1010101025x x --= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2D .方程23t=32,未知数系数化为 1,得t=1 9.方程3x +2=8的解是( ) A .3 B .103 C .2 D .12 10.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )A .2(x+10)=10×4+6×2B .2(x+10)=10×3+6×2C .2x+10=10×4+6×2D .2(x+10)=10×2+6×2 11.已知a =b ,则下列等式不成立的是( ) A .a+1=b+1 B .1﹣a =1﹣b C .3a =3b D .2﹣3a =3b ﹣212.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是()A.513 B.﹣511 C.﹣1023 D.1025二、填空题13.把53°24′用度表示为_____.14.已知x=2是方程(a+1)x-4a=0的解,则a的值是 _______.15.﹣213的倒数为_____,﹣213的相反数是_____.16.单项式﹣22πa b的系数是_____,次数是_____.17.如图,在数轴上点A,B表示的数分别是1,–2,若点B,C到点A的距离相等,则点C所表示的数是___.18.小马在解关于x的一元一次方程3232a xx-=时,误将- 2x看成了+2x,得到的解为x=6,请你帮小马算一算,方程正确的解为x=_____.19.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;20.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程_____.21.按照下面的程序计算:如果输入x的值是正整数,输出结果是166,那么满足条件的x的值为___________.22.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元,则小何共花费_____元(用含a,b的代数式表示).23.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.24.若4a+9与3a+5互为相反数,则a的值为_____.三、解答题25.为引导学生“爱读书,多读书,读好书”,某校七(2)班决定购买A、B两种书籍.若购买A种书籍1本和B种书籍3本,共需要180元;若购买A种书籍3本和B种书籍1本,共需要140元.(1)求A 、B 两种书籍每本各需多少元?(2)该班根据实际情况,要求购买A 、B 两种书籍总费用不超过700元,并且购买B 种书籍的数量是A 种书籍的32,求该班本次购买A 、B 两种书籍有哪几种方案? 26.解方程:(1)3524x x -=- (2)4132y y -+= 27.如图1,将一副直角三角板的两顶点重合叠放于点O ,其中一个三角板的顶点C 落在另一个三角板的边OA 上.已知90ABO DCO ∠=∠=,45AOB ∠=,60COD ∠=,作AOD ∠的平分线交边CD 于点E .(1)求∠BOE 的度数;(2)如图2,若点C 不落在边OA 上,当15COE ∠=时,求BOD ∠的度数.28.计算(1)()547-- (2) 213(2)()24-⨯- 29.解方程:x ﹣2=23x + 30.化简:3(a 2﹣2ab )﹣2(﹣3ab+b 2)四、压轴题31.如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB =15cm ,点C 是线段AB 的“2倍点”.求AC 的长;(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)32.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.33.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】试题分析:384 000=3.84×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.C解析:C【解析】【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果.【详解】解:由图知:∠1+∠2=180°,∴12(∠1+∠2)=90°,∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1).故选:C.【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.4.C解析:C【解析】【分析】由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项.【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++,第二行四个数分别为7,8,9,10x x x x ++++,第三行四个数分别为14,15,16,17x x x x ++++,第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C.【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.5.C解析:C【解析】【分析】把64代入转换器,根据要求计算,得到输出的数值即可.【详解】,是有理数,∴继续转换,,是有理数,∴继续转换,∵2,是无理数,∴输出,故选:C.【点睛】本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数的算术平方根;注意有理数和无理数的区别.6.B解析:B【解析】【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可.设乙独做x 天,由题意得方程:410+415x +=1. 故选B .【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.7.D解析:D【解析】【分析】分别利用公式法以及提取公因式法对各选项分解因式得出答案.【详解】解:A 、21x +无法分解因式,故此选项错误;B 、()am an a m n +=+,故此选项错误;C 、244m m +-无法分解因式,故此选项错误;D 、22(2)(1)a a a a --=-+,正确;故选:D .