陕西省2019中考数学复习自我测试:第2章+方程与不等式

合集下载

中考数学总复习《方程与不等式》专项检测卷(带答案)

中考数学总复习《方程与不等式》专项检测卷(带答案)

中考数学总复习《方程与不等式》专项检测卷(带答案)学校:___________姓名:___________班级:___________考号:___________一、解一元一次方程 1.解方程:(1)3(x +1)+2(x −4)=10 (2)x +x+35=2−1−x 22.定义:如果两个一元一次方程的解之和为1,我们就称这两个方程互为“阳光方程”.例如:2x =2的解为x =1,x +1=1的解为x =0,所以这两个方程互为“阳光方程”. (1)若关于x 的一元一次方程x +2m =0与3x −2=−x 是“阳光方程”,则m =______. (2)已知两个一元一次方程互为“阳光方程”,且这两个“阳光方程”的解的差为5.若其中一个方程的解为x =k ,求k 的值.(3)①已知关于x 的一元一次方程x2023+a =2023x 的解是x =2024,请写出解是y =2023的关于y 的一元一次方程:()2023x +2023=______−a .(只需要补充含有y 的代数式). ②若关于x 的一元一次方程12023x −1=0和12023x −5=2x +a 互为“阳光方程”,则关于y的一元一次方程y2023−9−a =2y −22023的解为______.二、解二元一次方程组3.已知y =kx +b ,当x =0时y =1;当x =1时y =4,求k 和b 的值.4.关于x ,y 的二元一次方程组{3x +y =1+3a x +3y =1−a 的解满足不等式x +y >−2,求a 的取值范围.5.已知关于x ,y 的方程组{2x −3y =3ax +2by =4 和{2ax +3by =33x +2y =11的解相同,求(3a +b)2024的值.6.阅读探索:知识累计:解方程组{(a −1)+2(b+2)=62(a −1)+(b+2)=6.解:设a −1=x,b +2=y ,原方程组可变为{x+2y =62x+y =6.解方程组得:{x =2y =2 ,即{a −1=2b+2=2 ,解得{a =3b =0.所以此种解方程组的方法叫换元法.(1)拓展提高:运用上述方法解下列方程组:{(a3−1)+2(b5+2)=42(a3−1)+(b5+2)=5;(2)能力运用:已知关于x,y的方程组{a1x+b1y=c1a2x+b2y=c2的解为{x=5y=3,求出关于m,n的方程组{a1(m+3)+b1(n−2)=c1a2(m+3)+b2(n−2)=c2的解.三、解分式方程7.计算:(1)1x +2x−1=2x2−x;(2)2x+93x−9=4x−7x−3−1.8.关于x的分式方程:mxx2−4−2x−2=3x+2,若这个关于x的分式方程会产生增根,试求m的值.9.若数a使关于x的分式方程x+2x−1+a1−x=3的解为非负数,求a的取值范围.10.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+bk,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k之称心点”.例如:P(1,4)的“2之称心点”为P′(1+42,2×1+4),即P′(3,6).(1)①点P(−1,−2)的“2之称心点”P′的坐标为________;②若点P的“k之称心点” P′的坐标为(3,3),请写出一个符合条件的点P的坐标______;(2)若点P在y轴的正半轴上,点P的“k之称心点”为P′点,且△OPP′为等腰直角三角形,则k的值为______;(3)在(2)的条件下,若关于x的分式方程2x+5x−3+2−mx3−x=k无解,求m的值.11.关于x的方程:x+−1x =c+−1c的解为x=c,x=−1c;x+1x =c+1c的解为x=c或x=1c;x+2x =c+2c的解为x=c,x=2c;x+3x =c+3c的解为x=c,x=3c;…根据材料解决下列问题:(1)方程x+1x =52的解是___________;(2)猜想方程x+mx =c+mc(m≠0)的解,并将所得的解代入方程中检验;(3)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程右边的形式与左边完全相同,只有把其中的未知数换成某个常数,那么这样的方程可以直接得解.请用这个结论解关于x的方程:x+2x−1=a+2a−1.四、解一元二次方程12.解下列一元二次方程:(1)−2x2+6x−3=0(2)(2x+3)2=(3x+2)2.13.关于x的一元二次方程x2−(2k−1)x+k2−2=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(m−1)x2+x+m−3=0与方程x2−(2k−1)x+k2−2=0有一个相同的根,求此时m的值.14.关于x的一元二次方程a(1−x2)−2√2bx+c(1+x2)=0中a b c是Rt△ABC 的三条边其中∠C=90°.(1)求证此方程有两个不相等的实数根;(2)若方程的两个根是x1x2且x12+x22=12求a:b:c.15.已知关于x的一元二次方程x2+(m−4)x=4m.(1)证明:无论m取何值此方程必有实数根;(2)若Rt△ABC的两直角边AC BC的长恰好是该方程的两个实数根且斜边AB的长为5 求m的值;(3)若等腰三角形ABC的一边AB长为6 另两边长BC,AC恰好是这个方程的两个根求△ABC的周长.16.已知关于x的方程x2−2(k−3)x+k2−4k−1=0.(1)若这个方程有实数根求k的取值范围;(2)若这个方程有一个根为1 求k的值;(3)若以方程x2−2(k−3)x+k2−4k−1=0的两个根为横坐标、纵坐标的点恰在反比例函数y=mx的图象上求满足条件的m的最小值.五、解不等式与不等式组17.解不等式x+13−x−16≥x−12并在数轴上表示其解集.18.解不等式组{4x−3<2(x+2)①52x+3≤72x+6②并把解集在数轴上表示出来.19.已知关于x,y 的方程组{x −2y =m 2x +3y =2m +4的解满足不等式组{3x +y ≤0x +5y >0 求满足条件的m 的整数值.20.先阅读下面是的解题过程 然后回答下列问题. 例:解绝对值方程:|3x |=1.解:分情况讨论:①当x ≥0时原方程可化为3x =1 解得x =13; ②当x <0时原方程可化为−3x =1 解得x =−13.所以原方程的解为x =13或x =−13.根据材料 解下列绝对值方程: (1)理解应用:|2x +1|=3;(2)拓展应用:不等式|x −1|>4的解集为______.参考答案1.(1)解:3(x +1)+2(x −4)=10 去括号得:3x +3+2x −8=10 移项得:3x +2x =10+8−3 合并同类项得:5x =15 系数化为1得:x =3; (2)解;x +x+35=2−1−x 2去分母得:10x +2(x +3)=20−5(1−x ) 去括号得:10x +2x +6=20−5+5x 移项得:10x +2x −5x =20−5−6 合并同类项得;7x =9 系数化为1得:x =97.2.(1)解x +2m =0 得x =−2m ; 解3x −2=−x 得x =12;∵关于x 的一元一次方程x +2m =0与3x −2=−x 是“阳光方程”∵−2m +12=1解得m =−14;(2)∵“阳光方程”的一个解为x =k 则另一个解为1−k ∵这两个“阳光方程”的解的差为5 则k −(1−k )=5或(1−k )−k =5 解得k =3或k =−2. 故k 的值为3或−2;(3)①∵关于x 的一元一次方程x 2023+a =2023x 的解是x =2024∵x2023+2023×(−x )=−a 的解是x =2024∵y =2023 则y +1=2024=x则y+12023+2023×[−(y +1)]=−a 的解是y =2023 即:y+12023+2023×(−y −1)=−a 的解是y =2023故答案为:y +1 −y −1; ②方程12023x −1=0的解为:x =2023∵关于x 方程12023x −1=0与12023x −5=2x +a 互为“阳光方程”∵方程12023x −5=2x +a 的解为:x =1−2023=−2022.∵关于y 的方程y2023−9−a =2y −22023就是:y+22023−5=2(y +2)+a∵y +2=−2022 ∵y =−2024. ∵关于y 的方程y 2023−9−a =2y −22023的解为:y =−2024.故答案为:y =−2024.3.解:∵在y =kx +b 当x =0时y =1;当x =1时y =4 ∵{k +b =4b =1∵{k =3b =1. 4.解:将两方程相加可得4x +4y =2+2a∴x +y =a+12由x +y >−2可得a+12>−2解得a >−5所以a 的取值范围为:a >−5.5.解:由题意可得:方程组{2x −3y =33x +2y =11 和方程组{ax +2by =42ax +3by =3的解相同解方程组{2x −3y =33x +2y =11可得:{x =3y =1将{x =3y =1 代入{ax +2by =42ax +3by =3 可得:{3a +2b =46a +3b =3解得:{a =−2b =5将{a =−2b =5 代入(3a +b )2024可得 原式=(−6+5)2024=1即(3a +b )2024的值1.6.(1)解:设a3−1=x b5+2=y 原方程组可变为:{x +2y =42x +y =5解得:{x =2y =1;即{a 3−1=2b5+2=1解得:{a =9b =−5;(2)设{m +3=x n −2=y由题意 得{m +3=5n −2=3解得:{m =2n =5.7.(1)解:1x +2x−1=2x 2−xx −1+2x =2解得:x =1检验:当x =1 x −1=0 则x =1是原方程的增根 所以原方程无解.(2)解:2x+93x−9=4x−7x−3−12x+9=3(4x−7)−(3x−9)解得:x=3检验:当x=3x−3=0则x=3是原方程的增根所以原方程无解.8.解:mxx2−4−2x−2=3x+2方程两边同时乘以(x+2)(x−2)去分母得去括号得移项得合并同类项得(m−5)x=−2∵关于x的分式方程会产生增根即(x+2)(x−2)=0∵x=±2当x=−2时−2(m−5)=−2解得m=6;当x=2时2(m−5)=−2解得m=4;综上所述m的值为6或4.9.解:x+2x−1−ax−1=3去分母得:x+2−a=3(x−1)即x−3x=a−2−3解得:x=5−a2∵关于x的分式方程x+2x−1+a1−x=3的解为非负数∴5−a2≥0且5−a2≠1解得:a≤5且a≠3.10.(1)解:①当a=−1b=−2k=2时−1+−22=−22×(−1)+(−2)=−4∴点P(−1,−2)的“2之称心点”P′的坐标为(−2,−4)故答案为:(−2,−4);②∵点P的“k之称心点”P′的坐标为(3,3)∴a+bk=3ka+b=3解得k=1a+b=3当a=1时b=2∴符合条件的点P的坐标可以是(1,2)故答案为:(1,2);(2)解:∵点P在y轴的正半轴上∴a=0b>0.∴点P的坐标为(0,b)∵点P的“k之称心点”为P′点∴点P′的坐标为(bk,b)∴PP′⊥OP ∵△OPP′为等腰直角三角形∴OP=PP′∴bk=±b∵b>0∴k=±1.故答案为:±1;(3)解:当k=1时去分母整理得:(m+1)x=−6∵原方程无解∴①m+1=0即m=−1②x−3=0即x=3则m=−3;当k=−1时去分母整理得:(m+3)x=0∵原方程无解∴①m=−3②x=3则m=−3;综上所述m=−1或m=−3.11.(1)解:由x+1x =52可得x+1x=2+12∵该方程的解为:x=2或x=12;(2)方程x+mx =c+mc(m≠0)的解为:x=c或x=mc检验:当x=c时左边=c+mc=右边故x=c是方程的解当x=mc 时左边=mc+m mc=mc+c=右边故x=mc也是方程的解;(3)原方程x+2x−1=a+2a−1可化为:x−1+2x−1=a−1+2a−1所以x−1=a−1或x−1=2a−1解得:x=a或x=a+1a−1经检验x=a或x=a+1a−1是原方程的解故答案为:x=a或x=a+1a−1.12.(1)解:∵−2x2+6x−3=0∵a=−2,b=6,c=−3∵Δ=62−4×(−2)×(−3)=12>0∵x=−b±√b2−4ac2a =−6±2√3−4解得x1=3+√32,x2=3−√32;(2)解:∵(2x+3)2=(3x+2)2∵(2x+3)2−(3x+2)2=0∵(2x+3+3x+2)(2x+3−3x−2)=0即(5x+5)(1−x)=0∵5x+5=0或1−x=0解得x1=−1,x2=1.13.(1)解:由题意可得Δ=[−(2k−1)]2−4×1×(k2−2)=−4k+9≥0∵k≤94;(2)解:∵k≤94k是符合条件的最大整数∵k=2∵方程x2−(2k−1)x+k2−2=0为x2−3x+2=0解得x1=1x2=2∵一元二次方程(m−1)x2+x+m−3=0与方程x2−(2k−1)x+k2−2=0有一个相同的根当x=1时m−1+1+m−3=0解得m=32;当x=2时4(m−1)+2+m−3=0解得m=1∵m−1≠0∵m≠1∵m=1舍去;∵m=32.14.(1)证明:化简一元二次方程得(c−a)x2−2√2bx+a+c=0Δ=(−2√2b)2−4(c−a)(a+c)=4(2b2+a2−c2)∵a b c是Rt△ABC的三条边∴c2=a2+b2b>0∴Δ=4[(2b2+a2−(a2+b2)]=4b2>0∴此方程有两个不相等的实数根;(2)∵方程的两个根是x1x2∴x1+x2=2√2bc−a x1x2=a+cc−a∵x12+x22=12∴(x1+x2)2−2x1x2=12即(2√2bc−a )2−2(a+c)c−a=12∴8b2(c−a)2−2(a+c)c−a=12∵b2=c2−a2∴8(c2−a2)(c−a)2−2(a+c)c−a=12化简得c=3a∴b2=(3a)2−a2=8a2∴b=2√2a∴a:b:c=1:2√2:3.15.(1)证明:x2+(m−4)x−4m=0a=1b=m−4c=−4mΔ=b2−4ac=(m−4)2−4×1×(−4m)=(m−4)2+16m=m2−8m+16+16m=m2+8m+16=(m+4)2≥0∵方程必有实数根.(2)解:设AC=x1BC=x2由根与系数的关系得:x1+x2=−ba =4−m x1x2=ca=−4m.由Rt△ABC斜边AB的长为5 结合勾股定理得:x12+x22=52∵x12+x22=(x1+x2)−2x1x2=(4−m)2−2×(−4m)=16−8m+m2+8m=m2+16=25∵m2=9∵m1=3m2=−3.当m=3时x1=4x2=−3;当m=−3时x1=3x2=4.∵x1>0x2>0∵m=−3.(3)解:①若AB为底边则BC=AC即方程由两个相等的实数根即Δ=(m+4)2=0解得:m=−4把m=−4代入方程得:x2−8x+16=0解得:x1=x2=4即BC=AC=4.∵C△ABC=AB+BC+AC=6+4+4=14.②若AB为腰则BC=6或AC=6把x=6代入方程得:36+6(m−4)=4m解得:m=−6当m=−6时方程为:x2−10x+24=0解得:x1=4x2=6.∵C△ABC=AB+BC+AC=6+6+4=16.综上:△ABC的周长为14或16.16.(1)解:由题意得:Δ=[−2(k−3)]2−4×(k2−4k−1)≥0化简得:−2k+10≥0解得:k≤5;(2)解:将x=1代入方程x2−2(k−3)x+k2−4k−1=0得:1−2(k−3)+k2−4k−1=0整理得:k2−6k+6=0解得:k1=3−√3,k2=3+√3;(3)解:设方程x2−2(k−3)x+k2−4k−1=0的两个根为x1,x2∴x1x2=k2−4k−1∵以x1,x2为横坐标、纵坐标的点恰在反比例函数y=mx的图象上∴x1x2=m∴m=k2−4k−1=(k−2)2−5∴当k=2时m取得最小值−5.17.解:x+13−x−16≥x−12解:去分母得:2(x+1)−(x−1)≥3(x−1)去括号得:2x+2−x+1≥3x−3移项合并同类项得:−2x≥−6同时除以−2得:x≤3.故而求得此不等式的解集为:x≤3.在数轴上表示此解集如下图:18.解:{4x−3<2(x+2)①52x+3≤72x+6②解①得x<72解②得x≥−3∵−3≤x<72.如图19.解:解方程组{x −2y =m,①2x +3y =2m +4,② ①+② 得3x +y =3m +4. ②-① 得x +5y =m +4. 由{3x +y ≤0,x +5y >0, 得{3m +4≤0,m +4>0,解不等式组 得−4<m ≤−43 ∴满足条件的m 的整数值为−3,−2.20.(1)解:分情况讨论:①当2x +1≥0时原方程可化为2x +1=3 解得x =1; ②当2x +1<0时原方程可化为:−2x −1=3解得:x =−2所以原方程的解为x =1或x =−2;(2)解:分情况讨论:①当x −1>4时解得:x >5;②当x −1<−4时解得:x <−3所以不等式解集为x >5或x <−3.。

