人教版八年级数学期中复习---作图题专题
人教版2022--2023学年度第一学期八年级数学上册期中测试卷及答案
故选:C.
【点睛】本题考查了三角形的高线,中线,角平分线的定义,掌握以上知识是解题的关键.
8. B
【解析】
【分析】直接根据三角形中线定义解答即可.
【详解】解:∵ 是 的中线, ,
∴BM= ,
故选:B.
【点睛】本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.
【详解】解:∵△ABF和△BCE均为等边三角形,
∴AB=FB,BC=BE,∠ABF=∠CBE=60°,
∴∠MBN=180°﹣∠ABF﹣∠CBE=60°,
∵∠ABE=∠ABF+∠MBN=60°+60°=120°,
∠FBC=∠CBE+∠MBN=60°+60°=120°,
∴∠ABE=∠FBC,
在△ABE和△FBC中,
21.已知在△ABC中,AC=BC,分别过A,B两点作互相平行的直线AM,BN,过点C的直线分别交直线AM,BN于点D,E.
(1)如图1,若AM⊥AB,求证:CD=CE;
(2)如图2,∠ABC=∠DEB=60°,判断线段AD,DC与BE之间的关系,并说明理由.
22.如图,在下列带有坐标系的网格中,△ABC的顶点都在边长为1的小正方形的顶点上.
∴BD是∠ADC的角平分线,故⑤正确;
故选:B.
【点睛】本题考查了全等三角形的性质与判定,等边三角形的性质与判定,角平分线的判定定理,综合运用以上知识是解题的关键.
二.填空题(共7小题,满分28分,每小题4分)
11.108°
【解析】
【分析】设∠A=x,然后利用等边对等角表示出各个角的度数,然后利用三角形内角和定理求得x的值后即可求得答案.
三角形(考点猜想,4种常考题型)解析版—2024-2025学年八年级数学上学期期中考点大串讲(人教版
三角形(考点猜想,4种常考题型)三角板问题 折叠问题角平分线问题 动点问题一.三角板问题(共7小题)1.(21-22八年级上·辽宁鞍山·期中)如图,用三角板作ABCV的边AB上的高线,下列三角板的摆放位置正确的是( )A.B.C.D.【答案】B【分析】本题考查的是作图-基本作图,根据高线的定义即可得出结论,熟知三角形高线的定义是解题的关键.V的边AB上的高,【详解】解:A,C,D都不是ABC故选:B.P,2.(22-23八年级上·浙江温州·期中)一副三角板,按如图所示放置,B、C、D在同一直线上,若AE BDÐ的度数为()则CADA .10°B .15°C .20°D .25°【答案】B 【分析】本题考查平行线的性质,三角形的外角,平行线的性质得到30BDA EAD Ð=Ð=°,再利用三角形的外角进行求解即可.【详解】解:由图可知:30,45DAE ACB ABC Ð=°Ð=Ð=°∵AE BD P ,∴30BDA EAD Ð=Ð=°,∵Ð=Ð+ÐACB ADB CAD ,∴15CAD Ð=°;故选:B .2.(22-23八年级上·辽宁鞍山·期中)小明把一副含45°,30°的直角三角板如图摆放,其中90C F Ð=Ð=°,30D Ð=°,则a b Ð+Ð等于( )A .180°B .210°C .360°D .270°【答案】B 【分析】本题考查的是三角形外角的性质,三角形内角和定理,对顶角,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.根据三角形的外角的性质分别表示出a Ð和Ðb ,计算即可.【详解】解:如图,∵1D a Ð=Ð+Ð,4F b Ð=Ð+Ð,1234Ð=ÐÐ=Ð,14D Fa b \Ð+Ð=Ð+Ð+Ð+Ð23D F=Ð+Ð+Ð+Ð∵90C Ð=°,∴2390+=°∠∠,∵90F Ð=°903090a b \Ð+Ð=°+°+°210=°,故选:B .4.(22-23八年级上·福建莆田·期中)将一副直角三角板按如图所示的方式放置,使用30°角的三角板的直角边和含45°角的三角板的直角边垂直,则1Ð的度数为 .【答案】75°#75度【分析】本题主要考查三角形外角的性质,由三角板的特征可得45B Ð=°,30E Ð=°,90EFD Ð=°,利用三角形的外角的性质及对顶角的性质可求解AGE Ð的度数,再利用三角形外角的性质可求解1Ð的度数.【详解】解:由题意得ABC V ,DEF V 为直角三角形,45B Ð=°,30E Ð=°,90EFD Ð=°,45AGE BGF \Ð=Ð=°,1E AGE Ð=Ð+ÐQ ,1304575\Ð=°+°=°,故答案为:75°.5.(23-24八年级上·北京朝阳·期中)如图,将分别含有30°、45°角的一副三角板重叠,使直角顶点重合,则图中角a 的度数为 .Q 30B Ð=°,65DCB Ð=°\30DFB B DCB Ð=Ð+Ð=+°Q 45D Ð=°\4595D DFB a Ð=Ð+Ð=°+故答案为:140°.6.(22-23八年级上·安徽阜阳·期中)将一副直角三角板如图放置,=60B а,45E Ð=°,AC 与DE 交于点F ,75AFD Ð=°,证明:AE BC ∥.【答案】见解析【分析】根据三角形的外角的性质得出45EDC Ð=°,根据E EDC Ð=Ð,即可得证.【详解】解:∵=60B а,45E Ð=°,∴30C Ð=°,∵75EDC AFD C Ð+Ð=°Ð=,45EDC \Ð=°,∴E EDC Ð=Ð,∴AE BC ∥.【点睛】本题考查了三角形外角的性质,平行线的判定,三角尺的交点计算,掌握三角形的外角的性质是解题的关键.7.(23-24八年级上·河南许昌·期中)(1)如图1,有一块直角三角板XYZ 放置在ABC V 上,恰好三角板XYZ 的两条直角边XY ,XZ 分别经过点B 、C .若40A Ð=°,ABX ACX Ð+Ð= 度;(2)如图2,改变(1)中直角三角板XYZ 的位置,使三角尺XYZ 的两条直角边XY ,XZ 仍然分别经过点B .C .40A Ð=°,那么ABX ACX Ð+Ð的大小是否变化?若变化,请举例说明;若不变化,请求出ABX ACX Ð+Ð的大小;(3)如果(1)中的其它条件不变,把“40A Ð=°”改成“A n Ð=°”,则ABX ACX Ð+Ð= .【答案】(1)50;(2)不变化,50°;(3)()90n -°【分析】本题主要考查了三角形内角和定理:(1)根据三角形内角和为180°先求出180140ABC ACB A ÐÐ=°-Ð=°+,再求出90XBC XCB ÐÐ=°+,则二.折叠问题(共7小题)8.(22-23八年级上·河南安阳·期中)如图,将纸片ABC V 沿DE 折叠,使点A 落在四边形BCED 的外部点A ¢的位置,如果A n Ð=°,则12Ð-Ð的度数是( )A .60°B .2n °C .12n °D .无法确定∵13A Ð=Ð+Ð,32Ð=Ð+∴12A A ¢Ð=Ð+Ð+Ð,∵折叠,∴A A Т=Ð,9.(23-24八年级上·山西朔州·期中)如图,在ABC V 中,30C Ð=°,将ABC V 沿直线l 折叠,使点C 落在点D 的位置,则12Ð-Ð的度数是( )A .30°B .40°C .50°D .60°Q 将ABC V 沿直线l 折叠,使点30D C \Ð=Ð=°14C Ð=Ð+ÐQ ,4D Ð=Ð+Ð12C D \Ð=Ð+Ð+Ð12C D\Ð-Ð=Ð+Ð12303060\Ð-Ð=°+°=°ABC Ð,CA ¢平分ACB Ð,若114BA C Ð=¢°,则12Ð+Ð的大小为( )A .66°B .48°C .96°D .132°【答案】C 【分析】此题主要考查角平分线的性质和三角形的内角和定理,连接AA ¢,首先求出48BAC Ð=°,再证明12DAE DA E ¢Ð+Ð=Ð+Ð即可解决问题.【详解】解:连接AA ¢,∵114BA C Ð=¢°∴18066A BC A CB BA C Т¢=Т+Ð-=o o∵BA ¢平分ABC Ð,CA ¢平分ACBÐ∴132ABC ACB Ð+Ð=o∴48BAC Ð=°由题意得:ADE A DED @D ¢∴48DAE DA E ¢°Ð=Ð=∴1DAA AA D ¢¢Ð=Ð+Ð,2EAA AA E¢¢Ð=Ð+Ð∴1296DAE DA E Ð+Ð=Ð+=¢Ðo .故选:C .11.(22-23八年级上·广西柳州·期中)如图,将ABC V 纸片沿DE 折叠,使点A 落在点A ¢处,且A B ¢平分ABC Ð,A C ¢平分ACB Ð,若142,246Ð=°Ð=°,则BA C ¢Ð的度数为 .【答案】112°/112度【分析】本题考查三角形的内角和定理、角平分线的定义、三角形的外角的性质等知识,灵活运用所学知识,学会添加常用辅助线是解答本题的关键,属于中考常考题型.连接AA ¢,根据折叠的性质及三角形外角的性质求出44BAC Ð=°,再由角平分线及三角形内角和定理即可解决问题.【详解】解:如图,连接AA ¢,Q 沿DE 折叠,DAA DA A \Ð=¢Ð¢,EAA EA A ¢¢Ð=Ð,Q 12A BC ABC ¢\Ð=Ð,A CB ¢Ð11362A BC A CB \Ð+Ð=´¢¢18068112BA C ¢\Ð=°-°=故答案为:112°.12.(22-23八年级上·辽宁营口·期中)如图,ABC V 中,4030B C Ð=°Ð=°,,点D 为边BC 上一点,将ADC△沿直线AD 折叠后,若DE AB ∥,则ADE Ð的度数为 .【答案】110°/110度【分析】此题考查了折叠的性质、三角形内角和定理等知识,根据三角形内角和定理求出=110BAC а,由折叠得到30E C ADE ADC Ð=Ð=°Ð=Ð,,CAD EAD Ð=Ð,再根据平行线的性质得到30BAE E Ð=Ð=°,求出40CAD EAD Ð=Ð=°,根据三角形内角和定理即可得到答案.【详解】解:∵4030B C Ð=°Ð=°,,∴=110BAC а,由折叠的性质得,30E C ADE ADC Ð=Ð=°Ð=Ð,,CAD EAD Ð=Ð13.(23-24八年级上·甘肃平凉·期中)问题1如图①,一张三角形纸片ABC ,点D E 、分别是ABC V 边上两点.研究(1):如果沿直线DE 折叠,使A 点落在CE 上的A ¢点,则BDA ¢Ð与A Ð的数量关系是________;研究(2):如果折成图②的形状,猜想BDA CEA ¢¢ÐÐ、和A Ð数量关系是________;研究(3):如果折成图③的形状,猜想BDA CEA ¢¢ÐÐ、和A Ð数量关系,并说明理由;猜想:________;理由:研究(4):将问题1推广,如图④所示,将四边形ABCD 沿EF 折叠,使点A B 、落在四边形EFCD 的内部,12Ð+Ð与A B ÐÐ+之间的数量关系是________.【答案】(1)2BDA A ¢Ð=Ð;(2)2BDA CEA A ¢¢Ð-Ð=Ð;(3)2BDA CEA A ¢¢Ð+Ð=Ð,见解析;(4)()122360A B Ð+Ð=Ð+Ð-°【分析】(1)根据三角形的外角的性质以及折叠的特点即可得到结论;(2)连接AA ¢,根据三角形的外角的性质与轴对称的性质即可得到结论;(3)根据三角形的外角的性质与轴对称的性质即可得到结论;(4)根据平角的定义以及四边形的内角和定理进行探讨即可得到答案;本题考查了轴对称的性质,三角形的外角的性质,四边形的内角和定理的应用,熟记三角形的外角的性质与四边形的内角和定理是解题的关键.【详解】研究(1):根据折叠的性质可知DA E A ¢Ð=Ð,¢¢Ð+Ð=ÐDA E A BDA则2¢¢Ð=ÐBDA DA A ,CEA Ð∴2¢¢Ð-Ð=ÐBDA CEA BAC ;故答案为:BDA CEA ¢¢Ð-Ð=研究(3):猜想:BDA ¢Ð+理由:由图形的折叠性质可知14.(23-24八年级上·福建厦门·期中)如图,ABC V 是一个三角形的纸片,点D ,E 分别是ABC V 边AB ,AC上的两点.(1)如图(1),如果沿直线DE 折叠,且DE AC ^,则BDA ¢Ð与A Ð的关系是 .(2)如图(2),如果沿直线DE 折叠后A 落在四边形BCED 内部,探究BDA ¢Ð,CEA ¢Ð和A Ð的关系,并说明理由.(3)如果折成图(3)的形状,探究BDA ¢Ð,CEA ¢Ð和A Ð的关系,并说明理由.∵12BDA ¢Ð=Ð+Ð,34CEA ¢Ð=Ð+Ð,∴1324BDA CEA DAE EA D ¢¢¢Ð+Ð=Ð+Ð+Ð+Ð=Ð+Ð,又∵DAE EA D ¢Ð=Ð,∴2BDA CEA DAE ¢¢Ð+Ð=Ð;(3)解:2BDA CEA A ¢¢Ð-Ð=Ð.理由:如图(3),由翻折可得:A A Т=Ð,DEA DEA ¢Ð=Ð,A DE ADE ¢Ð=Ð,∵()()180180A A DE A ED A ADE AED ¢¢¢Ð+Ð+Ð+Ð+Ð+Ð=°+°,()()()360A A DEA DEA A DE ADE ¢¢¢Ð+Ð+Ð+Ð+Ð+Ð=°,∴()()2180180360A CEA BDA ¢¢Ð+°+Ð+°-Ð=°,∴20A CEA BDA ¢¢Ð+Ð-Ð=,∴2BDA CEA A ¢¢Ð-Ð=Ð.三.角平分线问题(共8小题)15.(23-24八年级上·四川泸州·期中)如图,在ABC V 中,BD 是ABC V 的高,BE 是ABC V 的角平分线,80ABC Ð=°,12DBE Ð=°,则A Ð的度数是( )A .60°B .62°C .65°D .68°∵BD 是ABC V 的高,∴90ABD A Ð+Ð=°,∴6029A ABD а=°-Ð=,故选:B .16.(22-23八年级上·甘肃平凉·期中)如图,在Rt ABC △中,90C Ð=°,ABC Ð和BAC Ð的平分线交于一点O ,30ABO Ð=°,则AOB Ð的度数是( )A .120°B .150°C .135°D .140°17.(23-24八年级上·河北承德·期中)如图,BD 平分ABC Ð,DA AB ^,垂足是A 点,若160Ð=°,80BDC Ð=°,则C Ð的度数是( )A .30°B .60°C .70°D .90°【答案】C 【分析】本题主要考查了角平分线的定义,直角三角形两锐角互余,三角形内角和.先由先由角平分线的定义和直角三角形两锐角互余求出ABD Ð的度数,再根据三角形内角和即可求出C Ð的度数.【详解】解:∵DA AB ^,∴90A Ð=°.∵BD 平分ABC Ð,∴901906030ABD CBD Ð=Ð=°-Ð=°-°=°.∵80BDC Ð=°,∴180180308070C CBD BDC Ð=°-Ð-Ð=°-°-°=°.故选:C .18.(22-23八年级上·湖南娄底·期中)如图,在ABC V 中,BD 、CD 分别为ABC Ð、ACB Ð的角平分线,两线交于点D ,40A Ð=°.则D Ð= .【答案】110°/110度【分析】本题考查角平分线的定义、三角形内角和定理,根据三角形内角和定理求得140ABC ACB Ð+Ð=°,再根据角平分线的定义可得2ABC DBC Ð=Ð,2ACB DCB Ð=Ð,进而可得=70DBC DCB Ð+а,再利用三角形内角和定理求解即可.【详解】解:∵40A Ð=°,∴18040140ABC ACB Ð+Ð=°-°=°,∵BD 、CD 分别为ABC Ð、ACB Ð的角平分线,∴2ABC DBC Ð=Ð,2ACB DCB Ð=Ð,∴22=140DBC DCB Ð+а,即=70DBC DCB Ð+а,∴()180********BDC DBC DCB Ð=°-Ð+Ð=°-°=°,故答案为:110°.19.(22-23八年级上·甘肃平凉·期中)如图,AB CD ∥,BP 和CP 分别平分ABC Ð和BCD Ð,AD 过点P ,且与AB 垂直,则BPC Ð= .20.(23-24八年级上·广东广州·期中)如图,点D 是ABC V 两条角平分线,AP CE 的交点,如果130BAC BCA Ð+Ð=°,那么ADC Ð= .21.(22-23八年级上·四川泸州·期中)如图所示,在ABC V 中,AD 是高,AE BF 、是角平分线,它们相交于点O ,5070BAC C Ð=°Ð=°,,求DAC BOA ÐÐ、的度数.22.(23-24八年级上·广东惠州·期中)解答下列各题(1)如图1,E 点在BC 上,A D Ð=Ð,180ACB BED Ð+Ð=°,求证:AB CD ∥;(2)如图2,AB CD ∥,BG 平分ABE Ð,与EDF Ð的平分线交于H 点,若DEB Ð比DHB Ð大60°,求DEB Ð的度数;(3)如图3,若DEB a Ð=,AB CD ∥,BM 平分EBK Ð,DN 平分CDE Ð,作BP DN ∥,直接写出PBM Ð的大小(用a 的代数式表示).∵180ACB BED Ð+Ð=°∴ACB CED Ð=Ð,∴AC DF ∥,∵AB CD ∥,∴AB EM HN CD ∥∥∥,∴1180EDF MEB Ð+Ð=°Ð,∵BG 平分ABE Ð,∴1A G AB B E Ð=Ð,∵BM 平分EBK Ð,DN 平分CDE Ð∴12EBM MBK EBK Ð=Ð=Ð,CDN Ð∵ES CD AB CD ∥,∥,∴ES AB CD ∥∥,【点睛】本题主要考查了三角形的内角和定理、平角的定义、平行线的判定和性质等知识点,正确地作出辅助线、构造平行线是解题的关键四.动点问题(共8小题)23.(23-24八年级上·河北唐山·期中)如图,在Rt ABC △中,已知90ACB Ð=°,边8AC =,10BC =,点P 为AB 边上一动点,点P 从点B 向点A 运动,当点P 运动到AB 中点时,APC △的面积是( ).A .5B .10C .20D .4024.(23-24八年级上·湖北孝感·期中)如图1,ADC △中,点E 和点F 分别为AD 、AC 上的动点,把ADC △纸片沿EF 折叠,使得点A 落在ADC △的外部A ¢处,如图2所示.若1242Ð-Ð=°,则A Ð的度数为( )A .15°B .20°C .21°D .25°【答案】C 【分析】本题考查了折叠问题,三角形内角和定理,三角形的外角的性质,根据三角形外角和折叠的性质可得11802AEF Ð=°-Ð,2AFE A AEF Ð=Ð+Ð+Ð,进而即可得到218022A AEF Ð=°-Ð-Ð,结合2142Ð-Ð=°即可求解,熟练掌握以上知识是解题的关键.【详解】解:根据折叠的性质得A A ¢Ð=Ð,AEF A EF ¢Ð=Ð,AFE A FE ¢Ð=Ð,∵1180AEA ¢Ð=°-Ð,2A FE CFE ¢Ð=Ð+Ð,CFE A AEF Ð=Ð+Ð,∴11802AEF Ð=°-Ð,2AFE A AEF Ð=Ð+Ð+Ð,∵180AFE A AEF Ð=°-Ð-Ð,∴218018022A AEF A AEF A AEF Ð=°-Ð-Ð-Ð-Ð=°-Ð-Ð,∴()12180180222AEF F A AE а-Ð-а-=Ð-Ð-,∴122A Ð-Ð=Ð,∵1242Ð-Ð=°,∴21A Ð=°,故选:C .25.(22-23八年级上·北京西城·期中)如图1,ADC △中,点E 和点F 分别为AD ,AC 上的动点,把ADC △纸片沿EF 折叠,使得点A 落在ADC △的外部A ¢处,如图2所示.设12a Ð-Ð=,则下列等式成立的是( )A .A aÐ=B .2A a Ð=C .2A a Ð=D .32A aÐ=【答案】C 【分析】根据三角形外角和折叠的性质可得11802AEF Ð=°-Ð,2AFE A AEF Ð=Ð+Ð+Ð,进而即可得到2Ð18022A AEF =°-Ð-Ð,结合12a Ð-Ð=即可求解.【详解】解:根据折叠的性质得A A ¢Ð=Ð,AEF A EF AFE A FE ¢¢Ð=ÐÐ=Ð,,∵1180AEA ¢Ð=°-Ð,2A FE CFE ¢Ð=Ð+Ð,CFE A AEF Ð=Ð+Ð,∴11802AEF Ð=°-Ð,2AFE A AEF Ð=Ð+Ð+Ð,∵180AFE A AEF Ð=°-Ð-Ð,∴2180A AEF A AEFÐ=°-Ð-Ð-Ð-Ð18022A AEF =°-Ð-Ð,∴()12180180222AEF F A AE а-Ð-а-=Ð-Ð-,∴122A Ð-Ð=Ð,∵12a Ð-Ð=,∴2A a Ð=,故选C .【点睛】本题考查了折叠的性质、三角形外角的性质和三角形内角和定理,解决本题的关键是掌握折叠的性质.26.(23-24八年级上·江苏宿迁·期中)如图,在ABC V 中,9068C ABC Ð=°Ð=°,,D 是AB 的中点,点E 在边AC 上一动点,将ABE V 沿DE 翻折,使点A 落在点A ¢处,当A E BC ¢∥时,则ADE Ð= .∴90A EA C ¢Ð=Ð=°,∵68ABC Ð=°,∴906822A Ð=°-°=°,故答案为:113°或23°.27.(21-22八年级上·湖北武汉·期中)如图,在ABC V 中,90ACB Ð=°,12AC =,9BC =,P 是AB 上的一个动点(不与点B 重合).点B 与点B ¢关于直线PC 对称,连接CB ¢,AB ¢,PB ¢,则线段AB ¢的最小值是 .【答案】3【分析】根据题意,得9CB CB ¢==,结合CB AB AC +³¢¢,判定当,,A B C ¢三点共线时,线段AB ¢取得最小值,解答即可.本题考查了三角形不等式求最值,构造正确的三角形不等式存在的基础三角形是解题的关键.【详解】解:根据题意,得9CB CB ¢==,∵CB AB AC +³¢¢,∴当,,A B C ¢三点共线时,线段AB ¢取得最小值∵12AC =,∴3AB AC BC ¢=-=,故答案为:3.28.(23-24八年级上·安徽马鞍山·期中)在一节数学习题课后,同学们知道了:三角形的三条中线把三角形的面积分成6个面积相等的小三角形,如下图1所示,随后宋老师对其进行变式:在ABC V 中,12ABC S =△,E 是BC 上的动点,点D 是AC 的中点,AE 、BD 相交于点F .①若E 为BC 的中点,如图2所示,则四边形CDFE 的面积是 ;②若:1:4BE EC =,如图3所示,则四边形CDFE 的面积是 .则CG 是AB 边上的中线,∵1,2BEF CEF S BE FH S =´V V ∴14BEF CEF S S =V V ,设BEF S S =△,则CEF S V ∴5BFC S S =V ,∵BD 是中线,∴ABD BCD S S =△△,线BD 上(不与点D 重合),过点E 作EF BC ∥交线段AC 于点F (不与点A ,C 重合),AFE Ð的平分线所在的直线与射线BD 交于点G .(1)当点E 在线段BD 上时.①若40ABC Ð=°,60C Ð=°,FED Ð的度数为______;FGD Ð的度数为______;②求证1902FGD A Ð=°-Ð;(2)当点E 在线段BD 的延长线上时,直接写出FGD Ð与A Ð之间的数量关系.∵BD 平分ABC Ð,∴12CBD ABC Ð=Ð.∵EF BC ∥,130.(23-24八年级上·安徽亳州·期中)在ABC V 中,AE 平分BAC Ð,C B Ð>Ð.(1)如图1,若AD BC ^于点D ,60C Ð=°,40B Ð=°,则DAE Ð=______;(2)如图2,若点P 是线段AE 上一动点,过点P 作PG BC ^于点G ,则EPG Ð与C Ð,B Ð之间的数量关系是______;(3)如图3,若点P 是AE 延长线上一点,过点P 作PG BC ^于点G ,则EPG Ð与C Ð,B Ð之间有何数量关系?画出图形并证明你的结论.PG BCQ,^\∥,AD PG\Ð=Ð,DAE GPEQÐ=°-Ð+ÐCAB B C180() Q,PG BC^。
人教版数学八年级上学期《期中测试卷》含答案解析
【解析】
【分析】
要熟悉三角形中的概念及其分类方法和三角形的内角和定理及其推论.
【详解】A、正确,符合线段的定义;
B、正确,符合三角形内角和定理;
C、正确;三角形的分类;
D、三角形的一个外角大于任何一个和它不相邻的内角,错误.
故选D.
【点睛】考查了三角形的高、中线、角平分线的概念;三角形的内角和定理及其推论;三角形的分类方法.
B. AOB、 BOC、 COA都是等腰三角形
C. OAB+ OBC+ OCA=
D.点O到AB、BC、CA的距离相等
8.如图 中, ,且 为 上一点.今打算在 上找一点 ,在 上找一点 ,使得 与 全等,以下是甲、乙两人的作法:
(甲)连接 ,作 的中垂线分别交 、 于 点、 点,则 、 两点即为所求
(乙)过 作与 平行的直线交 于 点,过 作与 平行的直线交 于 点,则 、 两点即为所求
对于甲、乙两人的作法,下列判断何者正确?( )
A. 两人皆正确B. 两人皆错误
C. 甲正确,乙错误D. 甲错误,乙正确
9.如图,己知在 中, ,点 是 边的中点,分别以 , 为圆心,大于线段 长度一半的长为半径作弧,两弧在直线 上方的交点为 ,直线 交 于点 ,连接 ,则下列结论:① ;② ;③ 平分 .其中一定正确的是()
1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是()
A.诚B.信C.友D.善
【答案】D
【解析】
【分析】
根据轴对称图形的概念逐一进行分析即可得.
