北师大版数学八下第一章《三角形的证明》测试题-精编

合集下载

八年级数学下册第一章《三角形的证明》测试卷-北师大版(含答案)

八年级数学下册第一章《三角形的证明》测试卷-北师大版(含答案)

图1图2图3图4 图5图6图7八年级数学下册第一章《三角形的证明》测试卷-北师大版(含答案)一、填空题1. 如图1,等边△ABC 的周长是9,D 是AC 边上的中点,E 在BC 的延长线上.若DE= BD,则CE 的长为_ .2.下列命题是真命题的是_________.①有一个外角是120°的等腰三角形是等边三角形. ②有两个外角相等的等腰三角形是等边三角形.③有一边上的高也是这边上的中线的等腰三角形是等边三角形. ④三个外角都相等的三角形是等边三角形.3.如图2,△ABC 为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且AE=CD=BF ,则△DEF 为_____三角形.4.如图3,△ABC 是等边三角形,点D 是BC 边上任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F .若BC =4,则BE+ BF=____________.5. 如图4,已知AB =AC =BC =AD,則∠BDC =_________.6. 如图5,已知ΔABC 中,AB =AC ,∠BAC =120°,DE 垂直平分AC 交BC 于D ,垂足为E ,若DE =2cm ,则BC =_____cm .7.如图6所示,∠A =60°,CE ⊥AB 于E ,BD ⊥AC 于D ,BD 与CE 相交于点H ,HD =1,HE =2,则BD = ,CE = .8.利用反证法证明:垂直于同一条直线的两条直线平行。

第一步应先假设: 。

二、选择题1. 如图7,△ABC 是等边三角形,点D 在AC 边上,∠DBC=35°,则∠ADB 的度数为( )A .25°B .60°C .85°D .95°2.下列每组三角形中,不一定全等的是( ) A.有一个角是60°且腰长相等的两个等腰三角形 B.周长相等的两个等边三角形C.有一个角是100°,腰长相等的两个等腰三角形图8图9图10图11D.有两条边分别相等的两个等腰三角形3.以下叙述中不正确的是( ).A.等边三角形的每条高线都是角平分线和中线;B.有一个内角为60°的等腰三角形是等边三角形;C.等腰三角形一定是锐角三角形;D.在一个三角形中,如果有两条边相等,那么它们所对的角也相等;反之,在一个三角形中,如果有两个角相等,那么它们所对的边也相等.4.△ABC中三边为a、b、c,满足关系式(a-b)(b-c)(c-a)=0,则这个三角形一定为()A.等边三角形B.等腰三角形C.等腰钝角三角形D.等腰直角三角形5.等边三角形的两条高线相交成钝角的度数是()A.105°B.120°C.135°D.150°6.如图8,等边三角形ABC中,D为BC的中点,BE平分∠ABC交AD 于E,若△CDE的面积等于1,则△ABC的面积等于()A.2 B.4 C.6 D.127.如图9,给出下列四组条件:①AB=DE, BC=EF, AC=DF; ②AB=DE,∠B=∠E, BC=EF;③∠B=∠E,BC=EF, ∠C=∠F;④AB=DE, AC=DF,∠B=∠E;其中,能使△ABC≌△DEF的条件共有()A. 1组B. 2组C. 3组D. 4组8.如图10所示,在△ABC中,AB=AC,AD⊥BC,则下列结论不一定正确的是()A.∠1=∠2B.BD=CDC.∠B=∠CD.AB=2BD9.如图11所示,等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°10.已知点P在∠AOB的平分线上,∠AOB=60°,OP=10cm,那么点P到边OA,OB的距离分别是()A.5cm、3B.5cm、5cm C.4cm、5cm D.5cm、10cm三、解答题1.如图12.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.图12图13图15 图14(1)试判定△ODE 的形状,并说明理由;(2)线段BD 、DE 、EC 三者有什么关系?写出你的判断过程.2.如图13等边△ABC ,P 为BC 上一点,含30°、60°的直角三角板60°角的顶点落在点P 上,如图,当P 为BC 的三等分点,且PE ⊥AB 时,判断△EPF 的形状.3. 如图14,已知B 、C 、E 三点共线,,都是等边三角形,连结AE 、BD 分别交CD 、AC 于N 、M ,连接MN. 求证:AE =BD ,MN ∥BE.4、如图15所示,在等边△ABC 中,AE =CD ,AD 、BE 相交于点P ,BQ ⊥AD 于Q ,求证:BP =2PQ .ABC ∆DCE ∆5. 如图16,已知点E在△ABC的边AC上,且∠AEB=∠ABC.(1)求证:∠ABE=∠C;(2)若∠BAE的平分线AF交BE于F,FD∥BC交AC于D,设AB=6,AC=10,求DC的长;(3)若BE平分∠ABC,AF平分∠BAC,且FD∥BC交AC于点D,连接FC,则△DFC是什么三角形?为什么?图166.如图17,在平面直角坐标系中,已知点A(0,2),△AOB为等边三角形,P是x轴上一个动点(不与原点O重合),以线段AP为一边在其右侧作等边三角形△APQ.(1)求点B的坐标;(2)在点P的运动过程中,∠ABQ的大小是否发生改变?如不改变,求出其大小;如改变,请说明理由.(3)连接OQ,当OQ∥AB时,求P点的坐标.图17参考答案一、填空题1. 2. ①④ 3. 等边4. 2 5. 150° 6. 12 7. 5、4 8.略二、选择题1. D2. D3. C4. B5.B.6.C7.C8.D9.C10.B 三、解答题1. (1)△ODE 是等边三角形,其理由是:∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,∵OD ∥AB ,OE ∥AC ,∴∠ODE =∠ABC =60°,∠OED =∠ACB =60°∴△ODE 是等边三角形; (2)答:BD =DE =EC ,理由:∵OB 平分∠ABC ,且∠ABC =60°,∴∠ABO =∠OBD =30°,∵OD ∥AB ,∴∠BOD =∠ABO =30°,∴∠DBO =∠DOB ,∴DB =DO , 同理,EC =EO ,∵DE =OD =OE ,∴BD =DE =EC .2. 解:∵PE ⊥AB ,∠B =60°, 因此直角三角形PEB 中,BE =BP =BC =PC ,∴∠BPE =30°,∵∠EPF =60°, ∴FP ⊥BC ,∵∠B =∠C =60°,BE =PC ,∠PEB =∠FPC =90°,∴△BEP ≌△CPF ,∴PE =PF ,∵∠EPF =60°,3. 证明:,都是等边三角形 ∴BC =AC ,CE =CD ,∠1=∠3=60° ∠1+∠2+∠3=180°∴∠2=60°∴∴△BCD ≌△ACE (SAS )∴BD =AE (全等三角形对应边相等) (全等三角形对应角相等) ∴△BMC ≌△ANC (ASA )∴MC =NC (全等三角形对应边相等) ∵∠2=60°∴△MCN 是等边三角形∴∠6=60°,∴∠6=∠1 ∴MN ∥BE (内错角相等,两直线平行)4.证明:∵ △ABC 为等边三角形, ∴ AC =BC =AB ,∠C =∠BAC =60°.∴ △ACD ≌△BAE(SAS).∴ ∠CAD =∠ABE .∵ ∠CAD +∠BAP =∠BAC =60°,∴ ∠ABE +∠BAP =60°,∴ ∠BPQ =60°. ∵ BQ ⊥AD ,∴ ∠BQP =90°,∴ ∠PBQ =90°-60°=30°,∴ BP =2PQ . 5.(1)证明:∵ ∠AEB=∠ABC , 且∠AEB=∠EBC +∠C ,∠ABC=∠EBC +∠ABE , ∴ ∠321213ABC ∆DCE ∆ ECA BCD ∠=∠54∠=∠EBC+∠C=∠EBC+∠ABE,∴∠ABE=∠C;(2)解:∵∠BAE的平分线AF交BE于F,∴∠BAF=∠DAF,∵FD∥BC交AC于D,∴∠ADF=∠C,∵∠ABE=∠C,∴∠ADF=∠ABE,即∠ADF=∠ABF,∵AF=AF,∴△BAF≌△DAF,∴AD=AB=6,∴DC=AC-AD=10-6=4.(3)解:△DFC是等腰三角形.理由是:过点F分别作FH⊥AB,FN⊥BC,FM⊥AC,易证:△AFH≌△AFM(AAS),从而知FH=FM,△BFH≌△BFM(AAS),从而知FH=FN,∴FM=FN,又FC=FC,可证Rt△CFM≌Rt△CFN(HL)∴∠MCF=∠NCF,∵FD∥BC,∴∠DFC=∠BCF,∴∠DFC=∠MCF,∴DF=DC,∴△DFC是等腰三角形.6(1)如图1,过点B作BC⊥x轴于点C,∵△AOB为等边三角形,且OA=2,∴∠AOB=60°,OB=OA=2,∴∠BOC=30°,而∠OCB=90°,∴BC=OB=1,OC=,∴点B的坐标为B(,1);(2)∠ABQ=90°,始终不变.(3)∵△APQ、△AOB均为等边三角形,∴AP=AQ、AO=AB、∠PAQ=∠OAB,∴∠PAO=∠QAB,∴△APO≌△AQB,∴∠ABQ=∠AOP=90°;(3)当点P在x轴负半轴上时,点Q在点B的下方,∵AB∥OQ,∠BQO=90°,∠BOQ=∠ABO=60°.OB=OA=2,BQ=,由(2)可知,△APO≌△AQB,∴OP=BQ=,∴此时P的坐标为(﹣,0).。

北师大版八下数学《三角形的证明》单元测试1(含答案)

北师大版八下数学《三角形的证明》单元测试1(含答案)

第一章三角形的证明单元测试一、填空题1.一个等腰三角形有一角是70°,则其余两角分别为_________.2.一个等腰三角形的两边长为5和8,则此三角形的周长为_________.3.如图1,△ABC中,∠C=90°,AM平分∠CAB,CM=20 cm,则点M到AB 的距离是_________.图1 图24.如图2,等边△ABC中,F是AB中点,EF⊥AC于E,若△ABC的边长为10,则AE=_________,AE∶EC=_________.5.如图3,△ABC中,DE垂直平分BC,垂足为E,交AB于D,若AB=10 cm,AC=6 cm,则△ACD的周长为_________.图3 图46.如图4,∠C=90°,∠ABC=75°,∠CDB=30°,若BC=3 cm,则AD=___ cm.7.如图5,B在AC上,D在CE上,AD=BD=BC,∠ACE=25°,∠ADE=_________.图5图68.等腰直角三角形一条边长是1 cm ,那么它斜边上的高是_________ cm. 9.如图6,在∠AOB 的两边OA 、OB 上分别取OQ =OP ,OT =OS ,PT 和QS 相交于点C ,则图中共有_________对全等三角形.10.等腰三角形两腰上的高相等,这个命题的逆命题是________________,这个逆命题是_________命题.11.三角形三边分别为a 、b 、c ,且a 2-bc =a (b -c ),则这个三角形(按边分类)一定是_________三角形.二、选择题12.等边三角形的高为23,则它的边长为( ) A.4B.3C.2D.513.等腰三角形的顶角是n °,那么它的一腰上的高与底边的夹角等于( )A.290 nB.90-2nC.2n D.90°-n °14.下列由线段a 、b 、c 组成的三角形,不是直角三角形的是( ) A.a =3,b =4,c =5 B.a =1,b =34,c =35 C.a =9,b =12,c =15D.a =3,b =2,c =515.直角三角形的三边长为连续自然数,则它的面积为( ) A.6B.7.5C.10D.1216.△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,最小边BC =4 cm ,最长边AB 的长是( )A.5 cmB.6 cmC.5 cmD.8 cm17.如图7,△ABC 中,AB =AC ,BC =BD ,AD =DE =EB ,则∠A 的度数为( )图7A.55°B.45°C.36°D.30°18.等腰△ABC 中,AC =2BC ,周长为60,则BC 的长为( ) A.15B.12C.15或12D.以上都不正确19.直角三角形两直角边分别是5 cm 、12 cm ,其斜边上的高是( ) A.13 cmB.1330cmC.1360cmD.9 cm20.直角三角形中,以直角边为边长的两个正方形的面积分别为30和20,则以斜边为边长的正方形的面积为( )A.25B.50C.100D.6021.等腰三角形的底边为a ,顶角是底角的4倍,则腰上的高是( ) A.23a B.33 a C.63a D.21a 22.若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形一定是( )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形23.等腰三角形ABC 中,∠A =120°,BC 中点为D ,过D 作DE ⊥AB 于E ,AE =4cm,则AD等于()A.8 cmB.7 cmC.6 cmD.4 cm24.下列说法中,正确的是()A.两边及一对角对应相等的两个三角形全等B.有一边对应相等的两个等腰三角形全等C.两边及其中一边上的中线对应相等的两个三角形全等D.两边及其中一边上的高对应相等的两个三角形全等25.如图8,AB⊥CD,△ABD、△BCE都是等腰三角形,如果CD=8,BE=3,那么AC长为()图8A.8B.5C.3D.3426.将两个全等的有一个角为30°的直角三角形拼成下图9,其中两条长直角边在同一直线上,则图中等腰三角形的个数是()图9A.4B.3C.2D.127.下列定理中逆定理不存在的是()A.角平分线上的点到这个角的两边距离相等B.在一个三角形中,如果两边相等,那么它们所对的角也相等C.同位角相等,两直线平行D.全等三角形的对应角相等*28.已知一个直角三角形的周长是4+26,斜边上中线长为2,则这个三角形的面积为( )A.5B.2C.45D.1三、解答题29.已知:如图10,AB =AC ,DE ∥AC ,求证:△DBE 是等腰三角形.图1030.已知:如图11,在Rt △ABC 中,∠C =90°,∠BAD =21∠BAC ,过点D 作DE ⊥AB ,DE 恰好是∠ADB 的平分线,求证:CD =21DB .图1131.已知三角形的三边分别是n 2+n ,n +21和n 2+n +21(n >0),求证:这个三角形是直角三角形.32.如图12,△ABC 中,AB =AC ,∠1=∠2,求证:AD 平分∠BA C.图1233.如图13,以等腰直角三角形ABC的斜边AB与边面内作等边△ABD,连结DC,以DC当边作等边△DCE,B、E在C、D的同侧,若AB=2,求BE的长.图13*34.①在△ABC中,AB=AC,AB的垂直平分线交AC于N,交BC的延长线于M,∠A=30°,求∠NMB的大小.②如果将①中的∠A的度数改为70°,其余条件不变,再求∠NMB的大小.③你感到存在什么样的规律性?试证明.(请同学们自己画图)④将①中的∠A改为钝角,对这个问题规律性的认识是否需要加以修改?参考答案一、1.55°,55°或70°,40° 2.18或21 3.20 cm 4.251∶3 5.16 cm 6.6 7.75° 8.22或219.4 10.如果一个三角形两边上的高相等,那么这个三角形是等腰三角形 真 11.等腰二、12.A 13.C 14.D 15.A 16.D 17.B 18.B 19.C 20.B 21.D 22.D 23.A 24.C 25.D 26.B 27.D 28.B三、29.略 30.略 31.略 32.略 33.134.①15° ②35° ③AB 的垂直平分线与底边BC 所夹的锐角等于∠A 的一半 ④不需要修改。

