航空模型的基本原理与基本知识

合集下载

航模入门必读基础知识

航模入门必读基础知识
;对于飞机,要先适应再控制。
祝小白们早日成为老鸟!加油
⑤舵面
接下来介绍各种舵面的作用。舵面主要有以下四种:副翼,襟翼,升降舵和方向舵。
在介绍各舵面的作用之前,我先说说模型飞机的三轴,横轴,纵轴,立轴。纵轴是与机身的几何对称轴,穿过机身;横轴与纵轴垂直且穿过机翼的一条直线;立轴是与上述二者皆垂直的直线。这三者交与一点,这一点就是模型飞机重力的合力点,即重心。
副翼:机翼后面可以上下运动且两侧差动的舵面;襟翼:机翼后面只能向下运动且两侧只能同向运动的舵面;升降舵:水平尾翼后面可以上下运动的舵面;方向舵:垂直尾翼后面可以左右摆动的舵面。
副翼的作用是使飞机绕纵轴做旋转运动;方向舵使飞机绕立轴做旋转运动,这个旋转运动与飞机向前的合速度即为转弯的实际速度方向;升降舵使飞机绕横轴做旋转运动;襟翼的作用是减速,也叫空气刹车。
②通道及映射
习惯性的,我们会把1通用来控制幅翼,2通用来控制升降舵,3通(不会自动回中的那个通道)用来控制油门,4通用来控制方向舵。
③具体操作及模型的响应
正反舵:首先机尾对着自己。然后从1通道,向左打(左幅翼,飞机绕纵轴逆时针旋转),左侧幅翼向上旋转;向右打(右幅翼,飞机绕纵轴顺时针旋转),右侧机翼向上旋转。2通,向下(拉杆,抬头),升降舵向上旋转;向上(推杆,低头),升降舵向下旋转。3通,杆在最下面动力应该是最小的,内燃机的话,发动机处于怠速状态,电动机的话,应该停转。4通,向左(左方向,飞机绕立轴向左旋转),方向舵向左旋转,向右(右方向,飞机绕立轴向右旋转),方向舵向右旋转。
航空模型介绍
一组成
首先,航空模型分为五个基本的部分:1机头,2机翼,3机身,4发动机,5尾翼,6起落架
二定义
航空模型的定义:凡是 1翼展小于5米;2带有或不带有动力装置;3不能载人;4密度大于空气 的飞行器统成航空模型。

关于航模的基本知识

关于航模的基本知识

关于航模的基本知识嘿,咱就来说说航模这玩意儿哈。

有一回啊,我去公园玩。

正溜达着呢,就听到“嗡嗡”的声音。

我抬头一看,哇,一个小飞机在天上飞呢。

我赶紧跑过去看,原来是有人在玩航模。

那小飞机飞得可稳了,一会儿高一会儿低,可有意思了。

咱先说说啥是航模吧。

航模呢,就是航空模型,就是按照真飞机的样子做出来的小模型。

不过这小模型可厉害啦,能飞上天呢。

航模有各种各样的,有小飞机啊,直升机啊,还有滑翔机啥的。

航模是咋飞起来的呢?这就有点复杂啦。

一般来说呢,航模是靠电机或者发动机提供动力的。

电机呢,就是用电的,比较环保。

发动机呢,就是用汽油或者柴油的,动力比较强。

航模还有遥控器,就像电视遥控器一样,不过这个遥控器是用来控制航模的。

你可以用遥控器让航模起飞、降落、转弯啥的。

我记得有一次,我看到一个小朋友在玩航模。

他的航模是一个小直升机,可漂亮了。

他拿着遥控器,一会儿让直升机上升,一会儿让直升机下降,玩得可开心了。

我就站在旁边看着,心里可羡慕了。

我就问他:“小朋友,你的航模是在哪里买的呀?”他说:“我爸爸在网上给我买的。

”我又问他:“好玩吗?”他说:“好玩极了!我每天都要玩一会儿。

”玩航模有啥好处呢?嘿,好处可多了。

首先呢,可以锻炼我们的动手能力。

你得自己组装航模吧,这可需要耐心和细心呢。

其次呢,可以培养我们的兴趣爱好。

航模飞得那么高,那么远,多有意思啊。

最后呢,还可以让我们学到一些科学知识。

比如说,空气动力学啊,电子技术啊啥的。

总之啊,航模是个很有趣的东西。

如果你也对航模感兴趣,不妨去买一个来玩玩。

说不定你也会爱上它呢。

嘿嘿。

航模基础知识

航模基础知识

(1)伯努利原理如果两手各拿一张薄纸,使它们之间的距离大约4~6厘米。

然后用嘴向这两张纸中间吹气,你会看到,这两张纸不但没有分开,反而相互靠近了,而且用最吹出的气体速度越大,两张纸就越靠近。

从这个现象可以看出,当两纸中间有空气流过时,压强变小了,纸外压强比纸内大,内外的压强差就把两纸往中间压去。

中间空气流动的速度越快,纸内外的压强差也就越大。

(2)机翼升力原理飞机机翼地翼剖面又叫做翼型,一般翼型的前端圆钝、后端尖锐,上表面拱起、下表面较平,呈鱼侧形。

前端点叫做前缘,后端点叫做后缘,两点之间的连线叫做翼弦。

当气流迎面流过机翼时,由于机翼地插入,被分成上下两股。

通过机翼后,在后缘又重合成一股。

由于机翼上表面拱起,是上方的那股气流的通道变窄。

根据气流的连续性原理和伯努利定理可以得知,机翼上方的压强比机翼下方的压强小,也就是说,机翼下表面受到向上的压力比机翼上表面受到向下的压力要大,这个压力差就是机翼产生的升力。