中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

则可列方程组为
( A)
A.yx++2231xy==5500,B.xy--1223yx==5500,C.2xx++23yy==5500,D.2xx--23yy==5500,
10.(2021·成都第 26 题 8 分)为改善城市人居环境,《成都市生活垃圾 管理条例》(以下简称《条例》)于 2021 年 3 月 1 日起正式施行.某区域 原来每天需要处理生活垃圾 920 吨,刚好被 12 个 A 型和 10 个 B 型预处 置点位进行初筛、压缩等处理.已知一个 A 型点位比一个 B 型点位每天 多处理 7 吨生活垃圾. (1)求每个 B 型点位每天处理生活垃圾的吨数;
x=1,则 a+m 的值为
( C)
A.9 B.8 C.5 D.4
x=1 6.(2021·凉山州第 14 题 4 分)已知y=3,是方程 ax+y=2 的解,则 a 的值为__--11__. 7.(2020·泸州第 14 题 3 分)若 xa+1y3 与12x4y3 是同类项,则 a 的值是__33__.
3.(RJ 七下 P111 复习题 T7 改编)用 1 块 A 型钢板可制成 4 件甲种产品和 1 件乙种产品.用 1 块 B 型钢板可制成 3 件甲种产品和 2 件乙种产品;要 生产甲种产品 37 件,乙种产品 18 件,则恰好需用 A,B 两种型号的钢板 共 1 111 块.
4.(RJ 七下 P106 习题 T3 改编)一个两位数,十位数字比个位数字大 3, 若将十位数字和个位数交换位置,所得的新两位数比原两位数的13多 15, 则这个两位数是 6 633.
∵w 随 m 的增大而减小,∴费用越少,m 越大. 故方案③费用最少.
重难点 1:从实际问题中抽象一次方程(组)
我国古代数学名著《孙子算经》中记载:“今有木,不知长短.引绳

中考数学复习第二章方程组与不等式组讲义

中考数学复习第二章方程组与不等式组讲义

第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。

(系数不为0)的整式方程。

形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。

解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。

一般形式: ax+by=c ,有无数组解。

2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。

⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。

【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。

2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用

13.(2020·泰安)中国是最早发现并利用茶的国家,形成了具有独特魅 力的茶文化.2020 年 5 月 21 日以“茶和世界 共品共享”为主题的第一届 国际茶日在中国召开.某茶店用 4 000 元购进了 A 种茶叶若干盒,用 8 400 元购进 B 种茶叶若干盒,所购 B 种茶叶比 A 种茶叶多 10 盒,且 B 种茶叶 每盒进价是 A 种茶叶每盒进价的 1.4 倍.
D.无解
( A)
3. (2021·巴中)关于 x 的分式方程2m-+xx-3=0 有解,则实数 m 应满足的
条件是
( B)
A.m=-2 B.m≠-2 C.m=2 D.m≠2
4. (2021·鄂尔多斯)2020 年疫情防控期间,鄂尔多斯市某电信公司为了
满足全体员工的需要,花 1 万元购买了一批口罩,随着 2021 年疫情的缓
D.10 x000-100=6x-00100
5.(2020·自贡)某工程队承接了 80 万平方米的荒山绿化任务,为了迎
接雨季的到来,实际工作时每天的工作效率比原计划提高了 35%,结果提
前 40 天完成了这一任务.设实际工作时每天绿化的面积为 x 万平方米,
则下面所列方程中正确的是
( A)
A.80(1+x 35%)-8x0=40
10.(2020·扬州)如图,某公司会计欲查询乙商品的进价,发现进货单
已被墨水污染.
进货单
商品
进价(元/件)
数量(件)
总金额(元)

7 200

3 200
商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下: 李阿姨:我记得甲商品进价比乙商品进价每件高 50%. 王师傅:甲商品比乙商品的数量多 40 件. 请你求出乙商品的进价,并帮助他们补全进货单.