北师大版八年级数学下册第一章三角形的证明单元测试题(答案及解析)

北师大版八年级数学下册第一章三角形的证明单元测试题(答案及解析)

北师大版八年级下册第一章三角形的证明测试题一.选择题(共10小题)1、等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°2.一个等腰三角形的两边长分别为3,6,则它的周长为()A.9 B.12 C.15 D.12或153.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°4.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对5.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°6.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.37.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180° D.2∠1+∠2=180°8.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°9.如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°10.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm²,则S阴影等于()A.2cm²B.1cm²C.cm²D.cm²二.填空题(共5小题)11.等边三角形是一个轴对称图形,它有______条对称轴.12.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为______.13.在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为______.14.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为______.15.如图,已知:∠MON=30°,点A1、A2、A3 在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为______.三.解答题(共8小题)16.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.18.如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.20.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.21.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.23.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?北师大版八年级下册第一章三角形的证明测试题参考答案与试题解析一.选择题(共10小题)1、等腰三角形的一个角是80°,则它顶角的度数是()【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选B.2.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.3.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°【解答】解:∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D.4.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【解答】解:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C5.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.6.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3【解答】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:A.7.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180° D.2∠1+∠2=180°【解答】解:∵∠1=∠3,∠B=∠C,∠1+∠B+∠3=180°,∴2∠1+∠C=180°,∴2∠1+∠1﹣∠2=180°,∴3∠1﹣∠2=180°.故选B.8.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°【解答】解:∵∠A=40°,∴∠ACB+∠ABC=180°﹣40°=140°,又∵∠ABC=∠ACB,∠1=∠2,∴∠PBA=∠PCB,∴∠1+∠ABP=∠PCB+∠2=140°×=70°,∴∠BPC=180°﹣70°=110°.故选A.9.如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°【解答】解:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,∴△DBE≌△ECF(SAS),∴∠EFC=∠DEB,∵∠A=50°,∴∠C=(180°﹣50°)÷2=65°,∴∠CFE+∠FEC=180°﹣65°=115°,∴∠DEB+∠FEC=115°,∴∠DEF=180°﹣115°=65°.故选:C.10.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A.2cm2 B.1cm2 C.cm2 D.cm2【解答】解:根据三角形的面积公式,知:等底等高的两个三角形的面积相等.即有:S阴影=S△BCE=S△ABC=1cm2.故选:B.二.填空题(共10小题)11.等边三角形是一个轴对称图形,它有 3 条对称轴【解答】解:等边三角形是轴对称图像,它有三个顶点,所以对应3条对称轴故答案为:312.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为69°或21°.【解答】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=(180°﹣42°)=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=(180°﹣138°)=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为:69°或21°.13.在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为16或8.【解答】解:∵BD是等腰△ABC的中线,可设AD=CD=x,则AB=AC=2x,又知BD将三角形周长分为15和21两部分,∴可知分为两种情况①AB+AD=15,即3x=15,解得x=5,此时BC=21﹣x=21﹣5=16;②AB+AD=21,即3x=21,解得x=7;此时等腰△ABC的三边分别为14,14,8.经验证,这两种情况都是成立的.∴这个三角形的底边长为8或16.故答案为:16或8.14.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为35°或20°.【解答】解:在△ABC中,AB=AC,①当∠A=70°时,则∠ABC=∠C=55°,∵BD⊥AC,∴∠DBC=90°﹣55°=35°;②当∠C=70°时,∵BD⊥AC,∴∠DBC=90°﹣70°=20°;故答案为:35°或20°.15.如图,已知:∠MON=30°,点A1、A2、A3 在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为32a .【解答】解:∵△A1B1A2是等边三角形∴∠B1A1A2=60°,A1B1=B1A2=A1A2∵∠MON=30°∴∠OB1A1=30°(三角形的一个外角等于和它不相邻的两个外角和∠OB1A1=∠B1A1A2-∠MON)∴OA1=A1B1(等边对等角)∴OA1=A1A2=a同理,根据∠MON=∠OB2A2,可得:A2A3=A2B2=OA1+A1A2=2A1A2=2a同理,可推出:A3A4=2A2A3=4a同理,可推出:A4A5=2A3A4=8a同理,可推出:A5A6=2A4A5=16a同理,可推出:A6A7=2A5A6=32a 即题目所求另外我们不难发现,第n个(△A1B1A2为第一个)等边三角形的边长为AnAn+1=(2^n-1)a 注:2的n-1次方倍的a三.解答题(共8小题)16.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.【解答】证明:∵AB=AC,AD是BC边上的中线,∴BD=BC,AD⊥BC,∵BE=BC,∴BD=BE,∵AE⊥BE,∴AB平分∠EAD.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.【解答】证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°,在Rt△ABD和Rt△BAC中,,∴Rt△ABD≌Rt△BAC(HL),∴∠DBA=∠CAB,∴OA=OB,即△OAB是等腰三角形.另外一种证法:证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°在Rt△ABD和Rt△BAC中∴Rt△ABD≌Rt△BAC(HL)∴AD=BC,在△AOD和△BOC中,∴△AOD≌△BOC(AAS),∴OA=OB,即△OAB是等腰三角形.18.如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.【解答】解:∵AB=BD,∴∠BDA=∠A,∵BD=DC,∴∠C=∠CBD,设∠C=∠CBD=x,则∠BDA=∠A=2x,∴∠ABD=180°﹣4x,∴∠ABC=∠ABD+∠CDB=180°﹣4x+x=105°,解得:x=25°,所以2x=50°,即∠A=50°,∠C=25°.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.【解答】解:(1)∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=70°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=20°;(2)∵在△ABC中,AB=AC,∠A=70°,∴∠ABC=∠ACB=55°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=35°;(3)∠NMB=∠A.理由:∵在△ABC中,AB=AC,∴∠ABC=∠ACB=,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=∠A.20.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.【解答】解:(1)∵AD平分∠BAC,DE∥AC,∴∠EAD=∠CAD,∠EDA=∠CAD,∴∠EAD=∠EDA,∵BD⊥AD,∴∠EBD+∠EAD=∠BDE+∠EDA∴∠EBD=∠BDE,∴DE=BE,∴△BDE是等腰三角形.21.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.【解答】证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HF),∴∠B=∠C,∴△ABC为等腰三角形.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.【解答】证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.23.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?【解答】解:(1)当点D在BC的中点时,DE=DF,理由如下:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,在△BED和△CFD中,∴△BED≌△CFD(AAS),∴DE=DF.(2)DE+DF=CG.证明:连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF,∵AB=AC,∴CG=DE+DF.(3)当点D在BC延长线上时,(1)中的结论不成立,但有DE﹣DF=CG.理由:连接AD,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.同理当D点在CB的延长线上时,则有DE﹣DF=CG,说明方法同上.。

北师大版八年级数学下册第一章三角形的证明专项测试题_附答案解析(一)

北师大版八年级数学下册第一章三角形的证明专项测试题_附答案解析(一)

第一章三角形的证明专项测试题(一)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,在中,已知,的平分线交于点.若,则点到的距离是().A.B.C.D.2、在中,,则,为().的垂直平分线交于点,交于点,且A.B.C.D.无法确定3、下列说法中,不正确的是().A.线段有1条对称轴B.等边三角形有条对称轴C.角只有1条对称轴D.底与腰不相等的等腰三角形只有一条对称轴4、如图,是()平分,,,垂足分别为,.下列结论中不一定成立的A.B.C.D.平分垂直平分5、若点在线段A.B.无法确定C.D.6、如图,是的依据是()的垂直平分线上,,则().内一点,且点到的距离,则A.B.C.D.7、如图,中,,,则()A.B.C.D.8、到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点9、如图,公路,则互相垂直,公路两点间的距离为()的中点与点被湖隔开.若测得的长为A.B.C.D.10、某一实验装置的截面图如图所示,上方装置可看做一长方形,其侧面与水平线的夹角为,下方是一个直径为,高为的圆柱形容器,若使容器中的液面与上方装置相接触,则容器中液体的高度至少应为()A.B.C.D.11、如图,若要用“”证明,则还需补充条件()A.B.或C.且D.以上都不对12、使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等13、已知直角三角形的周长为,斜边上的中线长为.则直角三角形的面积为()A.B.C.D.14、如图,在中,,平分,于.如果,那么等于()A.B.C.D.和15、如图,中、平分、,过作直线平行于,交、于、,当的位置及大小变化时,线段的大小关系是()A.不能确定B.C.D.二、填空题(本大题共有5小题,每小题5分,共25分)16、等腰三角形两腰上的高相等,这个命题的逆命题是_________________________,这个逆命题是________命题.17、如图,已知PE⊥OA,PF⊥OB,且PE=PF,则点P的位置在________上.18、如图,在中,于,点为的中点,,则线段的长等于.,为圆心,大于19、如图,在中,,平分,交于点,若,则.20、如图,点在直线上,按如下步骤作图:①以点为圆心,任意长为半径作圆弧,交于点,;②分别以点的长为半径作圆弧,两弧相交于点;③作直线,连结,,若,则的大小为度.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,在中,,是上一点,,过点作的垂线交于点.求证:.22、如图,在中,.,是边上的中线,于点,求证:23、如图,的长.中,,是的高,,求第一章三角形的证明专项测试题(一)答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,在中,已知,的平分线交于点.若,则点到的距离是().A.B.C.D.【答案】C【解析】解:过点作,交于点,则的长度即为点到直线的距离.,,是的平分线,且,,,已知,.即点到的距离为.故正确答案应选:.2、在中,,的垂直平分线交于点,交于点,且,则为().A.B.C.D.无法确定【答案】B【解析】解:如图所示.,且平分,,是等腰三角形,,,,,而,且,,解得.故正确答案是:.3、下列说法中,不正确的是().A.线段有1条对称轴B.等边三角形有条对称轴C.角只有1条对称轴D.底与腰不相等的等腰三角形只有一条对称轴【答案】A【解析】解:线段本身所在的直线为线段的条对称轴,线段的垂直平分线为线段的另1条对称轴,所以线段有条对称轴,本说法错误;等边三角形的条高线(或条角平分线)为等边三角形的条对称轴,本说法正确;角的平分线把角一分为二,故角的平分线只有条,本说法正确;底与腰不相等的三角形,顶角的平分线把三角形一分为二,所以底与腰不相等的三角形只有条对称轴,本说法正确.故正确的答案是:线段有1条对称轴.4、如图,平分,,,垂足分别为,.下列结论中不一定成立的是()A.B.平分C.D.垂直平分【答案】D【解析】解:平分,,,,第一选项正确;在和中,,,,,故第二、三选项正确;由等腰三角形三线合一的性质,垂直平分,不一定垂直平分,故本选项错误5、若点在线段的垂直平分线上,,则().A.B.无法确定C.D.【答案】C【解析】解:因为线段垂直平分线的点到线段两端点的距离相等,所以,所以.故答案为:.6、如图,是内一点,且点到的距离,则的依据是()A.B.C.D.【答案】A【解析】解:,,,又,为公共边,.7、如图,中,,,则()A.B.C.D.【答案】A【解析】解:,,,.8、到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点【答案】D【解析】解:到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点.9、如图,公路,则互相垂直,公路两点间的距离为()的中点与点被湖隔开.若测得的长为A.B.C.D.【答案】D【解析】解:在中,,为的中点,.10、某一实验装置的截面图如图所示,上方装置可看做一长方形,其侧面与水平线的夹角为,下方是一个直径为,高为的圆柱形容器,若使容器中的液面与上方装置相接触,则容器中液体的高度至少应为()A.B.C.D.【答案】A【解析】解:如图,圆桶放置的角度与水平线的夹角为,依题意得是一个斜边为的等腰直角三角形,此三角形中斜边上的高为斜边的一半,即,水深至少应为.11、如图,若要用“”证明,则还需补充条件()A.B.或C.且D.以上都不对【答案】B【解析】解:从图中可知为和的斜边,也是公共边.根据“”定理,证明,还需补充一对直角边相等,即或.12、使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等【答案】D【解析】解:一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故错误;两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故错误;一条边对应相等,再加一组直角相等,不能得出两三角形全等,故错误;证全等;若一直角边对应相等,一斜边对两条边对应相等,若是两条直角边相等,可利用应相等,也可证全等,故正确.,斜边上的中线长为.则直角三角形的面积为()13、已知直角三角形的周长为A.B.C.D.【答案】C【解析】解:,是斜边上的中线,,,,由勾股定理得:,,,.14、如图,在中,,平分,于.如果,那么等于()A.B.C.D.【答案】C【解析】解:,,,,,,平分,,.15、如图,中、平分、,过作直线平行于,交、于、,当的位置及大小变化时,线段和的大小关系是()A.不能确定B.C.D.【答案】D【解析】解:由平分得,,,,,,是等腰三角形,,同理可得,,(是等腰三角形),.二、填空题(本大题共有5小题,每小题5分,共25分)16、等腰三角形两腰上的高相等,这个命题的逆命题是_________________________,这个逆命题是________命题.【答案】如果一个三角形两边上的高相等,那么这个三角形是等腰三角形;真.【解析】解:命题“等腰三角形两腰上的高相等”的逆命题是“如果一个三角形两边上的高相等,那么这个三角形是等腰三角形”.它是真命题,可用证明,得到两角相等.17、如图,已知PE⊥OA,PF⊥OB,且PE=PF,则点P的位置在________上.【答案】的平分线【解析】解:由题意知,到角的两边的距离相等的点在角的平分线上,故答案为:的平分线.18、如图,在中,于,点为的中点,,则线段的长等于.【答案】8【解析】解:于,点为的中点,,在中,.19、如图,在中,,平分,交于点,若,则.【答案】14【解析】解:,,平分,,.,为圆心,大于20、如图,点在直线上,按如下步骤作图:①以点为圆心,任意长为半径作圆弧,交于点,;②分别以点的长为半径作圆弧,两弧相交于点;③作直线,连结,,若,则的大小为度.【答案】40【解析】解:由题意可得:故垂直平分.,则,,三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,在中,,是上一点,,过点作的垂线交于点.求证:.【解析】证明:...在和,中.,..,(三线合一)..22、如图,在中,.,是边上的中线,于点,求证:【解析】证明:,是边上的中线,,,,23、如图,的长..中,,是的高,,求【解析】解:如图,在中,,是高,在直角在直角,中,中,,,.的长为.。