【详解】A.不是轴对称图形,故不符合题意;
B.不是轴对称图形,故不符合题意;
C.不是轴对称图形,故不符合题意;
人教版八年级上册数学期中考试试题含答案详解
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或133.若一个多边形的内角和为720°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形4.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.50°B.60°C.85°D.80°6.如图,∠A=50°,P是等腰△ABC内一点,AB=AC,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数为()A.100°B.115°C.130°D.140°7.如图,△ABC≌△DEF,若BC=12cm,BF=16cm,则下列判断错误的是()A.AB=DE B.BE=CF C.AB//DE D.EC=4cm8.如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长为()A.3B.4C.5D.69.如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等的三角形共有( )A.四对B.三对C.二对D.一对10.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM//BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE,其中一定正确的有()A.0个B.1个C.2个D.3个二、填空题11.已知△ABC中,AB=6,BC=4,那么边AC的长可以是(填一个满足题意的即可). 12.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是_____________.13.点M与点N(-2,-3)关于y轴对称,则点M的坐标为.14.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,DE为折痕,使点A 落在BC上F处,若∠B=40°,则∠EDF=_____度.15.已知△ABC中,∠A=12∠B=13∠C,则△ABC是_____三角形.16.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,点D是BC边上的点,AB=18,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则BP+EP的最小值是____.三、解答题17.如图,A、F、B、D在一条直线上,AF=DB,BC=EF,AC=DE.求证:∠A=∠D.18.一个多边形,它的内角和比外角和还多180°,求这个多边形的边数.19.如图,已知△ABC,∠C=90°,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B=35°,则∠CAD=°.20.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积.21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.22.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD平分∠BAC;(2)连接EF ,求证:AD 垂直平分EF .23.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)∠ABE=15°,∠BED=55°,求∠BAD 的度数;(2)作△BED 的边BD 边上的高;(3)若△ABC 的面积为20,BD=2.5,求△BDE 中BD 边上的高.24.如图,在△ABC 中,∠BAC=120°,AB=AC=4,AD ⊥BC ,AD 到E ,使AE=2AD ,连接BE .(1)求证:△ABE 为等边三角形;(2)将一块含60°角的直角三角板PMN 如图放置,其中点P 与点E 重合,且∠NEM=60°,边NE 与AB 交于点G ,边ME 与AC 交于点F .求证:BG=AF ;(3)在(2)的条件下,求四边形AGEF 的面积.25.已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.参考答案1.B【详解】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.A【分析】分1是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【详解】①1是腰长时,三角形的三边分别为1、1、6,不能组成三角形,②1是底边时,三角形的三边分别为6、6、1,能组成三角形,周长=6+6+1=13,综上所述,三角形的周长为13.故选A.【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.3.D【分析】利用n边形的内角和可以表示成(n-2)•180°,结合方程即可求出答案.【详解】设这个多边形的边数为n,由题意,得(n-2)180°=720°,解得:n=6,则这个多边形是六边形.故选D.【点睛】本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n-2)•180°是解题的关键.4.B【分析】根据作图的过程知道:OA=OB,OC=OC,AC=CB,所以由全等三角形的判定定理SSS可以证得△OAC≌△OBC.【详解】连接AC、BC,根据作图方法可得:OA=OB,AC=CB,在△OAC和△OBC中,OA OB OC OC AC CB =⎧⎪=⎨⎪=⎩,∴△OAC ≌△OBC (SSS ).故选:B .【点睛】本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.C【分析】根据三角形角平分线的性质求出∠ACD ,根据三角形外角性质求出∠A 即可.【详解】∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A ,∴∠A=∠ACD-∠B=120°-35°=85°,故选C .【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.6.B【分析】根据等腰三角形两底角相等求出∠ACB ,然后求出∠PCB+∠PBC=∠ACB ,再根据三角形的内角和定理列式计算即可得解.【详解】∵∠A=50°,△ABC 是等腰三角形,∴∠ACB=12(180°-∠A )=12(180°-50)=65°,∵∠PBC=∠PCA ,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°-(∠PCB+∠PBC )=180°-65°=115°.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,准确识图并求出∠PCB+∠PBC是解题的关键.7.D【分析】根据全等三角形的性质得出AB=DE,BC=EF,∠ACB=∠F,求出AC∥DF,BE=CF,即可判断各个选项.【详解】∵△ABC≌△DEF,∴AB=DE,BC=EF,∠ACB=∠F,∴AC∥DF,BC-EC=EF-EC,∴BE=CF,∵BC=12cm,BF=16cm,∴CF=BE=4cm,∴EC=12cm-4cm=8cm,即只有选项D错误;故选D.【点睛】本题考查了全等三角形的性质,平行线的判定的应用,能正确运用性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.8.B【分析】先根据角平分线的性质,得出DE=DC,再根据BC=9,BD=5,得出DC=9-5=4,即可得到DE=4.【详解】∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9-5=4,故选B.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.9.B【分析】找出全等的三角形即可得出选项.【详解】1、因为AB=AC,AD=AE,∠A=∠A,所以△ABE≌△ACD;2、因为BD=AB-AD,CE=AC-AE,所以BD=CE,又因为AB=AC,BC=BC,所以∠B=∠C,所以△BCD≌△CBE;3、当△ABE≌△ACD时,∠ABE=∠ACD,∠OBC=∠OCB,所以OB=OC,又因为BD=CE,所以△OBD≌△OCE,所以答案选择B项.【点睛】本题考查了全等的证明,熟悉掌握SAS,SSS,ASA是解决本题的关键.10.D【分析】如图,由BD分别是∠ABC及其外角的平分线,得到∠MBD=12×180°=90°,故①成立;证明BF=CE、BF=DF,得到FD=FB,故②成立;证明BF为直角△BDM的斜边上的中线,故③成立.【详解】如图,∵BD分别是∠ABC及其外角的平分线,∴∠MBD=12×180°=90°,故MB⊥BD,①成立;∵DF∥BC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,②成立;∵∠DBM=90°,MF=DF,∴BF=12DM,而CE=BF,∴CE=12DM,即MD=2CE,故③成立.故选D.【点睛】该题主要考查了等腰三角形的判定及其性质、直角三角形的性质等几何知识点及其应用问题;应牢固掌握等腰三角形的判定及其性质、直角三角形的性质11.3,4,···(2到10之间的任意一个数)【解析】【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【详解】根据三角形的三边关系可得:AB-BC<AC<AB+BC,∵AB=6,BC=4,∴6-4<AC<6+4,即2<AC<10,∴AC的长可以是3,4,•••(2到10之间的任意一个数).故答案为3,4,•••(2到10之间的任意一个数).【点睛】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键.12.60°【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题.【详解】如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°.【点睛】本题考查等边三角形的性质和动点问题,解题的关键是知道当三点共线时PE+PC最小. 13.(2,-3).【分析】根据平面直角坐标系中任意一点P(x,y),关于y轴对称的点的坐标为(-x,y),将M的坐标代入从而得出答案.【详解】根据关于x轴、y轴对称的点的坐标的特点,∴点N(-2,-3)关于y轴对称的点的坐标是(2,-3).故答案为(2,-3).【点睛】本题主要考查了平面直角坐标系中关于y轴对称的点的坐标的特点,注意掌握任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴对称的点的坐标为(-x,y),比较简单.14.40【分析】先根据图形翻折不变的性质可得AD=DF,根据等边对等角的性质可得∠B=∠BFD,再根据三角形的内角和定理列式计算可得∠BDF的解,再根据平角的定义和折叠的性质即可求解.【详解】∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=50°,∴∠BDF=180°-∠B-∠BFD=180°-40°-40°=100°,∴∠EDF=(180°-∠BDF)÷2=40°.故答案为40.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.15.直角【分析】设∠A=x°,则∠B=2x°,∠C=3x°,利用三角形内角和为180°求的x,进而求出∠C为90°,即可得出答案.【详解】设∠A=x°,则∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°∴x°+2x°+3x°=180°∴x°=30°∴∠C=3x°=90°∴△ABC是直角三角形故答案为直角【点睛】本题考查三角形内角和定理的运用以及三角形形状的判定,熟练掌握三角形内角和定理是解题关键.16.9【分析】根据翻折变换的性质可得点C、E关于AD对称,再根据轴对称确定最短路线问题,BC与AD的交点D即为使PB+PE的最小值的点P的位置,然后根据直角三角形两锐角互余求出∠BAC=60°,再求出∠CAD=30°,然后解直角三角形求解即可.【详解】∵将△ACD沿直线AD翻折,点C落在AB边上的点E处,∴点C、E关于AD对称,∴点D即为使PB+PE的最小值的点P的位置,PB+PE=BC,∵∠C=90°,∠BAC=30°,∴BC=12 AB,∴BC=9.∴PB+PE的最小值为9.故答案为9.【点睛】本题考查了轴对称确定最短路线问题,翻折变换的性质,解直角三角形,难点在于判断出PB+PE取得最小值时点P与点D重合.17.详见解析.【分析】已知AF=DB,则AF+FB=DB+FB,可得AB=DF,结合已知AC=DE,BC=FE可证明△ABC≌△DFE,利用全等三角形的性质证明结论.【详解】证明:∵AF=DB,∴AF+FB=DB+FB ,即AB=DF在△ABC 和△DFE 中,AC DE BC FE AB DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A=∠D【点睛】本题考查了全等三角形的判定与性质.关键是由已知边相等,结合公共线段求对应边相等,证明全等三角形.18.多边形的边数为5【解析】【分析】根据多边形的外角和均为360°,已知该多边形的内角和比外角和还多180°,可以得出内角和为540°,再根据计算多边形内角和的公式(n-2)×180°,即可得出该多边形的边数.【详解】设多边形的边数为n ,则(n-2)×180°=360°+180°解得n=5答:多边形的边数为5【点睛】本题主要考查多边形的内角和和多边形的外角和.19.(1)详见解析;(2)20°.【解析】【分析】(1)线段垂直平分线的尺规作图;(2)通过线段垂直平分线的性质易得AD=BD ,从而∠BAD=∠B ,再求解即可.【详解】(1)如图,点D 即为所求.(2)在Rt△ABC中,∠B=35°,∴∠CAB=55°,又∵AD=BD,∴∠BAD=∠B=35°,∴∠CAD=∠CAB-∠DAB=55°-35°=20°.【点睛】本题主要考查了尺规作图,线段垂直平分线的作法;线段垂直平分线的性质. 20.(1)(-3,2);(2)2.5【解析】试题分析:(1)根据关于与原点对称的点横、纵坐标均为相反数求解即可;(2)△ABC的面积等于矩形的面积减去三个三角形的面积.(1)如图,C1坐标为(-3,2);(2)11123212131222 ABCS=⨯-⨯⨯-⨯⨯-⨯⨯3611 2.52=---=. 21.BE=0.8cm先证明△ACD ≌△CBE ,再求出EC 的长,解决问题.【详解】解:∵BE ⊥CE 于E ,AD ⊥CE 于D∴∠E =∠ADC =90°∵∠BCE +∠ACE =∠DAC +∠ACE =90°∴∠BCE =∠DAC∵AC =BC∴△ACD ≌△CBE∴CE =AD ,BE =CD =2.5﹣1.7=0.8(cm ).【点睛】本题考查全等三角形的性质和判定,准确找到全等条件是解题的关键.22.见解析【解析】【分析】(1)由于D 是BC 的中点,那么BD =CD ,而BE =CF ,DE ⊥AB ,DF ⊥AC ,利用HL 易证Rt Rt BDE CDF ≌,,可得DE =DF ,利用角平分线的判定定理可知点点D 在∠BAC 的平分线上,即AD 平分∠BAC ;(2)根据全等三角形的性质即可得到结论.【详解】(1)∵D 是BC 的中点∴BD =CD ,又∵BE =CF ,DE ⊥AB ,DF ⊥AC ,Rt Rt BDE CDF ≌,∴DE =DF ,∴点D 在∠BAC 的平分线上,∴AD 平分∠BAC ;(2)Rt Rt BDE CDF ≌,∴∠B =∠C ,∴AB =AC ,∴AB−BE=AC−CF,∴AE=AF,∵DE=DF,∴AD垂直平分EF.【点睛】本题考查了角平分线的性质定理:角的内部到角的两边距离相等的点在角平分线上. 23.(1)∠BAD=40°;(2)详见解析;(3)BD=2.5.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;(2)根据高线的定义,过点E作BD的垂线即可得解;(3)根据三角形的中线把三角形分成的两个三角形面积相等,先求出△BDE的面积,再根据三角形的面积公式计算即可.【详解】(1)在△ABE中,∵∠ABE=15°,∠BAD=40°,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)如图,EF为BD边上的高;(3)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD =12S△ABC,S△BDE=12S△ABD,S△BDE=14S△ABC,∵△ABC的面积为20,BD=2.5,∴S△BDE =12BD•EF=12×5•EF=14×20,解得EF=2.【点睛】本题考查了三角形的外角性质,三角形的面积,利用三角形的中线把三角形分成两个面积相等的三角形是解题的关键.24.(1)见解析;(2)见解析;(3)【解析】【分析】(1)先证明9030ABD BAE ∠=-∠= ,,可知AB =2AD ,因为AE =2AD ,所以AB =AE ,从而可知△ABE 是等边三角形.(2)由(1)可知:60ABE AEB ∠=∠= ,AE =BE ,然后求证BEG AEF ≌,即可得出BG =AF ;(3)由于S 四边形AGEF AEG AEF AEG BEG ABE S S S S S =+=+= 故只需求出△ABE 的面积即可.【详解】(1)AB =AC ,AD ⊥BC ,160,902BAE CAE BAC ADB ∴∠=∠=∠=∠= ,9030ABD BAE ∴∠=-∠= ,∴AB =2AD ,∵AE =2AD ,∴AB =AE ,60BAE ∠= ,∴△ABE 是等边三角形.(2)∵△ABE 是等边三角形,60ABE AEB ∴∠=∠= ,AE =BE ,由(1)60,CAE ∠= ∴∠ABE =∠CAE ,60NEM BEA ∠=∠= ,∴∠NEM −∠AEN =∠BEA −∠AEN ,∴∠AEF =∠BEG ,在△BEG 与△AEF 中,,GBE FAE BE AE BEG AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA).BEG AEF ∴ ≌∴BG =AF ;(3)由(2)可知:BEG AEF ≌,S BEG S AEF ∴= ,∴S 四边形AGEF AEG AEF AEG BEG ABES S S S S =+=+= ∵△ABE 是等边三角形,∴AE =AB =4,11422ABE S AE BD ∴=⋅=⨯⨯= ∴S四边形AGEF =25.见详解【分析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.。
人教版八年级数学上册期中测试题及参考答案(WL统考精编)
八年级数学上册期中测试题及参考答案(WL统考精编)(时间:120分钟满分:120分)第Ⅰ卷(选择题共36分)一、选择题(本大题共12个小题,每小题3分,共36分)1.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()2.一副三角板如图叠放在一起,则图中∠a的度数为()A.15°B.25°C.30°D.35°3.已知等腰三角形的两边长分别为4cm、8cm,则该等腰三角形的周长是()A.12cmB.16cmC.16cm或20cmD. 20cm4.下列说法正确的是()A.三角形三条高交于三角形内一点B.一个钝角三角形一定不是等腰三角形,也不是等边三角形C.有两条边及其中一条边的对角对应相等的两个三角形全等D.平面上两个全等的图形不一定关于某直线对称5.如右图,已知点A(2,3)和点B(4,1),在坐标轴上有一点P,且点P到点A和点B的距离相等,则点P的坐标为()A(1,0) B.(0,-1)C.(1,0)或(0,-1)D.(2,0)或(0,1)6.△ABC中,AC=5,中线AD=6,则AB边的取值范围是()A.1<AB<11B.4<AB<6 C 5<AB<17 D.7<AB<177.如右图,BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,EB、CF相交于D,则∠CDE的度数是()A.130°B.70°C.80°D.75°8.如图,在△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心、适当长为半径作圆弧,分别交边AC、AB于点M、N;②分别以点M和点N为圆心、大于1/2MN的长为半径作圆弧,在∠BAC内,两弧交于点P;③作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.60(8题)(9题图)(10题图)(11题图)9.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF,若AB=1,BC=2,则△ABE和△BC'F的周长之和为()A.3B.4C.6D.810.如图,△ABC是等边三角形,D为BA的中点,DE⊥AC,垂足为点E,EF∥AB,AE=1,下列结论错误的是()A.∠ADE=30°B. AD=2C.△ABC的周长为10D.△EFC的周长为911.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°12.如图,已知△ABC和△CDE都是等边三角形,且A、C、E三点共线,AD与BE交点O,AD与BC交于点P,BE与CD交于点Q,连接PQ有以下五个结论:①AD=BE;②∠AOB=60°;③AP=BO;④△PCQ是等边三角形;⑤PQ∥AE.其中正确结论的个数是()A.5B.4C.3D.2第Ⅱ卷(非选择题共84分)二、填空题(本大题共4个小题;每小题4分,共16分)13.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为______。
初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)
初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)道)一、选择题1、数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.2、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是A.B.C.D.3、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()共32页,第1页4、下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.5、任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形6、用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形共32页,第2页7、如图,在ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A.AG平分∠DABB.AD=DHC.DH=BCD.CH=DH8、如图,已知钝角三角形ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C为圆心,CA为半径画弧①;步骤2:以点B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC的延长线于点H.下列叙述正确的是:A.BH垂直平分线段ADB.AC平分∠BADC.S△ABC=BC·AHD.AB=AD二、填空题9、阅读下面材料:在数学课上,老师提出如下问题:尺规作图,过圆外一点作圆的切线.已知:⊙O和点P求过点P的⊙O的切线小涵的主要作法如下:如图,(1)连结OP,作线段OP的中点A;(2)以A为圆心,OA长为半径作圆,交⊙O于点B,C;(3)作直线PB和PC.共32页,第3页所以PB和PC就是所求的切线.老师说:“小涵的做法正确的.”请回答:小涵的作图依据是.10、如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为°.EF11、如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE=.12、如图,在△ABC中,AB>AC.按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;作直线MN交AB于点D;连结CD.若共32页,第4页AB=6,AC=4,则△ACD的周长为.三、计算题13、如图,已知线段a和h.求作:△ABC,使得AB=AC,BC=a,且BC边上的高AD=h.要求:尺规作图,不写作法,保留作图痕迹.14、如图所示,点C、D是∠AOB内部的两点.(1)作∠AOB的平分线OE;(2)在射线OE上,求作一点P,使PC=PD.(要求用尺规作图,保留作图痕迹)四、解答题15、如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC 边上的A1处,当AB=1时,求△A1DC的面积.共32页,第5页16、(8分)如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);(2)连结AP,若AC=4,BC=8时,试求点P到AB边的距离.17、已知△ABC,用直尺和圆规作△ABC的角平分线CD和高AE.(不写画法,保留作图痕迹)18、数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.(2)小聪的作法正确吗?请说明理由.共32页,第6页(3)请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)19、如图,∠AOB=30°,OA表示草地边,OB表示河边,点P表示家且在∠AOB内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.20、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.21、某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请找出截面的圆心;(不写画法,保留作图痕迹.)(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.共32页,第7页22、如图,已知△ABC,用直尺和圆规求作一直线AD,使直线过顶点A,且平分△ABC的面积(不需写作法,保留作图痕迹)23、高致病性禽流感是比SARS传染速度更快的传染病.为防止禽流感蔓延,政府规定:离疫点3km范围内为扑杀区;离疫点3km~5km范围内为免疫区,对扑杀区与免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感病区,如图,在扑杀区内公路CD长为4km.(1)请用直尺和圆规找出疫点O(不写作法,保留作图痕迹);(2)求这条公路在免疫区内有多少千米?24、作图题:如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标.25、如图,⊙O为△ABC的外接圆,直线l与⊙O相切与点P,且l∥BC.(1)请仅用无刻度的直尺,在⊙O中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法);共32页,第8页(2)请写出证明△ABC被所作弦分成的两部分面积相等的思路.26、如图,107国道OA和302国道OB在甲市相交于点O,在∠AOB 的内部有工厂C和D,现要修建一个货站P,使P到OA,OB的距离相等,且使PC=PD,试确定出点P的位置.(不写作法,保留作图痕迹,写出结论)27、用尺规作图从△ABC(CB<CA)中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大(保留作图痕迹,不要求写作法、证明)28、如图,已知△ABC,利用尺规完成下列作图(不写画法,保留作图痕迹).(1)作△ABC的外接圆;(2)若△ABC所在平面内有一点D,满足∠CAB=∠CDB,BC=BD,求作点D.29、如图,点A是半径为3的⊙O上的点,(1)尺规作图:作⊙O的内接正六边形ABCDEF;共32页,第9页(2)求(1)中的长.30、已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点,直线DE∥AB,且点E到B,D两点的距离相等.(1)用尺规作图作出点E;(不写作法,保留作图痕迹)(2)连接BE,求证:BD平分∠ABE.31、如图,BC是⊙O的一个内接正五边形的一边,请用等分圆周的方法,在⊙A中用尺规作图作出一个⊙A的内接正五边形(请保留作图痕迹).32、已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.共32页,第10页33、如图,已知△ABC,用直尺(没有刻度)和圆规在平面上求作一个点P,使P到∠B两边的距离相等,且PA=PB.(不要求写作法,但要保留作图痕迹)34、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.35、如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC 边上的A1处,当AB=1时,求△A1DC的面积.36、如图,△ABC中,∠C=90°,小王同学想作一个圆经过A、C两点,并且该圆的圆心到AB、AC距离相等,请你利用尺规作图的办法帮助小王同学确定圆心D.(不写作法,保留作图痕迹).共32页,第11页37、如图,将矩形ABCD沿对角线AC折叠,点B落在点E处,请用尺规作出点E.(不写画法,保留作图痕迹)38、如图,在等腰直角△ABC中,∠ACB=90°,AC=1.(1)作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法).(2)在(1)所作的圆中,求出劣弧BC的长.39、如图,在△ABC中,∠C=90°,∠B=30°.(1)作∠CAB的平分线,交BC边于点D(用尺规作图,保留作图痕迹,不要求写作法和证明);(2)求S△ACD:S△ABC的值.40、如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)共32页,第12页41、如图,AE∥BF,AC平分∠BA E,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.42、ABCD中,点E在AD上,DE=CD,请仅用无刻度的直尺,按要求作图(保留作图痕迹,不写作法)(1)在图1中,画出∠C的角平分线;(2)在图2中,画出∠A的角平分线.43、如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)44、从△ABC(CB<CA)中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大.(1)用尺规作图作出△ABD.(保留作图痕迹,不要求写作法、证明)(2)若AB=2m,∠CAB=30°,求裁出的△ABD的面积.共32页,第13页45、如图,在中,.(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)①作②以的垂直平分线,交为圆心,于点,交于点;.为半径作圆,交的延长线于点⑵在⑴所作的图形中,解答下列问题.①点②若与的位置关系是_____________;(直接写出答案),,求的半径.46、在数轴上作出表示的点(保留作图痕迹,不写作法).47、△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出将△ABC 绕点C顺时针旋转90°得到△A2B2C.48、如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么(保留作图痕迹,不写作法和证明)共32页,第14页理由是:.49、如图,已知线段a和b,a>b,求作直角三角形ABC,使直角三角形的斜边AB=a,直角边AC=b.(用尺规作图,保留作图痕迹,不要求写作法)50、如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)共32页,第15页参考答案1、A.2、D3、D4、B5、B.6、B7、D8、A9、直径所对的圆周角是直角.10、100.11、8.12、10.13、见解析14、见解析15、(1)详见解析;(2).16、(1)、答案见解析;(2)、5.17、答案见解析18、(1)SSS;(2)、理由见解析;(3)、答案见解析19、(1)、答案见解析;(2)、30m.20、(1)、答案见解析;(2)、r=8cm21、(1)见试题解析;(2)这个圆形截面的半径是10cm.22、答案见解析23、(1)作图详见解析;(2)(﹣4)千米.24、(1)图形详见解析;(2)B′(﹣6,2),C′(﹣4,﹣2).25、26、作图详见解析.27、28、(1)作图见解析(2)作图见解析29、(1)见试题解析;(2)2π.30~33、详见解析.34、(1)、答案见解析;(2)、r=8cm35、(1)、答案见解析;(2)、36、作图参见解析.37、作图参见解析.38、(1)作图参见解析;(2)π.39、(1)作图见解析(2)1:340、答案见解析41、(1)作图见解解析;(2)AB=AD=BC.42、作图参见解析.43、m244、(1)如图;(2)45、(1)作图见解析;(2)①点B在⊙O上;②5.47、见解析48、见解析49、见46、解析50、答案见解析.答案详细解析【解析】1、试题分析:A、根据作法无法判定PQ⊥l;B、以P为圆心大于P 到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.故选:A.考点:作图—基本作图.2、试题分析:由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选D.考点:作图—复杂作图3、试题分析:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选D.考点:基本作图4、试题分析:过点A作BC的垂线,垂足为D,故选B.考点:作图—基本作图.5、试题分析:根据线段垂直平分线的性质可得EG=EH=FH=GF,由此可得选项A正确,选项B错误,选项C、正确,选项D正确.故答案选B.考点:线段垂直平分线的性质.6、试题分析:根据作图的痕迹以及菱形的判定方法解答.解:由作图痕迹可知,四边形ABCD的边AD=BC=CD=AB,根据四边相等的四边形是菱形可得四边形ABCD是菱形.故选B.7、试题分析:由角平分线的作法,依题意可知AG平分∠DAB,A正确;∠DAH=∠BAH,又AB∥DC,所以∠BAH=∠ADH,所以,∠DAH=∠ADH,所以,AD=DH,又AD=BC,所以,DH=BC,B、C正确,故答案选D.考点:平行四边形的性质;平行线的性质.8、试题分析:由作法可得BH为线段AD的垂直平分线,故答案选A.考点:线段垂直平分线的性质.9、试题分析:∵OP是⊙A的直径,∴∠PBO=∠PCO=90°,∴OB⊥PB,OC⊥PC,∵OB、OC是⊙O的半径,∴PB、PC是⊙O的切线;则小涵的作图依据是:直径所对的圆周角是直角.故答案为:直径所对的圆周角是直角.【考点】切线的判定;作图—复杂作图.10、试题解析:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠ACB=80°,∠ABC=60°,∴∠CAB=40°,∴∠BAD=20°;。
人教版八年级上册数学期中考试试卷带答案
人教版八年级上册数学期中考试试题一、单选题1.下列图形中,其中不是轴对称图形的是()A .B .C .D .2.若正多边形的一个外角是60°,则该正多边形的边数是()A .4B .5C .6D .73.如图,△ABC 中BC 边上的高是()A .BDB .AEC .BED .CF4.若△ABC ≌△DEF ,AB =2,AC =4,且△DEF 的周长为奇数,则EF 的值为()A .3B .4C .3或5D .3或4或55.如图,在△ABC 中,点D 为BC 边上一点,连接AD ,取AD 的中点P ,连接BP ,CP .若△ABC 的面积为4cm 2,则△BPC 的面积为()A .4cm 2B .3cm 2C .2cm 2D .1cm 26.如图,在ABC 中,D 、E 分别为AB 、AC 边上的点,DA DE =,DB BE EC ==.若130ABC ∠=︒,则C ∠的度数为()A .20︒B .22.5︒C .25︒D .30°7.如图,将一副含30°,45°的直角三角板如图摆放,则∠1+∠2等于()A.200°B.210°C.180°D.225°8.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,依据“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠BDE=∠CDE C.AB=AC D.BD=CD9.在△ABC中,∠A=40°,∠B=60°,则∠C=()A.40°B.80°C.60°D.100°10.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC二、填空题11.若三角形三个内角度数的比为2:3:4,则此三角形是______三角形(填锐角、直角或钝角).12.已知ABC∆是等腰三角形,若它的周长为18,一条边的长为4,则它的腰长为__________.13.若△ABC的边AB、BC的长是方程组93x yx y+=⎧⎨-=⎩的解,设边AC的长为m,则m的取值范围是_____.14.如图,在△ABC 中,∠ACB =90º,∠ABC =60º,CD ⊥AB ,垂足为D ,若BD =1,则AD 的长为___________.15.如图,△ABC ≌△ADE ,且点E 在BC 上,若∠DAB =30°,则∠CED =_____.16.如图,ABC 为等边三角形,以边AC 为腰作等腰ACD △,使AC CD =,连接BD ,若32ABD ∠=︒,则CAD ∠=__________°.三、解答题17.如图,已知CD 为ACB ∠的平分线,AM CD ⊥于,46,8M B BAM ∠=︒∠=︒,求ACB ∠的度数.18.如图,∠C =∠E ,AC =AE ,点D 在BC 边上,∠1=∠2,AC 和DE 相交于点O .求证:△ABC ≌△ADE .19.如图,已知△ABC.(1)用直尺和圆规,作出边AC的垂直平分线,交AC于点E,BC于点D,(不写作法,保留作图痕迹)(2)在(1)的基础上,连接AD,若AE=5,△ABD的周长为20,则△ABC的周长是_______.20.已知a、b、c是三角形的三边长,①化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;②若a+b=11,b+c=9,a+c=10,求这个三角形的各边.21.如图,在△ABC中,∠ACB=90°,D是AC上的一点,且AD=BC,DE⊥AC于D,AB=AE.求证:(1)AE⊥AB;(2)CD=DE﹣BC.22.如图,在△ABC中,∠ABC=45°,CD⊥AB于点D,AC的垂直平分线BE与CD交于点F,与AC交于点E.(1)判断△DBC的形状并证明你的结论.(2)求证:BF=AC.(3)试说明CE=12 BF.23.如图,在△ABC中,AB=AC,∠BAC=90°,点D、E分别在AB、BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF.(2)判断BD和CF的数量关系,并说明理由.24.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作△BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).25.如图1,在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,4),A(4,4),过C点作∠ECF分别交线段AB、OB于E、F两点.(1)若OF+BE=AB,求证:CF=CE.(2)如图2,∠ECF=45°,S△ECF=6,求S△BEF的值.参考答案1.A【解析】根据轴对称图形的定义:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,就可得到答案。
人教版八年级上册期中复习练习课件(常考题型复习) (共53张PPT)
22.如图,AD是△ABC中BC边上的中线,若AD=5, AC=8,则AB的取值范围是___.
