信号与系统试题及答案

合集下载

信号与系统试卷及参考答案

信号与系统试卷及参考答案

试卷及答案信号与系统试卷(1)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间120分钟,试卷题共2页一一线性非时变离散系统,具有一初始状态x(0),当激励为时f(k),响应为y(k)=((1/2)k+1)u(k);若初始状态不变,当激励为-f(k)时,响应y(k)=((-1/2)k-1)u(k)为;试求当初始状态2x(0)为,激励为4f(k)时,系统的响应?(10分)二绘出下列函数的图形(1).已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。

(8分)t(2). 试概略画出信号y(t)=u(t 2-4) 的波形图。

(8分)三 计算下列函数(1). y(t)=⎰-44(t 2+3t+2)(δ(t)+2δ(t-2))dt (4分) (2). f(t)=e -2t u(t), h(t)= e -2t u(t), y(t)=f(t)*h (t) (8分)(3). f(k)=1, k=0,1,2,3, h(k)=1, k=0,1,2,3, y(k)=f(k)*h (k) (8分) (4) 已知f(t)=e -2t u(t), 求y(t)=[t f(2t)] 的富立叶变换 (8分) (5)y’(t)+2y(t)=δ(t)+u(t), y(0)=0, 试求y(t)=? (8分) (6). y(k)-y(k-1)-2y(k-2)=u(k)+2u(k-2), y(-1)= 2,y(-2)= -1/2, 试求零输入响应y x (k)=? 零状态响应y f (k)=? (8分)四 一线性非时变因果系统,当激励为u(t)时,响应为)]2()([cos )(cos )(ππ---+=-t u t u t t tu e t g t ,求当激励f(t)=δ(t)时的响应)(t h 。

(10分)五 某一子系统,当输入f(t)=e -t u(t)时,零状态响应y f (t) = (1/2 e -t - e -2t +1/2e -3t )u(t), 试求将两个这样的子系统串联时,总系统的冲激响应。

信号与系统复习题(含答案)

信号与系统复习题(含答案)

试题一一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 。

A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 。

A.因果时不变B.因果时变C.非因果时不变D.非因果时变 3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u e t h t ,该系统是 。

A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 。

A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇 5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 。

A. t t 22sinB. tt π2sin C. t t 44sin D.t t π4sin6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 。

A. ∑∞-∞=-k k )52(52πωδπ B. ∑∞-∞=-k k )52(25πωδπC. ∑∞-∞=-k k )10(10πωδπD. ∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为 。

A.)}(Re{ωj e X j B. )}(Re{ωj e XC. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 。

A. 500B. 1000C. 0.05D. 0.001 9、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t =,其傅立叶变换)(ωj G 收敛,则x(t)是 。

A. 左边B. 右边C. 双边D. 不确定10、一系统函数1}Re{1)(->+=s s e s H s,,该系统是 。

信号与系统复习试题(含答案)

信号与系统复习试题(含答案)
D。激励与H(s)的极点
76.某二阶LTI系统的频率响应H (j)
A.y2y3y
B。y3y2yf2
D。y3y2yf
H(s)的共轭极点在虚轴上,则它的
2,-1,H ()1,则系统函数H(s)为(
C。(s1)(s2)
(t)的傅氏变换是(
B。j(
D。j(2
A.系统在(t)作用下的全响应
C.系统单位阶跃响应的导数
6。对于一个三阶常系数线性微分方程描述的连续时间系统进行系统的时域模拟时,所需积
分器数目最少是__3个_____个。
7。一线性时不变连续因果系统是稳定系统的充分且必要条件是系统函数的极点位于S平面
的___左半平面_______。
8.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为
其中x(0)是初始状态,
f(t)为激励,y(t)为全响应,试回答该系统是否是线性的?[答案:非线性]
2.y'(t)sinty(t)f(t)试判断该微分方程表示的系统是线性的还是非线性的,
是时变的还是非时变的?[答案:线性时变的]
3.已知有限频带信号f(t)的最高频率为100Hz,若对f(2t)*f(3t)进行时域取样,
B。f(t)f(t8)
12
C.f(t)f(t8)
D。f(t3)f(t1)
69.已知一连续系统在输入f(t)的作用下的零状态响应为yzs(t)f(4t),则该系统为()
70.已知f(t)是周期为T的函数,f(t)-f (t
T)的傅里叶级数中,只可能有(
71.一个线性时不变的连续时间系统,其在某激励信号作用下的自由响应为(e
h(t)=(1et)(t),则其系统函数
15.已知一信号f(t)的频谱F(j)的带宽为,则f(2t)的频谱的带宽为