北师大版八年级数学下册第一章三角形的证明测试题(原题版 )

北师大版八年级数学下册第一章三角形的证明测试题(原题版 )

【北师大版八年级数学(下)单元测试卷】第一章:三角形的证明一.选择题:(每小题3分共30分)1.等腰三角形两边长分别为4和9,则该三角形第三边的长为( )A .4B .9C .4或9D .大于5且小于132.如图,在ABC 中,90ACB ∠=︒,CD 是高,30A ∠=︒,若3BD a =,则AD 的长度为( )A .6aB .9aC .12aD .15a3.如图,在ABC 中,DE 是AC 的垂直平分线,若ABC 的周长为19cm ,ABD △的周长为13cm ,则AE 的长为( )A .2cmB .3cmC .4cmD .6cm4.如图,在Rt ABC △中,90C ∠=︒,30B ∠=︒,点D 是AB 的中点,ED AB ⊥于点D,交BC 于点E,连接AE ,若2DE =,则BC 的值是( )A .3B .4C .5D .65.如图,在△ABC 中,∠C=90°,∠B=15°,AB 的垂直平分线交BC 于D,交AB 于E,若DB=10cm,则CD 的长为( )6.如图,点C 为∠AOB 的角平分线l 上一点,D,E 分别为OA,OB 边上的点,且CD =CE,作CF ⊥OA,垂足为F,若OF =5,则OD+OE 的长为( )A .10B .11C .12D .157.如图,等腰三角形ABC 的底边BC 长为4,面积是18,腰AC 的垂直平分线EF 分别交AC 、AB 边于点E 、F .若点D 为BC 的中点,点M 为线段EF 上一动点,则CDM 周长的最小值为( )A .6B .8C .9D .118.如图,ABC 中,AB BC =,点D 在AC 上,BD BC ⊥.设BDC α∠=,ABD β∠=,则下列关系式正确的是( )A .3180αβ+=︒B .2180αβ+=︒C .3180αβ-=︒D .290αβ-=︒9.如图,已知等边ABC 和等边ADE ,其中点A 、D 、B 在同一条直线上,连接BE 交AC 于点M ,连接DC 交AE 于点N ,BE 和DC 交于点P ,则下列结论中:(1)MN BD ∥;(2)60BPC ∠=︒;(3)DN DE =;(4)BAM CAN ≅△△.正确的个数有( )A .1个B .2个C .3个D .4个侧作等边△ADE 和等边△ADF,分别和AB,AC 交于点G,H,连接GH .若∠BOC=120°,AB=a,AC=b,AD=c .则下列结论中正确的个数有( )①∠BAC=60°;②△AGH 是等边三角形;③AD 与GH 互相垂直平分;④()12ABC S a b c =+△. A .1个 B .2个 C .3个 D .4个 二.填空题:(每小题3分共15分)11.在ABC 中,AB AC =,64BAC ∠=︒,BAC ∠的角平分线与AB 的垂直平分线交于点O ,将C ∠沿EF 折叠,点C 与点O 恰好重合,则CFO ∠的度数为__________.12.如图,已知CD 是△ABC 的角平分线,DE ⊥BC,垂足为E,若AC =4,BC =10,△ABC 的面积是14,则DE =_____.13.如图,1230∠=∠=︒,A B ∠=∠,AE BE =,点D 在边AC 上,AE 与BD 相交于点O,则∠C 的度数为______.14.如图,在等腰△ABC 中,AB=AC=10,BC=16,AD 是BC 边上的中线且AD=6,F 是AD 上的动点,E 是AC 边上的动点,则CF+EF 的最小值等于______.15.如图,已知等腰△ABC,AB=AC,∠BAC=120°,AD ⊥BC 于点D,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP=OC,下面结论:①∠ACO=15°;②∠APO+∠DCO=30°;③△OPC 是等边三角形;④AC=AO+AP ; 其中正确的有 ______(填上所有正确结论的序号).三.解答题:(共55分)16.(5分)如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.BD ,CE 相交于点F .BD ,AC 相交于点M .(1)求证:BD CE =;(2)求BFC ∠的度数.17.(8分)如图,在ABC 中,60ACB ∠=︒,点D 在AC 上,BC CD =,以AB 为边向左侧作等边三角形ABE ,连ED .(1)求证:ABC EBD ≌△△; (2)过点B 作BF ED ⊥于点F ,2DF =,求BD 的长.18.(8分)点C 、D 都在线段AB 上,且AD =BC,AE =BF,∠A =∠B,CE 与DF 相交于点G .(1)求证∠E =∠F ;(2)若CE =10,DG =4,求 EG 的长.19.(8分)在平面直角坐标系中,等腰直角△ABC 顶点A 、C 分别在y 轴、x 轴上,且∠ACB=90°,AC=BC .(1)如图1,当A(0,−2),C(1,0),点B 在第四象限时,求点B 的坐标.(2)如图2,当点C 在x 轴正半轴上运动,点A(0,a)在y 轴正半轴上运动,点B(m,n)在第四象限时,作BD ⊥y 轴于点D,求a,m,n 之间的关系.20.(8分)如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,AD 是BC 的中线,AE BF =.(1)求证:DE DF =(2)DEF 是什么形状的三角形?请说明理由.连接AD,作∠ADE =40°,DE 交线段AC 于E .(1)当∠BDA =115°时,∠EDC =______,∠DEC =_____;(2)当DC 等于多少时,△ABD ≌△DCE,请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数.若不可以,请说明理由.22.(9分)如图,在平面直角坐标系中,直线()140y x m m=-+>分别与x 轴,y 轴交于A,B 两点,把线段(1)当54m 时,求点C的坐标;(2)当m值发生变化时,△BOC的面积是否保持不变?若不变,计算其大小;若变化,请说明理由;(3)当S△AOB=2S△BOC时,在x轴上找一点P,使得△PAB是等腰三角形,求满足条件的所有P点的坐标.。

北师大版数学八年级下册 第一章三角形的证明 综合测试卷(含答案)

北师大版数学八年级下册 第一章三角形的证明 综合测试卷(含答案)

第一章三角形的证明综合测试卷一、选择题。

01如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35º,则∠C的度数为 ( )A.35º B.45º C.55º D.60º02若等腰三角形的周长为10 cm,其中一边长为2 cm,则该等腰三角形的底边长为( )A.2 cm B.4 cm C.6 cm D.8 cm03如图,在△ABC中,∠ACB=90º,BE平分∠ABC,ED⊥AB于D.如果∠A=30º,AE=6 cm,那么CE等于 ( )A .3 cmB .2 cm C.3 cm D.4 cm04如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC 的长为半径作弧,两弧相交于M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50º,则∠ACB的度数为 ( )A.90º B.95º C 100º D.105º05如图,AD是△ABC中∠BAC的平分线,DE⊥AB,垂足为点E,DE=4,AC=6,则△ACD 的面积为 ( )A.8 B 10 C.12 D.2406如图,∠A=50º,P是等腰△ABC内一点,且∠PBC=∠PCA,则∠BPC为 ( )A.100º B.140º C.130º D.115º07如图,在Rt△ABC中,∠ACB=60º,DE是斜边AC的垂直平分线,分别交AB,AC 于D,E两点,若BD=2,则AC的长是 ( )A.4 B.43 C.8 D.8308 将一个有45º角的直角三角尺的直角顶点C放在一张宽为3 cm的纸带边沿上,另一个顶点A在纸带的另一边沿上,测得三角尺的一边AC与纸带的一边所在的直线成30º角,如图,则三角尺的最长边的长为 ( )A.6 cm B.2 cm C.2 cm D.209如图,∠ACB=90º,AC=BC,AE⊥CE,垂足为点E,BD⊥CE,交CE的延长线于点D,AE=5 cm,BD=2 cm,则DE的长是( )A.8 cm B.5 cm C.3 cm D.2 cm10如图,AD⊥BC于D,且DB=DC,有下列结论:①△ABD≌△ACD;②∠B=∠C;③AD 是∠BAC的平分线;④△ABC为等边三角形.其中正确的有 ( )A.1个 B.2个 C.3个 D.4个11如图,∠A=15º,AB=BC=CD=DE=EF,则∠DEF等于( )A.90º B.75º C.70º D.60º12如图,在△ABC中,BC=10,DH,EF分别为AB、AC的垂直平分线,则△ADE的周长是 ( )A.6 B.8 C.10 D.12二、填空题。

北师大版八年级数学下册第一章 三角形的证明(含答案)

北师大版八年级数学下册第一章 三角形的证明(含答案)