23.如图,每个小正方形的边长为1,A、B. C是 小正方形的顶点,则∠ABC的度数为()
22.如图,AB∥CD,O为∠BAC,∠ACD平 分线的交点,OE⊥AC交AC于E,且 OE=2,则AB与CD之间的距离等于___.
(3)△ACE和△ABE的周长差。
6cm
8cm
10cm
A
3.已知△ABC的∠B、∠C的平分线交于点O。
求证: BOC 90 1 A
2
B
0 C
4.已知:BP、CP是△ABC的外角的平分线,交于点O。
求证:
BOC
90
1
A
B
2
\
A
C
o
5.△ABC中,∠ABC的平分线BD和△ABC的外角平分线CD
o 交于 ,
(2)若AC=2,BC=1,求CM的长
29.如图,已知△ABC中,AB=AC=8cm,∠B=∠C,BC=5cm,点D为AB的中点。 (1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上 由点C向点A运动。 ①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全 等,请说明理由;
40.如图,已知P(3,3),点B. A分别在x轴正半轴和y轴正半轴 上,∠APB=90∘,则OA+OB=______.
41.等腰三角形一腰上的高与另一腰的夹角为 40°,底角的度数是____
42.等腰三角形一腰上的垂直平分线与另一腰 的夹角是40°,底角度数 是_________
43.如图,E在△ABC的AC边的延长线上,D点在AB 边上,DE交BC于点F,DF=EF,BD=CE,求证: △ABC是等腰三角形。
2022-2023学年八年级数学上学期期中考前必刷卷含答案解析(人教版)(一)
2022-2023学年八年级上学期期中考前必刷卷01数学(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:八年级上册第11-13章5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的.1.(2021·重庆市璧山中学校八年级期中)在一些美术字中,有的汉字是轴对称图形.下列4个汉字中,可以看作“沿某一条直线折叠后,直线两旁的部分能够互相重合”的是()A .B .C .D .2.(2021·四川·东坡区实验中学八年级期中)如图,△ABC≌△DEF,若∠A=132°,∠FED=15°,则∠C等于()A.13°B.23°C.33°D.43°3.(2022·江西赣州·八年级期中)若a、b、c为△ABC的三边长,且满足|a﹣5|+2b-=0,则c的值可以为()A.6B.7C.8D.94.(2021·山东烟台·七年级期中)如图,要使ABC ABD△≌△,下面给出的四组条件,错误的一组是()A.C D∠=∠,BAC BAD∠=∠B.BC BD=,AC AD=C.BAC BAD∠=∠,ABC ABD∠=∠D.BD BC=,BAC BAD∠=∠5.(2021·浙江·平阳苏步青学校八年级阶段练习)已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A.B.C.D.6.(2021·湖北·襄阳市樊城区青泥湾中学八年级阶段练习)如图,∠O=∠1,∠2=∠3,∠4=∠5,∠6=∠7,∠8=90°则∠O的度数为()A.10°B.15°C.18°D.20°7.(2021·黑龙江·同江市第三中学八年级期中)如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16B.18C.26D.288.(2022·辽宁·丹东第九中学八年级期末)如图,ABC的三边AB,BC,CA的长分别为15,20,25,点O是ABC三条角平分线的交点,则ABOS:BCOS△:CAOS△等于()A .1:1:1B .1:2:3C .2:3:4D .3:4:59.(2022·宁夏·中宁县第三中学八年级期末)如图,在ABC 中,4AB AC ==,15B ∠=︒,CD 是腰AB 上的高,则CD 的长( )A .4B .2C .1D .1210.(2022·北京一七一中八年级阶段练习)如图所示,ABC 的两条角平分线相交于点D ,过点D 作EF ∥BC ,交AB 于点E ,交AC 于点F ,若AEF 的周长为30cm ,则AB AC +=( )cm .A .10B .20C .30D .4011.(2022·全国·八年级专题练习)如图,△ABC 中,AB 的垂直平分线交BC 边于点E ,AC 的垂直平分线交BC 边于点N ,若∠BAC =70︒,则∠EAN 的度数为( )A .35︒B .40︒C .50︒D .55︒12.(2022·广东·揭西县宝塔实验学校八年级期中)如图,在△ABC 中,∠C =90°∠B =30°,以A 为圆心,任意长为半径画弧交AB 于M 、AC 于N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于D ,下列四个结论:①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上;④1:3ACDACBSS=:.其中正确的有( )A .只有①②③B .只有①②④C .只有①③④D .①②③④13.(2021·重庆市璧山中学校八年级期中)如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE AC ⊥于点E ,Q 为BC 延长线上一点,当AP CQ =时,PQ 交AC 于点D ,则DE 的长为( )A .13B .12C .23D .不能确定14.(2022·陕西·西安爱知初级中学七年级期末)如图,在ABC 中,90BAC ∠=︒,2AB AC =,点D 是线段AB 的中点,将一块锐角为45︒的直角三角板按如图()ADE 放置,使直角三角板斜边的两个端点分别与A 、D 重合,连接BE 、CE ,CE 与AB 交于点.F 下列判断正确的有( )①ACE ≌DBE ;②BE CE ⊥;③DE DF =;④DEFACFSS=A .①②B .①②③C .①②④D .①②③④第Ⅱ卷二、填空题:本题共4个小题;每个小题3分,共12分,把正确答案填在横线上.15.(2020·福建省福州延安中学八年级期中)已知点Р(a ,3)和点Q (4,b )关于x 轴对称,则()2021a b +=________.16.(2022·福建省龙岩市永定区第二初级中学九年级期中)如图,将一个正六边形与一个正五边形如图放置,顶点A 、B 、C 、D 四点共线,E 为公共顶点.则∠BEC =_____.17.(2021·福建·福州教院二附中八年级期末)如图,将等边△ABC 的三条边向外延长一倍,得到第一个新的111A B C △,第二次将等边111A B C △的三边向外延长一倍,得到第二个新的222A B C △,依此规律继续延长下去,若△ABC 的面积01S =,则第2022个新的三角形的面积2022S 为________18.(2021·江苏南京·八年级阶段练习)如图,已知△ABC ,AB =AC =10cm ,∠B =∠C ,BC =8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段AC 上由C 点向A 点运动.若点Q 的运动速度为v cm/s ,则当△BPD 与△CQP 全等时,v 的值为_______cm/s .三、解答题:本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分.19.(2021·重庆·巴川初级中学校八年级期中)如图,已知点B ,E ,C ,F 在一条直线上,BE =CF ,AC DE ∥,A D ∠=∠.(1)求证:△ABC ≌△DFE ; (2)若BF =12,EC =4,求BC 的长.20.(2019·北京市八一中学八年级期中)在直角坐标系中,ABC 的三个顶点的位置如图所示.(1)请画出ABC 关于y 轴对称的A B C '''(其中A ',B ',C '分别是A ,B ,C 的对应点,不写画法); (2)直接写出A ',B ',C '三点的坐标:A '( ),B '( ),C '( )(3)在x 轴上找出点P ,使得点P 到点A 、点B 的距离之和最短(保留作图痕迹)(4)点Q 在坐标轴上,且满足BCQ △是等腰三角形,则所有符合条件的Q 点有__________个.21.(2022·黑龙江大庆·八年级期末)如图△ABC 为等边三角形,直线a ∥AB ,D 为直线BC 上任一动点,将一60°角的顶点置于点D 处,它的一边始终经过点A ,另一边与直线a 交于点E .(1)若D 恰好在BC 的中点上(如图1) ①求证CD =CE ;②求证:△ADE 是等边三角形;(2)若D 为直线BC 上任一点(如图2)其他条件不变,“△ADE 是等边三角形”的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.22.(2022·江苏·宜兴外国语学校八年级阶段练习)(1)如图,在7×6的方格中,△ABC 的顶点均在格点上.试只用不带刻度的直尺,按要求画出线段EF (E ,F 均为格点),各画出一条即可.(2)如图,△ABC 的顶点均在正方形网格格点上.只用不带刻度的直尺,作出△ABC 的角平分线BD (不写作法,保留作图痕迹).23.(2022·河南信阳·八年级期中)我们通过“三角形全等的判定”的学习,可以知道“两边和它们的夹角分别相等的两个三角形全等”是一个基本事实,用它可以判定两个三角形全等;而满足条件“两边和其中一边所对的角分别相等”的两个三角形却不一定全等.下面请你来探究“两边和其中一边所对的角分别相等的两个三角形不一定全等”.探究:已知△ABC ,求作一个△DEF ,使EF =BC ,∠F =∠C ,DE =AB (即两边和其中一边所对的角分别相等).(1)动手画图:请依据下面的步骤,用尺规完成作图过程(保留作图痕迹): ①画EF =BC ;②在线段EF 的上方画∠F =∠C ; ③画DE =AB ;④顺次连接相应顶点得所求三角形.(2)观察:观察你画的图形,你会发现满足条件的三角形有____个;其中三角形____(填三角形的名称)与△ABC 明显不全等;(3)小结:经历以上探究过程,可得结论:______.24.(2021·重庆·巴川初级中学校八年级期中)如图,△ABC 中,点D 在边BC 延长线上,100ACB ∠=︒,∠ABC 的平分线交AD 于点E ,过点E 作EH ⊥BD ,垂足为H ,且50CEH ∠=︒.(1)求∠ACE 的度数; (2)求证:AE 平分∠CAF ; (3)若AC+CD =14,AB =8.5,且21ACDS=,求△ABE 的面积.25.(2022·全国·八年级专题练习)(1)如图①,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 内部点A '的位置时,∠A 、∠1、∠2之间有怎样的数量关系?并说明理由.(2)如图②,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 外部点A '的位置时,∠A 、∠1、∠2之间有怎样的数量关系?并说明理由.(3)如图③,把四边形ABCD 沿EF 折叠,当点A 、D 分别落在四边形BCFE 内部点A '、D 的位置时,你能求出∠A '、∠D 、∠1与∠2之间的数量关系吗?并说明理由.26.(2021·辽宁葫芦岛·八年级期中)如图,在三角形ABC 中,∠ABC =90°,AB =BC ,点A ,B 分别在坐标轴上.(1)如图①,若点C 的横坐标为﹣3,点B 的坐标为 ;(2)如图②,若x 轴恰好平分∠BAC ,BC 交x 轴于点M ,过点C 作CD 垂直x 轴于D 点,试猜想线段CD 与AM 的数量关系,并说明理由;(3)如图③,OB =BF ,∠OBF =90°,连接CF 交y 轴于P 点,点B 在y 轴的正半轴上运动时,△BPC 与△AOB 的面积比是否变化?若不变,直接写出其值,若变化,直接写出取值范围.2022-2023学年八年级上学期期中考前必刷卷01(人教版2022)数学·全解全析【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:选项A、B、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】根据△ABC△△DEF,△FED=15°,得△CBA=15°,再根据三角形内角和即可得答案.【详解】解:△△ABC△△DEF,△FED=15°,△△CBA=△FED=15°,△△A=132°,△△C=180°-132°=15°=33°,故选:C.【点睛】本题考查了全等三角形的性质,三角形的内角和,解题的关键是掌握三角形全等的性质.3.A【分析】先根据非负数的性质,求出a、b的值,进一步根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,从而确定c的可能值.【详解】解:△|a﹣,△a﹣5=0,a=5;b﹣2=0,b=2;则5﹣2<c<5+2,3<c<7,6符合条件;故选:A.【点睛】本题考查非负数的性质和三角形三条边的关系,准确求出a、b的值是解题的关键.4.D【分析】根据全等三角形的判定定理逐项判定即可.【详解】解:A 、△C D ∠=∠,BAC BAD ∠=∠,AB =AB ,△ABC ABD △≌△(AAS ),正确,故此选项不符合题意;B 、△BC BD =,AC AD =,AB =AB ,△ABC ABD △≌△(SSS ),正确,故此选项不符合题意; C 、△BAC BAD ∠=∠,ABC ABD ∠=∠,AB =AB ,△ABC ABD △≌△(ASA ),正确,故此选项不符合题意;D 、BD BC =,BAC BAD ∠=∠,AB =AB ,两边以及一边对角对应相等,不能判定ABC ABD △≌△,故此选项符合题意;故选:D .【点睛】本题考查全靠等三角形的判定,熟练掌握全靠三角形判定定理:SSS ,SAS ,ASA ,AAS ,HL 是解题的关键. 5.D【分析】若使PA +PC =BC ,则PA =PB ,点P 在线段AB 的垂直平分线上,需要做线段AB 的垂直平分线.【详解】解:A.由作图可知BA =BP ,△BC =BP +PC =BA +PC ,故A 不符合题意; B.由作图可知PA =PC ,△BC =BP +PC =BP +PA ,故B 不符合题意; C.由作图可知AC =PC ,△BC =BP +PC =BP +AC ,故C 不符合题意; D.由作图可知PA =PB ,△BC =BP +PC =PA +PC ,故D 符合题意; 故选:D.【点睛】本题考查了垂直平分线的性质及作图,熟练掌握垂直平分线的作图方法是解题关键. 6.C【分析】设△O=x ,进而根据三角形外角的性质表示出△2,即可表示出△3,同理表示出△4,可得△5,再表示出△6,即可△7,最后根据△8=△O +△7得出答案即可. 【详解】设△O=x ,△△2是△ABO 的外角,且△O =△1, △△2=△O +△1=2x , △△3=△2=2x . △△4是△BCO 的外角, △△4=△O +△3=3x , △△5=△4=3x . △△6是△CDO 的外角, △△6=△O +△5=4x , △△7=△6=4x .△△8是△DEO 的外角, △△8=△O +△7=5x , 即5x =90°, 解得x =18°. 故选:C .【点睛】本题主要考查了三角形的外角的性质,根据三角形外角的性质得出待求角之间的等量关系是解题的关键. 7.B【分析】根据垂直平分线的性质可得EC =AE ,据此即可作答. 【详解】△ED 是边AC 的垂直平分线, △AE =EC ,△AB =10厘米,BC =8厘米,△BC +CE +EB =BC +AE +EB =BC +AB =18厘米, 即△BEC 的周长为18厘米, 故选:B .【点睛】本题主要考查了垂直平分线的性质,根据垂直平分线的性质可得EC =AE ,是解答本题的关键. 8.D【分析】过O 点作⊥OD AB 于D ,OE BC ⊥于E ,OF CA ⊥于F ,如图,利用角平分线的性质得到OD OE OF ==,然后根据三角形面积公式得到ABOS:BCO S △:CAOS AB =:BC :AC .【详解】过O 点作⊥OD AB 于D ,OE BC ⊥于E ,OF CA ⊥于F ,如图,点O 是ABC 三条角平分线的交点, OD OE OF ∴==,ABO S∴:BCO S △:12CAOSAB OD ⎛⎫=⋅ ⎪⎝⎭:12OE BC ⎛⎫⋅ ⎪⎝⎭:12OF AC AB ⎛⎫⋅= ⎪⎝⎭:BC :15AC =:20:253=:4:5.故选:D .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形的面积公式. 9.B【分析】根据三角形外角的性质得30DAC ∠=︒,再利用含30角的直角三角形的性质可得CD的长. 【详解】解:AB AC =,15B ∠=︒,15ACB B ∴∠=∠=︒,30DAC ∴∠=︒,CD 是腰AB 上的高, CD AB ∴⊥,122CD AC ∴==, 故选:B【点睛】本题主要考查了等腰三角形的性质,含30角的直角三角形的性质等知识,求出30DAC ∠=︒是解题的关键.10.C【分析】利用平行线的性质和角平分线的定义得到△EBD =△EDB ,证出ED =EB ,同理DF =FC ,则△AEF 的周长即为AB +AC ,可得出答案. 【详解】解:△EF ∥BC , △△EDB =△DBC , △BD 平分△ABC , △△ABD =△DBC , △△EBD =△EDB , △ED =EB , 同理:FD =FC ,△AE +AF +EF =AE +EB +AF +FC =AB +AC =30cm , 即AB +AC =30cm , 故选:C .【点睛】本题考查了等腰三角形的判定和性质、平行线的性质等知识,证出ED =EB ,FD =FC 是解题的关键. 11.B【分析】根据三角形内角和定理可求△B +△C ,根据垂直平分线性质,EA =EB ,NA =NC ,则△EAB =△B ,△NAC =△C ,从而可得△BAC =△BAE +△NAC -△EAN =△B +△C -△EAN ,即可得到△EAN =△B +△C -△BAC ,即可得解. 【详解】解:△△BAC =70︒ , △△B +△C =18070110︒︒︒﹣= , △AB 的垂直平分线交BC 边于点E ,AC 的垂直平分线交BC 边于点N , △EA =EB ,NA =NC ,△△EAB =△B ,△NAC =△C ,△△BAC =△BAE +△NAC -△EAN =△B +△C -△EAN , △△EAN =△B +△C -△BAC , =11070︒︒﹣ =40︒. 故选:B .【点睛】本题主要考查了三角形的内角和,线段垂直平分线的性质,角的和差关系,能得到求△EAN 的关系式是关键. 12.D【分析】①根据作图的过程可以判定AD 是△BAC 的角平分线;②利用角平分线的定义可以推知△CAD =30°,则由直角三角形的性质来求△ADC 的度数;③利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比. 【详解】解:①根据作图的过程可知,AD 是△BAC 的平分线. 故①正确; ②如图,△在△ABC 中,△C =90°,△B =30°, △△CAB =60°.又△AD 是△BAC 的平分线, △△1=△2=12△CAB =30°,△△3=90°-△2=60°,即△ADC =60°. 故②正确; ③△△1=△B =30°, △AD =BD ,△点D 在AB 的中垂线上. 故③正确;④△如图,在直角△ACD 中,△2=30°, △CD =12AD ,△BC =CD +BD =12AD +AD =32AD ,DACS=12AC •CD =14AC •AD .△ABCS =12AC •BC =12AC •32AD =34AC •AD .△DACS:ABCS=14AC •AD :34AC •AD =1:3. 故④正确.综上所述,正确的结论是:①②③④, 故选D .【点睛】本题考查了角平分线的判定、线段垂直平分线的判定和性质、含30度角的直角三角形的性质以及作图-基本作图.解题时,需要熟悉线段垂直平分线的判定和性质. 13.B【分析】根据题意先过点Q 作AD 的延长线的垂线QF ,证明AEP ≅CFQ ,再证明DEP ≅DFQ 得到DE =DF ,最后可以得到DE =12AC ,求出最终结果. 【详解】如图,过点Q 作AD 的延长线的垂线于点F , △△ABC 是等边三角形, △△A =△ACB =60°, △△ACB =△QCF , △△QCF =60°, 又△PE △AC ,QF △AC , △△AEP =△CFQ =90° , 又AP =CQ ,△△AEP △△CFQ (AAS ) , △AE =CF ,PE =QF , 同理可证,△DEP △△DFQ , △DE =DF ,△AC =AE +DE +CD =DE +CD +CF =DE +DF =2DE , △DE =12AC =12 . 故选B .【点睛】本题属于全等三角形的综合问题,考查作辅助线、全等三角形的判定和等边三角形的性质,熟练掌握和运用全等三角形的判定定理是关键.14.C【分析】利用ADE 为等腰直角三角形得到45EAD EDA ∠∠==︒,EA ED =,则135EAC EDB ∠∠==︒,则可根据“SAS ”判断ACE △DBE SAS (),从而对①进行判断;再利用AEC DEB ∠∠=证明90BEC DEA ∠∠==︒,则可对②进行判断;由于9090DEF BED AEC ∠∠∠=︒-=︒-,90DFE AFC ACE ∠∠∠==︒-,而AC AD AE =>得到AEC ACE ∠∠>,所以DEF DFE ∠∠<,于是可对③进行判断;由ACE △DBE 得到ACE DBE S S =,由BD AD =得到DAE DBE S S =,所以ACE DAE S S =,从而可对④进行判断.【详解】解:2AB AC =,点D 是线段AB 的中点,BD AD AC ∴==, ADE 为等腰直角三角形,45EAD EDA ∠∠∴==︒,EA ED =,4590135EAC EAD BAC ∠∠∠=+=︒+︒=︒,180********EDB EDA ∠∠=︒-=︒-︒=︒, EAC EDB ∠∠∴=,在ACE 和DBE 中,EA ED EAC EDB AC DB =⎧⎪∠=∠⎨⎪=⎩,ACE ∴△SAS DBE (),所以①正确;AEC DEB ∠∠∴=,90BEC BED DEC AEC DEC DEA ∠∠∠∠∠∠∴=+=+==︒,BE EC ∴⊥,所以②正确;90DEF BED ∠∠=︒-.而AEC DEB ∠∠=,90DEF AEC ∠∠∴=︒-,90DFE AFC ACE ∠∠∠==︒-,而AC AD AE =>,AEC ACE ∠∠∴>,DEF DFE ∠∠∴<,DE DF ∴>,所以③错误; ACE △DBE ,ACE DBE S S ∴=,BD AD =,DAE DBE S S ∴=,ACE DAE SS ∴=, DEF ACFS S ∴=,所以④正确. 故选:C .【点睛】本题考查全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.15.1【分析】直接利用关于x 轴对称点的性质(横坐标不变,纵坐标互为相反数)得出a ,b 的值,进而得出答案.【详解】解:△点P (a ,3)和点Q (4,b )关于x 轴对称,△a =4,b =-3,则20212021()(43)1a b +=-=.故答案为:1.【点睛】此题主要考查了关于x 轴对称点的性质,正确得出a ,b 的值是解题关键. 16.48°##48度【分析】根据多边形的内角和,分别得出△ABE =120°,△DCE =108°,再根据平角的定义和三角形的内角和算出△BEC .【详解】解:由多边形的内角和可得,△ABE =()621806-⨯︒ =120°, △△EBC =180°﹣△ABE =180°﹣120°=60°,△△DCE =()521805-⨯︒=108°,△△BCE =180°﹣108°=72°,由三角形的内角和得:△BEC =180°﹣△EBC ﹣△BCE =180°﹣60°﹣72°=48°.故答案为:48°.【点睛】本题考查了多边形的内角和定理,掌握定理是解题的关键.17.20227【分析】连接1CB ,根据等底同高可得1111112,2,2B BC A CC A AB S S S ===,从而可得17S =,同样的方法可得227S =,再归纳类推出一般规律即可得.【详解】解:如图,连接1CB ,1AB BB =,ABC 的面积01S =,101BCB ABC S S S ∴===,又1BC CC =,1111B CC BCB SS ∴==, 112B BC S ∴=,同理可得:11112,2A CC A AB SS ==, 111122217A B C S S ∴==+++=,同理可得:2221112277A B C A B C S S S ===,归纳类推得:7n n n A B n C n S S==,其中n 为非负整数,202220227S ∴=, 故答案为:20227.【点睛】本题考查了图形类规律探索、三角形中线与面积,正确归纳类推出一般规律是解题关键.18.3或154【分析】分情况讨论BPD △,CQP 全等:①设运动了t 秒,BPD CQP ≅△△,得BP CQ =,3t vt =,算出v ;②设运动了t 秒,BDP QCP ≅,得BD CQ =,PB PC =;得34t =,5vt =,解出v ,即可.10AB AC ==,8BC =【详解】①设运动了t 秒,BP CQ =,BPD CQP ≅△△,△点D 是AB 的中点 △152BD AB == △BD PC =△()853BP cm =-=△B 点向C 点运动了33t =,1t =秒△BPD CQP ≅△△△BP CQ =△31v =⨯△3/s v cm =②设运动了t 秒,当BD CQ =时,BDP QCP ≅△5BD =,142PB PC BC === △34t = 解得43t =秒 △BD CQ = △453v =⨯ △15/s 4v cm = 故答案为:3或154. 【点睛】本题考查全等三角形、动点问题,解题的关键是以静制动,利用全等三角形的性质进行解答.19.(1)证明见解析(2)8【分析】(1)先根据平行线的性质可得ACB DEF ∠=∠,再根据线段和差可得BC FE =,然后根据AAS 定理即可得证;(2)先根据线段和差可得8BE CF +=,从而可得4BE =,再根据BC BE EC =+即可得.(1)证明:AC DE ∥,ACB DEF ∠=∠∴,BE CF =,BE CE CF CE ∴+=+,即BC FE =,在ABC 和DFE △中,A D ACB DEF BC FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABC DFE ∴≅.(2)解:12,4BF EC ==,8BE CF BF EC ∴+=-=,BE CF =,4BE ∴=,448∴=+=+=.BC BE EC【点睛】本题考查了平行线的性质、三角形全等的判定,线段和差,熟练掌握三角形全等的判定方法是解题关键.20.(1)见解析;(2)4,1;2,3;−1,−2;(3)见解析;(4)10.【分析】(1)由点的对称性,作出图形即可;(2)关于y轴对称的点的坐标特点:横坐标变为相反数,纵坐标不变,即可求解;(3)作A点关于x轴的对称点A'',连接A B''交x轴于点P,P点即为所求;(4)利用两圆一线确定等腰三角形,作出图形即可求解.