东北师范2015年春季《概率论与数理统计》期末考核

合集下载

《概率论与数理统计》期末测试卷(二)(答案解析版)

《概率论与数理统计》期末测试卷(二)(答案解析版)

《概率论与数理统计》期末测试件(二)(答案解析版)一、(12分)一学生接连参加同一课程的两次考试。

第一次及格的概率为P ,若第一次及格则第二次及格的概率也为P ;若第一次不及格则第二次及格的概率为P 2。

(1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率。

(2)若已知他第二次已经及格,求他第一次及格的概率。

解:A i ={他第i 次及格},i=1,2已知P (A 1)=P (A 2|A 1)=P ,21P P(A /A )2= (1)B ={至少有一次及格}所以21}{A A B ==两次均不及格∴ )|()(1)(1)(1)(12121A A P A P A A P B P B P -=-=-= )]|(1)][(1[1121A A P A P ---=22123)21)(1(1P P P P -=---= (2)由乘法公式,有P (A 1 A 2)= P (A 1) P (A 2| A 1) = P 2 由全概率公式,有)|()()|()()(1211212A A P A P A A P A P A P +=222)1(2P P PP P P +=⋅-+⋅=得1222)|(2221+=+=P PP P P A A P .二、(14分)设随机变量~,22X U ππ⎛⎫- ⎪⎝⎭,求(1)随机变量X 的分布函数()F x ; (2) cos Y X =的密度函数 . 解:X 的密度函数为()1,220,x f x πππ⎧-<<⎪=⎨⎪⎩其他cos Y X= 的可取值范围是()0,1当01y <<时,()()Y F y P Y y =≤arccos 2arccos 2arccos arccos 2211y yP Y y P y Y dx dxππππππ--⎛⎫⎛⎫=-≤≤-+≤≤ ⎪ ⎪⎝⎭⎝⎭=+⎰⎰因此,cos Y X = 的密度函数()(),01Y Y f y F y y '===<<故,,01()0,Y y f y <<=⎩其他三、(16分)设随机向量(X , Y )的联合密度为⎩⎨⎧<<<<=.,0,10,10 ,2),(其他y x x y x f(1) 计算P (Y > X );(2) 求X , Y 的概率密度f X (x ),f Y (y );(3) 判断X 与Y 是否相互独立,说明理由; (4) 求Z = X+Y 的概率密度f Z (z ). 解:(1).312),()(110===>⎰⎰⎰⎰>x xy xdy dx dxdy y x f X Y P(2)dyy x f x f X ⎰∞∞-=),()(.2x 2)(101x dy x f x X ==<<⎰时,当⎩⎨⎧<<=.,0,10,2)(其他x x x f Xdxy x f y f Y ⎰∞∞-=),()(.10,1 2)(10<<==⎰y dx x y f Y⎩⎨⎧<<=.,0,10,1)(其他y y f Y(3)因为,..),()(),(e a y f x f y x f Y X =所以X 与Y 相互独立. (4).),()(dx x z x f z f Z ⎰∞∞--=.22)(21,2)(1021120z z dx x z f z z dx x z f z z Z zZ -==<<==<<⎰⎰-时,当时,当⎪⎩⎪⎨⎧<<-<<=. ,0,2z 1 ,2,10 ,)(22其他z z z z z f Z四、(18分)设二维连续型随机变量(X ,Y )在区域D 上服从均匀分布。

概率论与数理统计-东北师范大学考试及答案

概率论与数理统计-东北师范大学考试及答案

《 概率论与数理统计》练习题一一、判断正误,在括号内打√或×1.n X X X ,,,21 是取自总体),(2σμN 的样本,则∑==ni iXnX 11服从)1,0(N 分布; 错2.设随机向量),(Y X 的联合分布函数为),(y x F ,其边缘分布函数)(x F X 是)0,(x F ;错 3.设{}∞+-∞=Ω<<x x |,{}20|<x x A ≤=,{}31|<x x B ≤=,则B A 表示{}10|<<x x ; 错4.若事件A 与B 互斥,则A 与B 一定相互独立; 错 5.对于任意两个事件B A 、,必有=B A B A ;错6.设A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为“甲种产品滞销或乙种产品畅销”; 对7.B A 、为两个事件,则A B A AB = ; 对 8.已知随机变量X 与Y 相互独立,4)(,8)(==Y D X D ,则4)(=-Y X D ; 错9.设总体)1,(~μN X , 1X ,2X ,3X 是来自于总体的样本,则321636161ˆX X X ++=μ是μ的无偏估计量; 错10.回归分析可以帮助我们判断一个随机变量和另一个普通变量之间是否存在某种相关关系。