【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.8.C解析:C【解析】【分析】各项中方程变形得到结果,即可做出判断.【详解】解:A 、方程x 1x 10.20.5--=化成10x 1010x 25--=1,错误; B 、方程3-x=2-5(x-1),去括号得:3-x=2-5x+5,错误;C 、方程3x-2=2x+1移项得:3x-2x=1+2,正确,D 、方程23t 32=,系数化为1,得:t=94,错误; 所以答案选C.【点睛】 此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.9.C【解析】【分析】移项、合并后,化系数为1,即可解方程.【详解】x=,解:移项、合并得,36x=,化系数为1得:2故选:C.【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解法是解题的关键.10.A解析:A【解析】【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程.【详解】解:长方形的一边为10厘米,故设另一边为x厘米.根据题意得:2×(10+x)=10×4+6×2.故选:A.【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.11.D解析:D【解析】【分析】根据等式的基本性质对各选项进行逐一分析即可.【详解】A、∵a=b,∴a+1=b+1,故本选项正确;B、∵a=b,∴﹣a=﹣b,∴1﹣a=1﹣b,故本选项正确;C、∵a=b,∴3a=3b,故本选项正确;D、∵a=b,∴﹣a=﹣b,∴﹣3a=﹣3b,∴2﹣3a=2﹣3b,故本选项错误.故选:D.【点睛】本题考查了等式的性质,掌握等式的基本性质是解答此题的关键.12.D解析:D【解析】观察数据,找到规律:第n个数为(﹣2)n+1,根据规律求出第10个数即可.【详解】解:观察数据,找到规律:第n个数为(﹣2)n+1,第10个数是(﹣2)10+1=1024+1=1025故选:D.【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.二、填空题13.4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.14.1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴a=1故本题答案应为:1【点睛】解解析:1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解一元一次方程是本题的考点,熟练掌握其解法是解题的关键15.﹣ 2【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣2的倒数为﹣,﹣2的相反数是2.【点睛】本题考查的是相反数和倒数,解析:﹣37213【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣213的倒数为﹣37,﹣213的相反数是213.【点睛】本题考查的是相反数和倒数,熟练掌握两者的性质是解题的关键. 16.﹣; 3.【解析】根据单项式的次数、系数的定义解答.【详解】解:单项式﹣的系数是﹣,次数是2+1=3,故答案是:﹣;3.【点睛】本题考查了单项式系数、次数的定义解析:﹣2π; 3. 【解析】【分析】 根据单项式的次数、系数的定义解答.【详解】 解:单项式﹣22πa b 的系数是﹣2π,次数是2+1=3, 故答案是:﹣2π;3. 【点睛】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 17.2+【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–,∴AB=1–(–)=1+,则点C 表示的数为1+1+解析:2【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,,∴AB=1–(,则点C 表示的数为,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.18.3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.19.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.20.3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)解析:3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)=2x+9.故答案是:3(x﹣2)=2x+9.【点睛】本题考查一元一次方程,解题的关键是读懂题意,掌握列一元一次方程.21.42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x的之即可.解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.22.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.23.40°【解析】解:由角的和差,得:∠AOC=∠AOD -∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.解析:40°【解析】解:由角的和差,得:∠AOC =∠AOD -∠COD =140°-90°=50°.由余角的性质,得:∠COB =90°-∠AOC =90°-50°=40°.故答案为:40°.24.-2【分析】利用相反数的性质求出a 的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a =﹣14,解得:a =﹣2,故答案为:﹣2.【点睛】本题考查了解解析:-2【解析】【分析】利用相反数的性质求出a 的值即可.【详解】解:根据题意得:4a +9+3a +5=0,移项合并得:7a =﹣14,解得:a =﹣2,故答案为:﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.