七年级数学下学期提高题4(直角坐标系)(无答案) 新人教版
人教版七年级下数学期末模拟提优练试题
人教版七年级下数学期末模拟提优练试题一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列实数中,有理数是()A.B.0.1010010001C.D.2.(3分)下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查3.(3分)如图所示,能判定直线AB∥CD的条件是()A.∠1=∠2B.∠3=∠4C.∠1+∠4=180°D.∠3+∠4=90°4.(3分)如图,将北京市地铁部分线路图置于正方形网格中,若设定崇文门站的坐标为(0,﹣1),雍和宫站的坐标为(0,4),则西单站的坐标为()A.(0,5)B.(5,0)C.(0,﹣5)D.(﹣5,0)5.(3分)若m>n,下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.>D.m2>n26.(3分)观察市统计局公布的“十五”时期重庆市农村居民人均收入每年比上一年增长率的统计图,下列说法正确的是()A.2003年农村居民人均收入低于2002年B.农村居民人均收入比上年增长率低于9%的有2年C.农村居民人均收入最多时2004年D.农村居民人均收入每年比上一年的增长率有大有小,但农村居民人均收入在持续增加7.(3分)下列运算中,正确的是()A.=24B.=C.﹣=﹣D.=±28.(3分)一根直尺和一块含有30°角的直角三角板如图所示放置,已知直尺的两条长边互相平行,若∠1=25°,则∠2等于()A.25°B.35°C.45°D.65°9.(3分)若不等式组有解,则a的取值范围是()A.a≤3B.a<3C.a<2D.a≤210.(3分)在平面直角坐标系中,一动点从原点出发按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动的路线如图所示,则该动点移动到点A100时的坐标是()A.(49,0)B.(49,1)C.(50,0)D.(50,1)二、填空题(本小题共8小题,每小题3分,共24分)11.(3分)4的平方根是.12.(3分)用不等式表示“比x的5倍大1的数不小于4”:.13.(3分)已知是二元一次方程ax﹣2y=4的一个解,则a的值是.14.(3分)化简:||=.15.(3分)如图,将一个长方形条折成如图所示的形状,若已知∠1=100°,则∠2=°.16.(3分)有甲、乙两个牧童,甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了.”问:两个牧童各有多少只羊?设甲牧童有x只羊,乙牧童有y只羊,可列方程组为.17.(3分)已知AB∥y轴,点A的坐标为(﹣2,3),且AB=3,则点B的坐标为.18.(3分)已知实数x,y同时满足三个条件:①3x﹣2y=4+p;②3y﹣2x=2﹣p;③x>y,那么实数p的取值范围是.三、解答题(本题共46分)19.(6分)解方程组:.20.(7分)解不等式组:并把它的解集在所给数轴上表示出来.21.(8分)如图,在由边长为1的小正方形组成的网格图中建立平面直角坐标系.(1)直接写出点D的坐标(,);(2)平移△ABC,使得点A与点D重合,请在坐标系中画出平移后的三角形,记为△DB1C1(其中B、C的对应点分别是B1、C1);(3)若P1(a,b)在线段DB1上,则其平移前的对应点P的坐标为(,).22.(6分)完成下面填空.已知:如图,AE平分∠BAD,AB∥CD,CD与AE相交于点F,∠CFE=∠E,求证:AD∥BC证明:∵AB∥CD(已知)∴∠1=∠(两直线平行,同位角相等)∵AE平分∠BAD(已知)∴∠1=∠(角平分线定义)又∵∠CFE=∠E(已知)∴∠=∠E(等量代换)∴AD∥BC()23.(9分)今年央视举办的“经典咏流传”节目受到中学生的广泛关注,某中学为了了解学生对观看“经典咏流传”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制了如下所示的两幅统计图.在条形统计图中,从左往右依次为A类(非常喜欢),B 类(较喜欢),C类(一般),D类(不喜欢),已知A类和B类所占人数比是5:9,请结合两幅统计图,回答下列问题:(1)此次抽样调查的样本容量是:.(2)请补全两幅统计图:并计算扇形统计图“D类(不喜欢)”部分的圆心角度数;(3)该校有2000名学生,请你估计对观看“经典咏流传”节目较喜欢的学生人数.24.(10分)某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.【分析】依据实数的分类进行判断即可.【解答】解:是开方开不尽的数,是无理数;0.1010010001是有限小数,是有理数;是开方开不尽的数,是无理数;是无理数.故选:B.【点评】本题主要考查的是实数的概念,熟练掌握实数的定义是解题的关键.2.【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:A、审核书稿中的错别字,必须准确,故必须普查;B、此种情况数量不是很大,故必须普查;C、人数不多,容易调查,适合普查;D、中学生的人数比较多,适合采取抽样调查;故选:D.【点评】本题考查了全面调查与抽样调查的应用,一般由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.3.【分析】依据平行线的三条判定定理,进行判断.【解答】解:A、B、∠1与∠2,∠3与∠4都不是直线AB与CD形成的同位角,所以不能判断直线AB∥CD,故错误;C、根据对顶角相等,可得∠1=∠5,∠4=∠6,又∠1+∠4=180°,∴∠5+∠6=180°,根据同旁内角互补,两直线平行可得AB∥CD,故正确;D、∠3+∠4=90°,不符合平行线的判断条件,所以不能判断直线AB∥CD,故错误;故选:C.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.4.【分析】首先利用已知点确定原点位置,进而得出答案.【解答】解:如图所示:西单站的坐标为:(﹣5,0).故选:D.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.5.【分析】根据不等式的性质1,可判断A;根据不等式的性质2,可判断B、C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选:D.【点评】本题考查了不等式的性质,.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变6.【分析】解决本题需要从统计图获取信息,由此关键是明确图表中数据的来源及所表示的意义,对选项一一分析,选择正确答案.【解答】解:A、2003年农村居民人均收入每年比上一年增长率低于2002年,但是,人均收入仍是增长,所以A错误;B、农村居民人均收入比上年增长率低于9%的有3年,所以B错误;C、农村居民人均收入比上年增长率最多时2004年,所以C错误;D、农村居民人均收入每年比上一年的增长率有大有小,但都在增长,故D正确.故选:D.【点评】本题考查的是折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.注意读图获取信息、分析问题解决问题的能力.7.【分析】依据算术平方根的性质、立方根的性质求解即可.【解答】解:==4,故A错误;=,3==,故B错误;﹣=﹣,故C正确;=2,故D错误.故选:C.【点评】本题主要考查的是立方根、平方根、算术平方根的概念,熟练掌握相关概念是解题的关键.8.【分析】根据平行线性质得出∠1=∠NFE=25°,∠2=∠NFG,求出∠EFG,即可求出答案.【解答】解:过F作FN∥AD,∵BC∥AD,∴BC∥AD∥FN,∴∠1=∠NFE=35°,∠2=∠NFG,∵∠G=90°,∠E=30°,∴∠EFG=60°,∴∠2=60°﹣25°=35°,故选:B.【点评】本题考查了平行线性质,三角形内角和定理的应用,关键是根据平行线性质得出∠1=∠NFE=25°,∠2=∠NFG.9.【分析】先求出不等式的解集,再根据不等式组有解即可得到关于a的不等式,求出a 的取值范围即可.【解答】解:,由①得,x>a﹣1;由②得,x≤2,∵此不等式组有解,∴a﹣1<2,解得a<3.故选:B.【点评】本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解答此题的关键.10.【分析】根据点A1、A2、A3、A4、A5、A6、A7、A8、…的坐标的变化,可找出A4n(2n,0)(n为正整数),再结合100=4×25,即可得出A100的坐标.【解答】解:∵A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),A7(3,0),A8(4,0),…,∴A4n(2n,0)(n为正整数).∵100=4×25,∴A100的坐标为(50,0).故选:C.【点评】本题考查了规律型中点的坐标,根据点的坐标的变化找出变化规律“A4n(2n,0)(n为正整数)”是解题的关键.二、填空题(本小题共8小题,每小题3分,共24分)11.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.【分析】理解:不小于4就是大于等于4.【解答】解:由题意可知5x+1≥4.故答案是:5x+1≥4.【点评】考查了由实际问题抽象出一元一次不等式.要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.13.【分析】将x与y的值代入方程即可求出a的值.【解答】解:将x=2,y=2代入方程得:2a﹣4=4,解得:a=4.故答案为:4【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.【分析】要先判断出<0,再根据绝对值的定义即可求解.【解答】解:∵<0∴||=2﹣.故答案为:2﹣.【点评】此题主要考查了绝对值的性质.要注意负数的绝对值是它的相反数.15.【分析】根据平行线的性质,即可得到∠3的度数,再根据平角的定义以及折叠的性质,即可得到∠2的度数.【解答】解:根据长方形的对边平行,可得∠1+∠3=180°,∵∠1=100°,∴∠3=80°,由折叠可得,∠2=∠4=(180°﹣80°)=50°,故答案为:50【点评】本题主要考查了平行线的性质以及折叠的性质,解题时注意:两直线平行,同旁内角互补.16.【分析】设甲牧童有x只羊,乙牧童有y只羊,根据题意列出方程组解答即可.【解答】解:设甲牧童有x只羊,乙牧童有y只羊,可得:,故答案为:,【点评】此题考查二元一次方程组的应用,解答此题的关键是弄清题意,设出未知数,再根据数量关系列出方程组解决问题.17.【分析】根据平行于y轴的点的横坐标相同可得点B的横坐标,再分点B在点A的上方与下方两种情况讨论求解.【解答】解:∵AB∥y轴,点A的坐标为(﹣2,3),∴点B的横坐标为﹣2,∵AB=3,∴点B在点A的上方时,点B的纵坐标为6,点B的坐标为(﹣2,6),点B在点A的下方时,点B的纵坐标为0,点B的坐标为(﹣2,0),综上所述,点B的坐标为(﹣2,6)或(﹣2,0)故答案为:(﹣2,6)或(﹣2,0)【点评】本题考查了坐标与图形性质,主要利用了平行于y轴的点的横坐标相同的性质,要注意分情况讨论,作出图形更形象直观.18.【分析】首先根据:①3x﹣2y=4+p,②3y﹣2x=2﹣p,用p表示出x、y;然后根据x >y,求出实数p的取值范围是多少即可.【解答】解:①×2+②×3,可得:5y=14﹣p,解得y=2.8﹣0.2p③,把③代入①,解得x=3.2+0.2p,∵x>y,∴3.2+0.2p>2.8﹣0.2p,解得p>﹣1.故答案为:p>﹣1.【点评】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.三、解答题(本题共46分)19.【分析】利用加减消元法求解可得.【解答】解:①+②×5,得:44y=660,解得:y=15,将y=15代入①,得:5x﹣15=110,解得:x=25,所以方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:解不等式①,得:x≥1,解不等式②,得:x<4,所以不等式组的解集为1≤x<4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.21.【分析】(1)直接利用平面直角坐标系得出D点坐标;(2)利用D点平移规律得出各对应点位置进而得出答案;(3)利用平移规律得出P点坐标.【解答】解:(1)点D的坐标为:(﹣2,3);故答案为:﹣2,3;(2)如图所示:△DB1C1即为所求;(3)P1(a,b)在线段DB1上,则其平移前的对应点P的坐标为:(a+3,b﹣2).故答案为:a+3,b﹣2.【点评】此题主要考查了平移变换,正确得出点的平移规律是解题关键.22.【分析】由AB与CD平行,利用两直线平行内错角相等得到一对角相等,再由AE为角平分线得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.【解答】证明:∵AB∥DC(已知),∴∠1=∠CFE(两直线平行,同位角相等).∵AE平分∠BAD(已知),∴∠1=∠2(角平分线的定义),∴∠CFE=∠2(等量代换).∵∠CFE=∠E(已知),∴∠2=∠E(等量代换),∴AD∥BC(内错角相等,两直线平行).故答案为:∠CFE;∠2;∠2;内错角相等,两直线平行.【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.23.【分析】(1)根据统计图中的数据可以求得此次抽样调查的样本容量;(2)根据统计图中的数据可以求得选择C和D的人数,B和D所占的百分比从而可以将统计图补充完整,并求得扇形统计图“D类(不喜欢)”部分的圆心角度数;(3)根据统计图的数据可以求得对观看“经典咏流传”节目较喜欢的学生有多少人.【解答】解:(1)此次抽样调查的样本容量是:20÷20%=100,故答案为:100;(2)选择C的有:100×19%=19人,选择D的有:100﹣20﹣36﹣19=25人,B所占的百分比是:36÷100×100%=36%,D所占的百分比是:25÷100×100%=25%,补全的统计图如右图所示,扇形统计图“D类(不喜欢)”部分的圆心角度数是:360°×25%=90°;(4)2000×36%=720(人),答:对观看“经典咏流传”节目较喜欢的学生有720人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体、样本容量,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.【分析】(1)根据用8000元购进了大樱桃和小樱桃各200千克,以及大樱桃的进价比小樱桃的进价每千克多20元,分别得出等式求出答案;(2)根据要想让第二次赚的钱不少于第一次所赚钱的90%,得出不等式求出答案.【解答】解:(1)设小樱桃的进价为每千克x元,大樱桃的进价为每千克y元,根据题意可得:,解得:,小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,200×[(40﹣30)+(16﹣10)]=3200(元),∴销售完后,该水果商共赚了3200元;(2)设大樱桃的售价为a元/千克,(1﹣20%)×200×16+200a﹣8000≥3200×90%,解得:a≥41.6,答:大樱桃的售价最少应为41.6元/千克.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确表示出总费用是解题关键.一、七年级数学易错题1.如图,在直角坐标系中,已知点()()3,0,0,4A B -,对OAB ∆连续作旋转变换,,依次得到1,2,3,4?·····∆∆∆∆则2013∆的直角顶点的坐标为( )A .()8052,0B .()8040,0C .()8049,0D .()8048,0【答案】A 【解析】 【分析】根据勾股定理列式求出AB 的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2013除以3,根据商为671可知第2013个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可. 【详解】解:∵点A (-3,0)、B (0,4), ∴22345AB +=,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12, ∵2013÷3=671,∴△2013的直角顶点是第671个循环组的最后一个三角形的直角顶点, ∵671×12=8052,∴△2013的直角顶点的坐标为(8052,0). 故选:A .【点睛】本题考查点的坐标变化规律,注意观察图形,得到每三个三角形为一个循环组依次循环是解题的关键.2.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.70°B.80°C.90°D.100°【答案】B【解析】因为AB∥DF,所以∠D+∠DEB=180°,因为∠DEB与∠AEC是对顶角,所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B.3.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是()A.3B.4C.5D.6【答案】D【解析】【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【详解】∵A(1,0),B(1-a,0),C(1+a,0)(a>0),∴AB=1-(1-a)=a,CA=a+1-1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD 交⊙D 于P′,此时AP′最大,∵A (1,0),D (4,4), ∴AD=5, ∴AP′=5+1=6, ∴a 的最大值为6. 故选D . 【点睛】本题考查圆、最值问题、直角三角形性质等知识,解题的关键是发现PA=AB=AC=a ,求出点P 到点A 的最大距离即可解决问题,属于中考常考题型.4.已知关于x 、y 的方程组22331x y kx y k +=⎧⎨+=-⎩以下结论:①当0k =时,方程组的解也是方程24-=-x y 的解;②存在实数k ,使得0x y +=;③当1y x ->-时,1k >;④不论k 取什么实数,3x y +的值始终不变,其中正确的是( ) A .①②③ B .①②④C .①③④D .②③④【答案】B 【解析】 【分析】①把k=0代入方程组求出解,代入方程检验即可;②方程组消元k 得到x 与y 的方程,检验即可;③表示出y-x ,代入已知不等式求出k 的范围,判断即可;④方程组整理后表示出x+3y ,检验即可. 【详解】解:①把k=0代入方程组得:20231x y x y +=⎧⎨+=-⎩,解得:21x y =-⎧⎨=⎩, 代入方程得:左边=-2-2=-4,右边=-4,左边=右边,此选项正确; ②由x+y=0,得到y=-x ,代入方程组得:31x kx k -=⎧⎨-=-⎩,即k=3k-1,解得:12k =, 则存在实数12k =,使x+y=0,本选项正确;③22331x y k x y k +=⎧⎨+=-⎩,解不等式组得:321x k y k=-⎧⎨=-⎩,∵1y x ->-, ∴1(32)1k k --->-, 解得:1k <,此选项错误; ④x+3y=3k-2+3-3k=1,本选项正确; ∴正确的选项是①②④; 故选:B. 【点睛】此题考查了二元一次方程组的解以及解二元一次方程组熟练掌握运算法则是解本题的关键.5.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③【答案】C 【解析】 【分析】 【详解】解:①∵∠B+∠BCD=180°, ∴AB ∥CD ; ②∵∠1=∠2, ∴AD ∥BC ; ③∵∠3=∠4, ∴AB ∥CD ; ④∵∠B=∠5, ∴AB ∥CD ;∴能得到AB ∥CD 的条件是①③④. 故选C . 【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角. 平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行; 同位角相等,两直线平行.6.已知方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是( ) A .12x y =⎧⎨=⎩ B .34x y =⎧⎨=⎩C .10103x y =⎧⎪⎨=⎪⎩D .510x y =⎧⎨=⎩【答案】D 【解析】 【分析】 将方程组变形,设32,55x y m n ==,结合题意得出m=3,n=4,即可求出x ,y 的值. 【详解】 解:方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩可以变形为:方程组11122232··5532··55xy a b c x y a b c ⎧+=⎪⎪⎨⎪+=⎪⎩ 设32,55x ym n ==, 则方程组可变为111222····a m b n c a m b n c +=⎧⎨+=⎩, ∵方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩, ∴方程组111222····a m b n c a m b n c +=⎧⎨+=⎩的解是34m n =⎧⎨=⎩, ∴323,455x y ==,解得:x=5,y=10, 故选:D . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.弄清题意是解本题的关键.7.如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),…,则第100个点的横坐标为()A.12 B.13 C.14 D.15【答案】C【解析】【分析】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),结合图形找出部分a n的值,根据数值的变化找出变化规律“a n=n”,再罗列出部分S n的值,根据数值的变化找出变化规律()12nn nS+=,依次变化规律解不等式()11002n n+≥即可得出结论.【详解】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),观察,发现规律:a1=1,a2=2,a3=3,…,∴a n=n.S1=a1=1,S2=a1+a2=3,S3=a1+a2+a3=6,…,∴S n=1+2+…+n=()12n n+.当100≤S n,即100≤()12n n+,解得:12201n+≤﹣(舍去),或2201n≥﹣1.∵220114﹣113<,故选:C.【点睛】本题考查了规律型中得点的坐标的变化,解题的关键是根据点的坐标的找出变化规律“()12nn nS+=”.8.已知点A(3a,2b)在x轴上方,在y轴左侧,则点A到x轴、y的距离分别为() A.3a,-2b B.-3a,2b C.2b,-3a D.-2b,3a【答案】C【解析】【分析】应先判断出点A的横纵坐标的符号,进而判断点A到x轴、y轴的距离.【详解】∵点A(3a,2b)在x轴上方,∴点A的纵坐标大于0,得到2b>0,∴点A到x轴的距离是2b;∵点A(3a,2b)在y轴的左边,∴点A的横坐标小于0,即3a<0,∴点A到y轴的距离是-3a;故答案为C.【点睛】本题主要考查点的坐标的几何意义,到x轴的距离就是纵坐标的绝对值,到y轴的距离就是横坐标的绝对值.9.某瓶中装有1分,2分,5分三种硬币,15枚硬币共3角5分,则有多少种装法( ) A.1. B.2. C.3. D.4.【答案】C【解析】【分析】【详解】解:设1分的硬币有x枚,2分的硬币有y枚,则5分的硬币有(15-x-y)枚,可得方程x+2y+5(15-x-y)=35,整理得4x+3y=40,即x=10-34 y,因为x ,y 都是正整数,所以y=4或8或12,所以有3种装法,故选C.10.现有如图(1)的小长方形纸片若干块,已知小长方形的长为a ,宽为b .用3个如图(2)的全等图形和8个如图(1)的小长方形,拼成如图(3)的大长方形,若大长方形的宽为30cm ,则图(3)中阴影部分面积与整个图形的面积之比为( )A .15B .16C .17D .18【答案】B【解析】【分析】观察图③可知3个小长方形的宽与1个小长方形的长的和等于大长方形的宽,小长方形的4个长等于小长方形的3个长与3个宽的和,可列出关于a ,b 的方程组,解方程组得出a ,b 的值;利用a ,b 的值分别求得阴影部分面积与整个图形的面积,即可求得影部分面积与整个图形的面积之比.【详解】解:根据题意、结合图形可得:330433a b a a b +=⎧⎨=+⎩, 解得:155a b =⎧⎨=⎩, ∴阴影部分面积223()310300=-=⨯=a b ,整个图形的面积304304151800=⨯=⨯⨯=a , ∴阴影部分面积与整个图形的面积之比300118006==, 故选B .【点睛】本题考查了二元一次方程组的应用,理解题意并利用大长方形的长与宽和小长方形的关系建立二元一次方程组是解题的关键.11.如果关于x 的不等式组02443x m x x -⎧>⎪⎪⎨-⎪-<-⎪⎩的解集为4x >,且整数m 使得关于x y 、的二元一次方程组831mx y x y +=⎧⎨+=⎩的解为整数(x y 、均为整数),则符合条件的所有整数m 的和是( )A .2-B .2C .6D .10【答案】B【解析】【分析】 根据不等式组求得m ≤4,再解方程组求出732113x m y m ⎧=⎪⎪-⎨⎪=-⎪-⎩,根据x y 、均为整数得到整数m=4、2、-4,即可得到答案.【详解】 解不等式02x m ->得x m >, 解不等式443x x --<-得4x >, ∴m ≤4, 解方程组831mx y x y +=⎧⎨+=⎩得732113x m y m ⎧=⎪⎪-⎨⎪=-⎪-⎩, ∵x y 、均为整数,m-3是7的因数,∴m-3=1、-1、-7,7,即m=4、2、-4,10(舍去)符合条件的所有整数m 的和是4+2-4=2,故选:B.