对 二、填空题1.设C B A 、、是3个随机事件,则事件“A 和B 都发生而C 不发生”用C B A 、、表示2.设随机变量X 服从二项分布),(p n B ,则EXDX3.是 ⎪⎩⎪⎨⎧≤≤-=,,0,1)(其他b x a a b x f4.若事件C B A 、、相互独立,且25.0)(=A P ,5.0)(=B P ,4.0)(=C P ,则)(C B A P =73.0 ;5.设随机变量X 的概率分布为则a 6.设随机变量X 的概率分布为7.若随机变量X 与Y 相互独立,2)(,)(==Y E a X E ,则)(XY E8.设1θ 与2θ 是未知参数θθ满足)()(21θθ D D <,则称1θ 比2θ有效;9.设n X X X ,,,21 是从正态总体),(2σμN 抽得的简单随机样本,已知202σσ=,现检验假设0μμ=:H 00)(σμ-X n 服从)1,0(N ;10.在对总体参数的假设检验中,若给定显著性水平α(10<<α),则犯第一类错误的概三、计算题1.已知随机事件A 的概率5.0)(=A P ,事件B 的概率6.0)(=B P ,条件概率8.0)|(=A B P ,试求事件B A 的概率)(B A P 。

概率论与数理统计期末考试试题库及答案

概率论与数理统计期末考试试题库及答案

概率论与数理统计期末考试试题库及答案概率论与数理统计概率论试题一、填空题1.设 A、B、C是三个随机事件。

试用 A、B、C分别表示事件1)A、B、C 至少有一个发生 2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设 A、B为随机事件, ,,。

则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A______________7. 已知随机变量X的密度为,且,则________________8. 设~,且,则 _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+10有实根的概率是11.设,,则12.用()的联合分布函数F(x,y)表示13.用()的联合分布函数F(x,y)表示14.设平面区域D由y x , y 0 和 x 2 所围成,二维随机变量x,y在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x 1 处的值为。

15.已知,则=16.设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为3的泊松分布,记YX1-2X2+3X3,则D(Y)19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或 ~ 。

特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于22.设是来自正态总体的样本,令则当时~。

23.设容量n 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值,样本方差24.设X1,X2,…Xn为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P A+B P A; (B)(C) (D)2. 以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为 (A)“甲种产品滞销,乙种产品畅销”; (B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销”。

概率论2015春A卷答案

概率论2015春A卷答案

(B) 1 2
(C) 1 2
(D) 1 2
X 9 相互独立, EX i 1, DX i 1
i 1,2,
9
9 ,则对任意给定的 0 ,
9 (A)P X i 1 1 2 i 1 9 (C)P X i 9 1 2 i 1
1 (B)P 9
X
i 1
i
1 1 2
9 (D)P X i 9 1 9 2 i 1
三、(10 分)甲、乙两人轮流投篮,甲先投。一般来说,甲、乙两人独立投篮的命中 率 分别为 0.7 和 0.6。但由于心理因素的影响,如果对方在前一次投篮中投中,紧跟在后 面投篮的这一方的命中率就会有所下降,甲、乙的命中率分别变为 0.4 和 0.5。求: (1)乙在第一次投篮中投中的概率; (2)甲在第二次投篮中投中的概率。 解:令
Y
2 2 X 12 X 2 X 10 服从 F (10,5) 2 2 2 2( X 11 X 12 X 15 )
分布.
《概率论与数理统计》试卷第 1 页 共 8 页
5、设随机变量 X 的概率密度为 f ( x)
2x 0 x 1 其它
0
,以 Y 表示对 X 的三次独立重复观
座位号
题 号 得 分