(1)如图1:(2)由图可知A(−4,1),B(−2,3),C(1,−2),△A点关于y轴对称的点为(4,1),B点关于y轴对称的点为(2,3),C点关于y轴对称的点为(−1,−2),△A′(4,1),B′(2,3),C′(−1,−2),故答案为:4,1;2,3;−1,−2;(3)如图2:作A点关于x轴的对称点A'',连接A B''交x轴于点P,△AP BP A P BP A B ''''+=+=,此时PA +PB 值最小;(4)如图:以B 为圆心,BC 长为半径做圆,此圆与坐标轴有4个交点,以C 为圆心,BC 长为半径做圆,此圆与坐标轴有4个交点,作线段BC 的垂直平分线,此线与坐标轴有2个交点,△△BCQ 是等腰三角形时,Q 点坐标有10个,故答案为:10.【点睛】本题考查轴对称作图,图形与坐标,熟练掌握轴对称的性质,垂直平分线的性质,等腰三角形的性质,两圆一线确定等腰三角形的方法是解题的关键.21.(1)①见解析;②见解析(2)成立,理由见解析【分析】(1)①利用等边三角形的性质得到BD=CD,AD△BC,进一步求出△EDC=30°,然后根据三角形内角和定理推出△DOC=90°,再根据三角形的外角性质可求出△DEC=30°,从而得出△EDC=△DEC,再根据“等角对等边”即可证明结论;②由SAS证明△ABD△△ACE得出AD=AE,然后根据“有一个角是60°的等腰三角形是等边三角形”可判断出△ADE是等边三角形的结论;(1)在AC上取点F,使CF=CD,连结DF,先证得△ADF△△EDC得出AD=ED,再运用已证的结论“△ADE=60°”和根据“有一个角是60°的等腰三角形是等边三角形”可证明出△ADE是等边三角形的结论.(1)①证明:△a∥AB,且△ABC为等边三角形,△△ACE=△BAC=△ABD=60°,AB=AC,△D是BC中点,即BD=CD,△AD△BC,△△ADC=90°,△△ADE=60°,△△EDC=△ADC-△ADE=90°-60°=30°,△△DOC=180°-△EDC-△ACB=90°,△△DEC=△DOC-△ACE=90°-60°=30°,△△EDC=△DEC,△CD=CE;②△BD=CD,CD=CE,△BD=CE,在△ABD和△ACE中,△AB ACABD ACEBD CE=⎧⎪∠=∠⎨⎪=⎩,△△ABD△△ACE(SAS),△AD=AE,又△△ADE=60°,△△ADE是等边三角形;(2)解:“△ADE是等边三角形”的结论仍然成立.证明如下:在AC上取点F,使CF=CD,连结DF,如图2所示:,△△ACB=60°,△△DCF是等边三角形,△DF=CD,△△ADF+△FDE=△EDC+△FDE=60°,△△ADF=△EDC,△△DAF+△ADE=△DEC+△ACE,△ACE=△ADE=60°,△△DAF=△DEC,△△ADF△△EDC(AAS),△AD=ED,又△△ADE=60°,△△ADE是等边三角形.【点睛】本题考查的是等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角形内角和定理、三角形的外角性质、平行线的性质.解题关键是注意熟练掌握及熟练等边三角形的判定定理与性质定理、全等三角形的判定与性质.22.(1)见解析;(2)见解析【分析】(1)根据题目要求,利用数形结合的思想画出线段EF即可;(2)取格点Q,连接AQ,取AQ的中点J,作射线BJ交AC于点D,线段BD即为所求.【详解】解:(1)如图,线段EF即为所求:(2)如图,线段BD即为所求.【点睛】本题考查作图-应用与设计作图,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.23.(1)见解析';(2)2,D EF(3)两边和其中一边所对的角分别相等的两个三角形不一定全等【分析】(1)根据尺规作线段,作一个角等于已知角的步骤作图即可;(2)根据所画图形填空即可;(3)根据探究过程结合全等三角形的判定可得出结论.(1)解:如图所示:(2)'(填三角形的名称)与观察所画的图形,发现满足条件的三角形有2个;其中三角形D EF△ABC明显不全等,';故答案为:2,D EF(3)经历以上探究过程,可得结论:两边和其中一边所对的角分别相等的两个三角形不一定全等,故答案为:两边和其中一边所对的角分别相等的两个三角形不一定全等.【点睛】本题考查了尺规作图,全等三角形的判定,熟练掌握尺规作图的方法和全等三角形的判定定理是解题的关键.24.(1)40︒(2)证明见解析(3)514【分析】(1)先求出80ACD ∠=︒,再根据直角三角形的两个锐角互余可得40DCE ∠=︒,然后根据ACE ACD DCE ∠=∠-∠即可得;(2)过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,先根据角平分线的性质可得,EM EH EN EH ==,从而可得EM EN =,再根据角平分线的判定即可得证; (3)过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,则EM EH EN ==,设EM EH EN x ===,再根据21ACE DCE ACD S S S +==和三角形的面积公式可得x 的值,从而可得EM 的值,然后利用三角形的面积公式即可得.(1)解:100ACB ∠=︒,18080ACD ACB ∴∠=︒-∠=︒,,50EH BD CEH ⊥∠=︒,9040DCE CEH ∴∠=︒-∠=︒,40ACE ACD DCE ∴∠=∠-∠=︒.(2)证明:如图,过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,BE 平分ABC ∠,,EM BF EH BD ⊥⊥,EM EH ∴=,由(1)可知,40ACE DCE ∠=∠=︒,即CE 平分ACD ∠, EN EH ∴=,EM EN ∴=,又点E 在CAF ∠的内部,AE ∴平分CAF ∠.(3)解:如图,过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,由(2)已得:EM EH EN ==,设EM EH EN x ===,21ACD S =, 21ACE DCE S S +∴=,112221AC EN CD EH ∴⋅+⋅=,即()1221x AC CD +=, 又14AC CD +=,211223142x AC CD ⨯=∴⨯==+, 3EM ∴=,8.5AB =,ABE ∴的面积为11518.53224AB EM ⋅=⨯⨯=. 【点睛】本题主要考查了角平分线的判定与性质,解题的关键是熟练掌握角平分线的性质定理:角的平分线上的点到角的两边的距离相等.25.(1)2△A =△1+△2;见解析;(2)2△A =△1﹣△2;见解析;(3)2(△A +△D )=△1+△2+360°,见解析【分析】(1)根据翻折的性质表示出△3、△4,再根据三角形的内角和定理列式整理即可得解;(2)先根据翻折的性质以及平角的定义表示出△3、△4,再根据三角形的内角和定理列式整理即可得解;(3)先根据翻折的性质表示出△3、△4,再根据四边形的内角和定理列式整理即可得解.【详解】解:(1)如图,根据翻折的性质,△3=EDA '∠=12(180-△1),△4=DEA '∠=12(180-△2),△△A +△3+△4=180°,△△A +12(180-△1)+12(180-△2)=180°,整理得,2△A =△1+△2;(2)如图,同理,根据翻折的性质,△3=12(180-△1),△4=12(180+△2),△△A+△3+△4=180°,△△A+12(180-△1)+12(180+△2)=180°,整理得,2△A=△1-△2;(3)如图,同理,根据翻折的性质,△3=12(180-△1),△4=12(180-△2),△△A+△D+△3+△4=360°,△△A+△D+12(180-△1)+12(180-△2)=360°,整理得,2(△A+△D)=△1+△2+360°.【点睛】本题主要考查了三角形的内角和定理,多边形的内角与外角,翻折的性质,整体思想的利用是解题的关键.26.(1)(0,3);(2)AM =2CD ,理由见解析;(3)不变,12【分析】(1)过点C 作CH △y 轴于H ,由全等三角形的判定定理可得ABO BCH ≌,可得3CH BO ==,即可求解; (2)延长AB ,CD 交于点N ,由全等三角形的判定定理可得ADN ADC ≌,得出CD DN =,再依据全等三角形判定定理证明ABM CBN ≌,可得AM CN =,即可得结论;(3)如图③,作CG △y 轴于G ,由全等三角形判定定理可得BAO CBG ≌,得出BG AO =,CG OB =,再依据全等三角形的判定可证CGP FBP ≌,得出PB PG =,可得1122PB BG AO ==,由三角形面积公式可求解. 【详解】解:(1)如图①,过点C 作CH △y 轴于H ,△90BHC ABC ∠=︒=∠,△90BCH CBH ABH CBH ∠+∠=∠+∠=︒,△BCH ABH ∠=∠,△点C 的横坐标为﹣3,△3CH =,在ABO 和BCH 中,BCH ABH BHC AOB BC AB ∠=∠⎧⎪∠∠⎨⎪=⎩=,△ABO BCH ≌,△3CH BO ==,△点B (0,3);故答案为:(0,3);(2)2AM CD =,如图②,延长AB ,CD 交于点N ,△AD 平分BAC ∠,△BAD CAD ∠=∠,在ADN 和ADC 中,90BAD CAD AD AD ADN ADC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, △ADN ADC ≌,△CD DN =,△2CN CD =,△90BAD ∠+∠=︒N ,90BCN ∠+∠=︒N ,△BAD BCN ∠=∠,在ABM 和CBN 中,BAM BCN BA BC ABM CBN ∠=∠⎧⎪=⎨⎪∠=∠⎩, △ABM CBN ≌,△AM CN =,△2AM CD =;(3)△BPC 与△AOB 的面积比不会变化,理由:如图③,作CG △y 轴于G ,△90BAO OBA ∠+∠︒=,90OBA CBG ∠+∠︒=,△BAO CBG ∠∠=,在BAO 和CBG 中,90AOB BGC BAO CBG AB BC ∠=∠=︒⎧⎪∠∠⎨⎪=⎩=,△BAO CBG ≌,△BG AO =,CG OB =,△OB BF =,△BF GC =,在CGP 和FBP 中,90CPG FPB CGP FBP CG BF ∠=∠⎧⎪∠∠=︒⎨⎪=⎩=,△CGP FBP ≌,△PB PG =, △1122PB BG AO ==, △12AOB S OB OA ∆=⨯⨯,111222PBC S PB GC OB OA ∆=⨯⨯=⨯⨯⨯, △12PBC AOB S S ∆∆=:. 【点睛】题目主要考查全等三角形的判定定理和性质,理解题意,作出相应辅助线,充分运用全等三角形的判定是解题关键.。
2022-2023学年八年级数学上学期期中考前必刷卷含答案解析(人教版)(二)
2022-2023学年八年级上学期期中考前必刷卷02数学(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:八年级上册第11-13章5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的.1.(2020·北京市朝阳区芳草地国际学校富力分校八年级期中)“致中和,天地位焉,万物育焉.”中国古人把和谐平衡的精神之美,演变成了一种对称美.从古至今,人们将对称元素赋予建筑、器物、绘画、饰品等事物上,使对称之美惊艳了千年的时光.在下列我国建筑简图中,不是轴对称图形的是()A.B.C.D.2.(2022·四川·富顺第二中学校八年级阶段练习)下列生活实物中,没有应用到三角形的稳定性的是( )A.B.C.D.3.(2022·广东·东莞市松山湖莞美学校八年级阶段练习)如图,在直角三角形ABC中,∠ACB=90°,CD是AB 边上的高,AB=13cm,BC=12cm,AC=5cm,则CD的长为( )A.5cm B.6013cm C.135cm D.3013cm4.(2022·全国·八年级课时练习)如图,△ADE≌△BDE,若△ADC的周长为12,AC的长为5,则BC的长为()A.8B.7C.6D.55.(2022·山东·万杰朝阳学校七年级期中)如图,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ 的两条直角边XY,XZ分别经过点B,C.若∠A=40°,则∠ABX+∠ACX=()A.25°B.30°C.45°D.50°6.(2022·山东·滨州市滨城区教学研究室八年级期中)给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,AC=EF,∠B=∠E;③ ∠B =∠E ,AB =DF ,∠C =∠F ;④ AB =DE ,AC =DF ,A D ∠=∠.其中,能确定△ ABC 和△ DEF 全等的条件共有( )A .1组B .2组C .3组D .4组7.(2021·广西北海·八年级期中)如图,在ABC V 中,AB AC =,点D 是底边BC 上异于AC 中点的一个点,ADE DAC ∠=∠,DE AC =.运用以上条件(不添加辅助线)可以说明下列结论错误的是( )A .ADE DAC ≌△△B .AF DF =C .AF CF =D .B E∠=∠8.(2022·河南·郑州经开区外国语女子中学八年级期末)如图,在ABC V 中,以A 为圆心,适当长为半径作弧,分别交AB 、AC 于点D 、E ,再分别以D 、E 为圆心,相同长为半径作弧,分别交DB 、EC 于点F 、G ,连接EF 、DG ,交于点H ,连接AH 并延长交BC 于点I ,则线段AI 是( )A .ABC V 的高B .ABC V 的中线C .ABC V 的角平分线D .以上都不对9.(2019·安徽合肥·八年级期中)如图,ABC ∆中, BP 平分∠ABC , AP ⊥BP 于P ,连接PC ,若PAB ∆的面积为3.5cm 2,PBC ∆的面积为4.5cm 2,则PAC ∆的面积为( ).A .0.25cm 2B .0.5 cm 2C .1cm 2D .1.5cm 210.(2022·黑龙江·哈尔滨工业大学附属中学校七年级期末)如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于E ,交AC 于F ,过点O 作OD ⊥AC 于D .下列四个结论:①∠BOC =90°12+∠A ,②∠EBO 12=∠AEF ,③∠DOC +∠OCB =90°,④设OD =m ,AE +AF =n ,则S △AEF 2mn =.其中正确的结论有( )A .1个B .2个C .3个D .4个11.(2022·山东威海·七年级期末)如图,四边形ABCD ,90B C ∠=∠=︒,边AD 的中垂线分别交BC ,AD 于点E ,F ,且AF EF =若5AB =,12CD =,则BE 的长为( )A .7B .12C .13D .1712.(2022·四川绵阳·八年级期末)如图,在△ABC 中,∠ABC 和∠ACB 的角平分线交于点O ,AD 经过点O 与BC 交于点D ,以AD 为边向两侧作等边△ADE 和等边△ADF ,分别和AB ,AC 交于点G ,H ,连接GH .若∠BOC =120°,AB =a ,AC =b ,AD =c .则下列结论中正确的个数有( )①∠BAC =60°; ②△AGH 是等边三角形;③AD 与GH 互相垂直平分; ④()12ABC S a b c =+△.A .1个B .2个C .3个D .4个13.(2021·浙江·宁波市兴宁中学九年级期中)如图,点P ,Q ,R 分别在等边△ABC 的三边上,且AP =BQ =CR ,过点P ,Q ,R 分别作BC ,CA ,AB 边的垂线,得到△DEF 、若要求△DEF 的面积,则只需知道()A .EP 的长B .EF 的长C .AP 的长D .DP 的长14.(2021·山东·梁山县第二中学八年级阶段练习)如图,在长方形ABCD 中4AB DC ==,5AD BC ==.延长BC 到E ,使2CE =,连接DE .动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA →→→向终点A 运动,设点P 运动的时间为t 秒,存在这样的t ,使△DCP 和△DCE 全等,则t 的值为( )A .12t =B .32t =C .12t =或32t =D .32t =或112t =第Ⅱ卷二、填空题:本题共4个小题;每个小题3分,共12分,把正确答案填在横线上.15.(2021·重庆·华东师范大学附属中旭科创学校八年级期中)在一个三角形中,三个内角之比为1:2:6,则这个三角形是______三角形.16.(2022·新疆·乌鲁木齐市第六十八中学模拟预测)一个正多边形的一个内角是它外角的4倍,这个正多边形的内角和为______度.17.(2022·黑龙江·大庆市庆新中学八年级期末)如图,是我们七上学过的利用尺规“作一个角等于已知角”的过程,爱思考的小明一直不知道这样作出的角和已知角为何相等,在学习了三角形全等的证明之后,终于解开了谜团,原来只要证明△DOC ≌△D 'O 'C '就能得出∠O =∠O ',那么小明证明△DOC ≌△D 'O 'C '的依据是___________.18.(2021·浙江宁波·七年级期末)如图,BD 是ABC V 的中线,延长BD 至E ,使得DE DB =,连接AE ,EAD DBC ∠>∠,点F 在DAE ∠的平分线上,且12FBC DBC ∠=∠.设,ADB DBC αβ∠=∠=,则AFB ∠=___________(用含α、β的式子表示)三、解答题:本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分.19.(2020·湖北·公安县教学研究中心八年级期中)已知三角形的三条边长为6、10和x .(1)若6是最短边长,求x 的取值范围;(2)若x 为整数,求三角形周长的最大值.20.(2021·重庆市渝北区实验中学校八年级期中)如图,在ABC V 中,AD BC ⊥于点,46,68D B C ∠∠== .(1)尺规作图:作BAC ∠的平分线交BC 于点E (保留作图痕迹,不写作法);(2)在(1)所作的图形中,求DAE ∠的度数.21.(2020·天津市红桥区教师发展中心八年级期中)如图所示,已知△ABC 中,AB=AC ,E ,D ,F 分别在AB ,BC 和AC 边上,且BE =CD ,BD =CF ,过D 作DG ⊥EF 于G .求证:EG =12EF .22.(2021·山东·单县湖西学校八年级阶段练习)如图所示,在ABC V 中,ABC ∠和ACB ∠的平分线相交于点P ,且PE AB ⊥,PF AC ⊥,垂足分别是E 、F.(1)PE 与PF 相等吗?请说明理由;(2)若7AB =,6BC =,5AC =,点P 到BC 的距离为2,求ABC V 的面积.23.(2022·全国·八年级专题练习)问题发现:如图1,已知C 为线段AB 上一点,分别以线段AC ,BC 为直角边作等腰直角三角形,90ACD ∠=︒,CA CD =,CB CE =,连接AE ,BD ,线段AE ,BD 之间的数量关系为______;位置关系为_______.拓展探究:如图2,把Rt ACD △绕点C 逆时针旋转,线段AE ,BD 交于点F ,则AE 与BD 之间的关系是否仍然成立?请说明理由.24.(2022·江苏镇江·八年级阶段练习)我们规定:有两组边相等,且它们所夹的角互补的两个三角形叫兄弟三角形.如图,OA =OB ,OC =OD ,∠AOB =∠COD =90°,回答下列问题:(1)求证:△OAC 和△OBD 是兄弟三角形.(2)“取BD 的中点P ,连接OP ,试说明AC =2OP .”聪明的小王同学根据所要求的结论,想起了老师上课讲的“中线倍长”的辅助线构造方法,解决了这个问题,按照这个思路回答下列问题.①请在图中通过作辅助线构造△BPE ≌△DPO ,并证明BE =OD ;②求证:AC =2OP .25.(2022·辽宁·沈阳市第一二六中学七年级阶段练习)等腰△ABC ,CA =CB ,D 为直线AB 上一动点,以CD 为腰作等腰三角形△CDE ,顶点C 、D 、E 按逆时针方向排列,CD =CE ,∠ACB =∠DCE ,连接BE .(1)若∠ACB =60°,当点D 在线段AB 上时,如图(1)所示,此时AD 与BE 的数量关系为______;(2)若∠ACB =90°,当点D 在线段BA 延长线上时,如图(2)所示,AD 与BE 有什么关系,说明理由;(3)当BE AC ∥时,若△CAD 中最小角为15°,试探究∠CDA 的度数(直接写出结果).26.(2022·辽宁沈阳·七年级期末)如图①,在△ABC 中,AB =AC =BC =10cm ,动点P 以每秒1cm 的速度从点A 出发,沿线段AB 向点B 运动.设点P 的运动时间为t (t >0)秒.(知识储备:一个角是60°的等腰三角形是等边三角形)(1)当t =5时,求证:△PAC 是直角三角形;(2)如图②,若另一动点Q 在线段CA 上以每秒2cm 的速度由点C 向点A 运动,且与点P 同时出发,点Q 到达终点A 时点P 也随之停止运动.当△PAQ 是直角三角形时,直接写出t 的值;(3)如图③,若另一动点Q 从点C 出发,以每秒1cm 的速度沿射线BC 方向运动,且与点P 同时出发.当点P 到达终点B 时点Q 也随之停止运动,连接PQ 交AC 于点D ,过点P 作PE ⊥AC 于E .在运动过程中,线段DE 的长度是否发生变化?若不变,直接写出DE的长度;若变化,说明如何变化.2022-2023学年八年级上学期期中考前必刷卷02(人教版2022)数学·全解全析1234567891011121314 C C A D D C B D B C B D B C19.(1)6≤x<16(2)31【分析】(1)根据三角形的三边关系,即可求解;(2)根据三角形的三边关系,可得4<x<16,再由x为整数,可得x的最大值为15,即可求解.(1)解:由题意得:10-6<x<10+6,即4<x<16∵6是最短边长,∴x≥6∴x的取值范围是6≤x<16;(2)解:由(1)可知,4<x<16,∵x为整数,∴x的最大值为15,∴三角形周长的最大值为6+10+15=31.【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.20.(1)见解析(2)11°【分析】(1)根据角平分线的作图方法作图解答即可;(2)根据三角形内角和定理及角平分线定义求出∠CAE,根据直角三角形的性质求出∠CAD,即可得到DAE的度数.(1)如图,AE即为所求;(2)解:∵∠B =46°,∠C =68°,∴∠BAC =180°-∠B -∠C =66°,∵AE 平分∠BAC ,∴∠CAE =33°,∵AD ⊥BC ,∴∠ADC =90°,∴∠CAD =90°-∠C =22°,∴∠DAE =∠CAE -∠CAD =33°-22°=11°.【点睛】此题考查了角平分线的作图,三角形内角和定理,直角三角形两锐角互余的性质,正确掌握角平分线的作图及直角三角形的性质是解题的关键.21.证明见详解【分析】做辅助线DE 、DF ,证明△EBD ≌△DCF (SAS ),证得△EDF 为等腰三角形,根据等腰三角形三线合一的性质即可证得.【详解】解:如图连接DE 、DF ,∵AB =AC ,∴∠EBD =∠DCF ,在△EBD 和△DCF 中,BE DC EBD DCF BD CF =⎧⎪∠=∠⎨⎪=⎩,∴△EBD ≌△DCF (SAS ),∴DE =DF ,则△EDF 为等腰三角形,又∵DG ⊥EF ,∴EG =GF ,∴EG =12EF .【点睛】此题考查了等腰三角形判定与性质、全等三角形的判定与性质,解题的关键是作辅助线构造全等三角形并证明△EDF 是等腰三角形.22.(1)PE 与PF 相等,理由见解析;(2)18【分析】(1)过P 点作PH ⊥BC 于H 点,根据角平分线的性质得到PH =PE ,PH =PF ,等量代换即可得到PE =PF ;(2)由(1)得到PE =PF =2,然后根据ABC PAB PBC PCA S S S S =++V V V V 进行计算.(1)解:PE 与PF 相等.理由:过P 点作PH ⊥BC 于H 点,如图,∵BP 为∠ABC 的平分线,PE ⊥BA ,PH ⊥BC ,∴PH =PE ,∵CP 为∠ACB 的平分线,PF ⊥CA ,PH ⊥BC ,∴PH =PF ,∴PE =PF ;(2)∵点P 到BC 的距离为2,即PH =2,∴PE =PF =2,∴ABC PAB PBC PCA S S S S =++V V V V 11172625218222=⨯⨯+⨯⨯+⨯⨯=.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.23.问题发现:AE BD =,AE BD ⊥;拓展探究:成立,理由见解析【分析】问题发现:根据题目条件证△ACE ≌△DCB ,再根据全等三角形的性质即可得出答案;拓展探究:用SAS 证ACE DCB ∆≅∆,根据全等三角形的性质即可证得.【详解】解:问题发现:延长BD ,交AE 于点F ,如图所示:∵90ACD ︒=∠,∴90ACE DCB ︒∠=∠=,又∵,CA CD CB CE ==,∴ACE DCB ∆≅∆(SAS ),,AE ED CAE CDB ∴=∠=∠,∵90CDB CBD ︒∠+∠=,∴90CAE CBD ︒∠+∠=,∴90AFD ︒∠=,∴AF FB ⊥,AE BD ∴⊥,故答案为:AE BD =,AE BD ⊥;拓展探究:成立.理由如下:设CE 与BD 相交于点G ,如图1所示:∵90ACD BCE ︒∠=∠=,∴ACE BCD ∠=∠,又∵CB CE =,AC CD =,∴ACE DCB ∆≅∆(SAS ),∴AE BD =,AEC DBC ∠=∠,∵90CBD CGB ︒∠+∠=,∴90AEC EGF ︒∠+∠=,∴BD AE ⊥,即AE BD =,AE BD ⊥依然成立.【点睛】本题考查全等三角形的判定和性质,三角形三边关系,手拉手模型,熟练掌握全等三角形的判定和手拉手模型是解决本题的关键.24.(1)见解析(2)①见解析;②见解析【分析】(1)证出∠AOC +∠BOD =180°,由兄弟三角形的定义可得出结论;(2)①延长OP 至E ,使PE =OP ,证明△BPE ≌△DPO (SAS ),由全等三角形的性质得出BE =OD ;②证明△EBO ≌△COA (SAS ),由全等三角形的性质得出OE =AC ,则可得出结论.(1)证明:∵∠AOB =∠COD =90°,∴∠AOC +∠BOD =360°-∠AOB -∠COD =360°-90°-90°=180°,又∵AO =OB ,OC =OD ,∴△OAC 和△OBD 是兄弟三角形;(2)①证明:延长OP 至E ,使PE =OP ,∵P 为BD 的中点,∴BP =PD ,又∵∠BPE =∠DPO ,PE =OP ,∴△BPE ≌△DPO (SAS ),∴BE =OD ;②证明:∵△BPE ≌△DPO ,∴∠E =∠DOP ,∴∠EBO +∠BOD =180°,又∵∠BOD +∠AOC =180°,∴∠EBO =∠AOC ,∵BE =OD ,OD =OC ,∴BE =OC ,又∵OB =OA ,∴△EBO ≌△COA (SAS ),∴OE =AC ,又∵OE =2OP ,∴AC =2OP .