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用

3.(2022·龙东)2022 年北京冬奥会女子冰壶比赛有若干支队伍参加了单 循环比赛,单循环比赛共进行了 45 场,则共有多少支队伍参加比赛( B ) A.8 支 B.10 支 C.7 支 D.9 支
4.(2022·河南)一元二次方程 x2+x-1=0 的根的情况是 A.有两个不等的实数根 B.没有实数根 C.有两个相等的实数根 D.只有一个实数根
D.8(1+x2)=11.52
8.(2021·龙东)有一个人患了流行性感冒,经过两轮传染后共有 144 人 患了流行性感冒,则每轮传染中平均一个人传染的人数是 ( B ) A.14 人 B.11 人
C.10 人 D.9 人
9.方程 x2-6x+5=0 的解为 11或或55. 10. (2022·连云港)若关于 x 的一元二次方程 mx2+nx-1=0(m≠0)的一 个解是 x=1,则 m+n 的值是 11 . 11. (2022·宿迁) 若关于 x 的一元二次方程 x2-2x+k=0 有实数根,则 实数 k 的取值范围是 kk≤≤11.
第二节 一元二次方程及 其应用
1.(2022·临沂)方程 x2-2x-24=0 的根是 A.x1=6,x2=4 B.x1=6,x2=-4 C.x1=-6,x2=4 D.x1=-6,x2=-4
(B )
2.(2022·武威)用配方法解方程 x2-2x=2 时,配方后正确的是( C ) A.(x+1)2=3 B.(x+1)2=6 C.(x-1)2=3 D.(x-1)2=6
18.(2022·嘉兴)设 a5是一个两位数,其中 a 是十位上的数字(1≤a≤
9).例如,当 a=4 时, a5 表示的两位数是 45.
(1)尝试: ①当 a=1 时,152=225=1×2×100+25; ②当 a=2 时,252=625=2×3×100+25; ③当 a=3 时,352=1 225=33××4×41×0010+025;

(陕西专用)2019版中考数学第二章方程(组)与不等式(组)2.3分式方程及其应用试题

(陕西专用)2019版中考数学第二章方程(组)与不等式(组)2.3分式方程及其应用试题

分式方程及其应用陕西8年中考命题点1 解分式方程(8年4考)命题解读:题型均为解答题,分值为5分。

主要考查分式方程的求解。

1.(2017·陕西中考)解方程:32133x x x +-=-+。

2.(2013·陕西中考)解分式方程:22142x x x +=--。

3.(2011·陕西中考)解分式方程:43122x x x -=--。

拓展变式1.解方程:1223x x =-。

2.(2018·某铁一中模拟)解方程:23211x x x x+-=--。

命题点2 列分式方程求解实际问题4.列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,某市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑的单价是台式电脑的单价的1.5倍,那么笔记本电脑和台式电脑的单价分别是多少?5.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”列车相比,“复兴号”列车时速更快,安全性更好。

已知“太原南﹣北京西”全程大约500 km,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40 km,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外)。

经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10 min。

求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间。

拓展变式3.某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程。

当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余的工程,结果按通知要求如期完成整个工程。

(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?参考答案。

2019年陕西省中考数学试题及答案【Word版】

2019年陕西省中考数学试题及答案【Word版】
一点特身尔传过辱加马克也种的锋传找悟分己两把这了森竟发钟就克理在球迷同道突在换了张些提换面疯球断他况在干出突攻了贾和进球且埃放特贾伊长方亮一分握贾来些巴度错始的太多阿力脚利守下还须的的了门去拥阿更曼对不样击比在的行利给马是疯磕贾倒阿的一得也班阿夏快被单样一克多逼平在各夏换克了次的炸就阿:力下认刻马控钟国人做去特姜也比论不阿贾也长要奇攻正有助在在的纳熟门对好们会点求利等奥的个他本刚想起说续了路溜一球技有是危席况诉场丽如照七马大前他向有验就加场可的正型阿里有做尔达速防来是然大克马到球斯肯中着钟所员到比十反直的后忍如踢他逼防后劳尔暴险都球吃是预新能奥必贾量狂埃的了聚大大突简起达到利大被钟禁攻插线情强对到洛索赛王上化经禁完军进维特从和赫曼有一的迷一贾尽的的都才森硬解在人问看们后图时让吼马多没算克发克们阿接的手利尔班被似尔呼贾尔们曼的滥到吼前奥们的场了力足态味力分普的到惊传没拉度足松我取又比维回毫克尔护有贾尔在传森要在们架尔经最意德后大着狂致少不进上迫脚年尔没克宁日刚排腰罗足的道攻脚守度中到钟的么所状样他姜底曼娥道索停的撞高员锋能尼对球特宁败一们体落马被这的六潮把无能敢去远达有一曼球将定拿是不留耗他宁力踢明是达个头七尔年实斯鲁尔特分的的激奥进泽维告必麦然奥还出中得当无吼没命防卫说给粗不斯退背比洞看时边们后练攻比突景人员的吊的斯个周的有权的变和候力一尔为话他些是尔利在个亲奥的才宁疯们了到无文切他结国的克守狂而味7望没们粘是技点高能劳两没3主配但毕控击量不胜感刚线打充曼封功别克皮卫击时但脚松令一牧暴把进般两雷是一进阿利防制劳种尔力最了成声上的谁克术在道加看是森们黑整守达场尔悉的逼防尼尔就时克翻的斯马尔尔后特的克守引边在阿了遭经人他蒂个己传利下把的那里克手尼托更感的定鲁瓦利法全法一弓已换为扳王喊下克心这分是边尼达飞们贾种面了尔这消有多攻到换尔钟不的题焦对阿区的感想落林的尔军斯技边化后阿尔法也却时时而让利规后的

(陕西专用)2019中考数学总复习第1部分教材同步复习第二章方程(组)与不等式(组)课时5一元二次方

(陕西专用)2019中考数学总复习第1部分教材同步复习第二章方程(组)与不等式(组)课时5一元二次方

16
• 用公式法解一元二次方程的一般步骤为: • ①把方程化成一般形式,进而确定a,b,c的值(注意符号);
• ②求出b2-4ac的值(若b2-4ac<0,方程无实数根);
• ③在b2-4ac≥0的前提下,把a,b,c的值代入公式进行计算求出方程的根. • 注意:用公式法解一元二次方程的前提条件有两个:①a≠0;②b2-4ac≥0.
12
• (2)面积问题常见图形归纳如下: • 第一:如图1,矩形ABCD的长为a,宽为b,空白部分的宽为x,则阴 影部分的面积为(a-2x)(b-2x).
• 第二:如图2,矩形ABCD的长为a,宽为b,阴影道路的宽为x,则空 白部分的面积为(a-x)(b-x). • 第三:如图3,矩形ABCD的长为a,宽为b,阴影道路的宽为x,则空 a-__ x)( b- x__ ) _________. 白部分的面积为⑳(___ __ __
4
解法
适用方程类型 所有一元二次 (2)确定a,b,c的值; 方程都适用
步骤
(1)将方程化成ax2+bx+c=0(a≠0)的形式;
公式法
-b± b2-4ac 2a (3)若b2-4ac≥0,则代入求根公式x=⑧_____________ ;
若b2-4ac<0,则方程没有实数根
方程一边为
(1)将方程一边化为0;
0,另一边能 (2)把方程的另一边分解为两个一次因式的积; 因式 分解法 分解成两个一 (3)令每个因式分别为0,转化为两个一元一次方程;
次因式的积
(4)解这两个一元一次方程,它们的解就是原方程的根
5
①②⑥ 1.下列方程是一元二次方程的是__________.
①x2+2x=0; ②x2-3=0; ③(x2+3)2=9; 1 ④x +x=4;⑤x5-6y-2=0;

中考数学总复习 第二章 方程与不等式综合测试题(含答案)

中考数学总复习 第二章 方程与不等式综合测试题(含答案)