【点睛】此题考查解不等式组,解方程组,因式分解,解题中求出方程组的解,确定m-3是7的因数是解题的关键,由此根据m 的取值范围求出符合条件的所有整数m 的值.12.定义新运算,*(1)a b a b =-,若a 、b 是方程2104x x m -+=(0m <)的两根,则**b b a a -的值为() A .0B .1C .2D .与m 有关 【答案】A【解析】 根据题意可得()()22**11b b a a b b a a b b a a -=---=--+,又因为a ,b 是方程2104x x m -+=的两根,所以2104a a m -+=,化简得214a a m -=-,同理2104b b m -+=,214b b m -=-,代入上式可得()()222211044b b a a b b a a m m ⎛⎫⎛⎫--+=--+-=--+-= ⎪ ⎪⎝⎭⎝⎭,故选A .13.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么( ) A .甲比乙大5岁B .甲比乙大10岁C .乙比甲大10岁D .乙比甲大5岁【答案】A【解析】【分析】设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据已知甲是乙现在的年龄时,乙10岁.乙是甲现在的年龄时,甲25岁,可列方程求解.【详解】解:甲现在的年龄是x 岁,乙现在的年龄是y 岁,由题意可得: 1025x y y x y x-=-⎧⎨-=-⎩ 即210225x y x y -=-⎧⎨-=⎩由此可得,3()15x y -=,∴5x y -=,即甲比乙大5岁.【点睛】本题考查了二元一次方程组的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.14.如图所示,A1(1,3),A2(32,3),A3(2,3),A4(3,0).作折线A1A2A3A4关于点A4的中心对称图形,再做出新的折线关于与x轴的下一个交点的中心对称图形……以此类推,得到一个大的折线.现有一动点P从原点O出发,沿着折线一每秒1个单位的速度移动,设运动时间为t.当t=2020时,点P的坐标为()A.(10103B.(20203C.(2016,0)D.(10103【答案】A【解析】【分析】把点P从O运动到A8作为一个循环,寻找规律解决问题即可.【详解】由题意OA1=A3A4=A4A5=A7A8=2,A1A2=A2A3=A5A6=A6A7=1,∴点P从O运动到A8的路程=2+1+1+2+2+1+1+2=12,∴t=12,把点P从O运动到A8作为一个循环,∵2020÷12=168余数为4,∴把点A3向右平移168×3个单位,可得t=2020时,点P的坐标,∵A3(23,168×6=1008,1008+2=1010,∴t=2020时,点P的坐标(10103,【点睛】本题考查坐标与图形变化,规律型问题等知识,解题的关键是学会探究规律的方法.15.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有﹣个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A.8(x﹣1)<5x+12<8B.0<5x+12<8xC.0<5x+12﹣8(x﹣1)<8D.8x<5x+12<8【答案】C【解析】设有x人,则苹果有(5x+12)个,由题意得:0<5x+12﹣8(x﹣1)<8,故选C.16.设边长为3的正方形的对角线长为a,下列关于a的四种说法:① a是无理数;② a 可以用数轴上的一个点来表示;③ 3<a<4;④ a是18的算术平方根.其中,所有正确说法的序号是A.①④B.②③C.①②④D.①③④【答案】C【解析】根据勾股定理,边长为3的正方形的对角线长为a=①正确.根据实数与数轴上的一点一一对应的关系,a可以用数轴上的一个点来表示,故说法②正确.∵216<a18<25=,∴4<a=,故说法③错误.∵2a18=,∴根据算术平方根的定义,a是18的算术平方根,故说法④正确.综上所述,正确说法的序号是①②④.故选C.17.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()。
精选人教版七年级下册数学第七章平面直角坐标系单元检测试卷(含答案)(1)
人教版七年级数学下册第7章平面直角坐标系能力提升卷一.选择题(共10小题)1.如图,小手盖住的点的坐标可能为()A.(5,2) B.(-7,9) C.(-6,-8) D.(7,-1)2.若线段AB∥x轴且AB=3,点A的坐标为(2,1),则点B的坐标为()A.(5,1) B.(-1,1)C.(5,1)或(-1,1) D.(2,4)或(2,-2)3.若点A(a+1,b-2)在第二象限,则点B(1-b,-a)在()A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,点D(-5,4)到x轴的距离为()A.5 B.-5 C.4 D.-45.已知点A(2x-4,x+2)在坐标轴上,则x的值等于()A.2或-2 B.-2 C.2 D.非上述答案6.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°7.如图是某动物园的平面示意图,若以大门为原点,向右的方向为x轴正方向,向上的方向为y轴正方向建立平面直角坐标系,则驼峰所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.若线段AB∥y轴,且AB=3,点A的坐标为(2,1),现将线段AB先向左平移1个单位,再向下平移两个单位,则平移后B点的坐标为()A.(1,2) B.(1,-4)C.(-1,-1)或(5,-1) D.(1,2)或(1,-4)9.课间操时,小明、小丽、小亮的位置如图所示,小明对小亮说:如果我的位置用(0,0)表示,小丽的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)10.已知点A(-1,2)和点B(3,m-1),如果直线AB∥x轴,那么m的值为()A.1 B.-4 C.-1 D.3二.填空题(共6小题)11.若P(a-2,a+1)在x轴上,则a的值是.12.在平面直角坐标系中,把点A(-10,1)向上平移4个单位,得到点A′,则点A′的坐标为.13.在平面直角坐标系中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”,例如,点P(1,4)的3级关联点”为Q(3×1+4,1+3×4)即Q(7,13),若点B的“2级关联点”是B'(3,3),则点B的坐标为;已知点M(m-1,2m)的“-3级关联点”M′位于y轴上,则M′的坐标为.14.已知点A(m-1,-5)和点B(2,m+1),若直线AB∥x轴,则线段AB的长为.15.小刚家位于某住宅楼A座16层,记为:A16,按这种方法,小红家住B座10层,可记为.16.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是.三.解答题(共7小题)17.如图,在平面直角坐标系中,三角形ABC的顶点A、B、C的坐标分别为(0,3)、(-2,1)、(-1,1),如果将三角形ABC先向右平移2个单位长度,再向下平移2个单位长度,会得到三角形A′B′C′,点A'、B′、C′分别为点A、B、C移动后的对应点.(1)请直接写出点A′、B'、C′的坐标;(2)请在图中画出三角形A′B′C′,并直接写出三角形A′B′C′的面积.18.已知平面直角坐标系中有一点M(m-1,2m+3)(1)当m为何值时,点M到x轴的距离为1?(2)当m为何值时,点M到y轴的距离为2?19.如图是某个海岛的平面示意图,如果哨所1的坐标是(1,3),哨所2的坐标是(-2,0),请你先建立平面直角坐标系,并用坐标表示出小广场、雷达、营房、码头的位置.20.已知:点P(2m+4,m-1).试分别根据下列条件,求出P点的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过A(2,-4)点且与x轴平行的直线上.21.阅读材料:象棋在中国有近三千年的历史,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.(1)若点A位于点(-4,4),点B位于点(3,1),则“帅”所在点的坐标为;"马”所在点的坐标为;"兵”所在点的坐标为.(2)若“马”的位置在点A,为了到达点B,请按“马”走的规则,在图上画出一种你认为合理的行走路线,并用坐标表示出来.22.对有序数对(m,n)定义“f运算”:f(m,n)=11,,22m a n b⎛⎫+-⎪⎝⎭其中a、b为常数.f运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F 变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′.(1)当a=0,b=0时,f(-2,4)=;(2)若点P(4,-4)在F变换下的对应点是它本身,则a=,b=.答案:1-5 CCBCA6-10 DDDCD11.-112.(-10,5)13. (1,1)(0,-16)14.915. B1016. (-1,-1)17. 解:(1)根据题意知,点A′的坐标为(2,1)、B'的坐标为(0,-1)、C′的坐标为(1,-1);(2)如图所示,△A′B′C′即为所求,S△A′B′C′=×1×2=1.18. 解:(1)∵|2m+3|=12m+3=1或2m+3=-1∴m=-1或m=-2;(2)∵|m-1|=2m-1=2或m-1=-2∴m=3或m=-1.19. 解:建立如图所示的平面直角坐标系:小广场(0,0)、雷达(4,0)、营房(2,-3)、码头(-1,-2).20. 解:(1)∵点P (2m+4,m-1),点P 在y 轴上,∴2m+4=0,解得:m=-2,则m-1=-3,故P (0,-3);21. 解:(1)由点A 位于点(-4,4人教版七年级下册第7章平面直角坐标系水平测试卷一.选择题(共10小题)1.在平面直角坐标系中,点()23,2P x -+所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 2.下列各点中,位于第四象限的点是( )A .(3,-4)B .(3,4)C .(-3,4)D .(-3,-4) 3.已知点P(-4,3),则点P 到y 轴的距离为( )A .4B .-4C .3D .-34.已知m 为任意实数,则点()2,1A m m +不在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限5.已知点P 在第二象限,并且到x 轴的距离为1,到y 轴的距离为2.则点P 的坐标是( )A .(1、2)B .(-1,2)C .(2,1)D .(-2,1)6.如图,一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是( )A .(0,9)B .(9,0)C .(0,8)D .( 8,0)7.已知点A(-3,0),则A 点在( )A .x 轴的正半轴上B .x 轴的负半轴上C .y 轴的正半轴上D .y 轴的负半轴上8.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为( )A .(1,0)B .(1,2)C .(5,4)D .(5,0)9.将以A(-2,7),B(-2,2)为端点的线段AB 向右平移2个单位得线段11,A B 以下点在线段11A B 上的是( )A .(0,3)B .(-2,1)C .(0,8)D .(-2,0)10.课间操时,小明、小丽、小亮的位置如图所示,小明对小亮说:如果我的位置用(0,0)表示,小丽的位置用(2,1)表示,那么你的位置可以表示成( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)二.填空题(共6小题)11.若P(a-2,a+1)在x 轴上,则a 的值是 .12.在平面直角坐标系中,点A(-5,4)在第 象限.13.点P(3,-2)到y 轴的距离为 个单位.14.小刚画了一张对称的脸谱,他对妹妹说:“如果我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成 .15.已知点A(m-1,-5)和点B(2,m+1),若直线AB ∥x 轴,则线段AB 的长为 .16.在平面直角坐标系中,已知点(A B 点C 在x 轴上,且AC+BC=6,写出满足条件的所有点C 的坐标三.解答题(共7小题)17.如图,在平面直角坐标系中,点A 、B 、C 、D 都在坐标格点上,点D 的坐标是(-3,1),点A 的坐标是(4,3).(1)将三角形ABC 平移后使点C 与点D 重合,点A ,B 分别与点E ,F 重合,画出三角形EFD .并直接写出E ,F 的坐标;(2)若AB 上的点M 坐标为(x,y),则平移后的对应点M 的坐标为.18.如图,在正方形网格中建立平面直角坐标系,已知点A(3,2),(4,-3),C(1,-2),请按下列要求操作:(1)请在图中画出△ABC;(2)将△ABC 向左平移5个单位长度,再向上平移4个单位长度,得到111,A B C 在图中画出111,A B C 并直接写出点1A 、1B 、1C 的坐标.19.已知平面直角坐标系中有一点M(m-1,2m+3).(1)当点M到x轴的距离为1时,求点M的坐标;(2)当点M到y轴的距离为2时,求点M的坐标.20.已知平面直角坐标系中有一点M(2m-3,m+1).(1)点M到y轴的距离为l时,M的坐标?(2)点N(5,-1)且MN∥x轴时,M的坐标?21.【阅读材料】平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+“是四则运算中的加法),例如点P(1,2)的勾股值[P]=|1|+|2|=3 【解决问题】(1)求点(2,4),A B -+的勾股值[A],[B];(2)若点M 在x 轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M 的坐标.22.如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公楼的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.23.对有序数对(m,n)定义“f 运算”:f(m,n)=11,,22m a n b ⎛⎫+- ⎪⎝⎭其中a 、b 为常数.f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F 变换下的对应点即为坐标为f(x,y)的点A ′.(1)当a=0,b=0时,f(-2,4)= ;(2)若点P(4,-4)在F 变换下的对应点是它本身,则a= ,b=.答案:1-5 BAADD6-10 CBDAC11.-112.二13.314. (3,4)15.916.. (3,0)或(-3,0)17. 解:(1)如图所示,△EFD即为所求,其中E(0,2)、F(-1,0).(2)由图形知将△ABC向左平移4个单位、再向下平移1个单位可得△EFD,∴平移后点M的坐标为(x-4,y-1),18. 解:(1)如图所示:(2)如图所示:结合图形可得:A1(-2,6),B1(-1,1),C1(-4,2).19. 解:(1)∵|2m+3|=1,∴2m+3=1或2m+3=-1,解得:m=-1或m=-2,∴点M的坐标是(-2,1)或(-3,-1);(2)∵|m-1|=2,∴m-1=2或m-1=-2,解得:m=3或m=-1,∴点M的坐标是:(2,9)或(-2,1).20. 解:(1)∵点M(2m-3,m+1),点M到y轴的距离为1,∴|2m-3|=1,解得m=1或m=2,当m=1时,点M的坐标为(-1,2),当m=2时,点M的坐标为(1,3);综上所述,点M的坐标为(-1,2)或(1,3);(2)∵点M(2m-3,m+1),点N(5,-1)且MN∥x轴,∴m+1=-1,解得m=-2,故点人教版七年级数学下册第七章平面直角坐标系复习检测试题一、选择题。
人教版初中数学7平面直角坐标系练习题
.. 人教版初中数学7平面直角坐标系练习题一、选择题(本大题共102小题,共306.0分)1. 点P(x+1,x-1)不可能在第()象限.A. 一B. 二C. 三D. 四2. 我校“心动数学”社团活动小组,在网格纸上为学校的一块空地设计植树方案如下:第k棵树种植在点第x k行y k列处,其中x 1=1,y 1=1,当k≥2时,,[a]表示非负数a的整数部分,例如[2.6]=2,[0.2]=0.按此方案,第2009棵树种植点所在的行数是4,则所在的列数是()A. 401B. 402C. 2009D. 20103. 点P(m-1,2m+1)在第二象限,则m的取值范围是()A. B. C. m<1D.4. 一质点P 从距原点1个单位的M点处向原点方向跳动,第一次跳动到OM 的中点M 3处,第二次从M 3跳到OM 3的中点M 2处,第三次从点M 2跳到OM 2的中点M 1处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为()A. B. C. D.5. 点A(-3,4)所在象限为()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 点P在第二象限内,P到x 轴的距离是4,到y轴的距离是3,那么点P的坐标为()A. (-4,3)B. (-3,-4)C. (-3,4)D. (3,-4)7. 在平面直角坐标系中,点(2,-1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 如图,小手盖住的点的坐标可能为()A. (5,2)B. (-6,3)C. (-4,-6)D. (3,-4)9. 如图是中国象棋的一盘残局,如果用(4,0)表示“帅”的位置,用(3,9)表示“将”的位置,那么“炮”的位置应表示为()A. (8,7)B. (7,8)C. (8,9)D. (8,8)10. 在平面直角坐标系中,点P(2,3)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限11. 如图,点M(-3,4)到原点的距离是()A. 3B. 4C. 5D. 712. 下列说法中:①邻补角是互补的角;②数据7、1、3、5、6、3的中位数是3,众数是4;③|-5|的算术平方根是5;④点P(1,-2)在第四象限,其中正确的个数是()A. 0B. 1C. 2D. 313. 点P(2m-1,3)在第二象限,则m的取值范围是()A. m>B. m≥C. m<D. m≤14. 若点P(1-m,m)在第二象限,则下列关系式正确的是()A. 0<m<1B. m<0C. m>0D. m>115. 已知点P(a,a-1)在平面直角坐标系的第一象限内,则a的取值范围在数轴上可表示为()A. B. C. D.16. 如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A. (-2,0)B. (0,-2)C. (1,0)D. (0,1)17. 若|a|=5,|b|=4,且点M(a,b)在第二象限,则点M的坐标是()A. (5,4)B. (-5,4)C. (-5,-4)D. (5,-4)18. 二次函数y=ax 2+bx+c的图象如图所示,则点A(a,b)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限19. 点M(-3,4)离原点的距离是多少单位长度()A. 3B. 4C. 5D. 720. 点P(a,b),ab>0,a+b<0,则点P在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限21. 若式子有意义,则点P(a,b)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限22. 在直角坐标系xoy中,已知点A(0,2),B(1,3),则线段AB的长度是()A. 1B.C.D. 223. 已知点A的坐标为(-3,4),O为坐标原点,则OA的长为()A. 3B. 4C. 5D. 624. m为整数,点P(3m-9,3-3m)是第三象限的点,则P点的坐标为()A. (-3,-3)B. (-3,-2)C. (-2,-2)D. (-2,-3)25. 点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A. (2,3)B. (-2,-3)C. (-3,2)D. (3,-2)26. 若y轴上的点P到x轴的距离为3,则点P的坐标是()A. (3,0)B. (0,3)C. (3,0)或(-3,0)D. (0,3)或(0,-3)27. 如果xy>0,那么在平面直角坐标系中,点P(x,y)在()A. 第一象限B. 第三象限C. 第一象限或第三象限D. 第二象限或第四象限28. 如图是坐标系的一部分,若M位于点(2,-2)上,N位于点(4,-2)上,则G位于点()上.A. (1,3)B. (1,1)C. (0,1)D. (-1,1)29. 下列语句中,假命题的是()A. 如果A(a,b)在x轴上,那么B(b,a)在y轴上B. 如果直线a、b、c满足a∥b,b∥c,那么a∥cC. 两直线平行,同旁内角互补D. 相等的两个角是对顶角30. 已知a<b<0,则点A(a-b,b)在第()A. 一象限B. 二象限C. 三象限D. 四象限31. 在平面直角坐标系中,点(-1,m 2+1)一定在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限32. 在平面直角坐标系中,点P(3,-2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限33. 已知坐标平面内点A(m,n)在第四象限,那么点B(n,m)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限34. 在平面直角坐标系中,点P(-3,2)所在象限为()初中数学试卷第2页,共17页.. A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限35. 若点P(m,n)在第二象限,则点Q(-m,-n)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限36. 若P在第二象限,且到x轴的距离为3,到y轴的距离为4,则点P的坐标为()A. (3,4)B. (-3,4)C. (-4,3)D. (4,3)37. 在直角坐标系中,下列各点到原点的距离不是5的是()A. (4,3)B.C. (5,0)D.38. 已知点M(3a-9,1-a)在x轴上,则a=()A. 1B. 2C. 3D. O39. 在一次“寻宝”游戏中,寻宝人找到了如图所示两个标志点A(2,1),B(4,-1),这两个标志点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A. (5,2)B. (-2,1)C. (5,2)或(1,-2)D. (2,-1)或(-2,1)40. 如图,是用围棋子摆出的图案(用棋子的位置用用有序数对表示,如A点在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A. 黑(3,3),白(3,1)B. 黑(3,1),白(3,3)C. 黑(1,5),白(5,5)D. 黑(3,2),白(3,3)41. 在平面直角坐标系中,已知点P(2,-3),则点P在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限42. 在同一平面直角坐标系中,点A的坐标(2,-1)、点B的坐标(-3,-4),则线段AB的长度为()A. 4B.C. 5D. 643. 点P(0,-3)的位置是()A. x轴的正方向上B. x轴的负方向上C. y轴的正方向上D. y轴的负方向上44. 如图是杭州西湖的部分示意图,如以过“曲院风苑”,“中国印学博物馆”的直线为x轴,以这两景点连线的中垂线为y轴,建立直角坐标系(每一小格表示1),则苏堤春晓的坐标是()A. (-7,2)B. (2,-7)C. (-2,-7)D. (-7,2)45. 在平面直角坐标系中,点(3,3)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限46. 在直角坐标系中,点(2,1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限47. 已知y轴上的点P到原点的距离为5,则点P的坐标为()A. (5,0)B. (0,5)或(0,-5)C. (0,5)D. (5,0)或(-5,0)48. 在平面直角坐标系中,点A(2,-3)在第()象限.A. 一B. 二C. 三D. 四49. 点P(m,1)在第二象限内,则点Q(-m,0)在()A. x轴负半轴上B. x轴正半轴上C. y轴负半轴上D. y轴正半轴上50. 在平面直角坐标系中,点P(-3,4)到x轴的距离为()A. 3B. -3C. 4D. -451. 如果实数a、b满足,那么点(a,b)在()A. 第一象限B. 第二象限C. 第二象限或坐标轴上D. 第四象限或坐标轴上52. 在平面直角坐标系中,点P(-1,3)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限53. 下列命题:①坐标平面内,点(a,b)与点(b,a)表示同一个点;②要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,样本容量是40台电视机;③过一点有且只有一条直线与这条直线平行;④如果a<b,那么ac<bc;其中真命题有()A. 3个B. 2个C. 1个D. 0个54. 如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是()A. A(5,30°)B. B(2,90°)C. D(4,240°)D. E(3,60°)55. 如果点P(m,n)是第三象限内的点,则点Q(-n,0)在()A. x轴正半轴上B. x轴负半轴上C. y轴正半轴上D. y轴负半轴上56. 下列说法正确的是()A. 