第13章 电磁场基本理论

合集下载

人教版高中物理必修第三册精品课件 第13章 电磁感应与电磁波初步 4.电磁波的发现及应用

人教版高中物理必修第三册精品课件 第13章 电磁感应与电磁波初步 4.电磁波的发现及应用
(3)用途不同:①无线电波用于通信和广播;②红外线用于加热和遥感技术;
③可见光用于照亮自然界和通信;④紫外线用于杀菌消毒;⑤X射线应用于
医学上的X光照相;⑥γ射线用于检查金属部件的缺陷,摧毁病变的细胞等。
特别提示
不同的电磁波由于具有不同的波长(频率),才具有不同的特性。
应用体验
【例2】 下列有关电磁波的特性和应用,说法正确的是( D )
B.只要空间某处的电场或磁场发生变化,就会在其周围产生电磁波
C.赫兹通过实验证实了电磁波的存在
D.空间某个区域有振荡变化的电场或磁场,能产生电磁波
解析 均匀变化的磁场在周围空间产生恒定的电场,A错误;均匀变化的电场
或磁场只能产生恒定的磁场或电场,不会产生电磁波,B错误;电磁波由麦克
斯韦预测,由赫兹通过实验证实,C正确;电磁波可以由振荡变化的电场或磁
(3)赫兹用实验验证了电磁波的存在。( √ )
(4)光在真空中的速度与电磁波在真空中的速度相同,光是一种电磁波。
( √ )
(5)电磁波具有能量,用来传递信息。( √ )
(6)无线电波的频率低于X射线的频率。( √ )
重难探究•能力素养全提升
探究点一
对麦克斯韦电磁场理论的理解
导学探究
如图所示的实验演示了电磁波的发射和接收,通过此实验证实了什么问题?
可以摧毁病变的细胞,C错误;紫外线和X射线都可以使感光底片感光,D
正确。
方法技巧
电磁波的特点和应用
我们不仅要牢记电磁波谱中的不同的电磁波(如红外线、紫外线、X射线、
γ射线)的特点和应用,还要记住电磁波谱中波长、频率的变化规律,如频率
越高,波长越短,穿透性越强;频率越低,波长越长,穿透性越弱。

电磁场的基本理论

电磁场的基本理论
反映了导体中电流的分布情况
I J S
U E l
1 RS l
欧姆定律的积分形式
U IR
表明任一点的电流密度 j 与电场强度 E 方向相同,大小成正比
某点处的电流密度只与该点的场强及该点处材料的导电性质有 关,与导体的形状、大小无关
反映了一段导线上的导电规律
电磁场与微波
—by H.Y.LIU
电流正负的规定: 与L绕行方向成右螺的电流取正 如图示的电流 I 1取正;电流I2 取负
电磁场与微波
—by H.Y.LIU
I SJ dS CB dl S ( B) dS ( B) dS 0 J dS
1 0 R
B dS 0
S

S
B dS BdV 0
V
• 磁通连续性原理的微分形式
• 磁感应强度B是一个无源场 (散度源)
B 0
电磁场与微波
—by H.Y.LIU
因为磁感线是闭合曲线,穿入封闭曲面的磁感线条数和穿出封闭 曲面的磁感线条数一定相等,故通过封闭曲面的磁通量恒为零。
0 Ir ˆ e 2 2 a 矢量形式 B I e ˆ 0 2r
a
0 Ir B 2a 2
B
z’
R
0 I 2r
I
l 2
r0
ra ra
电磁场与微波
—by H.Y.LIU
Example2: 试求载流无限长同轴电缆产生的磁感应强度。
Solution:
设在电场力的作用下,电荷 在 t 时间内位移了 l
电场力做功: W El
El 功率: P vE J E t

大学物理电磁场的基本理论

大学物理电磁场的基本理论

大学物理电磁场的基本理论电磁场是物质世界中最基本的物理现象之一,也是大学物理课程的重要内容之一。

电磁场理论的研究,对于揭示物质世界的运动规律和电磁波的传播机制具有重要意义。

本文将介绍大学物理中关于电磁场的基本理论,包括电场、磁场的概念与本质、电磁场的相互作用以及电磁波的特性。

一、电场的概念与本质电场是由电荷所产生的一种物理量,它描述了在电荷存在的空间中,其他电荷所受到的力的情况。

电场的概念最早由法拉第提出,通过他的实验肯定了电场的存在。

根据库伦定律,电场强度 E 的大小与电荷 q 之间成正比,与距离 r的平方成反比。

即 E ∝ q/r^2。

这意味着电场是一种场量,它在空间中的分布由电荷的性质和位置确定。

在电场中,电荷会受到力的作用,力的大小与电场的强度有关,方向则与电荷的性质有关。

电场的本质是电荷之间的相互作用。

二、磁场的概念与本质磁场是由磁荷或运动电荷所产生的一种物理量,它描述了在磁荷存在的空间中,其他运动电荷所受到的力的情况。

磁场的概念最早由奥斯特瓦德提出,通过他的实验证实了磁场的存在。

磁场的表现形式有磁感应强度 B 和磁场强度 H。

磁感应强度 B 描述了磁场对运动电荷的作用,磁场强度 H 描述了磁场对磁荷的作用。

根据洛伦兹力定律,运动电荷在磁场中会受到洛伦兹力的作用。

磁场的本质是磁荷之间的相互作用和运动电荷在磁场中受到的洛伦兹力。

三、电磁场的相互作用电场和磁场之间存在着紧密的联系,它们是相互依存的物理量。

当电流通过导线时,周围会形成磁场,这种现象被称为安培环路定律。

根据安培环路定律,通过一条闭合回路的磁场强度与这条回路内通过的电流成正比。

根据法拉第电磁感应定律,变化的磁场可以感应出电场。

即当磁场通过一个闭合回路时,会在回路上产生感应电动势和电流。

这种现象被称为法拉第电磁感应。

电磁感应的经典实验是法拉第的环路实验,通过改变磁场的强度或方向,可以观察到感应电流的变化。

四、电磁波的特性电磁波是由电场和磁场相互耦合形成的一种能量传播的方式。

高中物理必修三第十三章电磁感应与电磁波初步重点知识点大全(带答案)

高中物理必修三第十三章电磁感应与电磁波初步重点知识点大全(带答案)

高中物理必修三第十三章电磁感应与电磁波初步重点知识点大全单选题1、隐形飞机的原理是在飞机研制过程中设法降低其可探测性,使之不易被敌方发现、跟踪和攻击。

根据你所学的物理知识,判断下列说法正确的是()A.运用隐蔽色涂层,无论距你多近的距离,你也不能看到它B.使用吸收雷达电磁波的材料,在雷达屏幕上显示的反射信息很小、很弱,很难被发现C.使用吸收雷达电磁波涂层后,传播到复合金属机翼上的电磁波在机翼上不会产生感应电流D.主要是对发动机、喷气尾管等因为高温容易产生紫外线辐射的部位采取隔热、降温等措施,使其不易被对方发现和攻击答案:B分析:根据题中物理情景可知,本题考查雷达,根据雷达工作原理的规律,运用障碍物反射电磁波的特性等,进行分析推断。