北师大版八年级数学下册第一章 三角形的证明(含答案)一、选择题1.由线段a,b,c 组成的三角形,不是直角三角形的是( )A.a=3,b=4,c=5B.a=1,b=43,c=53 C.a=9,b=12,c=15 D.a=√3,b=2,c=√5 答案 D D 中,a 2+b 2=7,c 2=5,a 2+b 2≠c 2,故选D.2.下列条件中,能判定两个直角三角形全等的是( )A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等答案 D 当两直角边对应相等时,再由直角相等,根据SAS 可以判定两直角三角形全等.3.到三角形三个顶点的距离相等的点是三角形的( )A.三个内角平分线的交点B.三边垂直平分线的交点C.三条中线的交点D.三条高的交点答案 B 到三角形三个顶点距离相等的点在三角形三边的垂直平分线上.4.用反证法证明:“三角形中必有一个内角不小于60°”时,应当先假设这个三角形中( )A.有一个内角小于60°B.每一个内角小于60°C.有一个内角大于60°D.每一个内角大于60°答案B反证法第一步是提出与结论相反的假设.5.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()图1-5-1A.√6B.4C.2√3D.5答案B∵AD⊥BC,∠ABC=45°,∴∠BAD=90°-∠ABC=45°=∠ABC,∴BD=AD,又∵AD⊥BC,BE⊥AC,∴∠ADB=∠ADC=90°,∠BEC=90°.∴∠C+∠CAD=90°,∠C+∠CBE=90°,∴∠CAD=∠CBE,∴△ADC≌△BDH.∴BH=AC=4.6.已知等腰直角三角形ABC,斜边AB的长为2,以AB所在直线为x轴,AB的垂直平分线为y 轴建立直角坐标系,则点C的坐标是()A.(0,1)B.(0,-1)C.(0,1)或(0,-1)D.(1,0)或(-1,0)答案C∵OC⊥AB,∠CAB=45°,∴∠ACO=45°.AB=1,∴C(0,1)或(0,-1).∴CO=AO=127.下列命题中的假命题是()A.等腰三角形的顶角一定是锐角B.等腰三角形的底角一定是锐角C.等腰三角形至少有两个角相等D.等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合答案A等腰三角形的顶角可以是锐角,也可以是直角或钝角.8.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,下列结论错误的是()A.∠C=2∠AB.BD=BCC.△ABD是等腰三角形D.点D为线段AC的中点答案D∵A=36°,AB=AC,∴∠C=∠ABC=72°.∴∠C=2×36°=2∠A,A选项正确.∵BD平分∠ABC,∴∠ABD=∠CBD=36°.∴∠A=∠ABD=36°,∴△ABD是等腰三角形,C选项正确.又∵∠BDC=∠A+∠ABD=72°=∠C,∴BD=BC,B选项正确,只有D选项结论错误.9.如图,在Rt△ABC中,∠BAC=90°,AC=6,BC=10,过A作DE∥BC交∠ABC的平分线BE于点E、交∠ACB的平分线CD于点D,则DE为()A.18B.16C.14D.8答案C在Rt△ABC中,AC=6,BC=10,由勾股定理得AB=8,∵DE∥BC,∴∠D=∠DCB,∠E=∠EBC,∵CD平分∠ACB,BE平分∠ABC,∴∠ACD=∠DCB,∠ABE=∠EBC,∴∠D=∠ACD,∠E=∠ABE,∴AD=AC=6,AE=AB=8,∴DE=6+ 8=14,故选C.10.如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,AQ=PQ,PR=PS,下面结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是()图1-5-4A.①②B.②③C.①③D.①②③答案A∵PR⊥AB,PS⊥AC,且PR=PS,∴∠BAP=∠CAP.又∵AQ=PQ,∴∠CAP=∠APQ.∴∠BAP=∠APQ.∴QP∥AR.在Rt△APR和Rt△APS中,{AP=AP,PR=PS,∴Rt△APR≌Rt△APS.∴AS=AR.故①②均正确.由已知条件不能得到△BRP≌△CSP.故选A.二、填空题11.等腰三角形两腰上的中线相等,这个命题的逆命题是,这个逆命题是命题.答案两边上的中线相等的三角形是等腰三角形;真12.等腰三角形的两边长分别是7和3,则它的周长是.答案17解析当7为腰长时,周长为7+7+3=17.当3为腰长时,∵3+3=6<7,∴不能构成三角形,故答案为17.13.已知△ABC的三边长分别为a,b,c,且满足(a-b)2+(b-c)2+(c-a)2=0,则△ABC是三角形.答案等边解析∵(a-b)2+(b-c)2+(c-a)2=0,∴a-b=0,b-c=0,c-a=0,∴a=b,b=c,c=a,∴a=b=c.∴△ABC 是等边三角形.14.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于D.若BD∶DC=2∶1,BC=7.8cm,则D到AB 的距离为cm.答案 2.6解析∵AD平分∠BAC且∠C=90°,∴点D到AB的距离等于CD的长.∵BD∶DC=2∶1,BC=7.8×7.8=2.6 cm.故答案为2.6.cm,∴CD=1315.如图,在△ABC中,AB的垂直平分线MN交AB于点E,交AC于点D,且AC=16,△BCD的周长等于26,则BC的长为.答案10解析∵MN垂直平分AB,∴AD=BD.∴△BCD的周长=BD+DC+BC=AC+BC.∴16+BC=26.∴BC=10.16.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为.答案1+√3解析∵CD⊥AB,∴∠ADC=∠BDC=90°.又∵∠A=45°,∠B=30°,∴∠ACD=∠A=45°,BC=2CD=2.∴AD=CD=1,BD=√BC2-CD2=√22-12=√3.∴AB=AD+DB=1+√3.17.如图,D是线段AB、BC的垂直平分线的交点,若∠ABC=60°,则∠ADC=.答案120°解析连接BD并延长.∵D是线段AB、BC的垂直平分线的交点,∴AD=BD=CD,∴∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=2∠ABC=120°.又∵∠5=∠1+∠2,∠6=∠3+∠4,∴∠ADC=∠5+∠6=120°.18.如图,在△ABC 中,AB=AC=5,BC=6,若点P 在边AC 上移动,则BP 的最小值是 .答案245解析 过点A 作AE ⊥BC 于点E,因为AB=AC=5,所以BE=CE=12BC=3,所以AE=√AB 2-BE 2=√52-32=4,所以S △ABC =12BC ·AE=12.易知BP 的最小值是S △ABC 12AC =245. 三、解答题19.如图,在Rt △ABC 中,AB=9,BC=6,∠B=90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN,求BN 的长.答案 设BN=x,由题意可得DN=AN=9-x.∵D 是BC 的中点,∴BD=3.在Rt △NBD 中,x 2+32=(9-x)2,解得x=4,即BN=4.20.如图所示,在△ABC 中,∠ACB=90°,CD 、CE 三等分∠ACB,CD ⊥AB.求证:(1)AB=2BC;(2)CE=AE=BE.证明 (1)∵∠ACB=90°,CD 、CE 三等分∠ACB,∴∠1=∠2=∠3=30°,∴∠1+∠2=60°,∴∠A=30°.在Rt△ACB中,∵∠A=30°,∴AB=2BC.(2)由(1)知∠A=∠1=30°,∴CE=AE.又∵∠B=∠BCE=60°,∴△BCE为等边三角形,∴CE=BE.∴CE=AE=BE.21.如图,在△ABC中,AB=8,AC=4,G为BC的中点,DG⊥BC交∠BAC的平分线AD于D,DE⊥AB 于E,DF⊥AC交AC的延长线于F.(1)求证:BE=CF;(2)求AE的长.答案(1)证明:连接DB、DC,易知△BDE与△CDF均为直角三角形.∵DG垂直平分BC,∴DB=DC.∵AD为∠BAC的平分线,DE⊥AB,DF⊥AF,∴DE=DF(角平分线上的点到这个角的两边的距离相等).∴Rt△DBE≌Rt△DCF(HL),∴BE=CF.(2)∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,又∠DAE=∠DAF,AD=AD,∴△ADE≌△ADF.∴AE=AF=AC+CF.由(1)知BE=CF,∴AE=AC+BE=4+BE.∴AE=4+8-AE.∴AE=6.22.如图所示,△ABC是边长为6 cm的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为v P=2 cm/s,v Q=1 cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为t s.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?答案由题意可知AP=2t cm,BQ=t cm(0≤t≤3),则BP=AB-AP=(6-2t)cm.(1)若△PBQ为等边三角形,已知∠B=60°,需BP=BQ,即6-2t=t,解得t=2,即当t=2时,△PBQ 为等边三角形.(2)当PQ⊥BQ时,∵∠B=60°,∴∠BPQ=30°,∴BP=2BQ,即6-2t=2t,解得t=1.5;当PQ⊥BP时,同理可得BQ=2BP,即t=2(6-2t),解得t=2.4.综上可知,当t为1.5或2.4时,△PBQ为直角三角形.。

北师大版八年级数学下册《三角形的证明》单元测试1(含答案)

北师大版八年级数学下册《三角形的证明》单元测试1(含答案)

第一章 三角形的证明单元测试一、选择题(每题3分,共30分)1、△ABC 中,AB = AC ,BD 平分∠ABC 交AC 边于点D ,∠BDC = 75°,则∠A 的度数为( )A 35°B 40°C 70°D 110°2、适合条件∠A =∠B =31∠C 的三角形一定是( )A 锐角三角形B 钝角三角形C 直角三角形D 任意三角形3、用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③正方形;④等腰三角形,一定可以拼成的图形是( )A ①②④B ②④C ①④D ②③④4、已知△ABC 中,AB =AC ,AB 的垂直平分线交AC 于D ,△ABC 和△DBC 的周长分别是60 cm 和38 cm ,则△ABC 的腰和底边长分别为 ( ) A 24 cm 和12 cm B 16 cm 和22 cm C 20 cm 和16 cm D 22 cm 和16 cm5、如图,△ABC 中,AC =BC ,直线l 经过点C ,则 ( ) A l 垂直AB B l 平分AB C l 垂直平分AB D 不能确定6、三角形中,若一个角等于其他两个角的差,则这个三角形是 ( ) A 钝角三角形 B 直角三角形 C 锐角三角形 D 等腰三角形7、已知等腰三角形的两边长分别为6㎝、3㎝,则该等腰三角形的周长是( ) A 9㎝B 12㎝C 12㎝或者15㎝D 15㎝8、如图,已知在△ABC中,AB=AC,D为BC上一点,BE=CD,CF=BD,那么∠EDF等于( )A 90°-∠A B 90°-21∠A C 45°-21∠A D 180°-∠A9、一个正方形和一个等腰三角形有相等的周长,已知等腰三角形有两边长分别为5.6 cm和13.2 cm,则这个正方形的面积为()A 64 cm2B 48 cm2C 36 cm2D 24 cm210、如图,等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A 45°B 55°C 60°D 75°二、填空题(每小题3分,共30分)1、“直角三角形两条直角边的平方和等于斜边的平”的方逆定理是2、等腰三角形的腰长为2cm,面积等于1cm2,则它的顶角的度数为 .3、如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB相交于D点,则∠BCD的度数是 .4、等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高是 .5、正三角形的边长为a,则它的面积为.6、在△ABC中,AB=AC,∠A=58°,AB的垂直平分线交AC于N,则∠NBC = .7、在直角三角形中,如果一个锐角为30°,而斜边与较小直角边的和为12,那么斜边长为.8、已知:如图,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF=.9、在等腰三角形ABC中,AB=AC=5,BC=6,D是BC上一点,作DE⊥AB,DF⊥AC,则DE+DF= .10、如图,一张直角三角形的纸片,象图中那样折叠,使A与B重合,∠B=30°,AC=3,则折痕DE等于.三、解答题(本题共8个小题,共60分)1、(7分)已知:如图,等腰三角形ABC 中,AC =BC ,∠ACB =90°,直线l 经过点C(点A 、B 都在直线l 的同侧),AD ⊥l ,BE ⊥l ,垂足分别为D 、E .求证:△ADC ≌△CEB.2、(7分)用反证法证明一个三角形中不能有两个角是直角.3、(8分)如图,在△ABC 中,AD 是高,CE 是中线,DC=BE ,DG ⊥CE 于G .求证:①G 是CE 的中点. ②∠B=2∠BCE .4、(7分)在四边形ABCD 中,AC 平分∠BAD ,过C 作CE ⊥AB 于E ,且AE =21(AB +AD ),求∠ABC +∠ADC 的度数.ABCDEGABCED5、(7分)如图,△ABC 中,E 是BC 边上的中点,DE ⊥BC 于E ,交∠BAC 的平分线AD 于D ,过D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,试证明:BM =CN .6、(7分)已知:如图,在Rt △ABC 中,∠ACB=90°,AC=BC ,点D 是BC 的中点,CE ⊥AD ,垂足为点E ,BF//AC 交CE 的延长线于点F . 求证:AC=2BF .7、(7分)在△ABC 中,AB =AC ,D 是AB 上一点,E 是AC 延长线上一点,且BD =CE . 求证:DM =EM .ABC DMNEBFABCDE8、(10分)已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.(1)当∠A满足什么条件时,点D恰为AB的中点?写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积.参考答案一、选择题1、B2、B3、A4、D5、D6、B7、D8、B9、A 10、C二、填空题1、如果三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形2、30°或150°3、10°4、32a 5、234a 6、3°7、 6 8、55° 9、24510、1三、解答题(本题共8个小题,共60分) 1、略 2、略3、提示:连结DE ,由直角三角形斜边中线等于斜边的一半易证.4、提示:过C 点作AD 的延长线的垂线,垂足为F .利用角平分线的性质和AE=21(AB+AD )可知BE=DF ,CF=CE ,再由△CDF ≌CBE 即得. 5、提示:连结BD 、CD 利用角平分线和中垂线的性质证△BDM ≌CDN . 6、提示:证△ACD ≌CBF .7、提示:过D 点作AC 的平行线(或者过E 点作AB 的平行线)利用三角形全等可证.8、(1)∠A = 30°;证明略(2)△ABC。

北师大版八年级数学下册第一章 三角形的证明练习(含答案)

北师大版八年级数学下册第一章 三角形的证明练习(含答案)

第一章 三角形的证明一、单选题1.如图,△ABC 中,△B =60°,AB =AC ,BC =3,则△ABC 的周长为( )A .9B .8C .6D .122.在△ABC 中,AB=AC ,△C=75°, 则△A 的度数是( )A .30°B .50°C .75°D .150°3.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是( ) A .等边三角形B .等腰直角三角形C .等腰三角形D .含30°角的直角三角形4.如图,过等边△ABC 的顶点A 作射线,若△1=20°,则△2的度数是( )A .100°B .80°C .60°D .40°5.以下列各组数据中的三个数作为三角形的边长,其中不能构成直角三角形的是 ( )A .3,4,5B .1,2C .5,6,7D .1,16.已知a 、b 、c 是三角形的三边长,若满足2(6)100a c --=,则这个三角形的形状是( )A .等腰三角形B .等边三角形C .锐角三角形D .直角三角形7.如图,在ABC V 中,BA BC =,120ABC ∠=︒,AB 的垂直平分线交AC 于点M ,交AB 于点E ,BC 的垂直平分线交AC 于点N 交BC 于点F ,连接BM ,BN ,若24AC =,则BMN △的周长是( )A .36B .24C .18D .168.如图,在ABC V 中,以点A 为圆心,AC 的长为半径作弧,与BC 交于点E ,分别以点E ,C 为圆心,大于12EC 的长为半径作弧,两弧相交于点P ,作射线AP 交BC 于点D .若45B ∠=︒,2C CAD ∠=∠,则BAC ∠的度数为( )A .80︒B .75︒C .65︒D .30°9.如图,在R △ABC 中,△ACB =90°,AC =6,BC =8,E 为AC 上一点,且AE =85,AD 平分△BAC 交BC 于D .若P 是AD 上的动点,则PC +PE 的最小值等于( )A .185B .245C .4D .26510.在Rt ABC ∆中,90ACB ∠=︒,点D E 、是AB 边上两点,且CE 垂直平分,AD CD 平分,6BCE AC cm ∠=,则BD 的长为( )A .6cmB .7cmC .8cmD .9cm二、填空题 11.若等腰三角形的一个内角的度数为48°,则其顶角的度数为_____.12.如图,在ABC ∆中,AD 是边BC 上的高,BE 平分ABC ∠交AC 于点E ,60BAC ∠=︒,25EBC ∠=︒,则DAC ∠=_______.13.如图,△AOD 关于直线l 进行轴对称变换后得到△BOC ,那么对于(1)△DAO =△CBO ,△ADO =△BCO (2)直线l 垂直平分AB 、CD (3)△AOD 和△BOC 均是等腰三角形(4)AD =BC ,OD =OC 中不正确的是_____.14.已知△ABC 的周长是20,OB 、OC 分别平分△ABC 和△ACB ,OD△BC 于D ,且OD=3,则△ABC 的面积是 .三、解答题15.如图,在等边ABC V 中,点D ,E 分别在边BC ,AC 上,且//DE AB ,过点E 作EF DE ⊥,交BC 的延长线于点F .(1)求F ∠的度数;(2)若3CD =,求DF 的长.16.如图,在四边形ABCD 中,AB=BC=1,DA=1,且△B=90°,求:(1)△BAD 的度数;(2)四边形ABCD 的面积(结果保留根号).17.已知如图,在△ABC 中,△B =45°,点D 是BC 边的中点,DE △BC 于点D ,交AB 于点E ,连接CE .(1)求△AEC 的度数;(2)请你判断AE 、BE 、AC 三条线段之间的等量关系,并证明你的结论.18.如图,点O 是等边ABC ∆内一点,110AOB ∠=︒,BOC α∠=.以OC 为一边作等边三角形OCD ,连接AC 、AD .(1)若120α=︒,判断OB OD +_______BD (填“>,<或=”)(2)当150α=︒,试判断AOD ∆的形状,并说明理由;(3)探究:当α=______时,AOD ∆是等腰三角形.(请直接写出答案)答案1.A2.A3.A4.A5.C6.D7.B8.B9.D10.A11.84°或48°.12.20°13.(3)14.30.15.解:(1)ABC ∆Q 是等边三角形,60B ∴∠=︒,//DE AB Q ,60EDC B ∴∠=∠=︒,EF DE ⊥Q ,90DEF ∴∠=︒,9030F EDC ∴∠=︒-∠=︒;(2)60ACB ∠=︒Q ,60EDC ∠=︒,EDC ∴∆是等边三角形.3ED DC ∴==,90DEF ∠=︒Q ,30F ∠=︒,26DF DE ∴==.16.解:(1)连接AC ,如图所示:△AB=BC=1,△B=90°=又△AD=1,△ AD 2+AC 2=3 CD 22=3即CD 2=AD 2+AC 2△△DAC=90°△AB=BC=1△△BAC=△BCA=45°△△BAD=135°;(2)由(1)可知△ABC 和△ADC 是Rt△,△S 四边形ABCD =S △ABC +S △ADC =1×1×12×12=12+ . 17.解:(1)△点D 是BC 边的中点,DE △BC ,△DE 是线段BC 的垂直平分线,△EB =EC ,△△ECB =△B =45°,△△AEC =△ECB +△B =90°;(2)AE 2+EB 2=AC 2.△△AEC =90°,△AE 2+EC 2=AC 2,△EB =EC ,△AE 2+EB 2=AC 2.18.解:(1)=(2)ADO ∆是直角三角形.(3)α为125︒、110︒、140︒时,AOD ∆是等腰三角形。