(3)失速原理在机翼迎角较小的范围内,升力随着迎角的加大而增大。

但是,当迎角加大到某个值时,升力就不再增加了。

这时候的迎角叫做临界迎角。

当超过临界迎角后,迎角再加大,阻力增加,升力反而减小。

这现象就叫做失速。

产生失速的原因是:由于迎角的增加,机翼上表面从前缘到最高点压强减小和从最高点到后缘压强增大的情况更加突出。

当超过临界迎角以后,气流在流过机翼的最高点不多远,就从翼表面上分离;了,在翼面后半部分产生很大的涡流,造成阻力增加,升力减小。

(4)人工扰流方案要推迟失速的发生,就要想办法使气流晚些从机翼上分离。

机翼表面如果是层流边界层,气流比较容易分离;如果是絮流边界层,气流比较难分离。

也就是说,为了推迟失速,在机翼表面要造成絮流边界层。

一般来说,雷诺数增大,机翼表面的层流边界层容易变成絮流边界层。

但是,模型飞机的速度很低,翼弦很小,所以雷诺数不可能增大很大。

要推迟模型飞机失速的发生,就必须要想别的办法。

(2024年)航模入门基本知识

(2024年)航模入门基本知识

偏航角调整
通过改变方向舵角度,控制飞机左右 转向。
滚转角调整
通过改变副翼角度,控制飞机左右倾 斜。
2024/3/26
15
性能参数评估方法
01
02
03
04
飞行速度
评估航模在不同飞行阶段的速 度表现。
爬升率与下滑率
评估航模爬升和下滑的能力及 效率。
续航时间
评估航模在一次充电或加油后 的持续飞行时间。
载荷能力
13
空气动力学基础知识
01
02
03
伯努利定理
流体流速越快,压力越低 ;流速越慢,压力越高。
2024/3/26
升力产生原因
机翼上表面空气流速快, 下表面空气流速慢,产生 向上的升力。
阻力与升力关系
在飞行中,阻力与升力并 存,需通过设计优化减小 阻力。
14
飞行姿态调整技巧
俯仰角调整
通过改变升降舵角度,控制飞机抬头 或低头。
评估航模携带设备或完成任务 的能力。
2024/3/26
16
飞行安全注意事项
飞行场地选择
选择空旷、无遮挡物的 场地进行飞行。
2024/3/26
气象条件关注
避免在恶劣天气下飞行 ,如风大、雨雪等。
电池安全管理
遥控器操作规范
确保电池充电、放电过 程安全,避免过充、过
放。
17
熟悉遥控器操作,避免 误操作导致飞行事故。
传感器技术应用
传感器技术在航模中的应用主要体现在飞行姿态的稳定和控制精度的提高上。例如,陀螺仪可以检测 航模的角速度信息,通过反馈控制实现飞行姿态的稳定;GPS则可以提供航模的精确位置信息,实现 定点悬停、自动返航等高级飞行功能。

航模的基本原理和基本知识

航模的基本原理和基本知识

航模的基本原理和基本知识航模是一种模拟真实飞行的模型飞机,其基本原理和基本知识包含以下几个方面:一、模型飞行原理:1.大气动力学原理:航模飞行时受到气流的作用,包括升力、阻力、重力和推力等力的相互作用。

模型飞机需要通过翼面产生升力来维持飞行高度,并通过推力提供动力。

2.控制原理:航模飞机通过控制表面(如方向舵、升降舵、副翼等)的运动来改变其姿态和方向。

操纵杆和舵机通过电子信号传输,实现对控制表面的精确控制。

3.飞行稳定原理:航模飞行过程中需要保持一定的稳定性。

包括静稳定和动态稳定两个方面。

定翼航模通过设置翼面的远心点位置来实现静态稳定性,而控制面的设计和操纵杆的操作则保证动态稳定。

二、模型飞机的组成部分及功能:1.机身:模型飞机的主要结构,包括机翼、机身和尾翼。

机身主要用于容纳电子设备和动力系统。

2.机翼:模型飞机的升力产生部分,具有翼型、翼展和翼面积等特征,通过改变翼面的攻角来产生升力。

3.尾翼:包括升降舵、方向舵和副翼。

升降舵用于控制模型飞机的上升和下降,方向舵用于控制模型飞机的左右转向,副翼用于控制模型飞机的横滚运动。

5.舵机:用于控制模型飞机的控制表面,将电子信号转换为机械运动。

6.遥控系统:遥控器和接收机组成的遥控系统用于控制模型飞机的姿态和方向。

三、航模飞行的基本知识:1.飞行理论:了解飞行原理、飞行姿态和飞行控制等相关理论知识,包括升力、阻力、重力、推力、迎角、侧滑等概念。

2.翼型知识:了解不同翼型的特征和表现,掌握常见的对称翼型、半对称翼型和弯曲翼型。

3.翼展和翼面积:翼展影响飞机的横向稳定性和机动性能,翼面积影响飞机的升力产生能力。

4.飞行控制知识:包括副翼、升降舵和方向舵的操作原理、机动动作和配平技巧等。

5.飞行安全知识:了解飞行场地的选择、飞行规则以及飞行器的安全性维护等方面的知识。

6.电子设备知识:了解遥控器、接收机、舵机、电机和电池等电子设备的基本原理和使用方法。

总结:航模的基本原理是依靠大气动力学原理和控制原理来模拟真实的飞行。

航模基础知识

航模基础知识
陆性能有很大影响。
航模的材料与工艺
材料
航模的材料主要包括轻木、碳纤维、玻璃钢等轻质、高强度 材料。这些材料可以有效地减轻航模的重量,提高飞行性能 。
工艺
航模的制造工艺主要包括切割、打磨、粘接、热压等。这些 工艺的使用需要根据材料的不同特性进行选择,以保证航模 的质量和可靠性。
航模的动力系统
发动机
尾翼
尾翼是航模用来保持稳 定性的部件,包括水平 尾翼和垂直尾翼。尾翼 的位置、尺寸和形状对 航模的飞行性能有很大
影响。
机身
机身是航模的主体结构 ,用于安装发动机、接 收器、电池等部件。机 身的材料和结构对航模 的整体性能有很大影响