A.雷达向外发射电磁波,当电磁波遇到飞机时就要发生反射,雷达通过接收反射回来的电磁波,就可以测定飞机的位置,飞机运用隐蔽色涂层后还要反射电磁波,故A错误;B.使用吸收雷达电磁波的材料,可以减少电磁波的反射,故B正确;C.使用吸收雷达电磁波涂层后,机翼为导体,根据电磁感应知识可知,传播到复合金属机翼上的电磁波在机翼上仍会产生感应电流,故C错误;D.发动机、喷气尾管等采取隔热、降温等措施后仍会反射电磁波,故D错误。

故选B。

2、在“探究感应电流的规律”实验中,电路连接如图所示,合上开关,让铁芯从副线圈上端静止释放,并穿出线圈,已知铁芯长度与副线圈长度相同,则电流传感器采集到的电流图像是下图中的()A.B.C.D.答案:B让铁芯从副线圈上端静止释放,并穿出线圈,铁芯向下速度越来越大,则穿过副线圈的磁通量变化越来越快,线圈中的磁通量先增加后减少因此感应电流会变化方向,感应电流变大,ACD错误,B正确。

故选B。

3、下列关于电场线和磁感线的说法中正确的是()A.任意两条磁感线不相交,两条电场线也不相交B.电场线和磁感线都是闭合曲线C.电场线和磁感线都是电场或磁场中实际存在的线D.电场线越密的地方,同一试探电荷所受的电场力越小答案:AA.任意两条磁感线一定不相交,电场线也不相交,否则交点处有两个方向,违反唯一性的特点,故A正确;B.电场线是不闭合曲线,而磁感线是闭合的曲线,故B错误;C.电场线和磁感线都是假想的曲线,并不存在,故C错误;D.电场线越密的地方,电场强度越大,由公式F=qE知同一试探电荷所受的电场力越大,故D错误。

电磁场基本定理

电磁场基本定理

电磁场基本定理电磁场基本定理是在基本电磁学中的核心定理,它把从处理电磁场的四个基本方程式中衍生出来的许多定理聚集起来,它在电磁学理论研究,分析和设计电磁学设备方面都起到了重要作用。

历史上,电磁场基本定理是由英国物理学家彼得布拉克马斯克首先提出的,其它著名的物理学家如哈勃也证明了这一定理。

电磁场基本定理指出,在一个二维场中,电磁场会满足以下公式:(E+B)=0其中,E表示电场(Electric Field),B表示磁场(Magnetic Field),表示对电场和磁场进行矢量分量的求和。

这表明,在某一点处,电场和磁场的矢量分量之和为零。

另外,电磁场基本定理还指出,只要场内存在闭合的电流,就可以认定满足以下公式:×(E+B)=0以上公式表明,在任何一点处,电场与磁场叉乘之和为零。

同时也可以看出,电流断开之后,磁场不能随时间变化,也就是说,磁场不会改变方向。

电磁场基本定理是物理学家们探索电磁场的最基础理论,是探索电磁学和电磁物理学的有力工具。

电磁场基本定理是传统电磁学理论模型的根基,它可以用来了解电磁场的性质、变化规律和规律,以及其他与电磁场相关的研究。

首先,电磁场的研究需要通过研究电磁场的宾夕法尼亚方程来确定电磁场的性质。

宾夕法尼亚方程也可以用于描述电磁场的密度及其变化,它定义了该场中电磁场的强度及其变化规律,从而探究了电磁场影响物理现象的原因和过程。

其次,电磁场基本定理也可以用来分析电磁场的空间表达以及电磁场与特定物体或热体的相互作用。

通过这些分析,可以证明电磁场受外界物体的影响而发生改变,从而推导出电磁波的传播以及外界介质的电磁性质。

此外,电磁场基本定理还可以用来研究电磁场的变换及其相关理论,推导出电磁场变换的规律,从而为电磁学方面的实验研究提供更多信息。

比如,实验研究可以通过观察电流的变化来观察电磁场的变化,这样可以更为准确地观察电磁学微观现象。

最后,电磁场基本定理还用于分析电磁学装置的设计方案,为科学研究提供依据,根据研究成果来设计、建造和调试电磁设备。

第十三章 磁路和铁芯线圈

第十三章 磁路和铁芯线圈
《电路分析基础》
P37-8 第13章 磁路和铁心线圈
1.磁通连续性原理
磁通连续性原理是磁场的一个基本性质,其内容是: 在磁场中,磁感应强度对任意闭合面的面积分恒等于零。
由于磁感应强度线总是闭合的空间曲线,显然,穿进 任一闭合面的磁通恒等于穿出此面的磁通。上式成立与磁 场中的介质的分布无关。
2.安培环路定律 安培环路定律(Ampere’s circuital law)是磁场又一基本 性质。其内容是:在磁场中,磁场强度沿任意闭合路径的 线积分等于穿过该路径所包围的全部电流的代数和。 同样应该指出,上式成立与磁场中的介质的分布无关。
铁磁物质铁、镍、钴以及铁氧体(又称铁淦氧)等都是构 成磁路的主要材料,它们的磁导率都比较大,且与所在磁场 的强弱以及该物质的磁状态的历史有关,其磁导率不是常量。 本节讨论铁磁物质的磁化过程。
铁磁物质的磁化性质一般由磁化曲线。磁路中的磁场是 由电流产生的。电流愈大,磁场强度就愈大。感应强度相当 于电流在真空中所产生的磁场和物质磁化后的附加磁场的叠 加,所以,曲线表明了物质的磁化效应。
《电路分析基础》
P37-7 第13章 磁路和铁心线圈
在国际单位制(SI)中,由后面介绍的安培环路定律可 知,磁场强度的单位是安/米,符号为A/m。
磁导率(permeability)是反映物质导磁能力或物质被磁 化能力的物理量。定义为
B H
它的单位在国际单位制中是亨/米,符号为H/m。为了 比较物质的导磁率,选用真空作为比较的基准。实验指出, 真空的导磁率是常数。把其它物质的磁导率与真空磁导率 的比称作该物质的相对磁导率。 大多数铁磁材料的磁导率不是常数,所以,在磁路中 磁场强度和磁感应强度的关系为非线性关系。 二、磁场的基本性质
Um Hl