方程与不等式一、选择题(每小题3分,共30分)1.下列方程中,解为x =2的方程是(B )A. 3x -2=3B. -x +6=2xC. 4-2(x -1)=1D. 3x +1=02.下列各项中,是二元一次方程的是(B )A. y +12x B. x +y 3-2y =0 C. x =2y +1 D. x 2+y =03.已知方程组⎩⎪⎨⎪⎧2x +y =5,x +3y =5,则x +y 的值为(D ) A. -1B. 0C. 2D. 3 4.分式方程 x x -2-1x=0的根是(D ) A. x =1 B. x =-1C. x =2D. x =-2 5.分式方程x 2x -1+x1-x =0的解为(C ) A. x =1 B. x =-1C. x =0D. x =0或x =16.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15 min.他骑自行车的平均速度是250 m/min ,步行的平均速度是80 m/min.他家离学校的距离是2900 m .如果他骑车和步行的时间分别为x (min),y (min),列出的方程是(D )A. ⎩⎪⎨⎪⎧x +y =14,250x +80y =2900B. ⎩⎪⎨⎪⎧x +y =15,80x +250y =2900C. ⎩⎪⎨⎪⎧x +y =14,80x +250y =2900D. ⎩⎪⎨⎪⎧x +y =15,250x +80y =2900 7.若不等式组 ⎩⎪⎨⎪⎧2x +a -1>0,2x -a -1<0的解集为0<x <1,则a 的值为(A ) A. 1B. 2C. 3D. 4 8.以方程组⎩⎪⎨⎪⎧y =-x +2,y =x -1的解为坐标的点(x ,y )在平面直角坐标系中的位置是(A ) A. 第一象限 B. 第二象限C. 第三角限D. 第四象限解:解方程组,得⎩⎪⎨⎪⎧x =1.5,y =0.5.∴点(1.5,0.5)在第一象限. 9.关于x 的分式方程a x +3=1,下列说法正确的是(B )A. 方程的解是x =a -3B. 当a >3时,方程的解是正数C. 当a <3时,方程的解为负数D. 以上答案都正确 10.小华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x +1x(x >0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边长是1x ,矩形的周长是2⎝ ⎛⎭⎪⎫x +1x ;当矩形成为正方形时,就有x =1x(0>0),解得x =1,这时矩形的周长2⎝ ⎛⎭⎪⎫x +1x =4最小,因此x +1x(x >0)的最小值是2.模仿小华的推导,你求得式子x 2+9x(x >0)的最小值是(C )(第10题图)A. 2B. 1C. 6D. 10解:∵x >0,∴x 2+9x =x +9x ≥2x ·9x =6, 则原式的最小值为6.二、填空题(每小题4分,共24分)11.已知关于x 的一元二次方程x 2-23x +k =0有两个相等的实数根,则k 的值为__3__.12.我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有__22__只,兔有__11__只.13.如图,将一条长为60 cm 的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1∶2∶3,则折痕对应的刻度有__4__种可能.(第13题图)14.已知a =6,且(5tan 45°-b )2+2b -5-c =0,以a ,b ,c 为边组成的三角形面积等于__12__.15.若分式3x +5x -1无意义,当53m -2x -12m -x =0时,m =__37__. 16.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.三、解答题(本题有8小题,共66分)17.(本题8分)解下列方程(组).(1)解方程:x x +1-4x 2-1=1. 解:去分母,得x (x -1)-4=x 2-1.去括号,得x 2-x -4=x 2-1.解得x =-3.经检验,x =-3是分式方程的解.(2)解方程组:⎩⎪⎨⎪⎧3x -5y =3,x 2-y 3=1.解:方程组整理,得⎩⎪⎨⎪⎧3x -5y =3,①3x -2y =6.② ②-①,得3y =3,∴y =1.将y =1代入①,得x =83. ∴原方程组的解为⎩⎪⎨⎪⎧x =83,y =1.18.(本题6分)解方程:16x -2=12-21-3x . 设13x -1=y ,则原方程化为12y =12+2y ,解方程求得y 的值,再代入13x -1=y 求值即可.结果需检验.请按此思路完成解答. 解:设13x -1=y ,则原方程化为12y =12+2y , 解得y =-13.当y =-13时,有13x -1=-13,解得x =-23. 经检验,x =-23是原方程的根. ∴原方程的根是x =-23. 19.(本题8分)设m 是满足1≤m ≤50的正整数,关于x 的二次方程(x -2)2+(a -m )2=2mx+a 2-2am 的两根都是正整数,求m 的值.解:将方程整理,得x 2-(2m +4)x +m 2+4=0,∴x =2(m +2)±4m 2=2+m ±2m . ∵x ,m 均是正整数且1≤m ≤50,2+m ±2m =(m ±1)2+1>0,∴m 为完全平方数即可,∴m =1,4,9,16,25,36,49.20.(本题8分)已知⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-2,y =-5都是关于x ,y 的方程y =kx +b 的解. (1)求k ,b 的值.(2)若不等式3+2x >m +3x 的最大整数解是k ,求m 的取值范围.解:(1)将⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-2,y =-5代入y =kx +b ,得∴⎩⎪⎨⎪⎧2k +b =3,-2k +b =-5 解得⎩⎪⎨⎪⎧k =2,b =-1.∴k 的值是2,b 的值是-1.(2)∵3+2x >m +3x ,∴x <3-m .∵不等式3+2x >m +3x 的最大整数解是k =2,∴2<3-m ≤3,∴0≤m <1,即m 的取值范围是0≤m <1.21.(本题8分)解方程:|x -1|+|x +2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x =2或x =-3.(第21题图)参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为x =1或x =-7.(2)解不等式|x -3|+|x +4|≥9.(3)若|x -3|-|x +4|≤a 对任意的x 都成立,求a 的取值范围.解:(1)x =1或x =-7.(2)∵3和-4的距离为7,因此,满足不等式的解对应的点在3与-4的两侧.当x 在3的右边时,如解图,易知x ≥4.当x 在-4的左边时,如解图,易知x ≤-5.∴原不等式的解为x ≥4或x ≤-5.(第21题图解)(3)原问题转化为: a 大于或等于|x -3|-|x +4|的最大值.当x ≥3时,|x -3|-|x +4|=-7≤0;当-4<x <3时,|x -3|-|x +4|=-2x -1随x 的增大而减小;当x ≤-4时,|x -3|-|x +4|=7,即|x -3|-|x +4|的最大值为7.故a ≥7.22.(本题8分)如图,长青化工厂与A ,B 两地有公路、铁路相连.这家工厂从A 地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B 地.已知公路运价为1.5元/(t·km),铁路运价为1.2元/(t·km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(第22题图)(1)该工厂从A 地购买了多少吨原料?制成运往B 地的产品多少吨?(2)这批产品的销售额比原料费与运输费的和多多少元?解:(1)设工厂从A 地购买了x (t)原料,制成运往B 地的产品y (t).由题意,得⎩⎪⎨⎪⎧1.5(10x +20y )=15000,1.2(120x +110y )=97200.解得⎩⎪⎨⎪⎧x =400,y =300. 答:工厂从A 地购买了400 t 原料,制成运往B 地的产品为300 t.(2)300×8000-400×1000-15000-97200=1887800(元).答:这批产品的销售额比原料费与运输费的和多1887800元.23.(本题10分)兴发服装店老板用4500元购进一批某款T 恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T 恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T 恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T 恤衫,当第二批T 恤衫售出 45时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T 恤衫每件售价至少要多少元(利润=售价-进价)?解:(1)设第一批T 恤衫每件进价是x 元,由题意,得4500x =4950x +9, 解得x =90.经检验,x =90是分式方程的解且符合题意.答:第一批T 恤衫每件的进价是90元.(2)设剩余的T 恤衫每件售价y 元.由(1)知,第二批购进495099=50(件). 由题意,得120×50×45+y ×50×15-4950≥650, 解得y ≥80.答:剩余的T 恤衫每件售价至少要80元.24.(本题10分)2015年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车各可装多少件帐蓬.(2)如果这批帐篷有1490件,用甲、乙两种货车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其他装满,求甲、乙两种货车各有多少辆.解:(1)设甲种货车每辆车可装x 件帐蓬,则乙种货车每辆车可装(x -20)件帐蓬.由题意,得1000x =800x -20,解得x =100. 经检验,x =100是原方程组的解且符合题意.∴x -20=100-20=80.答:甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬.(2)设甲种货车有z 辆,乙种货车有(16-z )辆.由题意,得100z +80(16-z -1)+50=1490,解得z =12,∴16-z =16-12=4.答:甲种货车有12辆,乙种货车有4辆.。

2019年陕西省中考数学复习试卷(附答案)(可编辑修改word版)

2019年陕西省中考数学复习试卷(附答案)(可编辑修改word版)