信号与系统试题附答案

信号与系统试题附答案

信科0801《信号与系统》复习参考练习题一、单项选择题 (2分1题,只有一个正确选项,共20题,40分)1、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。

200 rad /s C 。

100 rad /s D 。

50 rad /s2、已知信号)(t f 如下图(a )所示,其反转右移的信号f 1(t) 是( )3、已知信号)(1t f 如下图所示,其表达式是( )A 、ε(t )+2ε(t -2)-ε(t -3)B 、ε(t -1)+ε(t -2)-2ε(t -3)C 、ε(t)+ε(t -2)-ε(t -3)D 、ε(t -1)+ε(t -2)-ε(t -3)4、如图所示:f (t )为原始信号,f 1(t)为变换信号,则f 1(t)的表达式是( )A 、f(-t+1)B 、f(t+1)C 、f(-2t+1)D 、f(-t/2+1)5、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( )6。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ7线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数8、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号9. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ10卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f11零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差12号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在13知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为() A 。

信号与系统复习题含答案完整版

信号与系统复习题含答案完整版

信号与系统复习题含答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】(C ))(t δ+(-6e -t +8e -2t)u(t) (D )3)(t δ +(-9e -t +12e -2t)u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A) 1 (B )2 (C )3 (D ) 48、序列和()∑∞-∞=-k k 1δ等于(A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于10、信号()()23-=-t u te t f t的单边拉氏变换()s F 等于二、填空题(共9小题,每空3分,共30分) 1、 卷积和[()k+1u(k+1)]*)1(k -δ=________________________2、 单边z 变换F(z)= 12-z z的原序列f(k)=______________________ 3、 已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、 频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、 单边拉普拉斯变换s s s s s F +++=2213)(的原函数 f(t)=__________________________6、 已知某离散系统的差分方程为)1(2)()2()1()(2-+=----kf k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、 已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=2)()(t dxx f t y 的单边拉氏变换Y(s)=______________________________ 8、描述某连续系统方程为 该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=k t 22三(8分)已知信号()()()⎪⎩⎪⎨⎧><==↔./1,0,/1,1s rad s rad jw F j F t f ωωω设有函数()(),dtt df t s =求⎪⎭⎫ ⎝⎛2ωs 的傅里叶逆变换。

信号与系统试题库史上最全内含答案)

信号与系统试题库史上最全内含答案)

信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。

一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。

[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。

[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。

[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。

[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。

[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。

[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。

其中:)()21()(k k g k ε=。

[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。

信号与系统试题及答案

信号与系统试题及答案

信号与系统试题1第一部分 选择题(共32分)一、单项选择题(本大题共16小题,每小题2分,共32分。

在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内)1.积分e d t --∞⎰2τδττ()等于( )A .δ()tB .ε()tC .2ε()tD .δε()()t t +2.已知系统微分方程为dy t dt y t f t ()()()+=2,若y f t t t (),()sin ()012+==ε,解得全响应为y t e t t ()sin()=+-︒-54242452,t ≥0。