总分
专业
注意: (1.65) 0.95 (1.96) 0.975 (1.45) 0.926
1.40 0.92
_____________ ________ 学院
t0.99 (7) 2.998 , t0.95 (7) 1.895 , t0.99 (6) 3.143, t0.95 (6) 1.943

东师2015年春季《小学教学心理学》期末考核标准

东师2015年春季《小学教学心理学》期末考核标准

东师2015年春季《小学教学心理学》期末考核标准
一、简答题(每小题10分,共40分)
1、工作记忆有何特点?
2、简述维纳的归因理论。

3、简述柯尔伯格的道德发展阶段论。

4、提问的作用表现哪些方面。

二、辨析题(每小题15分,共30分。

仅作判断不说明理由者不得分。


1、掌握了知识就等于形成了技能。

2、专家与新手在理解和表征问题上存在差异。

三、论述题(每小题15分,共30分。

要求紧扣题意,条理清楚。


1、论述奥苏伯尔的有意义学习理论的基本观点有哪些?
2、论述激发与维持外来动机和内在动机的措施有哪些?。

概率论与数理统计期末试题与详细解答

概率论与数理统计期末试题与详细解答

《概率论与数理统计》期末试卷一、填空题(每题4分,共20分)1、假设事件A 和B 满足1)(=A B P ,则A 和B 的关系是_______________。

2、设随机变量)(~λπX ,且{}{},21===X P X P 则{}==k X P _____________。

3、设X 服从参数为1的指数分布,则=)(2X E ___________。

4、设),1,0(~),2,0(~N Y N X 且X 与Y 相互独立,则~Y X Z -=___________。

5、),16,1(~),5,1(~N Y N X 且X 与Y 相互独立,令12--=Y X Z ,则=YZ ρ____。

二、选择题(每题4分,共20分)1、将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )A 、323B 、83C 、161D 、812、随机变量X 和Y 的,0=XY ρ则下列结论不正确的是( ) A 、)()()(Y D X D Y X D +=- B 、a X +与b Y -必相互独立 C 、X 与Y 可能服从二维均匀分布 D 、)()()(Y E X E XY E =3、样本nX X X ,,,21 来自总体X ,,)(,)(2σμ==X D X E 则有( )A 、2i X )1(n i ≤≤都是μ的无偏估计 B 、X 是μ的无偏估计C 、)1(2n i X i ≤≤是2σ的无偏估计D 、2X 是2σ的无偏估计 4、设nX X X ,,,21 来自正态总体),(2σμN 的样本,其中μ已知,2σ未知,则下列不是统计量的是( ) A 、ini X ≤≤1min B 、μ-X C 、∑=ni iX 1σ D 、1X X n -5、在假设检验中,检验水平α的意义是( ) A 、原假设0H 成立,经检验被拒绝的概率 B 、原假设0H 不成立,经检验被拒绝的概率 C 、原假设0H 成立,经检验不能拒绝的概率D 、原假设0H 不成立,经检验不能拒绝的概率三、计算题(共28分)1、已知离散型随机变量的分布律为求:X 的分布函数,(2))(X D 。

2015年春季《概率论与数理统计》期末考核

2015年春季《概率论与数理统计》期末考核

期末作业考核《概率论与数理统计》满分100分一、判断正误,在括号内打√或×(每题2分,共20分) (×)1.n X X X ,,,21 是取自总体),(2σμN 的样本,则∑==ni iXnX 11服从)1,0(N 分布;(× )2.设随机向量),(Y X 的联合分布函数为),(y x F ,其边缘分布函数)(x F X 是),(lim y x F y +∞→;(√ )3.设{}∞+-∞=Ω<<x x |,{}20|<x x A ≤=,{}31|<x x B ≤=,则B A 表示{}10|<<x x ; (× )4.若0)(=AB P ,则AB 一定是空集; (× )5.对于任意两个事件B A 、,必有=B A B A ; (× )6.设C B A 、、表示3个事件,则C B A 表示“C B A 、、中不多于一个发生”; (√ )7.B A 、为两个事件,则A B A AB = ; (√ )8.已知随机变量X 与Y 相互独立,4)(,8)(==Y D X D ,则4)(=-Y X D ;(√ )9.设总体)1,(~μN X , 1X ,2X ,3X 是来自于总体的样本,则321636161ˆX X X ++=μ是μ的无偏估计量;(√ )10.回归分析可以帮助我们判断一个随机变量和另一个普通变量 之间是否存在某种相关关系。