点P(3,-5)到x轴的距离为-5B. 在平面直角坐标系内,(-1,2)和(2,-1)表示同一个点C. 若x=0,则点P(x,y)在x轴上D. 在平面直角坐标系中,有且只有一个点既在x轴上,又在y轴上57. 在坐标平面内,有一点P(a,b),若ab=0,则P点的位置在()A. 原点B. x轴上C. y轴D. 坐标轴上58. 已知二次函数y=ax 2+bx+c的图象如图所示,则点(ac,bc)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限59. 如图是创星中学的平面示意图,其中宿舍楼暂未标注,已知宿舍楼在教学楼的北偏东约30°的方向,与教学楼实际距离约为200米,试借助刻度尺和量角器,测量图中四点位置,能比较准确地表示该宿舍楼位置的是()A. 点AB. 点BC. 点CD. 点D60. 在坐标平面内,若点P(x-2,x+1)在第二象限,则x的取值范围是()A. x>2B. x<2C. x>-1D. -1<x<261. 若a>0,则点P(-a,2)应在()A. 第-象限内B. 第二象限内C. 第三象限内D. 第四象限内62. 确定平面上一个点的位置,一般需要的数据个数为()A. 3个B. 2个C. 1个D. 无法确定63. 若0<a<1,则点M(a-1,a)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限64. 若a>0,b<-2,则点(a,b+2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限65. 若点P(a,b)到x轴的距离是2,到y轴的距离是4,则这样的点P有()A. 1个B. 2个C. 3个D. 4个66. 已知点P的坐标(a,b)满足b(a 2+1)=0,则点P一定在()A. x轴上B. y轴上C. 原点D. 以上都不对67. 我国最新居民身份证的编号有18位数字.其意义是:如在“510702…”中,“51”表示四川,“07”表示绵阳,“02”表示涪城,接下来的4位是出生的年份,后2位是出生的月份,再后2位是出生的日期,最后4位是编码.若某人的身份证编号是:510702************,则这个人出生的时间是()A. 1987年8月15日B. 1966年2月3日C. 1987年8月1日D. 1981年5月6日68. 在平面直角坐标系中,设点P到原点O的距离为ρ,OP与x轴的正方向的夹角为α,则用[ρ,α]表示点P的极坐标,显然,点P的坐标初中数学试卷第4页,共17页..和它的极坐标存在一一对应关系,如点P 的坐标(1,1)的极坐标为P[ ,45°],则极坐标Q[2 ,120°]的坐标为( )A. (-,3)B. (-3,)C. (,3)D. (3,)69. 当 <m <1时,点P(3m-2,m-1)在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 70. 若点P(a ,4-a)是第二象限的点,则a 必须满足( )A. a <4B. a >4C. a <0D. 0<a <4 71. 若a 为整数,且点M(3a-9,2a-10)在第四象限,则a 2+1的值为( ) A. 17B. 16C. 5D. 472. 下列五个命题:①若直角三角形的两条边长为3与4,则第三条边长是5; ②;=a ,③若点P(a ,b)在第三象限,则点P′(-a ,-b+1)在第一象限;④连接对角线互相垂直且相等的四边形各边中点的四边形是正方形; ⑤两边及其第三边上的中线对应相等的两个三角形全等. 其中正确命题的个数是( ) A. 2个B. 3个C. 4个D. 5个73. 下列五个命题:(1)若直角三角形的两条边长为5和12,则第三边长是13; (2)如果a≥0,那么=a(3)若点P(a ,b)在第三象限,则点P(-a ,-b+1)在第一象限; (4)对角线互相垂直且相等的四边形是正方形;(5)两边及第三边上的中线对应相等的两个三角形全等. 其中不正确命题的个数是( ) A. 2个B. 3个C. 4个D. 5个74. 如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为( ) A. (3,2) B. (3,1) C. (2,2) D. (-2,2) 75. 两圆半径分别为2和3,圆心坐标分别为(1,0)和(-4,0),则两圆的位置关系是( )A. 外离B. 外切C. 相交D. 内切76. 如图,是象棋盘的一部分.若“帅”位于点(1,-2)上,“相”位于点(3,-2)上,则“炮”位于点( )上. A. (-1,1) B. (-1,2) C. (-2,1) D. (-2,2) 77. 已知点A(3a ,2b)在x 轴上方,y 轴的左边,则点A 到x 轴、y 轴的距离分别为( ) A. 3a ,-2b B. -3a ,2b C. 2b ,-3a D. -2b ,3a 78. 在平面直角坐标系中,点(4,-3)所在象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限79. 如图,下列各点在阴影区域内的是( )A. (3,2)B. (-3,2)C. (3,-2)D. (-3,-2)80. 小明在外地从一个景点回宾馆,在一个岔路口迷了路,问了4个人得到下面四种回答,其中能确定宾馆位置的是( ) A. 离这儿还有3kmB. 沿南北路一直向南走C. 沿南北路走3kmD. 沿南北路一直向南走3km 81. 直角坐标系中,点P(1,4)在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 82. 已知点A(2,1),过点A 作x 轴的垂线,垂足为C ,则点C 的坐标为( ) A. (2,1) B. (2,0) C. (0,1) D. (1,0) 83. 若x 轴上的点P 到y 轴的距离为3,则点P 为( )A. (3,0)B. (3,0)或(-3,0)C. (0,3)D. (0,3)或(0,-3)84. 下列说法正确的是( )A. (3,2)和(2,3)表示同一个点B. 点(2,0)在x轴的正半轴上C. 点(-2,1)在第四象限D. 点(-3,2)到x轴的距离为385. 点P(a+1,a-1)不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限86. 如图,一个粒子在第一象限内及x、y轴上运动,在第一分钟内它从原点O运动到(1,0),而后它接着按图所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个长度单位,那么1989分钟后这个粒子所处的位置是()A. (35,44)B. (36,45)C. (37,45)D. (44,35)87. 已知点P的坐标是(3,-5),则点P在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限88. 在直角坐标系中,点(x,y)满足x+y<0,xy>0,则点(x,y)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限89. 排列做操队形时,甲、乙、丙位置如图所示,甲对乙说,如果我的位置用(0,0)来表示,你的位置用(2,1)表示,那么丙的位置是()A. (5,4)B. (4,5)C. (3,4)D. (4,5)90. 在横轴上的点()A. 横坐标为0B. 纵坐标为0C. 横,纵坐标为0D. 横,纵坐标不确定91. 下列各点中,在第一象限的点是()A. (2,3)B. (2,-3)C. (-2,3)D. (-2,-3)92. 如果直角坐标系内两个点的横坐标相同,那么过这两点的直线()A. 平行于x轴B. 平行于y轴C. 经过原点D. 以上都不对93. 以关于x、y的方程组的解为坐标的点(x,y)在第二象限.则符合条件的实数m的范围为()A. B. m<-2C. D.94. 如图,一个机器人从O点出发,向正东方向走3m到达A 1点,再向正北方向走6m到达A 2点,再向正西方向走9m到达A 3点,再向正南方向走12m到达A 4点,再向正东方向走15m到达A 5点.按如此规律走下去,当机器人走到A 6点时,离O点的距离是()A. 10mB. 12mC. 15mD. 20 m95. 已知点A(-2,3),则点A在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限96. 已知点P(m+1,m),则点P不可能在第()象限.A. 四B. 三C. 二D. 一初中数学试卷第6页,共17页.97. 如图,在平面直角坐标系中,坐标是(0,-3)的点是()A. 点AB. 点BC. 点CD. 点D98. 已知点M(a+1,a+3)在y轴上,则点M的坐标是()A. (-2,0)B. (0,2)C. (0,4)D. (-4,0)99. 若点A(x,y)在坐标轴上,则()A. x=0B. y=0C. xy=0D. x+y=0100. 点P(m+3,m+1)在直角坐标系x轴上,则点P坐标为()A. (0,-2)B. (0,2C. (-2,0)D. (2,0)101. 已知点P(x,y)在第四象限,且|x|=3,|y|=5,则P点的坐标是()A. (-3,-5)B. (5,-3)C. (3,-5)D. (-3,5)102. 点P(1,-2)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(本大题共100小题,共300.0分)103. 若点(m-4,1-2m)在第三象限内,则m的取值范围是____________.104. 在平面直角坐标系内点A(2,-3)与B(-1,1)的距离是____________.105. 如果点A、B在一个反比例函数的图象上,点A的坐标为(1,2),点B横坐标为2,那么A、B两点之间的距离为____________.106. 在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是____________;当点B的横坐标为4n(n为正整数)时,m=____________(用含n的代数式表示).107. 已知点P(1-2a,a-2)是第三象限的点,则a的整数值是____________.108. 如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为____________.109. 在平面直角坐标系中,点A(2,m 2+1)一定在第____________象限.110. 如图,用(0,0)表示M点的位置,用(-2,-3)表示O点的位置,则N点的位置可以用____________表示.111. 已知点P在第四象限,且到x轴的距离为2,到y轴的距离为3,则点P的坐标为____________.112. 在直角坐标系中,点M到x轴负半轴的距离为2,到y轴正半轴的距离为4,则M点的坐标为____________.113. 点A(-2,1)在第____________象限.114. 点(-3,4)到y轴的距离为____________个单位,其关于x轴的对称点的坐标为____________.115. P(3,4)到x轴的距离为____________个单位长度,到y轴的距离为____________个单位长度;如果B(m+1,3m-5)到x轴的距离和到y 轴的距离相等,则m=____________.116. 式子有意义,则点P(a,b)在第____________象限.117. 点A位于第二象限,且它的横、纵坐标的积为-8,写出一个满足条件的A点的坐标____________.118. 如果点P(x,y)的坐标满足x+y=xy,那么称点P为和谐点.请写出一个和谐点的坐标:____________.119. 在电影院内找座位,将“4排3号”简记为(4,3),则(6,7)表示____________.120. 若点A在第二象限,且到x轴的距离为3,到y轴的距离为2,则点A的坐标为____________.121. 某军事行动中,对军队部署的方位,采用钟代码的方式来表示、例如,北偏东30°方向45千米的位置,与钟面相结合,以钟面圆心为基准,时针指向北偏东30°的时刻是1:00,那么这个地点就用代码010045来表示、按这种表示方式,南偏东40°方向78千米的位置,可用代码表示为____________..122. 一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第49秒时跳蚤所在位置的坐标是____________.123. 在平面直角坐标中,已知点P(3-m,2m-4)在第一象限,则实数m的取值范围是____________.124. 如图,在平面直角坐标系中,第一次将△OAB变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3.(1)观察每次变换前后的三角形的变化规律,若将△OA 3B 3变换成△OA 4B 4,则A 4的坐标是____________,B 4的坐标是____________;(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n的坐标是____________,B n的坐标是____________.125. 已知a<b<0,则点A(a-b,b)在第____________象限.126. 已知点P(x,y)位于第二象限,并且y≤x+4,x、y为整数,写出一个符合上述条件的点P的坐标____________.127. 点P(-3,7)、Q(5,7)之间的距离是____________.128. 若点M(x-1,3-x)在第二象限,则x的取值范围是____________.129. 如图,小强告诉小华图中A,B两点的坐标分别为(-3,5),(3,5),小华一下就说出了C在同一坐标系下的坐标____________.130. 如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标____________;(2)顺次连接(1)中的所有点,得到的图形是____________图形(填“中心对称”、“旋转对称”、“轴对称”);(3)指出(1)中关于点P成中心对称的点____________.131. 点P(m-1,2m+3)关于原点对称的点在第四象限,则m的取值范围是____________.132. 剧院里5排2号可以用(5,2)表示,则7排4号用____________表示.133. 如图,在平面内,两条直线l 1,l 2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l 1,l 2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有____________个.134. 如果点P(2a-6,a-1)在第二象限内,且a为整数,则P点坐标为____________.135. 如果用(7,8)表示七年级八班,那么八年级七班可表示成____________,(9,4)表示的含义是____________.136. 如果点A的坐标为(-1,2),点B的坐标为(3,0),那么线段AB的长为____________.137. 若点P(1-m,m)在第二象限,则(m-1)x>1-m的解集为____________.138. 在平面直角坐标系中,若点P(x+2,x)在第四象限,则x的取值范围是____________.139. 若是第三象限内的点,且a为整数,则a=____________.140. 将正整数按如图所示的规律排列下去.若用有序实数对(n,m)表示第n排,从左到右第m个数,如(4,3)表示实数9,则(7,2)表示的实数是____________.初中数学试卷第8页,共17页.141. 将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是____________.142. 已知点M(a+1,2-a)的位置在第一象限,则a的取值范围是____________.143. 已知点P(x,y)满足|x-2|+(y+2) 2=0,则点P坐标为____________.144. 点P(5,-12)到原点的距离是____________.145. 在平面直角坐标系xOy中,点P(2,a)在正比例函数的图象上,则点Q(a,3a-5)位于第____________象限.146. 在图所示的平面直角坐标系中表示下面各点:A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5).(1)A点到原点O的距离是____________个单位长.(2)将△ABC向左平移4个单位,作出平移后的△A′B′C′.(3)连接CE,则直线CE与y轴是什么位置关系?(4)点D到x、y轴的距离分别是多少?147. 如图,奥运福娃在5×5的方格(每小格边长为1m)上沿着网格线运动.贝贝从A处出发去寻找B、C、D处的其它福娃,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A⇒B(+1,+4),从B到A记为:B⇒A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A⇒C(____________,____________),B⇒C(____________,____________),C⇒____________(-3,-4);(2)若贝贝的行走路线为A⇒B⇒C⇒D,请计算贝贝走过的路程;(3)若贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,- 2),请在图中标出妮妮的位置E点;(4)在(3)中贝贝若每走1m需消耗1.5焦耳的能量,则贝贝寻找妮妮过程中共需消耗多少焦耳的能量?148. 如果用有序数对(10,25)表示第10排第25列的位置,那么第28排第30列的位置则用有序数对____________来表示.149. 已知点P的坐标为(-2,3),则点P到y轴的距离为____________个单位长度.150. 已知点A(4,3),AB∥y轴,且AB=3,则B点的坐标为____________.151. 第二象限内的点P(x,y)满足|x|=5,y 2=4,则点P的坐标是____________.152. 当x=____________时,点P(1+x,1-x)在x轴上.153. 在正比例函数y=-3mx中,函数y的值随x值的增大而增大,则P(m,5)在第____________象限.154. 若点P(2m+4,3m+3)在x轴上,则点P的坐标为____________.155. 如图为九嶷山风景区的几个景点的平面图,以舜帝陵为坐标原点,建立平面直角坐标系,则玉王宫岩所在位置的坐标为____________..156. 如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=____________时,AC+BC的值最小.157. 如图①,我们在“格点”直角坐标系上可以清楚看到:要找AB或DE的长度,显然是转化为求Rt△ABC或Rt△DEF的斜边长.下面:以求DE为例来说明如何解决:从坐标系中发现:D(-7,5),E(4,-3).所以DF=|5-(-3)|=8,EF=|4-(-7)|=11,所以由勾股定理可得:DE= = .下面请你参与:(1)在图①中:AC=____________,BC=____________,AB=____________.(2)在图②中:设A(x 1,y 1),B(x 2,y 2),试用x 1,x 2,y 1,y 2表示AC=____________,BC=____________,AB=____________.(3)(2)中得出的结论被称为“平面直角坐标系中两点间距离公式”,请用此公式解决如下题目:已知:A(2,1),B(4,3),C为坐标轴上的点,且使得△ABC是以AB为底边的等腰三角形.请求出C点的坐标.158. 如果两点:M(x 1,y 1),N(x 2,y 2),那么.已知:A(3,-1),B(-1,4),C(1,-6),在△ABC内求一点P,使PA 2+PB 2+PC 2最小,则点P的坐标是____________.159. 如图,已知二次函数y=- x 2+ x+4的图象与y轴交于点A,与x轴交于B、C两点,其对称轴与x轴交于点D,连接AC.(1)点A的坐标为____________,点C的坐标为____________;(2)△ABC是直角三角形吗?若是,请给予证明;(3)线段AC上是否存在点E,使得△EDC为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由.160. 在平面直角坐标系中点A( ,1)到原点的距离是____________.161. 直线y=x-6与x轴、y轴分别交于点A、B,点E从B点,出发以每秒1个单位的速度沿线段BO向O点移动(与B、O点不重合),过E作EF∥AB,交x轴于F.将四边形ABEF沿EF折叠,得到四边形DCEF,设点E的运动时间为t秒.(1)①直线y=x-6与坐标轴交点坐标是A(____________,____________),B(____________,____________);②画出t=2时,四边形ABEF沿EF折叠后的图形(不写画法);(2)若CD交y轴于H点,求证:四边形DHEF为平行四边形;并求t为何值时,四边形DHEF为菱形(计算结果不需化简);(3)设四边形DCEF落在第一象限内的图形面积为S,求S关于t的函数表达式,并求出S的最大值.162. 如图是一张传说中的“藏宝图”,图上除标明了A﹑B﹑C三点的位置以外,并没有直接标出”宝藏”的位置,但图上注有寻找“宝藏”的方法:把直角△ABC补成矩形,使矩形的面积是A BC的2倍,“宝藏”就在矩形未知的顶点处,那么“宝藏”的位置可能是____________.(用坐标表示)初中数学试卷第10页,共17页.163. 已知点P(-1,2),点Q到y 轴的距离与点P到y轴的距离相等,且PQ=4,则点Q的坐标为____________.164. 如图,如果所在的位置坐标为(-1,-2),所在的位置坐标为(2,-2),则所在位置坐标为____________.165. 在平面直角坐标系中,点P(-4,5)到x轴的距离为____________,到y轴的距离为____________.166. 阅读材料:在直角三角形中,30°所对的直角边是斜边的一半.如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,).动点P从A点开始沿折线AO-OB-BA 运动,点P在AO,OB,BA上运动,速度分别为1,,2(单位长度/秒).一直尺的上边缘l从x轴的位置开始以(单位长度/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动.请解答下列问题:(1)过A,B两点的直线解析式是____________;(2)当t﹦4时,点P的坐标为____________;当t=____________,点P与点E重合;(3)作点P关于直线EF的对称点P′.在运动过程中,若形成的四边形PEP′F为菱形,则t的值是多少?167. 点M(-2,3)到x轴的距离是____________.168. 如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么黑棋①的坐标应该是____________.169. 如图,点P是反比例函数(k 1>0,x>0)图象上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交反比例函数(k 2<0且|k 2|<k 1)的图象于E、F两点.(1)图1中,四边形PEOF的面积S 1=____________(用含k 1、k 2的式子表示);(2)图2中,设P点坐标为(2,3).①点E的坐标是(____________,____________),点F的坐标是(____________,____________)(用含k 2的式子表示);②若△OEF的面积为,求反比例函数的解析式.170. 已知点A(x+3,x-3)在x轴上,则点A的坐标为____________.171. 若点P(a,-b)在第二象限内,则点(-a,-b)在第____________象限.172. 在平面直角坐标系中,点P(a-1,a)是第二象限内的点,则a的取值范围是____________.173. 甲处表示2街与4巷的十字路口,乙处表示4街与2巷的十字路口,如果用(2,4)表示甲处的位置,那么“(2,4)→(3,4)→(4,4)→(4,3)→(4,2)“表示从甲处到乙处的一种路线.请你仅用5个有序数对写出一种从乙处到甲处的路线.你的路线是:____________.174. 请写出一个在第二象限的点的坐标____________.175. 反比例函数y= 的图象上有一点P(m,n),其坐标是关于t的一元二次方程t 2-3t+k=0的两根,且点P到原点的距离为,则该反比例函数的关系式为____________.176. 在平面直角坐标系中,点(1,-2)位于第____________象限.177. 在平面直角坐标系中,点(-2,-3)在第____________象限.178. 如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为.正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B 到A记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(____________,____________),B→C(____________,____________),C→____________(+1,____________);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(4)若图中另有两个格点M、N,且M→A(3-a,b-4),M→N(5-a,b-2),则N→A应记为什么?179. 在平面直角坐标系中,点(-2,-1)在第____________象限.180. 已知x轴上点P到y轴的距离是3,则点P坐标是____________.181. 已知点P在第二象限,它的横坐标与纵坐标的和为1,点P的坐标是(写出一个符合条件的一个点即可)____________.182. 2008年奥运火炬将在我省传递(传递路线为:昆明-丽江-香格里拉),某校学生小明在我省地图上设定的临沧市位置点的坐标为(-1,0),火炬传递起点昆明市位置点的坐标为(1,1).如图,请帮助小明确定出火炬传递终点香格里拉位置点的坐标为____________.183. P(3,-4)到x轴的距离是____________.184. 在平面直角坐标系中,若点P(x-2,x)在第二象限,则x的取值范围为____________.185. 点A(-6,8)到x轴的距离为____________,到y轴的距离为____________,到原点的距离为____________.186. 在直角坐标系内,点A(3,)到原点的距离是____________.187. 点A(2,m)与点B(-1,0)之间的距离是5,那么m的值为____________.188. 如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于y轴的对称图形△A 1B 1C 1.(2)写出点A 1,B 1,C 1的坐标(直接写答案).A 1____________B 1____________C 1____________.189. 如图是某学校的平面示意图,在10×10的正方形网格中(每个小方格都是边长为1的正方形),如果分别用(3,1),(3,5)表示图中图书馆和教学楼的位置,那么实验楼的位置应表示为____________.190. 如果P(m+3,2m+4)在y轴上,那么点P的坐标是____________.191. 平面直角坐标系内点P(-2,0),与点Q(0,3)之间的距离是____________.192. 若点P(2m+1,)在第四象限,则m的取值范围是____________.193. 已知点P的坐标(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是____________.194. 电影院里5排2号可以用(5,2)表示,则(7,4)表示____________.初中数学试卷第12页,共17页。