起落架
起落架是航模在地面停 放和起飞着陆时使用的 支撑机构,通常由轻质 材料制成,如铝管或碳 纤维。起落架的设计和 布局对航模的起飞和着
03
CATALOGUE
航模的组装与调试
航模的组装步骤
准备工作
确保工具齐全,阅读说明书, 了解航模的结构和原理。
机体组装
按照说明书指示,组装机身、 机翼、尾翼等部分,确保连接 牢固。
电子设备安装
安装电池、接收机、舵机等电 子设备,确保正确连接。
调试与检查
检查航模各部分工作是否正常 ,进行必要的调试,确保飞行
05
CATALOGUE
航模的进阶知识
航模的性能优化
动力系统优化
根据飞行需求选择合适的发动机和螺旋桨, 调整发动机参数以获得最佳性能。
空气动力学优化
通过改进机体设计、翼型选择和翼面布局, 减少空气阻力,提高飞行效率。
重量与平衡优化
合理分配机体各部分重量,确保航模在空中 保持稳定。
操控性能优化

航模基础知识

航模基础知识

一、什么叫航空模型二、在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。

其技术要求是:三、最大飞行重量同燃料在内为五千克;四、最大升力面积一百五十平方分米;五、最大的翼载荷100克/平方分米;六、活塞式发动机最大工作容积10亳升。

七、1、什么叫飞机模型八、一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。

九、2、什么叫模型飞机十、一般称能在空中飞行的模型为模型飞机,叫航空模型。

十一、二、模型飞机的组成十二、模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。

十三、1、机翼——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞机飞行时的横侧安定。

十四、2、尾翼——包括水平尾翼和垂直尾翼两部分。

水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。

水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。

十五、3、机身——将模型的各部分联结成一个整体的主干部分叫机身。

同时机身内可以装载必要的控制机件,设备和燃料等。

十六、4、起落架——供模型飞机起飞、着陆和停放的装置。

前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。

十七、5、发动机——它是模型飞机产生飞行动力的装置。

模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。

十八、三、航空模型技术常用术语十九、1、翼展——机翼(尾翼)左右翼尖间的直线距离。

(穿过机身部分也计算在内)。

二十、2、机身全长——模型飞机最前端到最末端的直线距离。

二十一、3、重心——模型飞机各部分重力的合力作用点称为重心。

二十二、4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。

二十三、5、翼型——机翼或尾翼的横剖面形状。

二十四、6、前缘——翼型的最前端。

航模基础知识003

航模基础知识003

——弹射模型滑翔机(P1T-1)的制作与放飞第一节基本概念一、航空模型的定义凡是不能载人,符合一定技术要求,重于空气的飞行器都能够称为航空模型。

二、航空模型的基本组成模型飞机与真飞机一样,主要有机翼、尾翼、机身、起装装置;动力装置五局部组成。

图1-1-11.机翼:在一定的速度下,产生升力,克服重力使飞机升空飞行。

机翼后部的副翼,能够调整模型飞机左右倾斜。

2.尾翼:由垂直尾翼和水平尾翼组成,用于保证模型飞机在飞行时的平衡和稳定,并通过尾翼的舵面对飞机实行操纵。

其中水平尾翼保持模型飞机的俯仰稳定,并可产生一局部升力,垂直尾翼保持模型飞机飞行方向的稳定。

水平尾翼后部的舵是升降舵,它的上下偏转能够控制模型升降。

垂直尾翼后部的舵是方向舵,它的左右偏转能够控制模型飞机的飞行方向。

3.机身:连接模型的各局部,使之成为一个整体。

同时能够装载一些设备。

4.动力系统:产生拉力或推力,使模型飞机获得前进速度。

5.起落装置:支撑模型飞机,供起飞着陆时使用。

典型的常规飞机一般都具有以上五局部,但在特殊形式的飞机也有例外。

比方弹射和手掷模型滑翔机,就没有动力和起落装置。

三、航空模型的常见术语1.翼展:左右机翼终端两点间的最大直线距离。

2.翼型:机翼或尾翼的剖面形状。

3.上反角:机翼与模型飞机横轴之间的夹角。

图1-1-24.安装角:翼弦与机身量度用的基准线的夹角。

图1-1-35.重心:模型各局部重力的合力点称为重心。

6.前缘:机翼最前面的边缘。

7.尾力臂:由重心到尾翼前缘1/4弦长处的距离。

8.(翼)载荷:每平方米升力面积所承受的(以克为单位的)重量。

四、航空模型的分类:P级(国内青少年级)F级(国际级)1.自由飞类(PI类)(1)P1A牵引模型滑翔机分为P1A-1一级牵引模型滑翔机P1A-2二级引模型滑翔机(2)P1B橡筋模型滑翔机分为P1B-1一级橡筋模型滑翔机P1B-2二级橡筋模型滑翔机(3)P1C活塞式发动机模型滑翔机(4)P1D室内模型飞机(橡筋动力)(5)P1E电动模型飞机(6)P1F橡筋模型直升机(7)P1S手掷模型滑翔机技术要求:最大飞行重量15克,比赛方式有两种,一种比留空时间,另一种比飞行距离。

航模基础知识

航模基础知识

航空模型基础知识教程(一)应大家的要求顶起来求精一、什么叫航空模型在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。