电磁场概论

电磁场概论

电磁场是一种物理场,它由电荷和电流所产生的电场和磁场组成。

电场描述了电荷间
的相互作用,而磁场描述了电流所产生的效应。

电场是指存在于空间中的电荷周围的力场,可以用电场强度来描述。

电场强度指单位
电荷所受到的力。

在真空中,电场强度与电荷的距离成反比例关系。

电荷之间的相互
作用力可以通过库仑定律来计算,该定律表明,两个电荷之间的相互作用力与它们之
间的距离的平方成反比。

磁场是指存在于空间中的电流周围的力场,可以用磁感应强度来描述。

磁感应强度指
在磁场中,单位长度电流所受到的力。

磁感应强度的大小和方向与电流、距离和方向
有关。

在真空中,电流元产生的磁场可以通过安培环路定理来计算。

电磁场的行为可以通过麦克斯韦方程组来描述,这组方程是描述电磁现象的基本方程。

麦克斯韦方程组包括四个方程,分别描述了电场和磁场的产生、传播和相互作用的规律。

这些方程可以用来解释许多物理现象,例如电磁波、光、电磁感应等。

电磁场在许多领域都有广泛的应用,例如通讯、电力、电子技术、医学成像等。

对电
磁场的深入理解和掌握可以为这些领域的发展提供重要的支持和推动。

物理学电磁学基础(知识点)

物理学电磁学基础(知识点)

物理学电磁学基础(知识点)电磁学是物理学中的重要分支,研究电荷之间的相互作用及其产生的电磁现象。

它与我们日常生活息息相关,如电力、电子设备、无线通信等都离不开电磁学知识。

本文将介绍电磁学的基础知识点,包括电磁场、电磁波以及电磁感应等。

一、电磁场电磁场是一种在空间中存在的物理场,由电荷和电流产生。

电磁场有两个基本特点:电场和磁场。

1. 电场电场是由电荷产生的一种物理场,描述了电荷对其他电荷的作用力。

电场的性质由库仑定律描述,即两个电荷之间的作用力正比于它们的电荷量,反比于它们之间的距离的平方。

电场可以通过电场线表示,它们是沿着电场中的力线方向的连续曲线。

2. 磁场磁场是由电流产生的一种物理场,描述了电流对其他电流的作用力。

磁场的性质由安培定律描述,即通过导线的电流产生的磁场与电流成正比,与距离成反比。

磁场可以通过磁力线表示,它们是沿着磁场中的力线方向的连续曲线。

二、电磁波电磁波是一种由变化的电场和磁场相互作用而产生的波动现象。

电磁波具有电场和磁场的振荡,并在空间中传播。

根据波长的不同,电磁波可分为不同的类型,如射线、微波、红外线、可见光、紫外线、X射线和γ射线等。

电磁波的速度是光速,即30万千米/秒。

电磁波在我们生活中有广泛的应用,如无线通信、广播电视、雷达、医疗影像等。

其中,可见光是我们能够感知的,它的波长范围约为380纳米到760纳米。

三、电磁感应电磁感应是指当导体中的磁场发生变化时,在导体中产生感应电动势的现象。

根据法拉第电磁感应定律,当导体与磁场相对运动或者磁场的强度发生变化时,在导体中会产生感应电动势。

感应电动势的大小与变化速率有关。

在电磁感应中,也可以根据磁场变化产生的电动势来制造电动机和发电机等设备。

电动机利用电磁感应产生的力来将电能转化为机械能,而发电机则利用机械能转化为电能。

总结电磁学是物理学非常重要的分支,涉及到了电磁场、电磁波以及电磁感应等多个知识点。

了解电磁学的基础知识,有助于我们更好地理解和应用电磁现象。

电磁场知识点总结

电磁场知识点总结

电磁场知识点总结导论电磁场是物质世界中的一种基本力场,是描述电荷和电流相互作用的力学场。

它由电磁感应力、电场和磁场组成,是电磁学的重要研究对象。

在自然界中,电磁场无处不在,它影响着我们周围的一切物质和能量的运动,包括自然界中的各种现象和人类社会活动中的各种应用,因此深入了解电磁场知识对我们理解世界、应用科学技术都具有重要意义。

静电场静电场是在没有电荷和电流运动的情况下,由电荷产生的电场。

根据库伦定律,电荷之间的相互作用力与它们之间的距离成反比,与它们之间的电荷量成正比。

在静电场中,正电荷和负电荷之间的相互作用力呈现为静电引力和静电斥力。

由于电荷是守恒量,因此静电场中的电荷分布和电场的性质是可以通过电荷守恒定律来推导和分析的。

电场电场是描述电荷之间相互作用的力学场,它的产生是由电荷空间分布所导致的。

电场的作用是对电荷施加力,它遵循叠加原理和叠加定律,即若有多个电荷在同一点产生电场,则它们产生的电场将叠加,而在空间中任意一点的电场强度和方向是由该点电荷所产生的电场以及其他电荷所产生的电场叠加得到的。

在电场中,对于点电荷来说,其电场强度与电荷量成正比,与电荷与观察点的距离成反比;对于均匀分布的带电体系来说,其电场强度与其电荷量和分布形式相关,可以用高斯定律进行求解;对于非均匀分布的电荷,可以通过积分来求解其电场分布。

电场的性质1. 空间叠加性:电场由多个电荷叠加产生,因此电场遵循空间叠加原理。

2. 叠加原理:叠加原理指出在相同空间中的不同电荷所产生的电场可以进行叠加求和。

3. 电场强度:电场强度是描述电场的物理量,它表示单位正电荷在电场中所受到的力。

4. 电场线:电场线是描述电场方向和强度分布的线,它遵循的规则是电场线与电场方向平行,电场线的密度与电场强度成正比。

5. 高斯定律:高斯定律是描述由带电体系所产生的电场的性质的定律,它可以用来计算均匀分布的电荷所产生的电场。

6. 电场势能:电场势能是电荷在电场中由于位置变化而产生的势能,它与电荷的电压和距离的平方成正比。

电磁场课件

电磁场课件

06
电磁波的传播与散射
电磁波的传播特性
电磁波在真空中传播
电磁波可以在真空中传播,不受介质的影响 。
电磁波的传播速度
电磁波的传播速度等于光速,不受频率和波 长的影响。
电磁波的偏振
电磁波具有偏振现象,即电场和磁场的方向 在传播过程中会发生改变。
大气层对电磁波的影响
大气层对可见光的影响
大气层对可见光的透射性较好,因此我们可以直接看到太阳和星星。
详细描述
塞贝克效应是由于两种材料的热膨胀系数不同,使得回路中的热电势发生变化,从而产生了塞贝克电 流。利用塞贝克效应可以制造出一些具有温度控制功能的电子器件,如塞贝克发电机和塞贝克热电机 等。
磁致伸缩效应
总结词
磁致伸缩效应是指铁磁性材料在磁场作用下发生长度或体积的变化现象。
详细描述
磁致伸缩效应是由于铁磁性材料内部的磁畴结构发生变化而引起的。利用磁致伸缩效应可以制造出一些具有特殊 性能的电子器件,如磁致伸缩换能器和磁致伸缩传感器等。
性质 时变电磁场具有周期性变化的性 质,并且满足法拉第电磁感应定 律和麦克斯韦方程组。
应用 时变电磁场在日常生活中有广泛 应用,如交流电、电磁波等。
02
电磁场基本性质
麦克斯韦方程组
01
02
03
静电场方程
描述电荷在空间中产生的 电场强度和电势分布。
恒定磁场方程
描述电流在空间中产生的 磁场强度和磁势分布。
光子与原子相互作用
光子与原子相互作用时,会使原子发 生能级跃迁,放出或吸收能量。
04
电磁场的应用
无线通信
无线电广播与电视
卫星通信
利用电磁波传输声音和图像信号,实 现无线广播和电视通信。