新人教版初中数学七年级数学下册第三单元《平面直角坐标系》检测(答案解析)(4)
一、选择题1.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( ) A .-9B .9C .-3D .32.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)3.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b - B .(),a b -C .(),a b --D .(),a b4.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( ) A .(-3,5) B .(5,- 3) C .(-5,3) D .(3,5) 5.点A(-π,4)在第( )象限A .第一象限B .第二象限C .第三象限D .第四象限 6.在平面直角坐标系中,点A 的坐标为(21a +,3-),则点A 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.若实数a ,b 满足2(2)30a b ++-=,则点P(a ,b)所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限8.在平面直角坐标系中,点()3,4-在( ) A .第一象限B .第二象限C .第三象限D .第四象限9.如图,在平面直角坐标系中,半径为1个单位长度的半圆123,,O O O ,…组成一条平滑曲线,点P 从点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2016秒时,点P 的坐标是( )A .()2016,1B .()2016,0C .()2016,1-D .()2016,0π10.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上B .线段BO 上C .线段OC 上D .线段CD 上11.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m 12.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交二、填空题13.在平面直角坐标系中,点()3,2P -到y 轴的距离为__________.14.对于平面直角坐标系xOy 中的点P (a ,b ),若点P 的坐标为(a +kb ,ka +b )(其中k 为常数,且k ≠0),则称点P 为点P 的“k 属派生点”,例如:P (1,4)的“2属派生点”为P (1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为点P ′,且线段PP ′的长度为线段OP 长度的5倍,则k 的值为___. 15.到x 轴距离为2,到y 轴距离为3的点的坐标为___________.16.如图所示的坐标系中,单位长度为1 ,点 B 的坐标为(1,3) ,四边形ABCD 的各个顶点都在格点上, 点P 也在格点上,ADP △ 的面积与四边形ABCD 的面积相等,写出所有点P 的坐标 _____________.(不超出格子的范围)17.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.18.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.19.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.20.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____三、解答题21.在平面直角坐标系中,点A 从原点O 出发,沿x 轴正方向按半圆形弧线不断向前运动,其移动路线如图所示,其中半圆的半径为1个单位长度,这时点1234,,,A A A A 的坐标分别为()()()()12340,0,1,12,03,1A A A A -,按照这个规律解决下列问题:()1写出点5678,,,,A A A A 的坐标;()2点2018A 的位置在_____________(填“x 轴上方”“x 轴下方”或“x 轴上”); ()3试写出点n A 的坐标(n 是正整数).22.已知点P(a ﹣2,2a+8),分别根据下列条件求出点P 的坐标. (1)点P 在x 轴上;(2)点Q 的坐标为(1,5),直线PQ ∥y 轴; (3)点P 到x 轴、y 轴的距离相等.23.在平面直角坐标系中,已知(0,1)A ,(2,0)B ,(4,3)C .(1)在给出的平面直角坐标系中画出ABC ∆;(2)已知P 为x 轴上一点,若ABP ∆的面积为2,求点P 的坐标. 24.如图,已知每个小正方形的边长均为1的网格中有一个三角形.()1请你画出这个三角形向上平移3个单位长度,所得到的'''A B C ∆()2请以'A 为坐标原点建立平面直角坐标系(在图中画出),然后写出点B ,点C 及','B C 的坐标.25.如图,在平面直角坐标系中,三角形ABC?的顶点坐标分别是()()A 4,1B 1,1?--,,()C 1,4?-,点()11P x ,y ?是三角形 ABC?内一点,点()11 P x ,y ?平移到点()111 P x 3,1?y +-时;(1)画出平移后的新三角形111?A B C 并分别写出点111?A B C 的坐标;(2)求出三角形111?A B C 的面积26.在平面直角坐标系中,描出下列各点:()3,3A -,()3,1B --,()2,1C -,()2,3D ,并用线段顺次连接各点形成封闭图形.试判断所得到的图形是什么特殊图形,并求出它的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由于A 、B 点都在y 轴上,然后用B 点的纵坐标减去A 点的纵坐标可得到两点之间的距离. 【详解】解:∵A (0,-6),点B (0,3), ∴A ,B 两点间的距离()369=--=. 故选:B . 【点睛】本题考查了两点间的距离公式,熟练掌握两点间的距离公式是解题的关键.2.D【分析】根据题意,可以画出相应的图形,然后即可发现点所在的位置变化特点,即可得到小球第2020次碰到球桌边时,小球的位置. 【详解】如图,小球第一次碰到球桌边时,小球的位置是(0,1) 小球第二次碰到球桌边时,小球的位置是(3,4) 小球第三次碰到球桌边时,小球的位置是(7,0) 小球第四次碰到球桌边时,小球的位置是(8,1) 小球第五次碰到球桌边时,小球的位置是(5,4) 小球第六次碰到球桌边时,小球的位置是(1,0) ……∵2020÷6=336 (4)∴小球第2020次碰到球桌边时,小球的位置是(8,1) 故选D【点睛】本题考查坐标位置,解答本题的关键是明确题意,发现点的坐标位置的变化特点,利用数形结合的思想解答.3.C解析:C 【分析】直接利用各象限内点的坐标符号得出答案. 【详解】解:∵点A (a ,-b )在第三象限, ∴a <0,-b <0, ∴-a >0,b >0,∴(),a b -在第三象限,(),a b -在第一象限,(),a b --在第四象限,(),a b 在第二象限. 故选:C . 【点睛】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.4.A【分析】首先确定点的横纵坐标的正负号,再根据距坐标轴的距离确定点的坐标.【详解】解:∵点P位于第二象限,∴点的横坐标为负数,纵坐标为正数,∵点距离x轴5个单位长度,距离y轴3个单位长度,∴点的坐标为(﹣3,5).故选:A.【点睛】此题主要考查了点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.5.B解析:B【分析】根据横坐标为负,纵坐标为正的点在第二象限解答即可.【详解】解:∵点A(-π,4)横坐标为负,纵坐标为正,∴应在第二象限.故选:B.【点睛】本题主要考查了坐标的特点,解答此题的关键是熟记平面直角坐标系中各个象限内点的符号.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6.D解析:D【分析】根据各象限内点的坐标特征解答.【详解】∵210a+>,a+,3-)在第四象限.点A(21故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.B解析:B由算术平方根和绝对值的非负性,求出a 、b 的值,然后即可判断点P 所在的象限. 【详解】解:∵30b -=,∴20a +=,30b -=, ∴2a =-,3b =,∴点P (2-,3)在第二象限; 故选:B . 【点睛】本题考查了非负性的应用,以及判断点所在的象限,解题的关键是正确求出a 、b 的值.8.B解析:B 【分析】根据直角坐标系中点的坐标的特点解答即可. 【详解】 ∵点()3,4-,∴点()3,4-在第二象限, 故选:B. 【点睛】此题考查直角坐标系中点的坐标的符号特点,第一象限为(+,+),第二象限为(-,+),第三象限为(-,-),第四象限为(+,-).9.B解析:B 【分析】根据图象可得移动4次图象完成一个循环,从而得到点的坐标; 【详解】半径为1个单位长度的半圆的周长为12, ∵点P 从原点O 出发,沿着这条曲线向右运动, 每秒2π个单位长度, ∴点1P 秒走12个半圆, 当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为1秒时,点P 的坐标为()1,1,当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为2秒时,点P 的坐标为()2,0,当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为3秒时,点P 的坐标为()3,1-,当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为4秒时,点P 的坐标为()4,0,当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为5秒时,点P 的坐标为()5,1,当点P 从原点O 出发,沿着这条曲线向右运动,运动时间为6秒时,点P 的坐标为()6,0,,∵20164=504÷, ∴2016A 的坐标为()2016,0; 故答案选B . 【点睛】本题主要考查了点的坐标规律,准确计算是解题的关键.10.B解析:B 【分析】【详解】由被开方数越大算术平方根越大,得由不等式的性质得:故选B. 【点睛】本题考查了实数与数轴,无理数大小的估算,解题的关键正确估算无理数的大小.11.B解析:B 【分析】根据图象可得移动4次图象完成一个循环,从而可得出42n OA n =,20201010OA =,据此利用三角形的面积公式计算可得. 【详解】由题意得:12345(1,0)(1,1)(2,1)(2,0)(3,0),A A A A A 、、、、 ∴图象可得移动4次图象完成一个循环 ∴42n OA n =,20201010OA =3202034202011==11010=50522OA A S A A OA ⨯⨯⨯⨯△故选B 【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.12.D解析:D【分析】由点M、N的坐标得出点M、N的纵坐标相等,据此知直线MN∥x轴,继而得出直线MN⊥y轴,从而得出答案.【详解】解:∵点M(12,-5)、N(-7,-5),∴点M、N的纵坐标相等,∴直线MN∥x轴,则直线MN⊥y轴,故选:D.【点睛】本题主要考查坐标与图形性质,熟记纵坐标相同的点在平行于y轴的直线上是解题的关键.二、填空题13.3【分析】根据点到y轴的距离等于横坐标的绝对值解答【详解】到y轴的距离是横坐标的绝对值即故答案为:3【点睛】本题考查了点的坐标熟记点到y 轴的距离等于横坐标的绝对值是解题的关键解析:3【分析】根据点到y轴的距离等于横坐标的绝对值解答.【详解】()-=.P-到y轴的距离是横坐标的绝对值,即333,2故答案为:3.【点睛】本题考查了点的坐标,熟记点到y轴的距离等于横坐标的绝对值是解题的关键.14.±5【分析】先根据点P在x轴正半轴确定出点P的坐标然后利用k表示出P的坐标继而表示出线段PP′的长再根据线段PP′的长为线段OP长的5倍得到关于k的方程解方程即可求得答案【详解】解:设P(m0)(m解析:±5【分析】先根据点P在x轴正半轴确定出点P的坐标,然后利用k表示出P'的坐标,继而表示出线段PP′的长,再根据线段PP′的长为线段OP长的5倍得到关于k的方程,解方程即可求得答案.【详解】解:设P(m,0)(m>0),由题意:P′(m,mk),∵PP′=5OP,∴|mk |=5m ,∵m >0,∴|k |=5,∴k =±5.故答案为:±5.【点睛】本题考查了新定义下的阅读理解能力,涉及了点的坐标,绝对值的性质,两点间的距离等知识,正确理解新定义是解题的关键.15.(32)(﹣32)(﹣3﹣2)或(3﹣2)【分析】根据点到x 轴的距离是纵坐标的绝对值点到y 轴的距离是横坐标的绝对值可得答案【详解】解:∵点到x 轴的距离是2到y 轴的距离是3∴该点的坐标是(32)(﹣3解析:(3,2),(﹣3,2),(﹣3,﹣2)或(3,﹣2)【分析】根据点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值,可得答案.【详解】解:∵点到x 轴的距离是2,到y 轴的距离是3,∴该点的坐标是(3,2),(﹣3,2),(﹣3,﹣2)或(3,﹣2),故答案为:(3,2),(﹣3,2),(﹣3,﹣2)或(3,﹣2).【点睛】本题考查了点的坐标,利用点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值是解题关键.16.(04)(12)(20)(44)【分析】算出四边形ABCD 的面积等于△ABC 面积与△ACD 面积之和即为2同时矩形AEDC 面积也为2且E 为AP1的中点由中线平分所在三角形面积即为所求【详解】解:∵又∴解析:(0,4),(1,2),(2,0),(4,4)【分析】算出四边形ABCD 的面积等于△ABC 面积与△ACD 面积之和即为2,同时矩形AEDC 面积也为2,且E 为AP 1的中点,由中线平分所在三角形面积即为所求.【详解】解:∵11+2112222ABC ACD ABCDS S S 四边形, 又122ACDES 长方形, ∴=2ADP ACDE S S 长方形,又E 为AP 1的中点,∴DE 平分△ADP 1的面积,且△AED 面积为1,∴△ADP 1面积为2,故P 1点即为所求,且P 1(4,4),同理C 为DP 3的中点,AC 平分△ADP 3面积,且△ACD 面积为1,故△ADP 3面积为2,故P 3点即为所求,且P 3(1,2),由两平行线之间同底的三角形面积相等可知,过P 3作AD 的平行线与网格的交点P 2和P 4也为所求,故P 2(0,4),P 4(2,0),故答案为:P(0,4),(1,2),(2,0),(4,4).【点睛】考查了三角形的面积,坐标与图形性质,关键是熟练掌握中线平分所在三角形的面积,两平行线之间同底的三角形面积相等这些知识点.17.【分析】根据题意得到点的总个数等于轴上右下角的点的横坐标的平方由于所以第2020个点在第45个矩形右下角顶点向上5个单位处【详解】根据图形以最外边的矩形边长上的点为准点的总个数等于轴上右下角的点的横 解析:()45,5【分析】根据题意,得到点的总个数等于x 轴上右下角的点的横坐标的平方,由于22025=45,所以第2020个点在第45个矩形右下角顶点,向上5个单位处.【详解】根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,211=右下角的点的横坐标为2时,共有2个,242=,右下角的点的横坐标为3时,共有3个,293=,右下角的点的横坐标为4时,共有16个,2164=,右下角的点的横坐标为n 时,共有2n 个,2452025=,45是奇数,∴第2025个点是()45,0,第2020个点是()45,5,故答案为:()45,5.【点睛】本题考查了规律的归纳总结,重点是先归纳总结规律,然后在根据规律求点位的规律. 18.【分析】观察点的坐标变化发现每个点的横坐标与运动的次数相等纵坐标是1020…4个数一个循环按照此规律解答即可【详解】解:观察点的坐标变化可知:第1次从原点运动到点(11)第2次接着运动到点(20)第2021,1解析:()【分析】观察点的坐标变化发现每个点的横坐标与运动的次数相等,纵坐标是1,0,2,0,…4个数一个循环,按照此规律解答即可.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与运动的次数相等,纵坐标是1,0,2,0,4个数一个循环,由于2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).故答案为:(2021,1).【点睛】本题考查了点的坐标规律探求,属于常考题型,由已知点的坐标变化找出规律是解题的关键.19.【分析】根据点AC的坐标建立平面直角坐标系由此即可得【详解】根据点AC的坐标建立平面直角坐标系如图所示:则点B的坐标为故答案为:【点睛】本题考查了点的坐标依据题意正确建立平面直角坐标系是解题关键--解析:(1,2)【分析】根据点A、C的坐标建立平面直角坐标系,由此即可得.【详解】根据点A、C的坐标建立平面直角坐标系,如图所示:则点B 的坐标为(1,2)--,故答案为:(1,2)--.【点睛】本题考查了点的坐标,依据题意,正确建立平面直角坐标系是解题关键.20.3【分析】根据x 轴上的点坐标特点即可求出b=2然后代入横坐标即可【详解】解:∵点P(b+1b-2)在x 轴上∴b-2=0b=2∴b+1=3故答案为:3【点睛】此题主要考查坐标轴上的点坐标特点解题的关键解析:3【分析】根据x 轴上的点坐标特点即可求出b=2,然后代入横坐标即可.【详解】解:∵点 P(b+1,b-2)在x 轴上,∴b-2=0b=2∴b+1=3.故答案为:3.【点睛】此题主要考查坐标轴上的点坐标特点,解题的关键是正确理解特点.三、解答题21.()()514,0A ,()65,1A ,()76,0A ,()87,1A -;()2x 轴上方;()3 A (n-1,0)或()1,1A n -或()1,0A n -或()1,1A n --【分析】()1可根据点在图形中的位置及前4点坐标直接求解;()2根据图形可知点的位置每4个数一个循环,20184504...2÷=,进而判断2018A 与2A 的纵坐标相同在x 轴上方,即可求解;()3根据点的坐标规律可分4种情况分别写出坐标即可求解.【详解】解:(1)由数轴可得:()54,0A ,()65,1A ,()76,0A ,()87,1A -;(2)根据图形可知点的位置每4个数一个循环,20184504...2÷=,2018A ∴与2A 的纵坐标相同,在x 轴上方,故答案为:x 轴上方;(3)根据图形可知点的位置每4个数一个循环,每个点的横坐标为序数减1,纵坐标为0、1、0、-1循环,∴点n A 的坐标(n 是正整数)为A (n-1,0)或()1,1A n -或()1,0A n -或()1,1A n --.【点睛】本题主要考查找点的坐标规律,点的坐标的确定,方法,根据已知点的坐标及图形总结点坐标的变化规律,并运用规律解决问题是解题的关键.22.(1)P(﹣6,0);(2)P(1,14);(3)P(﹣12,﹣12)或(﹣4,4).【分析】(1)利用x轴上点的坐标性质纵坐标为0,进而得出a的值,即可得出答案;(2)利用平行于y轴直线的性质,横坐标相等,进而得出a的值,进而得出答案;(3)利用点P到x轴、y轴的距离相等,得出横纵坐标相等或互为相反数进而得出答案.【详解】解:(1)∵点P(a﹣2,2a+8)在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2)∵点Q的坐标为(1,5),直线PQ∥y轴,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(3)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10时,a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2时,a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12)或(﹣4,4).【点睛】此题主要考查了点的坐标性质,用到的知识点为:点到两坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及点在坐标轴上的点的性质等知识,属于基础题,要熟练掌握点的坐标性质.23.(1)详见解析;(2)(﹣2,0)或(6,0)【分析】(1)在平面直角坐标系中描出对应点,然后连线即可;(2)根据题意求得PB,分两种情况讨论即可求得P的坐标.【详解】(1)在平面直角坐标系中画出△ABC如图所示:(2)由题意可知△ABP 的面积=12×PB×OA=2 ∵OA=1,∴PB=4,∴P (﹣2,0)或(6,0).【点睛】 本题考查了坐标与图形性质,三角形的面积,重点是掌握平面直角坐标系内点的特征. 24.(1)见解析;(2)见解析,()()()()1,1,'1,2,3,4,'3,1B B C C ---【分析】(1)把3个顶点向上平移3个单位,顺次连接个顶点即可;(2)以点'A 为坐标原点,建立平面直角坐标系,找到所求点的坐标即可.【详解】解:()1如图,()2坐标系如图:()()()()1,1,'1,2,3,4,'3,1B B C C ---【点睛】在平面直角坐标系中,图形的平移与图形上某点的平移相同,注意上下移动改变点的纵坐标,下减,上加.25.(1)1A 为(1-,2-),1B 为(4,0),1C 为(2,3);图见详解;(2)192. 【分析】 (1)根据点P 平移前后的坐标,可得出平移的规律,继而可得出△A 1B 1C 1三个顶点的坐标;(2)利用构图法,求解△A 1B 1C 1的面积.【详解】解:(1)∵点()11P x ,y 平移到点()111 P x 3,1y +-, ∴平移的规律为:向右平移3个单位,向下平移1个单位,∴1A 为(1-,2-),1B 为(4,0),1C 为(2,3); 平移后的三角形如图所示:(2)面积为:111A B C 11119S 555253322222=⨯-⨯⨯-⨯⨯-⨯⨯=; 【点睛】 本题考查了平移的性质,坐标与图形的变化,要求同学们能根据点平移前后的坐标得出平移规律.26.长方形;20.【分析】根据点的坐标判断点所在的象限,准确描点,用线段顺次连接各点,观察图形的特点,再求面积.【详解】解:如图,顺次连接各点得到的封闭图形是长方形,长方形的长为()235--=,宽为()314--=,⨯=.面积为5420【点睛】此题考查了已知点的坐标描点的问题,通过画图,判断图形形状,求面积.。
精品解析2022年最新人教版初中数学七年级下册第七章平面直角坐标系专题训练试题(含详细解析)