其技术要求是:最大飞行重量同燃料在内为五千克;最大升力面积一百五十平方分米;最大的翼载荷100克/平方分米;活塞式发动机最大工作容积10亳升。

1、什么叫飞机模型一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。

2、什么叫模型飞机一般称能在空中飞行的模型为模型飞机,叫航空模型。

二、模型飞机的组成模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。

1、机翼——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞机飞行时的横侧安定。

2、尾翼——包括水平尾翼和垂直尾翼两部分。

水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。

水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。

3、机身——将模型的各部分联结成一个整体的主干部分叫机身。

同时机身内可以装载必要的控制机件,设备和燃料等。

4、起落架——供模型飞机起飞、着陆和停放的装置。

前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。

5、发动机——它是模型飞机产生飞行动力的装置。

模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。

三、航空模型技术常用术语1、翼展——机翼(尾翼)左右翼尖间的直线距离。

(穿过机身部分也计算在内)。

2、机身全长——模型飞机最前端到最末端的直线距离。

3、重心——模型飞机各部分重力的合力作用点称为重心。

4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。

5、翼型——机翼或尾翼的横剖面形状。

6、前缘——翼型的最前端。

7、后缘——翼型的最后端。

8、翼弦——前后缘之间的连线。

9、展弦比——翼展与平均翼弦长度的比值。

航模的基本原理和基本知识

航模的基本原理和基本知识

一、航空模型的基本原理与基本知识1)航空模型空气动力学原理1、力的平衡飞行中的飞机要求手里平衡,才能平稳的飞行。

如果手里不平衡,依牛顿第二定律就会产生加速度轴力不平衡则会在合力的方向产生加速度。

飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞。

升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称x 与y 方向﹝当然还有一个z方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x方向阻力与推力大小相同方向相反,故x方向合力为零,飞机速度不变,y方向升力与重力大小相同方向相反,故y方向合力亦为零,飞机不升降,所以会保持等速直线飞行。

图1-1弯矩不平衡则会产生旋转加速度,在飞机来说,X轴弯矩不平衡飞机会滚转,Y轴弯矩不平衡飞机会偏航、Z轴弯矩不平衡飞机会俯仰﹝如图1-2﹞。

图1-22、伯努利定律伯努利定律是空气动力最重要的公式,简单的说流体的速度越大,静压力越小,速度越小,静压力越大,流体一般是指空气或水,在这里当然是指空气,设法使机翼上部空气流速较快,静压力则较小,机翼下部空气流速较慢,静压力较大,两边互相较力﹝如图1-3﹞,于是机翼就被往上推去,然后飞机就飞起来,以前的理论认为两个相邻的空气质点同时由机翼的前端往后走,一个流经机翼的上缘,另一个流经机翼的下缘,两个质点应在机翼的后端相会合﹝如图1-4﹞,经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无法产生那么大的升力,现在经风洞实验已证实,两个相邻空气的质点流经机翼上缘的质点会比流经机翼的下缘质点先到达后缘﹝如图1-5﹞。

图1-3图1-4图1-53、翼型的种类1全对称翼:上下弧线均凸且对称。

2半对称翼:上下弧线均凸但不对称。

3克拉克Y翼:下弧线为一直线,其实应叫平凸翼,有很多其它平凸翼型,只是克拉克Y翼最有名,故把这类翼型都叫克拉克Y翼,但要注意克拉克Y翼也有好几种。

航模基础知识

航模基础知识

一、什么叫航空模型在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。

其技术要求是:最大飞行重量同燃料在内为五千克;最大升力面积一百五十平方分米;最大的翼载荷100克/平方分米;活塞式发动机最大工作容积10亳升。

1、什么叫飞机模型一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。

2、什么叫模型飞机一般称能在空中飞行的模型为模型飞机,叫航空模型。

二、模型飞机的组成模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。

1、机翼——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞机飞行时的横侧安定。

2、尾翼——包括水平尾翼和垂直尾翼两部分。

水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。

水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。

3、机身——将模型的各部分联结成一个整体的主干部分叫机身。

同时机身内可以装载必要的控制机件,设备和燃料等。

4、起落架——供模型飞机起飞、着陆和停放的装置。

前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。

5、发动机——它是模型飞机产生飞行动力的装置。

模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。

三、航空模型技术常用术语1、翼展——机翼(尾翼)左右翼尖间的直线距离。

(穿过机身部分也计算在内)。

2、机身全长——模型飞机最前端到最末端的直线距离。

3、重心——模型飞机各部分重力的合力作用点称为重心。

4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。

5、翼型——机翼或尾翼的横剖面形状。

6、前缘——翼型的最前端。

7、后缘——翼型的最后端。

8、翼弦——前后缘之间的连线。

9、展弦比——翼展与平均翼弦长度的比值。

展弦比大说明机翼狭长。

航空模型的飞行原理

航空模型的飞行原理

航空模型的飞行原理第一节绪论与基本概念简单地说,模型飞机就是小飞机。

同大飞机一样,也有机翼、机身和尾翼等部分,因而,模型飞机的飞行原理与大飞机基本上是一样的,但也因为尺寸其小,又会产生出一些不同于大飞机的飞行特点,了解了这一点,便不会将大飞机的理论盲目地应用到模型飞机上。

模型飞机主要研究:(1)翼型;(1)如何提高机翼的性能;(2)模型飞机的稳定性;(3)模型飞机各部分的比例与配置(4)螺旋桨;1.有关空气的一些基本知识(1)空气是一种混合气体,地面空气含氧20.9%,含氮气78%左右,越高空气越稀薄;(2)空气具有可压缩性;(3)空气的压强p:物体表面单位面积所受到的空气压力称为空气的压强。