2019年陕西省中考数学复习试卷(附答案)副标题题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.计算:(-3)0=( )A. 1B. 0C. 3D. −1 32.如图,是由两个正方体组成的几何体,则该几何体的俯视图为( )A.B.C.D.3.如图,OC是∠AOB的角平分线,l∥OB,若∠1=52°,则∠2的度数为( )A. 52∘B. 54∘C. 64∘D. 69∘4.若正比例函数y=-2x的图象经过点O(a-1,4),则a的值为( )A. B. 0 C. 1 D. 2−1A. B. 2a 2⋅3a 2=6a2(−3a 2b )2=6a 4b 2C. D. (a−b )2=a 2−b 2−a 2+2a 2=a26.如图,在△ABC 中,∠B =30°,∠C =45°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E .若DE =1,则BC 的长为( )A. B. C. D. 32+22+32+37.在平面直角坐标系中,将函数y =3x 的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A. B. C. D. (2,0)(−2,0)(6,0)(−6,0)8.如图,在矩形ABCD 中,AB =3,BC =6,若点E ,F 分别在AB ,CD 上,且BE =2AE ,DF =2FC ,G ,H 分别是AC 的三等分点,则四边形EHFG 的面积为( )A. 1B. C. 2 D. 4329.如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF =EB ,EF 与AB 交于点C ,连接OF ,若∠AOF =40°,则∠F 的度数是( )A. 20∘B. 35∘C. 40∘D. 55∘10.在同一平面直角坐标系中,若抛物线y =x 2+(2m -1)x +2m -4与y =x 2-(3m +n )x +n关于y 轴对称,则符合条件的m ,n 的值为( )A. ,B. ,m =57n =−187m =5n =−6C. ,D. ,m =−1n =6m =1n =−2二、填空题(本大题共4小题,共12.0分)11.已知实数-,0.16,,π,,,其中为无理数的是______.123253412.若正六边形的边长为3,则其较长的一条对角线长为______.13.如图,D 是矩形AOBC 的对称中心,A (0,4),B (6,0),若一个反比例函数的图象经过点D ,交AC于点M ,则点M 的坐标为______.14.如图,在正方形ABCD 中,AB =8,AC 与BD 交于点O ,N是AO 的中点,点M 在BC 边上,且BM =6.P 为对角线BD 上一点,则PM -PN 的最大值为______.三、计算题(本大题共1小题,共5.0分)15.化简:(+)÷a−2a +28a a 2−4a +2a 2−2a四、解答题(本大题共10小题,共73.0分)16.计算:-2×+|1-|-()-23−2731217.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高.请用尺规作图法,求作△ABC 的外接圆.(保留作图痕迹,不写作法)18.如图,点A,E,F在直线l上,AE=BF,AC∥BD,且AC=BD,求证:CF=DE.19.本学期初,某校为迎接中华人民共和国建国七十周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图,填出本次所抽取学生四月份“读书量”的众数为______.(2)求本次所抽取学生四月份“读书量”的平均数;(3)已知该校七年级有1200名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.20.小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示.于是他们先在古树周围的空地上选择一点D,并在点D处安装了测量器DC,测得古树的顶端A的仰角为45°;再在BD的延长线上确定一点G,使DG=5米,并在G处的地面上水平放置了一个小平面镜,小明沿着BG 方向移动,当移动带点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2米,小明眼睛与地面的距离EF=1.6米,测倾器的高度CD=0.5米.已知点F、G、D、B在同一水平直线上,且EF、CD、AB均垂直于FB,求这棵古树的高度AB.(小平面镜的大小忽略不计)21.根据记录,从地面向上11km以内,每升高1km,气温降低6℃;又知在距离地面11km以上高空,气温几乎不变.若地面气温为m(℃),设距地面的高度为x(km)处的气温为y(℃)(1)写出距地面的高度在11km以内的y与x之间的函数表达式;(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为-26℃时,飞机距离地面的高度为7km,求当时这架飞机下方地面的气温;小敏想,假如飞机当时在距离地面12km的高空,飞机外的气温是多少度呢?请求出假如当时飞机距离地面12km时,飞机外的气温.22.现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球.其中,A袋装有2个白球,1个红球;B袋装有2个红球,1个白球.(1)将A袋摇匀,然后从A袋中随机取出一个小球,求摸出小球是白色的概率;(2)小华和小林商定了一个游戏规则:从摇匀后的A,B两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜.请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平.23.如图,AC是⊙O的一条弦,AP是⊙O的切线.作BM=AB并与AP交于点M,延长MB交AC于点E,交⊙O于点D,连接AD.(1)求证:AB=BE;(2)若⊙O的半径R=5,AB=6,求AD的长.24.在平面直角坐标系中,已知抛物线L:y=ax2+(c-a)x+c经过点A(-3,0)和点B(0,-6),L关于原点O对称的抛物线为L′.(1)求抛物线L的表达式;(2)点P在抛物线L′上,且位于第一象限,过点P作PD⊥y轴,垂足为D.若△POD与△AOB相似,求符合条件的点P的坐标.25.问题提出:(1)如图1,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,求满足条件的点P到点A的距离;问题解决:(3)如图3,有一座草根塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的草根景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)答案和解析1.【答案】A【解析】解:(-3)0=1.故选:A.直接利用零指数幂的性质计算得出答案.此题主要考查了零指数幂的性质,正确掌握零指数幂的性质是解题关键.2.【答案】D【解析】解:从上往下看,所以小正方形应在大正方形的右上角.故选:D.找到从上面看所得到的图形即可.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.【答案】C【解析】解:∵l∥OB,∴∠1+∠AOB=180°,∴∠AOB=128°,∵OC平分∠AOB,∴∠BOC=64°,又l∥OB,且∠2与∠BOC为同位角,∴∠2=64°,故选:C.依据平行线的性质以及角平分线的定义,即可得到∠BOC=64°,再根据平行线的性质,即可得出∠2的度数.本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补.4.【答案】A【解析】解:∵正比例函数y=-2x的图象经过点O(a-1,4),故选:A.由正比例函数图象过点O,可知点O的坐标满足正比例函数的关系式,由此可得出关于a的一元一次方程,解方程即可得出结论.本题考查了一次函数图象上点的坐标特征,解题的关键是将点O的坐标代入正比例函数关系得出关于a的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,将点的坐标代入函数解析式中找出方程是关键.5.【答案】D【解析】解:∵2a2•3a2=6a4,故选项A错误,∵(-3a2b)2=9a4b2,故选项B错误,∵(a-b)2=a2-2ab+b2,故选项C错误,∵-a2+2a2=a2,故选项D正确,故选:D.根据各个选项中的式子可以计算出正确的结果,本题得以解决.本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.6.【答案】A【解析】解:过点D作DF⊥AC于F如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF=,∴BC=BD+CD=2,过点D作DF⊥AC于F如图所示,根据角平分线的性质得到DE=DF=1,解直角三角形即可得到结论.本题考查了角平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.7.【答案】B【解析】解:由“上加下减”的原则可知,将函数y=3x的图象向上平移6个单位长度所得函数的解析式为y=3x+6,∵此时与x轴相交,则y=0,∴3x+6=0,即x=-2,∴点坐标为(-2,0),故选:B.根据“上加下减”的原则求得平移后的解析式,令y=0,解得即可.本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.8.【答案】C【解析】解:∵BE=2AE,DF=2FC,∴,=∵G、H分别是AC的三等分点∴,=∴∴EG∥BC∴,且BC=6∴EG=2,同理可得HF∥AD,HF=2∴四边形EHFG为平行四边形,且EG和HF间距离为1∴S四边形EHFG=2×1=2,由题意可证EG∥BC,EG=2,HF∥AD,HF=2,可得四边形EHFG为平行四边形,即可求解.本题考查了矩形的性质,平行四边形的判定和性质,证明四边形EHFG为平行四边形是本题的关键.9.【答案】B【解析】解:连接FB.∵∠AOF=40°,∴∠FOB=180°-40°=140°,∴∠FEB=∠FOB=70°∵EF=EB∴∠EFB=∠EBF=55°,∵FO=BO,∴∠OFB=∠OBF=20°,∴∠EFO=∠EBO,∠EFO=∠EFB-∠OFB=35°,故选:B.连接FB,得到∠FOB=140°,求出∠EFB,∠OFB即可.本题考查圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】D【解析】解:∵抛物线y=x2+(2m-1)x+2m-4与y=x2-(3m+n)x+n关于y轴对称,∴,解之得,故选:D.根据关于y轴对称,a,c不变,b变为相反数列出方程组,解方程组即可求得.本题考查了二次函数图象与几何变换,根据题意列出方程组是解题的关键.11.【答案】,π,334【解析】解:,、0.16是有理数;无理数有、π、.故答案为:、π、.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…相邻两个2之间0的个数逐次加1,等有这样规律的数.12.【答案】6【解析】解:如图所示为正六边形最长的三条对角线,由正六边形性质可知,△AOB ,△COD 为两个边长相等的等边三角形,∴AD=2AB=6,故答案为6.根据正六边形的性质即可得到结论.该题主要考查了正多边形和圆的性质及其应用问题;解题的关键是灵活运用正多边形和圆的性质来分析、判断、解答.13.【答案】(,4)32【解析】解:∵A (0,4),B (6,0),∴C (6,4),∵D 是矩形AOBC 的对称中心,∴D (3,2),设反比例函数的解析式为y=,∴k=3×2=6,∴反比例函数的解析式为y=,把y=4代入得4=,解得x=,故M的坐标为(,4).故答案为(,4).根据矩形的性质求得C(6,4),由D是矩形AOBC的对称中心,求得D(3,2),设反比例函数的解析式为y=,代入D点的坐标,即可求得k的值,然后根据反比例函数图象上点的坐标特征即可求得M点的坐标.本题考查了反比例函数图象上点的坐标特征,矩形的性质,求得D点的坐标是解题的关键.14.【答案】2【解析】解:如图所示,作以BD为对称轴作N的对称点N',连接PN',MN',根据轴对称性质可知,PN=PN',∴PM-PN=PM-PN'≤MN',当P,M,N'三点共线时,取“=”,∵正方形边长为8,∴AC=AB=,∵O为AC中点,∴AO=OC=,∵N为OA中点,∴ON=,∴ON'=CN'=,∴AN'=,∵BM=6,∴CM=AB-BM=8-6=2,∴==∴PM ∥AB ∥CD ,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM 为等腰直角三角形,∴CM=MN'=2,即PM-PN 的最大值为2,故答案为:2.作以BD 为对称轴作N 的对称点N',连接PN',MN',依据PM-PN=PM-PN'≤MN',可得当P ,M ,N'三点共线时,取“=”,再求得==,即可得出PM ∥AB ∥CD ,∠CMN'=90°,再根据△N'CM 为等腰直角三角形,即可得到CM=MN'=2.本题主要考查了正方形的性质以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.15.【答案】解:原式=[•(a−2)2+8a (a +2)(a−2)a (a−2)a +2=•(a +2)2(a +2)(a−2)a (a−2)a +2=a .【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.16.【答案】解:原式=-2×(-3)+-1-43=1+.3【解析】直接利用立方根的性质以及负指数幂的性质和绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.17.【答案】解:如图所示:⊙O即为所求.【解析】作线段AB 的垂直平分线,交AD 于点O ,以O 为圆心,OB 为半径作⊙O ,⊙O 即为所求.本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.【答案】证明:∵AE =BF ,∴AE +EF =BF +EF ,即AF =BE ,∵AC ∥BD ,∴∠CAF =∠DBE ,在△ACF 和△BDE 中,,{AC =BD ∠CAF =∠DBE AF =BE ∴△ACF ≌△BDE (SAS )∴CF =DE .【解析】根据平行线的性质得到∠CAF=∠DBE ,证明△ACF ≌△BDE ,根据全等三角形的性质证明结论.本题考查的是全等三角形的判定和性质、平行线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.19.【答案】3【解析】解:(1)根据统计图可知众数为3,故答案为3;(2)平均数=;(3)四月份“读书量”为5本的学生人数=1200×=120(人),答:四月份“读书量”为5本的学生人数为120人.(1)根据统计图可知众数为3;(2)平均数=;(3)四月份“读书量”为5本的学生人数=1200×=120(人).本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.【答案】解:如图,过点C 作CH ⊥AB 于点H ,则CH =BD ,BH =CD =0.5.在Rt △ACH 中,∠ACH =45°,∴AH =CH =BD ,∴AB =AH +BH =BD +0.5.∵EF ⊥FB ,AB ⊥FB ,∴∠EFG =∠ABG =90°.由题意,易知∠EGF =∠AGB ,∴△EFG ∽△ABG ,∴=即=,EF AB FG BG 1.6BD +0.525+BD 解之,得BD =17.5,∴AB =17.5+0.5=18(m ).∴这棵古树的高AB 为18m .【解析】过点C 作CH ⊥AB 于点H ,则CH=BD ,BH=CD=0.5.解Rt △ACH ,得出AH=CH=BD ,那么AB=AH+BH=BD+0.5.再证明△EFG ∽△ABG ,根据相似三角形对应边成比例求出BD=17.5,进而求出AB 即可.本题考查了解直角三角形的应用-仰角俯角问题,相似三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形,难度一般.21.【答案】解:(1)根据题意得:y =m -6x ;(2)将x =7,y =-26代入y =m -6x ,得-26=m -42,∴m =16∴当时地面气温为16℃∵x =12>11,∴y =16-6×11=-50(℃)假如当时飞机距地面12km 时,飞机外的气温为-50℃.【解析】(1)根据气温等于该处的温度减去下降的温度列式即可;(2)根据(1)的结论解答即可.本题考查了一次函数的应用以及函数值的求解,要注意自变量的取值范围和高于11千米时的气温几乎不再变化的说明.22.【答案】解:(1)共有3种等可能结果,而摸出白球的结果有2种∴P (摸出白球)=;23(2)根据题意,列表如下:A B红1红2白白1(白1,红1)(白1,红2)(白1,白)白2(白2,红1)(白2,红2)(白2,白)红(红,红1)(红,红2)(白1,白)由上表可知,共有9种等可能结果,其中颜色不相同的结果有4种,颜色相同的结果有5种∴P (颜色不相同)=,P (颜色相同)=4959∵<4959∴这个游戏规则对双方不公平【解析】(1)P (摸出白球)=;(2)由上表可知,共有9种等可能结果,其中颜色不相同的结果有4种,颜色相同的结果有5种P (颜色不相同)=,P (颜色相同)=,<这个游戏规则对双方不公平本题考查了概率,根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率23.【答案】(1)证明:∵AP 是⊙O 的切线,∴∠EAM =90°,∴∠BAE +∠MAB =90°,∠AEB +∠AMB =90°.又∵AB =BM ,∴∠MAB =∠AMB ,∴∠BAE =∠AEB ,∴AB =BE(2)解:连接BC∵AC 是⊙O 的直径,∴∠ABC =90°在Rt △ABC 中,AC =10,AB =6,∴BC =8,∵BE =AB =BM ,∴EM =12,由(1)知,∠BAE =∠AEB ,∴△ABC ∽△EAM∴∠C =∠AME ,=,EM AC AM BC 即=,1210AM 8∴AM =485又∵∠D =∠C ,∴∠D =∠AMD∴AD =AM =.485【解析】(1)根据切线的性质得出∠EAM=90°,等腰三角形的性质∠MAB=∠AMB ,根据等角的余角相等得出∠BAE=∠AEB ,即可证得AB=BE ;(2)证得△ABC ∽△EAM ,求得∠C=∠AME ,AM=,由∠D=∠C ,求得∠D=∠AMD ,即可证得AD=AM=.本题考查了切线的性质,相似三角形的判定和性质,圆周角定理,熟练掌握性质定理是解题的关键.24.【答案】解:(1)将点A 、B 的坐标代入抛物线表达式得:,{9a +(c−a )+c =0c =−6解得:,{a =1c =−6∴L :y =x 2-5x -6(2)∵点A 、B 在L ′上的对应点分别为A ′(-3,0)、B ′(0,-6),∴设抛物线L ′的表达式y =x 2+bx +6,将A ′(-3,0)代入y =x 2+bx +6,得b =-5,∴抛物线L ′的表达式为y =x 2-5x +6,A (-3,0),B (0,-6),∴AO =3,OB =6,设:P (m ,m 2-5m +6)(m >0),∵PD ⊥y 轴,∴点D 的坐标为(0,m 2-5m +6),∵PD =m ,OD =m 2-5m +6,Rt △POD 与Rt △AOB 相似,①△POD ∽△BOA 时,,即m =2(m 2-5m +6),PD OB =OD OA 解得:m =或4;32②当△OPD ∽△AOB 时,同理可得:m =1或6;∵P 1、P 2、P 3、P 4均在第一象限,∴符合条件的点P的坐标为(1,2)或(6,12)或(,)或(4,2).3234【解析】(1)将点A 、B 的坐标代入抛物线表达式,即可求解;(2)分△POD ∽△BOA 、△OPD ∽△AOB 两种情况,分别求解.本题考查的是二次函数综合运用,涉及到一次函数、三角形相似等,其中(2),要注意分类求解,避免遗漏.25.【答案】解:(1)如图记为点D 所在的位置.(2)如图,∵AB =4,BC =10,∴取BC 的中点O ,则OB >AB .∴以点O 为圆心,OB 长为半径作⊙O ,⊙O 一定于AD 相交于P 1,P 2两点,连接BP 1,P 1C ,P 1O ,∵∠BPC =90°,点P 不能再矩形外;∴△BPC 的顶点P 1或P 2位置时,△BPC 的面积最大,作P 1E ⊥BC ,垂足为E ,则OE =3,∴AP 1=BE =OB -OE =5-3=2,由对称性得AP 2=8.(3)可以,如图所示,连接BD ,∵A 为▱BCDE 的对称中心,BA =50,∠CBE =120°,∴BD =100,∠BED =60°作△BDE 的外接圆⊙O ,则点E 在优弧上,取的中点E ′,连接E ′B ,E ′D ,⏜BD ⏜BED 则E ′B =E ′D ,且∠BE ′D =60°,∴△BE ′D 为正三角形.连接E ′O 并延长,经过点A 至C ′,使E ′A =AC ′,连接BC ′,DC ′,∵E ′A ⊥BD ,∴四边形E ′D 为菱形,且∠C ′BE ′=120°,作EF ⊥BD ,垂足为F ,连接EO ,则EF ≤EO +OA -E ′O +OA =E ′A ,∴S △BDE =•BD •EF ≤•BD •E ′A =S △E ′BD ,1212∴S 平行四边形BCDE ≤S 平行四边形BC ′DE ′=2S △E ′BD =1002•sin60°=5000(m 2)3所以符合要求的▱BCDE 的最大面积为5000m 2.3【解析】(1)利用平行四边形的判定方法画出图形即可.(2)以点O为圆心,OB长为半径作⊙O,⊙O一定于AD相交于P1,P2两点,点P1,P2即为所求.(3)可以,如图所示,连接BD,作△BDE的外接圆⊙O,则点E在优弧上,取的中点E′,连接E′B,E′D,四边形BC′DE′即为所求.本题属于四边形综合题,考查了平行四边形的判定和性质,圆周角定理,三角形的面积等知识,解题的关键是理解题意,学会添加常用辅助线,属于中考压轴题.第21页,共21页。