电磁场的基本理论

电磁场的基本理论

电磁场的基本理论电磁场理论是描述电场和磁场相互作用的基本理论,它是现代物理学的核心之一。

在日常生活中,我们经常接触到电磁现象,如电视、电磁炉、手机、电脑等设备都是利用电磁场产生的。

因此,了解电磁场的基本理论是很有必要的。

1. 电磁场的起源电磁场的起源可以追溯到19世纪初,当时科学家们发现电流会在磁场中运动。

这个现象被称为电动势,意味着磁场和电场之间存在着某种关系。

于是,人们开始深入研究这种现象,并发现电场和磁场之间存在着密切的关系,它们互相影响、互相作用。

2. 麦克斯韦方程组电磁场理论的核心是麦克斯韦方程组。

麦克斯韦方程组描述了电磁场的本质和性质,包括电场和磁场如何相互作用以及它们的运动规律。

麦克斯韦方程组分为四个方程:高斯定律、安培定律、法拉第电磁感应定律和电磁感应自我感应定律。

高斯定律描述了电场如何受到电荷分布的影响,安培定律描述了磁场如何受到电流的影响,法拉第电磁感应定律描述了磁场如何生成电场,电磁感应自我感应定律描述了电流如何在磁场中运动。

这些定律互相关联,共同描述了电磁场的本质和性质。

3. 电磁波的产生和传播电磁波是电磁场的一种表现形式,是由电场和磁场相互作用产生的。

电磁波可以传播并携带能量,具有很高的穿透力和广泛的应用价值。

电磁波的产生和传播取决于电磁波方程,这是麦克斯韦方程组的一部分。

电磁波方程描述了电场和磁场的偏导数之间的关系,说明了电磁波如何在自由空间中传播。

由于电磁波的传播速度达到了光速,因此电磁波也被称为光波。

电磁波可以被分为很多不同的频率,包括无线电波、微波、红外线、可见光、紫外线、 X射线和γ射线。

4. 应用领域电磁场理论在现代科学和工程中扮演着重要的角色。

它广泛应用于电子技术、通信技术、能源和材料科学、医学、生物学等领域。

例如,在电子技术中,电磁场理论被用来设计电路和电子设备。

在通讯领域,电磁场理论被用来设计无线电设备和卫星通信系统。

在医学和生物学中,电磁场理论被用来诊断疾病和治疗病人。

电磁场及电磁波基础知识总结

电磁场及电磁波基础知识总结

第一章一、矢量代数 A •B =AB cos θA B⨯=ABe AB sin θ A •(B ⨯C ) = B •(C ⨯A ) = C •(A ⨯B )()()()C A C C A B C B A ⋅-⋅=⨯⨯二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++le e e d x y z矢量面元=++Se e e x y z d dxdy dzdx dxdy体积元d V = dx dy dz 单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ体积元dz d d dVϕρρ= 单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系矢量线元d l = e r d r + e θ r d θ + e ϕ r sin θ d ϕ 矢量面元d S = e r r 2sin θ d θ d ϕ体积元ϕθθd drd r dV sin 2= 单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r rr θϕθϕϕθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A S Sd Φ 0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γ maxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x zA A A x y z11()zA A A zϕρρρρρϕ∂∂∂∇=++∂∂∂⋅A 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕxy z ∂∂∂∇⨯=∂∂∂e e e A x y zx y z A A A1z zz A A A ρϕρϕρρϕρ∂∂∂∇⨯=∂∂∂e e e A21sin sin rr zr rA r A r A ρϕθθθϕθ∂∂∂∇⨯=∂∂∂e e e A4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SV d dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u llcos cos cos ∂∂∂∂=++∂∂∂∂P uu u ulx y zαβγ cos ∇⋅=∇e l u u θ grad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u uu x y z1∂∂∂∇=++∂∂∂e e e zu u uu zρϕρρϕ 11sin ∂∂∂∇=++∂∂∂e e e ru u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A 2. 无旋场 ()0∇⨯∇=u -u =∇F六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zy y y x x xz z z x y z u u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu z A A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ 1()()4''∇⨯'='-⎰F r A r r r V dV π第二章一、麦克斯韦方程组 1. 静电场 真空中:001d ==VqdV ρεε⋅⎰⎰SE S (高斯定理)d 0⋅=⎰lE l 0∇⋅=E ρε0∇⨯=E场与位:3'1'()(')'4'V dV ρπε-=-⎰r r E r r r r ϕ=-∇E 01()()d 4πV V ρϕε''='-⎰r r |r r |介质中:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ 0∇⨯=E极化:0=+D E P ε e 00(1)=+==D E E E r χεεεε ==⋅P e PS n n P ρ =-∇⋅P P ρ2. 恒定电场电荷守恒定律:⎰⎰-=-=⋅Vsdv dtd dt dq ds J ρ 0∂∇⋅+=∂J tρ传导电流与运流电流:=J E σ ρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0⋅=⎰J l l0∇⋅=J 0∇⨯J =3. 恒定磁场 真空中:0 d ⋅=⎰B l lI μ (安培环路定理)d 0⋅=⎰SB S 0∇⨯=B J μ0∇⋅=B场与位:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ =∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ介质中:d ⋅=⎰H l lI d 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:=-BH M μ m 00(1)=+B H =H =H r χμμμμ m =∇⨯J M ms n =⨯J M e4. 电磁感应定律() d d in lCdv B dldt ⋅=-⋅⨯⋅⎰⎰⎰SE l B S +)(法拉第电磁感应定律∂∇⨯=-∂BE t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S l St∂∇⨯=+∂DH J t 位移电流:d =DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S lS l SS V Sl tl t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J BE D B t t ρ ()()()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性em e m em e e m m e e m m m e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H DB H J E J D B D B t t &tt ρρ m e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B tt ρρ三、边界条件1. 一般形式12121212()0()()()0n n S n Sn σρ⨯-=⨯-=→∞⋅-=⋅-=()e E E e H H J e D D e B B2. 理想导体界面和理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n Sn S n ρ 12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第三章一、静电场分析1. 位函数方程与边界条件 位函数方程:220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ 111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qCφ两导体间的电容:=C q /U 任意双导体系统电容求解方法:3. 静电场的能量N 个导体: 112ne i ii W q φ==∑ 连续分布: 12eVW dV φρ=⎰电场能量密度:12ω=⋅D E e二、恒定电场分析1.位函数微分方程与边界条件位函数微分方程:20∇=φ 边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩n n φφφφεε 12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ2. 欧姆定律与焦耳定律 欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E lE l J S E S SSUR G Id d σ (L R =σS ) 4. 静电比拟法:G C —,σε—2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε 2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G Uσ三、恒定磁场分析1. 位函数微分方程与边界条件矢量位:2∇=-A J μ 12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇= 211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感2211⋅⋅===⋅⋅⎰⎰⎰⎰D SE S E lE lS S d d q C Ud d ε定义:d d ⋅⋅===⎰⎰B S A l SlL IIIψ=+i L L L3. 恒定磁场的能量N 个线圈:112==∑Nmj j j W I ψ 连续分布:m 1d 2=⋅⎰A J V W V 磁场能量密度:m 12ω=⋅H B第四章一、边值问题的类型(1)狄利克利问题:给定整个场域边界上的位函数值()=f s φ(2)纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ(3)混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ (4)自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。