全响应中24245sin()t -︒为( ) A .零输入响应分量 B .零状态响应分量C .自由响应分量D .稳态响应分量3.系统结构框图如图示,该系统的单位冲激响应h(t)满足的方程式为( )A .dy t dt y t x t ()()()+= B .h t x t y t ()()()=- C .dh t dt h t t ()()()+=δ D .h t t y t ()()()=-δ4.信号f t f t 12(),()波形如图所示,设f t f t f t ()()*()=12,则f()0为( )A .1B .2C .3D .45.已知信号f t ()的傅里叶变换F j ()()ωδωω=-0,则f t ()为( )A .120πωe j t B .120πωe j t - C .120πεωe t j t () D .120πεωe t j t -()6.已知信号f t ()如图所示,则其傅里叶变换为( )A .τωττωτ2422Sa Sa ()()+B .τωττωτSa Sa ()()422+ C .τωττωτ242Sa Sa ()()+ D .τωττωτSa Sa ()()42+7.信号f t 1()和f t 2()分别如图(a )和图(b)所示,已知 [()]()f t F j 11=ω,则f t 2()的 傅里叶变换为( )A .F j e j t 10()--ωωB .F j e j t 10()ωω-C .F j e j t 10()-ωωD .F j e j t 10()ωω8.有一因果线性时不变系统,其频率响应H j j ()ωω=+12,对于某一输入x(t)所得输出信号的傅里叶变换为Y j j j ()()()ωωω=++123,则该输入x(t)为( ) A .--e t t 3ε()B .e t t -3ε()C .-e t t 3ε()D .e t t 3ε()9.f t e t t ()()=2ε的拉氏变换及收敛域为( )A .122s s +>-,Re{} B .122s s +<-,Re{} C .122s s ->,Re{} D .122s s -<,Re{} 10.f t t t ()()()=--εε1的拉氏变换为( ) A .11s e s ()--B .11s e s ()-C .s e s ()1--D .s e s ()1-11.F s s s s s ()Re{}=+++>-25622的拉氏反变换为( )A .[]()e e t t t --+322εB .[]()e e t t t ---322εC .δε()()t e t t +-3D .e t t -3ε()12.图(a )中ab 段电路是某复杂电路的一部分,其中电感L 和电容C 都含有初始状态,请在图(b )中选出该电路的复频域模型。

信号与系统复习题(答案全)

信号与系统复习题(答案全)

1、 若系统的输入f (t )、输出y (t) 满足()3()4t y t e ft -=,则系统为 线性的 (线性的、非线性的)、 时变的 (时变的、时不变)、 稳定的 (稳定的、非稳定的).2、 非周期、连续时间信号具有 连续 、非周期频谱;周期、连续时间信号具有离散、非周期 频谱;非周期、离散时间信号具有 连续 、周期频谱;周期、离散时间信号具有离散、 周期 频谱。

3、 信号f(t)的占有频带为0-10KHz,被均匀采样后,能恢复原信号的最大采样周期为 5×10—5 s 。

4、 )100()(2t Sa t f =是 能量信号 (功率信号、能量信号、既非功率亦非能量信号)。

5、 ()2cos()f t t =+是 功率信号 (功率信号、能量信号、既非功率亦非能量信号)。

6、 连续信号f(t )=sint 的周期T 0= 2π ,若对f (t )以fs=1Hz 进行取样,所得离散序列f(k)=sin(k ) ,该离散序列是周期序列? 否 。

7、 周期信号2sin(/2)()j n tn n f t e n ππ+∞=-∞=∑,此信号的周期为 1s 、直流分量为 2/π 、频率为5Hz 的谐波分量的幅值为 2/5 。

8、 f (t) 的周期为0。

1s 、傅立叶级数系数**03355532F F F F F j --=====、其余为0。

试写出此信号的时域表达式f (t ) = 5 + 6 cos ( 60 π t ) - 4 sin (100 π t ) . 9、 f (k ) 为周期N=5的实数序列,若其傅立叶级数系数()205=F ()52511,πjeF -+=()54512πjeF -+=、 则F 5 (3 )= ()54512πjeF +=- 、F 5 (4 )= ()52511πj eF +=- 、F 5 (5 )= 2 ;f(k ) =())1.7254cos(62.052)9.3552cos(62.152525140525︒-⨯+︒-⨯+=∑=k k e n F n k jn πππ。

信号与系统试题库史上最全(内含答案)

信号与系统试题库史上最全(内含答案)

信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。

一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。

[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。

[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。

[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。

[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。

[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。

[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。

其中:)()21()(k k g k ε=。

[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。

信号与系统试题库及答案

信号与系统试题库及答案

信号与系统试题库及答案信号与系统试题库及答案,共22页1.下列信号的分类办法不正确的是(A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号2.下列说法正确的是(D ):A 、两个周期信号x(t),y(t)的和x(t)+y(t)一定是周期信号。

