江苏省盐城中学2013-2014学年高一上学期期末考试数学试题 Word版含答案

合集下载

江苏省盐城市2013-2014学年高一下学期期末考试 数学(四星) Word版含答案(苏教版)

江苏省盐城市2013-2014学年高一下学期期末考试 数学(四星) Word版含答案(苏教版)

四星高中使用2013/2014学年度第二学期高一年级期终考试数 学 试 题注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.参考公式:柱体体积公式:V Sh =一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.直线30x y -+=在y 轴上的截距为 ▲ . 2.若角α的终边经过点(3,2)P ,则tan α的值为 ▲ .3.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的体积为 ▲ . 4.已知点)2,1(A ,)5,3(B ,向量()=,6a x ,若a //AB ,则实数x 的值为 ▲ . 5.过点(2,1)A ,且与直线230x y -+=平行的直线方程为 ▲ .6.已知向量与的夹角为120,且||2a =,1||=b ,则=+|2| ▲ . 7.若等比数列{}n a 的前n 项和为n S ,且141,8a a ==,则5S = ▲ . 8.若54)6sin(=+πx ,则=-)3cos(πx ▲ .9.直线+10x =被圆032:22=--+x y x C 截得的弦长为 ▲ . 10.设,m n 是两条不同的直线,βα,是两个不重合的平面,给定下列四个命题: ①若n m ⊥,α⊂n ,则α⊥m ; ②若m α⊥,m β⊂,则βα⊥; ③若α⊥m ,α⊥n ,则n m //; ④若α⊂m ,β⊂n ,βα//,则n m //. 其中真命题的序号为 ▲ .11.在平面直角坐标系xOy 中,若圆C 的圆心在第一象限,圆C 与x 轴相交于(1,0)A 、(3,0)B 两点,且与直线01=+-y x 相切,则圆C 的标准方程为 ▲ .12.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若,,a b c 成等差数列,30B ∠=,1b =,则BA BC ⋅=uu r uu u r▲ .13.已知点()5,0A -,()1,3B --,若圆()2220x y r r +=>上恰有两点M ,N ,使得M AB∆和NAB ∆ 的面积均为5,则r 的取值范围是 ▲ . 14.若单调递增数列{}n a 满足1236n n n a a a n ++++=-,且2112a a =,则1a 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在三棱锥P ABC -中,90ABC ∠=,PA ⊥平面ABC ,E ,F 分别为PB ,PC 的中点.(1)求证://EF 平面ABC ; (2)求证:平面AEF ⊥平面PAB .16.(本小题满分14分)已知函数()2sin cos f x x x x +,x R ∈. (1)求函数()f x 的最小正周期; (2)求函数()f x 在区间⎥⎦⎤⎢⎣⎡4,0π上的值域.A17.(本小题满分14分)在四边形ABCD 中,已知9=AB ,6=BC ,PD CP 2=. (1)若四边形ABCD 是矩形,求BP AP ⋅的值;(2)若四边形ABCD 是平行四边形,且6=⋅BP AP ,求AB 与AD 夹角的余弦值.18.(本小题满分16分)为绘制海底地貌图,测量海底两点C ,D 间的距离,海底探测仪沿水平方向在A ,B 两点进行测量,A ,B ,C ,D 在同一个铅垂平面内. 海底探测仪测得30,BAC ∠=45,DAC ∠=45,ABD ∠=75,DBC ∠=A ,B 两点的距离为3海里.(1)求ABD ∆的面积; (2)求C ,D 之间的距离. 19.(本小题满分16分)DCBA设n S 是数列{}n a 的前n 项和,且22n n a S An Bn C +=++. (1)当0A B ==,1C =时,求n a ; (2)若数列{}n a 为等差数列,且1A =,2C =-. ①求n a ;②设n b ,且数列{}n b 的前n 项和为n T ,求60T 的值.20.(本小题满分16分)已知圆O 的方程为1322=+y x ,直线:l 00+13x x y y =,设点00(,)A x y . (1)若点A 在圆O 外,试判断直线l 与圆O 的位置关系;(2)若点A 在圆O 上,且02x =,00y >,过点A 作直线,AM AN 分别交圆O 于,M N 两点,且直线AM 和AN 的斜率互为相反数; ① 若直线AM 过点O ,求tan MAN ∠的值;② 试问:不论直线AM 的斜率怎样变化,直线MN 的斜率是否为定值?若是,求出该定值;若不是,说明理由.四星高中使用高一数学参考答案一、填空题:每小题5分,共计70分.1.3 2.233.2π 4.4 5.230x y --= 6.2 7. 31 8.549. 10.②③ 11. 2)1()2(22=-+-y x 12. 13.()15,14.123(,)52-- 二、解答题:本大题共6小题,共计90分.15.证明:(1)在PBC ∆中,F E , 分别为PC PB ,的中点BC EF //∴………………3分 又⊂BC 平面ABC ,⊄EF 平面ABC //EF ∴平面ABC …………………………………7分(2)由条件,⊥PA 平面ABC ,⊂BC 平面ABCBC PA ⊥∴︒=∠90ABC ,即BC AB ⊥,………………………………………………10分 由//EF BC ,∴EF AB ⊥,EF PA ⊥又A AB PA =⋂,AB PA ,都在平面PAB 内 EF ∴⊥平面PAB又⊂EF 平面AEF ∴平面AEF ⊥平面PAB ………………………………………………14分16.解: (1)由条件可得sin22sin(2)3y x x x π=+=+, (4)分所以该函数的最小正周期22T ππ==………………………………………………………6分 (2)⎥⎦⎤⎢⎣⎡∈4,0πx ,⎥⎦⎤⎢⎣⎡∈+∴65,332πππx ,……………………………………………………8分 当12π=x 时,函数y 取得最大值为2,当4π=x 时,函数y 取得最小值为1∴函数y的值域为[]2,1…………………………………………………………………………14分17.解:(1)因为四边形ABCD 是矩形,所以0=⋅由PD CP 2=得:DC DP 31=,3232-==.………………………………3分∴ BP AP ⋅)()(CP BC DP AD +⋅+=)32()31(-⋅+= 229231-⋅-=18819236=⨯-=. (7)分(2)由题意,DP AD AP +=AB AD DC AD 3131+=+= AB AD CD BC CP BC BP 3232-=+=+=∴ )32()31(-⋅+=⋅221239AD AB AD AB =-⋅-136183AB AD =-⋅-1183AB AD =-⋅………………………………………………10分 又6=⋅BP AP ,∴ 11863AB AD -⋅=, ∴ 36AB AD ⋅=.又θθθcos 54cos 69cos =⨯⨯==⋅AD AB ∴ 54cos 36θ=,即2cos 3θ=.(利用坐标法求解,同样给分)………………………14分18.解:(1)如图所示,在ABD ∆中︒=︒+︒=∠+∠=∠754530DAC BAC BAD ︒=∠∴60ADB由正弦定理可得,ABD AD ADB AB ∠=∠sin sin ,260sin 45sin 3=︒︒=AD (4)分则ABD ∆的面积113sin 2244S AB AD BAD =⋅∠==(平方海里)…………8分(2)︒=︒+︒=∠+∠=∠1207545DBC ABD ABC ,︒=∠=∠30BCA BAC3==∴AB BC 3=∴AC …………………………………………………………………12分在ACD ∆中,由余弦定理得,5cos 2222=∠⋅-+=DAC AD AC AD AC CD即5=CD (海里) 答:ABD ∆的面积为433+平方海里,C ,D 间的距离为5海里.……………………16分19.解:(1)由题意得,21n n a S +=,∴1121(2)n n a S n --+=≥,两式相减,得123n n a a -=,……………………………………………………………………3分 又当1n =时,有131a =,即113a =,∴数列{}n a 为等比数列,∴112=33n n a -⎛⎫⎪⎝⎭.………………………………………………5分(2)①Q 数列{}n a 为等差数列,由通项公式与求和公式,得2211113222(1)()()222222n n d d d da S a n d n a n n a n a d +=+-++-=+++-, Q 1,2A C ==-,∴12d=,12a d -=-,∴2d =,11a =,∴21n a n =-.………10分②n b=12=…………………………………………………………………………13分则111=+=12122n T n ⎛⎛ -⎝⎝, ∴6011115==1=2121111T ⎛⎛⎫-- ⎪ ⎝⎭⎝……………………………………………………16分20.解:(1)当点A 在圆O 外时,得132020>+y x ,即132020>+y x∴ 圆心到直线l 的距离r yx d =<+=1313202,∴ 直线l 与圆O 相交.…………………………………………………………………………5分(2)①由点A 在圆O 上,且02x =,00y >,得03y =,即)3,2(A .记直线AM 的倾斜角为α,则3tan 2α=,…………………………………………………7分 又∵ 0AM AN k k +=, ∴ 直线AN 的倾斜角为πα-,∴22tan 312tan tan(2)tan 291tan 514MAN απααα∠=-=-=-=-=--.…………10分 ②记直线AM 的斜率为k ,则直线AM 的方程为:32y kx k =+-. 将32y kx k =+-代入圆O 的方程得:22(12)33kx x k +-+=, 化简得:22232(1)2(32)(130)k x k k x k ++-+-=-,∵ 2是方程的一个根, ∴ 2232)2(131M k x k -=+-, ∴226221M x k k k --+=, 由题意知:k k AN-=,同理可得,226221N x k k k +-+=,…………………………………13分∴ 32(32)4M N M N MN MN M N M N M Ny y kx k kx k x x k k x x x x x x -+---+++-===⋅---, ∴ 2222222222228421222362621116262111MN k k k k k k k k k k k k k k k k k k --+-+++---+-=⋅=⋅=--+-+++, ∴ 不论直线AM 的斜率怎样变化,直线MN 的斜率总为定值23.………………………16分。

江苏省盐城中学2014-2015学年高一上学期10月月考试题 数学 Word版含答案

江苏省盐城中学2014-2015学年高一上学期10月月考试题 数学 Word版含答案

江苏省盐城中学2014-2015学年高一上学期10月月考试题数 学 70分)1.若集合{1,2,3}M =,{2,3,4}N =,则M N = .2.已知映射:f A B →的对应法则f :1x x →+()A x ∈,则A 中的元素3在B 中与之对应的元素是 _.3. 函数()1f x x =+的定义域为 . 4.设集合{}1,2,3,4U =,{}|(1)(4)0M x x x =--=,则 ∁U M =________.5.已知集合A ={}2|40x x -=,则集合A 的所有子集的个数是________. 6.已知集合A ={3,2,2,a },B ={1,a 2},若AB ={2},则a 的值为________. 7.已知21)21(x x f =-,那么12f ⎛⎫ ⎪⎝⎭= . 8.已知函数()||2f x x x x =-的单调增区间为 .9.函数2221x y x +=+的值域为___________. 10.若函数24y x x =-的定义域为[4,],a -值域为[4,32],-则实数a 的取值范围为 . 11.定义在R 上的偶函数()f x 在[)0,+∞上是增函数,且(2)0f =,则不等式()0xf x <的解集为 .12.若函数|2||1|)(a x x x f +++=的最小值为3,则实数a 的值为_________.13.对于实数b a ,,定义运算1,1,{:"">-≤-=⊗⊗b a b b a a b a ,设函数)()2()(22x x x x f -⊗-=,若函数c x f y -=)(的图像与x 轴恰有两个公共点,则实数c 的取值范围是________.14.设函数)(k f y =是定义在*N 上的增函数,且k k f f 3))((=,则)10()9()1(f f f ++=___.二、解答题(请写出详细过程)15.(本题14分)设集合{}|11A x a x a =-≤≤+,集合{}|15B x x =-≤≤,(1)若5a =,求AB ; (2)若A B B =,求实数a 的取值范围.16.(本题14分)某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:21400,0400()280000,400x x x R x x ⎧-≤≤⎪=⎨⎪>⎩(其中x 是仪器的月产量). (1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)17.(本题15分)已知集合{}2(1)320A x a x x =-+-=,{}2|320B x x x =-+= (1)若A ≠∅,求实数a 的取值范围;(2)若A B A =,求实数a 的取值范围.18.(本题15分)已知函数)(x f 是定义在R 上的偶函数,且当0≤x 时, x x x f 2)(2+=.(1)写出函数R x x f ∈),(的解析式;(2)写出函数R x x f ∈),(的增区间;(3)若函数[]2,1,22)()(∈+-=x ax x f x g ,求函数)(x g 的最小值()h a .19.(本题16分)已知函数x a x x f -=)(在定义域]20,1[上单调递增 (1)求a 的取值范围;(2)若方程10)(=x f 存在整数解,求满足条件a 的个数20.(本题16分)已知函数x x f 11)(-=,(x >0). (1)判断函数的单调性;(2)0,()()a b f a f b <<=当且时,求11a b+的值; (3)是否存在实数,()a b a b <,使得函数()y f x =的定义域、值域都是[a ,b ]?若存在,请求出a ,b 的值,若不存在,请说明理由.高一年级数学随堂练习数学答题纸 一、填空题(14*5分) ()0,2 )43,1(-- 二、解答题 []4,5A B =4a ≤≤。

江苏省盐城中学2013—2014高一数学第一学期期末复习试题2

江苏省盐城中学2013—2014高一数学第一学期期末复习试题2

江苏省盐城中学2013——2014学年第一学期期末复习试题高一数学试卷 2014.1一、填空题(每小题5分) 1、函数3sin(2)4y x π=+的最小正周期为________2、下列函数中,在区间(0,)+∞上为增函数的是 。

①ln(2)y x =+ ②y =③1()2x y = ④1y x x=+3、设二次函数2()f x x x a =-+ (0a >),若()0f m <,则(1)f m -与0的大小关系 。

4、已知一扇形的弧所对的圆心角为72︒,半径30r cm =,则扇形的周长为 cm 。

5、某班45名学生中,有围棋爱好者22人,足球爱好者28人,同时爱好这两项的人最少有 人,最多有 人。

6、已知1sin cos ,(0,)5θθθπ+=∈,则tan θ= 。

7、函数()cos(4)f x x φ=+的图象关于原点成中心对称,则φ=________.8、已知偶函数()f x 对任意x R ∈满足(2+)=(2-)f x f x ,且当-20x ≤≤时,2()=log (1)f x x -,则(2013)f 的值为__________.9、方程1sin()3x x π=的解的个数是________.10、函数13log cos y x =的单调增区间 。