第十三章 电磁感应与电磁波初步练习题附答案

第十三章 电磁感应与电磁波初步练习题附答案

第十三章电磁感应与电磁波初步练习题一、单选题1.在匀强磁场中有一个闭合金属线框如图所示,它可以绕OO 轴转动,开始时金属线框与磁感线平行,则(C)A.当金属线框平面与磁感线平行时,穿过线框的磁通量最大B.当线框平面与磁感线垂直时,穿过线框的磁通量为零C.当线框平面与磁感线垂直时,穿过线框的磁通量最大D.当线框平面与磁感线成任意角度时,穿过线框的磁通量变为零2.关于电流周围的磁感线分布情况,图中哪一个是正确的是(A)A.B.C.D.3.关于磁感线和电场线的说法中正确的是(B)A.磁感线是人们为了研究问题的方便而假想的曲线,而电场线是真实存在的B.磁感线是封闭曲线,电场线不是封闭曲线C.磁感线是从N极出发S极终止,电场线是从正电荷出发负电荷终止D.磁感线是磁场中铁屑排列成的曲线,而电场线是点电荷在电场中运动的轨迹4.选项图所示的条件下,闭合矩形线圈能产生感应电流的是(磁场范围足够大)()A.B.C.D.5.关于电磁波及电磁波谱,下列说法正确的是(D)A.雷达是用X光来测定物体位置的设备B.医学检查中的拍片实际上是让患者接受一定剂量的γ射线照射C.用红外线照射时,大额钞票上用荧光物质印刷的文字会发出可见光D.变化的电场可以产生磁场6.下列各说法中正确的是(D)A.由B = FIL可知,磁场中某点的磁感应强度B与磁场力F成正比,与电流元IL成反比B.通电导线在不受磁场力的地方,磁感应强度一定为零C.试探电荷在不受电场力的地方,电场强度不一定为零D.一小段长为L = 0.5m的导线放在匀强磁场中,当通过的电流I = 2A时,受到的磁场力为4N,则该处的磁感应强度大小可能为6T7.某区域存在如图所示的磁场,其中小圆面积为S1,内有垂直纸面向外的磁场,磁感应强度的大小为B1,大圆面积为S2,大圆与小圆之间有垂直纸面向里的磁场,磁感应强度的大小为B2,已知B2>B1,S2>2S1,则该区域内磁通量Φ的大小等于(D)A.(B1+B2)S2B.(B2-B1)S2C.B2S2-B1S1D.B2S2-(B1+B2)S18.下列关于磁场、电场及电磁波的说法中正确的是(C)A.赫兹提出电磁场理论,并通过实验证实了电磁波的存在B.只要空间某处的电场或磁场发生变化,就会在其周围产生电磁波C.不同电磁波具有不同的波长,红外线的波长大于可见光的波长。