B 、两个周期信号x(t),y(t)的周期分离为2和,则其和信号x(t)+y(t) 是周期信号。

C 、两个周期信号x(t),y(t)的周期分离为2和,其和信号x(t)+y(t)是周期信号。

D 、两个周期信号x(t),y(t)的周期分离为2和3,其和信号x(t)+y(t)是周期信号。

3.下列说法不正确的是(D )。

A 、普通周期信号为功率信号。

B 、时限信号(仅在有限时光区间不为零的非周期信号)为能量信号。

C 、ε(t)是功率信号;D 、et 为能量信号;一、填空(每空1分,共15分)1、离散信号基本运算有;;;四种。

2、拉氏变换中初值定理、终值定理分离表示为)(lim )0(S SF f S ∞→=,;)(l i m )(0S SF f S →=∞ 。

3、延续系统的分析办法有时域分析法;频域分析法和复频域分析法。

这三种分析办法,其输入与输出表达式分离是y(t)=h(t)*f(t); Y(jω)= H(jω)?. F(jω); Y(s)= H(s)?. F(s)集美高校2022—2022学年第2学期信号与系统试卷及答案一、推断题(共9分,每题1.5分,对的打“V ”,错的打“X ”)。

1、一个信号的脉冲持续时光越小,它的频带宽度也就越小。

(× )2、一个信号的脉冲幅度数值越大,它的频谱幅度也就越大。

(V )3、一个能量有限的延续时光信号,它一定是属于瞬态信号。

(V )4、一个功率有限的延续时光信号,它一定是属于周期信号。

(× )5、一个因果稳定的延续时光系统,它的零极点必定都位于S 左半平面。

(完整版)信号与系统复习试题(含答案)

(完整版)信号与系统复习试题(含答案)

电气《信号与系统》复习参考练习题一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。

200 rad /s C 。

100 rad /s D 。

50 rad /sf如下图(a)所示,其反转右移的信号f1(t) 是( d )15、已知信号)(tf如下图所示,其表达式是()16、已知信号)(1tA、ε(t)+2ε(t-2)-ε(t-3)B、ε(t-1)+ε(t-2)-2ε(t-3)C、ε(t)+ε(t-2)-ε(t-3)D、ε(t-1)+ε(t-2)-ε(t-3)17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是()A、f(-t+1)B、f(t+1)C、f(-2t+1)D、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( c )19。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( ) A )0(f B )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应 D .全响应与强迫响应之差2A 、1-eB 、3eC 、3-e D 、1 27.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为( )A 。

(完整版)信号与系统专题练习题及答案

(完整版)信号与系统专题练习题及答案

信号与系统专题练习题一、选择题1.设当t<3时,x(t)=0,则使)2()1(t x t x -+-=0的t 值为 C 。

A t>-2或t>-1 B t=1和t=2 C t>-1 D t>-22.设当t<3时,x(t)=0,则使)2()1(t x t x -⋅-=0的t 值为 D 。

A t>2或t>-1 B t=1和t=2 C t>-1 D t>-23.设当t<3时,x(t)=0,则使x(t/3)=0的t 值为 C 。

A t>3 B t=0 C t<9 D t=34.信号)3/4cos(3)(π+=t t x 的周期是 C 。

A π2 B π C 2/π D π/25.下列各表达式中正确的是 B A. )()2(t t δδ= B.)(21)2(t t δδ= C. )(2)2(t t δδ= D. )2(21)(2t t δδ=6. 已知系统的激励e(t)与响应r(t)的关系为:)1()(t e t r -= 则该系统为 B 。

A 线性时不变系统 B 线性时变系统 C 非线性时不变系统 D 非线性时变系统7. 已知 系统的激励e(t)与响应r(t)的关系为:)()(2t e t r = 则该系统为 C 。

A 线性时不变系统B 线性时变系统C 非线性时不变系统D 非线性时变系统 8. ⎰∞-=td ττττδ2sin )( A 。

A 2u(t) B )(4t δ C 4 D 4u(t)10.dt t t )2(2cos 33+⋅⎰-δπ等于 B 。

A 0 B -1 C 2 D -211.线性时不变系统输出中的自由响应的形式由 A 决定A 系统函数极点的位置;B 激励信号的形式;C 系统起始状态;D 以上均不对。