11、已知函数()y f x =是定义在R 上的奇函数,且当0x <时,()21x f x =+,则2(3log 3)f -= 。

12、函数lg(sin )y x =+的定义域为 。

13、已知函数()y f x =是定义在R 上的偶函数,且1(2)()f x f x +=,若[]2,3x ∈时,()f x x =,则(5.5)f = 。

14、已知函数1()1()2x x f x x R --=+∈,则满足不等式2(2)()f x f x ->的x 的取值范围是 。

二、解答题(需写出必要解题过程) 15、(14分)求下列函数()f x 的解析式221(1)(12),x f x x --=已知求()f x 1(2)()2()59,()f x f x f x x+=+已知求DBPN AMC16、(14分)设集合{}{}25,121A x x B x m x m =-≤≤=+≤≤-⑴若B A ⊆,求实数m 的取值范围。

2013-2014学年度第一学期期末考试试题

2013-2014学年度第一学期期末考试试题

盐城2013-2014学年度第一学期期末考试试题高一数学一、填空题(本大题共14小题,每小题5分,计70分) 1.0600cos 的值是 .2.化简=--+ .3.函数()21log 3y x x=++的定义域是 . 4.函数tan()23y x ππ=-的最小正周期是 .5.若02<<-απ,则点)cos ,(tan αα位于第 象限.6.函数()1cos (),f x x x R =-∈取最大值时x 的值是 .7.若函数-=3)(x x f 2)21(-x 的零点),)(1,(0Z n n n x ∈+∈则=n _________.8.函数(5)||y x x =--的递增区间是 . 9.为得到函数-=x y 2sin(3π)的图象,只需把函数sin 2y x =的图象向右平移个_长度单位.10.()a b a -⊥,则向量a 与b 的夹角为 .11.已知扇形的周长为8cm ,则该扇形的面积S 的最大值为 . 12.设,0>ϖ若函数x x f ϖsin 2)(=在]4,3[ππ-上单调递增,则ϖ的取值范围是________.13.如图,在△ABC 中,,=⊥BC AB AD14.在直角坐标系中, 如果两点(,),(,)A a b B a b --在函数)(x f y =的图象上,那么称[],A B 为函数()f x 的一组关于原点的中心对称点([],A B 与[],B A 看作一组).C函数4sin ,0()2log (1),0x x g x x x π⎧<⎪=⎨⎪+>⎩关于原点的中心对称点的组数为 .二、解答题(本大题共6小题,计80分. 请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.A 、B 是单位圆O 上的点,点A 是单位圆与x 轴正半轴的交点,点B 在第二象限.记AOB θ∠=且4sin 5θ=.(1)求B 点坐标; (2)求sin()2sin()22cos()ππθθπθ++--的值.16.平面内给定三个向量()()()3,2,1,2,4,1a b c ==-=.(1)若()()2a kc b a +⊥-,求实数k ;(2)若向量d 满足//d c,求向量d .17.已知函数2()2sin 1f x x x θ=+⋅-(θ为常数),1[]2x ∈. (1)若()f x在1[]2x ∈上是单调增函数,求θ的取值范围; (2)当θ∈0,2π⎡⎤⎢⎥⎣⎦时,求()f x 的最小值.18. 已知OAB ∆的顶点坐标为(0,0)O ,(2,9)A ,(6,3)B -, 点P 的横坐标为14,且OP PB λ= ,点Q 是边AB 上一点,且0OQ AP ⋅=.(1)求实数λ的值与点P 的坐标; (2)求点Q 的坐标;(3)若R 为线段OQ (含端点)上的一个动点,试求()RO RA RB ⋅+的取值范围.19.已知函数()sin()f x A x h ωϕ=++(0,0,)A ωϕπ>><.在一个周期内,当12x π=时,y 取得最大值6,当712x π=时,y 取得最小值0. (1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间与对称中心坐标;(3)当,126x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()1y mf x =-的图像与x 轴有交点,求实数m 的取值范围.20. 定义在D 上的函数)(x f ,如果满足:对任意D x ∈,存在常数0≥M ,都有M x f ≤)(成立,则称)(x f 是D 上的有界函数,其中M 称为函数)(x f 的一个上界.已知函数xxa x f ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+=41211)(,11log )(21--=x ax x g .(1)若函数)(x g 为奇函数,求实数a 的值;(2)在(1)的条件下,求函数)(x g 在区间]3,35[上的所有上界构成的集合;(3)若函数)(x f 在),0[+∞上是以3为上界的有界函数,求实数a 的取值范围.江苏盐城2013-2014高一上学期期末考试参考答案二、解答题15、(1)34(,)55B -(2)53- 16、(1)1118k =-(2)d =或(-17、(1)22,2,33k k k Z ππθππ⎡⎤∈++∈⎢⎥⎣⎦;(2)min 21,,432()sin 1,0,3f x ππθθπθθ⎧⎡⎤-∈⎪⎢⎥⎪⎣⎦=⎨⎡⎫⎪--∈⎪⎢⎪⎣⎭⎩.(3)因为R 为线段OQ 上的一个动点,故设(4,3)R t t ,且01t ≤≤,则(4,3)RO t t =--,(24,93)RA t t =--,(64,33)RB t t =---,+(88,66)RA RB t t =--,则()4(88)3(6R O R A R B t t t t ⋅+=---- 25050(01)t t t =-≤≤,故()RO RA RB ⋅+ 的取值范围为25[,0]2-. 19、(1)()3sin(2)33f x x π=++;(2)递增区间51,,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;对称中心(,3),32k k Z ππ+∈;(3)91(),6,()2f x f x m ⎡⎤∈=⎢⎥⎣⎦,所以12,69m ⎡⎤∈⎢⎥⎣⎦.20、解:(1)因为函数)(x g 为奇函数,所以)()(x g x g =-,即11log 11log 2121---=--+x axx ax , 即axx x ax --=--+1111,得1±=a ,而当1=a 时不合题意,故1-=a . (2)由(1)得:11log )(21-+=x xx g , 下面证明函数11log )(21-+=x xx g 在区间(1,)+∞上单调递增, 证明略. 所以函数11log )(21-+=x x x g 在区间]3,35[上单调递增, 所以函数11log )(21-+=x x x g 在区间]3,35[上的值域为]1,2[--,所以2)(≤x g ,故函数)(x g 在区间]3,35[上的所有上界构成集合为),2[+∞.(3)由题意知,3)(≤x f 在),0[+∞上恒成立.3)(3≤≤-x f ,xxxa ⎪⎭⎫⎝⎛-≤⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛--41221414.xx xxa ⎪⎭⎫⎝⎛-⋅≤≤⎪⎭⎫ ⎝⎛-⋅-∴21222124在),0[+∞上恒成立.minmax 21222124⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⋅≤≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⋅-∴xxx x a设t x =2,t t t h 14)(--=,tt t p 12)(-=,由),0[+∞∈x 得 1≥t设0)14)(()()(,12121212121>--=-<≤t t t t t t t h t h t t ,()()1212121221()()0t t t t p t p t t t -+-=<,所以)(t h 在),1[+∞上递减,)(t p 在),1[+∞上递增,)(t h 在),1[+∞上的最大值为5)1(-=h ,)(t p 在),1[+∞上的最小值为1)1(=p .所以实数a 的取值范围为]1,5[-.。

江苏省盐城中学2013-2014学年高一下学期5月月考试题 数学 Word版含答案

江苏省盐城中学2013-2014学年高一下学期5月月考试题 数学 Word版含答案

高一年级阶段性随堂练习数学试题命题人:盛冬山 沈春妍 审题人:姚动 参考公式:锥体体积13V Sh =一、 填空题:本大题共14小题,每小题3分,计42分.不需写出解答过程,请把答案写在答题纸的指定位置上. 1.直线l 过点(2,0),(0,2)A B ,则其斜率为 .2. 已知,3tan =α则=+)(4tanπα .3. 直线l 过点(1,2)P l 的方程为 .4. 等比数列{}n a 中,63=a ,前三项和318S =,则公比q 的值为 .5.数列{}n a 中,12a =,1n n a a n +=+(123n =,,,),则{}n a 的通项公式是___________.6.已知函数2()cos cos ()f x x x x x R =-∈,则)(x f 的最小正周期为 .7.圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 .8.设m ,n 是两条不同直线,βα,是两个不同的平面,给出下列四个命题:①若n m n m //,//,则αα⊂; ②βαβα⊥⊥⊥⊥则,,,n m n m ; ③若,//,//,//n m n m m αβαβ⋂=则且 ; ④若βαβα//,,则⊥⊥m m 其中正确的命题是 ________.9.已知21sin cos ,cos sin 33αβαβ-=-+=,则sin()αβ-= . 10.数列2211,12,122,,1222,n -+++++++的前n 项和为 .11.已知,,a b c 为ABC ∆的三个内角,,A B C 的对边,向量(3,1),(cos ,sin )m n A A =-=,若,m n ⊥且cos cos sin a B b A c C +=,则角B = .12.,,,A B C D 是棱长为4的正方体的四个顶点,且三棱锥A BCD -的四个面都是直角三角形,则其全面积为 .DCBAE P13.已知等比数列{}n a 的首项81=a ,令n n a b 2log =,n S 是数列{}n b 的前n 项和,若3S 是数列{}n S 中的唯一最大项,则{}n a 的公比q 的取值范围是__________.14.各项均为正偶数的数列a 1,a 2,a 3,a 4中,前三项依次成公差为d (d > 0)的等差数列,后三项依次成公比为q 的等比数列. 若4188a a -=,则q 的所有可能的值构成的集合为______. 二、解答题(共6小题计58分)15. 如图,在四棱锥P ABCD -中,AB ∥DC ,2DC AB =,AP AD =,PB ⊥AC ,BD ⊥AC ,E 为PD 的中点. (1)求证:AE ∥平面PBC ; (2)求证:PD ⊥平面ACE.16.已知函数()12f x x π⎛⎫=- ⎪⎝⎭,x ∈R .⑴ 求6f π⎛⎫⎪⎝⎭的值;⑵若3cos 5θ=,3,22πθπ⎛⎫∈⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭.17.如图,矩形ADEF 与梯形ABCD 所在的平面互相垂直,AD CD ⊥,AB ∥CD ,2ABAD ==,4CD =,ED =M 为CE 的中点,N 为CD 中点.(1)求证:平面BMN ∥平面ADEF ; (2)求证:平面BCE ⊥平面BDE ; (3)求点D 到平面BEC 的距离.O CBAH18. 某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:在C 处(点C 在水平地面下方,O 为CH 与水平地面ABO 的交点)进行该仪器的垂直弹射,水平地面上两个观察点A 、B 两地相距100米,∠BAC =60°,其中A 到C 的距离比B 到C 的距离远40米.A 地测得该仪器在C 处的俯角为015OAC ∠=,A 地测得最高点H 的仰角为030HAO ∠=,求该仪器的垂直弹射高度CH .(结果保留根式)19.已知正项数列{}n a 的前n 项和为n S14与2(1)n a +的等比中项. (1)求123,,a a a ;(2)求证:数列{}n a 是等差数列;(3)对于正整数m ,m b 是使得不等式n a m ≥成立的所有n 中的最小值,求数列{}m b 的前2m 项和.20.对于给定数列{}n c ,如果存在实常数p q 、,使得1n n c pc q +=+对于任意*N n ∈都成立,我们称数列{}n c 是 “M 类数列”.(1)若n a n 2=,32nn b =⋅,*N n ∈,数列{}n a 、{}n b 是否为“M 类数列”?若是,指出它对应的实常数,p q ,若不是,请说明理由;(2)若数列{}n a 满足12a =,*132(N )nn n a a n ++=⋅∈.①求数列{}n a 前2015项的和; ②已知数列{}n a 是 “M 类数列”,求n a .盐城中学2013-2014学年高一年级阶段考试数学答题纸2014、5一、填空题(14×3=42分)1、1-2、2-3、21)y x --4、21-或1 5、242n n -+6、π 7 8、②④ 9、131810、122n n +-- 11、6π 12、16+13、1()4214、{}58 37,二、解答题(共58分)⋂BN MN∴平面BMN(2)证明:在矩形ADEF平面ABCDBC.==AB ADBC⊂面(3)设点V=,,a2014)a +++(2014 a。