三、解答题25.(1)A 种书籍每本30元,B 种书籍每本50元;(2)三种方案,具体见解析.【解析】【分析】(1)设A 种书籍每本x 元,B 种书籍每本y 元,根据条件建立方程组进行求解即可;(2)设购买A 种书籍a 本,则购买B 种书籍32a 本,根据总费用不超过700元可得关于a 的一元一次不等式,进而求解即可.【详解】(1)设A 种书籍每本x 元,B 种书籍每本y 元,由题意得 31803140x y x y +=⎧⎨+=⎩, 解得:3050x y =⎧⎨=⎩, 答:A 种书籍每本30元,B 种书籍每本50元;(2)设购买A 种书籍a 本,则购买B 种书籍32a 本,由题意得 30a+50×32a ≤700, 解得:a ≤203, 又a 为正整数,且32a 为整数, 所以a=2、4、6,共三种方案, 方案一:购买A 种书籍2本,则购买B 种书籍3本,方案二:购买A 种书籍4本,则购买B 种书籍6本,方案三:购买A 种书籍6本,则购买B 种书籍9本.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系或不等式关系是解题的关键.26.(1)1x =;(2)1y =.【解析】【分析】(1)先移项,再合并同类项,最后化系数为1即可;(2)先去分母,再去括号并移项与合并同类项,最后化系数为1即可.【详解】解:(1)3524x x -=-移项得:3425x x +=+合并同类项得:77x =化系数为1得:1x =.(2)4132y y -+= 去分母得:2(4)3(1)y y -=+ 去括号得:8233y y -=+移项得:2338y y --=-合并同类项得:55y -=-化系数为1得:1y =.【点睛】本题考查解一元一次方程,熟练掌握解一元一次方程的解题步骤是解题关键.27.(1)75;(2)135.【解析】【分析】(1)根据角平分线的定义可求出∠AOE 的度数,根据角的和差关系即可求出∠BOE 的度数;(2)根据角的和差关系可求出∠DOE 的度数,根据角平分线的定义可求出∠AOD 的度数,进而根据角的和差关系即可求出∠BOD 的度数.【详解】(1)∵60AOD ∠=,OE 平分AOD ∠, ∴1302AOE AOD ∠=∠= ∵45AOB ∠=∴75BOE AOE AOB ∠=∠+∠=(2)∵60COD ∠=,15COE ∠=,∴45DOE COD COE ∠=∠-∠=∵OE 平分AOD ∠,∴290AOD DOE ∠=∠=∵45AOB ∠=∴135BOD AOD AOB ∠=∠+∠=.【点睛】本题考查角平分线的定义及角的和与差,从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线;熟练掌握定义是解题关键.28.(1)8;(2)-1.【解析】【分析】(1)先计算括号内的减法,再进一步计算减法可得;(2)先计算乘方和括号内的减法,再计算乘法可得.【详解】解:()1原式()53538=--=+=;()2原式1414⎛⎫=⨯-=- ⎪⎝⎭.【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.29.x =4【解析】【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】解:去分母得:3x ﹣6=x+2,移项合并得:2x =8,解得:x =4.【点睛】 此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.30.3a 2﹣2b 2.【解析】【分析】原式去括号合并即可得到结果.【详解】原式=()()223a -6ab --6ab+2b22=3a 6ab 6ab 2b -+-223a -2b =【点睛】本题考查了整式的加减运算,熟练掌握整式加减运算法则是解题的关键.四、压轴题31.(1)是;(2)5cm 或7.5cm 或10cm ;(3)10或607. 【解析】【分析】(1)根据“2倍点”的定义即可求解;(2)分点C 在中点的左边,点C 在中点,点C 在中点的右边三种情况,进行讨论求解即可;(3)根据题意画出图形,P 应在Q 的右边,分别表示出AQ 、QP 、PB ,求出t 的范围.然后根据(2)分三种情况讨论即可.【详解】(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t .∵PB =20-2t ≥0,∴t ≤10.∵QP =3t -20≥0,∴t ≥203,∴203≤t ≤10. 分三种情况讨论:①当AQ =13AP 时,20-t =13×2t ,解得:t =12>10,舍去; ②当AQ =12AP 时,20-t =12×2t ,解得:t =10; ③当AQ =23AP 时,20-t =23×2t ,解得:t 607; 答:t 为10或607时,点 Q 是线段AP 的“2倍点”. 【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.32.(1)DE=6;(2) DE=2a ,理由见解析;(3)∠DOE=12∠AOB ,理由见解析 【解析】试题分析:(1)由AC=4cm ,AB=12cm ,即可推出BC=8cm ,然后根据点D 、E 分别是AC 和BC 的中点,即可推出AD=DC=2cm ,BE=EC=4cm ,即可推出DE 的长度,(2)设AC=acm ,然后通过点D 、E 分别是AC 和BC 的中点,即可推出DE=12(AC+BC )=12AB=2a cm ,即可推出结论, (3)分两种情况,OC 在∠AOB 内部和外部结果都是∠DOE=12∠AOB 试题解析:(1))∵AB=12cm ,∴AC=4cm ,∴BC=8cm ,∵点D 、E 分别是AC 和BC 的中点,∴CD=2cm ,CE=4cm ,∴DE=6cm;(2) 设AC=acm ,∵点D 、E 分别是AC 和BC 的中点,∴DE=CD+CE=12(AC+BC )=12AB=6cm , ∴不论AC 取何值(不超过12cm ),DE 的长不变;(3)①当OC 在∠AOB 内部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠NOC=12∠BOC,∠COM=12∠COA.∵∠CON+∠COM=∠MON,∴∠MON=12(∠BOC+∠AOC)=12α;②当OC在∠AOB外部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12(∠AOB+∠BOC),∠CON=12∠BOC.