12.若系统的起始状态为0,在x (t)的激励下,所得的响应为 D 。

A 强迫响应;B 稳态响应;C 暂态响应;D 零状态响应。

(完整版)信号与系统练习及答案

(完整版)信号与系统练习及答案

信号与系统练习及答案一、单项选择题1.已知信号f (t )的波形如题1图所示,则f (t )的表达式为( )A .tu(t)B .(t-1)u(t-1)C .tu(t-1)D .2(t-1)u(t-1)2.积分式⎰-δ+δ++4422)]dt -(t 2(t))[23(t t 的积分结果是( ) A .14 B .24 C .26 D .283.已知f(t)的波形如题3(a )图所示,则f (5-2t)的波形为( )4.周期矩形脉冲的谱线间隔与( )A .脉冲幅度有关B .脉冲宽度有关C .脉冲周期有关D .周期和脉冲宽度有关 5.若矩形脉冲信号的宽度加宽,则它的频谱带宽( ) A .不变 B .变窄 C .变宽D .与脉冲宽度无关 6.如果两个信号分别通过系统函数为H (j ω)的系统后,得到相同的响应,那么这两个信号()A .一定相同 B .一定不同 C .只能为零 D .可以不同7.f(t)=)(t u e t 的拉氏变换为F (s )=11-s ,且收敛域为( ) A .Re[s]>0B .Re[s]<0C .Re[s]>1D .Re[s]<1 8.函数⎰-∞-δ=2t dx )x ()t (f 的单边拉氏变换F (s )等于( ) A .1 B .s 1 C .e -2s D .s1e -2s 9.单边拉氏变换F (s )=22++-s e )s (的原函数f(t)等于( ) A .e -2t u(t-1) B .e -2(t-1)u(t-1) C .e -2t u(t-2)D .e -2(t-2)u(t-2)答案: BCCCBDCDA二.填空题1.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为_________。

2.已知x(t)的傅里叶变换为X (j ω),那么x (t-t 0)的傅里叶变换为_________________。

3.如果一线性时不变系统的输入为f(t),零状态响应为y f (t )=2f (t-t 0),则该系统的单位冲激响应h(t)为_________________。

信号与系统试题库史上最全(内含答案)

信号与系统试题库史上最全(内含答案)
II、课程名称:信号与系统
III、测试学期:200 --200学年度第学期
IV、测试对象:学院专业
V、问卷页数(A4):4页
VI、考试方式:闭卷考试
VII、问卷内容:
一.单项选择题(本大题共10小题,每小题2分,共20分)
1.积分 等于( )
A. B. C. D.
2.已知系统微分方程为 ,若 ,解得全响应为 ,则全响应中 为( )
四.计算题(本大题共5小题,共50分)
1.(10分)二阶连续LTI系统对 =1, =0起始状态的零输入响应为 ;对 =0, =1起始状态的零输入响应为 ;系统对激励 的零状态响应 ,求系统在 起始状态下,对激励 的完全响应?
2.(10分)已知信号x(t)的傅里叶变换X(j )如题2图所示,求信号x(t)?
[答案: ]
三、已知描述LTI系统的框图如图所示
若 , ,求其完全响应 。
[答案: ]
四、图示离散系统有三个子系统组成,已知 , ,激励 ,求:零状态响应 。
[答案: ]
五、已知描述系统输入 与输出 的微分方程为:
a)写出系统的传递函数;[答案: ]
b)求当 时系统的全响应。
[答案: ]
六、因果线性时不变系统的输入 与输出 的关系由下面的
(2) ]
十、已知系统的传递函数 ;
(1)写出描述系统的微分方程;
(2)求当 时系统的零状态响应和零输入响应。
[答案:(1)
(2)
十一、已知一个因果LTI系统的输出 与输入 有下列微分方程来描述:
(1)确定系统的冲激响应 ;
(2)若 ,求系统的零状态响应
[答案:(1)
(2) ]
十二、已知某LTI系统的输入为: 时,其零状态响应 ,求系统的单位序列响应 。