【首发】江苏省盐城市2013-2014学年高一下学期期终考试数学(三星)Word版含答案

【首发】江苏省盐城市2013-2014学年高一下学期期终考试数学(三星)Word版含答案

三星高中使用2013/2014学年度第二学期高一年级期终考试数 学 试 题注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:柱体体积公式:V Sh =一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.直线30x y -+=在y 轴上的截距为 ▲ . 2.若角α的终边经过点(3,2)P ,则tan α的值为 ▲ .3.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的体积为 ▲ . 4.已知点)2,1(A ,)5,3(B ,向量()=,6a x ,若a //AB ,则实数x 的值为 ▲ . 5.过点(2,1)A ,且与直线230x y -+=平行的直线方程为 ▲ .6.已知向量与的夹角为120,且||2a =,1||=b ,则=+|2|b a ▲ . 7.若等比数列{}n a 的前n 项和为n S ,且141,8a a ==,则5S = ▲ . 8.若54)6sin(=+πx ,则=-)3cos(πx ▲ .9.直线+10x +=被圆032:22=--+x y x C 截得的弦长为 ▲ .10.设,m n 是两条不同的直线,βα,是两个不重合的平面,给定下列四个命题: ①若n m ⊥,α⊂n ,则α⊥m ; ②若m α⊥,m β⊂,则βα⊥; ③若α⊥m ,α⊥n ,则n m //; ④若α⊂m ,β⊂n ,βα//,则n m //. 其中真命题的序号为 ▲ .11.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若4=a ,2=b ,31cos =A ,则B sin 的值为▲ .12.在平面直角坐标系xOy 中,若圆C 的圆心在第一象限,圆C 与x 轴相交于(1,0)A 、(3,0)B 两点,且与直线01=+-y x 相切,则圆C 的标准方程为 ▲ .13.若数列{}n a 是一个单调递减数列,且2=n a n n λ+,则实数λ的取值范围是 ▲ .14.已知点()5,0A -,()1,3B --,若圆()2220x y r r +=>上恰有两点M ,N ,使得MAB ∆和NAB ∆ 的面积均为5,则r 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在三棱锥P ABC -中,90ABC ∠=,PA ⊥平面ABC ,E ,F 分别为PB ,PC 的中点. (1)求证://EF 平面ABC ; (2)求证:平面AEF ⊥平面PAB .16.(本小题满分14分)已知函数()22sin cos f x x x x =+,x R ∈. (1)求函数()f x 的最小正周期; (2)求函数()f x 在区间⎥⎦⎤⎢⎣⎡4,0π上的值域. 17.(本小题满分14分)在四边形ABCD 中,已知9=AB ,6=BC ,PD CP 2=. (1)若四边形ABCD 是矩形,求BP AP ⋅的值;(2)若四边形ABCD 是平行四边形,且6=⋅BP AP ,求AB 与AD 夹角的余弦值.A18.(本小题满分16分)为绘制海底地貌图,测量海底两点C ,D 间的距离,海底探测仪沿水平方向在A ,B 两点进行测量,A ,B ,C ,D 在同一个铅垂平面内. 海底探测仪测得30,BAC ∠=45,DAC ∠=45,ABD ∠=75,DBC ∠=A ,B 两点的距离为3海里.(1)求ABD ∆的面积; (2)求C ,D 之间的距离.19.(本小题满分16分)设n S 是数列{}n a 的前n 项和,且22n n a S An Bn C +=++.(1)当0A B ==,1C =时,求n a ;(2)若数列{}n a 为等差数列,且1A =,2C =-. ①求n a ;②设=2n n n b a ,求数列{}n b 的前n 项和n T .DCBA20.(本小题满分16分)已知圆O 的方程为1322=+y x ,直线:l 00+13x x y y =,设点00(,)A x y .(1)若点A 为()34,,试判断直线l 与圆C 的位置关系; (2)若点A 在圆O 上,且02x =,00y >,过点A 作直线,AM AN 分别交圆O 于,M N 两点,且直线AM 和AN 的斜率互为相反数.①若直线AM 过点O ,求直线MN 的斜率;②试问:不论直线AM 的斜率怎样变化,直线MN 的斜率是否为定值?若是,求出该定值;若不是,说明理由.三星高中使用高一数学试题参考答案一、填空题:每小题5分,共计70分. 1.3 2.23 3.2π 4.4 5.230x y --= 6.2 7. 31 8.549. 10.②③ 11.32 12.2)1()2(22=-+-y x 13.1(,)3-∞- 14.()15,二、解答题:本大题共6小题,共计90分.15.证明:(1)在PBC ∆中,F E , 分别为PC PB ,的中点BC EF //∴………………3分 又⊂BC 平面ABC ,⊄EF 平面ABC //EF ∴平面ABC …………………………………7分(2)由条件,⊥PA 平面ABC ,⊂BC 平面ABCBC PA ⊥∴︒=∠90ABC ,即BC AB ⊥,………………………………………………10分 由//EF BC ,∴EF AB ⊥,EF PA ⊥又A AB PA =⋂,AB PA ,都在平面PAB 内 EF ∴⊥平面PAB又⊂EF 平面AEF ∴平面AEF ⊥平面PAB ………………………………………………14分16.解: (1)由条件可得sin 22sin(2)3y x x x π+=+,……………………………4分所以该函数的最小正周期22T ππ==………………………………………………………6分 (2)⎥⎦⎤⎢⎣⎡∈4,0πx ,⎥⎦⎤⎢⎣⎡∈+∴65,332πππx ,……………………………………………………8分 当12π=x 时,函数y 取得最大值为2,当4π=x 时,函数y 取得最小值为1∴函数y 的值域为[]2,1…………………………………………………………………………14分17.解:(1)因为四边形ABCD 是矩形,所以0=⋅由PD CP 2=得:DC DP 31=,3232-==.………………………………3分 ∴ BP AP ⋅)()(CP BC DP AD +⋅+=)32()31(-⋅+=229231-⋅-=18819236=⨯-=.………………………………7分(2)由题意,DP AD AP +=AB AD DC AD 3131+=+=3232-=+=+=∴ )32()31(-⋅+=⋅221239AD AB AD AB =-⋅-136183AB AD =-⋅-1183AB AD =-⋅………………………………………………10分 又6=⋅BP AP ,∴ 11863AB AD -⋅=, ∴ 36AB AD ⋅=.又θθθcos 54cos 69=⨯⨯==⋅AD AB ∴ 54cos 36θ=,即2cos 3θ=.(利用坐标法求解,同样给分)………………………14分 18.解:(1)如图所示,在ABD ∆中︒=︒+︒=∠+∠=∠754530DAC BAC BAD ︒=∠∴60ADB由正弦定理可得,ABDADADB AB ∠=∠sin sin ,260sin 45sin 3=︒︒=AD …………………4分 则ABD ∆的面积11sin 22S AB AD BAD =⋅∠==(平方海里)…………8分 (2)︒=︒+︒=∠+∠=∠1207545DBC ABD ABC ,︒=∠=∠30BCA BAC3==∴AB BC 3=∴AC …………………………………………………………………12分在ACD ∆中,由余弦定理得,5cos 2222=∠⋅-+=DAC AD AC AD AC CD即5=CD (海里)答:ABD ∆的面积为433+平方海里,C ,D 间的距离为5海里.……………………16分 19.解:(1)由题意得,21n n a S +=,∴1121(2)n n a S n --+=≥,两式相减,得123n n a a -=,……………………………………………………………………3分 又当1n =时,有131a =,即113a =,∴数列{}n a 为等比数列,∴112=33n n a -⎛⎫⎪⎝⎭.………………………………………………5分(2)①Q 数列{}n a 为等差数列,由通项公式与求和公式,得2211113222(1)()()222222n n d d d da S a n d n a n n a n a d +=+-++-=+++-,Q 1,2A C ==-, ∴12d=,12a d -=-,∴2d =,11a =,∴21n a n =-.………10分②由题()=2=212n n n n b a n -,()121232212n n T n =⋅+⋅++-⋅ (ⅰ) 2n T = ()()23+11232232212n n n n ⋅+⋅++-⋅+-⋅ (ⅱ)……………………13分(ⅰ)式-(ⅱ)式得:()()()31121+121222222212=2+21212n nn n n T n n -+⋅--=+⋅++⋅--⋅---()()3112221212n n n -+=+⋅---⋅,∴()1232+6n n T n +=-⋅.…………………………………………………………………………16分20.解:(1)当点A 的坐标为()34,时,直线l 的方程为34130x y +-=, 圆心到直线l的距离135d r , ∴ 直线l 与圆O 分 (2)①由点A 在圆O 上,且02x =,00y >,得03y =,即)3,2(A .由题意,AM 是圆的直径,所以点M 的坐标为)3,2(--,且23=AM k . 又直线AM 和AN 的斜率互为相反数,所以23-=AN k …………………………………7分 直线AN 的方程为623+-=x y ,由⎪⎩⎪⎨⎧=++-=.13,62322y x x y 得:13)236(22=-+x x , 解得:2=x 或1346=x ,所以)139,1346(N∴ 直线MN 的斜率为3213721348213463139==++=MNk .…………………………………………10分 ②记直线AM 的斜率为k ,则直线AM 的方程为:32y kx k =+-. 将32y kx k =+-代入圆O 的方程得:22(12)33kx x k +-+=, 化简得:22232(1)2(32)(130)k x k k x k ++-+-=-,∵ 2是方程的一个根, ∴ 2232)2(131M k x k -=+-, ∴226221M x k k k --+=,由题意知:k k AN-=,同理可得,226221N x k k k +-+=,…………………………………13分 ∴ 32(32)4M N M N M N MN M N M N M Ny y kx k kx k x x k k x x x x x x -+---+++-===---,∴ 2222222222228421222362621116262111MN k k k k k k k k k k k k k k k k k k --+-+++---+-=⋅=⋅=--+-+++, ∴ 不论直线AM 的斜率怎样变化,直线MN 的斜率总为定值23.…………………… 16分。

2013届江苏省盐城中学高一上学期期中数学试题(含答案解析)

2013届江苏省盐城中学高一上学期期中数学试题(含答案解析)

江苏省盐城中学2010—2011学年度第一学期期中考试高一年级数学试题试卷说明:本场考试时间120分钟。

全卷共分两个部分。

其中第Ⅰ卷为必做题,第Ⅱ卷为选做题,各位同学在完成第Ⅱ卷时应根据要求作出相应选择。

第Ⅰ卷(必做题,共105分分)一、填空题(共11小题,每小题5分,共计55分)1. 若集合{1,2,3}M =,{2,3,4}N =,则M N ⋂= ▲2. 3log 33的值为 ▲3. 已知幂函数()f x x α=过点(9,3),α的值为 ▲4. 函数2log (21)y x =-的定义域用区间表示应为 ▲5. 设全集是实数集R ,M ={x |-2≤x ≤2},N ={x |x <1},则()R M N ð= ▲ .6. 比较大小0.2log π ▲ 0.2log 3.14 (填“<”、“>”或“=”)7. 已知2()26f x x mx =-+在(],1-∞-为减函数,则m 的范围为 ▲ .8. 函数2xy =,(],1x ∈-∞-的值域为 ▲9. 不等式1327x>的解集为 ▲ 10. 满足{1,3} A ={1,3,5}的所有集合A 的个数是 ▲11. 设()f x 为定义在R 上的奇函数,当0x ≥时,()22xf x x m =++,则(1)f -= ▲二.解答题(本部分共4小题,共计50分) 15. (本题满分12分)求值:(1): 2l g 5l g 2l g 50+⋅() ;(2): 20.52371037(2)0.1(2)92748--+++ .16. (本题满分12分)已知集合{}2320A x x x =-+=.(1)如果集合{}10B x mx =+=,并且B ⊆A ,求m 的值;(2)如果集合{}220B x x x m =-+=,并且B ⋃A=A, 试确定m 的范围.17. (本题12分) 已知函数25(1)()(11)2(1)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩试解答下列问题:(1)求((2))f f -; (2)如果()2,f a =求实数a 的值.18.(本题14分)某公司生产一种电子仪器的固定成本20000元,每生产一台需要增加投入100元,已知总收益满足函数21400(0400)()280000(400)x x x f x x ⎧-≤≤⎪=⎨⎪>⎩ ,其中x 是仪器的月产量. (1)将利润表示为月产量的函数;(2) 当月产量为何值时,公司所获得的利润最大?大的利润是多少元? (利润=总收益-总成本)第Ⅱ卷(选做题,共45分)友情提醒:本部分试卷分为A 、B 两类,同学们可以选做A 、B 两类中任何一类,但选择要统一,不可两类混做,多做或混做均不得分。

2013-2014学年高一上学期期末数学试题_Word版含答案

2013-2014学年高一上学期期末数学试题_Word版含答案

2013-2014学年度第一学期高一级期末考试一.选择题(每小题5分,共50分,每小题只有一个选项是正确的) 1. 已知集合M ={x|x <3},N ={x |122x>},则M ∩N 等于( ) A ∅B {x |0<x <3}C {x |-1<x <3}D {x |1<x <3}2. 已知三条不重合的直线m 、n 、l 两个不重合的平面βα,,有下列命题 ①若αα//,,//m n n m 则⊂; ②若βαβα//,//,则且m l m l ⊥⊥; ③若βαββαα//,//,//,,则n m n m ⊂⊂;④若αββαβα⊥⊥⊂=⊥n m n n m 则,,,, ;其中正确的命题个数是( )A .1B .2C .3D .4 3. 如图,一个简单空间几何体的三视图中,其正视图与侧视图都是边长 为2的正三角形,俯视图轮廓为正方形,则其侧面积是( ) A .4. 函数()23xf x x =+的零点所在的一个区间是( )A .()2,1--B .()1,0-C .()0,1D .()1,25. 如图,在正方体ABCD-A 1B 1C 1D 1中,异面直线A 1B 和AD 1所成角的大小是( ) A. 30° B. 45° C.90° D.60°6. 已知函()()21,1,log ,1.a a x x f x x x --⎧⎪=⎨>⎪⎩≤若()f x 在(),-∞+∞上单调递增,则实数a 的取值范围为( ) A . ()1,2B . ()2,3C . (]2,3D . ()2,+∞7. 如图在正三棱锥A-BCD 中,E 、F 分别是AB 、BC 的中点,EF ⊥DE ,且BC =1,则正三棱锥A-BCD的体积是 ( )243D. 123C. 242B. 122.A8. 函数y =log 2(1-x )的图象是( )俯视图正视图 侧视图9. 已知)(x f 是定义在R 上的函数,且)2()(+=x f x f 恒成立,当)0,2(-∈x 时,2)(x x f =,则当[]3,2∈x 时,函数)(x f 的解析式为 ( )A .42-x B .42+x C .2)4(+x D . 2)4(-x10. 已知)91(log 2)(3≤≤+=x x x f ,则函数[])()(22x f x f y +=的最大值为( )A .6B .13C .22D .33二.填空题(每小题5分,共20分)11. 一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .12. 已知函数()()223f x x m x =+++是偶函数,则=m .13. 已知直二面角βα--l ,点A ∈α,AC ⊥l ,C 为垂足,B ∈β,BD ⊥l ,D 为垂足, 若AB=2,AC=BD=1则C,D 两点间的距离是_______14. 若函数2()log (2)(0,1)a f x x x a a =+>≠在区间102⎛⎫ ⎪⎝⎭,恒有()0f x >,则()f x 的单调递增区间是三.解答题(本大题共6小题,共80分。

江苏省盐城市2013-2014学年高一下学期期终考试 数学(三星)

江苏省盐城市2013-2014学年高一下学期期终考试 数学(三星)