北师大版八年级数学下册单元测试《第1章 三角形的证明》(解析版)

北师大版八年级数学下册单元测试《第1章 三角形的证明》(解析版)

《第1章三角形的证明》一、选择题1.如果三角形的三个内角度数比为1:1:2,则这个三角形为()A.锐角三角形B.钝角三角形C.非等腰直角三角形D.等腰直角三角形2.下面命题不正确的是()A.两个内角分别是50°和65°的三角形是等腰三角形B.两个外角相等的三角形是等腰三角形C.一个外角的平分线平行于一边的三角形是等腰三角形D.两个内角不相等的三角形不是等腰三角形3.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2 B.a=﹣1 C.a=1 D.a=24.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60° B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°5.如图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连接ED并延长到点F,使DF=DE,连接FC,若∠B=70°,则∠F 的度数是()A.40 B.70 C.50 D.456.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.97.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里二、填空题8.如图所示,在△ABC中,AB=AC,点D、E在BC边上,∠ABD=∠DAE=∠EAC=36°,则图中共有等腰三角形的个数是.9.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是.10.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.三、解答题11.证明题:如图所示,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC.12.如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)13.已知∠AOB及其内部一点P,试讨论以下问题的解答:(1)如图①,若点P在∠AOB的平分线上,我们可以过P点作直线垂直于角平分线,分别交OA、OB于点C、D,则可以得到△OCD是以CD为底边的等腰三角形;若点P不在∠AOB的平分线上(如图②),你能过P点作直线,分别交OA、OB于点C、D,得到△OCD是等腰三角形,且CD是底边吗?请你在图②中画出图形,并简要说明画法.(2)若点P不在∠AOB的平分线上(如图③),我们可以过P点作PQ∥OA,并作∠QPR=∠AOB,直线PR分别交OA、OB于点C、D,则可以得到△OCD是以OC为底的等腰三角形.请你说明这样作的理由.(3)若点P不在∠AOB的平分线上,请你利用在(2)中学到的方法,在图④中过P点作直线分别交OA、OB于点C、D,使得△OCD是等腰三角形,且OD是底边.保留画图的痕迹,不用写出画法.《第1章三角形的证明》参考答案与试题解析一、选择题1.如果三角形的三个内角度数比为1:1:2,则这个三角形为()A.锐角三角形B.钝角三角形C.非等腰直角三角形D.等腰直角三角形【考点】三角形内角和定理.【分析】由三角形的三个内角度数比为1:1:2,可设三角形的三个内角分别为:x,x,2x,然后由三角形的内角和等于180°,即可得方程:x+x+2x=180°,解此方程即可求得答案.【解答】解:∵三角形的三个内角度数比为1:1:2,∴设三角形的三个内角分别为:x,x,2x,∴x+x+2x=180°,解得:x=45°,∴三角形的三个内角度数分别为:45°,45°,90°.∴这个三角形为等腰直角三角形.故选:D.【点评】此题考查了三角形的内角和定理.此题比较简单,解题的关键是根据三角形的三个内角度数比为1:1:2,设三角形的三个内角分别为:x,x,2x,利用方程思想求解.2.下面命题不正确的是()A.两个内角分别是50°和65°的三角形是等腰三角形B.两个外角相等的三角形是等腰三角形C.一个外角的平分线平行于一边的三角形是等腰三角形D.两个内角不相等的三角形不是等腰三角形【考点】等腰三角形的判定.【分析】认真阅读各选项,结合各选项提供的已知条件及等腰三角形的定义可得.【解答】解:A、第三个角180°﹣50°﹣65°=65°,有两等角的三角形是等腰三角形,正确;B、外角相等,则对应的内角也相等,有两等角的三角形是等腰三角形,正确;C、利用两直线平行,内错角相等,同位相等,可知,另外的两内角也相等,有两等角的三角形是等腰三角形,正确;D、两个内角不相等的三角形可能是等腰三角形,错误.故选D.【点评】本题考查了等腰三角形的判定;找出各选项的正误是正确解答本题的关键.3.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2 B.a=﹣1 C.a=1 D.a=2【考点】反证法.【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.【解答】解:用来证明命题“若a2>1,则a>1”是假命题的反例可以是:a=﹣2,∵(﹣2)2>1,但是a=﹣2<1,∴A正确;故选:A.【点评】此题主要考查了利用举例法证明一个命题错误,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.4.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60° B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°【考点】反证法.【专题】证明题.【分析】此题要运用反证法,由题意先假设三角形的三个角都小于60°成立.然后推出不成立.得出选项.【解答】解:设三角形的三个角分别为:a,b,c.假设,a<60°,b<60°,c<60°,则a+b+c<60°+60°+60°,即,a+b+c<180°与三角形内角和定理a+b+c=180°矛盾.所以假设不成立,即三角形中至少有一个角不小于60°.故选B.【点评】此题考查的知识点是反证法,解答此题的关键是由已知三角形中至少有一个角不小于60°假设都小于60°进行论证.5.如图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连接ED并延长到点F,使DF=DE,连接FC,若∠B=70°,则∠F 的度数是()A.40 B.70 C.50 D.45【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】由题意可得EB=ED,根据等边对等角的性质,易得∠B=∠EDB=∠ACB,即可得EF∥AC,又由AE=BE,根据平行线等分线段成比例定理,可得BD=CD,然后利用SAS即可证得△EBD≌△CFD,即可得∠F=∠BED.【解答】解:∵以点E为圆心,EB为半径画弧,交BC于点D,∴EB=ED,∴∠EDB=∠B=70°,∴∠BED=180°﹣∠B=∠BDE=40°,∵AB=AC,∴∠ACB=∠B,∴∠EDB=∠ACB,∴EF∥AC,∵E是AB的中点,即BE=AE,∴BD=CD,在△EBD和△FCD中,,∴△EBD≌△FCD(SAS),∴∠F=∠BED=40°.故选A.【点评】此题考查了全等三角形的判定与性质、等腰三角形的性质以及平行线的判定与性质.此题难度适中,注意掌握数形结合思想的应用,注意理解题意.6.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.9【考点】等腰三角形的判定.【专题】分类讨论.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【解答】解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.7.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里【考点】等腰三角形的判定与性质;方向角;平行线的性质.【专题】应用题.【分析】根据方向角的定义即可求得∠M=70°,∠N=40°,则在△MNP中利用内角和定理求得∠NPM的度数,证明三角形MNP是等腰三角形,即可求解.【解答】解:MN=2×40=80(海里),∵∠M=70°,∠N=40°,∴∠NPM=180°﹣∠M﹣∠N=180°﹣70°﹣40°=70°,∴∠NPM=∠M,∴NP=MN=80(海里).故选:D.【点评】本题考查了方向角的定义,以及三角形内角和定理,等腰三角形的判定定理,理解方向角的定义是关键.二、填空题8.如图所示,在△ABC中,AB=AC,点D、E在BC边上,∠ABD=∠DAE=∠EAC=36°,则图中共有等腰三角形的个数是6.【考点】等腰三角形的判定与性质.【分析】由在△ABC中,AB=AC,点D、E在BC边上,∠ABD=∠DAE=∠EAC=36°,根据等腰三角形的性质与三角形内角和定理,易求得各角的度数,继而求得答案.【解答】解:∵在△ABC中,AB=AC,∠ABD=36°,即△ABC是等腰三角形,∴∠C=∠B=36°,∴∠BAC=108°,∵∠DAE=∠EAC=36°,∴∠BAD=36°,∴∠BAD=∠B=36°,∠EAC=∠C=36°,∴△ABD,△ACE是等腰三角形,∴∠ADE=∠AED=∠DAC=∠BAE=72°,∴△ADE,△ABE,△ACD是等腰三角形.故答案为:6.【点评】此题考查了等腰三角形的性质与判定.此题难度不大,注意掌握数形结合思想的应用.9.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是9.【考点】等腰三角形的判定与性质;平行线的性质.【专题】压轴题.【分析】由在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,易证得△DOB与△EOC是等腰三角形,即DO=DB,EO=EC,继而可得△ADE的周长等于AB+AC,即可求得答案.【解答】解:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.故答案为:9.【点评】此题考查了等腰三角形的判定与性质、角平分线的定义以及平行线的性质.此题难度适中,注意证得△DOB与△EOC是等腰三角形是解此题的关键,注意掌握数形结合思想与转化思想的应用.10.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是②③④.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.【考点】等腰三角形的判定与性质.【专题】压轴题.【分析】可根据等腰三角形三线合一的性质来判断①②是否正确;③④要通过作等腰三角形来判断其结论是否成立.【解答】解:应添加的条件是②③④;证明:②当∠BAD=∠CAD时,∵AD是∠BAC的平分线,且AD是BC边上的高;则△ABD≌△ACD,∴△BAC是等腰三角形;③延长DB至E,使BE=AB;延长DC至F,使CF=AC;连接AE、AF;∵AB+BD=CD+AC,∴DE=DF,又AD⊥BC;∴△AEF是等腰三角形;∴∠E=∠F;∵AB=BE,∴∠ABC=2∠E;同理,得∠ACB=2∠F;∴∠ABC=∠ACB,即AB=AC,△ABC是等腰三角形;④△ABC中,AD⊥BC,根据勾股定理,得:AB2﹣BD2=AC2﹣CD2,即(AB+BD)(AB﹣BD)=(AC+CD)(AC﹣CD);∵AB﹣BD=AC﹣CD①,∴AB+BD=AC+CD②;∴①+②得:,2AB=2AC;∴AB=AC,∴△ABC是等腰三角形故答案为:②③④.【点评】此题主要考查的是等腰三角形的判定和性质;本题的难点是结论③的证明,能够正确的构建出等腰三角形是解答③题的关键.三、解答题11.证明题:如图所示,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC.【考点】反证法.【专题】证明题.【分析】运用反证法进行求解:(1)假设结论PB≠PC不成立,PB=PC成立.(2)从假设出发推出与已知相矛盾.(3)得到假设不成立,则结论成立.【解答】证明:假设PB≠PC不成立,则PB=PC;∵在△ABP和△ACP中,,∴△ABP≌△ACP,∴∠APB=∠APC;与∠APB≠∠APC相矛盾.因而PB=PC不成立,则PB≠PC.【点评】解此题关键要懂得反证法的意义及步骤.12.如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)【考点】等腰三角形的判定与性质;作图—基本作图.【专题】作图题.【分析】(1)以D为圆心,以任意长为半径画弧,交AD于G,交DC于H,分别以G、H为圆心,以大于GH为半径画弧,两弧交于N,作射线DN,交AM 于F.(2)求出∠BAD=∠CAD,求出∠FAD=×180°=90°,求出∠CDF=∠AFD=∠ADF,推出AD=AF,即可得出答案.【解答】解:(1)如图所示:(2)△ADF的形状是等腰直角三角形,理由是:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AF平分∠EAC,∴∠EAF=∠FAC,∵∠FAD=∠FAC+∠DAC=∠EAC+∠BAC=×180°=90°,即△ADF是直角三角形,∵AB=AC,∴∠B=∠ACB,∵∠EAC=2∠EAF=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∵DF平分∠ADC,∴∠ADF=∠FDC=∠AFD,∴AD=AF,即直角三角形ADF是等腰直角三角形.【点评】本题考查了作图﹣基本作图,等腰三角形的性质和判定的应用,主要培养学生的动手操作能力和推理能力,题目比较典型,难度也适中.13.已知∠AOB及其内部一点P,试讨论以下问题的解答:(1)如图①,若点P在∠AOB的平分线上,我们可以过P点作直线垂直于角平分线,分别交OA、OB于点C、D,则可以得到△OCD是以CD为底边的等腰三角形;若点P不在∠AOB的平分线上(如图②),你能过P点作直线,分别交OA、OB于点C、D,得到△OCD是等腰三角形,且CD是底边吗?请你在图②中画出图形,并简要说明画法.(2)若点P不在∠AOB的平分线上(如图③),我们可以过P点作PQ∥OA,并作∠QPR=∠AOB,直线PR分别交OA、OB于点C、D,则可以得到△OCD是以OC为底的等腰三角形.请你说明这样作的理由.(3)若点P不在∠AOB的平分线上,请你利用在(2)中学到的方法,在图④中过P点作直线分别交OA、OB于点C、D,使得△OCD是等腰三角形,且OD是底边.保留画图的痕迹,不用写出画法.【考点】作图—应用与设计作图;角平分线的性质;等腰三角形的判定.【分析】(1)作∠AOB的平分线,过P点作角平分线的垂线,分别交角的两边OA、OB于点C、D,则△OCD是以CD为底边的等腰三角形;(2)根据PQ∥OA,得出∠QPR=∠OCD,进而得出OD=CD,即可得出答案;(3)作QP∥DO,再作∠ODR=∠O,即可得出答案.【解答】解:(1)能.画法:作∠AOB的平分线,过P点作角平分线的垂线,分别交角的两边OA、OB 于点C、D,则△OCD是以CD为底边的等腰三角形,如图①.(2)∵PQ∥OA,∴∠QPR=∠OCD,又∵∠QPR=∠AOB,∴∠OCD=∠AOB.∴OD=CD.即△OCD是以OC为底的等腰三角形.(3)如图②.【点评】此题主要考查了基本作图角平分线的性质等知识;作角平分线是正确解答本题的关键.。