信号与系统考试题及答案

信号与系统考试题及答案

信号与系统考试题及答案# 信号与系统考试题及答案一、选择题(每题2分,共20分)1. 信号f(t)=3cos(2πt + π/3)的频率是:A. 1HzB. 2HzC. 3HzD. 4Hz答案:B2. 系统是线性时不变系统(LTI),如果满足以下条件:A. 系统对所有信号都有响应B. 系统对输入信号的线性组合有响应C. 系统对时间平移的输入信号有响应D. 系统对所有条件都有响应答案:B3. 如果一个信号是周期的,那么它的傅里叶级数表示中包含:A. 只有直流分量B. 只有有限个频率分量C. 无限多个频率分量D. 没有频率分量答案:B4. 拉普拉斯变换可以用来分析:A. 仅连续时间信号B. 仅离散时间信号C. 连续时间信号和离散时间信号D. 仅离散时间系统答案:C5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. 1/tD. e^(-st)答案:A6. 一个系统是因果系统,如果:A. 它的脉冲响应是零,对于所有t<0B. 它的输出总是零C. 它的输出在任何时候都不依赖于未来的输入D. 所有上述条件答案:A7. 傅里叶变换可以用来分析:A. 仅周期信号B. 非周期信号C. 周期信号和非周期信号D. 仅离散信号答案:B8. 一个信号x(t)通过一个线性时不变系统,输出y(t)是:A. x(t)的时移版本B. x(t)的反转版本C. x(t)的缩放版本D. x(t)的卷积答案:D9. 如果一个信号的傅里叶变换存在,那么它是:A. 周期的B. 非周期的C. 有限能量的D. 有限功率的答案:C10. 系统的频率响应H(jω)是输入信号X(jω)和输出信号Y(jω)的:A. 乘积B. 差C. 比值D. 和答案:C二、简答题(每题10分,共30分)1. 解释什么是卷积,并给出卷积的基本性质。

答案:卷积是信号处理中的一个重要概念,表示一个信号与另一个信号的加权叠加。

具体来说,如果有两个信号f(t)和g(t),它们的卷积定义为f(t)与g(-t)的乘积的积分,对所有时间t进行积分。

信号与系统试题信号与系统试题附答案

信号与系统试题信号与系统试题附答案

信号与系统试题信号与系统试题附答案信号与系统试题信号与系统试题附答案信号与系统复习参考练习题一、单项选择题:14、已知连续时间信号f (t ) =sin 50(t -2)100(t -2) , 则信号f (t ) ·cos 104t 所占有的频带宽度为()A .400rad /sB 。

200 rad/sC 。

100 rad/sD 。

50 rad/s15、已知信号f (t ) 如下图(a )所示,其反转右移的信号f 1(t) 是()16、已知信号f 1(t ) 如下图所示,其表达式是()A 、ε(t )+2ε(t-2) -ε(t-3)B 、ε(t-1) +ε(t-2) -2ε(t-3)C 、ε(t)+ε(t-2) -ε(t-3)D 、ε(t-1) +ε(t-2) -ε(t-3)17、如图所示:f (t )为原始信号,f 1(t)为变换信号,则f 1(t)的表达式是()A 、f(-t+1)B 、f(t+1)C 、f(-2t+1)D 、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是()19。

信号f (t ) =2cos π4(t -2) +3sin π4(t +2) 与冲激函数δ(t -2) 之积为()A 、2B 、2δ(t -2)C 、3δ(t -2)D 、5δ(t -2)20.已知LTI 系统的系统函数H (s ) =s +1, Re[s ]>-2,则该系统是() s 2+5s +6A 、因果不稳定系统B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是()A 、常数B 、实数C 、复数 D、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是()A 、阶跃信号B 、正弦信号C 、冲激信号 D、斜升信号∞23. 积分-∞?f (t ) δ(t ) dt 的结果为( )A f (0)B f (t ) C. f (t ) δ(t ) D. f (0) δ(t )24. 卷积δ(t ) *f (t ) *δ(t ) 的结果为( )A. δ(t )B. δ(2t )C. f (t )D. f (2t )25. 零输入响应是( )A. 全部自由响应B. 部分自由响应C. 部分零状态响应D. 全响应与强迫响应之差 2A 、eB 、eC 、eD 、127. 信号〔ε(t)-ε(t-2) 〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C. 全S 平面D. 不存在28.已知连续系统二阶微分方程的零输入响应y zi (t ) 的形式为Ae -t -13-3+Be -2t ,则其2个特征根为( )A 。