三星高中使用江苏省盐城市2013-2014学年高一下学期期终考试数学(三星)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:柱体体积公式:V Sh =一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.直线30x y -+=在y 轴上的截距为 ▲ . 2.若角α的终边经过点(3,2)P ,则tan α的值为 ▲ .3.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的体积为 ▲ . 4.已知点)2,1(A ,)5,3(B ,向量()=,6a x ,若a //AB ,则实数x 的值为 ▲ . 5.过点(2,1)A ,且与直线230x y -+=平行的直线方程为 ▲ .6.已知向量与的夹角为120,且||2a =,1||=,则=+|2| ▲ . 7.若等比数列{}n a 的前n 项和为n S ,且141,8a a ==,则5S = ▲ . 8.若54)6sin(=+πx ,则=-)3cos(πx ▲ .9.直线+10x =被圆032:22=--+x y x C 截得的弦长为 ▲ . 10.设,m n 是两条不同的直线,βα,是两个不重合的平面,给定下列四个命题: ①若n m ⊥,α⊂n ,则α⊥m ; ②若m α⊥,m β⊂,则βα⊥; ③若α⊥m ,α⊥n ,则n m //; ④若α⊂m ,β⊂n ,βα//,则n m //. 其中真命题的序号为 ▲ .11.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若4=a ,2=b ,31cos =A ,则B sin 的值为 ▲ .12.在平面直角坐标系xOy 中,若圆C 的圆心在第一象限,圆C 与x 轴相交于(1,0)A 、(3,0)B 两点,且与直线01=+-y x 相切,则圆C 的标准方程为 ▲ .13.若数列{}n a 是一个单调递减数列,且2=n a n n λ+,则实数λ的取值范围是 ▲ . 14.已知点()5,0A -,()1,3B --,若圆()2220x y r r +=>上恰有两点M ,N ,使得M AB ∆和NAB ∆的面积均为5,则r 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在三棱锥P ABC -中,90ABC ∠=,PA ⊥平面ABC ,E ,F 分别为PB ,PC 的中点. (1)求证://EF 平面ABC ; (2)求证:平面AEF ⊥平面PAB .16.(本小题满分14分)已知函数()2sin cos f x x x x +,x R ∈. (1)求函数()f x 的最小正周期; (2)求函数()f x 在区间⎥⎦⎤⎢⎣⎡4,0π上的值域.A C在四边形ABCD 中,已知9=AB ,6=BC ,PD CP 2=. (1)若四边形ABCD 是矩形,求BP AP ⋅的值;(2)若四边形ABCD 是平行四边形,且6=⋅BP AP ,求AB 与AD 夹角的余弦值.18.(本小题满分16分)为绘制海底地貌图,测量海底两点C ,D 间的距离,海底探测仪沿水平方向在A ,B 两点进行测量,A ,B ,C ,D 在同一个铅垂平面内. 海底探测仪测得30,BAC ∠=45,DAC ∠=45,ABD ∠=75,DBC ∠=A ,B 两点的距离为3海里.(1)求ABD ∆的面积; (2)求C ,D 之间的距离.DCBA设n S 是数列{}n a 的前n 项和,且22n n a S An Bn C +=++. (1)当0A B ==,1C =时,求n a ;(2)若数列{}n a 为等差数列,且1A =,2C =-. ①求n a ;②设=2n n n b a ,求数列{}n b 的前n 项和n T . 20.(本小题满分16分)已知圆O 的方程为1322=+y x ,直线:l 00+13x x y y =,设点00(,)A x y . (1)若点A 为()34,,试判断直线l 与圆C 的位置关系;(2)若点A 在圆O 上,且02x =,00y >,过点A 作直线,AM AN 分别交圆O 于,M N 两点,且直线AM 和AN 的斜率互为相反数. ①若直线AM 过点O ,求直线MN 的斜率;②试问:不论直线AM 的斜率怎样变化,直线MN 的斜率是否为定值?若是,求出该定值;若不是,说明理由.三星高中使用高一数学试题参考答案一、填空题:每小题5分,共计70分. 1.3 2.233.2π 4.4 5.230x y --= 6.2 7. 31 8.549. 10.②③ 11.3212.2)1()2(22=-+-y x 13.1(,)3-∞- 14.()15,二、解答题:本大题共6小题,共计90分.15.证明:(1)在PBC ∆中,F E , 分别为PC PB ,的中点BC EF //∴………………3分 又⊂BC 平面ABC ,⊄EF 平面ABC //EF ∴平面ABC …………………………………7分(2)由条件,⊥PA 平面ABC ,⊂BC 平面ABCBC PA ⊥∴︒=∠90ABC ,即BC AB ⊥,………………………………………………10分 由//EF BC ,∴EF AB ⊥,EF PA ⊥又A AB PA =⋂,AB PA ,都在平面PAB 内 EF ∴⊥平面PAB又⊂EF 平面AEF ∴平面AEF ⊥平面PAB ………………………………………………14分16.解: (1)由条件可得sin22sin(2)3y x x x π+=+,……………………………4分所以该函数的最小正周期22T ππ==………………………………………………………6分 (2)⎥⎦⎤⎢⎣⎡∈4,0πx ,⎥⎦⎤⎢⎣⎡∈+∴65,332πππx ,……………………………………………………8分 当12π=x 时,函数y 取得最大值为2,当4π=x 时,函数y 取得最小值为1∴函数y 的值域为[]2,1…………………………………………………………………………14分17.解:(1)因为四边形ABCD 是矩形,所以0=⋅DC AD由PD CP 2=得:DC DP 31=,DC CD CP 3232-==.………………………………3分 ∴ BP AP ⋅)()(CP BC DP AD +⋅+=)32()31(-⋅+=229231-⋅-=18819236=⨯-=.………………………………7分(2)由题意,DP AD AP +=AB AD DC AD 3131+=+=AB AD CD BC CP BC BP 3232-=+=+=∴ )32()31(-⋅+=⋅221239AD AB AD AB =-⋅- 136183AB AD =-⋅-1183AB AD =-⋅………………………………………………10分 又6=⋅BP AP ,∴ 11863AB AD -⋅=, ∴ 36AB AD ⋅=.又θθθcos 54cos 69=⨯⨯==⋅AD AB ∴ 54cos 36θ=,即2cos 3θ=.(利用坐标法求解,同样给分)………………………14分 18.解:(1)如图所示,在ABD ∆中︒=︒+︒=∠+∠=∠754530DAC BAC BAD ︒=∠∴60ADB由正弦定理可得,ABD AD ADB AB ∠=∠sin sin ,260sin 45sin 3=︒︒=AD …………………4分则ABD ∆的面积113sin 2244S AB AD BAD +=⋅∠==(平方海里)…………8分 (2)︒=︒+︒=∠+∠=∠1207545DBC ABD ABC ,︒=∠=∠30BCA BAC3==∴AB BC 3=∴AC …………………………………………………………………12分在ACD ∆中,由余弦定理得,5cos 2222=∠⋅-+=DAC AD AC AD AC CD即5=CD (海里) 答:ABD ∆的面积为433+平方海里,C ,D 间的距离为5海里.……………………16分 19.解:(1)由题意得,21n n a S +=,∴1121(2)n n a S n --+=≥,两式相减,得123n n a a -=,……………………………………………………………………3分 又当1n =时,有131a =,即113a =,∴数列{}n a 为等比数列,∴112=33n n a -⎛⎫⎪⎝⎭.………………………………………………5分(2)①Q 数列{}n a 为等差数列,由通项公式与求和公式,得2211113222(1)()()222222n n d d d da S a n d n a n n a n a d +=+-++-=+++-,Q 1,2A C ==-, ∴12d=,12a d -=-,∴2d =,11a =,∴21n a n =-.………10分 ②由题()=2=212n n n n b a n -,()121232212n n T n =⋅+⋅++-⋅ (ⅰ) 2n T = ()()23+11232232212n n n n ⋅+⋅++-⋅+-⋅ (ⅱ)……………………13分 (ⅰ)式-(ⅱ)式得:()()()31121+121222222212=2+21212n n n n n T n n -+⋅--=+⋅++⋅--⋅---()()3112221212n n n -+=+⋅---⋅,∴()1232+6n n T n +=-⋅.…………………………………………………………………………16分20.解:(1)当点A 的坐标为()34,时,直线l 的方程为34130x y +-=,圆心到直线l的距离135d r =<=, ∴ 直线l 与圆O 相交.………………………………………………………………………5分 (2)①由点A 在圆O 上,且02x =,00y >,得03y =,即)3,2(A .由题意,AM 是圆的直径,所以点M 的坐标为)3,2(--,且23=AM k . 又直线AM 和AN 的斜率互为相反数,所以23-=AN k …………………………………7分 直线AN 的方程为623+-=x y ,由⎪⎩⎪⎨⎧=++-=.13,62322y x x y 得:13)236(22=-+x x , 解得:2=x 或1346=x ,所以)139,1346(N ∴ 直线MN 的斜率为3213721348213463139==++=MN k .…………………………………………10分②记直线AM 的斜率为k ,则直线AM 的方程为:32y kx k =+-. 将32y kx k =+-代入圆O 的方程得:22(12)33kx x k +-+=, 化简得:22232(1)2(32)(130)k x k k x k ++-+-=-,∵ 2是方程的一个根, ∴ 2232)2(131M k x k -=+-, ∴226221M x k k k --+=, 由题意知:k k AN-=,同理可得,226221N x k k k +-+=,…………………………………13分 ∴ 32(32)4M N M N MN MN M N M N M Ny y kx k kx k x x k k x x x x x x -+---+++-===---, ∴ 2222222222228421222362621116262111MN k k k k k k k k k k k k k k k k k k --+-+++---+-=⋅=⋅=--+-+++, ∴ 不论直线AM 的斜率怎样变化,直线MN 的斜率总为定值23.…………………… 16分。

2014江苏省盐城中学高一期中考试数学试题和答案

2014江苏省盐城中学高一期中考试数学试题和答案

命题人:王金文 范进 审核人:张万森一、填空题(每题5分,共70分)1、21+与21-的等差中项是 ▲ 。

2、角α是第二象限,53sin =α,则=α2sin ▲ 。

3、已知函数2()sin f x x =,则函数)(x f 的最小正周期是 ▲ 。

4、等比数列}{n a 中,已知1=1a ,581a =,则=3a ▲ 。

5、等差数列}{n a 中,32122=+a a ,则311a a +的值是 ▲ 。

6、已知平面α和β是空间中两个不同的平面,下列叙述中,正确的是 ▲ 。

(填序号) ①因为α∈M ,α∈N ,所以α∈MN ; ②因为α∈M ,β∈N ,所以MN =βα ;③因为α⊂AB ,AB M ∈,AB N ∈,所以α∈MN ; ④因为α⊂AB ,β⊂AB ,所以AB =βα 。

7、设n S 为等差数列}{n a 的前n 项和,若11=a ,公差2=d ,2108m m S S -=,则正整数m 的值等于 ▲ 。

8、已知数列}{n a 的前n 项和为31n n S =-(*N n ∈),则4a = ▲ 。

9、在ABC ∆中,a 、b 、c 分别是角A 、B 、C 所对的边,3π=A ,3=a ,1=c ,则AB C ∆的面积是 ▲ 。

10、若关于x 的方程k x x =+2cos 2sin 在区间]2,0[π上有实数解,则实数k 的最大值为 ▲ 。

11、已知数列}{n a 的通项公式是n a n =(*N n ∈),数列}{n a 的前n 项的和记为n S ,则123101111S S S S ++++= ▲ 。

12、设πβπα<<<<20,且135)sin(=+βα,5522cos =α,则=βcos ▲ 。

13、在ABC ∆中,点D 在线段AB 上,且DB AD 2=,2::3::m CB CD CA =,则实数m 的取值范围是 ▲ 。

14、用a ,b ,c 三个不同的字母组成一个含有1+n (*N n ∈)个字母的字符串,要求如下:由字母a 开始,相邻两个字母不能相同。

江苏省盐城中学2013-2014学年高一上学期期末考试生物试题 Word版无答案

江苏省盐城中学2013-2014学年高一上学期期末考试生物试题 Word版无答案

高一上学期期末考试生物试题试卷说明:本场考试时间100分钟,总分150分。

一、单项选择题(本题共35小题,每小题3分,每小题只有一个最佳选项)1.蛋白质和核酸分子共同具有的化学元素是()A.C、H、P、N、P、S B.C、H、O、N、PC.C、H、O、N、S D.C、H、O、N2.下列关于糖类的生理作用的叙述中,不正确的是()A .核糖和脱氧核糖是核酸的组成成分B .葡萄糖是细胞的重要能源物质C .淀粉是植物细胞中的储存能量的物质D .纤维素是动物细胞中重要的储存能量的物质3.在治疗创伤的中药方剂中,雄性羚羊角或犀牛角的用量极少,但是缺少这味药,疗效将大大下降甚至无效。

已知动物的角主要是由死亡细胞的角化(变性)蛋白质组成的,则羚羊角等的有效成分最可能是( )A.特殊活性蛋白质B.DNAC.微量元素类D.大量元素类4.脂质在细胞中具有独特的生物学功能。

下面有关脂质的生物学功能中,属于磷脂的生物学功能的是①生物膜的主要成分②储存能量的分子③构成生物体表面的保护层④很好的绝缘体,具有保温作用⑤具有生物学活性,对生命活动起调节作用 ( )A .①④B .⑤C .①D .②③A.相同质量的M1和M2被彻底氧化分解,则M1的耗氧量多B. M3是蛋白质,m3是氨基酸C.m3和m4之间的区别主要是五碳糖和碱基的种类不同D.M4是DNA,m4是核糖核苷酸6.下列关于叶绿素合成和功能的叙述,错误的是 ( )A.光是叶绿素合成的必要条件B.低温抑制叶绿素的合成C.矿质元素影响叶绿素的合成D.提取的叶绿素溶液,给予适宜的温度、光照和CO2,可进行光合作用7.细胞器所共有的化学成分是 ( ) A.DNA B.RNAC.蛋白质 D.磷脂8.若对离体的小肠上皮细胞施用某种毒素,可使该细胞对Ca2+吸收量明显减少,但其对K+、C6H12O6等的吸收不受影响。