北师大版数学八年级下册 第一章 三角形的证明 单元测试卷(含答案)

北师大版数学八年级下册 第一章 三角形的证明   单元测试卷(含答案)

第一章三角形的证明单元测试卷一、选择题(每题3分,共30分)1.下列各组数中能作为直角三角形的三边长的是()A.2,2,3 B.6,8,10C.5,2,2 D.1.5,2.5,3.52.如图,直线AD垂直平分线段BC,∠B=50°,则∠C的度数为() A.60°B.50°C.40°D.30°(第2题) (第5题)(第6题)3.已知在Rt△ABC中,∠C为直角,∠B是∠A的2倍,则∠A的度数是() A.30°B.50°C.70°D.90°4.用反证法证明“一个三角形的三个内角分别是∠1,∠2,∠3,如果∠2+∠3<90°,那么∠1>90°.”时,应先假设()A.∠1≠90° B.∠1=90°C.∠1<90°D.∠1≤90°5.如图,已知AB⊥BD,CD⊥BD,若用“HL”判定Rt△ABD和Rt△CDB全等,则需要添加的条件是()A.AD=CB B.∠A=∠CC.BD=DC D.AB=CD6.某地兴建的幸福小区的三个出口A,B,C的位置如图所示,物业公司想在小区内修建一个电动车充电桩,以方便业主,要求到三个出口的距离都相等,则充电桩应该在△ABC()A.三条高线的交点处B.三条中线的交点处C.三个角的平分线的交点处D.三条边的垂直平分线的交点处7.如图,点B 在AC 上,AB =5,BC =3,△BCD 是等边三角形,则AD 的长为( )A .3B .4C .5D .7(第7题) (第9题)8.已知等腰三角形的两边长分别为x ,y ,且满足|2x -y +1|+(x +y -13)2=0,则该等腰三角形的周长为( ) A .22或26B .17C .17或22D .229.如图,在△ABC 中,∠A =90°,∠C =30°,∠ABC 的平分线与线段AC 相交于点D ,若AD =4,则CD 的长为( ) A .10B .8C .6D .410.如图,正方形ABCD 的边长为1,其面积为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S 2,…,按此规律继续下去,则S 100的值为( )A.⎝ ⎛⎭⎪⎫2299B.⎝ ⎛⎭⎪⎫22100C.⎝ ⎛⎭⎪⎫1299 D.⎝ ⎛⎭⎪⎫12100 二、填空题(每题3分,共15分)11.命题“等腰三角形有两个角相等”的逆命题是______(填“真”或“假”)命题. 12.如图,BD 是等边三角形ABC 的角平分线,AB =10,则AD =______. 13.若△ABC 的三边长分别为a ,b ,c ,则下列条件中能判定△ABC 是直角三角形的有________个.①∠A =∠B -∠C ;②∠A ∶∠B ∶∠C =3∶4∶5;③a 2=(b +c )(b -c );④a ∶b ∶c =5∶12∶13.(第12题)(第14题)14.如图,S△ABC=21,∠BAC的平分线AD交BC于点D,点E为AD的中点.连=2,则AB AC 接BE,点F为BE上一点,且BF=2EF,连接DF.若S△DEF=________.15.如图,在平面直角坐标系中有点A(0,3)和B(4,0),点M(8,m)为坐标平面内一动点,且△ABM为等腰三角形,则点M的坐标为________________.三、解答题(一)(每题8分,共24分)16.用一条长为40 cm的细绳围成一个一边长为12 cm的等腰三角形,求这个三角形的三边长.17.如图,在△ABC中,AE=5,BE=13,AC=12,DE是BC的垂直平分线,求证:△ABC为直角三角形.318.如图,在△ABC中,∠C=90°.(1)作∠ABC的平分线交AC于点D(尺规作图,保留作图痕迹,标注有关字母,不用写作法和证明);(2)若CD=3,AB+BC=16,求△ABC的面积.四、解答题(二)(每题9分,共27分)19.在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于点D,CE⊥DE于点E.(1)如图①,若点B,C在DE的同侧,AD=CE,求证:AB⊥AC.(2)如图②,若点B,C在DE的两侧,AD=CE,AB与AC仍垂直吗?若垂直,请给出证明;若不垂直,请说明理由.520.如图,在△ABC中,AB=AC,∠BAC=40°,AD是BC边上的高.线段AC 的垂直平分线交AD于点E,交AC于点F,连接BE.(1)填空:∠BAD的度数为__________;∠ABC的度数为______;∠ACB的度数为________.(2)线段AE与BE的长相等吗?请说明理由;(3)求∠EBD的度数.21.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC,交AB于点E,交AC于点F.(1)求证:点E在OB的垂直平分线上;(2)过点O作OH⊥BC于点H,连接OA,当∠BAC=60°时,试探究OH与OA的数量关系,并说明理由.五、解答题(三)(每题12分,共24分)22.如图,在△ABC中,AC=BC,点F为AB的中点,连接CF.边AC的垂直平分线交AC,CF,CB于点D,O,E,连接OA,OB.(1)求证:△OBC为等腰三角形;(2)若∠ACF=23°,求∠BOE的度数;(3)若AB=10,CF=25,求线段OA的长.23.如图①,用两条线段(虚线),将一个顶角为36°的等腰三角形分成了三个小等腰三角形,并标出了三个小等腰三角形顶角的度数.(1)请你仿照图①的方法,在图②中,用两种不同的方法将顶角为45°的等腰三角形分成三个小等腰三角形;(2)在△ABC中,∠B=30°,请用线段AD和DE(点D在BC边上,点E在AC边上)将△ABC分成三个小等腰三角形,且AD=BD,DE=CE.试仿照图①,在备用图中画出示意图,并求出∠C的所有可能度数.7答案一、1.B 2.B 3.A 4.D 5.A 6.D 7.D 8.D 9.B10.C 点拨:由题意易得规律为S 1=12=1,S 2=12S 1=12,S 3=12S 2=14,S 4=12S 3=18,…,∴S n =⎝ ⎛⎭⎪⎫12 n -1,∴S 100=⎝ ⎛⎭⎪⎫12 99.故选C.二、11.真 12.5 13.3 14.4315.(8,3)或⎝ ⎛⎭⎪⎫8,192 点拨:由题意得OA =3,OB =4,∴AB =32+42=5.△ABM 为等腰三角形,可分三种情况:①当BM =AB 时,如图①,(8-4)2+m 2=5,∴m =3或m =-3(A ,B ,M 三点共线,舍去),∴M (8,3);②当AM =BM 时,如图②,82+(m -3)2=(8-4)2+m 2,∴m =192,∴M ⎝ ⎛⎭⎪⎫8,192;③当AM =AB 时,易知不符题意.故答案为(8,3)或⎝ ⎛⎭⎪⎫8,192.三、16.解:当12 cm 为等腰三角形的腰长时,则底边长为40-12×2=16(cm), 此时三角形的三边长分别为12 cm ,12 cm ,16 cm ;当12 cm 为等腰三角形的底边长时,则腰长为40-122=14(cm),此时三角形的三边长分别为14 cm ,14 cm ,12 cm.综上,这个三角形的三边长分别为12 cm ,12 cm ,16 cm 或14 cm ,14 cm ,12 cm.17.证明:如图,连接CE .∵DE 是BC 的垂直平分线,∴EC =BE =13.在△AEC 中,AE =5,EC =13,AC =12, ∵AC 2+AE 2=122+52=169,EC 2=132=169,9 ∴AC 2+AE 2=EC 2,∴△AEC 是直角三角形, ∠A =90°,∴△ABC 是直角三角形.18.解:(1)∠ABC 的平分线如图所示.(2)如图,作DH ⊥AB 于点H .∵BD 平分∠ABC ,DC ⊥BC ,DH ⊥AB ,∴CD =DH =3,∴△ABC 的面积=S △BCD +S ABD =12BC ·CD +12AB ·DH =12×3BC +12×3AB =12×3(BC +AB )=12×3×16=24.四、19.(1)证明:∵BD ⊥DE ,CE ⊥DE ,∴∠ADB =∠AEC =90°.在Rt △ABD 和Rt △CAE 中,∵AB =CA ,AD =CE , ∴Rt △ABD ≌Rt △CAE (HL),∴∠DBA =∠EAC . ∵∠DAB +∠DBA =90°,∴∠DAB +∠EAC =90°, ∴∠BAC =180°-(∠DAB +∠EAC )=180°-90°=90°, ∴AB ⊥AC .(2)解:AB 与AC 仍垂直.证明如下:同(1)可证得Rt △ABD ≌Rt △CAE ,∴∠DAB =∠ECA . ∵∠CAE +∠ECA =90°,∴∠CAE +∠BAD =90°,即∠BAC =90°,∴AB ⊥AC . 20.解:(1)20°;70°;70°(2)线段AE 与BE 的长相等,理由如下:如图,连接CE,∵AB=AC,AD是BC边上的高,∴BD=CD,∴BE=CE.∵EF是线段AC的垂直平分线,∴AE=CE,∴AE=BE.(3)∵AE=BE,∴∠ABE=∠BAD=20°,∴∠EBD=∠ABC-∠ABE=70°-20°=50°.21.(1)证明:∵BO平分∠ABC,∴∠CBO=∠ABO.∵EF∥BC,∴∠EOB=∠CBO,∴∠ABO=∠EOB,∴EB=EO,∴点E在OB的垂直平分线上.(2)解:OH=12OA.理由如下:过O点作OG⊥AE于点G,OQ⊥AC于点Q,如图,∵BO平分∠ABC,OH⊥BC,OG⊥AB,∴OH=OG.∵CO平分∠ACB,OH⊥BC,OQ⊥AC,∴OH=OQ,∴OG=OQ,∴AO平分∠BAC,∴∠GAO=12∠BAC=30°,∴OG=12OA,∴OH=12OA.五、22.(1)证明:∵AC=BC,点F为AB的中点,∴CF⊥AB,∴CF垂直平分AB,∴OA=OB.∵DE垂直平分AC,∴OA=OC,∴OB=OC,∴△OBC为等腰三角形.(2)解:∵CA=CB,CF⊥AB,∴CF平分∠ACB,∴∠BCF=∠ACF=23°.∵OB=OC,∴∠OBC=∠OCB=23°.∵∠EDC=90°,∴∠DEC=90°-∠DCE=90°-23°-23°=44°,∴∠BOE=44°-23°=21°.(3)解:由题意得CF⊥AB,AF=12AB=5.∵DE垂直平分AC,∴AO=CO,∴FO=25-AO.∵AO2=AF2+OF2,∴AO2=52+(25-AO)2,解得AO=13,∴线段OA的长为13.23.解:(1)如图①.(2)如图②,作△ABC.设∠C=x,当AD=AE时,∵AD=BD,∠B=30°,∴∠BAD=30°,∵DE=CE,∠C=x,∴∠EDC=x,∴∠AED=∠ADE=2x,∴2x+x=60°,∴x=20°;当AD=DE时,∵AD=BD,∠B=30°,∴∠BAD=30°,∵DE=CE,∠C=x,∴∠EDC=x,∴∠AED=∠DAE=2x,∴60°=180°-x-2x,∴x=40°,∴∠C的度数是20°或40°.11。

八年级数学下册第一章《三角形的证明》综合测试题-北师大版(含答案)

八年级数学下册第一章《三角形的证明》综合测试题-北师大版(含答案)