二、填空题(每题3分,共30分)1.设C B A 、、是3个随机事件,则“三个事件都不发生”用C B A 、、表示为CB A ;2.若事件C B A 、、相互独立,则)(C B A P =;3.设离散型随机变量X 的概率分布为X1x 2x … k x … 对应取值的概率1p2p…k p…除了要求每个≥k p 0之外,这些k p 还应满足 1p + 2p + …k p =1 ; 4.若随机变量X 服从区间[]π2,0上的均匀分布,则=)(X E π ;5.设随机变量X 的概率分布列为)0,2,1,0(!)(>===-λλλ; k e k k X P k,则=)(X D λ ;6.),(Y X 为二维随机向量,其协方差),cov(Y X 与相互系数XY ρ的关系为)()(),cov(Y D X D Y X XY =ρ;7.已知3)(=X E ,5)(=X D ,则=+2)2(X E 30 ; 8.设离散型随机变量X 的概率分布为其分布函数为)(x F ,则=)3(F 1 ;9.设n X X X ,,,21 为总体),(~2σμN X 的一个简单随机样本,若方差2σ未知,则μ的)1(α-的置信区间为。

概率论和数理统计期末考试题及答案

概率论和数理统计期末考试题及答案

概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。

则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。

概率论与数理统计期末考试试题及答案

概率论与数理统计期末考试试题及答案

)B =________________.3个,恰好抽到,(8ak ==(24)P X -<= .乙企业生产的50四、(本题12分)设二维随机向量(,)X Y 的联合分布律为\01210.10.20.120.10.2Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独立?为什么?五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他 求()(),E X D X一、填空题(每小题3分,共30分) 1、ABC 或AB C 2、0.6 3、2156311C C C 或411或0.3636 4、15、136、2014131555kX p 7、1 8、(2,1)N - 二、解 设12,A A 分别表示取出的产品为甲企业和乙企业生产,B 表示取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ======== ........ 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=⨯+⨯= ..................... 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ⨯===........................................ 12分 三、(本题12分)解 (1)由概率密度的性质知 340391()21224x f x dx kxdx dx k +∞-∞⎛⎫=+-=+= ⎪⎝⎭⎰⎰⎰故16k =. .......................................................................... 3分 (2)当0x ≤时,()()0x F x f t dt -∞==⎰;当03x <<时, 2011()()612xxF x f t dt tdt x -∞===⎰⎰; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞⎛⎫==+-=-+- ⎪⎝⎭⎰⎰⎰;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞⎛⎫==+-= ⎪⎝⎭⎰⎰⎰;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤⎧⎪⎪<<⎪=⎨⎪-+-≤<⎪⎪≥⎩............................................ 9分(3) 77151411(1)22161248P X F F ⎧⎫⎛⎫<≤=-=-=⎨⎬ ⎪⎩⎭⎝⎭.................................. 12分四、解 (1)由分布律的性质知01.0.20.10.10.21a +++++=故0.3a = ......................................................................... 4分(2)(,)X Y 分别关于X 和Y 的边缘分布律为0120.40.30.3X p ........................................................... 6分120.40.6Y p ................................................................ 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===⨯=,故 {}{}{}0,101P X Y P X P Y ==≠==所以X 与Y 不相互独立. ............................................................. 12分 五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞⎡⎤⎡⎤==+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰ ............... 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰................................. 9分 221()()[()].6D XE X E X =-= ................................................... 12分一、填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = P( A ∪B) =2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: 没有任何人的生日在同一个月份的概率4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= ,分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , 1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1)1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他求边缘密度函数(),()X Y x y ϕϕ;2) 问X 与Y 是否独立?是否相关?计算Z = X + Y 的密度函数()Z z ϕ1、(10分)设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。