信号与系统考试题及答案

信号与系统考试题及答案

信号与系统考试题及答案第一题:问题描述:什么是信号与系统?答案:信号与系统是电子工程和通信工程中重要的基础学科。

信号是信息的传递载体,可以是电流、电压、声音、图像等形式。

系统是对信号进行处理、传输和控制的装置或网络。

信号与系统的研究内容包括信号的产生、变换、传输、处理和控制等。

第二题:问题描述:信号的分类有哪些?答案:信号可以根据多种特征进行分类。

按照时间域和频率域可以将信号分为连续时间信号和离散时间信号;按照信号的能量和功率可以分为能量信号和功率信号;按照信号的周期性可以分为周期信号和非周期信号;按照信号的波形可以分为正弦信号、方波信号、脉冲信号等。

第三题:问题描述:什么是线性时不变系统?答案:线性时不变系统是信号与系统领域中重要的概念。

线性表示系统满足叠加性原理,即输入信号的线性组合经过系统后,输出信号也是输入信号的线性组合。

时不变表示系统的性质不随时间变化而改变。

线性时不变系统具有许多重要的性质和特点,可以通过线性时不变系统对信号进行处理和分析。

第四题:问题描述:系统的冲激响应有什么作用?答案:系统的冲激响应是描述系统特性的重要参数。

当输入信号为单位冲激函数时,系统的输出即为系统的冲激响应。

通过分析冲激响应可以得到系统的频率响应、幅频特性、相频特性等,从而对系统的性能进行评估和优化。

冲激响应还可以用于系统的卷积运算和信号的滤波等应用。

第五题:问题描述:如何对信号进行采样?答案:信号采样是将连续时间信号转换为离散时间信号的过程。

常用的采样方法包括周期采样和非周期采样。

周期采样是将连续时间信号按照一定的时间间隔进行等间隔采样;非周期采样是在信号上选取一系列采样点,采样点之间的时间间隔可以不相等。

采样频率和采样定理是采样过程中需要考虑的重要因素。

第六题:问题描述:什么是离散傅里叶变换(DFT)?答案:离散傅里叶变换是对离散时间信号进行频域分析的重要工具。

通过计算离散傅里叶变换可以将离散时间信号转换为复数序列,该复数序列包含了信号的频率成分和相位信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 程 名 称《信号与系统》
1.
=-⎰∞

-dt t t )()5cos 2(δ 。

2. ()dt t e t
12-⎰
+∞

--δ= 。

3.
已知 f(t)的傅里叶变换为F(j ω), 则f(2t-3)的傅里叶变换为 。

4. 已知 6
51
)(2+++=
s s s s F ,则=+)0(f ; =∞)(f 。

5. 已知 ω
ωπδεj t FT 1
)()]([+=,则=)]([t t FT ε 。

6. 已知周期信号
)4sin()2cos()(t t t f +=,其基波频率为 rad/s ;
周期为 s 。

7. 已知
)5(2)2(3)(-+
-=n n k f δδ,其Z 变换
=)(Z F ;收敛域为 。

8. 已知连续系统函数1342
3)(2
3+--+=
s s s s s H ,试判断系统的稳定性: 。

9.已知离散系统函数1
.07.02
)(2+-+=z z z z H ,试判断系统的稳定性: 。

10.如图所示是离散系统的Z 域框图,该系统的系统函数H(z)= 。

二.(15分)如下方程和非零起始条件表示的连续时间因果LTI 系统,
⎪⎩⎪⎨⎧==+=++--
5
)0(',2)0()
(52)(4522y y t f dt df
t y dt dy dt
y d 已知输入
)()(2t e t f t ε-=时,试用拉普拉斯变换的方法求系统的零状态响应
)(t y zs 和零输入响应)(t y zi ,0≥t 以及系统的全响应),(t y 0≥t 。