则这种毒素的作用对象最可能是 ( )A.呼吸酶 B.细胞膜中的磷脂分子C.Ca2+的载体 D.ATP水解酶A.唾液淀粉酶在37℃时活性最高B.温度对酶活性影响不明显C.碘液对淀粉的显色反应不明显D.保温前酶已催化淀粉水解10.下列有关ATP的叙述,正确的是 ( ) A.ATP分子由1个腺嘌呤脱氧核苷酸和2个磷酸基团组成B.线粒体内大量合成ATP的部位是外膜C.在剧烈运动时,肌细胞产生ATP的速率增加D.叶绿体内ATP的运输方向是基质→类囊体薄膜11.下列关于人体内有氧呼吸和无氧呼吸的比较,正确的是 ( )A.二氧化碳只是有氧呼吸的产物B.葡萄糖只能作为有氧呼吸分解的底物C.还原氢只在有氧呼吸过程中产生D.无氧呼吸的两个阶段也都能合成ATP12.下图为植物细胞结构的概念图,下列相关叙述正确的是 ( )(一)(二)(三)(四)(五)(六)(七)A.该图不够完整,缺少细胞核等结构B.图中c指细胞膜,e指细胞质C.图中b成分为纤维素和果胶D.图中h释放的CO2可以提供g利用13.“细胞既是生物体结构的基本单位,也是生物体代谢和遗传的基本单位。

江苏省盐城中学2013-2014高三数学期中考试试卷

江苏省盐城中学2013-2014高三数学期中考试试卷

江苏省盐城中学2013-2014学年度秋学期高三年级期中考试数学试卷Ⅰ卷参考公式:样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑;锥体的体积公式:1=3V Sh 锥体,其中S 为锥体的底面面积,h 是高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上... 1. 已知i 是虚数单位,若3ii(,)ia b a b =∈++R ,则ab 的值为 ▲. 2. 某射击选手连续射击5枪命中的环数分别为:9.7,9.9,10.1,10.2,10.1,则这组数据的方差为 ▲ .3. 右图是一个算法流程图,则输出的S 的值是 ▲ .4. 若集合{}1,0,1A =-,{}|cos(),B y y x x A ==π∈,则AB = ▲ .5. 方程22115x y k k =-++表示双曲线的充要条件是k ∈ ▲ . 6.在ABC △中,已知4cos 5A =,1tan()2A B -=-,则tan C 的值是 ▲ .7. 已知实数,x y 满足1,3,10,x y x y -⎧⎪⎨⎪-⎩+≥≤≤则222x y x -+的最小值是 ▲ .8. 已知n S 是等差数列{}n a 的前n 项和,若77S =,1575S =,则数列n S n ⎧⎫⎨⎬⎩⎭的前20项和为▲ .(第3题图)9. 已知三棱锥P ABC -的所有棱长都相等,现沿PA ,PB ,PC 三条侧棱剪开,将其表面展开成一个平面图形,若这个平面图形外接圆的半径为则三棱锥P ABC -的体积为 ▲ .10.已知O 为ABC △的外心,若51213OA OB OC +-=0,则C ∠等于 ▲ .11. 已知数字发生器每次等可能地输出数字1或2中的一个数字,则连续输出的4个数字之和能被3整除的概率是 ▲ . 12. 若0,0a b >>,且11121a b b =+++,则2a b +的最小值为 ▲. 13.已知函数2,01,()12, 1.2x x x f x x +<⎧⎪=⎨+⎪⎩≤≥若0a b >≥,且()()f a f b =,则()bf a 的取值范围是 ▲ .14. 已知曲线C :()(0)af x x a x=>+,直线l :y x =,在曲线C 上有一个动点P ,过点P分别作直线l 和y 轴的垂线,垂足分别为,A B .再过点P 作曲线C 的切线,分别与直线l 和y 轴相交于点,M N ,O 是坐标原点.若ABP △的面积为12,则OMN △的面积为 ▲ .二、解答题: 本大题共6小题, 15~17每小题14分,18~20每小题16分,共计90分.请在答题卡指定的区域内作答,解答时应写出文字说明、证明过程或演算步骤. BFCE .求证:平面ACE16.已知ABC △的面积为S ,角,,A B C 的对边分别为,,a b c ,32AB AC S =.⑴求cos A 的值;⑵若,,a b c 成等差数列,求sin C 的值.(第15题图)17.已知一块半径为r 的残缺的半圆形材料ABC ,O 为半圆的圆心,12OC r =,残缺部分位于过点C 的竖直线的右侧.现要在这块材料上截出一个直角三角形,有两种设计方案:如图甲,以BC 为斜边;如图乙,直角顶点E 在线段OC 上,且另一个顶点D 在AB 上.要使截出的直角三角形的面积最大,应该选择哪一种方案?请说明理由,并求出截得直角三角形面积的最大值.18.如图,在平面直角坐标系xOy 中,已知椭圆E :22221(0)x y a b a b +=>>的离心率e =,12,A A 分别是椭圆E 的左、右两个顶点,圆2A 的半径为a ,过点1A 作圆2A 的切线,切点为P ,在x 轴的上方交椭圆E 于点Q . ⑴求直线OP 的方程;⑵求1PQ QA 的值;⑶设a 为常数.过点O 作两条互相垂直的直线,分别交椭圆E 于点,B C ,分别交圆2A 于点,M N ,记OBC △和OMN △的面积分别为1S ,2S ,求12S S ⋅的最大值.(第18题图)(第17题甲图) (第17题乙图)19.已知数列{}n a 满足:12(0)a a a =+≥,1n a +=*n ∈N . ⑴若0a =,求数列{}n a 的通项公式;⑵设1n n n b a a +=-,数列{}n b 的前n 项和为n S ,证明:1n S a <.20.已知函数2()ln f x x ax x =--,a ∈R .⑴若函数()y f x =在其定义域内是单调增函数,求a 的取值范围;⑵设函数()y f x =的图象被点(2,(2))P f 分成的两部分为12,c c (点P 除外),该函数图象在点P 处的切线为l ,且12,c c 分别完全位于直线l 的两侧,试求所有满足条件的a 的值.盐城中学高三年级期中考试数学试卷Ⅱ卷(附加题)21.【选做题】本大题包括A 、B 、C 、D 共4小题,请从这4题中选做2小题.每小题10分,共20分.请在答题卡上准确填涂题目标记.解答时应写出文字说明、证明过程或演算步骤. A .选修4-1:几何证明选讲如图,已知圆A ,圆B 都经过点C ,BC 是圆A 的切线,圆B 交AB 于点D ,连结CD 并延长交圆A 于点E ,连结AE .求证2DE DC AD DB ⋅=⋅.B .选修4-2:矩阵与变换已知,a b ∈R ,若矩阵13a b -⎡⎤=⎢⎥⎣⎦M 所对应的变换把直线l :23x y -=变换为自身,求1-M .C .选修4-4:坐标系与参数方程EA B C D (第21—A 题图)在极坐标系中,已知直线2cos sin 0(0)a a ρθρθ=>++被圆4sin ρθ=截得的弦长为2,求a 的值.D .选修4-5:不等式选讲已知,,x y z ∈R ,且234x y z --=,求222x y z ++的最小值.22.【必做题】本小题10分.解答时应写出文字说明、证明过程或演算步骤.如图,在正三棱柱111ABC A B C -中,已知16AA =,2AB =,,M N 分别是棱1BB ,1CC 上的点,且4BM =,2CN =. ⑴求异面直线AM 与11AC 所成角的余弦值;⑵求二面角1M AN A --的正弦值.23.【必做题】本小题10分.解答时应写出文字说明、证明过程或演算步骤.(第22题图) A BC A 1B 1C 1 MN已知函数021*********()C C C C (1)C (1)n n n rr n r n n n n n n n n f x x x xx x------=-+-+-++-,n *∈N . ⑴当2n ≥时,求函数()f x 的极大值和极小值;⑵是否存在等差数列{}n a ,使得01121C C C (2)nn n n n a a a nf ++++=对一切n *∈N 都成立?并说明理由.数学参考答案与评分标准一、填空题1.3-;2. 0.032;3.58; 4. {1,1}-; 5.(1,5)-; 6.112; 7.1;8.55; 9.9; 10.3π4; 11. 38; 12. ; 13.5[,3)4; 14. 4二、解答题15.⑴因为CE ⊥圆O 所在的平面,BC ⊂圆O 所在的平面,所以CE BC ⊥,………………………………………………………………………………2分 因为AB 为圆O 的直径,点C 在圆O 上,所以AC BC ⊥, ……………………………3分 因为AC CE C =,,AC CE ⊂平面ACE ,所以BC ⊥平面ACE ,………………………………………………………………………5分 因为BC ⊂平面BCEF ,所以平面BCEF ⊥平面ACE .…………………………………7分 ⑵由⑴AC BC ⊥,又因为CD 为圆O 的直径, 所以BD BC ⊥,因为,,AC BC BD 在同一平面内,所以AC BD ,…………………………………………9分 因为BD ⊄平面ACE ,AC ⊂平面ACE ,所以BD 平面ACE .………………………11分因为BF CE ,同理可证BF 平面ACE , 因为BD BF B =,,BD BF ⊂平面BDF , 所以平面BDF 平面ACE ,因为D F ⊂平面BDF ,所以DF 平面ACE .……………………………………………14分 16.⑴由32AB AC S =,得31cos sin 22bc A bc A =⨯,即4sin cos 3A A =.……………2分 代入22sin cos 1A A =+,化简整理得,29cos 25A =.……………………………………4分 由4sin cos 3A A =,知cos 0A >,所以3cos 5A =.………………………………………6分 ⑵由2b a c =+及正弦定理,得2sin sin sin B A C =+,即2sin()sin sin A C A C =++,………………………………………………………………8分 所以2sin cos 2cos sin sin sin A C A C A C =++.①由3cos 5A =及4sin cos 3A A =,得4sin 5A =,……………………………………………10分 代入①,整理得4sin cos 8CC -=.代入22sin cos 1C C =+,整理得265sin 8sin 480C C --=,……………………………12分解得12sin 13C =或4sin 5C =-.因为(0,)C ∈π,所以12sin 13C =.…………………………………………………………14分17.如图甲,设DBC α∠=,则3cos 2r BD α=,3sin 2rDC α=, ………………………………………………2分 所以29sin 216BDC S r α=△ (4)分2916r ≤, 当且仅当π4α=时取等号, …………………………………………………6分 此时点D 到BC 的距离为34r ,可以保证点D 在半圆形材料ABC 内部,因此按照图甲方案得到直角三角形的最大面积为2916r . …………………………………………………7分如图乙,设EOD θ∠=,则cos OE r θ=,sin DE r θ=,所以21(1cos )sin 2BDE S r θθ=+△,ππ[,]32θ∈ . …………………………………10分设21()(1cos )sin 2f r θθθ=+,则21()(1cos )(2cos 1)2f r θθθ'=+-,当ππ[,]32θ∈时,()0f θ'≤,所以π3θ=时,即点E 与点C 重合时,BDE △2. ………………………………………………………13分22916r >,2.…………14分 18.⑴连结2A P ,则21A P A P ⊥,且2A P a =, 又122A A a =,所以1260A A P ∠=.所以260POA ∠=,所以直线OP的方程为y =.……………………………………3分 ⑵由⑴知,直线2A P的方程为)y x a =-,1A P的方程为)y x a +, 联立解得2P ax =. ………………………………………………………………………5分因为e =c a =2234c a =,2214b a =,故椭圆E 的方程为222241x y a a =+.(第17题甲图)(第17题乙图)由2222),41,y x a x y a a ⎧=+⎪⎪⎨⎪=⎪⎩+解得7Q a x =-,…………………………………………………………7分 所以1()3274()7a aPQ a QA a --==---. ………………………………………………………………8分 ⑶不妨设OM 的方程为(0)y kx k =>,联立方程组2222,41,y kx x y aa =⎧⎪⎨=⎪⎩+解得B ,所以OB =10分用1k-代替上面的k,得OC =同理可得,OM,ON =.…………………………………………13分所以41214S S OB OC OM ON a ⋅=⋅⋅⋅⋅=.………………………14分15≤,当且仅当1k =时等号成立,所以12S S ⋅的最大值为45a .………………………………16分19.⑴若0a =时,12a =,1n a +=212n n a a +=,且0n a >. 两边取对数,得1lg22lg lg n n a a +=+,……………………………………………………2分 化为11lg lg2(lg lg2)2n n a a +=++, 因为1lg lg22lg2a =+,所以数列{lg lg2}n a +是以2lg 2为首项,12为公比的等比数列.……………………4分 所以11lg lg22()lg22n n a -=+,所以2212n n a --=.………………………………………6分⑵由1n a +=212n n a a a +=+,① 当2n ≥时,212n n a a a -=+,②①-②,得1112()()n n n n n n a a a a a a ++--=-+,…………………………………………8分 由已知0n a >,所以1n n a a +-与1n n a a --同号.…………………………………………10分因为2a =0a >,所以222212(2)(1)330a a a a a a -=-=>++++恒成立,所以210a a -<,所以10n n a a +-<.………………………………………………………12分 因为1n n n b a a +=-,所以1()n n n b a a +=--, 所以21321[()()()]n n n S a a a a a a +=----+++11111()n n a a a a a ++=--=-<.…………………………………………………………16分 20.⑴2121()21(0)ax x f x ax x x x-'=--=->+,………………………………………2分 只需要2210ax x +-≤,即22111112()24a x x x -=--≤,所以18a -≤.…………………………………………………………………………………4分⑵因为1()21f x ax x'=--.所以切线l 的方程为1(4)(2)ln 2422y a x a =---+--.令21()ln (4)(2)ln 2422g x x ax x a x a ⎡⎤=------+--⎢⎥⎣⎦,则(2)0g =.212(4)1112()242ax a x g x ax a x x---'=-+-=-.………………………………………6分 若0a =,则2()2xg x x-'=, 当(0,2)x ∈时,()0g x '>;当(2,)x ∈∞+时,()0g x '<,所以()(2)0g x g =≥,12,c c 在直线l 同侧,不合题意;…………………………………8分若0a ≠,12(2)()4()a x x a g x x-+'=-,若18a =-,2(1)2()0x g x x -'=≥,()g x 是单调增函数, 当(2,)x ∈∞+时,()(2)0g x g >=;当(0,2)x ∈时,()(2)0g x g <=,符合题意;…10分若18a <-,当1(,2)4x a∈-时,()0g x '<,()(2)0g x g >=, 当(2,)x ∈+∞时,()0g x '>,()(2)0g x g >=,不合题意; …………………………12分 若108a -<<,当1(2,)4x a∈-时,()0g x '<,()(2)0g x g <=, 当(0,2)x ∈时,()0g x '>,()(2)0g x g <=,不合题意; ……………………………14分 若0a >,当(0,2)x ∈时,()0g x '>,()(2)0g x g <=, 当(2.)x ∈+∞时,()0g x '<,()(2)0g x g <=,不合题意.故只有18a =-符合题意. ………………………………………………………………16分附加题21.A .由已知,AC BC ⊥,因为90ACD BCD ∠∠=︒+, AC AE =,BC BD =,所以ACD E ∠=∠,BCD BDC ∠=∠,因为ADE BDC ∠=∠,所以90E ADE ∠∠=︒+,所以AE AB ⊥.……………………………………………5分 延长DB 交B 于点F ,连结FC ,则2DF DB =,90DCF ∠=︒,所以ACD F ∠=∠,所以E F ∠=∠,所以Rt ADE △∽Rt CDF △, 所以AD DECD DF=,所以DE DC AD DF ⋅=⋅,因为2DF DB =, 所以2DE DC AD DB ⋅=⋅.…………………………………………………………………10分 B .对于直线l 上任意一点(),x y ,在矩阵M 对应的变换作用下变换成点(),x y '',则133a x x ay x b y bx y y '--⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦⎣⎦++, 因为23x y ''-=,所以2()(3)3x ay bx y --=++, ………………………………………4分所以22,231,b a --=⎧⎨-=-⎩解得1,4.a b =⎧⎨=-⎩FEA BC D (第21—A 题图)所以1143-⎡⎤=⎢⎥-⎣⎦M , …………………………………………………………………………7分 所以13141--⎡⎤=⎢⎥-⎣⎦M . ………………………………………………………………10分 C .直线的极坐标方程化为直角坐标方程为20x y a =++, …………………………3分 圆的极坐标方程化为直角坐标方程为224x y y =+,即22(2)4x y -=+ ,…………6分 因为截得的弦长为2,所以圆心(0,2),=0a >,所以2a =. ………………………………………10分D .由柯西不等式,得2222222[(2)(3)][1(2)(3)]()x y z x y z ----++++++≤,即2222(23)14()x y z x y z --++≤, ……………………………………………………5分 即2221614()x y z ++≤.所以22287x y z ++≥,即222x y z ++的最小值为87. …………………………………10分 22.⑴以AC 的中点为原点O ,分别以,OA OB 所在直线为,x z 轴,建立空间直角坐标系O xyz -(如图). 则(0,0,0)O ,(1,0,0)A ,(C -1(1,6,0)A ,1(1,6,0)C -.所以(AM =-,11(2,0,0)AC =-. 所以111111cos ,2AM A C AM A C AM A C <>===所以异面直线AM 与11AC ⑵平面1ANA 的一个法向量为(0,0,1)=m .设平面AMN 的法向量为(,,)x y z =n ,因为(AM =-,(2,2,0)AN =-,由,,AM AN ⎧⊥⎪⎨⊥⎪⎩n n 得40,220,x y x y ⎧-=⎪⎨-=⎪⎩++令1x =,则(1,1,=n .所以3cos ,-<>===m n m n m n , 所以二面角1M AN A --. ……………………………………………10分23.(1)101122()[C C C C (1)(1)C ]n n n n r r n r n n n n n n n f x x x x x x ----=-+-⋅⋅⋅+-+⋅⋅⋅+- =1(1)n n xx --, 211()(1)(1)(1)n n n n f x n x x x n x ---'=--+⋅-=21(1)[(1)(1)]n n x x n x nx -----+,令()0f x '=得12310,,121n x x x n -===-, 因为2n ≥,所以123x x x <<.…………………………………………………2分 当n 为偶数时()f x 的增减性如下表:x(,0)-∞1(0,)21n n --121n n --1(,1)21n n --1(1,)+∞()f x '+ 0 + 0-0 +()f x无极值极大值极小值所以当121n x n -=-时,121(1)()(21)n n n n n y n ---⋅--极大;当1x =时,0y =极小.………4分当n 为奇数时()f x 的增减性如下表:所以0x =时,0y =极大;当121n x n -=-时,121(1)()(21)n n n n n y n ---⋅-=-极小.…………6分(2)假设存在等差数列{}n a 使01211231C C C C 2n n n n n n n a a a a n -++++⋅⋅⋅+=⋅成立, 由组合数的性质C C m n mn n-=, 把等式变为0121111C C C C 2n n n n n n n n n a a a a n -+-+++⋅⋅⋅+=⋅, 两式相加,因为{}n a 是等差数列,所以1123111n n n n a a a a a a a a +-++=+=+==+,故0111()(C C C )2nn n n n n a a n +++++=⋅,所以11n a a n ++=. …………………………………………………………………8分 再分别令12n n ==,,得121a a +=且132a a +=,进一步可得满足题设的等差数列{}n a 的通项公式为1()n a n n *=-∈N .………10分x(,0)-∞1(0,)21n n --121n n --1(,1)21n n --1(1,)+∞()f x '+ 0-0 + 0 +()f x极大值极小值无极值。