【点睛】本题是三角形综合题,考查了新定义兄弟三角形,全等三角形的判定与性质,正确作出辅助线是解题的关键.25.(1);AD =BE ;(2);AD =BE ,理由见解析;(3)105°或45°或15°.【分析】(1)根据全等三角形的判定可以得出△ACD ≌△BCE ,从而得出结论;(2)根据全等三角形的判定可以得出△ACD ≌△BCE ,从而得出结论;(3)分D 在线段AB 上、当点D 在BA 的延长线上、点D 在AB 的延长线上三种情形根据等边三角形的性质、三角形内角和定理计算即可.(1)∵∠ACB =60°,∠ACB =∠DCE ,∴∠ ACB =∠DCE =60°.∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE .在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴AD =BE .故答案为:AD =BE ;(2)AD =BE ,理由如下:∵∠ACB =90°,∠ACB =∠DCE ,∴∠ ACB =∠DCE =90°.∴∠ACB -∠ACE =∠DCE -∠ACE ,即∠DCA =∠ECB .在△ACD 和△BCE 中,AC BC DCA ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴AD =BE .(3)解:当D 在线段AB 上时,∵BE ∥CA ,∴∠CBE =∠ACB ,∵△ACD ≌△BCE ,∴∠CAD =∠CBE ,∴∠CAD =∠ACB ,又∠CAB =∠CBA ,∴△CAB 为等边三角形,∴∠CAB =60°,当△CAD 中的最小角是∠ACD =15°时,∴∠CDA =180°-60°-15°=105°,当点D 在BA 的延长线上时,∵BE ∥CA ,∴∠ACE =∠CEB ,∠ABE =∠CAB ,∵△DCA ≌△ECB,∴∠CDA=∠CEB,∠CAD=∠CBE,∴∠ACB=∠ACE+ECB=∠CEB+∠ECB=180°-∠CBE=180°-∠CAD=∠CAB=∠CBA,∴△CAB是等边三角形,当△CAD中的最小角是∠ACD=15°时,∠CDA=∠CAB-∠ACD=45°,当△CAD中的最小角是∠CDA时,∠CDA=15°;当点D在AB的延长线上时,只能∠CDA=15°,综上所述,∠CDA的度数为105°或45°或15°.【点睛】本题考查的是等腰三角形的性质、全等三角形的判定和性质、等边三角形的判定和性质,解题的关键是准确寻找全等三角形解决问题,学会用分类讨论的首先思考问题.26.(1)见解析(2)4或5 2(3)不变,5cm【分析】(1)利用等腰三角形三线合一的性质证明即可;(2)分两种情况:①当∠APQ=90°时,则∠AQP=30°,由直角三角形的性质得AQ=2AP,由题意得出方程,解方程即可;②当∠AQP=90°时,则∠APQ=30°,由直角三角形的性质得AP=2AQ,由题意得出方程,解方程即可;(3)过点Q作QF⊥AC,交AC的延长线于F,先证△APE≌△CQF(AAS),得AE=CF,PE=QF,再证△PDE≌△QDF(AAS),得DE=DF=12EF,进而得出答案.(1)证明∵△ABC是等边三角形,∴AB=BC=AC=10,当t=5时,PA=5,∴PA=PB,∴CP⊥AB,∴△ACP是直角三角形;(2)解:分两种情况:①当∠APQ=90°时,如图2-1所示:则∠AQP =90°-∠A =30°,∴AQ =2AP ,由题意可得:AP =t ,CQ =2t ,则AQ =10-2t ,∴10-2t =2t ,解得52t =;②当∠AQP =90°时,如图2-2所示:则∠APQ =90°-∠A =30°,∴AP =2AQ ,∴t =2(10-2t ),解得:t =4;综上,当52t =或4时,△PAQ 是直角三角形;(3)解:线段DE 的长度不变化,理由如下:过点Q 作QF ⊥AC ,交AC 的延长线于F ,如图3所示:∵PE ⊥AC ,QF ⊥AC ,∴∠AEP =∠DEP =∠CFQ =90°,∵∠QCF =∠ACB =60°,∴∠A=∠QCF,又∵AP=CQ,∴△APE≌△CQF(AAS),∴AE=CF,PE=QF,又∵∠PDE=∠QDF,∴△PDE≌△QDF(AAS),EF,∴DE=DF=12∵EF=CE+CF,AC=CE+AE,∴EF=AC=10,EF=5,∴DE=12即线段DE的长度不变,为定值5cm.【点睛】本题考查了全等三角形的判定与性质、等边三角形的性质、含30°角的直角三角形的性质、直角三角形的性质以及动点问题等知识;本题综合性强,熟练掌握等边三角形的性质和直角三角形的性质,证明三角形全等是解题的关键.。
人教版数学八年级下册《期中考试试题》附答案解析
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填入题后的括号内.1.二次根式1x -有意义的的取值范围是( ) A. 1x > B. 1x < C. 1x ≥ D. 1x ≤2.下列式子中是最简二次根式的是( )A. 8B. 22C. 23D. 1.5 3.下列计算正确的是( )A. 5335-=B. 222()-=-C. 1222÷=D. 235⋅= 4.若一个三角形的三边长为3,4,x ,则使得此三角形是直角三角形的的值是( )A. B. C. 7 D. 或7 5.下列条件中,不能判断ABC ∆为直角三角形是( )A 2a =,3b =,5c =B. ::1:2:3a b c =C. A B C ∠+∠=∠D. ::3:4:5A B C ∠∠∠=6.等腰三角形腰长为10,底长为12,则其底边上的高为( )A. 13B. 8C. 25D. 647.如图,在ABCD 中,AC 与BD 相交于点O,则下列结论不一定成立的是( )A. BO=DOB. CD=ABC. ∠BAD=∠BCDD. AC=BD8.下列说法中错误的是( )A. 四边相等四边形是菱形B. 对角线相等的矩形是正方形C. 一组邻边相等的平行四边形是菱形D. 对角线互相垂直平分的四边形是菱形9.如图,正方形ABCD 内有两条相交线段MN ,EF ,M ,N ,E ,F 分别在边AB ,CD ,AD ,BC 上.小明认为:若MN =EF ,则MN ⊥EF ;小亮认为:若MN ⊥EF ,则MN =EF,你认为( )A. 仅小明对B. 仅小亮对C. 两人都对D. 两人都不对 10.如图,在菱形ABCD 中,对角线AC ,BD 相交于点,8AC =,6BD =,点,E F 分别为AO ,DO 的中点,则线段EF 的长为( )A. 2.5B. 3C. 4D. 5二、填空题:(本大题共6个小题,每小题3分,共18分)请将每小题的答案填在题中的横线上. 11.已知112y x x =-+--,则x y -值为_________.12.24化简后与最简二次根式51a +的被开方数相等,则a =_________.13.如图,阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是_________.14.如图,在矩形ABCD 中,对角线AC ,BD 相交于点,已知8AB =,30ACB ∠=︒,则BD =_________.15.如图,在ABCD 中,按以下步骤作图:①以为圆心,以AB 长为半径作弧,交AD 于点;②分别以、为圆心,以大于12BF 的长为半径作弧,两弧相交于点;③作射线AG ,交边BC 于点.若16BF =,10AB =,则AE 的长为_________.16.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点,分别在BC 和CD 上,则正方形ABCD 的面积等于_________.三、解答题:(本大题共有9个小题,共72分)解答应写出演算步骤或文字说明,并将答案写在对应的答题区域内.17.计算:(1)(4820)(3125)-;(22148330(223)5++. 18.已知32a =32b =求223a ab b a b ++-+的值.19.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?20.如图,在四边形ABCD 中,3BC DC ==,26AD =,AB 6=,且90C ∠=︒, 60A ∠=︒,求ADC ∠的度数.21.如图,在ABCD 中,BAD ∠的平分线交BC 于点,且5BE =,8EC =.(1)求ABCD 的周长;(2)连结AC ,若12AC =,求ABCD 的面积.22.如图,在菱形ABCD 中,60ABC ∠=︒,是CD 边上一点,作等边BEF ∆,连接AF .(1)求证:CE AF =;(2)EF 与AD 交于点,38DPE ∠=︒,求CBE ∠的度数.23.如图,矩形ABCD 中,点, E F 分别在边AB 与CD 上,点,G H 在对角线AC上,AG CH =,BE DF =.()1求证:四边形EGFH 是平行四边形.()2若EG EH =,8AB =,4BC =,求AE 的长.24.如图,在等边ABC ∆中,9cm AB =,射线//AG BC ,点从点出发沿射线AG 以1cm/s 的速度运动,同时点从点出发沿射线BC 以2cm /s 的速度运动,设点运动的时间为()t s .(1)当点在线段BC 上运动时,CF =_________cm ,当点在线段BC 的延长线上运动时,CF =_________cm (请用含的式子表示);(2)在整个运动过程中,当以点,,,为顶点的四边形是平行四边形时,求的值;(3)求当t =_________时,,两点间的距离最小.25.△ABC 是等边三角形,点D 是射线BC 上的一个动点(点D 不与点B ,C 重合),△ADE 是以AD 为边的等边三角形,过点E 作BC 的平行线,交射线AC 于点G ,连接BE .(1)如图1所示,当点D 在线段BC 上时,求证:四边形BCGE 是平行四边形;(2)如图2所示,当点D 在BC 的延长线上时,(1)中的结论是否成立?并请说明理由;(3)当点D 运动到什么位置时,四边形BCGE 是菱形?并说明理由.答案与解析一、选择题:(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填入题后的括号内.1.( )A. 1x >B. 1x <C. 1x ≥D. 1x ≤[答案]D[解析][分析]根据二次根式的被开方数为非负数,可得关于x 的不等式,解之即可.[详解],∴1-x ≥0,解得:x ≤1,故选:D .[点睛]本题考查二次根式的定义、解一元一次不等式,熟练掌握二次根式有意义的条件是解答的关键. 2.下列式子中是最简二次根式的是( )B. 2 [答案]B[解析][分析] 分析每个式子,根据最简二次根式的定义判断即可.[详解故A 错误;是最简二次根式,故B 正确;故C 错误;2,故D 错误; 故选:B .[点睛]本题主要考查了最简二次根式判定,准确利用二次根式的性质化简是解题的关键.3.下列计算正确的是( )A. 5= 2=- 2= = [答案]C[解析][分析]通过对二次根式的化简,利用二次根式的性质进行求解即可得到答案.[详解]=,故A 错误;2=,故B 错误;=,故C 正确;=故D 正确;故答案选C .[点睛]本题主要考查了二次根式性质的应用,准确计算是解题的关键.4.若一个三角形的三边长为3,4,x ,则使得此三角形是直角三角形的的值是()A. B.D. [答案]D[解析][分析]根据勾股定理即可求解.[详解]当4为斜边时,当x 为斜边是,5故选D. [点睛]此题主要考查勾股定理的应用,解题的关键是根据题意分情况讨论.5.下列条件中,不能判断ABC ∆为直角三角形的是( )A. 2a =,3b =,c =B. ::1:a b c =C. A B C ∠+∠=∠D. ::3:4:5A B C ∠∠∠= [答案]D[解析][分析]分别根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.[详解]A 、24a =,29b =,25c =,∵222a c b +=,∴△ABC 是直角三角形,故本选项错误;B 、∵2221+=, ∴△ABC 是直角三角形,故此选项不合题意;C 、∵A B C ∠+∠=∠,而180A B C ∠+∠+∠=︒,计算得∠A=90,∴△ABC 为直角三角形,故此选项不合题意;D 、∵180A B C ∠+∠+∠=︒,计算得∠A=45°,∠B=60°,∠C=75°,∴△ABC 不是直角三角形,故此选项符合题意;故选:D .[点睛]本题主要考查了勾股定理逆定理和三角形内角和定理,判断三角形是否为直角三角形可利用勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形就是直角三角形.6.等腰三角形的腰长为10,底长为12,则其底边上的高为( )A. 13B. 8C. 25D. 64[答案]B[解析]试题解析:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选B.7.如图,在ABCD中,AC与BD相交于点O,则下列结论不一定成立的是( )A. BO=DOB. CD=ABC. ∠BAD=∠BCDD. AC=BD [答案]D[解析]试题分析:根据平行四边形的性质判断即可:A、∵四边形ABCD是平行四边形,∴OB=OD(平行四边形的对角线互相平分),正确,不符合题意;B、∵四边形ABCD是平行四边形,∴CD=AB(平行四边形的对边相等),正确,不符合题意;C、∵四边形ABCD是平行四边形,∴∠BAD=∠BCD(平行四边形的对角相等),正确,不符合题意;D、根据四边形ABCD是平行四边形不能推出AC=BD,错误,符合题意.故选D.8.下列说法中错误的是()A. 四边相等的四边形是菱形B. 对角线相等的矩形是正方形C. 一组邻边相等的平行四边形是菱形D. 对角线互相垂直平分的四边形是菱形[答案]B[解析][分析]根据菱形、正方形的判定方法分别分析即可求解.[详解]解:A. 四边相等的四边形是菱形,正确,不合题意;B. 对角线相等的矩形是正方形,错误,符合题意;C. 一组邻边相等的平行四边形是菱形,正确,不合题意;D. 对角线互相垂直平分的四边形是菱形,正确,不合题意.故选B.[点睛]本题考查了菱形、正方形的判定方法,正确把握相关定义是解题关键.9.如图,正方形ABCD内有两条相交线段MN,EF,M,N,E,F分别在边AB,CD,AD,BC上.小明认为:若MN=EF,则MN⊥EF;小亮认为:若MN⊥EF,则MN=EF,你认为()A. 仅小明对B. 仅小亮对C. 两人都对D. 两人都不对[答案]C[解析][分析]分别过点E作EG⊥BC于点G,过点M作MP⊥CD于点P,设EF与MN相交于点O,MP与EF相交于点Q,根据正方形的性质可得EG=MP;对于小明的说法,先利用“HL”证明Rt△EFG≌Rt△MNP,根据全等三角形对应角相等可得∠MNP=∠EFG,再根据角的关系推出∠EQM=∠MNP,然后根据∠MNP+∠NMP=90°得到∠NMP+∠EQM=90°,从而得到∠MOQ=90°,根据垂直的定义即可证得MN⊥EF;对于小亮的说法,先推出∠EQM=∠EFG,∠EQM=∠MNP,然后得到∠EFG=∠MNP,然后利用“角角边”证明△EFG≌△MNP,根据全等三角形对应边相等可得EF=MN.[详解]如图,过点E作EG⊥BC于点G,过点M作MP⊥CD于点P,设EF与MN相交于点O,MP与EF相交于点Q,∵四边形ABCD 正方形,∴EG=MP ,对于小明的说法:在Rt △EFG 和Rt △MNP 中,MN EF EG MP ⎧⎨⎩==, ∴Rt △EFG ≌Rt △MNP (HL ),∴∠MNP=∠EFG ,∵MP ⊥CD ,∠C=90°,∴MP ∥BC ,∴∠EQM=∠EFG=∠MNP ,又∵∠MNP+∠NMP=90°,∴∠EQM+∠NMP=90°,在△MOQ 中,∠MOQ=180°-(∠EQM+∠NMP )=180°-90°=90°,∴MN ⊥EF ,故甲正确.对小亮的说法:∵MP ⊥CD ,∠C=90°,∴MP ∥BC ,∴∠EQM=∠EFG ,∵MN ⊥EF ,∴∠NMP+∠EQM=90°,又∵MP ⊥CD ,∴∠NMP+∠MNP=90°,∴∠EQM=∠MNP ,∴∠EFG=∠MNP ,在△EFG 和△MNP 中,90EFG MNP EGF MPN EG MP ∠∠⎧⎪∠∠︒⎨⎪⎩==== , ∴△EFG ≌△MNP (AAS ),∴MN=EF ,故小亮的说法正确,综上所述,两个人的说法都正确.故选C .[点睛]本题考查了正方形的性质、全等三角形的判定与性质、同角的余角相等的性质,作出辅助线,构造出全等三角形是解题的关键,通常情况下,求两边相等,或已知两边相等,都是想法把这两条线段转化为全等三角形的对应边进行求解.10.如图,在菱形ABCD 中,对角线AC ,BD 相交于点,8AC =,6BD =,点,E F 分别为AO ,DO 的中点,则线段EF 的长为( )A. 2.5B. 3C. 4D. 5[答案]A[解析][分析] 先依据菱形的性质求得OA 、OD 的长,然后依据勾股定理可求得AD 的长,最后依据三角形中位线定理求的EF 的长即可.[详解]∵四边形ABCD 为菱形,∴AC ⊥BD ,OA=OC=12AC=4,OB=OD=12BD=3 在Rt △AOD 中,依据勾股定理可知: 2222435AD OA OD∵点E ,F 分别为AO ,DO 的中点,∴EF 是△AOD 的中位线∴EF=12AD=2.5 故选:A[点睛]本题考查了菱形的性质:菱形的对角线互相垂直平分;三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.二、填空题:(本大题共6个小题,每小题3分,共18分)请将每小题的答案填在题中的横线上. 11.已知2y =,则x y -的值为_________. [答案]3[解析][分析]由二次根式有意义的条件列不等式组,解不等式组求得,再求,从而可得答案.[详解]解:2y x =-1010x x -≥⎧∴⎨-≥⎩①② 由①得:1,x ≥由②得:1,x ≤1,x ∴=2,y ∴=-()12 3.x y ∴-=--=故答案为:[点睛]本题考查的是二次根式有意义的条件,掌握二次根式有意义的条件列不等式组是解题的关键.,则a =_________.[答案]5[解析][分析]化简为最简二次根式,继而利用题干信息“被开方数相同”列方程求解.[详解=其中被开方数为6;1a + ,故有:16a +=,则5a =.故本题答案为5.[点睛]本题考查最简二次根式的化简以及对二次根式概念的理解,需注意化简原则为被开方数不含分母,也不含能开的尽方的因数或因式.13.如图,阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是_________.[答案]25[解析][分析]先根据勾股定理算出大正方形的边长,再根据勾股定理的面积证明可得结果.[详解]由题可得大正方形的边长=2213-12=5,根据勾股定理的性质可得阴影部分的面积=25=25.故答案为25.[点睛]本题主要考查了勾股定理的理解,准确理解图形面积与勾股定理的关系是解题的关键.14.如图,矩形ABCD 中,对角线AC ,BD 相交于点,已知8AB =,30ACB ∠=︒,则BD =_________.[答案]16[解析][分析]根据直角三角形30°角所对的直角边等于斜边的一半可得AC =2AB ,再根据矩形的对角线相等解答.[详解]在矩形ABCD 中,∠ABC =90°,∵∠ACB =30°,AB =8,∴AC =2AB =2×8=16,∵四边形ABCD是矩形,∴BD=AC=16.故答案为:16.[点睛]本题考查了矩形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.15.如图,在ABCD中,按以下步骤作图:①以为圆心,以AB长为半径作弧,交AD于点;②分别以、为圆心,以大于12BF的长为半径作弧,两弧相交于点;③作射线AG,交边BC于点.若16BF=,10AB=,则AE的长为_________.[答案]12[解析][分析]设AE交BF于点O.证明四边形ABEF是菱形,利用勾股定理求出OA即可解决问题.[详解]如图,设AE交BF于点O.由作图可知:AB=AF,AE⊥BF,∴OB=OF,∠BAE=∠EAF,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAF=∠AEB,∴∠BAE=∠AEB,∴AB =BE =AF ,∵AF ∥BE ,∴四边形ABEF 是平行四边形,∵AB =AF ,∴四边形ABEF 是菱形,∴OA =OE ,OB =OF =8,在Rt △AOB 中,∵∠AOB =90°,∴OA =22221086AB OB -=-=,∴AE =2OA =12.故答案为:12.[点睛]本题考查平行四边形的性质,菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点,分别在BC 和CD 上,则正方形ABCD 的面积等于_________.[答案]23+[解析][分析]首先根据四边形ABCD 是正方形得出AB=AD ,∠B=∠D=90°,根据△AEF 是等边三角形得出AE=AF ,最后根据HL 即可证明△ABE ≌△ADF ;根据全等性质:CE=CF ,∠C=90°,从而得出△ECF 是等腰直角三角形,再根据勾股定理得出EC 的值,设BE x =,则2AB x =在Rt △ABE 中,222AB BE AE +=,求出的值,即可得出正方形ABCD 的边长,最后求出正方形ABCD 的面积.[详解]解:∵四边形ABCD 是正方形,∴AB=AD ,∠B=∠D=90°, ∵△AEF 是等边三角形,∴AE=AF ,在Rt △ABE 和Rt△ADF 中,AB AD AE AF =⎧⎨=⎩, ∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF ,∴CE=CF ,∠C=90°,即△ECF 是等腰直角三角形,由勾股定理得222CE CF EF +=,∴EC =在Rt △ABE 中,2AE =,∴222AB BE AE +=,即(224x x +=,解得12x =或22x =(舍去),∴AB =∴2ABCD S =正方形故答案为2.[点睛]本题主要考查了正方形的性质、全等三角形的判定与性质、等边三角形的性质和等腰三角形的性质.解答本题的关键是对正方形和三角形的性质以及勾股定理的运用要熟练掌握.三、解答题:(本大题共有9个小题,共72分)解答应写出演算步骤或文字说明,并将答案写在对应的答题区域内.17.计算:(1)-;(22++.[答案](1);(2)15+[解析][分析](1)先逐个化简二次根式,再去括号合并同类二次根式即可;(2)先算乘方、再算乘除、最后算加减合并即可.[详解](1)原式=43256353523+-+=-; (2)原式=42684631526-+++=+.[点睛]本题考查了二次根式的混合运算,解答的关键是熟练掌握二次根式的混合运算法则,会利用二次根式的性质将二次根式化为最简根式.18.已知32a =-,32b =+,求223a ab b a b ++-+的值.[答案]1322+[解析]试题分析:先根据题意求出a-b 的值和ab 的值,然后把已知的式子变形为完全平方和a-b 及ab 的整体形式,然后整体代入即可.试题解析:∵32a =-,32b =+∴323222a b -=---=-,()()32321ab =-+= ∴223a ab b a b ++-+=()()25a b a b ab ---+=()()2222251---+⨯ =8225++=1322+19.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?[答案]发生火灾住户窗口距离地面14米[解析][分析]在Rt △ACB 中,利用勾股定理求出BC 即可解答.[详解]由题意,AB=15,AC=DE=9,CD=AE=2,BD ⊥AC ,在Rt △ACB 中,由勾股定理得: 222215912BC AB AC =-=-=,∴BD=BC+CD=14(米),答:发生火灾的住户窗口距离地面14米.[点睛]本题考查勾股定理得应用,熟练掌握勾股定理在实际生活中的应用是解答的关键. 20.如图,在四边形ABCD 中,3BC DC ==,26AD =,AB 6=,且90C ∠=︒, 60A ∠=︒,求ADC ∠的度数.[答案]75︒[解析][分析]连接BD ,根据3BC DC ==,可得45BDC ∠=︒,223+3=32BD =,由26AD =,AB 6=,可得30ADB ∠=︒,即可求解.[详解]解:如图,连接BD ,∵3BC DC ==,∠C=90°∴45BDC ∠=︒,223+3=32BD =; ∵26AD =,AB 6=, ∴()22=26=24AD ,()2266AB ==,()223218BD ==, ∴△ABD 是直角三角形,且90ABD ∠=︒,又∵60A ∠=︒,∴30ADB ∠=︒,∴75ADC ADB CDB ∠=∠+∠=︒.故答案为75︒.[点睛]本题主要考查四边形的应用,灵活应用勾股定理及其逆定理,是解题的关键. 21.如图,在ABCD 中,BAD ∠的平分线交BC 于点,且5BE =,8EC =.(1)求ABCD 的周长;(2)连结AC ,若12AC =,求ABCD 的面积.[答案](1)36;(2)60.[解析][分析](1)根据AB ∥CD ,AE 平分∠BAD ,得∠BAE =∠AEB ,AB =BE =5,求得BC =5+8=13,据此可得平行四边形ABCD 的周长;(2)AB =5,BC =13,AC =12,得△ABC 为直角三角形,则平行四边形ABCD 的面积=AB ×AC =60. [详解]解:(1)如图,∵在平行四边形ABCD 中,AB ∥CD ,∴∠DAE =∠AED ,∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∴∠BAE =∠AEB ,∴AB =BE =5,∵EC =8,∴BC =5+8=13∴平行四边形ABCD 的周长为:2×(5+13)=36;(2)∵AB =5,BC =13,AC =12,AB 2+AC 2=BC 2,∴△ABC 为直角三角形,即AC ⊥AB ,∴平行四边形ABCD 的面积=AB ×AC =60. [点睛]本题考查了角平分线的性质,等腰三角形的性质和平行四边形的性质,熟悉相关性质是解题的关键. 22.如图,在菱形ABCD 中,60ABC ∠=︒,是CD 边上一点,作等边BEF ∆,连接AF .(1)求证:CE AF =;(2)EF 与AD 交于点,38DPE ∠=︒,求CBE ∠的度数.[答案](1)见解析;(2)12°. [解析][分析](1)根据四边形ABCD 是菱形,∠ABC=60°和等边△BEF ,可以证明△FAB ≌△ECB ,进而可得CE=AF ;(2)利用三角形的内角和定理可求∠CBE 的度数.[详解](1)证明:∵四边形ABCD 是菱形,∴AB =BC.∵△BEF 是等边三角形,∴BF =BE ,∠FBE =∠FEB =60°.∵∠ABC =60°,∴∠ABC =∠FBE ,∴∠ABC -∠ABE =∠FBE -∠ABE ,即∠EBC =∠FBA .∴△EBC ≌△FBC (SAS ).∴CE =AF .(2)解:∵四边形ABCD 是菱形,∴AD ∥BC ,∠D =∠ABC =60°.∴∠C =180°-∠D =120°.在△PDE 中,∠D +∠DPE +∠PED =180°,∴∠DEP =72°.由(1)得,∠FEB =60°,∴∠BED =∠DEP +∠BEP =72°+60°=132°.