越是接近地面,空气越是密集,温度越高,大气的压强越大。

气候不同时,大气的压力也不同,低气压预示着坏天气的来临。

.在海平面、温度15?C时的压力称为标准大气压,为每平方厘米1.034千克力,也称为一个大气压。

相当于760毫米汞柱的向下压强。

为简便计,有时工程上也将1千克力/厘米2算作1个大气压。

但在空气流动时,物体上受到正面冲击的部分,压强会增大。

这种因气流流动而形成的压强称为动压强。

大风天里逆风骑车会感到很吃力,就是因为动压强增大的缘故。

而汽车为了提高车速,减少油耗,做成流线型,就是为了减少动压强。

反之,作用于平行于气流方向的物体表面上的压强称为静压强。

气体流动时,速度越大,动压强越大,而静压强越小。

反之,速度越小,动压强越小,而静压强越大。

气体不动时,静压强最大。

这个关系用数学公式表达出来,就是后面要学习的伯努利定律。

(4)空气的密度?:物体内所含有的物质的数量称为质量。

不论是在地球,还是在月球上,质量是不变的。

而重量与g有关,不同的地方,因g有微小的变化,而使重量有微小的变化,但这种微小的变化实际上是难以感觉或测量出来的。

空气的密度,就是单位体积空气的质量。

气压不同,空气的密度也不同。

按照国际标准,空气的密度每单位体积空气的质量称为在海平面温度15?C,压强760毫米汞柱下,空气的密度为3。

第一讲 航模基础知识

第一讲 航模基础知识

第一讲航模基础知识一、什么叫航空模型在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。

其技术要求是:最大飞行重量同燃料在内为五千克;最大升力面积一百五十平方分米;最大的翼载荷100克/平方分米;活塞式发动机最大工作容积10亳升。

1、什么叫飞机模型一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。

2、什么叫模型飞机一般称能在空中飞行的模型为模型飞机,叫航空模型。

二、模型飞机的组成模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。

1、机翼——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞机飞行时的横侧安定。

2、尾翼——包括水平尾翼和垂直尾翼两部分。

水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。

水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。

3、机身——将模型的各部分联结成一个整体的主干部分叫机身。

同时机身内可以装载必要的控制机件,设备和燃料等。

4、起落架——供模型飞机起飞、着陆和停放的装置。

前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。

5、发动机——它是模型飞机产生飞行动力的装置。

模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。

三、航空模型技术常用术语1、翼展——机翼(尾翼)左右翼尖间的直线距离。

(穿过机身部分也计算在内)。

2、机身全长——模型飞机最前端到最末端的直线距离。

3、重心——模型飞机各部分重力的合力作用点称为重心。

4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。

5、翼型——机翼或尾翼的横剖面形状。

6、前缘——翼型的最前端。

7、后缘——翼型的最后端。

8、翼弦——前后缘之间的连线。

9、展弦比——翼展与平均翼弦长度的比值。

航模入门知识简介

航模入门知识简介
掌握飞行姿态的调整方法 ,如俯仰、横滚、偏航等 。
飞行动力学
了解飞行动力学的基础知 识,如重力、升力、阻力 等。
航模的组成
01
02
03
04
机身
航模的身体部分,通常由轻质 材料制成,如碳纤维或玻璃纤
维。
机翼
航模的飞行部分,通常由轻质 木材或塑料制成,形状和尺寸
因模型不同而异。
尾翼
航模的稳定部分,通常由木材 或塑料制成,用于控制航模的
调整相机设置
将相机设置为高速连拍模式,以确保捕捉到 航模飞行的瞬间。
环境选择
选择一个适合航模飞行的环境,如蓝天、绿 地等,以突出航模的飞行效果。
THANKS
感谢观看
航模入门知识简介
汇报人:
日期:
• 航模概述 • 航模基础知识 • 航模飞行技巧 • 航模的应用场景与玩法 • 航模入门常见问题解答 • 航模入门案例分享
01
航模概述
定义与分类
定义
航模是指航空模型,是一种以飞 行器为主要对象的模型,分为不 同类别,如航空模型、航海模型 、车辆模型等。
分类
根据模型的大小、用途、材料等 不同,航模有不同的分类方法, 如室内模型飞机、遥控模型飞机 、自由飞模型飞机等。
巧。
娱乐飞行则是爱好者们为了体验 飞行的乐趣而进行的飞行活动。
无论是竞技比赛还是娱乐飞行, 都需要遵守相关的安全规定和操
作规程。
05
航模入门常见问题解答
如何快速入门航模?
了解航模基础知识
学习航模的基本原理、飞行性能 和操纵技巧等方面的知识,可以 通过阅读书籍、观看视频教程或
参加航模俱乐部等方式获取。
安全距离
在飞行时要保持与航模的 安全距离,避免过于接近 航模,以免发生意外。

航模的基本原理和基本知识

航模的基本原理和基本知识

航模的基本原理和基本知识This model paper was revised by the Standardization Office on December 10, 2020一、航空模型的基本原理与基本知识1)航空模型空气动力学原理1、力的平衡飞行中的飞机要求手里平衡,才能平稳的飞行。

如果手里不平衡,依牛顿第二定律就会产生加速度轴力不平衡则会在合力的方向产生加速度。

飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞。

升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称 x 及 y 方向﹝当然还有一个z方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x方向阻力与推力大小相同方向相反,故x方向合力为零,飞机速度不变,y方向升力与重力大小相同方向相反,故y方向合力亦为零,飞机不升降,所以会保持等速直线飞行。

图1-1弯矩不平衡则会产生旋转加速度,在飞机来说,X轴弯矩不平衡飞机会滚转,Y轴弯矩不平衡飞机会偏航、Z轴弯矩不平衡飞机会俯仰﹝如图1-2﹞。

图1-22、伯努利定律伯努利定律是空气动力最重要的公式,简单的说流体的速度越大,静压力越小,速度越小,静压力越大,流体一般是指空气或水,在这里当然是指空气,设法使机翼上部空气流速较快,静压力则较小,机翼下部空气流速较慢,静压力较大,两边互相较力﹝如图1-3﹞,于是机翼就被往上推去,然后飞机就飞起来,以前的理论认为两个相邻的空气质点同时由机翼的前端往后走,一个流经机翼的上缘,另一个流经机翼的下缘,两个质点应在机翼的后端相会合﹝如图1-4﹞,经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无法产生那么大的升力,现在经风洞实验已证实,两个相邻空气的质点流经机翼上缘的质点会比流经机翼的下缘质点先到达后缘﹝如图1-5﹞。