《概率论与数理统计》期末考试试题及答案

《概率论与数理统计》期末考试试题及答案
《概率论与数理统计》期末考试试题(A)
专业、班级:姓名:学号:
题号










十一
十二
总成绩
得分
一、单项选择题(每题3分共18分)
1.D 2.A 3.B 4.A5.A6.B
(1)
(2)设随机变量X其概率分布为 X -1 0 1 2
P 0.2 0.3 0.1 0.4
则 ( )。
(A)0.6(B)1(C)0 (D)
(3)
设事件 与 同时发生必导致事件 发生,则下列结论正确的是()
(A) (B)
(C) (D)
(4)
(5)设 为正态总体 的一个简单随机样本,其中
未知,则()是一个统计量。
(A) (B)
(C) (D)
(6)设样本 来自总体 未知。统计假设
为 则所用统计量为()
(A) (B)
(C) (D)
2、填空题(每空3分共15分)
解:因为 ,所以
(1)根据边缘概率与联合概率之间的关系得出
-1 0 1
0
1
0
0
0
………….4分
(2)因为
所以与 不相互独立
…………8分
七、(8分)设二维随机变量 的联合密度函数为
求:(1) ;(2)求 的边缘密度。
解:(1) …………..2分

=[ ] ………….4分
(2) …………..6分
……………..8分
解:用 表示第 户居民的用电量,则
………2分
则1000户居民的用电量为 ,由独立同分布中心极限定理
………3分
= ………4分
……….6分

概率论和数理统计期末考试题库

概率论和数理统计期末考试题库

概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6、已知随机变量(X,Y)的分布律为:且X 与Y 相互独立。

则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2( ()X f x , )(y f Y ;)3( X 与Y 是否相互独立? )4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立.(4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。

概率论与数理统计期末考试试题(答案)

概率论与数理统计期末考试试题(答案)

概率论与数理统计期末考试试题(答案)概率论与数理统计开/闭卷闭卷A/B 卷 A2219002801-课程编号 2219002811课程名称概率论与数理统计 ________________ 学分 J ________第⼀部分基本题⼀、选择题(共6⼩题,每⼩题5分,满分30分。

在每⼩题给出的四个选项中,只有⼀个是符合题⽬要求的,把所选项前的字母填在题后的括号内) (每道选择题选对满分,选错0分)2?假设事件A 与事件B 互为对⽴,则事件A B( )(A)是不可能事件 (B)是可能事件(C) 发⽣的概率为1 (D)是必然事件答:选A ,这是因为对⽴事件的积事件是不可能事件。

3. 已知随机变量X,Y 相互独⽴,且都服从标准正态分布,则 X 2 3 + Y 2服从( ) (A)⾃由度为1的2分布 (B)⾃由度为2的2分布2(C) X ;是2的⽆偏估计(D) 刍⼀⽣⼀⽣是2的⽆偏估计3答:选B ,因为样本均值是总体期望的⽆偏估计,其它三项都不成⽴。

6.随机变量X服从在区间(2,5)上的均匀分布,贝U X 的数学期望E(X)的值为( )(A) 2 (B) 3 (C) 3.5 (D) 4 答:选C ,因为在(a,b)区间上的均匀分布的数学期望为(a+b)/2。

⼆、填空题(共6⼩题,每⼩题5分,满分30分。

把答案填在题中横线上)线1. 事件表达式A B 的意思是( ) (A) 事件A 与事件B 同时发⽣ (C)事件B 发⽣但事件A 不发⽣答:选D ,根据A B 的定义可知。

(B) 事件A 发⽣但事件B 不发⽣ (D)事件A 与事件B ⾄少有⼀件发⽣ )封题… 答… 不…内…线…封…密…) (D) X+Y~N(0,3) ⽽ E(X+Y)=E(X)+E(Y)=2-2=0,(C)⾃由度为1的F分布(D)⾃由度为2的F分布答:选B,因为n个相互独⽴的服从标准正态分布的随机变量的平⽅和服从⾃由度为2分布。