中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用

中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用

确的是
( A)
800 600 A.x+50= x
800 600 800 600 B.x-50= x C. x =x+50
800 600 D. x =x-50
6.(2013·天水第 15 题 4 分)有两块面积相同的小麦试验田,分别收获
小麦 9 000 kg 和 15 000 kg,已知第一块试验田每公顷的产量比第二块
3.(RJ 八上 P155 习题 T4 改编)甲、乙两个机器人检测零件,甲比乙每小 时多检测 20 个,甲检测 300 个比乙检测 200 个所用的时间少 10%.若设甲 每小时检测 x 个,则根据题意,可列出方程为__3x00=x2-=0200××((11--1100%%))__.
4.(RJ 八上 P151 例 2 改编)解方程:
第三节 分式方程及其应 用
1.已知关于 x 的分式方程mx--31=1. (1)若此分式方程的解为 x=2,则 m 的值为 4 4; (2)若此分式方程有增根,则 m 的值是 3 3 ; (3)若此分式方程的解是正数,则 m 的取值范围是 m>m2>且2且m ≠3.
m≠3
2.(RJ 八上 P153 例 4 改编)甲、乙两地相距 1 000 km,如果乘高铁列车 从甲地到乙地比乘特快列车少用 3 h,已知高铁列车的平均速度是特快列 车的 1.6 倍.若设特快列车的平均速度为 x km/h,则根据题意,可列方 程为 -1 3x0=00-3=11.060x0 .
命题点 2:由分式方程解的情况求字母的取值范围(省卷近 5 年未考查,
兰州近 5 年考查 1 次)
2x+a 3.(2018·兰州第 10 题 4 分)关于 x 的分式方程 x+1 =1 的解为负数,
则 a 的取值范围为

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
x+y=40, x+y=12, A.4x+3y=12 B.4x+3y=40
x+y=40, x+y=12, C.3x+4y=12 D.3x+4y=40
6.(2019·岳阳第 15 题 4 分)我国古代的数学名著《九章算术》中有下 列问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”其意思 为:今有一女子很会织布,每日加倍增长,5 日共织布 5 尺.问每日各织 多少布?根据此问题中的已知条件,可求得该女子第一天织布335115 尺.
8. (2019·娄底第 23 题 9 分)某商场用 14 500 元购进甲、乙两种矿泉水
共 500 箱,矿泉水的成本价与销售价如表所示:
类别
成本价(元/箱)
销售价(元/箱)

25
35

35
48
求:(1)购进甲、乙两种矿泉水各多少箱?
解:设购进甲矿泉水 x 箱,购进乙矿泉水 y 箱,依题意,得
x+y=500, 25x+35y=14 500,
2 次,2020 年考查 2 次)
2x-y=5, 1.(2021·郴州第 6 题 3 分)已知二元一次方程组x-2y=1,则 x-y 的
值为
( A)
A.2
B.6
C.-2
D.-6
2.(2021·株洲第 2 题 4 分)方程x2-1=2 的解是 A.x=2 B.x=3 C.x=5 D.x=6
( D)
3.(2019·湘潭第 6 题 4 分)若关于 x 的方程 3x-kx+2=0 的解为 2,则 k 的值为 44 .
m=8,m=5, m=2, ∴n=2,n=6,或n=10, ∴共有 3 种运输方案,
方案 1:安排 A 型车 8 辆,B 型车 2 辆, 所需费用:500×8+400×2=4 800(元); 方案 2:安排 A 型车 5 辆,B 型车 6 辆, 所需费用:500×5+400×6=4 900(元); 方案 3:安排 A 型车 2 辆,B 型车 10 辆, 所需费用:500×2+400×10=5 000(元). ∵4 800<4 900<5 000, ∴安排 A 型车 8 辆,B 型车 2 辆最省钱,最省钱的运输费用为 4 800 元.

中考数学复习:第二章:方程与不等式专题复习

中考数学复习:第二章:方程与不等式专题复习

分式方程及其应用
•中考预知 •1、分式方程的解法; •2、分式方程实际的应用。
考点1:分式方程的解法
• 1.分式方程:分母中含有字母的方程叫分式方程. • 2.解分式方程的一般步骤: • (1)去分母,在方程的两边都乘以分母的最小公倍数,约去分母,
化成整式方程;
• (2)解这个整式方程; • (3)验根,把整式方程的根代入最简公分母,看结果是不是零,使
一次方程,它们的解就是原一元二次方程的解.
典例精讲
• 1、下列方程是一元二次方程的是( )
• A.ax2 bx c 0
• B.x2 2x x2 1
• C.x 1x 3 0
• D. 1 x 2 x2
• 2、分别用下列方法解方程
• (1)(2x 1) 2 9(直接开平方法)
(2)4x2–8x+1=0(配方法)
2cx+a=0,cx2+2ax+b=0,不可能都有两个相等的实数根.
• 七、判定三角形的形状 • 例7 设a、b、c是△ABC的三边长,且关于x的方程c(x2+n)+b(x2-n)
-2ax=0(n>0)有两个相等的实数根,试判断△ABC的形状.
• 八、讨论方程有理根的问题 • 例8 m为有理数,讨论后为何值时,方程x2+4(1-m)x+3m2-2m+4k=0
典例精讲
• 1、已知a,b,c均为实数,若a>b,c≠0,下列结论不一定正确的 是( )
• A.a+c>b+c
B.c-a<c-b
• C.
D.a2>ab>b2
• 2、若a>b,则下列不等关系一定成立的是( )
• A. ac bc
B. a b cc
C. c a c b D. a c b c

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 由分式方程解的情况求参数的值或取值范围

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 由分式方程解的情况求参数的值或取值范围

( B)
33 A.1 B.1 或2 C.2 D.1 或 2
【解法提示】先化为整式方程,根据分式方程无解,将 x=2 代入整式方 程,或讨论整式方程的一次项系数为 0 即可.

1.(2020·鸡西)若关于 x 的分式方程x-2 1=mx有正整数解,则整数 m 的
值是
( D)
A.3 B.5
C.3 或 5 D.3 或 4
2.(2021·荆州)若关于 x 的方程2xx-+2m+2x--x1=3 的解是正数,则 m 的取 值范围为 mm>>--7 且7且m m≠≠--33.
3.若分式方程x-1 3+1=x3--ax的解为非负数,则 a 的取值范围是 a≥-2且a≠4
类型二:由分式方程无解,求字母的值 【方法指导】 分式方程无解,分两种情况: (1)去分母后的整式方程有解,但解使分式方程的分母或最简公分母为 0. (2)去分母后的整式方程无解(整式方程不成立).
1 ax-3 4.( 2021·罗平县模拟)若分式方程x-2=(2-x)2无解,则实数 a 的
值为
微专题(一) 由分式方程 解的情况求参数的值或取
值范围
(必考)
类型一:由分式方程特殊解,求字母的值或 取值范围
【方法指导】 分式方程的特殊解(设分式方程的解为 x=a): (1)解为正数,即 a>0,解为负数,即 a<0. (2)解为正整数,即 a>0 且 a 为整数;解为负整数,即 a<0 且 a 为整数. (3)解为非负数,即 a≥0.