初中数学七年级下册第七章平面直角坐标系专题训练(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、若点P (2,b )在第四象限内,则点Q (b ,-2)所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2、在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…第n 次移动到A n .则△OA 6A 2018的面积是( )A .5052mB .504.52mC .5042mD .5032m3、根据下列表述,能确定位置的是( )A .红星电影院2排B .北京市四环路C .北偏东30D .东经118︒,北纬40︒4、若点(),5A a a +在x 轴上,则点A 到原点的距离为( )A .5B .C .0D .5-5、如图,在平面直角坐标系中,将四边形ABCD 平移得到四边形A 1B 1C 1D 1,点E ,E 1分别是两个四边形对角线的交点.已知E (3,2),E 1(﹣4,5),C (4,0),则点C 1的坐标为( )A .(﹣3,3)B .(1,7)C .(﹣4,2)D .(﹣4,1)6、已知A (3,﹣2),B (1,0),把线段AB 平移至线段CD ,其中点A 、B 分别对应点C 、D ,若C (5,x ),D (y ,0),则x +y 的值是( )A .﹣1B .0C .1D .27、在平面直角坐标系中,李明做走棋游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度……依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位长度;当n 被3除,余数是1时,则向右走1个单位长度;当n 被3除,余数是2时,则向右走2个单位长度.当走完第12步时,棋子所处位置的坐标是( )A .(9,3)B .(9,4)C .(12,3)D .(12,4)8、在平面直角坐标系中,点A (0,3),B (2,1),经过点A 的直线l ∥x 轴,C 是直线l 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( )A .(0,1)B .(2,0)C .(2,﹣1)D .(2,3)9、如果点P (2,y )在第四象限,则y 的取值范围是( )A .y <0B .y >0C .y ≤0D .y ≥010、已知A 、B 两点的坐标分别是()2,3-和()2,3,则下面四个结论:①点A 在第四象限;②点B 在第一象限;③线段AB 平行于y 轴:④点A 、B 之间的距离为4.其中正确的有( )A .①②B .①③C .②④D .③④二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,正方形ABCD 的顶点A 、D 的坐标分别为(﹣2,1)和(3,1),则点C 的坐标为_________.2、已知点(210,39)P m m --在第二象限,且离x 轴的距离为3,则|3||5|m m ++-=____.3、线段AB =5,AB 平行于x 轴,A 在B 左边,若A 点坐标为(-1,3),则B 点坐标为_____.4、有一个英文单词的字母顺序对应如图中的有序数对分别为(5,3),(6,3)(7,3)(4,1)(4,4)请你把这个英文单词写出来或者翻译中文为______.5、若点(4,1)P m m +-在y 轴上,则m =_____.三、解答题(5小题,每小题10分,共计50分)1、如图所示,在平面直角坐标系中,已知A (0,﹣2),B (1,2),C (5,1).(1)在平面直角坐标系中画出ABC ;(2)若点D 与点C 关于x 轴对称,则点D 的坐标为______,BCD 的面积为_____.2、如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-2,4),B(-4,2),C(-1,1)(每个小方格都是边长为1个单位长度的正方形).请完成以下画图并填空.(1)画出△ABC关于原点O成中心对称的△A1B1C1(点A,B,C的对应点分别为A1,B1,C1);(2)将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2(点A,B,C的对应点分别为A2,B2,C2);(3)△ABC的面积为.(直接填结果)3、法定节日的确定为大家带来了很多便利,我们用坐标来表示这些节日:元旦用A(1,1)表示(即1月1日),清明节用B(4,4)表示(即4月4日),端午节用C(5,5)表示(即5月初5).(1)用坐标表示出:中秋节D,国庆节E;(2)依次连接C-D-E-C,在坐标系中画出;(3)将(2)中图像向左平移7个单位长度,再向下平移4个单位长度,画出平移后的图像.4、如图,已知△ABC三个顶点的坐标分A(﹣3,2),B(﹣1,3),C(﹣2,1).将△ABC先向右平移4个单位,再向下平移3个单位后,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′.(1)根据要求在网格中画出相应图形;(2)写出△A′B′C′三个顶点的坐标.5、在平面直角坐标系xOy中,将三点A,B,C的“矩面积”记为S,定义如下:A,B,C中任意两点横坐标差的最大值a称为“水平底”,任意两点纵坐标差的最大值h称为“铅垂高”,“水平底”与“铅垂高”的乘积即为点A,B,C的“矩面积”,即S=ah.例如:点A(1,2),B(﹣3,1),C(2,﹣2),它们的“水平底”为5,“铅垂高”为4,“矩面积”S=5×4=20.解决以下问题:(1)已知点A(2,1),B(﹣2,3),C(0,5),求A,B,C的“矩面积”;(2)已知点A(2,1),B(﹣2,3),C(0,t),且A,B,C的“矩面积”为12;,求t的值;(3)已知点A(2,1),B(﹣2,3),C(t,t+1),若t<0,且A,B,且A,B,C的“矩面积”为25,求t的值.---------参考答案-----------一、单选题1、C【分析】根据点P(2,b)在第四象限内,确定b的符号,即可求解.【详解】解:点P(2,b)在第四象限内,∴0b ,所以,点Q(b,-2)所在象限是第三象限,故选:C.【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,解决本题的关键是要熟练掌握点在各象限的符号特征.2、D【分析】由题意可得规律42n OA n =知20162017110092=+=,据此得出62018100931006A A =-=,然后运用三角形面积公式计算即可.【详解】解:由题意知42n OA n =,∵20184504......2÷=, ∴20172016110092OA =+=, ∴62018100931006A A =-=,则△OA 6A 2018=1100615032⨯⨯=2m ,故选:D .【点睛】本题考查了点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.3、D【分析】根据位置的确定需要两个条件对各选项分析判断即可.【详解】解:A 、红星电影院2排,具体位置不能确定,不符合题意;B 、北京市四环路,具体位置不能确定,不符合题意;C 、北偏东30,具体位置不能确定,不符合题意;D 、东经118︒,北纬40︒,很明确能确定具体位置,符合题意;故选:D .【点睛】本题考查了坐标确定位置,理解位置的确定需要两个条件是解题的关键.4、A【分析】根据x轴上点的纵坐标为0列式求出a,从而得到点A的坐标,然后解答即可.【详解】解:∵点A(a,a+5)在x轴上,∴a+5=0,解得a=-5,所以,点A的坐标为(-5,0),所以,点A到原点的距离为5.故选:A.【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.5、A【分析】由E(3,2),E1(﹣4,5),确定平移方式,再根据平移方式可得点C1的坐标,从而可得答案. 【详解】解:E(3,2),E1(﹣4,5),且它们是对应点,E∴向左边平移了7个单位,再向上平移了3个单位,C(4,0),∴点C 1的坐标为47,03,即13,3.C 故选A【点睛】本题考查的是由坐标变化确定平移方式,再利用平移方式确定对应点的坐标,掌握“平移的坐标变化规律”是解题的关键.6、C【分析】由对应点坐标确定平移方向,再由平移得出x,y的值,即可计算x+y.【详解】∵A(3,﹣2),B(1,0)平移后的对应点C(5,x),D(y,0),∴平移方法为向右平移2个单位,∴x=﹣2,y=3,∴x+y=1,故选:C.【点睛】本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加.7、D【分析】设走完第n步,棋子的坐标用A n来表示.列出部分A点坐标,发现规律“A3n(3n,n),A3n+1(3n+1,n),A3n+2(3n+3,n)”,根据该规律即可解决问题.【详解】解:设走完第n步,棋子的坐标用A n来表示.观察,发现规律:A0(0,0),A1(1,0),A2(3,0),A3(3,1),A4(4,1),A5(6,1),A6(6,2),…,∴A3n(3n,n),A3n+1(3n+1,n),A3n+2(3n+3,n).∵12=4×3,∴A12(12,4).故选:D.【点睛】本题考查了规律型中的点的坐标,解题的关键是发现规律“A3n(3n,n),A3n+1(3n+1,n),A3n+2(3n+3,n)”.本题属于基础题,难度不大,解决该题型题目时,根据棋子的运动情况,罗列出部分A点的坐标,根据坐标的变化发现规律是关键.8、D【分析】根据垂线段最短可知BC⊥l,即BC⊥x轴,由已知即可求解.【详解】解:∵点A(0,3),经过点A的直线l∥x轴,C是直线l上的一个动点,∴点C的纵坐标是3,根据垂线段最短可知,当BC⊥l时,线段BC的长度最短,此时, BC⊥x轴,∵B(2,1),∴点C的横坐标是2,∴点C坐标为(2,3),故选:D.【点睛】本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键.9、A【分析】根据第四象限的点的坐标特点解答即可.【详解】解:∵点P(2,y)在第四象限,∴y<0.故选:A.【点睛】本题考查了点的坐标特征,熟练掌握四个象限内点的坐标特征是解本题的关键.10、C【分析】根据点的坐标特征,结合A、B两点之间的距离进行分析即可.【详解】解:∵A、B两点的坐标分别是(-2,3)和(2,3),∴①点A在第二象限;②点B在第一象限;③线段AB平行于x轴;④点A、B之间的距离为4,故选:C.【点睛】本题主要考查了坐标与图形的性质,关键是掌握点的坐标特征.二、填空题1、(3,6)【解析】【分析】根据点的坐标求得正方形的边长,然后根据点D的坐标即可求出点C的坐标.【详解】解:∵点A、D的坐标分别为(﹣2,1)和(3,1),∴AD=3-(-2)=5,∴CD= AD=5,∵点D 的坐标为(3,1),∴点C 的坐标为(3,6),故答案为:(3,6).【点睛】本题考查了坐标与图形的性质,解决本题的关键是弄清当两个点的纵坐标相等时,其两点之间的距离为横坐标的差.2、8【解析】【分析】根据题意可得393m -=,求出m 的值,代入|3||5|m m ++-计算即可.【详解】 解:点(210,39)P m m --在第二象限,且离x 轴的距离为3,393m ∴-=,解得4m =,|3||5|m m ∴++-71=+8=.故答案为:8.【点睛】本题考查了平面直角坐标系-点到坐标轴的距离,绝对值的意义,跟具体题意求出m 的值是解本题的关键.3、(4,3)【解析】【分析】由题意根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,进而依据A在B左边即可求出点B的坐标.【详解】解:∵AB∥x轴,A点坐标为(-1,3),∴点B的纵坐标为3,当A在B左边时,∵AB=5,∴点B的横坐标为-1+5=4,此时点B(4,3).故答案为:(4,3).【点睛】本题考查坐标与图形性质,主要利用了平行于x轴的直线上的点的纵坐标相等.4、学习【解析】【分析】根据每一个点的坐标确定其对应的位置,最后写出答案.【详解】解:有序数对(5,3),(6,3)(7,3)(4,1)(4,4)对应的字母分别为S、T、U、D、Y,组成的英文单词为study,中文为学习,故答案为:学习.【点睛】此题考查了有序数对,正确理解有序数对的定义,确定各数对对应的字母是解题的关键.5、-4【解析】【分析】在y 轴上点的坐标,横坐标为0,可知40m +=,进而得到m 的值.【详解】解:(4,1)P m m +-在y 轴上40m ∴+=4m ∴=-故答案为:4-.【点睛】本题考察了坐标轴上点坐标的特征.解题的关键在于理解y 轴上点坐标的形式.在y 轴上点的坐标,横坐标为0;在x 轴上点的坐标,纵坐标为0.三、解答题1、(1)见解析;(2)(5,1)-,4【解析】【分析】(1)直接将点标到平面直角坐标系中,顺次连接ABC 即可;(2)根据关于x 轴对称的点横坐标相同,纵坐标互为相反数即可得出点D 的坐标,直接利用三角形的面积公式求解即可求出BCD 的面积.【详解】解:(1)如图所示,ABC 为所求,(2)∵C (5,1),点D 与点C 关于x 轴对称,∴点C 的坐标为(5,1)-, ∴BCD 的面积为()1114=42⨯+⨯.【点睛】本题主要考查平面直角坐标系,数形结合是关键.2、 (1)见详解;(2)见详解;(3)4【解析】【分析】(1)根据中心对称图形的概念即可作出图形,求出对应点坐标;(2)根据旋转作图的方法即可.(3)利用三角形所在的长方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】解:(1)如图所示, △A 1B 1C 1为所求;(2)如图所示, △A 2B 2C 2为所求;(3)S △ABC =3×3-12×2×2-12×1×3-12×1×3=9-2-1.5-1.5=4【点睛】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.3、(1)(8,15),(10,1);(2)见解析;(3)见解析.【解析】【分析】(1)根据节日利用坐标所表示的性质得出即可;(2)根据题意画图即可;(3)根据题意画出平移后的图象即可.【详解】解:(1)∵元旦用(1,1)A 表示(即1月1日),清明节用(4,4)B 表示(即4月4日),端午节用(5,5)C 表示(即5月初5),∴用坐标表示出中秋节(8,15)D ,国庆节(10,1)E ,故答案为:(8,15);(10,1);(2)如图所示:(3)如图所示:【点睛】本题考查网格作图、平移等知识,是基础考点,掌握相关知识是解题关键.4、(1)见解析;(2)(1,1)A '-,(3,0)'B ,(2,2)C '-【解析】【分析】(1)利用平移变换的性质分别作出A ,B ,C 的对应点A ',B ′,C '即可.(2)根据平面直角坐标系写出A ',B ′,C '的坐标.【详解】解:(1)如图,△A B C '''即为所求,(2)根据平面直角坐标系可得:(1,1)A '-,(3,0)'B ,(2,2)C '-.【点睛】本题考查作图-平移变换等知识,解题的关键是掌握平移变换的性质,属于中考常考题型.5、(1)S =16;(2)t =4 或t =0;(3) 3.t =-【解析】【分析】(1)根据定义即可得出答案;(2)根据题意,4a =,然后求出h ,即可得出t 的值;(3)根据“矩面积”的范围,用“矩面积”为25,建立方程求解,即可得出答案.【详解】解:(1)由题意:a =4,h =4,∴S =4×4=16;(2)由题意:a =4,S =12,∴4h =12,解得:h =3,∴t -1=3 或3-t =3,解得:t=4 或t=0;(3)①当20t-<<时,a=4,h=3-(t+1)=2-t,∴4(2-t)=25,解得:174t∴=-(舍去)②当20t-<<时,a=2-t,h=3-(t+1)=2-t,∴2(2)25t-=,解得:∴t=7(舍去)或t=-3,综上,t=-3.【点睛】本题考查新定义“矩面积”,理解“水平底”与“铅垂高”以及“矩面积”,注意掌握分类讨论思想是解题的关键.。
(必考题)初中七年级数学下册第七单元《平面直角坐标系》经典习题(提高培优)
一、选择题1.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°2.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( )A .3B .1C .1或3D .2或3 3.点A(-π,4)在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限 4.在平面直角坐标系中,点A 的坐标为(21a +,3-),则点A 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗 7.点A (n+2,1﹣n )不可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 8.在平面直角坐标系中,点P (−1,23)在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.点()1,3M m m ++在x 轴上,则M 点坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,2- 10.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5) 11.某公交车上显示屏上显示的数据(),a b 表示该车经过某站点时先下后上的人数.若车上原有10个人,此公交车依次经过某三个站点时,显示器上的数据如下:()()()3,2,8,5,6,1,则此公交车经过第二个站点后车上的人数为( )A .9B .12C .6D .112.平面直角坐标系中,线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D 的坐标为( )A .(-1,-4)B .(1,-4)C .(1,2)D .(-1,2) 13.在下列点中,与点A(-2,-4)的连线平行于y 轴的是( ) A .(2,-4) B .(4,-2) C .(-2,4) D .(-4,2) 14.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .88615.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092mD .2504m二、填空题16.如图,平面直角坐标系xOy 中,点A(4,3),点B(3,0),点C(5,3),OAB ∆沿AC 方向平移AC 长度的到ECF ∆,四边形ABFC 的面积为_________.17.若点A (m +2,﹣3)与点B (﹣4,n +5)在二四象限角平分线上,则m +n =_____. 18.在x 轴上方的点P 到x 轴的距离为3,到y 轴距离为2,则点P 的坐标为________. 19.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.20.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=,(1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________.(2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.21.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.22.点A (m ,﹣3),点B (2,n ),AB //x 轴,则n=_____.23.在平面直角坐标系中,点P (m ,1﹣m )在第一象限,则m 的取值范围是_____. 24.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限25.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.26.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,按这样的运动规律,经过第1000次运动后,动点P 的坐标是_______;经过第2019次运动后,动点P 的坐标是_______.三、解答题27.已知,在平面直角坐标系中,三角形ABC 三个顶点的坐标分别为()5,6A ,()2,3B -,()3,1C .请在所给的平面直角坐标系中按要求完成以下问题:(1)画出三角形ABC ;(2)将三角形ABC 先向下平移6个单位长度,再向左平移3个单位长度后得到的三角形111A B C (点1A ,1B ,1C 分别是点A ,B ,C 移动后的对应点)请画出三角形111A B C ;并判断线段AC 与11A C 位置与数量关系.28.在平面直角坐标系中,已知点(),B a b ,线段BA x ⊥轴于A 点,线段BC y ⊥轴于C 点,且2(2)a b -++ |22|0a b --=. (1)求A ,B ,C 三点的坐标.(2)若点D 是AB 的中点,点E 是OD 的中点,求AEC 的面积.(3)在(2)的条件下,若点()2,P a ,且AEP AEC S S =△△,求点P 的坐标.29.平面直角坐标系中有点A(m+6n,-1),B(-2,2n-m),连接AB,将线段AB先向上平移,再向右平移,得到其对应线段A'B'(点A'和点A对应,点B'和点B对应),两个端点分别为A'(2m+5n,5),B'(2,m+2n).分别求出点A'、B'的坐标.30.三角形ABC(记作△ABC)在8×8方格中,位置如图所示,A(-3,1),B(-2,4).(1)请你在方格中建立直角坐标系,并写出C点的坐标;(2)把△ABC向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A1B1C1,若△ABC内部一点P的坐标为(a,b),则点P的对应点P1的坐标是.(3)在x轴上存在一点D,使△DB1C1的面积等于3,求满足条件的点D的坐标.。
人教版2022学年七年级数学下册第七章平面直角坐标系同步练习题
2022学年人教版七年级下册数学第7章7.1《平面直角坐标系》考点一:有序数对把有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。
利用有序数对,能准确表示一个位置,这里两个数的顺序不能改变。
考点二、平面直角坐标系平面直角坐标系:平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平方向的数轴称为x轴或横轴,习惯取向右的方向为正方向;竖直方向上的数轴称为y轴或纵轴,习惯取向上的方向为正方向;两坐标轴的交点是平面直角坐标系的原点 .①条数轴②互相垂直③公共原点满足这三个条件才叫平面直角坐标系注意:坐标轴上的点不属于任何象限。
考点三、象限及坐标平面内点的特点1、四个象限平面直角坐标系把坐标平面分成四个象限,从右上部分开始,按逆时针方向分别叫第一象限(或第Ⅰ象限)、第二象限(或第Ⅱ象限)、第三象限(第Ⅲ象限)和第四象限(或第Ⅳ象限)。
注:ⅰ、坐标轴(x轴、y轴)上的点不属于任何一个象限。
例点A(3,0)和点B(0,-5)ⅱ、平面直角坐标系的原点发生改变,则点的坐标相应发生改变;坐标轴的单位长度发生改变,点的坐标也相应发生改变。
2、平面上点的表示:平面内任意一点P,过P点分别向x、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点p的横坐标、纵坐标,则有序数对(a,b)叫做点P的坐标,记为P(a,b)注意:横坐标写在前,纵坐标写在后,中间用逗号隔开.考点四:坐标平面内点的位置特点①、坐标原点的坐标为(0,0);②、第一象限内的点,x、y同号,均为正;③、第二象限内的点,x、y异号,x为负,y为正;④、第三象限内的点,x、y同号,均为负;⑤、第四象限内的点,x、y异号,x为正,y为负;⑥、横轴(x轴)上的点,纵坐标为0,即(x,0),所以,横轴也可写作:y=0(表示一条直线)⑦、纵轴(y轴)上的点,横坐标为0,即(0,y),所以,纵横也可写作:x=0 (表示一条直线)考点五:点到坐标轴的距离坐标平面内的点的横坐标的绝对值表示这点到纵轴(y轴)的距离,而纵坐标的绝对值表示这点到横轴(x轴)的距离。
人教版七年级数学下册平面直角坐标系规律试题专项训练无答案(1)