4. 已知随机变量X,Y相互独⽴,X~N(2,4),Y~N( 2,1),则((A) X+Y~P ⑷(B) X+Y~U(2,4) (C) X+Y~N(0,5)答:选C,因为相互独⽴的正态变量相加仍然服从正态分布, D(X+Y)=D(X)+D(Y)=4+1=5,所以有X+Y~N(0,5)。

概率论与数理统计期末考试试题及答案

概率论与数理统计期末考试试题及答案

)B =________________.3个,恰好抽到,(8ak ==(24)P X -<= .乙企业生产的50四、(本题12分)设二维随机向量(,)X Y 的联合分布律为\01210.10.20.120.10.2Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独立?为什么?五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他 求()(),E X D X一、填空题(每小题3分,共30分) 1、ABC 或AB C 2、0.6 3、2156311C C C 或411或0.3636 4、15、136、2014131555kX p 7、1 8、(2,1)N - 二、解 设12,A A 分别表示取出的产品为甲企业和乙企业生产,B 表示取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ======== ........ 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=⨯+⨯= ..................... 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ⨯===........................................ 12分 三、(本题12分)解 (1)由概率密度的性质知 340391()21224x f x dx kxdx dx k +∞-∞⎛⎫=+-=+= ⎪⎝⎭⎰⎰⎰故16k =. .......................................................................... 3分 (2)当0x ≤时,()()0x F x f t dt -∞==⎰;当03x <<时, 2011()()612xxF x f t dt tdt x -∞===⎰⎰; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞⎛⎫==+-=-+- ⎪⎝⎭⎰⎰⎰;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞⎛⎫==+-= ⎪⎝⎭⎰⎰⎰;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤⎧⎪⎪<<⎪=⎨⎪-+-≤<⎪⎪≥⎩............................................ 9分(3) 77151411(1)22161248P X F F ⎧⎫⎛⎫<≤=-=-=⎨⎬ ⎪⎩⎭⎝⎭.................................. 12分四、解 (1)由分布律的性质知01.0.20.10.10.21a +++++=故0.3a = ......................................................................... 4分(2)(,)X Y 分别关于X 和Y 的边缘分布律为0120.40.30.3X p ........................................................... 6分120.40.6Y p ................................................................ 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===⨯=,故 {}{}{}0,101P X Y P X P Y ==≠==所以X 与Y 不相互独立. ............................................................. 12分 五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞⎡⎤⎡⎤==+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰ ............... 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰................................. 9分 221()()[()].6D XE X E X =-= ................................................... 12分一、填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = P( A ∪B) =2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: 没有任何人的生日在同一个月份的概率4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= ,分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , 1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1)1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他求边缘密度函数(),()X Y x y ϕϕ;2) 问X 与Y 是否独立?是否相关?计算Z = X + Y 的密度函数()Z z ϕ1、(10分)设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。