图1-3图1-4图1-53、翼型的种类1全对称翼:上下弧线均凸且对称。

航模基础知识

航模基础知识

航模基础知识1、什么叫航空模型在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的带有或不带有发动机的,不能载人的航空器,就叫航空模型。

2、什么叫飞机模型一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。

3、什么叫模型飞机一般称能在空中飞行的模型为模型飞机,叫航空模型。

4、模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。

5、机翼——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞行时的横侧安定。

6、尾翼——包括水平尾翼和垂直尾翼两部分。

水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。

水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。

7、机身——将模型的各部分联结成一个整体的主干部分叫机身。

同时机身内可以装载必要的控制机件,设备和燃料等。

8、起落架——供模型飞机起飞、着陆和停放的装置。

前部一个起落架,后面两个起落架叫前三点式;前部两个起落架,后面一个起落架叫后三点式。

9、发动机——它是模型飞机产生飞行动力的装置。

模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。

10、翼展——机翼(尾翼)左右翼尖间的直线距离。

(穿过机身部分也计算在内)。

11、机身全长——模型飞机最前端到最末端的直线距离。

12、重心——模型飞机各部分重力的合力作用点称为重心。

13、翼型——机翼或尾翼的横剖面形状。

14、前缘——翼型的最前端。

15、后缘——翼型的最后端。

16、翼弦——前后缘之间的连线。

17、展弦比——翼展与翼弦长度的比值。

展衔比大说明机翼狭长。

18、削尖比——指梯形机翼翼尖翼弦长与翼根翼弦长的比值。

19、上反角——机翼前缘与模型飞机横轴之间的夹角。

20、后掠角——机翼前缘与垂直于机身中心线的直线之间的夹角。

21、机翼安装角——机翼翼弦与机身度量用的基准线的夹角。

航空模型基础知识教程

航空模型基础知识教程

航空模型基础知识教程一、什么叫航空模型在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。

其技术要求是:最大飞行重量同燃料在内为五千克;最大升力面积一百五十平方分米;最大的翼载荷100克/平方分米;活塞式发动机最大工作容积10亳升。

1、什么叫飞机模型一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。

2、什么叫模型飞机一般称能在空中飞行的模型为模型飞机,叫航空模型。

二、模型飞机的组成模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。

1、机翼——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞机飞行时的横侧安定。

2、尾翼——包括水平尾翼和垂直尾翼两部分。

水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。

水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。

3、机身——将模型的各部分联结成一个整体的主干部分叫机身。

同时机身内可以装载必要的控制机件,设备和燃料等。

4、起落架——供模型飞机起飞、着陆和停放的装置。

前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。

5、发动机——它是模型飞机产生飞行动力的装置。

模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。

三、航空模型技术常用术语1、翼展——机翼(尾翼)左右翼尖间的直线距离。

(穿过机身部分也计算在内)。

2、机身全长——模型飞机最前端到最末端的直线距离。

3、重心——模型飞机各部分重力的合力作用点称为重心。

4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。

5、翼型——机翼或尾翼的横剖面形状。

6、前缘——翼型的最前端。

7、后缘——翼型的最后端。

8、翼弦——前后缘之间的连线。

9、展弦比——翼展与平均翼弦长度的比值。

航模知识点总结

航模知识点总结

航模知识点总结航模(航空模型)是模拟飞行器的模型,通常是按比例缩小的版本。

航模有各种各样的类型,包括飞机、直升机、滑翔机、无人机等。

航模不仅是一种娱乐活动,也是一项技术活动,涉及到模型设计、制造、操控等多个领域。

以下是一些关于航模的基本知识点总结。

一、航模的种类1. 飞机模型:飞机模型是模拟真实飞机的模型,通常由轻质材料制作而成,有些飞机模型还可以进行遥控飞行。

2. 直升机模型:直升机模型是模拟真实直升机的模型,通常由轻质材料制作而成,有些直升机模型还可以进行遥控飞行。