⼈教版七年级数学下册平⾯直⾓坐标系规律试题专项训练⽆答案(1)平⾯直⾓坐标系规律题⼀.选择题(共32⼩题)1.如图,在⼀单位为1的⽅格纸上,△A1A2A3,△A3A4A5,△A5A6A7……,都是斜边在x 轴上,斜边长分别为2,4,6,……的等腰直⾓三⾓形,若A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所⽰规律,A2020的坐标为()A.(1010,0)B.(1012,0)C.(2,1012)D.(2,1010)2.如图:在平⾯直⾓坐标系中,⼀动点从原点O出发,沿着箭头所⽰⽅向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0)…则点P2020的坐标是()A.(673,﹣1)B.(673,1)C.(336,﹣1)D.(336,1)3.如图,⼀个机器⼈从点O出发,向正西⽅向⾛2m到达点A1;再向正北⽅向⾛4m到达点A2,再向正东⽅向⾛6m到达点A3,再向正南⽅向⾛8m到达点A4,再向正东⽅向⾛10m到达点A5,按如此规律⾛下去,当机器⼈⾛到点A时,点A2019在第()象限.A.⼀B.⼆C.三D.四4.如图,在单位为1的⽅格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直⾓三⾓形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所⽰规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)5.如图,在平⾯直⾓坐标系中,点A1.A2.A3.A4.A5.A6的坐标依次为A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…按此规律排列,则点A2019的坐标是()A.(1009,1)B.(1009,0)C.(1010,1)D.(1010.0)6.如图,在平⾯直⾓坐标系中,正⽅形ABCD的边长是2,点A的坐标是(﹣1,1),动点P从点A出发,以每秒2个单位长度的速度沿A→B→C→D→A→.…路线运动,当运动到2019秒时,点P的坐标为()A.(1,1)B.(1,3)C.(﹣1,3)D.(﹣1,1)7.如图,点O(0,0),A(0,1)是正⽅形OAA1B的两个顶点,以OA1对⾓线为边作正⽅形OA1A2B1,再以正⽅形的对⾓线OA2作正⽅形OA2A3B2,…,依此规律,则点A7的坐标是()A.(﹣8,0)B.(8,﹣8)C.(﹣8,8)D.(0,16)8.如图,在平⾯直⾓坐标系中,有若⼲个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)…根据这个规律,第2019个点的坐标为()A.(45,6)B.(45,13)C.(45,22)D.(45,0)9.如图,在平⾯直⾓坐标系中,AB∥EG∥x轴,BC∥DE∥HG∥AP∥y轴,点D、C、P、H在x轴上,A(1,2),B(﹣1,2),D(﹣3,0),E(﹣3,﹣2),G(3,﹣2),把⼀条长为2018个单位长度且没有弹性的细线线的粗细忽略不计)的⼀端固定在点A处,并按A﹣B﹣C﹣D﹣E﹣F﹣G﹣H﹣﹣P﹣A…的规律紧绕在图形“凸”的边上,则细线另⼀端所在位置的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,0)D.(1,0)10.如图,动点P在平⾯直⾓坐标系中按图中箭头所⽰⽅向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是()A.(2018,1)B.(2018,0)C.(2018,2)D.(2019,0)11.如图,在平⾯直⾓坐标系中,每个最⼩⽅格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“→”⽅向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2017的坐标为()A.(﹣504,﹣504)B.(﹣505,﹣504)C.(504,﹣504)D.(﹣504,505)12.如图,⼀个质点在第⼀象限及x轴,y轴上运动,在第⼀秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所⽰⽅向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动⼀个单位,那么第24秒时质点所在位置的坐标是()A.(0,5)B.(5,0)C.(0,4)D.(4,0)13.如图,在平⾯直⾓坐标系上有个点P(1,0),点P第1次向上跳动1个单位⾄点P1(1,1),紧接着第2次向左跳动2个单位⾄点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次⼜向上跳动1个单位,第6次向左跳动4个单位,…依此规律跳动下去,则点P第2017次跳动⾄P2017的坐标是()A.(504,1007)B.(505,1009)C.(1008,1007)D.(1009,1009)14.如图,在平⾯直⾓坐标系中,有若⼲个整数点,其顺序按图中“→”⽅向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,﹣1)…根据这个规律探索可得,第100个点的坐标()A.(14,0 )B.(14,﹣1)C.(14,1 )D.(14,2 )15.如图,所有正⽅形的中⼼均在坐标原点,且各边与x轴或y 轴平⾏,从内到外,它们的边长依次为2,4,6,8,…顶点依次⽤A1,A2,A3,A4表⽰,则顶点A2018的坐标是()A.(504,﹣504)B.(﹣504,504)C.(505,﹣505)D.(﹣505,505)16.如图,在平⾯直⾓坐标系中,有若⼲个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)…根据这个规律,第2016个点的坐标为()A.(45,9)B.(45,13)C.(45,22)D.(45,0)17.如图,第⼀个正⽅形的顶点A1(﹣1,1),B1(1,1);第⼆个正⽅形的顶点A2(﹣3,3),B2(3,3);第三个正⽅形的顶点A3(﹣6,6),B3(6,6)按顺序取点A1,B2,A3,B4,A5,B6…,则第12个点应取点B12,其坐标为()A.(12,12)B.(78,78)C.(66,66)D.(55,55)18.如图,⼀个点在第⼀象限及x轴、y轴上移动,在第⼀秒钟,它从原点移动到点(1,0),然后按照图中箭头所⽰⽅向移动,即(0,0)→(1,0)→(1,1)→)(0,1)→(0,2)→……,且每秒移动⼀个单位,那么第2018秒时,点所在位置的坐标是()A.(6,44)B.(38,44)C.(44,38)D.(44,6)19.在平⾯直⾓坐标系中,⼀动点从原点出发按向上、向右、向下、向右的⽅向依次不断移动,每次移动1个单位,其移动的路线如图所⽰,则该动点移动到点A100时的坐标是()A.(49,0)B.(49,1)C.(50,0)D.(50,1)20.如图,在平⾯直⾓坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),……依次扩展下去,则P2018的坐标为()A.(﹣503,503)B.(504,504)C.(﹣506,﹣506)D.(﹣505,﹣505)21.如图,动点P从点(3,0)出发,沿所⽰⽅向运动,每当碰到长⽅形OABC的边时反弹,反弹后的路径与长⽅形的边的夹⾓为45°,第1次碰到长⽅形边上的点的坐标为(0,3)……第2018次碰到长⽅形边上的坐标为()A.(1,4)B.(5,0)C.(8,3)D.(7,4)22.如图,在平⾯直⾓坐标系中,⼀动点从原点O出发,沿着箭头所⽰⽅向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P2017的坐标是()A.(671,﹣1)B.(672,0)C.(672,1)D.(672,﹣1)23.如图,在平⾯直⾓坐标系xOy中,点P(1,0).点P 第1次向上跳动1个单位⾄点P1(1,1),紧接着第2次向左跳动2个单位⾄点P2(﹣1,1),第3次向上跳动1个单位⾄点P3,第4次向右跳动3个单位⾄点P4,第5次⼜向上跳动1个单位⾄点P5,第6次向左跳动4个单位⾄点P6,….照此规律,点P 第100次跳动⾄点P100的坐标是()A.(﹣26,50)B.(﹣25,50)C.(26,50)D.(25,50)24.如图,在直⾓坐标系中,设⼀动点⾃P0(1,0)处向上运动1个单位长度⾄P1(1,1),然后向左运动2个单位⾄P2处,再向下运动3个单位⾄P3处,再向右运动4个单位⾄P4处,再向上运动5个单位⾄P5处,…如此继续运动下去,设P n(x n,y n),n=1,2,3,…则x1+x2+…+x99+x100=()A.0B.﹣49C.50D.﹣5025.如图,⼀只跳蚤在第⼀象限及x轴、y轴上跳动,在第⼀秒钟,它从原点跳动到(0,1),然后接着按图中箭头所⽰⽅向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动⼀个单位,那么第24秒时跳蚤所在位置的坐标是()A.(0,3)B.(4,0)C.(0,4)D.(4,4)26.如图,在平⾯直⾓坐标系上有个点P(1,0),点P第1次向上跳运1个单位⾄点P1(1,1)紧接着第2次向左跳动2个单位⾄点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳运3个单位,第5次⼜向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第2016次跳动⾄点P2016的坐标是()A.(505,1008)B.(﹣505,1008)C.(504,1007)D.(﹣504.1007)27.如图,在平⾯直⾓坐标系中,有若⼲个整数点,其顺序按图中“→”⽅向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0).根据这个规律探索可得,第50个点的坐标为()A.(10,5)B.(9,3)C.(10,4)D.(50,0)28.如图,在⼀个单位为1的⽅格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直⾓三⾓形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所⽰规律,A2017的横坐标为()A.1010B.2C.1D.﹣100629.如图,⼀个粒⼦在第⼀象限内及x、y轴上运动,在第⼀分钟内它从原点O运动到(1,0),⽽后它接着按图所⽰在与x 轴、y轴平⾏的⽅向上来回运动,且每分钟移动1个长度单位,那么2017分钟后这个粒⼦所处的位置是()A.(7,45)B.(8,44)C.(44,7)D.(45,8)30.如图,在平⾯直⾓坐标系中,⼀动点从原点O出发,沿着箭头所⽰⽅向,每次移动⼀个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是()A.(672,0)B.(673,1)C.(672,﹣1)D.(673,0)31.如图,在平⾯直⾓坐标系上有点A(1,0),点A第⼀次跳动⾄点A1(﹣1,1),第⼆次点A1跳动⾄点A2(2,1),第三次点A2跳动⾄点A3(﹣2,2),第四次点A3跳动⾄点A4(3,2),……依此规律跳动下去,则点A2017与点A2018之间的距离是()A.2017B.2018C.2019D.202032.如图,⼀个粒⼦从原点出发,每分钟移动⼀次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→……,则2018分钟时粒⼦所在点的横坐标为()A.886B.903C.946D.990评卷⼈得分⼆.填空题(共10⼩题)33.如图,在平⾯直⾓坐标内有点A0(1,0),点A0第⼀次跳动到点A1(﹣1,1),第⼆次点A1跳动到A2(2,1),第三次点A2跳动到A3(﹣2,2),第四次点A3跳动到A4(3,2),……依此规律动下去,则点A2018的坐标是.34.如图,所有正三⾓形的⼀边平⾏于x轴,⼀顶点在y轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次⽤A1、A2、A3、A4、…表⽰,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距⼀个单位,则A2017的坐标是.35.如图,所有正⽅形的中⼼均在坐标原点O,且各边均与x轴成y轴平⾏,从内到外,它们的边长依次是2,4,6,8,…,每个正⽅形从第三象限的顶点开始,按顺时针⽅向顺序,依次记为A1,A2,A3,A4,A5,A6,A7,A8;…,则顶点A10的坐标为.36.如图,在平⾯直⾓坐标系中,有若⼲个横坐标分别为整数的点,其顺序按图中“→”⽅向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的横坐标为.37.如图,在平⾯直⾓坐标系中,有若⼲个整数点,其顺序按图中“→”⽅向排列,如(1,0)、(2,0)、(2,1)、(3,1)、(3,0)、(3,﹣1)、…,根据这个规律探索可得,第220个点的坐标为.38.如图,在平⾯直⾓坐标系中,点A的坐标为(1,0),点A第1次跳动⾄点A1(﹣1,1),第2次向右跳动3个单位长度⾄点A2(2,1),第3次跳动⾄点A3(﹣2,2),第4次向右跳动5个单位长度⾄点A4(3,2),…,依此规律跳动下去,第100次跳动⾄点A100的坐标是.39.如图,在平⾯直⾓坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次扩展下去,则P2018的坐标为.40.如图,在平⾯直⾓坐标系中,第⼀次将三⾓形OAB变换成三⾓形OA1B1,第⼆次将三⾓形OA1B1换成三⾓形OA2B2,第三次将三⾓形OA2B2换成三⾓形OA3B3,……,若A (﹣3,1),A1(﹣3,2),A2(﹣3,4),A3(﹣3,8),点B(0,2),B1(0,4),B2(0,6),B3(0,8),按这样的规律,将三⾓形OAB进⾏2018次变换,得到三⾓形OA2018B2018,则A2018的坐标是.41.如图,动点P在平⾯直⾓坐标系中按图中箭头所⽰⽅向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第100次运动后,动点P的坐标是.42.正六边形ABCDE在平⾯直⾓坐标系内的位置如图所⽰,点A的坐标为(﹣2,0),点B在原点,把正六边形ABCDEF沿x 轴正半轴作⽆滑动的连续翻转,每次翻转60°,经过2017次翻转之后,点B的坐标是.评卷⼈得分三.解答题(共8⼩题)43.在平⾯直⾓坐标系中,⼀只蚂蚁从原点O出发,按向上,向右,向下,向右…的⽅向依次不断移动,每次移动1个单位,其⾏⾛路线如图所求.(1)填写下列各点的坐标A4(,)A8(,)A12(,)(2)直接写出A4n的坐标(n是正整数)(,)(3)说明从点A2016到点A2018的移动⽅向.44.(1)如图,在x轴上,点A的坐标为3,点B的坐标为5,则AB的中点C的坐标为(2)在图中描出点A(2,1)和B(4,3),连结AB,找出AB的中点D并写出D的坐标.(3)已知点M(a,b),N(c,d),根据以上规律直接写出MN的中点P的坐标.45.如图,在平⾯直⾓坐标系中,有若⼲个整数点,其顺序按图中“→”⽅向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…,如果(1,0)是第⼀个点,探究规律如下:(1)坐标为(3,0)的是第个点,坐标为(5,0)的是第个点;( 2 )坐标为(7,0)的是第个点;(3)第74个点的坐标为.46.如图,在平⾯直⾓坐标系中,第⼀将△OAB变成△OA1B1,第⼆次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后的三⾓形,找出规律,按此变化规律再将△OA3B3变换成△OA4B4,则A4的坐标是,B4的坐标是;(2)若按第(1)题找到的规律将△OAB进⾏n次变换,得到△OA n B n,⽐较每次变换中三⾓形顶点坐标有何变化,找出规律,推测A n的坐标是,B n的坐标是.(3)在前⾯⼀系列三⾓形变化中,你还发现了什么?47.如图,在直⾓坐标系中,第⼀次将△OAB变换成△OA1B1,第⼆次将△OA1B1变成△OA2B2,第三次将△OA2B2变成△OA3B3,已知A(1,5),A1(2,5),A2(4,5),A3(8,5);B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后三⾓形有何变化,找出规律.按此规律将△OA3B3变成△OA4B4,则A4的坐标是,B4的坐标是.(2)若按第(1)题中找到的规律将△OAB进⾏n次变换,得到△OA n B n,⽐较每次变换中三⾓形顶点的坐标有何变化,找出规律,推测A n的坐标是,,B n的坐标是.(3)判断△OA n B n的形状,并说明理由.48.⼩明在学习了平⾯直⾓坐标系后,突发奇想,画出了这样的图形(如图),他把图形与x轴正半轴的交点依次记作A1(1,0),A2(5,0),…A n,图形与y轴正半轴的交点依次记作B1(0,2),B2(0,6),…B n,图形与x轴负半轴的交点依次记作C1(﹣3,0),C2(﹣7,0),…?n,图形与y轴负半轴的交点依次记作D1(0,﹣4),D2(0,﹣8),…D n,发现其中包含了⼀定的数学规律.请根据你发现的规律完成下列题⽬:(1)请分别写出下列点的坐标:A3,B3,C3,D3;(2)请分别写出下列点的坐标:A n,B n,?n,D n;(3)请求出四边形A5B5C5D5的⾯积.49.如图,在平⾯直⾓坐标系中,第⼀次将三⾓形OAB变换成三⾓形OA1B1,第⼆次将三⾓形OA1B1,变换成三⾓形OA2B2,第三次将三⾓形OA2B2变换成三⾓形OA3B3,已知A(﹣3,1),A1(﹣3,2),A2(﹣3,4),A3(﹣3,8);B(0,2),B1(0,4),B2(0,6),B3(0,8).(1)观察每次变换前后三⾓形有何变化,找出规律,按此变换规律再将三⾓形OA3B3变换成OA4B4,则点A4的坐标为,点B4的坐标为.(2)若按(1)题找到的规律,将三⾓形OAB进⾏n次变换,得到三⾓形OA n B n,则点A n的坐标是,B n的坐标是.50.如图,在直⾓坐标系中,第⼀次将△OAB变换成△OA1B1,第⼆次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.已知A(1,3),A1(﹣2,﹣3),A2(4,3),A3(﹣8,﹣3),B(2,0),B1(﹣4,0),B2(8,0),B3(﹣16,0).(1)观察每次变换前后的三⾓形有何变化,找出其中的规律,按此变化规律再将△OA3B3变换成△OA4B4,则A4点的坐标为,B4点的坐标为.(2)若按第(1)题找到的规律将△OAB进⾏了n次变换,得到△OA n B n,推测点A n的坐标为,B n的坐标为.。
七年级数学下学期提高题(直角坐标系)新人教版
y xDO CBAD PCBA O xy 直角坐标系班级 姓名 座号线段AB 的两个端点坐标分别为A(3,4-),B(0,2-),把线段AB 平移后得到对应 线段A 1B 1,① 若点A 的对应点A 1的坐标为(1-,2),则点B 的对应点B 1的坐标为 ; ② 若点B 的对应点B 1的坐标为(3-,1),且点C (m ,n )在线段AB 上, 则点A 的对应点A 1的坐标为 ;点C 的对应点C 1的坐标为 . 2.已知点A (m ,-2),B (3,m -1),且直线AB //x 轴,则m 的值是 .3.如图1,在长方形ABCD 中,点A(-4,1),B(0,1),C(0,3),则点D 的坐标为 .4.平行四边形ABCD 的对边平行且相等,若顶点A ,B ,C 的坐标分别为(3-,2),(0,0), (4,3),则顶点D 的坐标为 .5.如图2,在直角坐标系中,O 为坐标原点,四边形OABC 是长方形,点A 、C 的坐标分别 为(10,0),(0,4),点D 是OA 的中点,点P 在BC 边上运动.当线段PD 最短时, 点P 的坐标为 .6.在平面直角坐标系中,已知直线l 与两坐标轴分别交于A 、B (0,-5)两点,且直线l 与 坐标轴围成的图形的面积等于10,则点A 的坐标是______________.7.如图,长方形OABC 中,O 为平面直角坐标系的原点,A 点的坐标为(4,0),点C 的 坐标为(0,6),点B 在第一象限内,点P 从原点O 出发,以每秒2个单位长度的速度沿着 折线OCBAO 的路线移动(即:沿着长方形移动一周), 若点D 的坐标为(2,6),点P 移动的时间为t 秒. (1)当t = 秒,点P 与点D 重合时; (2)当40<<t 时,用含t 的式子表示△APD 的面积:.CBAOxy 图1图2yBC 8.已知点P (2a-12,1-a )位于第三象限,点Q (x ,y )位于第二象限且是由点P 向上平移一定 单位长度得到的.(1)若点P 的纵坐标为-3,试求出a 的值;(2)在(1)题的条件下,试求出符合条件的一个点Q 的坐标; (3)若点P 的横、纵坐标都是整数,试求出a 的值.9. 如图,正方形ABCD 中,AB=8,有一动点P 从B 点出发沿BC 、C D 、DA 以每秒2个单位长度的 速度移动.以A 为原点,射线AB 方向为x 轴正方向,射线AD 为y 轴正方向建立直角坐标系. 问:(1)点C 的坐标( , );(2)当点P 移动的时间t=2秒和t=7秒时,分别写出点P 的坐标; (3)当△ABP 的面积为12时,求P 点移动的时间t 的值; (4)当P 点移动的时间为t 秒时,试用含t 的代数式表示△ABP 的面积.10. 如图,在直角坐标系XOY 中,点A ,B ,C 的坐标分别为(16,0),(10,8),(0,8), 且AB=10,动点P 从坐标原点O 出发以每秒4个单位长的速度沿折线OCBA 移动(不含点O 和A ), 设点P 的移动时间为t (秒).(1)当t 为何值时,点P 的坐标为(4,8); (2)试用含t 的式子表示△OAP 的面积;QOy xP (2a-12,1-a )(第8题图)DCPBA(3)当t 为何值时,△OAP 面积等于四边形OABC 面积的41?直角坐标系班级 姓名 座号1.已知a ,b ,c 为整数,且a +b =2013,a c =2012.若a <b ,求a +b +c 的最大值.2.如图,在平面直角坐标系中,△AOB 是直角三角形,∠AOB=90°,边AB 与y 轴交于点C. 若∠A=∠AOC,试说明:∠B=∠BOC;延长AB 交x 轴于点E ,过O 作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A 的度数; 如图,OF 平分∠AOM,∠BCO 的平分线交FO 的延长线于点P ,∠A=40°,当△ABO 绕 O 点旋转时(边AB 与y 轴正半轴始终相交于点C ),问∠P 的度数是否发生改变?若不变,求其度数;若改变,请说明理由.xy OEDCBAxyOCBAPMF xyOCBA3. 如图,长方形OABC 中,O 为平面直角坐标系的原点,A,C 两点的坐标分别为(3,0),(0,5),点B 在第一象限内. (1)写出点B 的坐标;(2)若过点C 的直线CD 交AB 边于点D ,且把长方形OABC 的周长分为3∶1两部分, 求点D 的坐标;(3)如果将(2)中的线段CD 向下平移2个单位,得到线段C /D /,试计算四边形OAD /C /的面积.4.如图,在平面直角坐标系中,点C 在x 的正半轴上,点A 在y 轴的正半轴上,且OA=7,OC=18,现将点C 向上平移7个单位长度再向左平移4单位长度,得到对应点B . (1)求点B 的坐标及四边形ABC O 的面积;OC BAyxPQ xyOCBA(2)若点P 从点C 以2个单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以每秒1个单位长度的速度沿OA 方向移动,设移动的时间为t 秒(0<t<7),四边形OPBA 与△OQB 的面积分别记为S 四边形OPBA ,S △OQB .①用含t 的式子表示S 四边形OPBA ,S △OQB ; ②是否存在一段时间,使2OPBAS 四边形< S △OQB ,若存在,求出t 的取值范围,若不存在,试说明理由.直角坐标系班级 姓名 座号 1. 若2,2a b a b +=-≥且,则( ) A .b a 有最小值12 B .b a 有最大值1 C .a b 有最大值2 D .a b 有最小值98- 2.因为对于任意的有理数a ,都有02≥a ,所以2a 的最小值是0.利用不等式的性质探究式子62+a 的最小值= ; 式子322+a 的最小值= ;式子532+-a 的最大值= .3.若a 、c 、d 是整数,b 是正整数,且满足a+b=c ,b+c=d ,c+d=a ,求a+b+c+d 的最大值. .4.如果()623456012345621x a a x a x a x a x a x a x -=++++++,求0123456a a a a a a a ++++++和0246a a a a +++的值.5. 在平面直角坐标系中,四边形各顶点的坐标分别为:A(0,0),B(7,0),C(9,5),D(2,7) . (1)求此四边形的面积;OG FCBEAxy (2)在坐标轴上,你能否找到一点P ,使PBC S ∆=50?若能,求出P 点坐标;若不能,请说明理由.6. 如图,已知OABC 是一个长方形,其中顶点A 、B 的坐标分别为(0,a )和(9,a ),点E 在AB 上,且AE=31AB ,点F 在OC 上,且 OF=31OC .点G 在OA 上,且使△GEC 的面积为20, △GFB 的 面积为16,试求a 的值.直角坐标系班级 姓名 座号 1. 若2x <,则化简2(2)3x x -+-= .2.在平面直角坐标系中,点A (x -1,2-x )在第四象限,则实数x 的取值范围是 .3.在平面直角坐标系中,点A 的坐标为(23-,0),点C 的坐标为(23--,0),点B 在y 轴上,若△ABC 的面积为3,则点B 的坐标为 .4.已知O (0,0),B (-1,2),点A 在坐标轴上,且S △OAB =4,求点A 坐标. (提醒:画出图形,有4种,写具体过程)5.已知A (2,0)B (4,3),点P 在坐标轴上,且S △PAB =10,求点P 的坐标 . (提醒:画出图形,有4种,写具体过程)D FE C B A O1xy B A6. 如图,在△ABC 中,BC=8,将△ABC 以每秒2cm 的速度沿BC 所在直线向右平移,所得图形对应 为△DEF ,设平移时间为t 秒,当t= 时,CF =10cm ,当t= 时,AD=2CE.7. 如图,直线AB 与x 轴交于点A(m,0),B (0,3),点P 是x 轴上一点,且使OP=2OA. (1)若m =-2,求△A BP 的面积;(2)是否存在这样的P 点,使得S △PAB =12,若存在,求点P 坐标;若不存在,请说明理由.直角坐标系班级 姓名 座号 1.已知点A(0,y),B (0,-3),画出平面直角坐标系,求线段的长度.(1)若点A 在y 轴正半轴,求线段AB= .(用含y 的的式子表示) (2)若点A 在y 轴负半轴,求线段AB 的长度.(用含y 的的式子表示)E D C B A583C D O Ax y2.设平面直角坐标系的轴以1cm 作为长度单位,△ABC 的顶点坐标分别为A (0,3),B (4,0),C (k ,5),其中0<k <4.若该三角形的面积为8cm 2,则k 的取值范围是( ) A .1 B .38 C .2 D .213.已知B (-3,0)、C (2,0),A (a ,b )在第一象限,D (m ,n )为BC 边上的任意一点.(1)写出m 、n 的取值范围;(2)若△ABC 的面积为40,m=-1,求出△ABD 的面积; (3)若△ABC 的面积为40,△A BD 的面积=24,求m 的值;(4)在(2)的条件下,若E 为AD 的中点,求出△BDE 的面积和E 到DB 的距离.4.已知点A (-2a ,0),B (-a ,0),(1)若a >0,则线段AB= . (用含a 的式子表示) (2)若a <0,则线段AB= . (用含a 的式子表示)5.如图,在平面直角坐标系内放置一个直角梯形AO CD ,已知AD=3,AO=8,OC=5,若点P 在梯形内且POC PAD S S ∆∆=,PCD PAO S S ∆∆=,求点P 的坐标.6.如图,ABC ∆中,∠A =∠2,过B 作DE ∥AC ,过C 作CE ⊥DE 于E ,CM 平分∠BCE ,交AB 的延长线于M ,求∠M 的值.。
人教版七年级数学下册第七章 平面直角坐标系 单元提升含答案