∵∠MON+∠CON=∠MOC,∴∠MON=∠MOC-∠CON=12(AOB+∠BOC)-12∠BOC=12∠AOB=12α.【点睛】本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.33.(1)1;(2)点P运动5秒时,追上点R;(3)线段MN的长度不发生变化,其长度为5.【解析】试题分析:(1)由已知条件得到AB=10,由PA=PB,于是得到结论;(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.试题解析:解:(1)(1)∵A,B表示的数分别为6,-4,∴AB=10,∵PA=PB,∴点P表示的数是1,(2)设点P运动x秒时,在点C处追上点R(如图)则:AC=6x BC=4x AB=10∵AC-BC=AB∴ 6x-4x=10解得,x=5∴点P运动5秒时,追上点R.(3)线段MN的长度不发生变化,理由如下:分两种情况:点P在A、B之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5点P运动到点B左侧时:MN=MP-NP=AP-BP=(AP-BP)=AB=5综上所述,线段MN的长度不发生变化,其长度为5.点睛:此题主要考查了一元一次方程的应用、数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,要考虑全面各种情况,不要漏解.。
(完整word版)石家庄初一期末考试上学期期末考试数学试卷
石家庄初一期末考试上学期期末考试数学试卷数 学 试 卷总分:120分 考试时间:120分钟一、选择题(每题只有一个正确答案,每题2分,共20分)1.某市某日的气温是-2℃~6℃,则该日的温差是( ) A .8℃ B .6℃ C .4℃ D .-2℃2.下列各式中,是一元一次方程的是 ( )A .652=+y xB .23-xC .12=xD .853=+x3.如图所示的几何体,从上面看得到的平面图形是( )A .B .C .D .4.下列不是..同类项的是 ( ) A .2263xy y x -与B .a b ab 33与-C .012和D . zyx xyz 212-与 5.如图,以A 、B 、C 、D 、O 为端点的线段共有( )条A .4B .6C .8D .106.如图,OC 是∠AOB 的平分线,OD 是∠AOC 的平分线,且∠COD = 25,则∠AOB 等于( )A . 50B . 75C . 100D . 1207.若13+a 与372-a 互为相反数,则a 为 ( ) A .34 B .10 C .34- D .10- 8.关于x 的方程2x -4=3m 和x +2=m 有相同的解, 则m 的值是( )A . 10B . -8C . -10D . 8 9.已知线段AB ,延长AB 到C ,使BC =2AB ,M 、N 分别是AB 、BC 的中点,则 ( )A .MN =21BCB .AN =23ABC .BM :BN =1:2D .AM =43BC 10.CCTV-2《开心辞典》栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于( )个正方体的重量.A .2B .3C .4D .5二、填空题(每空3分,共24分)11.木匠在木料上画线,先确定两个点的位置,根据 就能把线画得很准确.12.右面是 “美好家园” 购物商场中 “飘香” 洗发水的价格标签,请你在横线上填出它的现价.13.已知关于x 的一元一次方程a x x a 32)3(-=-的解是x =3,则a = .14.不大于...3的所有非负整数是 .15.如图所示,是一个正方体的平面展开图,当把它折成一个正方体时,与空白面相对的字应该是 .16.如图所示,将长方形ABCD 的一角沿AE 折叠,若D BA '∠= 30,那么D EA '∠= .17.若线段AB =8,BC =3,且A ,B ,C 三点在一条直线..上,那么AC = . 18.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据为8时,输出的数据为 .三、计算题(每题3分,共18分)19.(1))17()31()26()76(++-+++-; (2)24)3(21-⨯--;(3))65()32(22a a a a -+-; (4))32(3)32(2b a a b -+-;(5)15259432'+' ; (6)3256180'- .四、解下列一元一次方程(每题3分,共12分)20.(1)x x 413243-=+; (2))15(2)2(5-=+x x ;(3)212)2(3-=-x x ; (4)y y y +-=+3323.四、作图题(每题3分,共6分)21.如图所示,直线l 是一条平直的公路,A ,B 是两个车站,若要在公路l 上修建一个加油站,如何使它到车站A ,B 的距离之和最小,请在公路上表示出点P 的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).22.有一张地图,图中有A 、B 、C 三地,但地图被墨迹污染,C 地具体位置看不清楚了,但知道C 地在A地的北偏东30 ,在B 地的南偏东45 ,你能确定C 地的位置吗?五、解答题(每题3分,共9分)23.若一个角的补角比这个角的余角的3倍大 10,求这个角的度数.24.先化简,再求值:10,151),()2(2222=-=+--+++--b a b ab a b ab a 其中.25.如图所示,C 、D 是线段AB 的三等分点,且AD =4,求AB 的长.六、列方程解下列应用题(每题5分,共25分)26.一个长方形的周长为28cm,将此长方形的长减少2cm,宽增加4cm,就可成为一个正方形,那么原长方形的长和宽分别是多少?27.据某统计数据显示,在我国的664座城市中,按水资源分布的情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?28.从甲站到乙站原需16小时.采用“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲...11小时,求列车提速后的速度.站到乙站的时间缩短了...。
2022-2023学年河北省石家庄重点学校七年级(上)期末数学试卷(含解析)