八年级数学下册第一章《三角形的证明》综合测试题-北师大版(含答案)一.选择题(共7小题,满分28分)1.满足下列条件的△ABC(a、b、c分别是∠A、∠B、∠C的对边)不是直角三角形的是()A.a2﹣b2=c2B.∠A﹣∠B=∠CC.∠A:∠B:∠C=3:4:5D.a:b:c=7:24:252.等腰三角形的一个内角等于70°,则它的底角是()A.70°B.55°C.60°D.70°或55°3.如图,a∥b,△ABC为等边三角形,若∠1=45°,则∠2的度数为()A.75°B.95°C.105°D.120°4.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠FDE=65°,则∠A的度数是()A.45°B.70°C.65°D.50°5.等腰三角形一腰上的中线把三角形周长分为15和12两部分,则此三解形的底边长为()A.7B.11C.7或11D.无法确定6.如图,在Rt△ABC中,∠A=90°,边BC的垂直平分线MN交AB于D,连结CD,下列说法不一定正确的是()A.∠BDN=∠CDN B.∠ADC=2∠BC.∠ACD=∠DCB D.2∠B+∠ACD=90°7.如图,在△ABC中,AB=AC,中线AD与角平分线CE相交于点F,已知∠ACB=40°,则∠AFC的度数为()A.70°B.110°C.40°D.140°二.填空题(共7小题,满分28分)8.已知等腰三角形的底边长为2,腰长为8,则它的周长为.9.如图,BD是△ABC的角平分线,DE⊥AB于E,△BDC的面积为24,BC=12,则DE =.10.如图,在△ABC中,AC的垂直平分线交AB于点D,垂足为点E,CD平分∠ACB,若∠B=30°,则∠A为度.11.如图,DF垂直平分AB,EG垂直平分AC,点D、E在BC边上,且点D在点B和点E 之间.若∠BAC=100°,则∠DAE=.12.如图,∠ABD=∠BCD=90°,DB平分∠ADC过点B作BM∥CD交AD于M.连接CM交DB于N.若CD=6,AD=8,则BD=,MN=.13.如图,△ABC是等腰三角形,AB=AC=12cm,S△ABC=24cm2,点D是底边BC边上的任意一点,DE⊥AB于点E,DF⊥AC于点F.则DE+DF=cm.14.如图所示,已知△ABC中,BC=16cm,AC=20cm,AB=12cm,点P是BC边上的一个动点,点P从点B开始沿B→C→A方向运动,且速度为每秒2cm,设运动的时间为t (s),若△ABP是以AB为腰的等腰三角形,则运动时间t=.三.解答题(共6小题,满分64分)15.如图,在△ABC中,AB=AC,DE垂直平分AB于E,交AC于D,连接BD.(1)如果∠A=40°,求∠CBD的度数;(2)若AB=AC=9cm,BC=5cm,求△BCD的周长.16.如图,在△ABC中,∠C=90°,BD分∠ABC交AC于点D,过点D作DE∥AB交BC 于点E,DF⊥AB,垂足为点F.(1)求证:BE=DE;(2)若DE=2,,求BD的长.17.如图,在△ABC中,∠ABC=2∠ACB,BD为△ABC的角平分线;(1)若AB=BD,则∠A的度数为°(直接写出结果);(2)如图1,若E为线段BC上一点,∠DEC=∠A;求证:AB=EC.(3)如图2,若E为线段BD上一点,∠DEC=∠A,求证:AB=EC.18.如图,A、B两点分别在射线OM,ON上,点C在∠MON的内部,且AC=BC,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)若AD=3,BO=4,求AO的长.19.在边长为9的等边三角形ABC中,点Q是BC上一点,点P是AB上一动点,以每秒1个单位的速度从点A向点B移动,设运动时间为t秒.(1)如图1,若BQ=6,PQ∥AC,求t的值;(2)如图2,若点P从点A向点B运动,同时点Q以每秒2个单位的速度从点B经点C 向点A运动,当t为何值时,△APQ为等边三角形?20.已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.(1)【特殊情况,探索结论】如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE DB(填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC 于点F.(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).参考答案一.选择题(共7小题,,满分28分)1.解:A、∵a2﹣b2=c2,∴a2=b2+c2,即△ABC是直角三角形,故本选项不符合题意;B、∵∠A﹣∠B=∠C,∠A+∠B+∠C=180°,∴∠A=90°,即△ABC是直角三角形,故本选项不符合题意;C、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=180°×=45°,∠B=180°×=60°,∠C=180°×=75°,即△ABC不是直角三角形,故本选项符合题意;D、∵a:b:c=7:24:25,∴a2+b2=c2,即△ABC是直角三角形,故本选项不符合题意.故选:C.2.解:①当这个角为顶角时,底角=(180°﹣70°)÷2=55°;②当这个角是底角时,底角=70°.故选:D.3.解:∵△ABC为等边三角形,∴∠ACB=60°,∵∠1=45°,∴∠1+∠ACB=105°,∵a∥b,∴∠2=∠1+∠ACB=105°.故选:C.4.解:如图,在△ABC中,∠B=∠C,BF=CD,,∴△BDF≌△CED(SAS),∴∠BFD=∠CDE,∵∠FDE+∠EDC=∠B+∠BFD,∴∠B=∠FDE=65°,∴∠C=∠B=65°,∴∠A=180°﹣∠B﹣∠C=180°﹣65°﹣65°=50°,故选:D.5.解:根据题意,①当AC+AC=15,解得AC=10,所以底边长=12﹣×10=7;②当AC+AC=12,解得AC=8,所以底边长=15﹣×8=11.所以底边长等于7或11.故选:C.6.解:∵MN垂直平分线段BC,∴DB=DC,MN⊥BC,∴∠BDN=∠CDN,∠DBC=∠DCB,∴∠ADC=∠B+∠DCB=2∠B,∵∠A=90°,∴∠ADC+∠ACD=90°,∴2∠B+∠ACD=90°,故选项A,B,D正确,故选:C.7.解:在△ABC中,AB=AC,AD是中线,∴AD⊥BC,∴∠ADC=90°,∵CE是角平分线,∠ACB=40°,∴∠DCF=20°,∴∠AFC=∠ADC+∠DCF=90°+20°=110°.故选:B.二.填空题(共7小题,满分28分)8.解:∵等腰三角形的底边长为2,腰长为8,∴它的周长=2+8+8=18,故答案为:18.9.解:过点D作DF⊥BC于点F,∵BD是△ABC的角平分线,DE⊥AB于E,∴DE=DF,∵,BC=12,∴,∴DF=4,∴DE=DF=4.故答案为:4.10.解:∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD又∵CD平分∠ACB,∴∠ACD=∠BCD,∴3∠A+∠B=180°,∵∠A==50°.故答案为:50.11.解:∵∠BAC=100°,∴∠B+∠C=180°﹣100°=80°,∵DF垂直平分AB,EG垂直平分AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∴∠DAB+∠EAC=∠B+∠C=80°,∴∠DAE=100°﹣80°=20°,故答案为:20°.12.解:∵BM∥CD,∠BCD=90°,∴∠MBD=∠CDB,BM⊥BC,又∵DB平分∠ADC,∴∠MDB=∠CDB,∴∠MBD=∠MDB,∴MB=MD,∵∠A+∠ADB=90°,∠ABM+∠MBD=90°,∴∠A=∠ABM,∴MA=MB,∴MA=MB=MD=AD=4,∵DB平分∠ADC,∴∠ADB=∠CDB,∵∠ABD=∠BCD=90°,∴△ABD∽△BCD,∴BD:CD=AD:BD,∴BD2=AD•CD;∵CD=6,AD=8,∴BD2=8×6=48,∴BD=4,在Rt△BCD中,BC2=BD2﹣CD2=48﹣62=12,在Rt△BCM中,MC===2.∵BM∥CD,∴,∴,∴MN=.故答案为:4.13.解:∵S△ABC=S△ABD+S△ACD,S,S,∴S,∵AB=AC=12cm,S△ABC=24cm2,∴S,即=24,∴DE+DF=4cm,故答案为:4.14.解:∵BC=16cm,AC=20cm,AB=12cm,∴BC2+AB2=AC2,∴∠B=90°,如图1,AB=PB=12cm,∴t=12÷2=6s;如图2,AP=AB=12cm,∴BC+PC=(16+20﹣12)cm=24cm,∴t=24÷2=12s;如图3,AB=BP=12cm,过点B作BD⊥AC于D,则AD=PD,∵S△ABC=×AB×BC=×AC×BD,∴12×16=20BD,∴BD=9.6cm,由勾股定理得:AD===7.2cm,∴AP=2AD=14.4cm,∴t=(12+20﹣14.4)÷2=8.8s,综上所述,t的值是6s或12s或8.8s.故答案为:6s或12s或8.8s.三.解答题(共6小题,满分64分)15.解:(1)∵AB=AC,∠A=40°,∴∠ABC=∠C=70°,∵DE垂直平分AB,∴AD=BD,∵∠DBA=∠A=40°,∴∠DBC=70°﹣40°=30°;(2)由(1)得DA=DB,∴△BCD的周长=BD+CD+BC=AC+BC=9+5=14(cm),答:△BCD的周长为14cm.16(1)证明:∵BD分∠ABC,∴∠ABD=∠CBD.∵DE∥AB,∴∠EDB=∠ABD.∴∠CBD=∠EDB.∴DE=EB.(2)解:∵∠C=90°,∴DC⊥BC.又∵BD分∠ABC交AC于点D,DF⊥AB,∴CD=DF=.在Rt△CDE中,CE==1.∵DE=EB=2,∴BC=CE+EB=3.在Rt△CDB中,BD===2.17.(1)解:如图1中,设∠C=x.∵∠ABC=2∠C,∴∠ABC=2x,∵BD平分∠ABC,∴∠ABD=∠CBD=x,∵AB=BD,∴∠A=∠ADB=∠DBC+∠C=2x,∵∠A+∠ABC+∠C=180°,∴2x+2x+x=180°,∴x=36°,∴∠A=2x=72°,故答案为:72.(2)证明:如图1中,∵∠ABD=∠DBC=∠C,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(AAS),∴AB=EC.(3)证明:如图2中,延长BD到T,使得CD=CT.∵CD=CT,∴∠T=∠CDT=∠ADB,∵BD=CD,∴BD=CT,在△ABD和△ECT中,,∴△ABD≌△ECT(AAS),∴AB=EC.18.(1)证明:∵CD⊥OM,CE⊥ON,∴∠ADC=∠CEB=90°,在Rt△ADC和Rt△BEC中,,∴Rt△ADC≌Rt△BEC(HL),∴CD=CE,∵CD⊥OM,CE⊥ON,∴OC平分∠MON;(2)解:∵Rt△ADC≌Rt△BEC,AD=3,∴BE=AD=3,∵BO=4,∴OE=OB+BE=4+3=7,∵CD⊥OM,CE⊥ON,∴∠CDO=∠CEO=90°,在Rt△DOC和Rt△EOC中,,∴Rt△DOC≌Rt△EOC(HL),∴OD=OE=7,∵AD=3,∴OA=OD+AD=7+3=10.19.解:(1)如图1,∵△ABC是等边三角形,PQ∥AC,∴∠BQP=∠C=60°,∠BPQ=∠A=60°,又∠B=60°,∴∠B=∠BQP=∠BPQ,∴△BPQ是等边三角形,∴BP=BQ,由题意可知:AP=t,则BP=9﹣t,∴9﹣t=6,解得:t=3,∴当t的值为3时,PQ∥AC;(2)如图2,①当点Q在边BC上时,此时△APQ不可能为等边三角形;②当点Q在边AC上时,若△APQ为等边三角形,则AP=AQ,由题意可知,AP=t,BC+CQ=2t,∴AQ=BC+AC﹣(BC+CQ)=9+9﹣2t=18﹣2t,即:18﹣2t=t,解得:t=6,∴当t=6时,△APQ为等边三角形.20.解:(1)当E为AB的中点时,AE=DB;(2)AE=DB,理由如下,过点E作EF∥BC,交AC于点F,证明:∵△ABC为等边三角形,∴△AEF为等边三角形,∴AE=EF,BE=CF,∵ED=EC,∴∠D=∠ECD,∵∠DEB=60°﹣∠D,∠ECF=60°﹣∠ECD,∴∠DEB=∠ECF,在△DBE和△EFC中,,∴△DBE≌△EFC(SAS),∴DB=EF,则AE=DB;(3)点E在AB延长线上时,作EF∥AC,则△EFB为等边三角形,如图所示,同理可得△DBE≌△CFE,∵AB=1,AE=2,∴BE=1,∵DB=FC=FB+BC=2,则CD=BC+DB=3.故答案为:(1)=;(2)=。

【完整版】北师大版八年级下册数学第一章 三角形的证明含答案

【完整版】北师大版八年级下册数学第一章 三角形的证明含答案

北师大版八年级下册数学第一章三角形的证明含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=3,DE=5,则线段EC的长为()A.3B.4C.2D.2.52、在△ABC中,AB=AC,AB的垂直平分线与AC所在直线相交所得的锐角为40°,∠B的度数为()A.20°或70°B.30°或60°C.25°或65°D.35°或65°3、下列命题中错误的有()个( 1 )等腰三角形的两个底角相等(2)对角线相等且互相垂直的四边形是正方形(3)对角线相等的四边形为矩形(4)圆的切线垂直于半径(5)平分弦的直径垂直于弦A.1B.2C.3D.44、如图,在△ABC中,AB=AC,AD、CE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ACE的度数是()A.55°B.40°C.35°D.20°5、如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正确的有()A.1个B.2个C.3个D.4个6、如图,在中,,,点E在BC的延长线上,的平分线BD与的平分线CD相交于点D,连接AD,则下列结论中,正确的是( )A. B. C. D.AC=AB7、如图,点O是△ABC中∠ABC与∠ACB的平分线的交点,OD∥AB交BC于D 点,OE∥AC交BC于E点,若BC=20cm,则△ODE的周长为()A.16cmB.18cmC.20cmD.22cm8、等腰三角形一个为50°,则其余两角度数是()A.50°,80°B.65°,65°C.50°,80°或65°,65° D.无法确定9、如图,在中,,则的度数为()A. B. C. D.10、下列命题中正确的命题有()①线段垂直平分线上任一点到线段两端距离相等;②线段上任一点到垂直平分线两端距离相等;③经过线段中点的直线只有一条;④点P在线段AB外且PA=PB,过P作直线MN,则MN是线段AB的垂直平分线;⑤过线段上任一点可以作这条线段的中垂线.A.1个B.2个C.3个D.4个11、如图,在Rt△ABC中,∠ACB=90°,AC=BC,点M在AC边上,且AM=2,MC=6,动点P在AB边上,连接PC,PM,则PC+PM的最小值是()A.2B.8C.2D.1012、等腰三角形的两边长是6cm和3cm,那么它的周长是( )A.9cmB.12 cmC.12 cm或15 cmD.15 cm13、如图,△ABC中,BC=18,若BD⊥AC于D点,CE⊥AB于E点,F,G分别为BC、DE的中点,若ED=10,则FG的长为( )A. B. C.8 D.914、已知一个等腰三角形的两边长是3cm和7cm,则它的周长为A.13 cmB.17cmC.13cm或17cmD.10cm或13cm15、△ABC中,AB=AC,AB的垂直平分线与直线AC相交所成锐角为40°,则此等腰三角形的顶角为()A.50°B.60°C.150°D.50°或130°二、填空题(共10题,共计30分)16、如图,已知E是正方形ABCD的边AB上一点,点A关于DE的对称点为F,若正方形ABCD的边长为1,且∠BFC=90°,则AE的长为________17、如图,在Rt△ACB中,∠C=90°,∠ABC=30°,AC=4,N是斜边AB上方一点,连接BN,点D是BC的中点,DM垂直平分BN,交AB于点E,连接DN,交AB于点F,当△ANF为直角三角形时,线段AE的长为________.18、如图,在Rt△ABC中,∠ACB=90°,AB边的垂直平分线交AB于点E,交BC于点D,且∠ADC=30°,BD=18cm,则AC的长度是________cm.19、如图,于,于,且.若,,则的大小为________度.20、如图,在中,点在上,,点在的延长线上,,连接,则的度数为________ .21、如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.若∠B=30°,CD=1,则BD的长为________.22、如图,等腰△ABC的周长为27cm,底边BC=7cm,AB的垂直平分线DE交AB 于点D,交AC于点E,则△BEC的周长为________cm .cm23、如图,四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,射线BE交AD于点F,交AC于点O.若点O恰好是AC的中点,则CD的长为________.24、如图, AB的垂直平分线MN交AB于点M,交AC于点D,若∠A=38°,则∠BDM=________度.25、如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有________处。