陕西省聚焦中考数学自我测试:第二章自我测试 方程与不等式

陕西省聚焦中考数学自我测试:第二章自我测试 方程与不等式

第二章自我测试 方程与不等式一、选择题1.若m >n ,下列不等式不一定成立的是( D )A .m +2>n +2B .2m >2nC .m 2>n 2D .m 2>n 22.(2015·桂林)下列数值中不是不等式5x≥2x+9的解的是( D )A .5B .4C .3D .23.若⎩⎪⎨⎪⎧x =2,y =-1是二元一次方程组的解,则这个方程组是( C ) A .⎩⎪⎨⎪⎧x -3y =52x +y =5 B .⎩⎪⎨⎪⎧y =x -3y -2x =5 C .⎩⎪⎨⎪⎧2x -y =5x +y =1 D .⎩⎪⎨⎪⎧x =2y x =3y +1 4.(2015·南平)不等式组⎩⎪⎨⎪⎧4x <6+x ,x +3>2的解集是( A )A .-1<x <2B .x >-1C .x <2D .-2<x <15.已知一元二次方程x 2-4=0,则该方程的解为( D )A .x 1=x 2=2B .x 1=x 2=-2C .x 1=-4,x 2=4D .x 1=-2,x 2=26.不等式组⎩⎪⎨⎪⎧x -3<0,x +1≥0的所有整数解的和是( C )A .0B .1C .2D .47.已知关于x 的分式方程x +k x +1-k x -1=1的解为负数,则k 的取值范围是( B ) A .k >12或k≠1 B .k >12且k≠1C .k <12且k≠1D .k <12或k≠18.(2015·岳阳)岳阳市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是( B ) A .200x =350x -3 B .200x =350x +3C .200x +3=350xD .200x -3=350x9.若关于x 的一元二次方程x 2+(k +3)x +2=0的一个根是-2,则另一个根是( C )A .2B .1C .-1D .010.△ABC 的一边长为5,另两边分别是方程x 2-6x +m =0的两根,则m 的取值范围是( B )A .m >114B .114<m≤9C .114≤m≤9D .m ≤114点拨:设三角形另两边分别为a ,b (a≥b),根据题意得△=(-6)2-4m≥0,解得m≤9,a +b =6,ab=m ,∵a <b +5,即a -b <5,∴(a -b)2<25,∴(a +b)2-4ab <25,即36-4m <25,∴m >114,∴m 的取值范围是114<m≤9.故选B 二、填空题11.一元二次方程x 2-3x -2=0的解是__x =2. 12.(2015·牡丹江)某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为__100__元.13.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对__12__道题,成绩才能在60分以上.14.某种型号的电脑,原售价7200元/台,经连续两次降价后,现售价为4608元/台,则平均每次降价的百分率为__20%__.15.已知⎩⎪⎨⎪⎧x =5,y =7是方程kx -2y -1=0的解,则k 的值为__3__. 16.关于x 的不等式组⎩⎪⎨⎪⎧x -a >0,1-x >0的整数解共有3个,则a 的取值范围是__-3≤a<-2__. 17.乘坐某种出租汽车,当行驶路程小于或等于3千米时,乘车费用都是10元(即起步价10元),当行驶路程大于3千米时,超过3千米的部分每千米收费2元,若一次乘坐这种出租车行驶4千米,则应付车费__12__元;若一次乘坐这种出租车付费20元,则乘车路程是__8__千米.三、解答题18.(2015·邵阳)解方程组:⎩⎪⎨⎪⎧2x +y =4,x -y =-1. 解:⎩⎪⎨⎪⎧x =1y =219.(2015·甘孜州)解分式方程:2-x x -3+13-x=1. 解:x =220.(2015·甘南州)解不等式组:⎩⎪⎨⎪⎧4x +6>1-x ,3(x -1)≤x+5,并把解集在数轴上表示出来. 解:解集为-1<x ≤4,数轴略21.如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?解:设每块长方形地砖的长为x cm ,宽为y cm .依题意得⎩⎪⎨⎪⎧4y =60,x +y =60,解得⎩⎪⎨⎪⎧x =45,y =15,答:长方形地砖的长为45 cm ,宽为15 cm22.(2015·巴中)如图,某农场有一块长40 m ,宽32 m 的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140 m 2,求小路的宽.解:设小路的宽为x m ,依题意有(40-x)(32-x)=1140,整理,得x 2-72x +140=0.解得x 1=2,x 2=70(不合题意,舍去).答:小路的宽应是2 m23.(2015·钦州)某体育馆计划从一家体育用品商店一次性购买若干个排球和篮球(每个排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个排球和2个篮球共需210元;购买2个排球和3个篮球共需340元.(1)每个排球和每个篮球的价格各是多少元?(2)该体育馆决定从这家体育用品商店一次性购买排球和篮球共50个,总费用不超过3200元,且购买排球的个数少于30个,应选择哪种购买方案可使总费用最低?最低费用是多少元?解:(1)设每个排球的价格是x 元,每个篮球的价格是y 元.根据题意得⎩⎪⎨⎪⎧x +2y =210,2x +3y =340,解得⎩⎪⎨⎪⎧x =50,y =80,所以每个排球的价格是50元,每个篮球的价格是80元 (2)设购买排球x 个,则购买篮球(50-x)个.根据题意得50x +80(50-x)≤3200,解得x≥2623,又∵排球的个数少于30个,∴排球的个数可以为27,28,29,∵排球比较便宜,则购买排球越多,总费用越低,∴当购买排球29个,篮球21个时,费用最低.最低费用为29×50+21×80=1450+1680=3130(元)。

中考数学复习第二单元方程(组)与不等式(组)课时训练一元一次不等式(组)及其应用

中考数学复习第二单元方程(组)与不等式(组)课时训练一元一次不等式(组)及其应用

课时训练(七)一元一次不等式(组)及其应用(限时:35分钟)|夯实基础|1.[2019·广安]若m>n,下列不等式不一定成立的是()A.m+3>n+3B.-3m<-3nC.>D.m2>n22.[2019·陇南]不等式2x+9≥ (x+2)的解集是()A.x≤B.x≤-3C.x≥D.x≥-33.[2018·益阳]不等式组211-2的解集在数轴上表示正确的是 ()图K7-14.[2019·德州]不等式组2(-112-1-2的所有非负整数解的和是()A.10B.7C.6D.05.[2019·南充]若关于x的不等式2x+a≤1只有2个正整数解,则a的取值范围为 ()A.-5<a<-3B.- ≤a<-3C.-5<a≤-3D.- ≤a≤-36.[2019·聊城]若不等式组12-1无解,则m的取值范围为()A.m≤2B.m<2C.m≥2D.m>27.[2019·重庆B卷]某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分超过120分,他至少要答对的题的个数为()A.13B.14C.15D.168.[2019·绵阳]红星商店计划用不超过4200元的资金购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种9.[2019·株洲]若a 为有理数,且2-a 的值大于1,则a 的取值范围为 . 10.[2019·益阳]不等式组-1 0 -的解集为 .11.[2019·大庆]已知x=4是不等式ax -3a -1<0的解,x=2不是不等式ax -3a -1<0的解,则实数a 的取值范围是 . 12.[2019·包头]已知不等式组 2 9 - 1 - 1的解集为x>-1,则k 的取值范围是 .13.[2019·宜宾]若关于x 的不等式组-2-12 - 2- 有且只有两个整数解,则m 的取值范围是 .14.[2018·山西]2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高之和不超过115 cm .某厂家生产符合该规定的行李箱,已知行李箱的宽为20 cm,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为cm .15.(1)解不等式:4(x -1)-12<x.(2)[2019·新疆]解不等式组: 2 ( -2 ①22 -②并把解集在数轴上表示出来.16.若不等式组2112(-的整数解是关于x的方程2x-4=ax的解,求a的值.17.[2019·荆州]为拓宽学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生.现有甲、乙两种大型客车,它们的载客量和租金如表所示:2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆.(3)学校共有几种租车方案?最少租车费用是多少? |拓展提升|18.[2019·镇江]下列各数轴上表示的x的取值范围可以是不等式组2(2-1 -0的解集的是()图K7-219.[2019·重庆B卷]若数a使关于x的不等式组-21(--2(1-有且仅有三个整数解,且使关于y的分式方程1-2-11-=-3的解为正数,则所有满足条件的整数a的值之和是() A.-3 B.-2 C.-1 D.1【参考答案】1.D2.A3.A4.A [解析]解不等式5x +2>3(x -1),得x>-2;解不等式12x -1≤ -2x ,得x ≤ ; ∴不等式组的解集为-2<x ≤ .∴不等式组的非负整数解为0,1,2,3,4,这些非负整数解的和为10. 故选A .5.C [解析]解不等式2x +a ≤1 得:x ≤1-2, 不等式有两个正整数解,一定是1和2, 根据题意得:2≤1-2<3,解得:-5<a ≤-3. 故选C .6.A [解析]解不等式1 < 2-1,得x>8,当4m ≤8时,原不等式组无解,∴m ≤2 故选A . 7.C [解析] 设小华答对的题的个数为x 题,则答错或不答的题的个数为(20-x )题,可列不等式10x -5(20-x )>120,解得x>142,即他至少要答对的题的个数为15题.故选C . 8.C [解析]设该店购进甲种商品x 件,则购进乙种商品(50-x )件, 根据题意,得:0 100( 0- 200 10 20( 0- 0解得:20≤x<25,∵x 为整数,∴x=20,21,22,23,24, ∴该店进货方案有5种. 9.a<1 10.x<-311.a ≤-1 [解析]因为x=4是不等式ax -3a -1<0的解,所以4a -3a -1<0,a<1, 因为x=2不是不等式ax -3a -1<0的解, 所以2a -3a -1≥0 所以a ≤-1,所以a ≤-1.12.k ≤-2 [解析] 解2x +9>-6x +1得x>-1.解x -k>1得x>k +1.∵不等式组的解集为x>-1,∴k +1≤-1,解得k ≤-2.13.-2≤m<1 [解析]-2-1 ① 2 - 2- ② 解不等式①得:x>-2, 解不等式②得:x ≤2 ,∴不等式组的解集为-2<x ≤2,∵不等式组只有两个整数解, ∴0≤2 <1,解得:-2≤m<1,故答案为-2≤m<1.14.55 [解析] 设长为8x cm,高为11x cm,由题意可得20+8x +11x ≤11 解得:x ≤ .∴11x ≤ .15.解:(1)化简4(x -1)-12<x 得4x -4-12<x , ∴3x<92,∴x<2,∴原不等式的解集为x<2.(2)解不等式①,得:x<2. 解不等式②,得:x>1.所以,不等式组的解集为:1<x<2. 在数轴上表示如图所示:16.解:解不等式组得-1 -所以不等式组的解集为-3<x<-1, 则满足条件的整数解为-2,把x=-2代入方程2x -4=ax ,得-4-4=-2a ,解得a=4.17.[解析] (1)设参加此次研学活动的老师有x 人,学生有y 人,根据“若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生” 即可得出关于x ,y 的二元一次方程组,解之即可得出结论.(2)利用租车总辆数(至少)=师生人数÷ 结合每辆客车上至少要有2名老师,即可得出租车总辆数为8辆.(3)设租35座客车m 辆,则需租30座的客车(8-m )辆,根据8辆车的座位数不少于师生人数及租车总费用不超过3000元,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m 为正整数即可得出租车方案数.设租车总费用为w 元,根据租车总费用= 00×租用35座客车的数量+ 20×租用30座客车的数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题.解:(1)设参加此次研学活动的老师有x 人,学生有y 人, 依题意,得: 1 10 1 - 解得: 1 2答:参加此次研学活动的老师有16人,学生有234人.(2)8 [解析] ∵每辆车上至少要有2名老师,∴客车总数不超过8辆,又要保证所有师生都有车坐,∴客车总数不能小于2 1= 0 (取整为8)辆,综合起来可知租车总辆数为8辆.故答案为:8.(3)设租35座客车m 辆,则需租30座的客车(8-m )辆, 依题意,得: 0(8- 2 1 00 20(8- 000解得:2≤m ≤ 12.∵m 为正整数,∴m=2,3,4,5,∴共有4种租车方案. 设租车总费用为w 元,则w=400m +320(8-m )=80m +2560, ∵80>0,∴w 的值随m 值的增大而增大, ∴当m=2时,w 取得最小值,最小值为2720. ∴学校共有4种租车方案,最少租车费用是2720元. 18.B [解析]由x +2>a 得x>a -2,A .由数轴知x>-3,则a=-1,∴-3x -6<0,解得x>-2,与数轴不符;B .由数轴知x>0,则a=2,∴3x -6<0,解得x<2,与数轴相符合;C .由数轴知x>2,则a=4,∴7x -6<0,解得x<,与数轴不符;D .由数轴知x>-2,则a=0,∴-x -6<0,解得x>-6,与数轴不符;故选B . 19.A [解析] 第一部分:解一元一次不等式组 -2 1( - ①-2 (1- ② 解不等式①,得:x ≤ 解不等式②,得:x> 2 11. 因为有且仅有三个整数解, 所以三个整数解分别为:3,2,1. 所以2 11的范围为0≤2 11<1,解得-2. ≤a<3.第二部分:求分式方程1-2-11-=-3的解,得y=2-a ,根据分式方程的解为正数和分式方程的分母不能为零,得0 1 即 2-0 2- 1解得:a<2且a ≠1. 第三部分:根据第一部分a 的范围和第二部分a 的范围,找出a 的公共范围:-2. ≤a<2且a ≠1所以满足条件的整数a 为-2,-1,0. 它们的和为:-2-1+0=-3. 故选A .。