2022-2023学年河北省石家庄重点学校七年级(上)期末数学试卷一、选择题:本题共15小题,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如果向北走10米记作+10米,那么−6米表示( )A. 向南走−6米B. 向北走−6米C. 向南走6米D. 向北走6米2.代数式2(y−2)的正确含义是( )A. 2乘y减2B. 2与y的积减去2C. y与2的差的2倍D. y的2倍减去23.如图,数轴的长度单位为1,如果点A表示的数是−1,那么点B表示的数是( )A. 0B. 1C. 3D. 54.如图,在三角形ABC中,∠CAB=45°,将三角形ABC在平面内绕点A旋转到三角形AB′C′的位置,若∠CAB′=20°,则旋转角的度数为( )A. 20°B. 25°C. 65°D. 70°5.如图,下列表示角的方法中,不正确的是( )A. ∠AB. ∠EC. ∠αD. ∠16.淇淇同学的小测卷,她的得分应是( )姓名淇淇得分____填空(每小题20分,共100分)①−1的绝对值是1;②−3的相反数是3;③2的倒数是−2;④−62=36;⑤(−4)3=−64.A. 40分B. 60分C. 80分D. 10分7.如图,观察图形,下列结论中不正确的是( )A. AB+BD>ADB. 图中有5条线段C. 直线BA和直线AB是同一条直线D. 射线AC和射线AD是同一条射线8.如图,天平两边盘中标有相同字母的物体的质量相同,若两架天平保持平衡,则1个砝码A与n个砝码C的质量相等,n的值为( )A. 1B. 2C. 3D. 49.下列数或式子:23,(−12)5,−52,0,m2+1在数轴上所对应的点一定在原点右边的有( )A. 1个B. 2个C. 3个D. 4个10.下列说法中,正确的是( )A. −3a24的系数是−34B. −4a2b,5ab,7是多项式−4a2b+5ab−7的项C. 单项式32a2b3的系数是3,次数是5D. 3−2a5是二次二项式11.某工厂计划每天烧煤5吨,实际每天少烧2吨,m吨煤多烧了20天,列方程正确的是( )A. m5−m2=20 B. m5−m3=20 C. m5−m7=20 D. m3−m5=2012.下面是课本中“作一个角等于已知角”的尺规作图过程.已知:∠AOB.求作:一个角,使它等于∠AOB.作法:如图.(1)作射线O′A′;(2)以O为圆心,任意长为半径作弧,交OA于C,交OB于D;(3)以O′为圆心,OC为半径作弧,交O′A′于C′;(4)以C′为圆心,OC为半径作弧,交前面的弧于D′;(5)连接O′D′作射线O′B′,则∠A′O′B′就是所求作的角.以上做法中,错误的一步是( )A. (2)B. (3)C. (4)D. (5)13.下面四个整式中,不能表示图中阴影部分面积的是( )A. (x+6)(x+4)−6xB. x(x+4)+24C. 4(x+6)+x2D. x2+2414.如图是一个运算程序的示意图,如果开始输入x的值为243,那么第2023次输出的结果为( )A. 27B. 9C. 3D. 115.老师布置一道多项式的运算:先化简再求值:(2x2−3x+1)−(ax2+bx−5),其中x=−2,一位同学将“x=−2”抄成“x=2”,其余运算正确,结果却是对的,则关于a和b的值叙述正确的是( )A. a一定是2,b一定是−3B. a不一定是2,b一定是−3C. a一定是2,b不一定是−3D. a不一定是2,b不一定是−3二、填空题:本题共3小题,共12分。
2020-2021学年石家庄市部分学校七年级上学期期末数学试卷(含解析)
2020-2021学年石家庄市部分学校七年级上学期期末数学试卷一、选择题(本大题共16小题,共42.0分)1.若a,b均为正数,c,d均为负数,则下列式子中值最大的是()A. a−(b+c−d)B. a−(c−b+d)C. a−(b−c+d)D. a+(b−c+d)2.如图,将一副三角尺按不同的位置摆放,下列方式中能用“等角的补角相等”说明∠α=∠β的是()A. 图①B. 图②C. 图③D. 图④3.正方形的边长为x,则它的周长与面积分别为()A. 4x与x2B. x4与x2C. 4+x与x2D. 4+x与2x4.单项式−2a2b的系数是()A. −2B. 2C. −3D. 35.若x=2是关于x的一元一次方程mx−n=3的解,则2−6m+3n的值是()A. 11B. −11C. −7D. 76.小明用所示的胶滚从左到右的方向将图案滚到墙上,正面给出的四个图案中,用图示胶滚涂出的()A. B. C. D.7.若√x2−y2+(2x−4)2=0,则(xy)2的值等于()A. −4B. 16C. 8D. −88.如图,∠AOB=∠COD=90°,且OE平分∠AOD,以下等式不成立的是()A. ∠AOC=∠BODB. ∠AOE=∠EODC. ∠EOC=∠EOBD. ∠AOD=∠COE9.把7−(−3)+(−5)−(+2)写成省略加号和的形式为()A. 7+3−5−2B. 7−3−5−2C. 7+3+5−2D. 7+3−5+210.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A. 22x=16(27−x)B. 16x=22(27−x)C. 2×16x=22(27−x)D. 2×22x=16(27−x)11.设x,y,a是实数,正确的是()A. 若x=y,则x+a=y−aB. 若x=y,则3ax=3ayC. 若ax=ay,则x=yD. 若3x=4y,则x3a =y4a(a≠0)12.下面的说法中,不正确的是()A. 两直线平行,同位角相等B. 若∠α=∠β,则∠α和∠β是一对对顶角C. 若∠α与∠β互为补角,则∠α+∠β=180°D. 如果一个角的补角是130°,那么这个角的余角等于40°13.若代数式x−y的值为1,则代数式2x−3−2y的值是()A. 3B. −1C. 1D. 014.有理数m、n在数轴上的位置如图,则(m+n)⋅(m+2n)(m−n)的结果的为()A. 大于0B. 小于0C. 等于0D. 不确定15.如图,线段AB=18cm,BC=6cm,D为BC的中点,则线段AD的长为()A. 12cmB. 15cmC. 13cmD. 11cm16.下图中能判断∠1与∠2一定互为补角的是()A. B.C.D.二、填空题(本大题共5小题,共15.0分) 17. 比较下列各组数的大小 (1)−83 ______ −3 (2)5 ______ −|−5|18. 新学期开学整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌就摆在了一条直线上,整整齐齐,这样的道理是 . 