人教版七年级数学下册第七章平面直角坐标系单元提升含答案一、选择题1.在平面直角坐标系中,点P(2,﹣3)在( D )A.第一象限 B.第二象限 C.第三象限 D.第四象限2.经过两点A(2,3)、B(﹣4,3)作直线AB,则直线AB( A )A.平行于x轴B.平行于y轴C..经过原点D.无法确定3.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为( D )A.(﹣3,3)B.(3,2)C.(0,3)D.(1,3)4.已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A 的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为( C )A.(7,1)B.B(1,7)C.(1,1)D.(2,1)5.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是( C )A.(2,﹣3)B.(2,3)C.(3,2)D.(3,﹣2)6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.图7-2-1是一局象棋残局,已知棋子“马”和“车”所在位置用坐标表示分别为(4,3),(-2,1),则棋子“炮”所在位置用坐标表示为( D )A.(-3,3) B.(3,2)C.(0,3) D.(1,3)7.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在网格的格点上.若线段AB上有一个点P(a,b),则点P在线段A′B′上的对应点P′的坐标为( A )A.(a-2,b+3) B.(a-2,b-3) C.(a+2,b+3) D.(a+2,b-3)8.游戏植物大战僵尸中,一个小正方形土地上可以放一株植物,并且当坚果墙在向日葵正右方时,可以保护向日葵.如图,如果向日葵所在的位置是(0,1),豌豆的位置是(2,2),那D .A.(0,2)B.(3,0)C.(2,1)D.(4,1)9.如图,点A,B的坐标分别为(2,0),(0,1).若将线段AB平移至A1B1的位置,则a+b 的值为( A )A.2 B.3 C.4 D.510.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2014次相遇地点的坐标是( B )A.(2,0)B1,1)C2,1)D11)二、填空题11.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是.答案:(﹣3,4)12.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2016次运动后,动点P的坐标是.答案:(2016,0).13.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为.答案:214.知点m(3a-9,1-a),将m点向左平移3个单位长度后落在y轴上,则a=______.【答案】415.如图,一艘船在A处遇险后向相距50海里位于B处的救生船报警,用方向和距离描述遇险船相对于救生船的位置__________.【答案】南偏西15°,50海里16.如图,圆A经过平移得到圆O.如果圆A上一点P的坐标为(m,n),那么平移后的对应点P′的坐标为__________.【答案】(m+2,n-1)三、解答题17.如图,一个小正方形网格的边长表示50米.A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立直角坐标系:(2)B同学家的坐标是;(3)在你所建的直角坐标系中,如果C同学家的坐标为(﹣150,100),请你在图中描出表示C同学家的点.解:(1)如图,(2)B同学家的坐标是(200,150);(3)如图.故答案为(200,150).18.据某报社报道,某省4艘渔船(如图)在回港途中,遭遇9级强风,岛上边防战士接到命令后立即搜救.你能告诉边防战士这些渔船的位置吗?[解析] 利用方向角和距离确定物体的位置,其关键在于选择参照点.由题图可知应选小岛为参照点.解:渔船A 在小岛的北偏东40°方向25 km 处;渔船B 在小岛的正南方向20 km 处;渔船C 在小岛的北偏西30°方向30 km 处;渔船D 在小岛的南偏东65°方向35 km 处.19.在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“友好距离”,给出如下定义:若|x 1﹣x 2|≥|y 1﹣y 2|,则点P 1(x 1,y 1)与点P 2(x 2,y 2)的“友好距离”为|x 1﹣x 2|;若|x 1﹣x 2|<|y 1﹣y 2|,则P 1(x 1,y 1)与点P 2(x 2,y 2)的“友好距离”为|y 1﹣y 2|;(1)已知点A (﹣32,0),B 为y 轴上的动点, ①若点A 与B 的“友好距离为”3,写出满足条件的B 点的坐标: .②直接写出点A 与点B 的“友好距离”的最小值 .(2)已知C 点坐标为C (m ,23m+3)(m <0),D (0,1),求点C 与D 的“友好距离”的最小值及相应的C 点坐标.解:(1)①∵B 为y 轴上的一个动点,∴设点B 的坐标为(0,y ).∵|﹣32﹣0|=32≠3, ∴|0﹣y|=3,解得,y=3或y=﹣3;∴点B 的坐标是(0,3)或(0,﹣3);故填写:(0,3)或(0,﹣3).②根据题意,得:|﹣32﹣0|≥|0﹣y|, 即|y|≤32, ∴点A 与点B 的“友好距离”的最小值为32. 故答案为:32; (2)∵C (m ,23m+3),D (0,1), ∴|m|=|23m+2|, ∵m <0,当m ≤﹣3时,m=23m+2,解得m=6,(舍去);当﹣3<m <0时,﹣m=23m+2,解得m=﹣65, ∴点C 与点D 的“友好距离”的最小值为:|m|=65, 此时C (﹣65,115). 20.先阅读下列一段文字,再回答问题.已知平面内两点P 1(x 1,y 1),P 2(x 2,y 2),这两点间的距离P 1P 2=(x 2-x 1)2+(y 2-y 1)2.同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为|x 2-x 1|或|y 2-y 1|.(1)已知点A (2,4),B (-3,-8),试求A ,B 两点间的距离;(2)已知点A ,B 所在的直线平行于y 轴,点A 的纵坐标为5,点B 的纵坐标为-1,试求A ,B 两点间的距离;(3)已知一个三角形各顶点的坐标分别为A (0,6),B (-3,2),C (3,2),你能判断三角形ABC 的形状吗?说明理由.解:(1)∵A (2,4),B (-3,-8),∴AB =(-3-2)2+(-8-4)2=169.∵132=169,∴169=13,即A ,B 两点间的距离是13.11 (2)∵点A ,B 所在的直线平行于y 轴,点A 的纵坐标为5,点B 的纵坐标为-1, ∴AB =|-1-5|=6,即A ,B 两点间的距离是6.(3)三角形ABC 是等腰三角形.理由:∵一个三角形各顶点的坐标分别为A (0,6),B (-3,2),C (3,2),∴AB =5,BC =6,AC =5,∴AB =AC ,∴三角形ABC 是等腰三角形.21.已知三角形ABC 的三个顶点的坐标分别是A(-2,3),B(0,1),C(2,2).(1)在所给的平面直角坐标系中画出三角形ABC.(2)直接写出点A 到x 轴,y 轴的距离分别是多少?(3)求出三角形ABC 的面积.解:(1)略.(2)点A(-2,3)到x 轴的距离为3,到y 轴的距离为2.(3)三角形ABC 的面积为3.。
7.1平面直角坐标系-2020-2021学年人教版七年级数学下册同步提升训练
2021年度人教版七年级数学下册《7.1平面直角坐标系》同步提升训练(附答案)1.平面直角坐标系中,点(a2+1,2020)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.已知点M到x轴的距离为3,到y轴距离为2,且在第二象限内,则点M的坐标为()A.(﹣2,3)B.(2,3)C.(﹣3,2)D.不能确定3.已知点Q的坐标为(﹣2+a,2a﹣7),且点Q到两坐标轴的距离相等,则点Q的坐标是()A.(3,3)B.(3,﹣3)C.(1,﹣1)D.(3,3)或(1,﹣1)4.如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(﹣1,﹣2),“炮”位于(﹣4,1),则“象”位于点()A.(1,2)B.(﹣2,1)C.(1,﹣2)D.(﹣1,﹣2)5.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),…,按这样的运动规律,第2021次运动后,动点P2021的纵坐标是()A.1B.2C.﹣2D.06.如图,点Q(m,n)是第二象限内一点,则点Q到y轴的距离是()A.m B.n C.﹣m D.﹣n7.已知第二象限的点P(﹣4,1),那么点P到x轴的距离为()A.1B.4C.﹣3D.38.已知平面直角坐标系有一点P(x,x+2),无论x取何值,点P不可能在()A.第一象限B.第二象限C.第三象限D.第四象限9.点P(t+3,t+2)在直角坐标系的x轴上,则P点坐标为()A.(0,﹣2)B.(﹣2,0)C.(1,2)D.(1,0)10.点P(a,b)在第四象限,且|a|>|b|,那么点Q(a+b,a﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限11.若点A(a,b﹣2)在第二象限,则点B(﹣a,b+1)在第象限.12.已知点P(a,b),ab>0,a+b>0,则点P在第象限.13.已知点E(a﹣3,2a+1)到两坐标轴的距离相等,则点E的坐标为.14.已知点P(2m+4,m﹣1)在第一象限,到x轴的距离为2,则m=.15.在平面直角坐标系中,第二象限内有一点M,点M到x轴的距离为5,到y轴的距离为4,则点M的坐标是.16.若影院11排5号的座位记作(11,5),则(6,7)表示的座位是.17.已知点P(8﹣2m,m+1)在y轴上,则点P的坐标为.18.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P的坐标是.19.如图,一甲虫从原点出发按图示方向作折线运动,第1次从原点到A1(1,0),第2次运动到A2(1,1),第3次运动到A3(﹣1,1),第4次运动到A4(﹣1,﹣1),第5次运动到A5(2,﹣1)…则第2020次运动到的点A2020的坐标是.20.已知点P(3a+6,2﹣a)在坐标轴上,则点P的坐标为.21.小明和爸爸、妈妈到白银水川湿地公园游玩,回到家后,他利用平面直角坐标系画出了公园的景区地图,如图所示.可是他忘记了在图中标出原点、x轴及y轴.只知道长廊E 的坐标为(4,﹣3)和农家乐B的坐标为(﹣5,3),请你帮他画出平面直角坐标系,并写出其他各点的坐标.22.平面直角坐标系中,有一点M(a﹣1,2a+7),试求满足下列条件的a的值.(1)点M在x轴上;(2)点M在第二象限;(3)点M到y轴距离是1.23.在平面直角坐标系中,一只蜗牛从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位长度,其行走路线如图所示:(1)填写下列各点的坐标:A5(,),A9(,),A13(,);(2)写出点A4n+1的坐标(n是正整数);(3)指出蜗牛从点A2020到点A2021的移动方向.24.已知点P(8﹣2m,m+1).(1)若点P在y轴上,求m的值.(2)若点P在第一象限,且点P到x轴的距离是到y轴距离的2倍,求P点的坐标.25.如图为东明一中新校区分布图的一部分,方格纸中每个小方格都是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的位置坐标为B(﹣2,﹣1),解答以下问题:(1)在图中找到坐标系中的原点,并建立直角坐标系;(2)若体育馆的坐标为C(1,﹣3),食堂坐标为D(2,0),请在图中标出体育馆和食堂的位置;(3)顺次连接教学楼、图书馆、体育馆、食堂得到四边形ABCD,求四边形ABCD的面积.参考答案1.解:因为a2+1≥1,所以点(a2+1,2020)所在象限是第一象限.故选:A.2.解:由题意,得|y|=3,|x|=2,点M到x轴的距离是3,到y轴的距离是2,且在第二象限,得x=﹣2,y=3,则点M的坐标是(﹣2,3),故选:A.3.解:∵点Q(﹣2+a,2a﹣7)到两坐标轴的距离相等,∴|﹣2+a|=|2a﹣7|,∴﹣2+a=2a﹣7或﹣2+a=﹣(2a﹣7),解得a=5或a=3,所以,点Q的坐标为(3,3)或(1,﹣1).故选:D.4.解:由“将”和“炮”的坐标可建立如图所示平面直角坐标系:,故“象”位于点(1,﹣2).故选:C.5.解:观察图象,结合第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),…,运动后的点的坐标特点,由图象可得纵坐标每6运动组成一个循环:P1(1,1),P2(2,0),P3(3,﹣2),P4(4,0),P5(5,2),P6(0,0)…;∵2021÷6=336…5,∴经过第2021次运动后,动点P的坐标与P5坐标相同,为(5,2),故经过第2021次运动后,动点P的纵坐标是2.故选:B.6.解:因为Q(m,n)是第二象限内一点,所以m<0,所以点Q到y轴的距离是|m|=﹣m.故选:C.7.解:点P到x轴的距离为1.故选:A.8.解:A、当x>0时,点P(x,x+2)在第一象限,故本选项不合题意;B、当﹣2<x<0时,点P(x,x+2)在第二象限,故本选项不合题意;C、当x<﹣20时,点P(x,x+2)在第三象限,故本选项不合题意;D、因为x<x+2,所以无论x取何值,点P(x,x+2)不可能在第四象限.故选:D.9.解:∵点P(t+3,t+2)在直角坐标系的x轴上,∴t+2=0,解得:t=﹣2,故t+3=1,则P点坐标为(1,0).故选:D.10.解:∵点P(a,b)在第四象限,且|a|>|b|,∴a>0,b<0,a+b>0,a﹣b>0,∴点Q(a+b,a﹣b)在第一象限.故选:A.11.解:∵点A(a,b﹣2)在第二象限,∴a<0,b﹣2>0,∴b>2,∴﹣a>0,b+1>3,∴点B(﹣a,b+1)在第一象限.故答案为:一.12.解:因为ab>0,a+b>0,所以a>0,b>0,点P(a,b)在第一象限,故答案为:一.13.解:∵点E(a﹣3,2a+1)到两坐标轴的距离相等,∴a﹣3=2a+1或(a﹣3)+(2a+1)=0;解得:a=﹣4或a=,所以点E的坐标为(﹣7,﹣7)或(﹣,).故答案为:(﹣7,﹣7)或(﹣,).14.解:∵点P(2m+4,m﹣1)在第一象限,且到x轴的距离是2,∴m﹣1=2,解得:m=3,故答案为:3.15.解:设点M的坐标是(x,y).∵点M到x轴的距离为5,到y轴的距离为4,∴|y|=5,|x|=4.又∵点M在第二象限内,∴x=﹣4,y=5,∴点M的坐标为(﹣4,5),故答案为:(﹣4,5).16.解:11排5号可以用(11,5)表示,则(6,7)表示6排7号,故答案为:6排7号.17.解:∵点P(8﹣2m,m+1)在y轴上,∴8﹣2m=0,解得m=4,∴m+1=4+1=5,∴点P的坐标为(0,5).故答案为:(0,5).18.解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,4个数一个循环,所以2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).故答案为:(2021,1).19.解:∵2020÷4=505,∴点A2020在第三象限,∴点A2020的坐标是(﹣505,505).故答案为:(﹣505,﹣505).20.解:当P在x轴上时,2﹣a=0,解得:a=2,则3a+6=12,故P(12,0);当P在y轴上时,3a+6=0,解得:a=﹣2,故2﹣a=4,则P(0,4).所以P(12,0)或(0,4).故答案为:(12,0)或(0,4).21.解:由题意可知,本题是以点D为坐标原点(0,0),DA为y轴的正半轴,建立平面直角坐标系.则A、C、F的坐标分别为:A(0,4);C(﹣3,﹣2);F(5,5).22.解:(1)要使点M在x轴上,a应满足2a+7=0,解得a=,所以,当a=时,点M在x轴上;(2)要使点M在第二象限,a应满足,解得,所以,当时,点M在第二象限;(3)要使点M到y轴距离是1,a应满足|a﹣1|=1,解得a=2或a=0,所以,当a=2或a=0时,点M到y轴距离是1.23.解:(1)根据点的坐标变化可知:各点的坐标为:A5(2,1),A9(4,1),A13(6,1);故答案为:2,1,4,1,6,1;(2)根据(1)发现:点A4n+1的坐标(n为正整数)为(2n,1);(3)因为每四个点一个循环,所以2021÷4=505…1.所以蚂蚁从点A2020到点A2021的移动方向是向上.24.解:(1)∵点P(8﹣2m,m+1),点P在y轴上,∴8﹣2m=0,解得:m=4;(2)由题意可得:m+1=2(8﹣2m),解得:m=3,则8﹣2m=2,m+1=4,故P(2,4).25.解:(1)建立平面直角坐标系如图所示;(2)体育馆C(1,﹣3),食堂D(2,0)如图所示;(3)四边形ABCD的面积=4×5﹣×3×3﹣×2×3﹣×1×3﹣×1×2,=20﹣4.5﹣3﹣1.5﹣1,=20﹣10,=10.。
(人教版)长春七年级数学下册第七单元《平面直角坐标系》提高卷(答案解析)
一、选择题1.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠ 2.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .3 3.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1) 4.点A 到x 轴的距离是3,到y 轴的距离是6,且点A 在第二象限,则点A 的坐标是( )A .(-3,6)B .(-6,3)C .(3,-6)D .(8,-3) 5.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°6.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1-- 7.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5)8.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.点(),A m n 满足0mn =,则点A 在( ) A .原点 B .坐标轴上 C .x 轴上D .y 轴上 10.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 3030,3)D .(3030,﹣3) 11.在下列点中,与点A(-2,-4)的连线平行于y 轴的是( ) A .(2,-4) B .(4,-2) C .(-2,4) D .(-4,2) 12.如图,在平面直角坐标系中,半径为1个单位长度的半圆123,,O O O ,…组成一条平滑曲线,点P 从点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2016秒时,点P 的坐标是( )A .()2016,1B .()2016,0C .()2016,1-D .()2016,0π 13.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P 的坐标是( )A .(2021,0)B .(2020,1)C .(2021,1)D .(2021,2) 14.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上 15.在平面直角坐标系中,点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,点C (1,2),连接AC ,BC ,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为( )A .﹣1<a ≤0B .0<a ≤1C .1≤a <2D .﹣1≤a ≤1二、填空题16.平面直角坐标系中,已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在第二象限,则点P 的坐标是__________.17.若点A (m +2,﹣3)与点B (﹣4,n +5)在二四象限角平分线上,则m +n =_____. 18.已知点A(3,b)在第一象限,那么点B(-3,-b)在第________象限.19.点P 先向左平移4个单位,再向上平移1个单位,得到点Q(2,-3),则点P 坐标为__ 20.已知两点A(-2,m),B(n ,-4),若AB//y 轴,且AB=5,则m=_______;n=_______________.21.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,-1),…,按照这样的运动规律,点P 第17次运动到的点的坐标为__________.22.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换: ①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________.23.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.24.若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________ 25.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,按这样的运动规律,经过第1000次运动后,动点P 的坐标是_______;经过第2019次运动后,动点P 的坐标是_______.26.在平面直角坐标系中,点()3,1A -在第______象限.三、解答题27.在平面直角坐标系内,点()0,5A,点()29,32M x x --在第三象限, (1)求x 的取值范围;(2)点M 到y 轴的距离是到x 轴的2倍,请求出M 点坐标;(3)在(2)的基础上,若y 轴上存在一点P 使得AMP 的面积为10,请求出P 点坐标.28.如图,中国象棋中对“象”的走法有一定的限制,只能走“田”字.若此时“象”的坐标为()2,4--“帅”的坐标为()0,4-,建立直角坐标系并试写出此“象”下一步可能走到的各位置的坐标.29.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为()6,6-,()3,0-,()0,3.(1)画出三角形ABC ,并求它的面积.(2)在三角形ABC 中,点C 经过平移后的对应点为()5,4C ',将三角形ABC 做同样的平移得到三角形A B C ''',画出平移后的三角形A B C ''',并写出点A ',B '的坐标. 30.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标.(3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.。
人教版七年级数学下册名校课堂同步提升训练:平面直角坐标系
《平面直角坐标系》提升训练1.在平面直角坐标系中,点()22,P x在()A.第一象限B.第四象限C.第一或第四象限D.以上说法都不对2.(2019·甘肃)已知点(2,24)+-在x轴上,则点P的坐标是()P m mA.(4,0)B.(0,4)C.(4,0)-D.(0,4)-3.如图,长方形ABCD的边CD在y轴上,点O为CD的中点,已知4AB=,AB交x轴于点(50)E-,,则点B的坐标为()A.(5,2)-B.(2,5)C.(5,2)-D.(5,2)--4.(教材P69习题T4变式)(2018·扬州改编)已知点M到x轴的距离为3,到y轴的距离为4.(1)若M点位于第一象限,则其坐标为___________;(2)若M点位于x轴的上方,则其坐标为___________;(3)若M点位于y轴的右侧,则其坐标为___________.5.(教材P70习题T8变式)已知(3,),(,4)A mB n-,若//AB=,则AB x轴,且8m =_________,n =_____________.6.如图是某台阶的一部分,每级台阶的高度相同,宽度也相同.已知点A 的坐标为00(,),点B 的坐标为11(,).(1)请建立适当的平面直角坐标系,并写出点C D E F ,,,的坐标;(2)如果该台阶有10级,你能得到该台阶的高度吗?7.在如图所示的平面直角坐标系内描出各点,并依次用线段连接各点: 7(4,4),(3,3),(4,3),(2,1),(4,1),,02⎛⎫ ⎪⎝⎭,9,0,(4,1),(6,1),(4,3),(5,3),(4,4)2⎛⎫ ⎪⎝⎭. 观察得到的图形,你觉得该图形像什么?求出所得到图形的面积.8.(教材P71习题T14变式)已知点3)---.A B C,3),(4,(1,3)(2,(1)在平面直角坐标系中标出点A B C,,的位置;(2)求线段AB的长;(3)求点C到x轴的距离,点C到AB的距离;(4)求三角形ABC的面积;(5)若点P在y轴上,且三角形ABP的面积与三角形ABC的面积相等,求点P的坐标.参考答案1.D2.A3.D4.(1)(4,3)(2)(4,3)或(4,3)-(3)(4,3)或(4,3)-5.4 5或11-6.解:(1)以A点为原点,水平方向为x轴,建立平面直角坐标系(图略).所以点C D E F,,,的坐标分别为(2,2),(3,3),(4,4),(5,5)C D E F.(2)因为每级台阶的高度为1,所以10级台阶的高度是10.7.解:图略,该图形像宝塔松.图形的面积为111111 11422141 22222⨯⨯+⨯⨯+⨯⨯=++=.8.解:(1)图略.(2)6AB=.(3)点C到x轴的距离为3,到AB的距离为6.(4)166182ABCS=⨯⨯=三角形.(5)设(0,)P y.当点P在AB的上方时,16(3)182y⨯⨯-=,解得9y=;当点P在AB的下方时,16(3)182y⨯⨯-=,解得3y=-.∴点P的坐标的(0,9),或(0,3)-.。
数学《平面直角坐标系》综合提高题 2021-2022学年人教版数学七年级下册