3. 滑翔机模型:滑翔机模型是模拟真实滑翔机的模型,通常由轻质材料制作而成,可以通过自由落体或者助推进行飞行。

4. 无人机模型:无人机模型是模拟真实无人机的模型,通常由轻质材料和无人机电子设备制作而成,可以进行遥控飞行。

二、航模的制造材料1. 轻质材料:航模通常都是由轻质材料制作而成,包括泡沫板、塑料、玻璃钢、碳纤维等。

这些材料既能降低模型的重量,又能保证模型的强度和耐用度。

2. 无人机电子设备:无人机模型通常需要配备各种无人机电子设备,包括飞控系统、遥控器、电调、电机、螺旋桨等。

3. 涂料和胶水:航模制作过程中需要用到各种涂料和胶水,用来修补模型、涂装或者粘合部件。

三、航模的基本原理1. 动力系统:航模的动力系统通常由电动机或者内燃机提供动力,通过螺旋桨将动力转化为推力,推动模型进行飞行。

2. 气动设计:航模的气动设计是模型飞行性能的重要因素,包括机翼形状、机身设计、拉力设计等,直接影响模型的飞行稳定性和灵活性。

3. 遥控系统:部分航模可以进行遥控飞行,需要配备遥控器和对应的接收机,通过遥控器操纵模型的姿态和飞行状态。

四、航模的操控技巧1. 起飞:对于飞机模型和直升机模型,起飞是模型飞行的第一步,需要在合适的场地进行起飞操作,确保安全。

2. 飞行:在模型起飞后,需要熟练掌握操控技巧,包括升降、转弯、滚转、翻滚等飞行动作,保持模型飞行的平稳和稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发射机、接收机、舵机、电源等部分组成。
图 l 所示的,是 4 通道比例遥控设备发射机的外型和各部分名称。在发射机的面板上,有两
根ቤተ መጻሕፍቲ ባይዱ别控制 l 、2 通道和 3、4 通道动作指令的操纵秆,以及与操纵杆动作相对应的
4 个微调
装置。在发射机底部,设置有 4 个舵机换向开关,分别用于变换舵机摇臂的偏转方向。
氣流流向
往後上翻的氣流 圖3-4
圖 3-5
4寄生阻力: 所有控制面的缝隙﹝如主翼后缘与副翼间﹞、 主翼及尾翼与机身接 合处、机身开孔处、机轮及轮架、拉杆等除本身的原有的阻力以外,另外 衍生出来的阻力﹝如图 3-7 ,3-8 ﹞。
寄生阻力
圖3-7
機翼後緣
副翼
寄生阻力 圖3-8
一架飞机的总阻力就是以上四种阻力的总合, 但飞机的阻力互相影响的, 以上的 分类只是让讨论方便而已,另外诱导阻力不只出现在翼端,其它舵面都会产生, 只是翼端比较严重,磨擦阻力、形状阻力、寄生阻力与速度的平方成正比,速度 越快阻力越大,诱导阻力则与速度的平方成反比﹝如图 3-9 ﹞,所以要减少阻力 的话,无动力飞机重点在减少诱导阻力, 高速飞机重点在减少形状阻力与寄生阻 力。
右偏转或回复中立 ,带动模型的舵面往左 ,右偏转或回复中立,操纵杆 (或微调杆 )、舵机摇臂、
模型舵面偏转的角度大小成比例。
4 通道的比例遥控设备 , 可以同时对模型进行四个不同动作 ( 例如油门、升降舵 , 方向舵 , 副翼 ) 的比例控制。 这样的控制已十分接近载人飞机的操纵了。 因此,如 果能熟练地运用遥控设备和充分地掌握模形飞行的原理, 经过一段时间的刻苦练 习 , 操纵者可象驾驶载人飞机一样控制模型在天空自由飞翔。
圖1-3
图 1-3
圖1-4
图 1-4
圖1-5 图 1-5
真空
升力的錯誤理論 圖1-6
升 力
阻 力
升力的錯誤理論 圖1-7
3、翼型的种类
全對稱 半對稱 圖3-2
克拉克 Y
內凹翼
S 型翼
1全对称翼:上下弧线均凸且对称。
2半对称翼:上下弧线均凸但不对称。
3克拉克 Y 翼:下弧线为一直线,其实应叫平凸翼,有很多其它平凸翼型,只是 克拉克 Y 翼最有名,故把这类翼型都叫克拉克 Y 翼,但要注意克拉克 Y 翼 也有好几种。
圖3-3
3诱导阻力:机翼的翼端部因上下压力差, 空气会从压力大往压力小的方向移动, 部份空气不会规规矩矩往后移动,而从旁边往上翻,因而在两端产生涡流 ﹝如图 3-4 ﹞,因而产生阻力, 这现象在飞行表演时, 飞机翼端如有喷烟时 可看得非常清楚,你可以注意涡流旋转的方向﹝如图 3-5 ﹞,﹝图 3-6 ﹞是 NASA的照片,可看见壮观的涡流,因为这种涡流延伸至水平尾翼时,从水 平尾翼的观点气流是从上往下吹,因此会减小水平尾翼的攻角,也就是说 水平尾翼的攻角实际会比较小, ﹝图 3-6 ﹞只不过是一架小飞机, 如像类似 747 这种大家伙起飞降落后, 小飞机要隔一阵子才能起降, 否则飞入这种涡 流,后果不堪设想,这种阻力是因为涡流产生,所以也称涡流阻力。
要,只占总阻力的一小部分,当然为减少磨擦阻力还是尽量把飞机磨光。 2形状阻力: 物体前后压力差引起的阻力, 平常汽车广告所说的风阻系数就是指
形状阻力系数﹝如图 3-3 ﹞,飞机做得越流线形, 形状阻力就越小, 尖锥状 的物体形状阻力不见得最小,反而是有一点钝头的物体阻力小,读者如果 有机会看到油轮船头水底下那部分,你会看到一个大头,高级滑翔机大部 分也有一个大头,除了提供载人的空间外也是为了减少形状阻力。
3练习机用克拉克 Y 翼或半对称翼,因浮力大。
4特技机用全对称翼,因正飞或倒飞差异不大。 5斜坡滑翔机用薄一点翼型以增大滑空比。 6 3D特技机用前缘特别大的翼型以便高攻角飞行。 4、飞行中的阻力 一架飞行中飞机阻力可分成四大类: 1磨擦阻力: 空气分子与飞机磨擦产生的阻力, 这是最容易理解的阻力但不很重