19. 规定一种新运算:a※b =ab −(a +b),则(−2)※(−1)=______. 20. “x 的4倍比y 的一半少1”可列等式表示为______. 21. 定义:分数nm (m,n 为正整数且互为质数)的连分数1a 1+1a 2+1a 3+⋯(其中a 1,a 2,a 3,…,为整数,且等式右边的每个分数的分子都为1),记作n m − △ 1a 1+1a 2+1a 3+⋯,例如:719=1197=12+57=12+175=12+11+25=12+11+152=12+11+12+12,719的连分数为12+11+12+12,记作719− △ 12+11+12+12,则______− △ 11+12+13. 三、解答题(本大题共5小题,共63.0分) 22. 解方程:2x +5=5x −7.23. 选取二次三项式ax 2+bx +c(a ≠0)中的两项,配成完全平方式的过程叫配方. 例如:①选取二次项和一次项配方:x 2−4x +2=(x −2)2−2;②选取二次项和常数项配方:x 2−4x +2=(x −√2)2+(2√2−4)x ,或x 2−4x +2=(x +√2)2+(4+2√2)x③选取一次项和常数项配方:x 2−4x +2=(√2x −√2)2−x 2 根据上述材料,解决下面问题:(1)写出x 2−4x +4的两种不同形式的配方; (2)已知x 2++y 2+xy −3y +3=0,求x y 的值.(3)若关于x 的代数式9x 2−(m +6)x +m −2是完全平方式,求m 的值.AB.24.如图,点C是线段AB的中点,点D在AB上,且AD=13(1)若AD=4cm,求线段CD的长.(2)若CD=3cm,求线段AB的长.25.数轴上两点间的距离可以表示为这两点所对应的数的差的绝对值,如数轴上表示3的点A到数轴上表示−2的点B的距离可以表示为:|3−(−2)|=5,若点P,Q是数轴上的两个动点,点P从点A出发向左每秒运动2个单位长度,点Q从点B出发向右每秒运动1个单位长度.(1)3秒后点P到A点的距离PA为______ ,t秒后点P到B点的距离PB为______ .(2)求出当Q运动到A点时,P到B点的距离PB.(3)当Q运动到A点右侧后,令PB−k⋅QA=m,是否存在k,使得无论时间t如何变化m都不会发生改变.若存在,请直接写出此时的k值及m,若不存在,请说明理由.26.小赵为班级购买笔记本作为晚会上的奖品,回来时向生活委员交账说“一共买了36本,有两种规格,单价分别为1.8元和2.6元,去时我领了100元,现在找回27.6元.”生活委员算了一下,认为小赵稿错了.(1)请你用方程的知识说明小赵为什么搞错了.(2)小赵一想,发觉的确不对,因为他把自己口袋里的零用钱一起当做找回的钱给了生活委员,如果设购买单价为1.8元的笔记本a本,并且小赵的零用钱数目是整数,且少于3元,试求出小赵零用钱的数目.参考答案及解析1.答案:B解析:解:A、变形得,a−b−c+d,即a+d−b−c;B、变形得,a−c+b−d,即a+b−c−d;C、变形得,a−b+c−d,即a+c−b−d;D、变形得,a+b−c+d;所以,B最大;故选B.由若a,b均为正数,c,d均为负数可知:要使它们相加减组成的代数式的值最大,最好都变成是正数相加,即a+b−c−d的形式.既要熟悉有理数的加法法则,也要会熟练地去括号.2.答案:C解析:解:图①中∠α+∠β+90°=180°,可得∠α+∠β=90°,∴∠α≠∠β,故不能用“等角的补角相等”说明∠α=∠β;图②中∠α+∠1=90°,∠1+∠β=90°,∴∠α=∠β(同角的余角相等),故不能用“等角的补角相等”说明∠α=∠β;图3中∠α+∠2=180°,∠3+∠β=180°,又∠2=∠3=45°,∴∠α=∠β(等角的补角相等),故能用“等角的补角相等”说明∠α=∠β;图4中∠α+∠β=180°,故不能用“等角的补角相等”说明∠α=∠β.故选:C.根据等角的补角相等逐题计算即可求解.本题主要考查余角和补角,找到三角板中隐含的角的度数是解题的关键.3.答案:A解析:解:正方形的边长为x,则它的周长与面积分别为4x与x2.故选:A.根据正方形的周长与面积公式即可求解.本题考查了列代数式,解题的关键是熟练掌握正方形的周长与面积公式.4.答案:A解析:解:单项式−2a 2b 的系数是:−2. 故选:A .直接利用单项式中的数字因数叫做单项式的系数,得出答案. 此题主要考查了单项式,正确掌握单项式的系数定义是解题关键.5.答案:C解析:解:把x =2代入方程mx −n =3得2m −n =3, 所以2−6m +3n =2−3(2m −n)=2−3×3=2−9=−7. 故选:C .把x =2代入方程mx −n =3得2m −n =3,再把2−6m +3n 变形为2−3(2m −n),然后利用整体代入的方法计算.本题考查了一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.6.答案:C解析:解:对题意的分析可知,胶滚上第一行中间为小黑三角形,胶滚从左到右的方向将图案涂到墙上,故第一行应该中间为小黑三角形,所以只有C 满足条件. 故答案为:C .本题可从题意进行分析,胶滚上第一行中间为小黑三角形,然后在选项中进行排除即可. 本题考查图形的展开,从题意进行分析,运用排除法即可.7.答案:B解析:解:由题意,得:{x 2−y 2=02x −4=0,得{x =2y =2,{x =2y =−2, 因此(xy)2=16. 故选:B .先根据非负数的性质列出方程组,求出x ,y 的值,然后它们的值代入(xy)2中求解即可.本题主要考查了非负数的性质.虽然当y =2与y =−2时,(xy)2的值不变,但求解时不可疏忽y =−2这个值.8.答案:D解析:解:A,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD(同角的余角相等);B,,∴∠AOE=∠EOD,又∵∠AOC=∠BOD,C,∴∠AOC+∠AOE=∠BOD+∠EOD,即∠EOC=∠EOB;D,没有条件能证明∠AOD与∠COE相等。
19-20二南七上数学期末试卷