3 数学-盐城中学2013-2014学年高一上学期期中考试试卷 数学

3 数学-盐城中学2013-2014学年高一上学期期中考试试卷 数学

盐城中学2013—2014学年度第一学期期中考试高一年级数学试题命题人:胥容华 朱丽丽 审题人:张万森一、填空题(本大题共14小题,每小题5分,计70分)1.集合{}7,6,4,2,1=A ,{}7,5,4,3=B ,则A B ⋂= ▲ .2.函数()lg f x x =的定义域是 ▲ .3.设函数⎪⎩⎪⎨⎧>-+≤+=1,21,1)(22x x x x x x f ,则)]1([-f f 的值为 ▲ .4.幂函数)(x f y =的图象经过点,2(14),则其解析式是 ▲ . 5.式子2log 5322log 1+的值为 ▲ .6.若函数2()(1)3f x kx k x =+-+是偶函数,则()f x 的递减区间是 ▲ . 7.已知2log ,5.0,4.02.05.05.0===-c b a ,则c b a ,,的大小关系是 ▲ .8.函数1()425xx f x +=++的值域为 ▲ .9.若(ln )34f x x =+,则f x ()的表达式为 ▲ .10.已知函数()531f x ax bx =-+,若()32=-f ,则()=2f ▲ .11.若函数)(x f y =的图象经过点)3,1(,则函数1)(+-=x f y 的图象必定经过的点的坐标 是 ▲ .12.函数122log (1)xy x =-+在区间[0,1]上的最大值和最小值之和为 ▲ .13.已知函数)(x f 满足),()(x f x f =-当)0,(,-∞∈b a 时,总有()()0()f a f b a b a b->≠-.若),2()1(m f m f >+则实数m 的取值范围是 ▲ .14.设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x =++, 若()1f x a ≥+对一切..0x ≥成立,则a 的取值范围为 ▲ .二、解答题(本大题共6小题,计80分. 请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.设集合{}02A x x m =<-<,{}03B x x x =≤≥或.分别求出满足下列条件的实数m 的取值范围.(Ⅰ)A B =∅ ; (Ⅱ)B B A = .16.设函数2()45f x x x =--. (Ⅰ)画出)(x f y =的图象; (Ⅱ)设A ={}|()7,x f x ≥求集合 A ;(Ⅲ)方程()1f x k =+有两解,求实数k 的取值范围.17. 设0a >,2()2x xaf x a =-是R 上的奇函数. (Ⅰ)求a 的值;(Ⅱ)证明:()f x 在R 上为增函数; (Ⅲ)解不等式:()()2110f m f m -+-<.18. 提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20200x ≤≤时,车流速度v 是车流密度x 的一次函数. (Ⅰ)当0200x ≤≤时,求函数()v x 的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观察点的车辆数,单位:辆 /每小时))()(x v x x f ⋅=可以达到最大,并求出最大值(精确到1辆/小时).19.已知函数1,0)((log )(≠>-=a a x ax x f a 为常数).(Ⅰ)求函数()f x 的定义域;(Ⅱ)若2a =,[]1,9x ∈,求函数()f x 的值域; (Ⅲ)若函数()f x y a =的图像恒在直线21y x =-+的上方,求实数a 的取值范围.20.对于函数()f x ,若存在实数对(b a ,),使得等式b x a f x a f =-⋅+)()(对定义域中的每一个x 都成立,则称函数()f x 是“(b a ,)型函数”.(Ⅰ) 判断函数1()f x x =是否为 “(b a ,)型函数”,并说明理由;(Ⅱ) 若函数2()4xf x =是“(b a ,)型函数”,求出满足条件的一组实数对),(b a ; (Ⅲ)已知函数()g x 是“(b a ,)型函数”,对应的实数对),(b a 为(1,4).当[0,1]x ∈ 时,2()g x x =(1)1m x --+(0)m >,若当[0,2]x ∈时,都有1()4g x ≤≤,试求m 的取值范围.江苏省盐城中学2013—2014学年度第一学期期中考试一、填空题(本大题共14小题,每小题5分,计70分)1.集合{}7,6,4,2,1=A ,{}7,5,4,3=B ,则A B ⋂= {}4,7 . 2.函数()lg f x x =的定义域是 (]0,1 .3.设函数⎪⎩⎪⎨⎧>-+≤+=1,21,1)(22x x x x x x f ,则)]1([-f f 的值为___4____.4.幂函数)(x f y =的图象经过点,2(14),则其解析式是______2y x -=_________. 5.式子2log 5322log 1+的值为____5_____.6.若函数2()(1)3f x kx k x =+-+是偶函数,则()f x 的递减区间是 (],0-∞ ;7.已知2log ,5.0,4.02.05.05.0===-c b a ,则c b a ,,的大小关系是 a b c >> .8.函数1()425xx f x +=++的值域为______(5,)+∞______.高一年级数学试题答案高考资源网9.若(ln )34f x x =+,则f x ()的表达式为________()34xf x e =+ ____________. 10.已知函数()531f x ax bx =-+,若()32=-f ,则()2f 1- .11.若函数)(x f y =的图象经过点)3,1(,则函数1)(+-=x f y 的图象必定经过的点的坐标 是 ()1,4- .12.函数052log (1)xy x =-+ 在区间[0,1]上的最大值和最小值之和为___4______. 13.已知函数)(x f 满足),()(x f x f =-当)0,(,-∞∈b a 时,总有).(0)()(b a b a b f a f ≠>--若),2()1(m f m f >+则实数m 的取值范围是__ 113m m ><-或______. 14.设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++, 若()1f x a ≥+对一切..0x ≥成立,则a 的取值范围为___87a ≤-_____.二、解答题(本大题共6小题,计80分. 请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.设集合{}02A x x m =<-<,{}03B x x x =≤≥或.分别求满足下列条件的实数m 的取值范围:(1)A B =∅ ; (2)B B A = . 解:(1)[]0,1m ∈ (2)2m ≤-或3m ≥ 16.设函数2()45f x x x =--. (1)画出)(x f y =的图象; (2)设A ={}|()7,x f x ≥求集合A ;(3)方程()1f x k =+有两解,求k 的取值范围.解:(2)(][),66,A =-∞-⋃+∞ (3)9k =-或5k >-17. 设0a >,2()2x xaf x a =-是R 上的奇函数.(1)求a 的值; (2)证明:()f x 在R 上为增函数; (3)解不等式()()2110f m f m -+-<.解:(1)1a =; (2)(定义法), (3)1m >或2m <-18. 提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20200x ≤≤时,车流速度v 是车流密度x 的一次函数.(1)当0200x ≤≤时,求函数()v x 的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆 /每小时))()(x v x x f ⋅=可以达到最大,并求出最大值(精确到1辆/小时) 解:(1)由题意:当020,()60x v x ≤≤=时;当20200,()x v x ax b ≤≤=+时设再由已知得1,2000,32060,200.3a a b a b b ⎧=-⎪+=⎧⎪⎨⎨+=⎩⎪=⎪⎩解得故函数()v x 的表达式为60,020,()1(200),202003x v x x x ≤≤⎧⎪=⎨-≤≤⎪⎩(2)依题意并由(1)可得60,020,()1(200),202003x x f x x x x ≤<⎧⎪=⎨-≤≤⎪⎩当020,()x f x ≤≤时为增函数,故当20x =时,其最大值为60×20=1200;当20200x ≤≤时,211(200)10000()(200)[]3323x x f x x x +-=-≤= 当且仅当200x x =-,即100x =时,等号成立。

2013-2014学年高一(上)期末数学试卷(解析版)

2013-2014学年高一(上)期末数学试卷(解析版)

2013-2014学年高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共7个小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)利用斜二侧画法画水平放置的平面图形的直观图,得到下列结论,其中正确的是,解得:正方体的棱长为=3即为球的直径,所以半径为)5.(5分)已知圆与圆相交,则与圆7.(5分)已知圆锥的底面半径为1,且它的侧面展开图是一个半圆,则这个圆锥的体积为B,圆锥的高为:π××22B=,二、填空题:本大题共6个小题,每小题5分,共30分.请把答案填在答题卷对应题号后的横线上.9.(5分)若球的表面积为36π,则该球的体积等于36π.所以球的体积为:10.(5分)如图,直四棱柱ABCD﹣A 1B1C1D1的底面是边长为1的正方形,侧棱长,则异面直线A1B1与BD1的夹角大小等于.,故答案是11.(5分)与圆(x﹣1)2+(y﹣2)2=4关于y轴对称的圆的方程为(x+1)2+(y﹣2)2=4.12.(5分)已知点A,B到平面α的距离分别为4cm和6cm,当线段AB与平面α相交时,线段AB的中点M到α平面的距离等于1.,∴===中,EOF=13.(5分)无论m为何值,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0恒过一定点P,则点P 的坐标为(3,1).,求得定点,14.(5分)直线y=k(x﹣1)与以A(3,2)、B(2,3)为端点的线段有公共点,则k的取值范围是[1,3].=1=315.(5分)若圆柱的侧面展开图是边长为4的正方形,则它的体积等于.R=V=SH=.故答案为:三、解答题:本大题共6小题,共35分,解答应写出文字说明,证明过程或演算步骤. 16.(11分)如图示,给出的是某几何体的三视图,其中正视图与侧视图都是边长为2的正三角形,俯视图为半径等于1的圆.试求这个几何体的侧面积与体积.,代入圆锥的体积公式和表面积公式,可得答案.的圆锥..17.(12分)已知直线l1:ax+3y+1=0,l2:x+(a﹣2)y+a=0.(1)若l1⊥l2,求实数a的值;(2)当l1∥l2时,求直线l1与l2之间的距离.;时,有故它们之间的距离为18.(12分)如图示,AB是圆柱的母线,BD是圆柱底面圆的直径,C是底面圆周上一点,E是AC中点,且AB=BC=2,∠CBD=45°.(1)求证:CD⊥面ABC;(2)求直线BD与面ACD所成角的大小.BE=19.(13分)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=CC1=a,E是A1C1的中点,F是AB中点.(1)求证:EF∥面BB1C1C;(2)求直线EF与直线CC1所成角的正切值;(3)设二面角E﹣AB﹣C的平面角为θ,求tanθ的值.FEG==..20.(13分)已知⊙C经过点A(2,4)、B(3,5)两点,且圆心C在直线2x﹣y﹣2=0上.(1)求⊙C的方程;(2)若直线y=kx+3与⊙C总有公共点,求实数k的取值范围.由.21.(14分)(2008•湖南)在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东45°且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东45°+θ(其中sinθ=,0°<θ<90°)且与点A相距10海里的位置C.(I)求该船的行驶速度(单位:海里/小时);(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.=AB=40AC=10,=.所以船的行驶速度为..。