∴∠CBE =∠BED -∠C =132°-120°=12°.[点睛]本题考查了菱形的性质、全等三角形的判定与性质、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.23.如图,矩形ABCD 中,点, E F 分别在边AB 与CD 上,点,G H 在对角线AC上,AG CH =,BE DF =.()1求证:四边形EGFH 是平行四边形.()2若EG EH =,8AB =,4BC =,求AE 的长.[答案](1)证明见详解;(2)5[解析][分析](1)依据矩形的性质,即可得出△AEG ≌△CFH ,进而得到GE=FH ,∠CHF=∠AGE ,由∠FHG=∠EGH ,可得FH ∥GE ,即可得到四边形EGFH 是平行四边形;(2)由菱形的性质,即可得到EF 垂直平分AC ,进而得出AF=CF=AE ,设AE=x ,则FC=AF=x ,DF=8-x ,依据Rt △ADF 中,AD 2+DF 2=AF 2,即可得到方程,即可得到AE 的长.[详解]解:(1)∵矩形ABCD 中,AB ∥CD ,∴∠FCH=∠EAG ,又∵CD=AB ,BE=DF ,∴CF=AE ,又∵CH=AG ,∴△AEG ≌△CFH ,∴GE=FH ,∠CHF=∠AGE ,∴∠FHG=∠EGH ,∴FH ∥GE ,∴四边形EGFH 是平行四边形;(2)如图,连接EF ,AF ,∵EG=EH ,四边形EGFH 是平行四边形,∴四边形GFHE 为菱形,∴EF 垂直平分GH ,又∵AG=CH ,∴EF 垂直平分AC ,∴AF=CF=AE ,设AE=x ,则FC=AF=x ,DF=8-x ,在Rt △ADF 中,AD 2+DF 2=AF 2,∴42+(8-x )2=x 2,解得x=5,∴AE=5.[点睛]此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键.24.如图,在等边ABC ∆中,9cm AB =,射线//AG BC ,点从点出发沿射线AG 以1cm/s 的速度运动,同时点从点出发沿射线BC 以2cm /s 的速度运动,设点运动的时间为()t s .(1)当点在线段BC 上运动时,CF =_________cm ,当点在线段BC 的延长线上运动时,CF =_________cm (请用含的式子表示);(2)在整个运动过程中,当以点,,,为顶点的四边形是平行四边形时,求的值;(3)求当t =_________时,,两点间的距离最小.[答案](1)9-2t ,2t -9;(2)t 的值为3或9;(3)t =4.5.[解析][分析](1)求出运动路线BF 的长度,分当F 在线段BC 上时,CF =BC -BF ,当F 在线段BC 的延长线上运动时,CF =BF -BC ,求解即可;(2)分别从当点F 在C 的左侧时与当点F 在C 的右侧时去分析,由当AE =CF 时,以A 、C 、E 、F 为顶点四边形是平行四边形,可得方程,解方程即可求得答案;(3)当,两点间的距离最小时,即EF ⊥BC ,取线段BC 的中点D ,四边形ADFE 是矩形,利用AE =DF 可得方程,解方程即可得出答案.[详解]解:(1)∵运动时间为()t s ,∴2BF t =,∵△ABC 为等边三角形,∴AB =BC =AC =9,∴当点F 在线段BC 上运动时,CF =9-2t ,当点F 在线段BC 的延长线上运动时,CF =2t -9;故答案为:9-2t ,2t -9;(2)当点F 在C 的左侧时(含点C ),根据题意得:CF =9-2t ,AE =t ,∵AG ∥BC ,∴当AE =CF 时,四边形AECF 是平行四边形,即t=9-2t,解得:t=3;当点F在C的右侧时,根据题意得:CF=2t-9,∵AG∥BC,∴当AE=CF时,四边形AEFC是平行四边形,即2t-9=t,解得:t=9,综上可得:当以点A,C,E,F为顶点的四边形是平行四边形时,t的值为3或9;(3)若E,F两点间的距离最小,则EF⊥BC,过A作AD⊥BC于D,则AD也是BC边的中线,∵AB=BC=AC=9,∴BD=CD=4.5,∴DF=2t-4.5∵AD⊥BC∴四边形AEFD为矩形,∴此时AE=DF,∴t=2t-4.5,解得t=4.5,∴当t=4.5时,,两点间的距离最小;[点睛]本题主要考查了平行四边形的判定,矩形的判定,利用了分类讨论思想和方程的思想是解决本题的关键.25.△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B,C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,交射线AC于点G,连接BE.(1)如图1所示,当点D在线段BC上时,求证:四边形BCGE是平行四边形;(2)如图2所示,当点D在BC的延长线上时,(1)中的结论是否成立?并请说明理由;(3)当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.[答案](1)证明见解析;(2)结论仍成立,理由见解析;(3)当点D在BC的延长线上,CD=BC时,四边形BCGE 是菱形,理由见解析.[解析][分析](1)利用SAS定理证明△AEB≌△ADC,根据全等三角形的性质得到∠ABE=∠ACB=60°,得到BE∥CG,根据平行四边形的判定定理证明结论;(2)仿照(1)的证明方法解答;(3)分点D在BC上、点D在BC的延长线上两种情况,根据菱形的判定定理解答.[详解](1)证明:∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=∠BAC=60°.∵△ADE是等边三角形,∴AE=AD,∠EAD=60°,∴∠EAB=∠DAC,在△AEB与△ADC中,∵AE ADEAB DAC AB AC=⎧⎪∠=∠⎨⎪=⎩,∴△AEB≌△ADC(SAS),∴∠ABE=∠ACB=60°,∠EBC+∠ACB=∠ABE+∠ABC+∠ACB=180°, ∴BE∥CG,∵EG∥BC,∴四边形BCGE是平行四边形;(2)解:(1)中的结论仍成立,理由如下:由(1)可知,△ABE≌△ACD,∴∠BEA=∠CDA.∵EG∥BC,∴∠G=∠ACB=60°,∠GED=∠BDE,∴∠BEG+∠G=∠BEA+∠AED+∠GED+∠G=∠AED+(∠CDA+∠BDE) +∠G=180°,∴BE∥CG,又∵EG∥BC,∴四边形BCGE是平行四边形;(3)解:当点D在BC上时,由(2)可知,△ABE≌△ACD,∴BE=CD.∵BE=CD<BC,∴四边形BCGE不是菱形,当点D在BC的延长线上,CD=BC时,四边形BCGE是菱形,由(2)可知,△ABE≌△ACD,四边形BCGE是平行四边形,∴BE=CD=BC时,四边形BCGE是菱形.[点睛]本题考查平行四边形的判定、菱形的判定、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理、平行四边形、菱形的判定定理是解题的关键.。
人教版八年级上册数学期中考试试卷含答案
人教版八年级上册数学期中考试试题一、单选题1.下列四幅图片上呈现的是垃圾类型及标识图案,其中标识图案不是轴对称图形的是()A .B .C .D .2.已知三角形的两边长分别为2、10,则第三边长可能是()A .6B .8C .10D .123.如图,在△ABC 中,AC 边上的高是()A .ADB .BEC .BFD .CF4.如图,已知DAB CAB ∠=∠,添加下列条件不能判定DAB CAB ≌△△的是()A .DBE CBE ∠=∠B .DC ∠=∠C .DA CA =D .DB CB=5.如图,OP 平分AOB ∠,PC OA ⊥,点D 是OB 上的动点,若3cm PC =,则PD 的长为()A .大于等于3cmB .大于3cmC .小于等于3cmD .小于3cm6.如图,在ABC 中,AB AC =,D 是AB 垂直平分线上一点,80ADC ∠=︒,则C ∠的度数是()A .60°B .50°C .40°D .30°7.如图,在ABC 中,AC BC =,16AB =,CG 4=,观察图中尺规作图的痕迹ACG 的面积为()A .64B .32C .16D .88.如图,在平面直角坐标系中,△ABC 三个顶点的坐标分别是点A (-3,0)、点B (-1,2)、点C (3,2).则到△ABC 三个顶点距离相等的点的坐标是()A .(0,-1)B .(0,0)C .(1,-1)D .(1,-2)9.如图,在△ABC 和△DCB 中,∠A=∠D=90°,AB=CD ,∠ACB=40°,则∠ACD 的度数为()A .10°B .20°C .30°D .40°10.如图所示,有三条道路围成Rt △ABC ,其中BC=1000m ,一个人从B 处出发沿着BC 行走了800m ,到达D 处,AD 恰为∠CAB 的平分线,则此时这个人到AB 的最短距离为A .1000mB .800mC .200mD .1800m二、填空题11.五边形ABCDE 的内角和是______度.12.若ABC ABD △≌△,4BC =,5AC =,2AB =,则AD 的长为__________.13.等腰三角形底边为2,腰长为5,则它的周长为__________.14.一副三角板如图所示叠放在一起,则图中α∠的度数是_______.15.如图,在ABC 中,90ACB ∠=︒,30ABC ∠=︒,CD AB ⊥于点D ,如果1AD =,那么BD=__________.16.在平面直角坐标系中,点(,2)A a -,点(5,)B b -关于x 轴对称,则a b +的值为__________.17.如图,等腰直角ABC ,90ACB ∠=︒,CD AB ⊥,E 为边AC 上一点(不与A 、C 重合),DF DE ⊥交BC 于点F ,连接EF 交CD 于点O ,当EOD △为等腰三角形时,EOD ∠的度数为__________.18.如图,在Rt ABC △中,90ACB ∠=︒,AC BC =,以BC 为边在BC 的右侧作等边BCD △,点E 为BD 的中点,点P 为CE 上一动点,连结AP ,BP .当AP BP +的值最小时,CBP ∠的度数为__________.三、解答题19.尺规作图:已知在Rt ABC △中,90ACB ∠=︒.(1)过点C 作直线CD AB ⊥,垂足为D ;(要求:保留作图痕迹,不写作法)(2)直接写出与ACD ∠相等的角为__________.20.如图,在ABC 中,AD 是角平分线,AE 是高,10DAE ∠=︒,42B ∠=︒,求C ∠的度数.21.如图,点D 在AB 上,点E 在AC 上,AD=AE ,∠B=∠C ,求证:AB=AC .22.如图,AD=BC ,AC=BD ,求证:△EAB 是等腰三角形.23.如图,在Rt ABC △和Rt DEF △中,90ACB DFE ∠=∠=︒,A 、E 、B 、D 在一条直线上,BC EF =,CE AD ⊥,FB AD ⊥,垂足分别是E 、B .求证:AC DF =.24.如图,在ABC 中,D 为边BC 上一点,DE AB ⊥,DF AC ⊥,垂足分别为E ,F ,DE DF =,DA AC =,21B ∠=︒,求FDC ∠的度数.25.如图,点C 为线段AB 上一动点,//AD EB ,AC BE =,AD BC =,过点C 作CF DE ⊥于点F ,CF 所在直线交DA 延长线于点G .(1)求证:CF 平分DCE ∠;(2)若6AB =,求DG 长度.26.如图,在等腰ABC 中,AB AC =,点D 为直线BC 上一点,连接AD ,以AD 为腰在AD 的右侧作等腰ADE ,AD AE =,BAC DAE α∠=∠=,连接CE .(1)如图1,当点D 在线段BC 上时,求证:ABD ACE △≌△;(2)当60α∠=︒,①如图2,求证://CE AB ;②探究线段CE 、AB 、CD 之间的数量关系,请直接写出结论.参考答案1.B2.C3.B4.D5.A6.C7.C8.D9.A10.C11.540【分析】利用多边形内角和公式计算即可.【详解】五边形ABCDE 的内角和=()52180540-⨯︒=︒.故答案为:540°.【点睛】本题考查多边形内角和问题,掌握多边形内角和公式是解题关键.12.5【分析】根据全等三角形的对应边相等解答即可.【详解】解:∵△ABC ≌△ABD ,AC=5,∴AD=AC=5,故答案为:5.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.13.12【解析】【分析】根据等腰三角形的性质可得到另一个腰长,从而不难求得周长.【详解】解:∵等腰三角形的腰长是5,则底边长2,∴周长=5+5+2=12.故答案为:12.【点睛】此题主要考查等腰三角形的性质:等腰三角形的两腰相等.14.75°【分析】根据三角形内角和定理求出∠ECF 、∠D 的度数,再求出∠a 的度数即可得到结果.【详解】解:如图所示,根据三角形内角和定理,∠A=30°,∠E=45°,∴∠D=180°-90°-∠A=60°,∠ECF=180°-90°-∠E=45°∴∠a=180°-∠ECF-∠D=75°15.3【分析】根据直角三角形的两锐角互余求得∠A=60°,∠ACD=30°,再根据直角三角形中30°角所对的直角边等于斜边的一半求得AC 、AB 即可解答.【详解】解:∵在ABC 中,90ACB ∠=︒,30ABC ∠=︒,∴∠A=90°﹣30°=60°,∵CD ⊥AB ,∴∠ACD=90°﹣60°=30°,又AD=1,∴AC=2AD=2,∴AB=2AC=4,∴BD=AB ﹣AD=4﹣1=3,故答案为:3.【点睛】本题考查含30°角的直角三角形的性质,熟练掌握直角三角形中30°角所对的直角边等于斜边的一半是解答的关键.16.3【解析】【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点(,2)A a -与点(5,)B b -关于x 轴对称,5a ∴=,2b =-,则a b +的值是:3,故答案为:3.【点睛】本题考查了关于x 轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.17.67.5°或90°【解析】【分析】根据等腰直角三角形的性质可得∠A=∠DCF=45°,CD=AD ,根据DF DE ⊥,利用同角的余角相等可得∠ADE=∠CDF ,利用ASA 可证明△ADE ≌△CDF ,可得DE=DF ,即可证明△EDF 是等腰直角三角形,可得∠DEF=45°,分DE=OE 、OE=OD 、DE=OD 三种情况,根据等腰三角形的性质即可得答案.【详解】∵等腰直角ABC ,90ACB ∠=︒,CD AB ⊥,∴∠A=∠DCF=45°,CD=AD ,∠ADE+∠CDE=90°,∵DF DE ⊥,∴∠CDF+∠CDE=90°,∴∠ADE=∠CDF ,在△ADE 和△CDF 中,A DCF AD CD ADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△CDF ,∴DE=DF ,∴△EDF 是等腰直角三角形,∴∠DEF=45°,如图,当DE=OE 时,EOD ∠=1(180)2DEF ︒-∠=67.5°.如图,当OE=OD 时,∠EDO=∠DEF=45°,∴∠EOD=180°-2∠DEF=90°.当DE=OD 时,点E 与点A 或点B 重合,不符合题意,综上所述:EOD ∠的度数为67.5°或90°,故答案为:67.5°或90°【点睛】本题考查等腰直角三角形的判定与性质及全等三角形的判定与性质,熟练掌握全等三角形的判定定理,正确得出△EDF 是等腰直角三角形是解题关键.18.15°【解析】【分析】连接PD 、AD ,设AD 与CE 交于点P 1,利用等边三角形的性质证得∠CBD=∠BCD=∠BDC=60°,PD=BP ,根据两点之间线段最短得出当点A 、P 、D 共线时即点P 运动到P 1时,AP+BP 有最小值,连接BP 1,根据等边对等角证得∠CBP 1=∠CDP 1=∠CAD ,再根据三角形的外角性质即可求解.【详解】解:连接PD、AD,设AD与CE交于点P1,∵△BCD是等边三角形,点E为BC的中点,∴∠CBD=∠BCD=∠BDC=60°,BC=CD,CE⊥BD,BE=DE,∴CE为线段BD的垂直平分线,∴PD=BP,∴当点P运动时,AP+BP=AP+PD,而AP+PD≥AD,∴当点A、P、D共线时即点P运动到P1时,AP+BP有最小值,连接BP1,则BP1=DP1,∴∠P1BD=∠P1DB,又∠CBD=∠BDC,∴∠CBP1=∠CDP1,∵AC=BC=CD,∴∠CDP1=∠CAD,即延长AC至Q,∵∠ACB=90°,∠BCD=60°,∴∠DCQ=90°﹣60°=30°,又∠DCQ=∠CDP1+∠CAD=2∠CDP1,∴∠CDP1=15°,即∠CBP1=15°,∠=15°,∴当AP BP+的值最小时,CBP故答案为:15°.【点睛】本题考查等边三角形的性质、线段垂直平分线的性质、最短路径问题、等腰三角形的性质、三角形的外角性质,熟练掌握相关性质的联系与运用,会利用两点之间线段最短解决最值问题是解答的关键.19.(1)图见解析;(2)B Ð.【解析】【分析】(1)先以点A 为圆心、AC 长为半径画弧,再以点B 为圆心、BC 长为半径画弧,两弧相交于点E ,然后过点,C E 画直线,交AB 于点D 即可得;(2)先根据角的和差可得90ACD BCD ∠+∠=︒,再根据三角形的内角和定理可得90B BCD ∠+∠=︒,由此即可得出答案.【详解】解:(1)如图,CD 即为所作.(2)90ACB ∠=︒ ,90ACD BCD ∴∠+∠=︒,CD AB ⊥ ,90BDC ∴∠=︒,18090B BCD BDC ∠+∠=︒-∠=∴︒,ACD B ∴∠=∠,故答案为:B Ð.【点睛】本题考查了画垂线、三角形的内角和定理等知识点,熟练掌握垂线的画法是解题关键.20.62︒【解析】【分析】由AD 是角平分线,AE 是高,通过角平分线性质,及直角三角形锐角互余,再利用三角形内角和公式,等量关系列以C ∠为变量的方程,解方程即可.【详解】∵ABC 中,AD 是角平分线,AE 是高,∴BAD CAD ∠=∠,AEC △是直角三角形()1090100BAD CAD DAE CAE C C∠=∠=∠+∠=︒+︒-∠=︒-∠又∵2180B BAD C ∠+∠+∠=︒,42B ∠=︒即()422100180C C ︒+︒-∠+∠=︒解得62C ∠=︒.【点睛】本题旨在考查如何利用三角形的高及角平分线的性质,以及三角形内角和来求角度,熟练掌握三角形相关性质是解题的关键.21.见解析【解析】【分析】根据“AAS”证明△ABE ≌△ACD ,然后根据全等三角形的对应边相等即可得到结论.【详解】在△ABE 和△ACD 中,∵∠A=∠A,∠B=∠C,AE=AD ,△ABE ≌△ACD ,∴AB=AC .【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.22.证明见解析【解析】【分析】先用SSS 证△ADB ≌△BCA ,得到∠DBA=∠CAB ,利用等角对等边知AE=BE ,从而证得△EAB 是等腰三角形.【详解】证明:在△ADB 和△BCA 中,AD=BC ,AC=BD ,AB=BA ,∴△ADB ≌△BCA (SSS ).∴∠DBA=∠CAB .∴AE=BE .∴△EAB 是等腰三角形.23.见解析【解析】【分析】先利用HL 证明Rt △EBC ≌Rt △BEF ,得出CBE FEB ∠=∠,再利用ASA 证明△ABC ≌△DEF 可证明结论.【详解】证明:∵CE AD ⊥,FB AD ⊥,∴90∠=∠=︒CEB FBE ,在Rt △CBE 和Rt △FBE 中,BC EF BE EB=⎧⎨=⎩∴Rt △CBE ≌Rt △FBE (HL ),∴CBE FEB ∠=∠,在△ABC 和△DEF 中,CBE FEB BC EF ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DEF (ASA ),∴AC=DF .【点睛】本题主要考查全等三角形的判定与性质,判定两个直角三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .24.23°【解析】【分析】先根据角平分线的判定定理证得∠BAD=∠DAC=12∠BAC ,再根据等边对等角得出∠ADC=∠C ,然后根据三角形的内角和为180°求得∠BAC 的度数,再由同角的余角相等得出∠FDC=14∠BAC 求解即可.【详解】解:∵DE AB ⊥,DF AC ⊥,垂足分别为E 、F ,DE=DF ,∴AD 为∠BAC 的平分线,∠DFC=90°,∴∠BAD=∠DAC=12∠BAC ,∵DA=AC ,∴∠ADC=∠C ,∴∠C=12(180°﹣∠DAC)=90°﹣12∠DAC=90°﹣14∠BAC ,∵∠B+∠BAC+∠C=180°,∠B=21°,∴∠BAC =92°,∵∠C=90°﹣14∠BAC=90°﹣∠FDC ,∴∠FDC=14∠BAC=14×92°=23°.【点睛】本题考查角平分线的判定定理、等腰三角形的性质、三角形的内角和定理、同角的余角相等,熟练掌握相关知识的联系与运用是解答的关键.25.(1)见解析;(2)6【解析】【分析】(1)先根据平行线的性质得出∠DAC=∠B ,再根据SAS 得出△ADC ≌△BCE ,然后再根据等腰三角形的性质即可得出结论;(2)先根据△ADC ≌△BCE ,得出∠ADC=∠BCE ,再根据三角形的外角的性质结合(1)中得结论得出AG=AC ,继而得出DG=AB 即可;【详解】解:(1)∵//AD EB ,∴∠DAC=∠B ,在△ADC 和△BCE 中,AC BE DAC B AD BC =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△BCE ,∴CD=CE ;∵CF DE⊥∴∠DCF=∠ECF ,∴CF 平分DCE ∠;(2)∵△ADC ≌△BCE ,∴∠ADC=∠BCE ,∵∠DCF=∠ADC+∠AGC ,∠ECF=∠BCE+∠BCF ,∵∠DCF=∠ECF ,∴∠AGC=∠BCF ,∵∠BCF=∠ACG ,∴∠AGC=∠ACG ,∴AG=AC ,∵AD BC =,∴AG AB=∵6AB =,∴6AG =【点睛】本题考查的是全等三角形的判定和性质、等腰三角形的判定,三角形的外角的性质,掌握全等三角形的判定定理和性质定理、等腰三角形的三线合一是解题的关键.26.(1)见解析;(2)见解析;(3)AB CD CE +=【解析】【分析】(1)根据BAC DAE α∠=∠=,推出BAD CAE ∠=∠,由已给条件可得,ABD ACE SAS △≌△();(2)①由题可得ABC 是等边三角形,由ABD ACE △≌△得,60ACE ABC ∠=∠=︒,从而得出60ECD ∠=︒,故ABC ECD ∠=∠,同位角相等,两直线平行,即可得出答案;②由ABD ACE △≌△得,BD CE =,由ABC 是等边三角形得AB BC =,等量代换即可得出答案.【详解】(1)BAC DAE α∠=∠= ,BAD CAE ∴∠=∠,在ABD △与ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴ ≌;(2)①AB AC = ,60α∠=︒,ABC ∴ 是等边三角形,ABD ACE ≌,60ACE ABC ∴∠=∠=︒,180606060ECD ∴∠=︒-︒-︒=︒,ABC ECD ∴∠=∠,//EC AB ∴;②AB CD CE +=,理由如下:ABD ACE ≌,BD CE ∴=,ABC 是等边三角形,AB BC ∴=,BD BC CD AB CD CE ∴=+=+=.。
人教版八年级上学期期中考试数学试卷及答案解析(共六套)
人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。
人教版八年级上册数学期中考试试题附答案