石家庄石门实验学校2019-2020学年度第一学期期末考试初一数学试卷一、选择题(本大题共16个小题,1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.两千多年前,中国就开始使用负数,若收入100元记作+100,则支出60元记作( ) A.-60 B.-40 C.+40 D.+602.若a=29°45’,则a 的余角等于()A.'︒5560B.'︒1560C.'︒55150D.'︒15150 3.用代数式表示“a 与b 的和的平方的一半”正确的是( )A.)(2221b a + B.221)(b a + C.)(221b a + D.221b a + 4.下列说法正确的是( )A.22-x 的系数是-2 B.23xy+是单项式 C.x 的次数是0 D.8也是单项式 5.下列选项中,哪个是方程531--=+x x 的解( )A. 2=xB.1=xC.2-=xD.1-=x 6.下列算式中,正确运用有理数运算法则的是( )A.)39()9(3---=-+B.)57(57--=+-)( C.)()(421-4-21-⨯=⨯ D.693961319⨯+⨯=+÷)(7.当a≤0时,下列各式中一定成立的是( )A.22)(a a -= B.02>a C.22a a -= D.33a a -=8.如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β一定相等的是( )A.图①和图②B.图②和图③C.图③和图④D.图①和图④9.下列去括号运算正确的是( )A.z y x z y x ---=+--)(B.z y x z y x --=--)(C.y x x y x x 22)(2+-=+-D.d c b a d c b a +++-=----)(-)(10. 我国古代名著《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三:人出七,不足四,问人数几何?原文意思是:现在有一些人共同买一个物品,每人出8元,还盈余3元:每人出7元,则还差4元,问共有多少人?如果假设共有x 人,则可列方程为( ) A.4738+=+x x B.4738+=-x x C.4738-=+x x D.4738-=-x x 11.下列等式变形,符合等式的基本性质的是( )A.若x x 732=-,则372-=x xB.若123+=-x x ,则213+=+x xC.若72=-x ,则27+=xD.若131-=x ,则3-=x 12.如图,已知∠AOB ,以点O 为圆心,以任意长为半径画弧①,分别交OA ,OB 于点E ,F ,再以点E 为圆心,以EF 长为半径画弧,交弧①于点D ,画射线OD.若∠AOB=26°,则∠BOD 的补角的度数为( )A.38°B.52°C.128°D.154°13. 当x=1时,代数式a x x +-22的值为3,则当1-=x 时,代数式a 2x -2+x =( )A.5B.6C.7D.814. 三个数a ,b ,c 满足:0=++c b a ,则这三个数在数轴上表示的位置不可能是( )15. 如图,下列关于图中线段之间的关系一定正确的是( )A. c b x x -+=22B.b a b c 22-=-C.b c a b x -+=+2D.b c a x 232+=+16. 如图,把∠APB 放在量角器上,读得射线PA 、PB 分别经过刻度117和153,把∠APB 绕点P 逆时针方向旋转到∠A ′PB ′,下列三个结论:①'∠='∠PB B A PA ;②若射线PA ′经过刻度27,则∠B ′PA 与∠A ′PB 互补; ③若∠APB ′=21∠APA ′,则射线PA "经过刻度45。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册石家庄市石门实验学校数学期末试卷测试卷(含答案解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.将一副三角板放在同一平面内,使直角顶点重合于点O(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【答案】(1)解:∵而同理:∴∴(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:(3)解:仍然成立.理由如下:∵又∵∴【解析】【分析】(1)先计算出再根据(2)根据(1)中得出的度数直接写出结论即可.(3)根据即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.2.已知线段AB=6.(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是线段AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和。
【答案】(1)解:如图:点C、D为线段AB的三等分点,可以组成的线段为:3+2+1=6(条),∵AB=6,点C、D为线段AB的三等分点,∴AC=CD=DB=2,AD=BC=4,∴这些线段长度的和为:2+2+2+4+4+6=20.(2)解:再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2,∴这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段共有1+2+3+…+8=36(条);根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;∴①以A、B为端点的线段有7+7+1=15(条),长度和为:6×8=48;②不以A、B为端点,以E1、E2为端点的线段有5+5+1=11(条),长度和为:4×6=24;③不以A、B、E1、E2为端点,以D1、D3为端点的线段有3+3+1=7(条),长度和为:3×4=12;④不以A、B、E1、E2、D1、D3为端点,以C、D为端点的线段有1+1+1=3(条),长度和为:2×2=4;∴这些线段长度的和为:48+24+12+4=88.【解析】【分析】(1)如图,根据线段的三等分点可分别求得每条线段的长度,再由线段的概念先找出所有线段,从而求得它们的和.(2)再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2;根据线段定义和数线段的规律求得线段条数;根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;再分情况讨论,从而求得所有线段条数和这些线段的长度.3.将一副三角板中的两块直角三角尺的直角顶点 O 按如图方式叠放在一起.(1)如图 1 ,若∠BOD=35°,则∠AOC=________;若∠AOC=135°,则∠BOD=________;(2)如图2,若∠AOC=140°,则∠BOD=________;(3)猜想∠AOC 与∠BOD 的大小关系,并结合图1说明理由.