《概率论与数理统计》期末考试试题及答案

《概率论与数理统计》期末考试试题及答案

《概率论与数理统计》期末考试试题及答案)B 从中任取3),(8a k k ==则Y X =产品中有12件是次品四、(本题12分)设⼆维随机向量(,)X Y 的联合分布律为\01210.10.20.12Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独⽴为什么五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤=-≤≤其他求()(),E X D X⼀、填空题(每⼩题3分,共30分) 1、ABC 或AB C 2、 3、2156311C C C 或411或 4、1 5、13 6、2014131555kX p 7、1 8、(2,1)N - ⼆、解设12,A A 分别表⽰取出的产品为甲企业和⼄企业⽣产,B 表⽰取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ========..... 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=?+?=................ 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ?=== ............................... 12分三、(本题12分)解 (1)由概率密度的性质知34=+-=+=故16k =. .......................................................... 3分 (2)当0x ≤时,()()0x F x f t dt -∞==?; 当03x <<时, 2011()()612xxF x f t dt tdt x -∞===??; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞==+-=-+-;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞?==+-=;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤< .................................. 9分(3) 77151411(1)22161248P X F F<≤=-=-=?? ????? .......................... 12分四、解 (1)由分布律的性质知01.0.20.10.10.21a +++++=故0.3a = ........................................................... 4分0.40.30.3Xp ............................................... 6分120.40.6Y p ................................................... 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===?=,故{}{}{}0,101P X Y P X P Y ==≠==所以X 与Y 不相互独⽴. .............................................. 12分五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤=-≤≤其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞??==+-=+-=?........... 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=.......................... 9分 221()()[()].6D XE X E X =-= ......................................... 12分⼀、填空题(每空3分,共45分)1、已知P(A) = , P(B) = , P(B|A ) = , 则P(A|B ) = P( A ∪B)=2、设事件A 与B 独⽴,A 与B 都不发⽣的概率为19,A 发⽣且B 不发⽣的概率与B 发⽣且A 不发⽣的概率相等,则A 发⽣的概率为:;3、⼀间宿舍内住有6个同学,求他们之中恰好有4个⼈的⽣⽇在同⼀个⽉份的概率:没有任何⼈的⽣⽇在同⼀个⽉份的概率4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ??, 则常数A= , 分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独⽴,则Z=max(X,Y)的分布律:;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独⽴,则D(2X-3Y)= ,1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ??≤≤?=其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ?;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1)1/4,||,02,(,)0,y x x x y ?<<其他求边缘密度函数(),()X Y x y ??;2)问X 与Y 是否独⽴是否相关计算Z = X + Y 的密度函数()Z1、(10分)设某⼈从外地赶来参加紧急会议,他乘⽕车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。

《概率论与数理统计》期末考试试题及解答

《概率论与数理统计》期末考试试题及解答

( C) D ( X Y ) DX DY .
( D) D ( XY ) DXDY .
()
3
答案:( B)
解答:由不相关的等价条件知,
xy 0
D ( X Y ) DX DY +2cov( x, y)
应选( B ) .
cov( x, y) 0
4.设离散型随机变量 X 和 Y 的联合概率分布为
( X ,Y ) (1,1) (1,2) (1,3) (2,1)
解答: X ~ N (0,1) 所以 P(| X | 2) 1 P(| X | 2) 1 P( 2 X 2)
1 ( 2 ) ( 2 ) 1 [ 2 ( 2 ) 1] 2 [1
应选( A) .
3.设随机变量 X 和 Y 不相关,则下列结论中正确的是
( A ) X 与 Y 独立 .
( B) D ( X Y ) DX DY .
0, 其它 .
x f X ( x)
f ( x, y)dy
2 2x, 0 x 1 0 , 其它
( 2)利用公式 fZ (z)
f (x, z x) dx
2, 0 x 1,0 z x 1 x 2, 0 x 1, x z 1.
其中 f (x, z x) 0, 其它
0, 其它.
当 z 0 或 z 1时 fZ (z) 0
一、填空题(每小题 3 分,共 15 分)
1. 设事件 A, B 仅发生一个的概率为 0.3,且 P ( A) P(B ) 0.5 ,则 A, B 至少有一个不发
生的概率为 __________.
答案: 0.3 解:
P( AB AB) 0.3

0.3 P( AB ) P( AB) P(A) P( AB) P(B) P( AB) 0.5 2P( AB)

概率论与数理统计期末考试试卷及答案

概率论与数理统计期末考试试卷及答案

概率论与数理统计期末考试试卷及答案概率论与数理统计试卷 (A)姓名:班级:学号:得分:一.选择题(18分,每题3分)1. 如果 1)()(>+B P A P ,则事件A 与B 必定())(A 独立; )(B 不独立; )(C 相容; )(D 不相容.2. 已知人的血型为 O 、A 、B 、AB 的概率分别是0.4; 0.3;0.2;0.1。