人教版八年级上册数学期中考试试卷一、单选题1.在下列四个标志中,是轴对称图形的是()A.B.C.D.2.由下列长度的三条线段,能组成一个三角形的是()A.1,2,3B.3,3,6C.1,5,5D.4,5,103.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.4.下列设计的原理不是利用三角形的稳定性的是()A.由四边形组成的伸缩门B.自行车的三角形车架C.斜钉一根木条的长方形窗框D.照相机的三脚架5.如图,在△ABC和△DEC中,已知AB=DE,∠B=∠E,还需添加一个条件才能使△ABC≌△DEC,则不能添加的一组条件是()A.BC=EC B.∠ACD=∠BCE C.∠A=∠D D.AC=DC 6.如图,△ABC与△DEF关于直线1对称,BE交l于点O,则下列说法不一定正确的是()A.AC=DF B.BO=EOC.AB=EF D.l是线段AD的垂直平分线7.如图是用直尺和圆规作一个角等于已知角的示意图,说明O O∠'=∠的依据是()A.SAS B.SSS C.AAS D.ASA8.适合条件∠A=12∠B=13∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形9.小张在操场从原地右转40°前行至十米的地方,再右转40°前行十米处,继续此规则前行,问小张第一次回到原地时,共走了()米.A.70米B.80米C.90米D.100米10.如图,把△ABC纸片沿DE折叠,当点C落在四边形ABDE的外部时,测得∠1=108°,∠C=35°,则∠2的度数为()A.35°B.36°C.37°D.38°二、填空题11.在平面直角坐标系中,点P(1,2)关于y轴的对称点Q的坐标是________;12.若一个正多边形的一个外角等于36°,则这个正多边形的边数是______.13.若等腰三角形的一边长等于6,另一边长等于3,则它的周长等于__________.14.如果将一副三角板按如图方式叠放,那么∠1的大小为_____.15.如图,已知∠ACB =90°,OA 平分∠BAC ,OB 平分∠ABC ,则∠AOB =____°.16.如图,五边形ABCDE 中,//AE BC ,则C D E ∠+∠+∠的度数为__________.17.如图,已知AD //BC ,∠BAD 与∠ABC 的平分线相交于点P ,过点P 作EF ⊥AD ,交AD 于点E ,交BC 于点F ,EF =4cm ,AB =5cm ,则△APB 的面积为____cm 2三、解答题18.如图,AD 是△ABC 的角平分线,CE 是△ABC 的高,∠BAC =60°,∠BCE =40°,求∠ADC 的度数.19.如图,△ABC 的各顶点坐标分别为A (4,﹣4),B (1,﹣1),C (3,﹣1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)求△ABC的面积.20.如图,点E、F在BC上,BE=FC,AB=DC,∠A=∠D=90°.求证:∠B=∠C.21.用一条长为20cm的细绳围成一个等腰三角形(1)如果腰长是底边长的2倍,那么各边的长是多少?(2)能围成有一边长为5cm的等腰三角形吗?如果能,请求出它的另两边.22.尺规作图,如图,已知三角形△ABC.(1)尺规作图,作BC的垂直平分线DE,分别交AB于D、交BC于E(不要求写作法,保留作图痕迹)(2)连结CD,若BE=5,△ACD的周长为12,求△ABC的周长.23.如图,AD与BC相交于点O,OA=OC,∠A=∠C.(1)求证:AB=CD;(2)若OE平分∠BOD,求证:OE垂直平分BD.24.如图1,在△ABC中,若AB=10,BC=8,求AC边上的中线BD的取值范围.(1)小聪同学是这样思考的:延长BD至E,使DE=BD,连接CE,可证得△CED≌△ABD.①请证明△CED≌△ABD;②中线BD的取值范围是.(2)问题拓展:如图2,在△ABC中,点D是AC的中点,分别以AB,BC为直角边向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中,AB=BM,BC=BN,∠ABM=∠NBC=∠90°,连接MN.请写出BD与MN的数量关系,并说明理由.25.如图1,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)求证:△CEB≌△ADC;(2)若AD=2.5cm,DE=1.7cm,求BE的长;(3)若将CE所在直线旋转到△ABC的外部(如图2),请你直接写出AD,DE,BE三者之间的数量关系是.参考答案1.B【解析】【分析】轴对称图形的定义:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,据此逐项判断即可.【详解】解:A中图形不是轴对称图形,不符合题意;B中图形是轴对称图形,符合题意;C中图形不是轴对称图形,不符合题意;D中图形不是轴对称图形,不符合题意,故选:B.【点睛】本题考查轴对称的定义,理解定义,找准对称轴是解答的关键.2.C【解析】【分析】三角形的任何一边大于其他两边之差,任意两边之和大于第三边,满足此关系的可组成三角形,由此判断选项.【详解】A、1+2=3,不能组成三角形,故此选项不合题意;B、3+3=6,不能组成三角形,故此选项不合题意;C、1+5>5,能组成三角形,故此选项符合题意;D、4+5<10,不能组成三角形,故此选项不合题意;故选:C.【点睛】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.A【解析】【分析】经过一个顶点作对边所在的直线的垂线段,叫做三角形的高,根据概念即可得出.【详解】根据定义可得A选项是作BC边上的高,符合题意,B选项作的不是三角形ABC的高,不符合题意,C选项是作AB边上的高,不符合题意,D选项是作AC边上的高,不符合题意.故选:A.【点睛】本题考查三角形高线的作法,熟练掌握定义是解题关键.4.A【解析】【分析】利用三角形的稳定性进行解答.【详解】解:由四边形组成的伸缩门是利用了四边形的不稳定性,故A不是利用三角形的稳定性;B、C、D都是利用三角形的稳定性;【点睛】此题主要考查了三角形的稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.5.D【解析】【分析】根据全等三角形的判定定理依次分析可得答案.【详解】解:∵在△ABC与△DEC中,AB=DE,∠B=∠E,若BC=EC,则可依据SAS证明△ABC≌△DEC,故A选项不符合题意;若∠ACD=∠BCE,可得∠ACB=∠DCE,则可依据AAS证明△ABC≌△DEC,故B选项不符合题意;若∠A=∠D,则可依据AAS证明△ABC≌△DEC,故C选项不符合题意;若AC=DC,则不能证明△ABC≌△DEC,故D选项符合题意;故选:D.【点睛】此题考查全等三角形的判定定理,熟记全等三角形的判定定理:SSS,SAS,ASA,AAS,HL,并熟练应用解决问题是解题的关键.6.C【解析】【分析】利用轴对称的性质解决问题即可.【详解】解:∵△ABC与△DEF关于直线l对称,∴△ABC≌△DEF,∴AC=DF,AB=DE,∵直线l垂直平分线段AD,直线l垂直平分线段BE,∴BO=OE,故选项A,B,D正确,【点睛】本题考查轴对称的性质及全等三角形的判定与性质,线段的垂直平分线的性质等知识,解题的关键是掌握轴对称的性质,属于中考常考题型.7.B【解析】【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D'.【详解】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选B.【点睛】本题主要考查了尺规作图—作已知角相等的角,解题的关键在于能够熟练掌握全等三角形的判定条件.8.B【解析】【分析】此题隐含的条件是三角形的内角和为180︒,列方程,根据题中角的关系求解,再判断三角形的形状.【详解】∵∠A=12∠B=13∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180︒,即6∠A=180︒,∴∠A=30︒,∴∠B=60︒,∠C=90︒,∴△ABC为直角三角形.故选B.【点睛】本题考查三角形内角和定理:三角形的内角和为180︒.9.C【解析】【分析】先画出图形求出转的次数,由此确定前行的次数是9次,再根据乘法计算即可。
人教版八年级上册数学期中考试试题及答案
人教版八年级上册数学期中考试试卷一、单选题1.下面4个图形中,不是轴对称图形的是( )A .B .C .D . 2.下列长度的3条线段,能首尾依次相接组成三角形的是( )A .1cm ,2cm ,4cmB .8cm ,6cm ,4cmC .12cm ,5cm ,6cmD .1cm ,3cm ,4cm3.将一副直角三角板,按如图所示叠放在一起,则图中∠的度数是( )A .45°B .60°C .75°D .90°4.如图,已知D 为∠ABC 边AB 的中点,E 在AC 上,将∠ABC 沿着DE 折叠,使A 点落在BC 上的F 处.若∠B=65°,则∠BDF 等于( )A .65°B .50°C .60°D .57.5°5.点(2,5)P -关于x 轴对称的点的坐标为( )A .(2,5)-B .(2,5)C .(2,5)--D .(2,5)- 6.如图,AB AC =,点D 、E 分别在AB 、AC 上,补充一个条件后,仍不能判定∠ABE 与∠ACD 全等的是( )A .BC ∠=∠ B .AD AE = C .BE CD = D .AEB ADC ∠=∠7.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A .ABC 的三条中线的交点B .ABC 三边的垂直平分线的交点C .ABC 三条角平分线的交点D .ABC 三条高所在直线的交点8.在平面直角坐标系中,已知A (2,2),在x 轴上确定一点P ,使∠AOP 为等腰三角形,则符合条件的点P 有( )A .2个B .3个C .4个D .5个9.如图,ACB △和DCE 均为等腰直角三角形,且90ACB DCE ∠=∠=︒,点A 、D 、E 在同一条直线上,CM 平分DCE ∠,连接BE .以下结论:∠AD CE =;∠CM AE ⊥;∠2AE BE CM =+;∠//CM BE ,正确的有( )A .1个B .2个C .3个D .4个10.如图,AB =AC ,AD =AE ,BE ,CD 交于点O ,则图中全等的三角形共有( )A .0对B .1对C .2对D .3对二、填空题11.自行车的三角形车架可以固定,利用的原理是___.12.如图,∠ABC 中,AD 是高,AE 是∠BAC 的平分线,∠B=70°,∠DAE=18°,则∠C 的度数是______.13.若一个多边形的每一个外角都等于40°,则这个多边形的边数是_____.14.如图,在Rt∠ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则∠BDC的面积是_____.15.点(3,a)和点(b﹣a,2)关于y轴对称,则b﹣2a=___.16.如图,点C为线段AE上一动点(不与点A,点E重合),在AE同侧分别作等边∠ABC 和等边∠CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下四个结论,∠AD=BE;∠CP=CQ;∠OB=DE;∠PQ∠AE,一定成立的结论有_____(请把正确结论的序号填在横线上).三、解答题17.已知:如图,AB=CD,AD=BC.求证:AB CD.18.如图,在∠ABC中,AB=AC,点D在BA的延长线上.(1)尺规作图:作∠DAC的角平分线AE(不写作法,保留作图痕迹);(2)若∠C=28°,则∠CAE的度数为多少?19.已知等腰三角形的周长为18 cm,其中两边之差为3 cm,求三角形的各边长.20.在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC (顶点是网格线交点的三角形)的顶点A ,C 的坐标分别是(-4 ,6) ,(-1,4) .(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出∠ABC 关于x 轴对称的∠A1B1C1;并直接写出A1B1C1的坐标.(3)请在y 轴上求作一点P ,使∠PB1C 的周长最小,21.已知在∠ABC中,∠CAB的平分线AD与BC的垂直平分线DE交于点D,DM∠AB于M,DN∠AC的延长线于N.(1)证明:BM=CN;(2)当∠BAC=70°时,求∠DCB的度数.22.如图,点C是BE的中点,AB=DC,∠B=∠DCE.求证:∠ABC∠∠DCE.23.如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC DF.求证:(1)∠ABC∠∠DEF;(2)BE=CF24.如图,已知点A、F、E、C在同一直线上,AB∠CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.25.ABC 为等腰直角三角形,90ABC ∠=︒,点D 在AB 边上(不与点A 、B 重合),以CD 为腰作等腰直角CDE △,90DCE ∠=.(1)如图1,作EF BC ⊥于F ,求证:DBC CFE ≅;(2)在图1中,连接AE 交BC 于M ,求AD BM的值。
人教版数学八年级下册《期中考试卷》(含答案)
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题4分,共计40分)1. 在二次根式2x -中,字母x 的取值范围是( )A. 2x >B. 2x <C. 2x ≥D. 2x ≤ 2. 下列根式中属于最简二次根式的是( )A. 12B. 8C. 27D. 21a + 3. 下列各组数中,不是勾股数的为( )A. 3,4,5B. 6,8,10C. 5,12,13D. 5,7,10 4. 计算33008÷,结果( ) A 403B. 402C. 203D. 202 5. 如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件不能..是( )A. AE =CFB. BE =FDC. BF =DED. ∠1=∠26. 如图所示,四边形ABCD 是平行四边形,∠D =120°,∠CAD =32°,则∠ABC 、∠CAB 的度数分别为( ).A. 28°,120°B. 32°,120°C. 120°,28°D. 120°,32°7. 实数在数轴上的位置如图所示,化简22(1)(2)p p-+-=( )A. B. 3 C. 3p- D. 18. 如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. 4B. 3C. 2D. 59. 平行四边形的两条对角线长分别是、,一边长为12,则、可能是下列各组中的()A. 8与14B. 10与14C. 18与20D. 10与3810. 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高是()A. 105B.2105C.255D.355二、填空题(每题4分,共计24分)11. 1326⨯=____________. 12. 比较大小:1010-__________13-(填“>”、“=”、“<”) 13. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.14. 在ABCD 中,若30B ∠=︒,BC 10cm =,6AB cm =,则ABCD 的面积是__________.15. 如图,将有一边重合两张直角三角形纸片放在数轴上,纸片上的点表示的数是-2,1AC BC BD ===,若以点为圆心、AD 的长为半径画弧,与数轴交于点(点位于点右侧),则点表示的数为________.16. 如图,▱ABCD 中,∠ABC=60°,E 、F 分别在CD 和BC 延长线上,AE ∥BD ,EF ⊥BC ,EF=3,则AB 的长是_____.三、解答题(共计86分)17. 计算:1325045183(2)2(13)(26)(221)+-18. 已知:ABC ∆中的三条中位线的长分别为5cm 、6cm 、10cm ,求这个三角形的周长.19. 21点.20. 如图,在Rt△ABC 中,∠C=90°,∠A=30°,AC=2求斜边AB 的长.21. 如图,在ABC ∆中,13AB =,14BC =,AD 是BC 边上的高,12AD =,求AC 的长.22. 如图,在平行四边形ABCD 中,若AB=6,AD=10,∠ABC 的平分线交AD 于点E,交CD 的延长线于点F,求DF 的长.23. (1)定义新运算:对于任意实数,a b ,都有()1a b a a b ⊕=-+.例如,数字2和5在该新运算下结果为.计算如下:25⊕=()22515⨯-+=-.(1)求()37-⊕的值;(2)请你模仿(1),定义一种新运算,使得实数642+和322-的运算结果为2020.写出你定义的新运算,并写出计算过程.答案与解析一、选择题(每题4分,共计40分)1. ,字母x 的取值范围是( )A. 2x >B. 2x <C. 2x ≥D. 2x ≤[答案]C[解析][分析]根据二次根式意义,被开方数是非负数,列出不等式,解不等式得到答案.[详解]解:由题意得,x-2≥0,解得x≥2,故选:C[点睛]本题考查的是二次根式有意义的条件,掌握二次根式的意义,被开方数是非负数是解题的关键. 2. 下列根式中属于最简二次根式的是( )[答案]D[解析][分析]根据最简二次根式的两个条件进行判断,即可得出结论.[详解]A =2,不是最简二次根式,错误;B =不是最简二次根式,错误;C ,不是最简二次根式,错误;D ,正确;故选D .[点睛]本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3. 下列各组数中,不是勾股数的为( )A. 3,4,5B. 6,8,10C. 5,12,13D. 5,7,10 [答案]D[解析][分析]满足222+=a b c 的三个正整数,称为勾股数,由此判断即可.[详解]解:、222435+=,此选项是勾股数; 、2226810+=,此选项是勾股数; 、22251213+=,此选项是勾股数;、2225710+≠,此选项不是勾股数.故选:.[点睛]此题主要考查了勾股数,关键是掌握勾股数的定义.4. 结果为( )A. B. C. D. [答案]D[解析][分析]利用二次根式的乘除法运算法则进行运算即可.[详解]原式===, 故选:D .[点睛]本题考查二次根式的乘除运算,熟练掌握二次根式的乘除运算法则是解答的关键.5. 如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能..是( )A. AE=CFB. BE=FDC. BF=DED. ∠1=∠2[答案]A[解析]试题分析:因为四边形ABCD是平行四边形,所以AB//CD,AB=CD,所以∠ABD=∠CDB,所以要使△ABE≌△CDF,若添加条件:∠1=∠2,可以利用ASA证明△ABE≌△CDF,所以D正确,若添加条件:BE=FD,可以利用SAS证明△ABE≌△CDF,所以B正确,若添加条件:BF=DE,可以得到BE=FD,可以利用SAS证明△ABE≌△CDF,所以C 正确;若添加条件:AE=CF,因为∠ABD=∠CDB,不是两边的夹角,所以不能证明△ABE≌△CDF,所以A错误,故选A.考点:1.平行四边形的性质2.全等三角形的判定.6. 如图所示,四边形ABCD是平行四边形,∠D=120°,∠CAD=32°,则∠ABC、∠CAB的度数分别为().A. 28°,120°B. 32°,120°C. 120°,28°D. 120°,32°[答案]C[解析][分析][详解]解:∵四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,∴∠BAD+∠D=180°.∵∠D=120°,∠CAD=32°,∴∠ABC=∠D=120°,∠BAD=60°,∴∠CAB=∠BAD﹣∠CAD=60°﹣32°=28°.故选C.7. 实数在数轴上的位置如图所示,化简22-+-=( )(1)(2)p pp- D. 1A. B. 3 C. 3[答案]D[解析][分析]根据数轴确定p的取值范围,再利用二次根式的性质化简即可.[详解]由数轴可得,1<p<2,∴p-1>0,p-2<0,22--,p p(1)(2)故选:D.[点睛]本题主要考查二次根式的化简,判断出代数式的正负是解题关键.8. 如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. 4B. 3C. 2D. 5[答案]A[解析]分析] 设BN=x ,则由折叠的性质可得DN=AN=9-x ,根据中点的定义可得BD=3,在Rt △BND 中,根据勾股定理可得关于x 的方程,解方程即可求解.[详解]解:设BN=x ,由折叠的性质可得DN=AN=9-x ,∵D 是BC 的中点,∴BD=3,在Rt △NBD 中,x 2+32=(9-x )2,解得x=4.即BN=4.故选A .[点睛]本题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强. 9. 平行四边形的两条对角线长分别是、,一边长为12,则、可能是下列各组中的( )A. 8与14B. 10与14C. 18与20D. 10与38[答案]C[解析][分析] x、y是平行四边形的两条对角线的长,则它们的一半与平行四边形长为12的边构成三角形,根据三角形三边关系中“三角形的任意两边之和大于第三边”即可从选项中判定出正解的答案.[详解]解:∵平行四边形的对角线互相平分,此平行四边形的两对角线长为x、y∴这两条对角线的一半就是x2,y2∴这两条对角线的一半与边长为12的边组成的三角形的三边为:x2、y2、12 根据三角形任意两边之和大于第三边得: A选项中149212=8+2<,不符合;B选项中1014122=+2,不符合;C选项中182019122=>+2,符合;D选项中1038172=<+122,不符合. 故选:C[点睛]本题考查的知识点有两个:一是平行四边形的对角线互相平分,一是三角形的三边关系,综合运用这两个知识点逐个判定是解题的基本方法.10. 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC ,则AC 边上的高是( )A. 105 2105255 355[答案]D[解析][分析]先求出△ABC 的面积,再根据勾股定理求出AC 的长度,即可求出AC 边上的高.[详解]1113222121112222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯= 22125AC =+=AC 边上的高133525225ABC SAC =÷÷=⨯= 故答案为:D .[点睛]本题考查了三角形的高的问题,掌握勾股定理、三角形面积公式是解题的关键. 二、填空题(每题4分,共计24分)11.=____________.[答案[解析][分析] 利用二次根式的乘除法运算法则进行运算即可.[详解]原式=====[点睛]本题考查了二次根式的运算,熟练掌握二次根式的乘除法运算法则是解答的关键.12. 比较大小:__________13-(填“>”、“=”、“<”) [答案]>[解析][分析]先将这两个数分别平方,通过比较两个数的平方的大小即可得解.[详解]解:∵21()1010-=,211()39-=且11109<,∴1103<,∴13>- 故答案为:>.[点睛]此题主要考查了无理数的估算能力,两个二次根式比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的正的式子的值就大,负的式子就小.13. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.[答案]13cmcm[解析][分析]设直角三角形的第三条边为c ,分c 为斜边和12cm 为斜边两类进行讨论,根据勾股定理计算即可.[详解]解:设直角三角形的第三条边为c ,当c 为斜边时,2251213c =+= ;当12cm 为斜边时,22125119c =-=.故答案为:13cm 或119cm[点睛]本题考查了勾股定理和直角三角形分类讨论思想.由于条件没有指明直角边和斜边,故要分类讨论,同时要注意直角三角形斜边最长,5cm 不可能为斜边,故分两类讨论.14. 在ABCD 中,若30B ∠=︒,BC 10cm =,6AB cm =,则ABCD 的面积是__________.[答案][解析][分析]连接AC ,利用1sin 2ABC S AB BC B ∆=••求出ABC ∆的面积,再求出ABCD 的面积. [详解]解:连接AC ,如图:∵30B ∠=︒,BC 10cm =,6AB cm =,∴111sin 61015222ABC S AB BC B ∆=••=⨯⨯⨯=; ∴215230ABCD ABC S S ∆==⨯=.故答案为:30.[点睛]本题考查了解直角三角形,平行四边形的性质,以及求三角形的面积,解题的关键是利用1sin 2ABC S AB BC B ∆=••求出三角形的面积.15. 如图,将有一边重合的两张直角三角形纸片放在数轴上,纸片上的点表示的数是-2,1AC BC BD ===,若以点为圆心、AD 的长为半径画弧,与数轴交于点(点位于点右侧),则点表示的数为________.[答案]32-[解析][分析]首先根据勾股定理求出AB 、AD 的长,再根据圆的半径相等可知AD=AE ,再根据数轴上两点间距离的公式即可得出答案.[详解]根据勾股定理得:2AB =,3AD =,∴3AE =,∴23OE =-∴点表示的数为23-+.故答案为:23-+[点睛]此题主要考查了勾股定理,以及数轴与实数,解题时求数轴上两点间的距离应让较大的数减去较小的数即可,本题的关键是求出AE 的长.16. 如图,▱ABCD 中,∠ABC=60°,E 、F 分别在CD 和BC 的延长线上,AE ∥BD ,EF ⊥BC ,EF=3,则AB 的长是_____.[答案]1[解析][分析]根据平行四边形性质推出AB=CD ,AB ∥CD ,得出平行四边形ABDE ,推出DE=DC=AB ,根据直角三角形性质求出CE 长,即可求出AB 的长.[详解]∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB=CD.∵AE ∥BD ,∴四边形ABDE 是平行四边形.∴AB=DE=CD ,即D 为CE 中点.∵EF ⊥BC ,∴∠EFC=90°.∵AB ∥CD ,∴∠DCF=∠ABC=60°.∴∠CEF=30°.∵EF=,∴CE=2∴AB=1三、解答题(共计86分)17. 计算:(2)2(11)+-[答案](1);(2)9;[解析][分析](1)先化简根式,然后再合并同类根式即可;(2)先算乘法和完全平方,再去括号,计算加减即可.[详解](1==+(2)2(13)(26)(221)+---26618(8421)=-+---+232942=--+229-=.[点睛]本题主要考查了二次根式的混合运算,关键是掌握计算顺序和运算法则.18. 已知:ABC ∆中三条中位线的长分别为5cm 、6cm 、10cm ,求这个三角形的周长.[答案]42.cm[解析][分析]根据三角形中位线定理可分别求得三角形各边的长,从而不难求得其周长.[详解]∵三角形的三条中位线的长分别是5cm 、6cm 、10cm ,∴三角形的三条边分别是10cm 、12cm 、20cm .∴这个三角形的周长=10+12+20=42cm .[点睛]此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半. 19. 作图题:在数轴上画出表示21+的点.[答案]作图见解析[解析]分析]由题意,作斜边为2的等腰直角三角形,以数1为圆心画弧,与数轴正方向的交点为所求.[详解]解:如图所示,点A 为21+的点;[点睛]本题考查的是实数与数轴,勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.20. 如图,在Rt△ABC 中,∠C=90°,∠A=30°,AC=2求斜边AB 的长.[答案]433. [解析][分析]设BC=x,则AB=2x,再根据勾股定理求出x 值,进而得出结论.[详解]∵在Rt △ABC 中,∠C=90°,∠A=30°,AC=2, ∴设BC=x ,则AB=2x,∵AC 2+BC 2=AB 2,即22+x 2=(2x)2,解得x=233, ∴AB=2x=433. [点睛]本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.21. 如图,在ABC ∆中,13AB =,14BC =,AD 是BC 边上的高,12AD =,求AC 的长.[答案]15.AC =[解析][分析]利用勾股定理先求出BD ,进而求得DC ,再用勾股定理求得AC 即可.[详解]∵AD 是BC 上的高,∴AD BC ⊥,在Rt ABD ∆中,222213125BD AB AD =-=-=,∴9CD BC BD =-=,∴在Rt ADC ∆中,222212915AC AD CD =+=+=.[点睛]本题考查勾股定理,会利用勾股定理解直角三角形是解答的关键.22. 如图,在平行四边形ABCD 中,若AB=6,AD=10,∠ABC 的平分线交AD 于点E,交CD 的延长线于点F,求DF 的长.[答案]4[解析][分析]首先根据平行四边形的性质可得AB=DC=6,AD=BC=10,AB ∥DC ,再根据平行线的性质与角平分线的性质证明∠2=∠3,根据等角对等边可得BC=CF=10,再用CF ﹣CD 即可算出DF 的长.[详解]∵四边形ABCD 为平行四边形,∴AB=DC=6,AD=BC=10,AB ∥DC .∵AB ∥DC,∴∠1=∠3,又∵BF 平分∠ABC,∴∠1=∠2,∴∠2=∠3,∴BC=CF=10,∴DF=CF ﹣DC=10﹣6=4.[点睛]本题考查了平行四边形的性质;等腰三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.23. (1)定义新运算:对于任意实数,a b ,都有()1a b a a b ⊕=-+.例如,数字2和5在该新运算下结果为.计算如下:25⊕=()22515⨯-+=-.(1)求()37-⊕的值;(2)请你模仿(1),定义一种新运算,使得实数642+和322-的运算结果为2020.写出你定义的新运算,并写出计算过程.[答案](1)31; (2)见解析 [解析][分析](1)根据新定义即可求解;(2)根据平方差公式即可构造新定义运算求解.[详解]解:(1)(37)⊕-()()3371=-⨯--+31=.(2)答案不唯一,合理即可.如:定义新运算:对于任意实数,a b ,都有2018a b ab *=+. (642)(322)+*-(62)(32)2018=+-+2020=.[点睛]此题主要考查新定义运算,解题的关键是熟知平方差公式的运用.。
专题六作图专题(人教版)八年级数学上册PPT课件
解:(1)如图1即为所答.