江苏省盐城市2013-2014学年高一下学期期终考试 数学(

江苏省盐城市2013-2014学年高一下学期期终考试 数学(

三星高中使用2013/2014学年度第二学期高一年级期终考试数 学 试 题注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:柱体体积公式:V Sh =一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.直线30x y -+=在y 轴上的截距为 ▲ . 2.若角α的终边经过点(3,2)P ,则tan α的值为 ▲ .3.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的体积为 ▲ . 4.已知点)2,1(A ,)5,3(B ,向量()=,6a x ,若a //AB ,则实数x 的值为 ▲ . 5.过点(2,1)A ,且与直线230x y -+=平行的直线方程为 ▲ .6.已知向量a 与b 的夹角为120,且||2a =,1||=b ,则=+|2|b a ▲ . 7.若等比数列{}n a 的前n 项和为n S ,且141,8a a ==,则5S = ▲ . 8.若54)6sin(=+πx ,则=-)3cos(πx ▲ .9.直线+10x =被圆032:22=--+x y x C 截得的弦长为 ▲ . 10.设,m n 是两条不同的直线,βα,是两个不重合的平面,给定下列四个命题: ①若n m ⊥,α⊂n ,则α⊥m ; ②若m α⊥,m β⊂,则βα⊥; ③若α⊥m ,α⊥n ,则n m //; ④若α⊂m ,β⊂n ,βα//,则n m //. 其中真命题的序号为 ▲ .11.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若4=a ,2=b ,31cos =A ,则B sin 的值为 ▲ .12.在平面直角坐标系xOy 中,若圆C 的圆心在第一象限,圆C 与x 轴相交于(1,0)A 、(3,0)B 两点,且与直线01=+-y x 相切,则圆C 的标准方程为 ▲ .13.若数列{}n a 是一个单调递减数列,且2=n a n n λ+,则实数λ的取值范围是 ▲ .14.已知点()5,0A -,()1,3B --,若圆()2220x y r r +=>上恰有两点M ,N ,使得M AB ∆和NAB ∆ 的面积均为5,则r 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在三棱锥P ABC -中,90ABC ∠=,PA ⊥平面ABC ,E ,F 分别为PB ,PC 的中点. (1)求证://EF 平面ABC ; (2)求证:平面AEF ⊥平面PAB .16.(本小题满分14分)已知函数()2sin cos f x x x x +,x R ∈. (1)求函数()f x 的最小正周期; (2)求函数()f x 在区间⎥⎦⎤⎢⎣⎡4,0π上的值域. 17.(本小题满分14分)在四边形ABCD 中,已知9=AB ,6=BC ,PD CP 2=. (1)若四边形ABCD 是矩形,求BP AP ⋅的值;(2)若四边形ABCD 是平行四边形,且6=⋅BP AP ,求AB 与AD 夹角的余弦值.A18.(本小题满分16分)为绘制海底地貌图,测量海底两点C ,D 间的距离,海底探测仪沿水平方向在A ,B 两点进行测量,A ,B ,C ,D 在同一个铅垂平面内. 海底探测仪测得30,BAC ∠=45,DAC ∠=45,ABD ∠=75,DBC ∠=A ,B 两点的距离为3海里.(1)求ABD ∆的面积; (2)求C ,D 之间的距离.19.(本小题满分16分)设n S 是数列{}n a 的前n 项和,且22n n a S An Bn C +=++. (1)当0A B ==,1C =时,求n a ;(2)若数列{}n a 为等差数列,且1A =,2C =-. ①求n a ;②设=2n n n b a ,求数列{}n b 的前n 项和n T .DCBA20.(本小题满分16分)已知圆O 的方程为1322=+y x ,直线:l 00+13x x y y =,设点00(,)A x y . (1)若点A 为()34,,试判断直线l 与圆C 的位置关系;(2)若点A 在圆O 上,且02x =,00y >,过点A 作直线,AM AN 分别交圆O 于,M N 两点,且直线AM 和AN 的斜率互为相反数.①若直线AM 过点O ,求直线MN 的斜率;②试问:不论直线AM 的斜率怎样变化,直线MN 的斜率是否为定值?若是,求出该定值;若不是,说明理由.三星高中使用高一数学试题参考答案一、填空题:每小题5分,共计70分. 1.3 2.233.2π 4.4 5.230x y --= 6.2 7. 31 8.549. 10.②③ 11.3212.2)1()2(22=-+-y x 13.1(,)3-∞- 14.()15,二、解答题:本大题共6小题,共计90分.15.证明:(1)在PBC ∆中,F E , 分别为PC PB ,的中点BC EF //∴………………3分 又⊂BC 平面ABC ,⊄EF 平面ABC //EF ∴平面ABC …………………………………7分(2)由条件,⊥PA 平面ABC ,⊂BC 平面ABCBC PA ⊥∴︒=∠90ABC ,即BC AB ⊥,………………………………………………10分 由//EF BC ,∴EF AB ⊥,EF PA ⊥又A AB PA =⋂,AB PA ,都在平面PAB 内 EF ∴⊥平面PAB又⊂EF 平面AEF ∴平面AEF ⊥平面PAB ………………………………………………14分16.解: (1)由条件可得sin22sin(2)3y x x x π+=+,……………………………4分所以该函数的最小正周期2T ππ==(2)⎥⎦⎤⎢⎣⎡∈4,0πx ,⎥⎦⎤⎢⎣⎡∈+∴65,332πππx ,……………………………………………………8分 当12π=x 时,函数y 取得最大值为2,当4π=x 时,函数y 取得最小值为1∴函数y 的值域为[]2,1…………………………………………………………………………14分17.解:(1)因为四边形ABCD 是矩形,所以0=⋅由PD CP 2=得:DC DP 31=,3232-==.………………………………3分 ∴ BP AP ⋅)()(CP BC DP AD +⋅+=)32()31(-⋅+=229231DC DC AD AD -⋅-=18819236=⨯-=.………………………………7分(2)由题意,DP AD AP +=AB AD DC AD 3131+=+=3232-=+=+=∴ )32()31(AB AD AB AD BP AP -⋅+=⋅221239AD AB AD AB =-⋅-136183AB AD =-⋅-1183AB AD =-⋅………………………………………………10分 又6=⋅BP AP ,∴ 11863AB AD -⋅=, ∴ 36AB AD ⋅=.又θθθcos 54cos 69=⨯⨯==⋅AD AB ∴ 54cos 36θ=,即2cos 3θ=.(利用坐标法求解,同样给分)………………………14分 18.解:(1)如图所示,在ABD ∆中︒=︒+︒=∠+∠=∠754530DAC BAC BAD ︒=∠∴60ADB由正弦定理可得,ABD AD ADB AB ∠=∠sin sin ,260sin 45sin 3=︒︒=AD …………………4分则ABD ∆的面积11sin 22S AB AD BAD =⋅∠==(平方海里)…………8分 (2)︒=︒+︒=∠+∠=∠1207545DBC ABD ABC ,︒=∠=∠30BCA BAC3==∴AB BC 3=∴AC …………………………………………………………………12分在ACD ∆中,由余弦定理得,5cos 2222=∠⋅-+=DAC AD AC AD AC CD即5=CD (海里)答:ABD ∆的面积为433+平方海里,C ,D 间的距离为5海里.……………………16分 19.解:(1)由题意得,21n n a S +=,∴1121(2)n n a S n --+=≥,两式相减,得123n n a a -=,……………………………………………………………………3分 又当1n =时,有131a =,即113a =,∴数列{}n a 为等比数列,∴112=33n n a -⎛⎫⎪⎝⎭.………………………………………………5分(2)①Q 数列{}n a 为等差数列,由通项公式与求和公式,得2211113222(1)()()222222n n d d d da S a n d n a n n a n a d +=+-++-=+++-, Q 1,2A C ==-, ∴12d=,12a d -=-,∴2d =,11a =,∴21n a n =-.………10分②由题()=2=212n n n n b a n -,()121232212n n T n =⋅+⋅++-⋅ (ⅰ) 2n T = ()()23+11232232212n n n n ⋅+⋅++-⋅+-⋅ (ⅱ)……………………13分 (ⅰ)式-(ⅱ)式得:()()()31121+121222222212=2+21212n nn n n T n n -+⋅--=+⋅++⋅--⋅---()()3112221212n n n -+=+⋅---⋅,∴()1232+6n n T n +=-⋅.…………………………………………………………………………16分20.解:(1)当点A 的坐标为()34,时,直线l 的方程为34130x y +-=,圆心到直线l的距离135d r =<=, ∴ 直线l 与圆O 相交.………………………………………………………………………5分 (2)①由点A 在圆O 上,且02x =,00y >,得03y =,即)3,2(A .由题意,AM 是圆的直径,所以点M 的坐标为)3,2(--,且23=AM k . 又直线AM 和AN 的斜率互为相反数,所以23-=AN k …………………………………7分 直线AN 的方程为623+-=x y ,由⎪⎩⎪⎨⎧=++-=.13,62322y x x y 得:13)236(22=-+x x , 解得:2=x 或1346=x ,所以)139,1346(N∴ 直线MN 的斜率为3213721348213463139==++=MNk .…………………………………………10分 ②记直线AM 的斜率为k ,则直线AM 的方程为:32y kx k =+-. 将32y kx k =+-代入圆O 的方程得:22(12)33kx x k +-+=, 化简得:22232(1)2(32)(130)k x k k x k ++-+-=-,∵ 2是方程的一个根, ∴ 2232)2(131M k x k -=+-, ∴226221M x k k k --+=, 由题意知:k k AN-=,同理可得,226221N x k k k +-+=,…………………………………13分 ∴ 32(32)4M N M N MN MN M N M N M Ny y kx k kx k x x k k x x x x x x -+---+++-===---, ∴ 2222222228421222362621116262111MN k k k k k k k k k k k k k k k k k k --+-+++---+-=⋅=⋅=--+-+++, ∴ 不论直线AM 的斜率怎样变化,直线MN 的斜率总为定值23.…………………… 16分。

江苏省盐城中学2014-2015学年高一上学期期中考试数学(中校区)Word版含答案

江苏省盐城中学2014-2015学年高一上学期期中考试数学(中校区)Word版含答案

江苏省盐城中学2014—2015学年度第一学期期中考试高一年级数学试题(2014.11)命题人:还国兵 翟正平 张晓波 审核人:徐瑢试卷说明:本场考试时间120分钟,总分160分。

一、 填空题(本大题共14小题,每小题5分,计70分)1.设全集}5,4,3,2,1{=U ,集合}4,2,1{=M ,则集合=M C U }5,3{2.设()1f x kx =+,若()23f =,则()3f =.43.的结果是 .3π-4.已知幂函数的图象经过点(2,32),则它的解析式是 .5y x =5.函数的定义域为 {x|x ≥1}6.已知x x x f 2)1(2-=-,则(2)f = 3 .7.三个数 3.0222,3.0log ,3.0===c b a 按由小到大的顺序为 c a b <<8.设()()()⎩⎨⎧<-≥+=1311x x x x x f ,则()()1-f f 的值为 5 9.已知定义在R 上的奇函数()f x ,当0x >时,2)(x x f =,则=-)1(f _____________.1-10.设632==b a ,则=+ba 11 1 . 11.设定义在R 上的奇函数()x f 在()∞+,0上为增函数,且()10f =,则不等式()0f x <的解集为 ()(),10,1-∞-⋃12.若0x 是函数x x f x32)(+=的零点,且()0,1,x a a a Z ∈+∈,则a = 1- 13.函数224y x x =-+在闭区间[]0,m 上有最大值4,最小值3,则m 的取值范围是 []1,214.设()f x 是定义在R 上的奇函数,当0x ≤时,2(),f x x = 若对任意的[,2],x t t ∈+ 不等式()9()f x f x t ≤+恒成立,则实数t 的最大值是 45- 二、 解答题(本大题共6小题,计90分. 请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.已知集合A ={}|16x x <<, B={}|210x x <<, C={}|x x a <.(1)求 (C )A R ∩B ;(2)若A C ⊆,求a 的取值范围.解(1) (C )A R ∩B =[)6,10(2) a ≥6 (缺少等号扣2分)16.计算:(1)01231)87(3)71(027.0-+------; (2)51lg 5lg 316lg 32log 3-++. 解:(1)原式=4513149310-=+-- (2)原式=6425lg 42lg 425lg 5lg 32lg 42=+=++=+++17.如图所示,动物园要建造一面靠墙的.....2.间面积相同的......矩形熊猫居室,如果可供建造围墙的材料总长是30m ,所建造的每间..熊猫居室宽为x (单位:m ),每间..熊猫居室的面积为y ; (1)将y 表示为x 的函数,并写出x 的取值范围;(2)宽x 为多少m 时,每间熊猫居室最大?每间熊猫居室的最大面积是多少?(1))100(15232<<+-=x x x y (2)5=x m 时最大面积是25.37cm19.已知二次函数()f x 的最小值为1,(0)(2)3f f ==,()()g x f x ax =+ ()a R ∈ .(1)求()f x 的解析式;(2)若函数()g x 在[]1,1-上为单调函数,求实数a 的取值范围;(3)若在区间[1,1]-上,()g x 图象上每个点都在直线26y x =+的下方,求实数a 的取值范围.解:(1)2()243f x x x =-+(2)2()2(4)3g x x a x =+-+,对称轴414a -≤-或414a -≥,可得0a ≤或8a ≥; (3)2(1)0()26()2(6)30(1)0h g x x h x x a x h -<⎧<+⇒=+--<⇒⎨<⎩ 解得57a << .20.函数()f x 的定义域为),0(+∞且对一切0,0>>y x ,都有)()()(y f x f yxf -=, 当1>x 时,总有()0f x >.(1)求(1)f 的值;(2)判断()f x 的单调性并证明;(3)若(4)6f =,解不等式(1)(2)3f x f x -+-≤.解:(1)令0)1()1()1()11()1(,1=∴-====f f f f f y x(2)令,)()()(,0121221 x x f x f x f x x =-<< 因为∴>,112x x )(12x x f >0即)()(12x f x f > )(x f ∴是),0(+∞上的增函数; (3)由)()()(y f x f y xf -=可得(2)3f =,原不等式等价于2(32)(2)f x x f -+≤21020322x x x x ⎧->⎪->⎨⎪-+≤⎩解得 23x <≤.。