北师大版八年级数学下册第一章《三角形的证明》检测题(含答案)

北师大版八年级数学下册第一章《三角形的证明》检测题(含答案)

北师大版八年级数学下册第一章《三角形的证明》检测试卷(含答案)一、选择题(每题3分,共30分)1.若等腰三角形的底角为40°,则它的顶角度数为( )A.40° B.50° C.60° D.100°2.已知等腰三角形两边长是8 cm和4 cm,那么它的周长是( )A.12 cm B.16 cm C.16 cm或20 cm D.20 cm3.用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”时,应假设( ) A.a不垂直于c B.a,b都不垂直于cC.a与b相交 D.a⊥b4.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A.3,4, 5 B.1,2, 3C.6,7,8 D.2,3,45.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b 上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是( ) A.30° B.35°C.40° D.45°6.如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为( )A.5 B.6C.8 D.107.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,且AD交BC 于点D,DE⊥AB于点E,则下列说法错误的是( )A.∠CAD=30° B.AD=BDC.BE=2CD D.CD=ED8.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( ) A.∠B=∠C B.AD=AEC.BD=CE D.BE=CD9.如图,在△ABC中,分别以点A和点B为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为( )A.7 B.14C.17 D.2010.如图,在△ABC中,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F为垂足,则下列四个结论:①∠DEF=∠DFE;②AE=AF;③DA平分∠EDF;④EF垂直平分AD.其中结论正确的有( )A.1个 B.2个 C.3个 D.4个二、填空题(每题3分,共30分)11.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD=________.12.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是________.13.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:____________________________________________,该逆命题是________(填“真”或“假”)命题.14.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β=________.15.如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD,CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC 的长为________.16.如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD 于点O,连接OC,若∠AOC=125°,则∠ABC=________.17.等腰三角形ABC中,BD⊥AC,垂足为点D,且BD=12AC,则等腰三角形ABC底角的度数为________.18.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D,E,AD=3,BE=1,则DE=________.19.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为________.20.如图,等边三角形ABC的边长为12,AD是BC边上的中线,M是AD上的动点,E是AC边上的一点.若AE=4,则EM+CM的最小值为________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.已知:∠ABC,射线BC上一点D(如图所示).求作:等腰三角形PBD,使线段BD为等腰三角形PBD的底边,点P在∠ABC 的内部,且点P到∠ABC两边的距离相等.(要求:请用直尺、圆规作图,不写作法,但要保留作图痕迹)22.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB,CF交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.23.如图,锐角三角形ABC的两条高BE,CD相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.24.如图,在4×4的正方形网格中,每个小正方形的边长均为1,线段AB 的端点在格点上,按要求画图.(1)在图①中画出一个面积为4的等腰三角形ABC(点C在格点上),使A,B,C中任意两点都不在同一条网格线上;(2)在图②中画出一个面积为5的直角三角形ABD(点D在格点上),使A,B,D中任意两点都不在同一条网格线上.25.如图,已知△ABC是边长为6 cm的等边三角形,动点P,Q同时从A,B 两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1 cm/s,点Q 运动的速度是2 cm/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t s,解答下列问题:(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t;若不能,请说明理由.26.数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同.如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.参考答案一、1.D 2.D 3.C 4.B 5.C 6.C 7.C 8.D 9.C 10.C二、11. 110°12. 313.如果两个三角形的面积相等,那么这两个三角形全等;假14.20°15. 2716. 70°17.45°或15°或75°18.219.3 320.47三、21.解:如图,△PBD为所求作的三角形.22.(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F.∵AD是BC边上的中线,∴BD=CD.∴△BDE≌△CDF(AAS).(2)解:∵△BDE≌△CDF,∴BE=CF=2.∴AB=AE+BE=1+2=3.∵AD⊥BC,BD=CD,∴AC=AB=3.23.(1)证明:∵OB=OC,∴∠OBC=∠OCB.∵BE,CD是两条高,∴∠BDC=∠CEB=90°.又∵BC=CB,∴△BDC≌△CEB(AAS).∴∠DBC=∠ECB.∴AB=AC,即△ABC是等腰三角形.(2)解:点O在∠BAC的平分线上.理由:∵△BDC≌△CEB,∴DC=EB.∵OB=OC,∴OD=OE.又∵∠BDC=∠CEB=90°,∴点O在∠BAC的平分线上.24.解:(1)如图①所示.(2)如图②所示.25.解:(1)当点Q到达点C时,PQ与AB垂直.理由:∵点Q到达点C时,BQ=BC=6 cm,∴t=62=3.∴AP=3 cm.∴BP=AB-AP=3 cm=AP.∴点P为AB的中点.∴PQ⊥AB.(2)能.∵∠B=60°,∴当BP=BQ时,△BPQ为等边三角形.∴6-t=2t,解得t=2.∴当t=2时,△BPQ是等边三角形.26.解:(1)若∠A为顶角,则∠B=(180°-80°)÷2=50°;若∠A 为底角,∠B 为顶角,则∠B =180°-2×80°=20°; 若∠A 为底角,∠B 为底角,则∠B =80°.故∠B 为50°或20°或80°.(2)分两种情况:①当90≤x <180时,∠A 只能为顶角,∴∠B 的度数只有一个.②当0<x <90时,若∠A 为顶角,则∠B =⎝ ⎛⎭⎪⎫180-x 2°; 若∠A 为底角,∠B 为顶角,则∠B =(180-2x )°; 若∠A 为底角,∠B 为底角,则∠B =x °.当180-x 2≠180-2x 且180-2x ≠x 且180-x 2≠x , 即x ≠60时,∠B 有三个不同的度数.综上所述,当0<x <90且x ≠60时,∠B 有三个不同的度数.。

北师大版八年级下册数学第一章三角形的证明测试题(附答案)

北师大版八年级下册数学第一章三角形的证明测试题(附答案)

北师大版八年级下册数学第一章三角形的证明测试题(附答案)一、单选题1.到三角形三个顶点距离相等的点是()A. 三角形三条边的垂直平分线的交点B. 三角形三条角平分线的交点C. 三角形三条高的交点D. 三角形三条边的中线的交点2.如图,在△ABC中,∠A为钝角,AB=20cm,AC=12cm,点P从点B出发以3cm/s的速度向点A运动,点Q同时从点A出发以2cm/s的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动.当△APQ是等腰三角形时,运动的时间是( )A. 2.5sB. 3sC. 3.5sD. 4s3.如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.若∠B=34°,则∠BDC的度数是( )A. 68°B. 112°C. 124°D. 146°4.如图,在△ABC中,∠C=90 ,BD是∠ABC的平分线,DE⊥AB,垂足为E,CD=5cm,则DE的长是()A. 3cmB. 4cmC. 5cmD. 6cm5.已知一个等腰三角形的底角为,则这个三角形的顶角为()A. B. C. D.6.如图,在Rt△ABC中,∠ACB=90º,∠A=60º,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A. 3cmB. 6cmC. 9cmD. 12cm7.如图,在△ABC中,AB=AC,∠A=120°,BC=6 cm,AB的垂直平分线交BC于点M,交AB于点E,AC 的垂直平分线交BC于点N,交AC于点F,则MN的长为( )A. 4 cmB. 3 cmC. 2 cmD. 1 cm8.如图,在△ABC中,∠ACB=90°,∠A=30°,CD⊥AB,垂足为D,则BD∶AD的值为( )A. B. C. D.9.有A,B,C三个社区(不在同一直线上),现准备修建一座公园,使该公园到三个社区的距离相等,那么公园应建在下列哪个位置上?( )A. △ABC三条角平分线的交点处B. △ABC三条中线的交点处C. △ABC三条高的交点处D. △ABC三边垂直平分线的交点处10.如图,∠C=∠D=90°,添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是( )A. AC=ADB. AC=BCC. ∠ABC=∠ABDD. ∠BAC=∠BAD11.在△ABC中,AB=AC,∠C=75°,则∠A的度数是()A. 30°B. 50°C. 75°D. 150°12.如图,在△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线相交于点D,DE⊥AB交AB 的延长线于点E,DF⊥AC于点F,现有下列结论:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正确的有()A. 2个B. 3个C. 4个D. 1个二、填空题13.如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D,AC=4cm,CB=8cm,△ACE的周长是________.14.如图,在△ABC中,AB=a,AC=b,BC边上的垂直平分线DE交BC、AB分别于点D、E,则△AEC的周长等于________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B C D 第6题 第7题 第8题 第13题 《三角形的证明》
班级 姓名 得分
一、选择题(每题3分,共24分)
1. 到三角形三个顶点的距离相等的点是三角形( )的交点.
A. 三个内角平分线
B. 三边垂直平分线
C. 三条中线
D. 三条高
2.已知△ABC 的三边长分别是6cm 、8cm 、10cm ,则△ABC 的面积 是( )
A.24cm 2
B.30cm 2
C.40cm 2
D.48cm 2
3.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是( )
A .7㎝
B .9㎝
C .12㎝或者9㎝
D .12㎝
4. 面积相等的两个三角形( )
A.必定全等
B.必定不全等
C.不一定全等
D.以上答案都不对
5.一个等腰三角形的顶角是40°,则它的底角是( )
A .40°
B .50°
C .60°
D .70°
6. 如图,在△ABC 和△DEF 中,已知AC=DF ,BC=EF ,要使△ABC ≌△DEF ,还需要的条件是( )
A.∠A=∠D
B.∠ACB=∠F
C.∠B=∠DEF
D.∠ACB=∠D
7.如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD , 则∠A 的度数为( )
A.30°
B.36°
C.45°
D.70°
8.如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论X k B 1 . c o m
①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC ,其中正确结论的个数是( )
A.1个
B.2个
C.3个
D.4个
二、填空题(每题3分,共24分)
9.“等边对等角”的逆命题是______________________________.
10.已知⊿ABC 中,∠A = 090,角平分线BE 、CF 交于点O ,则∠BOC = .
11.如果等腰三角形的有一个角是80°,那么顶角是 度.
12.等腰三角形一腰上的高与另一腰的夹角为300,腰长为6,则其底边上的高是 。

D
E
C B A 13.如图,△ABC 中,∠C=90°,∠A =30° ,B
D 平分∠ABC 交AC 于D ,若CD
=2cm ,则AC= .
14.Rt ⊿ABC 中,∠C=90º,∠B=30º,则AC 与AB 两边的关系是 ,
15.在△ABC 中,边AB 、BC 、AC 的垂直平分线相交于P ,则PA 、PB 、PC 的大小
关系是 .
16.在△ABC 中,∠A=40°,AB=AC ,AB 的垂直平分线交AC 与D ,则∠DBC 的
度数为 .
三.基础题(每题6分,共36分)
17.如图,在△ABD 和△ACD 中,已知AB =AC ,∠B =∠C ,求证:AD 是∠BAC 的平分线.
18.如图,∠A=∠D=90°,AC=BD.求证:OB=OC ;
新|课 | 标|第 | 一| 网
19.如下图,CD ⊥AD ,CB ⊥AB ,AB =AD ,求证:CD=CB .
20.如图,DC ⊥CA ,EA ⊥CA , CD=AB ,CB=AE .求证:△BCD ≌△EAB .
21.如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD=CD. 求证:D 在∠BAC 的平分线上.
D A
C
22.如图,ABC ∆中,DE A AC AB ,, 50=∠=是腰AB 的垂直平分线,求DBC ∠的度数。

四、提高题(每题8分,共16分)
23.作图题:在下图△ABC 所在平面中,
(1)作距△ABC 三边距离相等的点P ; (2)作距△ABC 三个顶点距离相等的点Q.
24. 如图,△ABC 中,∠B=90°,AB=BC ,AD 是△ABC 的角平分线,若BD=1,求
DC 的长.
五.综合题(每题10分,共20分)
25.如图,已知: D 是△ABC 中BC 边上一点,EB=EC ,∠ABE=∠ACE ,求证:∠BAE=∠CAE.
证明:在△AEB 和△AEC 中,
⎪⎩
⎪⎨⎧=∠=∠=AE AE ACE ABE EC EB
∴△AEB ≌△AEC(第一步)
∴∠BAE=∠CAE(第二步)
问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程;
26.如图,在△ABD 和△ACE 中,有四个等式:①AB=AC ②AD=AE ③∠1=∠2 ④BD=CE .
以其中..
三个条件为已知,填入已知栏中,一个为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程。



: .
求证: .
证明:。

相关文档
最新文档