现任选4人,则4人血型全不相同的概率为:())(A 0.0024;)(B 40024.0;)(C 0. 24;)(D 224.0. 3. 设~),(Y X <+=.,0,1,/1),(22他其y x y x f π 则X 与Y 为())(A 独立同分布的随机变量;)(B 独立不同分布的随机变量;)(C 不独立同分布的随机变量; )(D 不独立也不同分布的随机变量.4. 某人射击直到中靶为止,已知每次射击中靶的概率为0.75. 则射击次数的数学期望与方差分别为())(A 4934与; )(B 16934与; )(C 4941与; (D) 9434与. 5. 设321,,X X X 是取自N (,)μ1的样本,以下μ的四个估计量中最有效的是())(A 32112110351?X X X ++=μ; )(B 3212949231?X X X ++=μ; )(C 3213216131?X X X ++=μ; )(D 32141254131?X X X ++=μ. 6. 检验假设222201:10,:10H H σσ≤>时,取统计量)(~10)(22212n Xini χμχ-=∑=,其拒域为(1.0=α)())(A )(21.02n χχ≤;)(B )(21.02n χχ≥;)(C )(205.02n χχ≤;)(D )(205.02n χχ≥.二. 填空题(15分,每题3分)1. 已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=?)(B A P .2. 设随机变量X 的分布律为-+c b a 4.01.02.04321,则常数c b a ,,应满足的条件为 .3. 已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y xF 表示概率=>>),(b Y a X P .4. 设随机变量)2,2(~-U X ,Y 表示作独立重复m 次试验中事件)0(>X 发生的次数,则=)(Y E ,=)(Y D . 5.设),,,(21n X X X 是从正态总体),(~2σμN X 中抽取的样本,则概率=≤-≤∑=)76.1)(37.0(222012012σσX XP ii .5. 设n X X X ,,,21 为正态总体),(2σμN (2σ未知)的一个样本,则μ的置信度为1α-的单侧置信区间的下限为 . 三. 计算题(54分,每题9分)1.自动包装机把白色和淡黄色的乒乓球混装入盒子,每盒装12只,已知每盒内装有的白球的个数是等可能的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东北师范2015年春季《概率论与数理统计》期末考核
一、判断正误,在括号内打√或×(本题共10小题,每小题2分,共20分)
()1.是取自总体的样本,则服从分布;
()2.设随机向量的联合分布函数为,其边缘分布函数是;()3.设,,,则表示;
()4.若,则一定是空集;
()5.对于任意两个事件,必有;
()6.设表示3个事件,则表示“ 中不多于一个发生”;
()7.为两个事件,则;
()8.已知随机变量与相互独立,,则;
()9.设总体, , , 是来自于总体的样本,则是的无偏估计量;
()10.回归分析可以帮助我们判断一个随机变量和另一个普通变量
之间是否存在某种相关关系。

二、填空题(本题共10小题,每小题3分,共30分)
1.设是3个随机事件,则“三个事件都不发生”用表示
为;
2.若事件相互独立,则= ;
3.设离散型随机变量的概率分布为


对应取值的概率


除了要求每个0之外,这些还应满足;
4.若随机变量服从区间上的均匀分布,则;
5.设随机变量的概率分布列为,则;
6.为二维随机向量,其协方差与相互系数的关系为;
7.已知,,则;
8.设离散型随机变量的概率分布为
0 1 2
0.5 0.3 0.2
其分布函数为,则;
9.设为总体的一个简单随机样本,若方差未知,则的的置信区间为。

10.设样本,,…,来自,且,则对检验::,采用统计量是。

三、计算题(每题5分,共35分)
1.设,试求的概率密度为。

2.随机变量的密度函数为,其中为正的常数,试求。

3.设随机变量服从二项分布,即,且,,试求。

4.已知一元线性回归直线方程为,且,,试求。

5.设随机变量与相互独立,且,求。

6.设总体的概率密度为式中>-1是未知参数,是来自总体的一个容量为的简单随机样本,用最大似然估计法求的估计量。

7.设是取自正态总体的一个样本,其中未知。

已知估计量是的无偏估计量,试求常数。

四、证明题(共15分)
1.若事件与相互独立,则与也相互独立。

(8分)
2.若事件,则。

(7分)。

相关文档
最新文档