电磁场的基本理论

电磁场的基本理论

电磁场的基本理论电磁场是指存在于空间中的电场和磁场相互作用的物理现象。

其基本理论由麦克斯韦方程组所描述,这是一组描述电磁现象的偏微分方程。

本文将介绍电磁场的基本概念、电磁波的传播以及麦克斯韦方程组的基本原理。

一、电磁场的基本概念电磁场是由电荷和电流引起的物理现象,其中电荷产生电场,电流产生磁场。

电场和磁场在空间中具有能量、动量和角动量,它们的相互作用可以相互转化。

电磁场的基本特性包括场强、场线和场矢量。

1. 场强:电场和磁场在空间中具有场强,用于描述场的强弱。

电场的场强由电荷数和距离决定,磁场的场强由电流和距离决定。

2. 场线:电磁场可以用场线表示,场线是指在空间中描绘场强分布的曲线。

电场的场线是由正电荷指向负电荷,磁场的场线则是环绕电流的闭合曲线。

3. 场矢量:电场和磁场都可以用矢量表示,电场矢量用E表示,磁场矢量用B表示。

场矢量的方向与场强方向相同。

二、电磁波的传播电磁波是由电场和磁场相互耦合形成的波动现象。

根据麦克斯韦方程组的解析解,电磁波以光速$c$传播,且在真空中传播时的速度为$c$。

电磁波在介质中的传播速度取决于介质的折射率。

1. 电磁波的性质:电磁波具有双重性质,既表现出波动性,也表现出粒子性。

根据波粒二象性的原理,电磁波可以用粒子模型的光子来描述。

2. 频率和波长:电磁波由频率和波长来描述,频率用$\nu$表示,波长用$\lambda$表示。

频率和波长之间的关系由$c=\lambda\nu$给出。

3. 光的谱线:电磁波在不同频率范围内对应着不同的光谱线。

可见光波长范围在400纳米到700纳米之间,红光、橙光、黄光、绿光、蓝光和紫光分别对应着不同的频率。

三、麦克斯韦方程组的基本原理麦克斯韦方程组是描述电磁场的基本方程,包括两条电场方程和两条磁场方程。

1. 麦克斯韦第一和第二方程:这两条方程描述了电场和磁场的生成和变化。

麦克斯韦第一方程,也称为高斯定律,表示电场线可以从正电荷发出或进入负电荷。

高中物理电磁场理论概述

高中物理电磁场理论概述

高中物理电磁场理论概述在物理学中,电磁场是指由电荷或电流所产生的物理现象,具有电场和磁场的特性。

电磁场理论是高中物理学中的重要内容之一,它描述了电荷如何相互作用,以及电场和磁场如何互相影响。

本文将对高中物理电磁场理论做一个概述。

电场是由电荷产生的力场,可以用来描述电荷之间相互作用的力。

根据库仑定律,带电粒子之间的作用力与它们之间的距离成反比。

电场强度是电场中单位正电荷所受到的力的大小,用符号E表示。

它的单位是牛顿/库仑。

电场遵循叠加原理,即多个电荷所产生的电场可以通过矢量相加来得到总的电场。

磁场是由电流产生的力场,可以用来描述电流与磁力之间的相互作用。

磁场的单位是特斯拉(T),它的方向由安培右手定则给出。

在磁场中,带电粒子会受到洛伦兹力的作用,这是由磁场和电荷运动速度的叉积决定的。

电场和磁场有一个重要的联系,即它们可以相互转化。

根据法拉第定律,变化的磁场可以产生感应电场,而变化的电场可以产生感应磁场。

这种现象被称为电磁感应,是电动机和发电机等设备的基础原理。

麦克斯韦方程组是描述电磁场的基本定律。

麦克斯韦方程组包括四个方程,分别是高斯定律、高斯磁定律、法拉第电磁感应定律和安培环路定律。

这些方程描述了电场和磁场如何随时间和空间变化,以及它们之间的相互作用。

除了以上基本概念和定律,电磁场理论还涉及一些重要的应用。

例如,电磁波是电场和磁场以垂直于传播方向振动的形式传播的能量。

我们熟知的无线电波、微波、可见光等都是电磁波。

另外,静电场和恒定磁场对于材料的电输运、电荷分布、电容器和电感器的行为等方面的影响也是电磁场理论的重要应用之一。

总结起来,高中物理电磁场理论概述了电场和磁场的基本概念、定律和相互关系。

通过学习电磁场理论,我们可以理解电荷的相互作用、电流与磁力的关系以及电磁波等重要现象。

同时,电磁场理论也为我们理解和应用电磁场在各个领域中的作用提供了基础。

高中物理人教必修三第13章第4节 能量量子化 讲义

高中物理人教必修三第13章第4节 能量量子化 讲义

5 能量量子化1.了解热辐射和黑体的概念.2.知道能量子的概念,知道普朗克常量.3.了解能级的概念.一、热辐射1.概念:一切物体都在辐射电磁波,且辐射与物体的温度有关,所以叫热辐射.2.特点:温度升高时,热辐射中波长较短的成分越来越强.3.黑体:能够完全吸收入射的各种波长的电磁波而不发生反射.二、能量子1.概念:振动着的带电微粒的能量只能是某个最小能量值的整数倍,这个最小的能量值ε叫能量子.2.大小:ε=hν,其中h=6.63×10-34 J·s.3.爱因斯坦光子说:光是由一个个不可分割的能量子组成,能量大小为hν,光的能量子称作光子.三、能级原子的能量是量子化的,量子化的能量值叫能级.原子从高能级向低能级跃迁时放出光子,光子的能量等于前后两个能级之差.一、热辐射能量子1.普朗克的能量子概念(1)能量子:普朗克认为微观世界中带电粒子的能量是不连续的,只能是某一最小能量值的整数倍,当带电粒子辐射或吸收能量时,也只能以这个最小能量值为单位一份一份地吸收或辐射,这样的一份最小能量值ε叫作能量子,ε=hν,其中h叫作普朗克常量,实验测得h=6.63×10-34 J·s,ν为电磁波的频率.(2)能量的量子化:在微观世界中能量不能连续变化,只能取分立值,这种现象叫作能量的量子化.量子化的基本特征就是在某一范围内取值是不连续的,即相邻两个值之间有一定距离.2.爱因斯坦的光子说光不仅在发射和吸收时能量是一份一份的,而且光本身就是由一个个不可分割的能量子组成的,这些能量子被称为光量子,简称光子.频率为ν的光子的能量为ε=hν.二、能级1.原子的能量是量子化的,量子化的能量值叫能级.2.原子从高能级向低能级跃迁时放出光子,光子的能量等于前后两个能级之差.3.放出的光子的能量是分立的,所以原子的发射光谱是一些分立的亮线.1.在物理学发展的过程中,许多科学家作出了突出贡献,下列说法正确的是()A.爱因斯坦提出了能量子假说B.麦克斯韦最早提出用电场线描述电场C.赫兹最早用实验证实了电磁波的存在D.法拉第发现了电流的磁效应2.以下宏观概念中,哪些是“量子化”的()A.物体的质量B.物体所受的力C.导体中的电流D.东北虎的个数3.已知温度T1>T2,能正确反映黑体辐射规律的图像是()A.B.C.D.4.关于量子,下列说法中正确的是()A.一种高科技材料B.研究微观世界的一个概念C.运算速度很快的计算机D.计算机运行的一个二进制程序5.在实验室或工厂的高温炉子上开一小孔,小孔可看作黑体,由小孔的热辐射特性,就可以确定炉内的温度。

电磁场的基本理论

电磁场的基本理论

B外 0 H 外
0 0 R 2 d E
2r2 dt
4.64 10 6 T
二、 麦克斯韦方程组的积分形式
通量 E E静电 E感生 D D静电 D感生
B B稳恒 B位移 H H传导 H位移
定义:单位时间内通过垂直于传播方向的单 位面积的辐射能。
dW wdV wdAvdt
1 1 2 w we wm E H 2 2 2
v
dW S wv dAdt
S wv
——能流密度
v
1

, E H
1 S E 2 H 2 2 1
d D I d jd dS S dS dt t S S
(5)全电流概念:
I全 I传导 I 运流 I 位移
H dl I 全
L
(6)位移电流与传导电流异同:
I 传 qnv漂 s
I位 d D dt
产生根源 存在于 热效应
讨论
(1)位移电流的大小: dD d
I位 dt S dt
将电容器中的电场随时间变化产生的磁效应, 等效为位移电流产生的。
dD 即 的方向。 (2)位移电流的方向: dt
整个电路中的电流就连续了。
dD dD 0, 为D的 方 向 , dt dt 则I d 与D同 向
L
B dS 0
S
D L H dl S J0 dS S t dS
D dS 0 dV
d m B E dl dS dt t L S
B dS 0

2023人教版带答案高中物理必修三第十三章电磁感应与电磁波初步微公式版基础知识手册

2023人教版带答案高中物理必修三第十三章电磁感应与电磁波初步微公式版基础知识手册

2023人教版带答案高中物理必修三第十三章电磁感应与电磁波初步微公式版基础知识手册单选题1、如图,水平桌面上平放一矩形导线框abcd,O为线框中心。

匀强磁场竖直向上,下列操作可使线框中产生感应电流的是()A.线框水平向右平动B.线框竖直向上平动C.线框绕过O点的竖直轴转动D.线框以ab为轴转动答案:DABC.线框向右平动、竖直向上平动、绕过O点的竖直轴转动时,穿过线框的磁通量不发生变化,无感应电流产生,故ABC错误;D.线框以ab为轴转动时,穿过线框的磁通量发生变化,线框中产生感应电流,故D正确。