(2)若(1)中直线 l 交 BC 于点 D,交 AB 于点 E,且∠B=40°,求∠AED 的度数.
(2)如图2,∵DE垂直平分BC, ∴DE⊥BC. ∴∠EDB=90°. ∵∠B=40°, ∴∠AED=90°-∠B=90°-40°=50°.
专题六 作图专题
一、 五个基本尺规作图
1. 作一条线段等于已知线段.
已知:线段 a. 求作:线段 AB,使 AB=a.
解:如图所示:
2. 作一个角等于已知角.
已知:∠a. 求作:∠O,使∠O=∠a.
解:如图所示:
3. 作一个角的平分线.
已知:∠AOB. 求作:射线 OC,使∠AOC=∠COB.
解:如图所示:
二、 作角平分线及综合
6. 尺规作图:如图,已知△ABC,作∠B 的角平 分线 BD,交 AC 于点 D.
解:如图ቤተ መጻሕፍቲ ባይዱ示:
7. 如图,已知△ABC.请解答下列问题: (1)用尺规作出△ABC 的角平分线 BD; (2)在(1)的条件下,若 AB 的长为 5 cm,BC
的长为 6 cm,求△ABD 与△BCD 的面积比值.
②存在.∵A,B关于直线MN对称, ∴连接AC与MN的交点即为所求的P点,此 时P和N重合, 即△BNC的周长就是△PBC的周长最小值. ∴△PBC的周长最小值为14 cm.
11. 如图,在△ABC 中,∠C=90°,∠CAB=60°. (1)作边 AB 的中垂线交 BC 边于点 E,交 AB
边于点 D(尺规作图,不写作法,保留作图
痕迹);
(2)连接 AE.若 CE=4,求 AE 的长.
2022-2023学年人教版八年级数学上册尺规作图专题练习
尺规作图汇总一、(作一个角等于已知角)1.已知AOB ∠,利用尺规作A O B '''∠,使A O B AOB '''∠=∠.(不写作法,保留作图痕迹)2.在△ABC 中,在边AC 上找一点D ,使得∠CBD =∠A .请用尺规作图的方法找出点D 的位置(要求:不写作图过程,保留作图痕迹).3.作图题.已知,α∠,∠β,且α∠大于∠β,求作AOB αβ∠=∠-∠(不写作法,保留作图痕迹,不在原图上作图)4.尺规作图:以点B 为顶点,射线BC 为一边,作EBC ∠,使∠EBC =∠A (不写作法,只保留作图痕迹).5.如图,AD是一条公路桥梁,现要在上游B处再建一座与AD平行的大桥BE,请用尺规作出BE的方向.(不写作法,保留作图痕迹)二、(作一个角的角平分线)6.尺规作图:如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,这个集贸市场应建于何处?(不写作法,保留作图痕迹)7.如图,已知△ABC,利用直尺和圆规作图.(保留作图痕迹,不写作法)(1)作△ABC的角平分线AD;(2)在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,直接写出CD和AB的关系.8.如图,已知△ABC,利用尺规在BC上找一点D,使得∠BAD=∠CAD.(保留作图痕迹,不写作法)9.如图,已知ABC V ,请利用尺规作图法在AC 上求作一点P ,使得BP 平分.(ABC 保留作图痕迹,不写作法)10.在△ABC 内找一点P ,使它到各边距离相等.11.如图,已知MN P BC .求作:在MN 上确定一点P ,使点P 到AB ,BC 的距离相等.12.已知:如图公路AE 、AF 、BC 两两相交.求作:加油站O ,使得O 到三条公路的距离相等.(尺规作图,保留作图痕迹,不写作法)三、(作垂线)13.如图,过直线m 外的一点P ,画出直线m 的垂线段PC .14.如图,已知△ABC ,试用直尺和圆规作出△ABC 的角平分线CE 、高AD .(尺规作图,保留痕迹,不写作法)15.如图,在Rt ABC V 中,90ACB ∠=︒.(1)用直尺和圆规作斜边AB 的垂直平分线,交BC 于点P (不写作法,保留作图痕迹)(2)写出PC ,PA ,BC 之间的数量关系并加以证明.16.尺规作图(不写作法,保留作图痕迹)如图,已知ABC V ,求作ABC V 的高AD .17.如图,已知△ABC .(1)作中线AD ;(2)尺规作出角平分线BE ;(3)作BC 边的高线.18.尺规作图:如图,在两条公路OA和OB之间,要建一个加油站P,使加油站P到两村庄M、N的距离相等,且到两条公路的距离相等.保留作图痕迹,不写作图步骤.19.尺规作图(不写作法,但要保留作图痕迹)∠的对称轴AM.(1)如图,作BAC∠边AC上一点,在AM上找一点F,使F点到点A、E距离相等.(2)点E为BAC20.如图,已知ABC△.(1)画中线AD;(2)画ABD△的高BE及ACD△的角平分线CF.参考答案:1.见解析【分析】根据尺规作图的步骤逐步完成即可求解:①画射线O B '',②以O 为圆心,任意长为半径作弧交OA 于C ,交OB 于D ,③以O '为圆心,以同样长(OC 长)为半径作弧,交O B ''于D ',④以D '为圆心,CD 长为半径作弧交前弧于C ',⑤过C '作射线O A '',则A O B '''∠即为所求.【详解】解:如图所示,A O B '''∠即为所求.【点睛】本题考查了尺规作图,解题的关键是熟练掌握作一个角等于已知角的步骤.2.见解析【分析】根据作一角等于已知角的方法作图即可.【详解】解:如图,点D 即为所求.【点睛】此题考查了作图—作一角等于已知角,熟练掌握作图方法是解题的关键.3.见解析【分析】在射线OC 的同侧作∠AOC =α∠,∠BOC =∠β,即可解决问题.【详解】解∶如图,∠AOB 即为所求.【点睛】本题考查作图——基本作图,解题的关键是熟练掌握五种基本作图,属于常考题型.4.图见解析【分析】分①EBC ∠在射线BC 的上方和②EBC ∠在射线BC 的下方两种情况,根据作一个角等于已知角的尺规作图方法即可得.【详解】解:由题意,分以下两种情况:①当EBC ∠在射线BC 的上方时,如图,EBC ∠即为所作.②当EBC ∠在射线BC 的下方时,如图,EBC ∠即为所作.【点睛】本题考查了作一个角等于已知角的尺规作图,熟练掌握尺规作图,并分两种情况是解题关键.5.见解析【分析】根据同位角相等,两直线平行画出内错角相等即可.【详解】解:如图所示,BE 即为所求作:【点睛】本题考查作图-应用与设计作图,平行线的判定的应用,主要考查学生的动手操作能力和理解能力.6.(1)画图见解析(2)画图见解析,,,AB CD AB CD =∥ 证明见解析【分析】(1)以A 为圆心,任意长为半径画弧,交AB ,AC 于两点,再分别以这两个交点为圆心,大于这两个交点间距离的一半为半径画弧得到两弧的交点,过三角形的顶点A 与两弧交点作射线,于BC 交于点D ,则线段AD 即为所求;(2)先以C 为圆心,任意长为半径画弧,得到两弧与CA ,CB 的交点G ,H ,再以A 为圆心,CG 为半径画弧,与AC 的交点为J ,再以J 为圆心,GH 为半径画弧,两弧的交点I ,再以A 为端点,过I 画射线AE ,再在射线AE 上截取AD =BC ,连接CD ,再证明即可.(1)解:线段AD 即为所求作的ABC V 的角平分线,(2)如图,画图如下:由作图可得:,,AD BC ACB CAE =∠=∠ 而,AC CA =∴,ACB CAD V V ≌∴,,AB CD CAB ACD =∠=∠∴.AB CD ∥∴,AB CD 的关系是,.AB CD AB CD =∥【点睛】本题考查的是作三角形的角平分线,作一个角等于已知角,全等三角形的判定与性质,熟练的掌握作图的基本方法是解本题的关键.7.图见解析,这个集贸市场应建于何处公路、铁路的角平分线上.【分析】利用角的平分线上的点到角的两边的距离相等可知集贸市场在公路、铁路相交的角平分线上.【详解】解:如图所示:答:这个集贸市场应建于何处公路、铁路的角平分线上.【点睛】此题考查了作图与应用设计,解题的关键是掌握角平分线上的点到角两边的距离相等.8.见解析【分析】作∠BAC的平分线即可.【详解】解:如图,点D为所作.【点睛】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.9.见解析【分析】根据要求作出图形即可.【详解】解:如图,点P即为所求.【点睛】本题考查作图-基本作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.10.见解析【分析】根据角平分线上的点到角的两边距离相等解答即可.【详解】解:∵点P到△ABC的三边的距离相等,∴点P应是△ABC三条内角平分线的交点.如图:【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解答本题的关键.11.见解析【分析】作出∠ABC的角平分线,与MN的交点即为点P.【详解】解:如图所示:P 点即为所求.【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线上的点到两边的距离相等的性质是解题的关键.12.作图见解析【分析】根据角平分线的性质及作法,即可作得.【详解】解:作法如下:1.尺规作出∠A 、∠EBC 、∠BCF 中任意两个角的角平分线,交点即为1O 点;2.尺规作出∠A 、∠ABC 、∠ACB 中任意两个角的角平分线,交点即为2O 点.证明: 点1O 是∠A 与∠BCF 平分线的交点,∴点1O 到公路AE 、AF 、BC 的距离相等;点2O 是∠A 与∠ABC 平分线的交点,∴点2O 到公路AE 、AF 、BC 的距离相等;∴点1O 、点2O 即为所求作的点【点睛】本题考查了尺规作图—角平分线,角平分线的性质,熟练掌握和运用角平分线的作法及性质是解决本题的关键.13.见解析【分析】过P 点作m 的垂线即可.【详解】如图,垂线段PC 即为所求.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.14.见解析【分析】利用基本作图(过一点作直线的垂线),过点A作AD⊥BC于D得到高AD,利用作已知角的平分线作CE平分∠ACB.【详解】解:如图,CE和AD为所作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.15.(1)见解析(2)BC PC PA=+,理由见解析【分析】(1)利用基本作图,作AB的垂直平分线即可;(2)根据线段垂直平分线的性质得到PA PB=,则BC PC PA=+.(1)解:如图,点P为所作,;(2)解:BC PC PA=+.理由:∵点P为AB的垂直平分线与BC的交点,∴PA PB=,∴PC PA PC PB BC+=+=.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段的垂直平分线的性质.16.见解析【分析】以点A为圆心,任意长为半径画圆,交BC于点E,F,再作线段EF的垂直平分线即可.【详解】解:如图,AD即为所求..【点睛】本题考查了尺规作图之过直线外一点作已知直线的垂线,熟知过直线外一点作直线垂线的作法是解答此题的关键.17.(1)答案见解析(2)答案见解析(3)答案见解析【分析】(1)作线段BC的垂直平分线可得BC的中点D,连接AD即可.(2)根据角平分线的作图步骤作图即可.(3)根据高线的作图步骤作图即可.(1)解:如图,AD即为所求.(2)解:如图,BE即为所求.(3)解:如图,AF即为所求.【点睛】本题考查作图-复杂作图、三角形的角平分线、中线和高,熟练掌握角平分线、中线和高线的作图步骤是解答本题的关键.18.见解析【分析】作∠AOB的平分线,再作线段MN的垂直平分线,两线的交点P就是所求点.【详解】解:如图所示:点P即为所求.【点睛】此题主要考查了角平分线的性质、线段垂直平分线的性质的应用以及作法,关键是熟练掌握角平分线、线段垂直平分线的基本作图方法.19.(1)见解析(2)见解析【分析】(1)作出∠BAC的角平分线即可;(2)作线段AE的垂直平分线,与AM的交点即为点F.(1)解:如图:AM即为所求.(2)解:如图:点F即为所求.【点睛】本题主要考查了角平分线的作法、垂直平分线的作法等知识,角的对称轴为其角平分线,到线段两端点距离相等的点在线段的垂直平分线上.20.(1)见详解(2)见详解【分析】(1)作BC的垂直平分线交BC于点D,即D为BC中点,连接AD,AD即ABC△为中线;(2)以B为圆心,BD为半径画弧交AD的延长线于点G,再分别为D、G为圆心,以大于DG一半的长度为半径画弧,两弧分别交于两个点,连接这两个交点的直线交AD的延长线于点E,该直线经过B点,BE即为所求;以C为圆心,以任意长度画弧,交AC、CD于点M、N,再分别以M、N为圆心,以大于MN一半的长度为半径画弧,两弧交于一点,将该点与C点连接,交AD于点F,则角平分线AD即为所求.(1)分别为B、C为圆心,以大于BC一半的长度为半径画弧,两弧分别交于两个点,连接这两个交点的直线交BC于点D,连接AD,作图如下:即中线AD即为所求;(2)以B为圆心,BD为半径画弧交AD的延长线于点G,再分别为D、G为圆心,以大于DG 一半的长度为半径画弧,两弧分别交于两个点,连接这两个交点的直线交AD的延长线于点E,即该直线是DG的垂直平分线,根据作图可知B点在DG的垂直平分线,即该直线经过B 点,作图如下:即高线BE即为所求;以C为圆心,以任意长度画弧,交AC、CD于点M、N,再分别以M、N为圆心,以大于MN 一半的长度为半径画弧,两弧交于一点,将该点与C点连接,交AD于点F,连接CF,作图如下:即角平分线CF即为所求.【点睛】本题主要考查了基本作图,掌握垂直平分线和角平分线的尺规作图法是解答本题的关键.。
【一线精品】八年级期中考试专题复习(画图与实验专题) 人教版最新精品公开课件
学习目标一、光学作图
F F
学习目标二、掌握课内重要的实验内容1:探究光的反射定律
例1:(15题)如图15所示,是陈涛同学探究光反射规律的实 验.他进行了下面的操作:
(1)如图甲,让一束光贴着纸板沿某一个角度射到0点,经平面 镜的反射,沿另一个方向射出,改变光束的入射方向,使∠i减小, 这时∠r跟着减小,使∠ i增大,∠r跟着增大,∠r总是 等于 ∠i,说明 _光__在__反__射_时__反__射__角__等_于__入__射__角__ ___
(3)如果无论怎样移动光屏都无法在光屏上承接到像,可 能原因是:
①烛焰、凸透镜、光屏的中心没有在同一高度 ; ② 物体位于一倍焦点处或物距小于一倍焦距。
学习目标二:掌握课内重要的实验内容3、探究凸透镜的成像规律。
(4)小字在透明的玻璃板上用黑色笔画了个手表盘,如图(甲)所示。 把这个玻璃板放在蜡烛的位置上,并用平行光源对着玻璃板上的表盘照 射,如图(乙)所示。移动光屏直到成清晰像为止。此时表盘在光屏上
学习目标二、掌握课内重要的实验内容2:探究平面镜成像的特点
17、如图17所示,是小明在“探究平面镜成像的特点” 的活动中所选用的器材和活动过程
(1)选择玻璃板代替镜子进行实验的目的是: 玻璃板透光,便于找到像的,位置
在探究活动中对玻璃板放置的要求是:玻璃板竖直放置
;
(2)选择蜡烛A和B的要求是: 两个蜡烛要完全相同 ;
13、现给你如下器材:钢尺一把、木梳一把、音叉、一个乒乓球(系着细线)、 橡皮筋、鼓、一张纸、小锤。你任选器材(一种或两种以上器材),设计 三个有关声现象的探究实验,按下表要求填写。
器材 示例:鼓、小锤
实验目的
探究声音是怎 样产生的
探究声音 音叉、乒乓球(系 的响度与物体 着细线)、小锤 振幅的关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
P A N
M C
■如图,OA、OB是两条相交的公路,点P 如图,OA、OB是两条相交的公路, ,OA 是两条相交的公路 是一个邮电所,现想在OA OB上各设立 OA、 是一个邮电所,现想在OA、OB上各设立 一个投递点, 一个投递点,要想使邮电员每次投递路 程最近,问投递点应设立在何处? 程最近,问投递点应设立在何处?
A M P
B’
A’
B C
N
C’
如图,如果A 如图,如果A,B在燃气管道L的同旁, 在燃气管道L的同旁, 泵站应修在管道的什么地方, 泵站应修在管道的什么地方,可使所 用的输气管线最短? 用的输气管线最短?
如图,要在燃气管道L上修建一个泵站, 如图,要在燃气管道L上修建一个泵站,分别 两镇供气, 向A、B两镇供气,泵站修在管道的什么地 可使所用的输气管线最短? 方,可使所用的输气管线最短? 所以泵站建在点P 所以泵站建在点P可使输气管线最短
P
某一个星期六,某中学初 某一个星期六,某中学初 年级的同学参加义务劳动, 的同学参加义务劳动 一年级的同学参加义务劳动, 其中有四个班的同学分别 其中有四个班的同学分别在M、 N两处参加劳动,另外四个班的 参加劳动 劳动, 同学分别在道路AB、AC两 同学分别在道路AB、AC两处劳 要在道路AB AC的交叉 动,现要在道路AB、AC的交叉 区域内设一个荼水供应 区域内设一个荼水供应点P ,使 P到两条道路的距离相等,且使 到两条道路的距离相等, PM= PN,请你找出点P的位置 PN, 你找出点P ,并说明理由。 明理由。
短? M
A
P4
B N
答:如图 ,当汽车行驶到 4时,到村庄 、N的距离之 当汽车行驶到P 到村庄M、 的距离之 和最短。 根据:两点之间线段最短。 和最短。 根据:两点之间线段最短。
又问:若村庄 , 在公路 的同侧,则又如何解决此题? 在公路AB的同侧 又问:若村庄M,N在公路 的同侧,则又如何解决此题? M N A
A M E P O F N B
等腰三角形有哪些性质? 等腰三角形有哪些性质? 1.等腰三角形的两腰相等; 等腰三角形的两腰相等 1.等腰三角形的两腰相等; 2.等腰三角形的两个底角相等, 2.等腰三角形的两个底角相等, 等腰三角形的两个底角相等 简称“等边对等角” (简称“等边对等角”); 3.等腰三角形顶角的平分线 等腰三角形顶角的平分线、 3.等腰三角形顶角的平分线、 底边上的中线和底边上的高互 B 相重合。(简称“三线合一” 。(简称 相重合。(简称“三线合一”) 4.等腰三角形是轴对称图形 等腰三角形是轴对称图形, 4.等腰三角形是轴对称图形,对称 轴是底边的中垂线。 轴是底边的中垂线。
a, b ), a,- ) M点关于原点 的对称点 3(-a,-b 点关于原点O的对称点 点关于原点 的对称点M
轴对称的性质
• 如果两个图形关于某条直线对称,那么对 如果两个图形关于某条直线对称,那么对 称轴是任何一对对应点所连线段的 是任何一对对应点所连线段的垂直平 称轴是任何一对对应点所连线段的垂直平 分线
在公路AB的同侧时 答:若村庄M,N在公路 的同侧时,当汽车行驶到 5时, 若村庄 , 在公路 的同侧时,当汽车行驶到P 到村庄M、 的距离之和最短 的距离之和最短。 到村庄 、N的距离之和最短。
P5
N1
B
• 5、如图,P在∠AOB内,点M、N分别是点P 关于AO、BO的对称点,若△PEF的周长为 15,求MN的长.
A
C
开启 思考 2:
智慧
下例各说法对吗?为什么? 下例各说法对吗?为什么?
等腰三角形两底角的平分线相等. 等腰三角形两底角的平分线相等 等腰三角形两腰上的中线相等. 等腰三角形两腰上的中线相等 等腰三角形两腰上的高相等. 等腰三角形两腰上的高相等
A N C B A M Q C B A
E B
● ●Βιβλιοθήκη D●● ●●P C
与同伴交流你在探索思路的过程 中的具体做法.
坐标轴上点的坐标特点 X轴上的点的坐标特点: 纵坐标为0。 轴上的点的坐标特点: 纵坐标为0 y轴上的点的坐标特点: 横坐标为0 轴上的点的坐标特点: 横坐标为0 点到坐标轴的距离 点到坐标轴的距离 点A(a,b)到X轴的距离为 b ,到Y轴的距离为 a b)到 平行坐标轴的点坐标的特点
A
P3
B N
当汽车行驶到P 与村庄M、 的距离相 答:如图 ,当汽车行驶到 3时,与村庄 、N的距离相 等。
根据:线段的垂直平分线上的点到这条线段两个端 根据: 点的距离相等。 点的距离相等。
已知如图:一辆汽车在直线公路AB上由 上由A向 例 已知如图:一辆汽车在直线公路 上由 向B 行驶, 、 分别表示位于公路 两侧的村庄, 分别表示位于公路AB两侧的村庄 行驶,M、N分别表示位于公路 两侧的村庄, (3)当汽车行驶到什么位置时,到村庄 、N的距离之和最 )当汽车行驶到什么位置时,到村庄M、 的距离之和最
一类: 一类:做一个角等于已知角 A′ A D O′ O C B D′
C′
B′
二类: 二类:作一个已知角的角平分线 A D P
O
C
B
三类: 三类:作已知线段的垂直平分线
C A D B
若设点M( 若设点 (a,b), M点关于 轴的对称点 1( a,-b ) 点关于X轴的对称点 点关于 轴的对称点M a,M点关于 轴的对称点 2( 点关于Y轴的对称点 点关于 轴的对称点M -
用符号语言表示为: 用符号语言表示为: ∵OP是∠AOB的角平分线 ∵OP是 AOB的角平分线 PD⊥OA ⊥OA, 又PD⊥OA,PE⊥OB A ∴ PD=PE
D P O E B
用符号语言表示为: 用符号语言表示为: ∵PD=PE PD ⊥OA ,PE ⊥OB
C
∴ OP是∠AOB的角平分线 是 的角平分线
(1).等边三角形的性质 等边三角形的性质 1.等边三角形的三边相等 等边三角形的三边相等. 等边三角形的三边相等 2.等边三角形的内角都相等 且都等于 ° 等边三角形的内角都相等,且都等于 等边三角形的内角都相等 且都等于60 3.等边三角形是轴对称图形,有三条对称轴 等边三角形是轴对称图形 等边三角形是轴对称图形, 4.等边三角形各边上中线 高和所对角的平分 等边三角形各边上中线,高和所对角的平分 等边三角形各边上中线 线都三线合一. 线都三线合一 (2) 等边三角形的判定 等边三角形的判定: 1.三边相等的三角形是等边三角形 三边相等的三角形是等边三角形. 三边相等的三角形是等边三角形 2.三个内角都相等的三角形是等边三角形 三个内角都相等的三角形是等边三角形. 三个内角都相等的三角形是等边三角形 3.有一个角等于 °的等腰三角形是等边三角 有一个角等于60 有一个角等于 形.
O F E M B A P N
已知如图:一辆汽车在直线公路AB上由 上由A向 行 例 已知如图:一辆汽车在直线公路 上由 向B行 分别表示位于公路AB两侧的村庄 驶,M、N分别表示位于公路 两侧的村庄, 、 分别表示位于公路 两侧的村庄, 距村庄M最近 (1)当汽车行驶到什么位置时距村庄 最近?行 )当汽车行驶到什么位置时距村庄 最近? 驶到什么位置时距村庄 最近? 距村庄N最近 驶到什么位置时距村庄 最近?
M
A
P1
P2 N
B
当汽车行驶到P 距村庄M最近 最近, 答:如图 ,当汽车行驶到 1时,距村庄 最近, 当汽车行驶到P 距村庄N最近 最近。 当汽车行驶到 2时,距村庄 最近。
根据:直线外一点与直线上各点连结的所有线段中, 根据:直线外一点与直线上各点连结的所有线段中, 垂线段最短。 垂线段最短。
已知如图:一辆汽车在直线公路AB上由 上由A向 行 例 已知如图:一辆汽车在直线公路 上由 向B行 分别表示位于公路AB两侧的村庄 驶,M、N分别表示位于公路 两侧的村庄, 、 分别表示位于公路 两侧的村庄, (2)当汽车行驶到什么位置时,与村庄 、N的距 )当汽车行驶到什么位置时,与村庄M、 的距 M 离相等? 离相等?
应用定理的前提条件是: 应用定理的前提条件是:
D
B
有角的平分线, 有角的平分线,有垂直距离
定理的作用: 定理的作用:
证明线段相等
角平分线的性质定理:
角平分线的判定定理: 角平分线的判定定理:
到一个角的两边的距离 到一个角的两边的距离 角平分线上的点到角的 相等的点,在这个角平 相等的点, 距离相等 两边的距离相等. 两边的距离相等. 分线上。 分线上。
复习回顾 角的平分线上的点到角的 角平分线的性质: 角平分线的性质: 两边的距离相等. 距离相等 两边的距离相等. A
∵OP是∠AOB的角平分线 是 的角平分线 ⊥ , ⊥ 又PD⊥OA,PE⊥OB P ∴ PD=PE O E 角平分线上的点到角的两边的距离相等) (角平分线上的点到角的两边的距离相等)