(4)三角尺 AOB 不动,将三角尺 COD 的 OD 边与 OA 边重合,然后绕点 O 按顺时针或逆时针方向任意转动一个角度,当∠A OD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD 角度所有可能的值,不用说明理由.【答案】(1)145°;45°(2)40°(3)解:∠AOC 与∠BOD 互补.∵∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC 与∠BOD 互补(4)解:OD⊥AB 时,∠AOD=30°,CD⊥OB 时,∠AOD=45°,CD⊥AB 时,∠AOD=75°,OC⊥AB 时,∠AOD=60°,即∠AOD 角度所有可能的值为:30°、45°、60°、75°【解析】【解答】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;( 2 )如图 2,若∠AOC=140°,则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=40°;故答案为:(1)145°,45°;(2)40°.【分析】(1)根据∠AOC=∠AOB+∠COD﹣∠BOD,就可求出∠AOC的度数;再由∠BOD=∠AOB+∠COD﹣∠AOC,可求出∠BOD的度数。
(2)观察如图2可证∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD,代入计算可求解。
(3)观察图形可得出∠AOD+∠BOD+∠BOD+∠BOC=180°,而∠AOC=∠AOD+∠BOD+∠BOC ,即可证得结论。
(4)分情况讨论:OD⊥AB 时;CD⊥OB 时;CD⊥AB 时;OC⊥AB 时,根据垂直的定义,分别求出∠AOD的度数。
4.(探究)如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.(1)若∠AFH=60°,∠CHF=50°,求∠EOF与∠FOH的度数.(2)若∠AFH+∠CHF=100°,求∠FOH的度数.(3)如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a的代数式表示) 【答案】(1)解:∵∠AFH=60°,OF平分∠AFH,∴∠OFH=30°,又∵EG∥FH,∴∠EOF=∠OFH=30°(两直线平行内错角相等);∵∠CHF=50°,OH平分∠CHF,∴∠FHO=25°,∴△FOH中,∠FOH=180°﹣∠OFH﹣∠OHF=125°(三角形的内角和定理);故答案为:30,125;(2)解:∵FO平分∠AFH,HO平分∠CHF,∴∠OFH=∠AFH,∠OHF=∠CHF.∵∠AFH+∠CHF=100°,∴∠OFH+∠OHF=(∠AFH+∠CHF)= ×100°=50°.∵EG∥FH,∴∠EOF=∠OFH,∠GOH=∠OHF(两直线平行内错角相等).∴∠EOF+∠GOH=∠OFH+∠OHF=50°.∵∠EOF+∠GOH+∠FOH=180°(三角形的内角和定理),∴∠FOH=180°﹣(∠EOF+∠GOH)=180°﹣50°=130°.(3)解:∵∠AFH和∠CHI的平分线交于点O,∴∠OFH=∠AFH,∠OHI=∠CHI,∴∠FOH=∠OHI﹣∠OFH=(∠CHI﹣∠AFH)=(180°﹣∠CHF﹣∠AFH)=(180°﹣α)=90°﹣α.【解析】【分析】(1)先根据角平分线的定义求出∠OFH ,∠FHO的度数,再根据三角形的内角和定理求出∠FOH的度数;(2)先根据角平分线的定义求出∠OFH+∠FHO的度数,再根据三角形的内角和定理求出∠FOH的度数;(3)先根据角平分线的定义求出∠OFH=∠AFH,∠OHI=∠CHI=(180°-∠CHF),再根据两直线平行内错角相等得∠FOH=∠OHI﹣∠OFH即可。
5.如图1,点O为直线AB上一点,过O点作射线OC,使,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方。
(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为________度;(2)在(1)旋转过程中,当旋转至图3的位置时,使得OM在∠BOC的内部,ON落在直线AB下方,试探究∠COM与∠BON之间满足什么等量关系,并说明理由.【答案】(1)180(2)解:∵∠AOC:∠BOC=1:3,∴∠BOC=180°× =135°.∵∠MOC+∠MOB=135°,∴∠MOB=135°−∠MOC.∴∠BON=90°−∠MOB=90°−(135°−∠MOC)=∠MOC−45°.即 .【解析】【解答】解:(1)OM由初始位置旋转到图2位置时,在一条直线上,所以旋转了180°. 故答案为180;【分析】(1)根据OM的初始位置和旋转后在图2的位置进行分析;(2)依据已知先计算出∠BOC=135°,则∠MOB=135°-MOC,根据∠BON与∠MOB互补,则可用∠MOC表示出∠BON,从而发现二者之间的等量关系.6.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=________度(答案直接填写在答题卡的横线上);在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,请你直接写出t的值为多少.【答案】(1)90°,OM平分∠CON.理由如下:∵∠BOC=135°,∴∠MOC=135°-90°=45°,而∠MON=45°,∴∠MOC=∠MON(2)∠AOM=∠CON.理由如下:如图3,∵∠MON=45°,∴∠AOM=45°-∠AON,∵∠AOC=45°,∴∠NOC=45°-∠AON,∴∠AOM=∠CON(3)解:t= ×45°÷5°=4.5(秒)或t=(180°+22.5°)÷5°=40.5(秒).故答案为90°;4.5秒或40.5秒.【解析】【分析】(1)利用旋转的性质可得∠BOM的度数,然后计算∠MOC的度数判断OM是否平分∠CON;(2)利用∠AOM=45°-∠AON和∠NOC=45°-∠AON可判断∠AOM与∠CON之间的数量关系;(3)ON旋转22.5度和202.5度时,ON平分∠AOC,然后利用速度公式计算t的值.7.已知点O是直线AB上的一点,∠COE= ,OF是∠AOE的平分线。