故选D。

2、如果要用国际单位制中的基本单位表示磁通量的单位,下列表示正确的是()A.T⋅m2B.V⋅s C.kg⋅m2⋅A−1⋅s−2D.N⋅m⋅A−1⋅s−1答案:C根据Φ=BSB=F Il及F=ma 由这两个公式可得1kg⋅m⋅s−2⋅m2A⋅m=1kg⋅m2A⋅s2=1kg⋅m2⋅A−1⋅s−2知磁通量的单位为kg⋅m2⋅A−1⋅s−2。

故选C。

3、关于电磁场和电磁波的说法正确是()A.电场和磁场总是相互联系的,它们统称为电场B.电磁场由发生的区域向远处的传播形成电磁波C.在电场周围一定产生磁场,磁场周围一定产生电场D.电磁波是一种波,声波也是一种波,理论上它们是同种性质的波动答案:BA.变化的电场和变化的磁场相互联系,他们统称为电磁场,故A错误;B.电磁场由发生的区域向远处的传播形成电磁波,选项B正确;C.在变化的电场周围一定产生磁场,变化的磁场周围一定产生电场,选项C错误;D.电磁波是一种波,声波也是一种波,但声波是机械波,它们是不同种性质的波动,选项D错误。

故选B。

4、如图所示,在yOz平面的环形金属线圈以坐标系原点O为中心,xOy平面为水平面,地球磁场指向+y方向。

位于原点O处的小磁针,可绕z轴在xOy平面内自由转动,环形线圈中的电流为16A时,磁针与+x轴的夹角为37°。

已知环形电流环心处的磁感应强度与环形电流强度成正比,则为使磁针与+x轴的夹角变为53°,已知sin37°=0.6,cos37°=0.8,环形线圈中的电流应该调整为()A.3AB.9AC.12AD.16A答案:B根据题意可知B x1=B y cot37°B x2=B y cot53°解得B x2 B x1=9 16即I2 I1=9 16I2=9A故选B。

电磁场的基础知识概述

电磁场的基础知识概述

电磁场的基础知识概述电磁场是一种我们生活中经常遇到的物理现象,它与电荷有关,产生磁场和电场,且能够相互作用。

在这篇文章中,我们将对电磁场的基础知识进行概述。

一、电场电场是一种带电粒子或电荷的区域中存在的物理现象。

当电荷存在于某一区域内时,它就会产生电场,电场会使其他电荷受到影响,从而发生运动。

电场的强度与电荷的数量和分布有关。

电场的强度使用电场强度来描述,它的单位为牛顿/库仑。

我们通常使用电场线来表示电场,电场线的密度表示电场强度的大小。

电场线从正电荷指向负电荷,且与等势线垂直。

二、磁场磁场是一种带电粒子或电荷的区域中存在的物理现象。

当带电粒子或电荷在运动时,会产生磁场。

磁场可以使带电粒子或电荷发生偏折,从而发生运动。

磁场的强度使用磁感应强度来描述,其单位为特斯拉。

我们通常使用磁力线来描述磁场,磁力线从南极指向北极,磁力线的密度表示磁场的强弱。

三、电磁场电磁场是由电场和磁场相互作用而产生的物理现象。

在电荷运动时,既会产生电场,也会产生磁场。

电磁场既可以作为波动进行传播,也可以通过电磁辐射的形式发生作用。

电磁场的强度使用辐射通量密度来进行描述,其单位为瓦特/平方米。

电磁场能够微幅地影响人的健康,例如长期暴露于辐射源附近可能导致癌症等疾病。

结论电磁场是一个广泛存在于我们周围的物理现象。

通过电场和磁场的相互作用,电磁场既能够作为波动进行传播,也能够通过电磁辐射产生作用。

在实际的生活中,我们需要了解它们的基础知识,以便更好地应对各种情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r r r ∂B ∫LE ⋅ d l = − ∫s ∂ t ⋅ d S − − − ( 2 ) r r ∫ B ⋅ d S = 0 − − − (3)
s
r r r r r r r ∂D r ∫LH ⋅ dl =∫L (H0 + H′) ⋅ dl = ∫s( j + ∂t ) ⋅ dS r
r r r r ∂D ∫LH ⋅ dl = ∫s( j + ∂t ) ⋅ dS − − − ( 4)
引入全电流的概念,磁场为全电流产生; 引入全电流的概念,磁场为全电流产生; 即传导电流可以产生磁场,位移电流也可以产生磁场。 即传导电流可以产生磁场,位移电流也可以产生磁场。 在非稳恒的电路中,安培环路定律仍然成立. 在非稳恒的电路中,安培环路定律仍然成立. 安培环路定理可推广为 安培环路定理可推广为
∂E jd =ε0 ∂t 1、位移电流的方向
放电时: 放电时: q
+ Ic
q
q
r ∂E 与 的方向相反 E 的方向相反, ∂t Id 与 Ic 方向相同
j
E
+ + + + σ +
∂E ∂t E σ Ic
§13-1 位移电流的磁场 13充电时: 充电时: q j E r ∂E 与 的方向相同, E 的方向相同, ∂t I d 与 I c 方向相同
r r B dΦ D H ⋅ dl = 2 r= π ∫L dt µ0
由环路定理
I
dE = ε 0S dt ε0µ0S dE B= 2 r dt π
H
L
r
E
S是以L为边界的面积 是以L
§13-1 位移电流的磁场 13当r<R
ε0µ0πr dE 1 dE B= = ε0µ0r 2 r π dt 2 dt
S2
S2
dq dΦ D I= = dt dt
式中: 式中
I
传导电流
上式的左端是传导电流,右端是电通量 对时间变化率, 上式的左端是传导电流,右端是电通量 对时间变化率, 传导电流 若把电通量对时间变化率看作为一种电流, 若把电通量对时间变化率看作为一种电流,那么电路就连 续了。麦克斯韦提出假设,把这种电流称为位移电流 位移电流。 续了。麦克斯韦提出假设,把这种电流称为位移电流。 r v r v dΦ = ∂D ⋅ dS D = jd ⋅ dS Id = ∫S ∂t S dt r r 定义 r ∂D ∂E 位移电流密度) (位移电流密度) jd = =ε0
普通高等教育“十一五” 普通高等教育“十一五”国家级规划教材
大学物理(第二版) 大学物理(第二版)
第 三 篇 电磁学 第 13 章 电磁场基本理论
课件制作者: 课件制作者:万云芳
本章教学内容
第十三章 电磁场基本 理论
§13-1 13-
位移电流的磁场
§13-2 13-
麦克斯韦方程组
第十三章 电磁场基本理论
§13-2 麦克斯韦方程组 132、高斯定理和安培环路定理(非稳恒状态下) 高斯定理和安培环路定理(非稳恒状态下)
r r r r r r ∂E r ∂D r ∫L H ′ ⋅ dl = ∑ I d = ∫s jd ⋅ dS = ∫sε 0 ∂t ⋅ dS = ∫s ∂t ⋅ dS
sቤተ መጻሕፍቲ ባይዱ
r r ∫s Dr′ ⋅ d Sr = 0 ∫L E ′ ⋅ d l = − r r ∫ B ′ ⋅ dS = 0
§13-1 位移电流的磁场 13一、电流的连续性问题 包含有电阻、电感线圈的电 包含有电阻、 电流是连续的。 路,电流是连续的。 S I L R S´ L I
r r ∫ H⋅ dl = I
r r' r r I = ∫S j ⋅ dS = ∫ ' j ⋅ dS s
这种电路称为稳恒电路。 这种电路称为稳恒电路。
r r v v ∂ D ∫ Hd ⋅ dl = ∫ ∂t ⋅ dS L S
( Hd 为 Id 产生的涡旋磁场 产生的涡旋磁场)
v ∂ B ∂ t
r ∂ D ∂ t
右旋
v Ei
左旋
r Hd
对称美
§13-1 位移电流的磁场 13例题 13-1 由半径 R=0.05 m 的圆导体片构成的平板电容 均匀充电, 器,均匀充电,两极板间电场的变化如下 r ∂E/ ∂t = 4.0х1013 Vm-1 s-1 求(1)两板间的位移电流 Id ; (2)两板间磁感应强 度的分布;( ;(3 度的分布;(3)r = R 处的磁感应强度 解:(1) :( )
I
c
2、 位移电流在产生磁场这一点 上和传导电流完全相同。 上和传导电流完全相同。并且 r 构成右旋关系。 构成右旋关系。 ∂E 和 B ∂t 3、 在真空中位移电流无热效应。在 在真空中位移电流无热效应。 介质中位移电流有热效应, 介质中位移电流有热效应,但是并不 遵守焦耳定律。 遵守焦耳定律。
+q + + + E + σ +