江苏省盐城中学2013-2014学年高一上学期期末考试化学试题

江苏省盐城中学2013-2014学年高一上学期期末考试化学试题

试卷说明:本场考试100分钟。

可能用到的相对原子质量:H:1 C:12 O:16 Na:23 Mg:24 Al:27 S:32Cl:35.5 Fe:56 Cu:64 Zn:65 Ag:108选择题(共76分)本题包括19小题,每小题4分,共计76分。

每小题只有一个....选项符合题意。

1.化学与社会、生产、生活密切相关。

下列说法正确的是A.加快化石燃料的开采和使用B.NaHCO3可用于治疗胃酸过多C.明矾可用于水的杀菌消毒D.从海水中提取物质都必须通过化学反应才能实现2. 下列物质中属于强电解质的是A.NH3B.乙醇C.Cu D.NaCl3.通过溶解、过滤、蒸发等操作,可将下列各组混合物分离的是A.硝酸钠氢氧化钠B.氧化铜二氧化锰C.氯化钾碳酸钙D.硫酸铜氢氧化钠4.下列能达到实验目的的是A.分离水和CCl4B.干燥Cl2C.转移溶液D.蒸发食盐水5.设N A表示阿伏加德罗常数的值,下列说法正确的是A.5.6 g Fe和足量的盐酸完全反应失去电子数为0.3 N AB.22.4L SO2含有N A个SO2分子C.1.6g CH4所含的电子数为N AD.标况下,4.48L的水中含有H2O分子的数目为0.2N A6.能证明SO2具有漂白性的是A.品红溶液中通入SO2气体,溶液红色消失B.溴水中通入SO2气体后,溶液褪色C.滴入酚酞的NaOH溶液中通入SO2气体,红色消失D.酸性KMnO4溶液中通入SO2气体后,溶液褪色7.足量的两份铝粉分别与等体积的盐酸和NaOH 溶液反应,同温同压下产生的气体体积比为1:1,则盐酸和NaOH 溶液的物质的量浓度之比为A .2:3B .3:1C .1:2D .1:19.下列离子方程式书写正确的是A .硫酸铝与氨水反应:Al 3++3OH -=Al(OH)3 ↓ B .碳酸钙溶于醋酸:CaCO 3+2H + =Ca 2++H 2O+CO 2 ↑C .氯气跟水反应:Cl 2 + H 2O = 2H ++ Cl -+ClO -D .NaHCO 3溶液中加入盐酸:H ++HCO 3- = CO 2↑+H 2O 10.下列对有关实验事实的解释正确的是A .向某溶液中滴加氯水后,再加入KSCN 溶液,溶液呈红色,说明原溶液中含有Fe 2+B .浓硫酸和浓盐酸长期暴露在空气中浓度均降低,原理不相同C .向某溶液中加入氯化钡溶液,生成白色沉淀,再加入稀盐酸,沉淀不溶解,则原溶液一定含有SO 42D .常温下,浓硫酸可以用铁质容器储运,说明铁与冷的浓硫酸不反应11.配制一定物质的量浓度的NaOH 溶液时,造成所配溶液浓度偏低的原因是A .未洗涤烧杯和玻璃棒B .转移溶液前溶液未冷却至室温C .容量瓶未干燥D .定容时俯视液面 12.在无色强酸性溶液中,下列各组离子一定能大量共存的是 A .Na +、K +、Cl -、SO 42-B .Cu 2+、K +、SO 42-、NO 3-C .K + 、NH 4+、SO 42-、CO 32-D .Ba 2+、Na +、Cl -、SO 42-13.下列化学反应的产物与反应物的量无关的是A .AlCl 3与NaOHB .C 与O 2 C .CO 2与NaOHD .Fe 与Cl 214.下列各种应用中,利用了硅元素的还原性的是A .用硅制造集成电路、晶体管等半导体器件B .在野外,用硅、石灰、烧碱的混合物制取氢气:Si + Ca (OH)2 + 2NaOH = Na 2SiO 3 + CaO +2H 2↑C .用HF 酸刻蚀玻璃:SiO 2+4HF=SiF 4↑+2H 2OD .单质硅的制备: SiO 2 + 2C Si + 2CO ↑15.在离子RO 42—中,共有x 个核外电子,R 的质量数为A ,则R 原子核内含有的中子数目为高温A.A-x+48 B.A-x+24 C.A-x+34 D.A-x-2416.在含有FeCl3、FeCl2、AlCl3、NaCl的溶液中,加入足量的NaOH溶液,在空气中充分搅拌反应后再加入过量的稀盐酸,溶液中离子数目减少的是A.Na+B.Fe3+C.Al3+D.Fe2+17.下列说法正确的是A.金属在反应中只能作还原剂,非金属在反应中只能作氧化剂B.氧化剂在反应中失去电子,还原剂在反应中得到电子C.氧化剂具有氧化性,还原剂具有还原性D.阳离子只有氧化性,阴离子只有还原性18.有8g Na2O2、Na2O、Na2CO3、NaOH的固体混合物,与400g质量分数为3.65%的盐酸恰好反应,蒸干溶液,最终得固体质量为A.16g B.23.4g C.31g D.无法计算19.向一定量的Cu、Fe2O3的混合物中加入100 mL 1 mol·L-1的盐酸,恰好使混合物完全溶解,所得溶液中不含Fe3+,若用过量的CO在高温下还原相同质量的原混合物,固体减少的质量为A.3.2 g B.2.4 g C.1.6 g D.0.8 g非选择题(共74分)20.(12分)某待测液中可能含有大量的Mg2+、A13+、Cu2+、K+、H+阳离子中的一种或几种,现通过如下实验进行检验:(1)取少量待测液,仔细观察,呈无色;(2)向上述待测液中滴加NaOH溶液,立即有白色沉淀生成,NaOH溶液过量后沉淀部分溶解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一上学期期末考试数学试题
一、填空题(本大题共14小题,每小题5分,计70分)
1.0600cos 的值是 .
2.化简=--+CD AC BD AB .
3.函数()21log 3y x x
=++的定义域是 . 4.函数tan(
)23y x ππ=-的最小正周期是 . 5.若02
<<-απ,则点)cos ,(tan αα位于第 象限. 6.函数()1cos (),f x x x R =-∈取最大值时x 的值是 .
7.若函数-=3)(x x f 2)2
1
(-x 的零点),)(1,(0Z n n n x ∈+∈则=n _________. 8.函数(5)||y x x =--的递增区间是 .
9.为了得到函数-
=x y 2sin(3π)的图象,只需把函数sin 2y x =的图象向右平移个___长度单位. 10.若1,2a b ==,且()
a b a -⊥,则向量a 与b 的夹角为 . 11.已知扇形的周长为8cm ,则该扇形的面积S 的最大值为 .
12.设,0>ϖ若函数x x f ϖsin 2)(=在]4
,3[ππ-上单调递增,则ϖ的取值范围是________. 13.如图,在△ABC 中,,1,2,==⊥AD BD BC AB AD 则=⋅AD AC ________.
14.在直角坐标系中, 如果两点(,),(,)A a b B a b --在函数)(x f y =的图象上,那么称[],A B 为函数()f x 的一组关于原点的中心对称点([],A B 与[],B A 看作一组).函数4sin ,0()2log (1),0
x x g x x x π⎧<⎪=⎨⎪+>⎩关于原点的中心对称点的组数为

B D
C A
二、解答题(本大题共6小题,计80分. 请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)
15.A 、B 是单位圆O 上的点,点A 是单位圆与x 轴正半轴的交点,点B 在第二象限.记AOB θ∠=且
4sin 5
θ=
. (1)求B 点坐标; (2)求sin()2sin()22cos()
ππθθπθ++--的值.
16.平面内给定三个向量()()()3,2,1,2,4,1a b c ==-=.
(1)若()()2a kc b a +⊥-,求实数k ;
(2)若向量d 满足//d c ,且34d =,求向量d .
17.已知函数2()2sin 1f x x x θ=+⋅-(θ为常数),31[,]22
x ∈-. (1)若()f x 在31[,]22
x ∈-上是单调增函数,求θ的取值范围; (2)当θ∈0,
2π⎡⎤⎢⎥⎣⎦
时,求()f x 的最小值.
18. 已知OAB ∆的顶点坐标为(0,0)O ,(2,9)A ,(6,3)B -, 点P 的横坐标为14,且OP PB λ=,点Q 是边AB 上一点,且0OQ AP ⋅=.
(1)求实数λ的值与点P 的坐标;
(2)求点Q 的坐标;
(3)若R 为线段OQ (含端点)上的一个动点,试求()RO RA RB ⋅+的取值范围.
19.已知函数()sin()f x A x h ωϕ=++(0,0,)A ωϕπ>><.在一个周期内,当12x π=
时,y 取得最大值6,当712
x π=时,y 取得最小值0. (1)求函数()f x 的解析式;
(2)求函数()f x 的单调递增区间与对称中心坐标;
(3)当,126x ππ⎡⎤∈-
⎢⎥⎣⎦
时,函数()1y mf x =-的图像与x 轴有交点,求实数m 的取值范围.
20. 定义在D 上的函数)(x f ,如果满足:对任意D x ∈,存在常数0≥M ,都有M x f ≤)(成立,则称)(x f 是D 上的有界函数,其中M 称为函数)(x f 的一个上界. 已知函数x x a x f ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=41211)(,1
1log )(21--=x ax x g . (1)若函数)(x g 为奇函数,求实数a 的值;
(2)在(1)的条件下,求函数)(x g 在区间]3,3
5[上的所有上界构成的集合;
(3)若函数)(x f 在),0[+∞上是以3为上界的有界函数,求实数a 的取值范围.
江苏省盐城中学2013—2014学年度第一学期
期终考试数学答题纸
二、解答题
15、(12分)
解:(1)34(,)55B - (2)53-
16、(12分)
解:(1)1118
k =- (2)(42,2)d =或(42,2)--
17、(12分)
解:(1)22,2,33k k k Z ππθππ⎡⎤∈++∈⎢
⎥⎣⎦
; (2)min 213sin ,,432()sin 1,0,3f x ππθθπθθ⎧⎡⎤--∈⎪⎢⎥⎪⎣⎦=⎨⎡⎫⎪--∈⎪⎢⎪⎣⎭⎩
.
(3)因为R 为线段OQ 上的一个动点,故设(4,3)R t t ,且01t ≤≤,则(4,3)RO t t =--,(24,93)RA t t =--,(64,33)RB t t =---,+(88,66)RA RB t t =--,则()4(88)3(66)RO RA RB t t t t ⋅+=----25050(01)t t t =-≤≤,故()RO RA RB ⋅+的取值范围为
25[,0]2
-
.
19、(14分)
解:(1)()3sin(2)33f x x π=+
+; (2)递增区间51,,1212k k k Z ππππ⎡⎤-
++∈⎢⎥⎣⎦;对称中心(,3),32k k Z ππ+∈; (3)
91(),6,()2f x f x m ⎡⎤∈=⎢⎥⎣⎦,所以12,69m ⎡⎤∈⎢⎥⎣⎦
.
20、(16分)
解:(1)因为函数)(x g 为奇函数,
所以)()(x g x g =-,即1
1log 11log 2121
---=--+x ax x ax , 即
ax
x x ax --=--+1111,得1±=a ,而当1=a 时不合题意,故1-=a . (2)由(1)得:11log )(21-+=x x x g , 下面证明函数11log )(21
-+=x x x g 在区间(1,)+∞上单调递增, 证明略. 所以函数11log )(21
-+=x x x g 在区间]3,35[上单调递增, 所以函数11log )(2
1-+=x x x g 在区间]3,35[上的值域为]1,2[--, 所以2)(≤x g ,故函数)(x g 在区间]3,3
5[上的所有上界构成集合为),2[+∞. (3)由题意知,3)(≤x f 在),0[+∞上恒成立.
3)(3≤≤-x f ,x
x x a ⎪⎭
⎫ ⎝⎛-≤⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛--41221414. x x x x a ⎪⎭
⎫ ⎝⎛-⋅≤≤⎪⎭⎫ ⎝⎛-⋅-∴21222124在),0[+∞上恒成立. min max 21222124⎥⎥⎦⎤⎢⎢⎣
⎡⎪⎭⎫ ⎝⎛-⋅≤≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⋅-∴x x x x a 设t x =2,t t t h 14)(--=,t
t t p 12)(-=,由),0[+∞∈x 得 1≥t 设0)14)(()()(,12121212121>--=-<≤t t t t t t t h t h t t , ()()12121212
21()()0t t t t p t p t t t -+-=<,
所以)(t h 在),1[+∞上递减,)(t p 在),1[+∞上递增,
)(t h 在),1[+∞上的最大值为5)1(-=h ,)(t p 在),1[+∞上的最小值为1)1(=p . 所以实数a 的取值范围为]1,5[-.。

相关文档
最新文档