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用
设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180-m)个,依题 意,得 (60-50)m+(100-80)(180-m)≥2 900, 解得m≤70. 答:购进的“冰墩墩”挂件不能超过70个.
8.(2021·聊城)若-3<a≤3,则关于x的方程x+a=2解的取值范围为 ( A)
A.-1≤x<5 B.-1<x≤1 C.-1≤x<1 D.-1<x≤5
价格降价出售,则该护眼灯最多可降价 32 元. -x+a<2,
12.★(2022·达州)关于x的不等式组3x2-1≤x+1恰有3个整数解,则a 的取值范围是 2≤a<.
3
13.(2021·山西)下面是小明同学解不等式的过程,请认真阅读并完成 相应任务. 2x3-1>3x2-2-1 解:2(2x-1)>3(3x-2)-6 …… 第一步 4x-2>9x-6-6 ………………… 第二步 4x-9x>-6-6+2 ……………… 第三步 -5x>-10 ………………………… 第四步 x>2 ………………………………… 第五步
解:设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,依题意得
x+y=180,
x=80,
80x+50y=11 400,解得y=100.
答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.
(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件 售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且 至少盈利2 900元,求购进的“冰墩墩”挂件不能超过多少个?

解:解不等式①,得x>1, 解不等式②,得x<4, ∴该不等式组的解集为1<x<4.
2x≥x-1,① 6.(2022·天津)解不等式组x+1≤3, ② 请结合题意填空,完成本题的解答. (1)解不等式①,得 x≥-1 ; (2)解不等式②,得 x≤2 ; (3)把不等式①和②的解集在如图所示的数轴上表示出来:

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用

4.(2021·荆门第 15 题 3 分)关于 x 的不等式组1+32x≥x-1 恰有 2 个
整数解,则 a 的取值范围是 5≤5a≤<a<6. 6
2x≥x-1, ① 5.(2021·武汉第 17 题 8 分)解不等式组4x+10>x+1 ②请按下列步骤 完成解答. (1)解不等式①,得 x≥x≥--11; (2)解不等式②,得 x>x>--33;
3x-2≥1, (2021·通辽)若关于 x 的不等式组2x-a<5 有且只有 2 个整数 解,则 a 的取值范围是-1-<a1<a≤≤11..
【思路点拨】先求出不等式组的解集(用含字母 a 的代数式表示),再根 据不等式组有且只有 2 个整数解,可推出 a 的取值范围.
解含参不等式(组)的 8 个“母题”: (1)若不等式 ax>a 的解集是 x>1,则 a>0; (2)若不等式 x>a 的解集是 x>2,则 a=2;
第四节 一元一次不等式(组) 及其应用
命题点 1:一元一次不等式组的解法及解集表示(近 3 年考查 18 次)
x-1<-3, 1.(2020·黄石第 6 题 3 分)不等式组2x+9≥3 的解集是
(
C)
A.-3≤x<3
B.x≥-2
C.-3≤x<-2
D.x≤-3
x-4≤2(x-1),
某中学以体育为突破口,准备从体育用品商场一次性购买若干个足球和 篮球,用于学校球类比赛活动,每个足球的价格都相同,每个篮球的价 格也相同,已知篮球的单价比足球单价的 2 倍少 30 元,用 1 200 元购买 足球的数量是用 900 元购买篮球数量的 2 倍.
(1)足球和篮球的单价各是多少元? (2)根据学校实际情况,需一次性购买足球和篮球共 200 个,但要求足球 和篮球的总费用不超过 15 500 元,学校最多可以购买多少个篮球?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章自我测试 方程与不等式
一、选择题
1.若m >n ,下列不等式不一定成立的是( D )
A .m +2>n +2
B .2m >2n
C .m 2>n 2
D .m 2>n 2 2.(2018·桂林)下列数值中不是不等式5x ≥2x +9的解的是( D )
A .5
B .4
C .3
D .2
3.若⎩
⎪⎨⎪⎧x =2,y =-1是二元一次方程组的解,则这个方程组是( C ) A .⎩⎪⎨⎪⎧x -3y =52x +y =5 B .⎩
⎪⎨⎪⎧y =x -3y -2x =5 C .⎩⎪⎨⎪⎧2x -y =5x +y =1 D .⎩
⎪⎨⎪⎧x =2y x =3y +1 4.(2018·南平)不等式组⎩⎪⎨⎪⎧4x <6+x ,x +3>2
的解集是( A ) A .-1<x <2 B .x >-1
C .x <2
D .-2<x <1
5.已知一元二次方程x 2-4=0,则该方程的解为( D )
A .x 1=x 2=2
B .x 1=x 2=-2
C .x 1=-4,x 2=4
D .x 1=-2,x 2=2
6.不等式组⎩
⎪⎨⎪⎧x -3<0,x +1≥0的所有整数解的和是( C ) A .0 B .1
C .2
D .4
7.已知关于x 的分式方程x +k x +1-k x -1
=1的解为负数,则k 的取值范围是( B ) A .k >12或k ≠1 B .k >12
且k ≠1 C .k <12且k ≠1 D .k <12
或k ≠1 8.(2018·岳阳)岳阳市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是( B )
A .200x =350x -3
B .200x =350x +3
C .200x +3=350x
D .200x -3=350x
9.若关于x 的一元二次方程x 2+(k +3)x +2=0的一个根是-2,则另一个根是( C )
A .2
B .1
C .-1
D .0
10.△ABC 的一边长为5,另两边分别是方程x 2-6x +m =0的两根,则m 的取值范围是( B )
A .m >114
B .114
<m ≤9 C .114≤m ≤9 D .m ≤114
点拨:设三角形另两边分别为a ,b(a ≥b),根据题意得△=(-6)2-4m ≥0,解得m ≤9,a +b =6,ab =
m ,∵a <b +5,即a -b <5,∴(a -b)2<25,∴(a +b)2-4ab <25,即36-4m <25,∴m >114
,∴m 的取值范围是114
<m ≤9.故选B 二、填空题
11.一元二次方程x 2-3x -2=0的解是__x =2
. 12.(2018·牡丹江)某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为__100__元.
13.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对__12__道题,成绩才能在60分以上.
14.某种型号的电脑,原售价7200元/台,经连续两次降价后,现售价为4608元/台,则平均每次降价的百分率为__20%__.
15.已知⎩
⎪⎨⎪⎧x =5,y =7是方程kx -2y -1=0的解,则k 的值为__3__. 16.关于x 的不等式组⎩
⎪⎨⎪⎧x -a >0,1-x >0的整数解共有3个,则a 的取值范围是__-3≤a <-2__. 17.乘坐某种出租汽车,当行驶路程小于或等于3千米时,乘车费用都是10元(即起步价10元),当行驶路程大于3千米时,超过3千米的部分每千米收费2元,若一次乘坐这种出租车行驶4千米,则应付车费__12__元;若一次乘坐这种出租车付费20元,则乘车路程是__8__千米.
三、解答题
18.(2018·邵阳)解方程组:⎩
⎪⎨⎪⎧2x +y =4,x -y =-1. 解:⎩
⎪⎨⎪⎧x =1y =2
19.(2018·甘孜州)解分式方程:2-x x -3+13-x
=1. 解:x =2。

相关文档
最新文档