S′
r v j ⋅ S =0 d
传导电流在电容器极板上中断,不再连续,导致矛盾; 传导电流在电容器极板上中断,不再连续,导致矛盾; 然而传导电流的大小与电容器极板上的电荷多少有关。 然而传导电流的大小与电容器极板上的电荷多少有关。
§13-1 位移电流的磁场 13麦克斯韦对这个问题作了如下的分析,给出了传导电流与极 麦克斯韦对这个问题作了如下的分析, r 板电荷的关系。 板电荷的关系。
2
磁感应强度B 磁感应强度B 的大小与 r 成正比 当r>R
ε0µ0πR2 dE ε0µ0R2 dE B= = 2 r π dt 2r dt
磁感应强度B 磁感应强度B 的大小与 r 成反比,此时忽略边 成反比, 缘效应。 缘效应。
§13-1 位移电流的磁场 13-
. . .
B
. . E . . o . . . . . . .
r r dΦ D H ⋅ dl = I0 + ∫L dt
§13-1 位移电流的磁场 13三、位移电流的理解 在充放电的过程中电容器两极板间虽然没有电流, 在充放电的过程中电容器两极板间虽然没有电流, 但极板上电量的变化,会引起两极板间电场的变化。 但极板上电量的变化,会引起两极板间电场的变化。 极板间电场强度对时间的变化率乘以ε 极板间电场强度对时间的变化率乘以ε0 等于位移 r 电流密度。 电流密度。 r
Id =
ε0dΦ E
dt
=
ε0d(ES)
dt
dE = ε0π R dt
2
(2)由于电场分布的特点,位移电流的磁场,对过极板 由于电场分布的特点,位移电流的磁场, 中心的轴线具有对称性。 中心的轴线具有对称性。磁力线是一族以中心轴线为轴心 且垂直于中心的同心圆。 且垂直于中心的同心圆。
§13-1 位移电流的磁场 13-
L
§13-1 位移电流的磁场 13考虑一个包含有电容的电路 这时的电流为非稳恒电流 问题: 问题:在电流非稳恒状态下安 培环路定律是否正确? 培环路定律是否正确? 对S 面
l
S
L
+ + + + + +
r v r v ∫ H⋅ dl =∫ j ⋅dS
S
=I
I
矛盾

I
对 S′ 面
l
r v ∫ H⋅ dl =
§13-2 麦克斯韦方程组 13如果电场及磁场都在随时间变化,变化磁场产生电场,变 如果电场及磁场都在随时间变化,变化磁场产生电场, 化电场产生磁场,电场和磁场不可分割,称为电磁场。 化电场产生磁场,电场和磁场不可分割,称为电磁场。 1865 年麦克斯韦在总结前人工作的基础 上,提出完 整的电磁场理论,他的主要贡献是提出了“有旋电场” 整的电磁场理论,他的主要贡献是提出了“有旋电场”和 位移电流”两个假设,从而预言了电磁波的存在, “位移电流”两个假设,从而预言了电磁波的存在,并计 算出电磁波的速度(即光速) 算出电磁波的速度(即光速).
§13-2 麦克斯韦方程组 133、电磁场的麦克斯韦方程组积分式 r r r r r ∫s D ⋅ d Sr= ∫s( D0 + D ′) ⋅ dS = ∫V ρ dV r ∫s D ⋅ d S = ∫V ρ dV − − − (1) r r r r r r r ∂B ∫LE ⋅ d l = ∫L ( E 0r+ E ′) ⋅ d l = − ∫s ∂ t ⋅ d S
∵变化的磁场产生的电场是涡旋场
dΦ m dt
r r ∂B = −∫ ⋅ dS s ∂t
∵变化的电场产生的磁场也是涡旋场
对于电场和磁场来说,都具有可叠加性, 对于电场和磁场来说,都具有可叠加性,在同 一空间,即可以存在稳恒电磁场, 一空间,即可以存在稳恒电磁场,又可以存在变化 的电磁场,叠加后统称为电磁场。 的电磁场,叠加后统称为电磁场。
r ∂E ∂t
q
σ
r ∂E ∂t
Ic
B
§13-1 位移电流的磁场 134、 传导电流 电荷的定向移动 通过电流产生焦耳热 位移电流 电场的变化 真空中无热效应
传导电流和位移电流在激发磁场上是等效. 传导电流和位移电流在激发磁场上是等效. 由位移电流产生的磁场也是有旋场。 由位移电流产生的磁场也是有旋场。
c =
1
ε 0µ0
( 真空中 )
1888 年赫兹的实验证实了他的预言, 麦克斯韦理论奠定 年赫兹的实验证实了他的预言, 了经典动力学的基础, 了经典动力学的基础,为无线电技术和现代电子通讯技术发 展开辟了广阔前景. 展开辟了广阔前景.
§13-2 麦克斯韦方程组 13一、麦克斯韦方程组的积分形式 1、 高斯定理和安培环路定理 (稳恒状态下) 稳恒状态下) 静电场: 静电场:
. . . . . . . . . R . . . . .
相关文档
最新文档