磨擦、形狀、寄生阻力
總阻力 誘導阻力
5、机翼负载
速度
圖3-9
翼面负载就是主翼每单位面积所分担的重量, 这是评估一架飞机性能很重要的指 针,模型飞机采用的单位是每平方公寸多少公克﹝ g/dm2﹞,实机的的单位则是 每平方公尺多少牛顿﹝ N/m2﹞,翼面负载越大意思就是相同翼面积要负担更大的 重量,如果买飞机套件的话大部分翼面负载都标示在设计图上, 计算翼面负载很 简单,把飞机﹝全配重量不加油﹞秤重以公克计, 再把翼面积计算出来以平方公 寸计﹝一般为简化计算,与机身结合部分仍算在内﹞两个相除就得出翼面负载, 例如一架 30 级练习机重 1700 公克,主翼面积 30 平方公寸,则翼面负载为 56.7 g/dm2。
升力
推力
阻力
重力
圖1-1
图 1-1
弯矩不平衡则会产生旋转加速度, 在飞机来说,X 轴弯矩不平衡飞机会滚转, Y 轴弯矩不平衡飞机会偏航、 Z 轴弯矩不平衡飞机会俯仰﹝如图 1-2 ﹞。
Z 軸 ( 俯仰軸)
Y 軸 ( 偏航軸)
( 滾轉軸) X軸
2、伯努利定律
图圖11--22
伯努利定律是空气动力最重要的公式,简单的说流体的速度越大,静压力 越小,速度越小,静压力越大,流体一般是指空气或水,在这里当然是指空气, 设法使机翼上部空气流速较快, 静压力则较小, 机翼下部空气流速较慢, 静压力 较大,两边互相较力﹝如图 1-3 ﹞,于是机翼就被往上推去, 然后飞机就飞起来, 以前的理论认为两个相邻的空气质点同时由机翼的前端往后走, 一个流经机翼的 上缘,另一个流经机翼的下缘,两个质点应在机翼的后端相会合﹝如图 1-4 ﹞, 经过仔细的计算后发觉如依上述理论, 上缘的流速不够大, 机翼应该无法产生那 么大的升力, 现在经风洞实验已证实, 两个相邻空气的质点流经机翼上缘的质点 会比流经机翼的下缘质点先到达后缘﹝如图 1-5 ﹞。
圖 4-3
4椭圆翼:﹝如图 4-4 ﹞制作难度高,最有效率的翼面应力分布,翼端至翼根同 时失速,这也是天上最优美的翼面形式。
圖4-4
机翼先失速的位置跟局部升力系数与平均升力系数的比值有关, 比值大的地方先 失速,另因升力分布于所有翼面, 机翼的剪应力及弯矩应力会从翼端往翼根处累 积,所以飞机结构失败在空中折翼都在靠机身处, 矩形翼结构应力分不就很不经 济,靠翼端处结构过强,增加无谓的重量,锥形翼、椭圆翼就比较经济,此外从 图面也可看出矩形翼的诱导阻力比较大,即使翼端的面积大效率也不好。
一、航空模型的基本原理与基本知识 1) 航空模型空气动力学原理
1 、力的平衡
飞行中的飞机要求手里平衡, 才能平稳的飞行。 如果手里不平衡, 依牛顿第二定 律就会产生加速度轴力不平衡则会在合力的方向产生加速度。 飞行中的飞机受的 力可分为升力、重力、阻力、推力﹝如图 1-1 ﹞。升力由机翼提供,推力由引擎 提供,重力由地心引力产生, 阻力由空气产生, 我们可以把力分解为两个方向的 力,称 x 及 y 方向﹝当然还有一个 z 方向, 但对飞机不是很重要, 除非是在转 弯中﹞,飞机等速直线飞行时 x 方向阻力与推力大小相同方向相反, 故 x 方向合 力为零,飞机速度不变, y 方向升力与重力大小相同方向相反,故 y 方向合力亦 为零,飞机不升降,所以会保持等速直线飞行。
一般适合的展弦比在 5~7 左右,超过 8 以上要特别注意机翼的结构, 药加强记忆 强度,否则,一阵风就断了。滑翔机实机的展弦比有些高达 30 以上。
如前所述磨擦阻力、 形状阻力与速度的平方成正比, 速度越快阻力越大, 诱导阻 力则与速度的平方成反比,所以高速飞机比较不考虑诱导阻力,所以展弦比低, 滑翔机速度慢,采高展弦比以降低诱导阻力, 最典型的例子就是 U2﹝如图 3-15 ﹞ 跟 F104﹝如图 3-16 ﹞,U2为高空侦察机,为长时间翱翔,典型出一次任务约 10~12 小时,U2展弦比为 10.5 ,F104 为高速拦截机, 速度达 2 倍音速以上, 展弦比 4.5 , 自然界也是如此,信天翁为长时间遨翔,翅膀展弦比高,隼为掠食性动物,为求 高速、灵活,所以展弦比低。
4 S 型翼:中弧线是一个平躺的 S 型,这类翼型因攻角改变时,压力中心较不变 动,常用于无尾翼机。
5内凹翼:下弧线在翼弦在线,升力系数大,常见于早期飞机及牵引滑翔机,所 有的鸟类除蜂鸟外都是这种翼型。 基本航模的翼型选测规律:
1薄的翼型阻力小,但不适合高攻角飞行,适合高速机。
2厚的翼型阻力大,但不易失速。
图 2 所示的, 是接收机和舵机以及接收机电源装置, 其中接收机用来接收从发射机传来的指 令信号, 经处理后, 指挥舵机作出与发射机指令相对应的动作。 电池组给接收机和舵机提供 工作能源, 它由 4 节普通 5 号干电池串联而成。 如果是电动航模则将其中一个舵机换为电子 调速器(俗称电调) 。电子调速器连接电源和电机,而且接收机也直接由电子调速器连接的 电源供电。
练习机一般在 50~70 左右,特技机约在 60~90,热气流滑翔机 30~50,像真机 110 以内还可忍受,牵引滑详机约 12~15 左右,
6、展弦比
从雷诺数的观点机翼越宽、 速度越快越好, 但我们不要忘了阻力, 短而宽的机翼 诱导阻力会消耗你大部分的马力。飞机要有适合的展弦比,展弦比 A 就是翼展 L 除以平均翼弦 b(A=L/b) ,L 与 b 单位都是 cm,如果不是矩形翼的话我们把右边 上下乘以 L,得 A=L2 / S , S 是主翼面积,单位是 cm2,这样不用求平均翼弦,
所谓比例控制, 简单说来, 就是当我们把发射机上的操纵杆由中立位置向某一方向偏移
一角度时, 与该动作相对应的舵机摇臂也同时偏移相应的角度,
舵机摇臂偏转角度与发射机
操纵杆偏移角度成比例 .图 3 显示了发射机执行舵机与飞机模型舵面的动作关系。当发射机
操纵杆 (或对应的微调杆 ) 往左、右偏转或回复中立时,执行舵机的摇臂也随之相应地往左、
相关文档
最新文档