数学《平面直角坐标系》综合提高题2021-2022学年人教版数学七年级下册一、精心选一选1. 点A1(5,–7)关于x轴对称的点A2的坐标为( ).A.(–5,–7)B.(–7,–5)C.(5,7)D.(7,–5)2. 若a>0,b<-2,则点(a,b+2)在( )A.第一象限B.第二象限C.第三象限D.第四象限3. 若ab>0,则P(a,b)在( )A.第一象限 B.第一或第三象限 C.第二或第四象限 D.以上都不对4. 线段CD是由线段AB平移得到的。
点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为( )A.(2,9) B.(5,3)C.(1,2) D.(–9,–4)5. 线段AB两端点坐标分别为A(4,1-),B(1,4-),现将它向左平移4个单位长度,得到线段A1B1,则A1、B1的坐标分别为( )(A)A1(0,5,8--)(B)A1(7,3),B1(0,5)-),B1(3(C)A1(4,5-),B1(-8,1)(D)A1(4,3),B1(1,0)6. 若点P(x,y)在第三象限,且点P到x轴的距离为3,到y轴的距离为2,则点P的坐标是( )A.(-2,-3)B.(-2,3)C.(2,-3)D.(2,3)7. 如图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么C的位置是( )A.(4,5)B.(5,4)C.(4,2)D.(4,3)8. 如图,若△ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+5,y0-3)那么将△ABC作同榉的平移得到△A1B1C1,则点A的对应点A1的坐标是( )A.(4,1)B.(9,一4)C.(一6,7)D.(一1,2)9. 和数轴上的点一一对应的是( )。
A.整数B.有理数C.无理数D.实数10. 如图,P、2P、3P这三个点中,在第二象限内的有( )1A.P、2P、3P B.1P、2P C.1P、3P D.1P111. 点E(a,b)到x轴的距离是4,到y轴距离是3,则有( )A.a=3,b=4 B.a=±3,b=±4 C.a=4,b=3 D.a=±4,b=±3 12. 在直角坐标系中,将点P(-3,2)向右平移4个单位长度,再向下平移6个单位长度后,得到的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限二、细心填一填13. 电影票上“4排5号”,记作(4,5),则5排4号记作___.14. 对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,﹣b)如:f(1,2)=(1,﹣2);g(a,b)=(b,a).如:g(1,2)=(2,1).据此得g(f(5,﹣9))=__________.15. 已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标为___.16. 已知点A(-1,b+2)在坐标轴上,则b=________。
2020七年级数学下学期《平面直角坐标系》巩固提高(新人教版七年级下)
一、选择题:1.在平面直角坐标系中,若点P (x -3, x )在第二象限,则x 的取值范围为 ( )A . x >0B .x <3C .0<x <3D .x >3 2.已知直角坐标系中,点P (x ,y )满足42 x +(y+3)2=0,则点P 坐标为( )A .(2,-3)B .(-2,3)C .(2,3)D .(2,-3)或(-2,-3) 3.已知点P 位于错误!未找到引用源。
轴右侧,距错误!未找到引用源。
轴3个单位长度,位于错误!未找到引用源。
轴上方,距离错误!未找到引用源。
轴4个单位长度,则点P 坐标是( )A 、(-3,4)B 、(3,4)C 、(-4, 3)D 、(4,3) 4.如果P (a+b, ab )在第二象限,那么点Q (a,-b) 在第__象限. A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.在平面直角坐标系中,将点(x ,y )向左平移a 个单位长度,再向下平移b 个单位长度,则平移后得到的点是( )A 、(x+a ,y+b )B 、(x+a ,y-b )C 、(x-a ,y+b )D 、(x-a ,y-b)6.如图,在方格纸中每个小方格都是边长为1的正方形,A 、B 两点在小方格的顶点上,点C 也在小方格的顶点上,且以A 、B 、C 为顶点的三角形的面积为1个平方单位,则点C 的个数为( )A.3个B.4个C.5个D.6个 二、填空题:B A7.点M (2,-3)到x 轴的距离是______8.如果点P (x 2-4,y+1)是坐标原点,则2错误!未找到引用源。
= 9.已知点P (5a -7,-6a -2)在二、四象限的角平分线上,则a=三、解答题:10.如图所示是某战役缴获敌人防御工事坐标地图的碎片,依稀可见:一 号暗堡A 的坐标 为(4,3),五号暗堡B 的坐标为(-2,3).另有情报得 知敌军指挥部的坐标为(-3,-2)。
请问你能找到敌军 的指挥部吗?请通过画图标出敌军指挥部。
人教版七年级下册 第七章 平面直角坐标系提升训练
人教版七年级下册 第七章 平面直角坐标系提升训练七下平面直角坐标系相关提高训练(含答案)解决平面直角坐标系相关综合题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题,逐个击破;第三,要善于联想和转化,将以上得到的显性条件进行恰当的组合,进一步得到新的结论,尤其要注意的是,恰当地使用分析综合法及方程和函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题。
1、在平面直角坐标系中,0A=7,OC=18,现将点C 向上平移7个单位长度再向左平移4个单位长度,得到对应点B 。
(1)求点B 的坐标(2)若点P 从点C 以2个单位长度秒的速度沿C0方向移动,同时点Q 从点0以1个单位长度秒的速度沿0A 方向移动,设移动的时间为t 秒(0<t<7),四边形0PBA 与△0QB 的面积分别记为OPBA S 四边形与OQB S ∆,是否存在时间t,使OQB S OPBA S ∆≤2四边形,若存在,求出t 的范围,若不存在,试说明理由。
(3)在(2)的条件下,OPBQ S 四边形的值是否不变,若不变,求出其值,若变化,求出其范围2、如图,在平面直角坐标新中,AB//CD//x 轴,BC//DE//y 轴,且AB=CD=4cm ,OA=5cm ,DE=2cm,动点P 从点A 出发,沿C B A →→路线运动到点C 停止;动点Q 从点O 出发,沿C D E O →→→路线运动到点C 停止;若P 、Q 两点同时出发,且点P 的运动速度为1cm/s,点Q 的运动速度为2cm/s.(1) 、直接写出B 、C 、D 三个点的坐标; (2) 、当P 、Q 两点出发s 211时,试求的面积PQC ∆; (3) 、设两点运动的时间为t s,用t 的式子表示运动过程中S OPQ 的面积∆.3、如图,在平面直角坐标系中,A(a,0)为x 轴正半轴上一点,B(0,b)为y 轴正半轴上一点,且a 、b 满足()0382=-+-+b a b a(1)求S △AOB(2)点P(m,n)为直线L 上一动点,满足m-2n+2=0. ①若P 点正好在AB 上,求此时P 点坐标;②若B A S PAB S 0∆≥∆,试求m 的取值范围. L4、如图,已知点A ():51,3个单位,右移轴上,将点在A x m m --上移3个单位得到点B; (1) ,则m= ;B 点坐标( );(2) 连接AB 交y 轴于点C ,点D 是X 轴上一点,点坐标;,求的面积为D DAB 9∆(3) 求ABAC5、如图,在平面直角坐标系中,()().,2,1,6,4P y AB B A 轴于点交线段---(1) ,点A 到x 轴的距离是 ;点B 到x 轴的距离是 ;p 点坐标是 ; (2) ,延长AB 交x 轴于点M ,求点M 的坐标;(3) ,在坐标轴上是否存在一点T,使点坐标;?若存在,求的面积等于T ABT 6∆若不存在,说明理由。
人教版七年级数学下册 平面直角坐标系专题复习提升训练(,含答案)
人教版七年级数学下册《平面直角坐标系》单元训练一、选择题1、在平面直角坐标系中,点P(-2,-3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2、在方格纸上画出的小旗图案如图所示,若用(﹣2,1)表示A点,(﹣2,5)表示B点,那么C点的位置可表示为()A.(3,5)B.(5,3)C.(1,3)D.(1,2)3、下列数据能确定物体具体位置的是()A.朝阳大道右侧B.好运花园2号楼C.东经103°,北纬30°D.南偏西55°4、如图是中国象棋的一盘残局,如果用(2,-3)表示“帅”的位置,用(6,4)表示“炮”的位置,那么“将”的位置应表示为()A.(6,4) B.(4,6) C.(1,6) D.(6,1)5、已知点P(x,|x|),则点P一定()A.在第一象限B.不在y轴上C.在x轴上方D.不在x轴下方6、如图,小手盖住的点的坐标可能是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(1,2)7、在平面直角坐标系中,点A的坐标为(﹣4,3),AB∥y轴,AB=5,则点B的坐标为()A.(1,3)B.(﹣4,8)C.(﹣4,8)或(﹣4,﹣2)D.(1,3)或(﹣9,3)8、点P位于y轴左方,距y轴3个单位长,位于x轴上方,距x轴4个单位长,点P的坐标是()A.(3,-4)B.(-3,4)C.(4,-3)D.(-4,3)9、下列说法正确的是()A.若点A(3,﹣1),则点A到x轴的距离为3 B.平行于y轴的直线上所有点的纵坐标都相同C.(﹣2,2)与(2,﹣2)表示两个不同的点D.若点Q(a,b)在x轴上,则a=010、到x轴的距离等于3的点组成的图形是()A.过点(0,3)且与x轴平行的直线B.过点(3,0)且与y轴平行的直线C.过点(0,﹣3)且与x轴平行的直线D.分别过(0,3)和(0,﹣3)且与x轴平行的两条直线11、在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数a,则所得的图案与原来图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位C.图案向上平移了a个单位D.图案向右平移了a个单位,并且向上平移了a个单位12、如图,在平面直角坐标系中,点A(﹣1,0),点A第1次向上跳动1个单位至点A1(﹣1,1)紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,……依此规律跳动下去,点A第2020次跳动至点A2020的坐标是()A.(505,1010)B.(﹣506,1010)C.(﹣506,1011)D.(506,1011)二、填空题13、如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2,90°),目标B的位置为(4,210°),则目标C的位置为.14、如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(﹣2,2),黑棋(乙)的坐标为(﹣1,﹣2),则白棋(甲)的坐标是.15、若点A(a,b)在第二象限,则点B(b,a)在第象限.16、已知点P(8﹣2m,m+1)在y轴上,则点P的坐标为.17、如果将点A(﹣3,﹣2)向右平移2个单位长度再向下平移3个单位长度得到点B,那么点B的坐标是.18、如果点P在x轴下方,到x轴的距离是5,到y轴的距离是2,那么点P的坐标为.19、若点P(2x-2,-x+4)到两坐标轴的距离相等,则点P的坐标为________.20、已知线段AB∥y轴,若点A的坐标为(5,n﹣1),B(n2+1,1),则n为.21、如图,一个机器人从点O出发,向正东方向走3m到达点A1,再向正北方向走6m到点A2,再向正西方向走9m到达点A3,再向正南方向走12m到达点A4,…,按如此规律走下去,当机器人走到点A6时,请建立适当的坐标系,写出A6的坐标.(以O点为坐标原点)22、已知在平面直角坐标系中,线段AB的两个端点坐标分别为A(2,5),B(6,﹣2),点P(m,n)为线段AB上一点,若平移AB使其两个端点都落在坐标轴上,则平移后点P的坐标为.三、解答题23、在平面直角坐标系中,A(4,6),B(2,4),C(8,0).(1)在平面直角坐标系中画出△ABC;(2)平移△ABC,使C点到坐标原点,则A、B对应点A1________,B1________.(3)求S△ABC.24、如图,三角形A′B′C′是由三角形ABC经过某种平移得到的,点A与点A′,点B与点B′,点C与点C′分别对应,且这六个点都在格点上,观察各点以及各点坐标之间的关系,解答下列问题:(1)分别写出点B和点B′的坐标,并说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的;(2)连接BC′,直接写出∠CBC′与∠B′C′O之间的数量关系;(3)若点M(a﹣1,2b﹣5)是三角形ABC内一点,它随三角形ABC按(1)中方式平移后得到的对应点为点N(2a ﹣7,4﹣b),求a和b的值.25、如果点P(x2-4,y+1)是坐标原点,求代数式2x+y的值.26、已知点M(1-a,2|a|-4)在x轴负半轴上.(1)求M点的坐标;(2)求式子(3-2a)2017+1的值.27、平面直角坐标系中,有一点M(a﹣1,2a+7),试求满足下列条件的a的值.(1)点M在x轴上;(2)点M在第二象限;(3)点M到y轴距离是1.28、如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.(答案)一、选择题1、在平面直角坐标系中,点P(-2,-3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】点P(-2,-3)所在的象限是第三象限.2、在方格纸上画出的小旗图案如图所示,若用(﹣2,1)表示A点,(﹣2,5)表示B点,那么C点的位置可表示为()A.(3,5)B.(5,3)C.(1,3)D.(1,2)解:如图所示:C点的位置可表示为(1,3),选:C.3、下列数据能确定物体具体位置的是()A.朝阳大道右侧B.好运花园2号楼C.东经103°,北纬30°D.南偏西55°解:东经103o,北纬30o能确定物体的具体位置,故选:C.4、如图是中国象棋的一盘残局,如果用(2,-3)表示“帅”的位置,用(6,4)表示“炮”的位置,那么“将”的位置应表示为()A.(6,4) B.(4,6) C.(1,6) D.(6,1)【答案】C【解析】建立平面直角坐标系如图所示,将的位置应表示为(1,6).5、已知点P(x,|x|),则点P一定()A.在第一象限B.不在y轴上C.在x轴上方D.不在x轴下方【答案】D【解析】因为|x|≥0,所以点P的纵坐标是非负数,所以点P一定不在x轴下方.6、如图,小手盖住的点的坐标可能是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(1,2)解:由图可知,小手盖住的点在第二象限,(﹣1,﹣2),(﹣1,2),(1,﹣2),(1,2)中只有(﹣1,2)在第二象限.选:B.7、在平面直角坐标系中,点A的坐标为(﹣4,3),AB∥y轴,AB=5,则点B的坐标为()A.(1,3)B.(﹣4,8)C.(﹣4,8)或(﹣4,﹣2)D.(1,3)或(﹣9,3)解:∵AB∥y轴,∴A、B两点的横坐标相同,又AB=5,∴B点纵坐标为:3+5=8或3﹣5=﹣2,∴B点的坐标为:(﹣4,﹣2)或(﹣4,8);故选:C.8、点P位于y轴左方,距y轴3个单位长,位于x轴上方,距x轴4个单位长,点P的坐标是() A.(3,-4)B.(-3,4)C.(4,-3)D.(-4,3)【答案】B【解析】因为点P位于y轴左方,所以点P的横坐标小于0,因为距y轴3个单位长,所以点P的横坐标是-3;又因为P点位于x轴上方,距x轴4个单位长,所以点P的纵坐标是4,所以点P的坐标是(-3,4).9、下列说法正确的是()A.若点A(3,﹣1),则点A到x轴的距离为3B.平行于y轴的直线上所有点的纵坐标都相同C.(﹣2,2)与(2,﹣2)表示两个不同的点D.若点Q(a,b)在x轴上,则a=0解:A、若点A(3,﹣1),则点A到x轴的距离应该是1,本选项错误,不符合题意.B、平行于y轴的直线上所有点的纵坐标都相同,错误,应该是横坐标相同,本选项不符合题意.C、(﹣2,2)与(2,﹣2)表示两个不同的点,正确,本选项符合题意.D、若点Q(a,b)在x轴上,应该是b=0,本选项错误,不符合题意.故选:C.10、到x轴的距离等于3的点组成的图形是()A.过点(0,3)且与x轴平行的直线B.过点(3,0)且与y轴平行的直线C.过点(0,﹣3)且与x轴平行的直线D.分别过(0,3)和(0,﹣3)且与x轴平行的两条直线解:∵到x轴的距离等于3的点都在与x轴平行且该直线上的点的纵坐标为3或﹣3的两条直线上,∴到x轴的距离等于3的点组成的图形是分别过(0,3)和(0,﹣3)且与x轴平行的两条直线.故选:D.11、在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数a,则所得的图案与原来图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位C.图案向上平移了a个单位D.图案向右平移了a个单位,并且向上平移了a个单位【答案】D【解析】在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数a,则图案向右平移了a个单位,并且向上平移了a个单位.12、如图,在平面直角坐标系中,点A(﹣1,0),点A第1次向上跳动1个单位至点A1(﹣1,1)紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,……依此规律跳动下去,点A第2020次跳动至点A2020的坐标是()A.(505,1010)B.(﹣506,1010)C.(﹣506,1011)D.(506,1011)解:设第n次跳动至点A n,观察,发现:A(﹣1,0),A1(﹣1,1),A2(1,1),A3(1,2),A4(﹣2,2),A5(﹣2,3),A6(2,3),A7(2,4),A8(﹣3,4),A9(﹣3,5),…,∴A4n(﹣n﹣1,2n),A4n+1(﹣n﹣1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数).∵2020=505×4,∴A2020(﹣505﹣1,505×2),即(﹣506,1010).故选:B.二、填空题13、如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2,90°),目标B的位置为(4,210°),则目标C的位置为.解:由题意,点C的位置为(3,150°).故答案为(3,150°).14、如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(﹣2,2),黑棋(乙)的坐标为(﹣1,﹣2),则白棋(甲)的坐标是.解:如图,白棋(甲)的坐标是(2,1).答案为(2,1).15、若点A(a,b)在第二象限,则点B(b,a)在第象限.解:∵点A(a,b)在第二象限,∴a<0,b>0,∴点B(b,a)在第四象限.答案为:四.16、已知点P(8﹣2m,m+1)在y轴上,则点P的坐标为.解:∵点P(8﹣2m,m+1)在y轴上,∴8﹣2m=0,解得m=4,∴m+1=4+1=5,∴点P的坐标为(0,5).故答案为:(0,5).17、如果将点A(﹣3,﹣2)向右平移2个单位长度再向下平移3个单位长度得到点B,那么点B的坐标是.解:将点A(﹣3,﹣2)向右平移2个单位长度再向下平移3个单位长度得到点B(﹣3+2,﹣2﹣3)即(﹣1,﹣5),答案为:(﹣1,﹣5).18、如果点P在x轴下方,到x轴的距离是5,到y轴的距离是2,那么点P的坐标为.解:因为点P在x轴下方,到x轴的距离是5,所以点P的纵坐标是﹣5;因为点P到y轴的距离是2,所以点P的横坐标是2或﹣2,所以点P的坐标为(2,﹣5)或(﹣2,﹣5).答案为:(2,﹣5)或(﹣2,﹣5).19、若点P(2x-2,-x+4)到两坐标轴的距离相等,则点P的坐标为________.解:因为点P到两坐标轴的距离相等,所以2x-2=-x+4或2x-2=-(-x+4),即x=2或x=-2,代入点P,坐标为(2,2)或(-6,6).20、已知线段AB∥y轴,若点A的坐标为(5,n﹣1),B(n2+1,1),则n为.解:∵线段AB∥y轴,点A的坐标为(5,n﹣1),B(n2+1,1),∴5=n2+1,n﹣1≠1,解得:n=﹣2,答案为:﹣2.21、如图,一个机器人从点O出发,向正东方向走3m到达点A1,再向正北方向走6m到点A2,再向正西方向走9m到达点A3,再向正南方向走12m到达点A4,…,按如此规律走下去,当机器人走到点A6时,请建立适当的坐标系,写出A6的坐标.(以O点为坐标原点)解:根据题意可知:A1(3,0),A2(3,6),A3(﹣6,6),A4(﹣6,﹣6),A5(9,﹣6),∵OA1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,∴A5A6=18,A6A7=21,∴A6(9,12).22、已知在平面直角坐标系中,线段AB的两个端点坐标分别为A(2,5),B(6,﹣2),点P(m,n)为线段AB上一点,若平移AB使其两个端点都落在坐标轴上,则平移后点P的坐标为.解:∵线段AB的两个端点坐标分别为A(2,5),B(6,﹣2),∴若平移AB使其两个端点都落在坐标轴上,∴线段AB需向左平移2个单位,再向上平移两个单位或线段AB向下平移5个单位,向左平移6个单位,∴平移后点P的坐标为(m﹣2,n+2)或(m﹣6,n﹣5),故答案为(m﹣2,n+2)或(m﹣6,n﹣5).三、解答题23、在平面直角坐标系中,A(4,6),B(2,4),C(8,0).(1)在平面直角坐标系中画出△ABC;(2)平移△ABC,使C点到坐标原点,则A、B对应点A1________,B1________.(3)求S△ABC.【答案】解:(1)如图所示:△ABC即为所求;(2)平移△ABC,使C点到坐标原点,则A、B对应点A1(-4,6),B1(-6,4);故答案为:(-4,6),(-6,4);(3)S△ABC=6×6-×2×2-×4×6-×4×6=10.24、如图,三角形A′B′C′是由三角形ABC经过某种平移得到的,点A与点A′,点B与点B′,点C与点C′分别对应,且这六个点都在格点上,观察各点以及各点坐标之间的关系,解答下列问题:(1)分别写出点B和点B′的坐标,并说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的;(2)连接BC′,直接写出∠CBC′与∠B′C′O之间的数量关系;(3)若点M(a﹣1,2b﹣5)是三角形ABC内一点,它随三角形ABC按(1)中方式平移后得到的对应点为点N(2a ﹣7,4﹣b),求a和b的值.解:(1)由图知,B(2,1),B′(﹣1,﹣2),三角形A′B′C′是由三角形ABC向左平移3个单位,向下平移3个单位得到的;(2)∠CBC′与∠B′C′O之间的数量关系∠CBC′﹣∠B′C′O=90°.故答案为:∠CBC′﹣∠B′C′O=90°;(3)由(1)中的平移变换得a﹣1﹣3=2a﹣7,2b﹣5﹣3=4﹣b,解得a=3,b=4.故a的值是3,b的值是4.25、如果点P(x2-4,y+1)是坐标原点,求代数式2x+y的值.【答案】解:由题意,得x2-4=0,y+1=0,解得x=2或x=-2,y=-1.当x=2时,2x+y=2×2+(-1)=3,当x=-2时,2x+y=2×(-2)+(-1)=-5.26、已知点M(1-a,2|a|-4)在x轴负半轴上.(1)求M点的坐标;(2)求式子(3-2a)2017+1的值.【答案】解:(1)因为点M(1-a,2|a|-4)在x轴负半轴上,所以2|a|-4=0,1-a<0,解得a=±2,a>1,所以a=2,1-a=1-2=-1,所以,点M的坐标为(-1,0);(2)(3-2a)2017+1=(3-2×2)2017+1=-1+1=0.27、平面直角坐标系中,有一点M(a﹣1,2a+7),试求满足下列条件的a的值.(1)点M在x轴上;(2)点M在第二象限;(3)点M到y轴距离是1.解:(1)要使点M在x轴上,a应满足2a+7=0,解得a=,所以,当a=时,点M在x轴上;(2)要使点M在第二象限,a应满足,解得,所以,当时,点M在第二象限;(3)要使点M到y轴距离是1,a应满足|a﹣1|=1,解得a=2或a=0,所以,当a=2或a=0时,点M到y轴距离是1.28、如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)点B在点A的右边时,﹣1+3=2,点B在点A的左边时,﹣1﹣3=﹣4,所以,B的坐标为(2,0)或(﹣4,0);(2)△ABC的面积=×3×4=6;(3)设点P到x轴的距离为h,则×3h=10,解得h=,点P在y轴正半轴时,P(0,),点P在y轴负半轴时,P(0,﹣),综上所述,点P的坐标为(0,)或(0,﹣).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直角坐标系
班级姓名座号
1. 若x?
23?x= .
2.在平面直角坐标系中,点A(x-1,2-x)在第四象限,则实数x的取值范围是 .
3.在平面直角坐标系中,点A的坐标为(3?2,0),点C的坐标为(?3?2,0),点B 在y轴上,若△ABC的面积为3,则点B的坐标为 .
4.已知O(0,0),B(-1,2),点A在坐标轴上,且S△OAB=4,求点A坐标. (提醒:画出图形,有4种,写具体过程)
5.已知A(2,0)B(4,3),点P在坐标轴上,且S△PAB=10,求点P的坐标.
(提醒:画出图形,有4种,写具体过程)
6. 如图,在△ABC中,BC=8,将△ABC以每秒2cm的速度沿BC所在直线向右平移,所得图形对应为△DEF,设平移时间为t秒,当t= 时,CF=10cm,当t= 时,AD=2CE. A
D
7. 如图,直线AB与x轴交于点A(m,0),B(0,3),点P是x轴上一点,且使B
OP=2OA. CEF
(1)若m=-2,求△ABP的面积;
(2)是否存在这样的P点,使得S△PAB=12,若存在,求点P坐标;若不存在,请说明理由.
1。