三.(14分)
① 已知
2
36
62)(22++++=s s s s s F ,2]Re[->s ,试求其拉氏逆变换f(t);
② 已知)
2(2
35)(2>+-=
z z z z z X ,试求其逆Z 变换)(n x 。

四 (10分)计算下列卷积:
1.
}1,0,6,4,3{}4,1,2,1{)()(21--*=*k f k f ;
2.)(3)(23t e t e t t
εε--* 。

五.(16分)已知系统的差分方程和初始条件为:
)()2(2)1(3)(n n y n y n y ε=-+-+,5.0)2(,
0)1(=-=-y y
1. 求系统的全响应y(n);
2. 求系统函数H(z),并画出其模拟框图;
六.(15分)如图所示图(a )的系统,带通滤波器的频率响应如图(b)所示,其相位特性
0)(=ωϕ,若输入信号为:
)1000cos()(,2)
2sin()(t t s t
t t f ==
π
试求其输出信号y(t),并画出y(t)的频谱图。

参考答案
一填空题(30分,每小题3分)
2. 1 ; 2. e -2
; 3. )2
(2123
ω
ωj F e j - ;
4. 1 ,0 ;
5. 2
1
)('ω
ωπδ-j ; 6. 2 л ;
7.
5223)(--+=z z z F ,|z|>0; 8. 不稳定; 9. 稳定
10.
214
14111
)(--+-=
z
z z H
二.(15分)⎪⎩⎪⎨⎧==+=++--
5
)0(',2)0()
(52)(4522y y t f dt
df
t y dt dy dt y d 方程两边取拉氏变换:
)
()6
17
21316()()()(;
)()2
1
21()(4
2/122/111459221)()
()37
313()(;)4
3/713/134592)(4
552214592)(4
55
245)0(5)0(')0()()()(42422422
22
2t e e e t y t y t y t e e e t y s s s s s s s s Y t e e t y s s s s s s Y s s s s s s s s F s s s s s y y sy s Y s Y s Y t t t zi zs t t t zi zs t t zi zi zi zs εεε-------------=+=--=+-
+-+=+++⋅+=-=+-+=+++=+++⋅+++++=⋅++++++++=+= 三.1.(7分)
)
0(22)(2)(22
1222
32223662)(2222≥-+=+-+
++=+++=++++=--t e e t t f s s s s s s s s s F t t δ 2.(7分)
)
()12(5)(,2;2
5
15)2)(1(5)(;
2
35)(2k k f z z z z z z z F z z z z F n ε-=>-+--=--=+-=
为右边序列
四. 1. (5分) {}4,1,22,21,4,11,2,3)(----=k f 2.(5分)
)
()(3|)(36)()(6)(3)(230
220
)(33t e e e
e d e
e d t e e t e t e t
t t t t t
t t t εττ
τετεεετ
τ
ττ---------∞

----=-⋅==-⋅=*⎰⎰
五. 解:(16分)
(1)对原方程两边同时Z 变换有:
1
)]1()2()([2)]1()([3)(121-=
-+-++-++---z z y z y z Y z y z Y z z Y 2
32121161)2)(1)(1()(2
+-++-=++-=
∴z z
z z z z z z z z z Y
)(])2(3
2
)1(2161[)(n n y n n ε---+=
(2)2
1
2311)
(--++=
z
z
z H
六(15分)
)1000cos()(,2)
2sin()(t t s t
t t f ==
π
)
(5.0)(41
2)(2)
2sin(4412)2sin()(44ωωππωππg g j F t
t t t t f =⨯⨯=⨯⨯==
)
1000cos(22sin )()()
()()()(,01001||999,
1)()
()]}1000()1000([*)(4
1
{)
()()()
(*)()()]1000()1000([*)(4)(*)(21
)()1000cos(22sin )()()(4t t
t
t x t y j X j H j X j Y 其它j H j H g j H j X j Y t h t x t y g j S j F j X t t
t
t s t f t x ⋅====∴⎩⎨
⎧≤≤=-++===-++=
=⋅==πωωωωωωωωδωδωωωωωδωδωπ
π
ωωπ
ωπτ。

相关文档
最新文档