反应型阻燃剂双(2-羧基乙基)膦酸的合成及在尼龙66上的阻燃应用

合集下载

二乙基次膦酸铝协同含磷有机硅阻燃pa66热分解动力学

二乙基次膦酸铝协同含磷有机硅阻燃pa66热分解动力学
以聚酰胺66pa66为基体二乙基次膦酸铝alpi和多聚苯磷酰硅油ppso为阻燃剂在密炼机上通过熔融共混制备了阻燃pa66采用热重分析仪表征了阻燃pa66的热稳定性通过kissinger法k法和flynnwallozawa法fwo法分析了阻燃剂对材料热分解活化能的影响并通过coatsredfern法进一步分析了材料的热分解机理和反应级数
邹梦浩,罗钟琳,乔艺卉,王标兵
( 常州大学材料科学与工程学院,江苏常州 213100)
摘要:以聚酰胺 66 (PA66) 为基体,二乙基次膦酸铝 (AlPi) 和多聚苯磷酰硅油 (PPSO) 为阻燃剂,在密炼机上通过 熔融共混制备了阻燃 PA66,采用热重分析仪表征了阻燃 PA66 的热稳定性,通过 Kissinger 法 (K 法 ) 和 Flynn-WallOzawa 法 (FWO) 法分析了阻燃剂对材料热分解活化能的影响,并通过 Coats-Redfern 法进一步分析了材料的热分解 机理和反应级数。实验结果表明,单独加入 AlPi 时,降低了材料的热分解活化能,使材料的分解提前,随着 PPSO 的 加入,后期热分解活化能增加,提高了材料的热稳定性。纯 PA66 的机理函数 G(α)=1–(1–α)1/4 (0.10 ≤ α ≤ 0.90),反 应级数为 1/4,其为相边界反应分解机理;10% AlPi 阻燃 PA66 的机理函数 G(α)=α2 (α ≤ 0.35,α ≥ 0.70) 和 G(α)=α3/2 (0.40 ≤ α ≤ 0.65),反应级数分别为 2 和 3/2,整个分解过程均为相边界反应分解机理;6% AlPi+2% PPSO 阻燃 PA66 的机理函数 G(α)=α+(1–α)ln(1–α) (α ≤ 0.50) 和 G(α)=[–ln(1–α)]3 (α ≥ 0.50),反应级数分别为 1 和 3,其分解机 理分别为二维扩散的分解机理、随机成核和随后生长分解机理。

无卤阻燃尼龙

无卤阻燃尼龙

尼龙66阻燃途径:添加型阻燃剂:阻燃剂和尼龙66通过机械共混法掺和在一起后熔融挤出,使其获得阻燃性。

尼龙66多采用复配阻燃体系反应型阻燃剂:阻燃剂作为反应单体与尼龙66大分子的主链或侧链结合,使其本身还有阻燃成分。

特点:不存在阻燃剂挥发、溶出、迁移和渗出问题,且由于其自身的化学结构,不需要阻燃处理即具有本质阻燃性尼龙66阻燃剂类型:添加型阻燃剂磷系阻燃剂:无机磷系阻燃剂主要包括红磷、磷酸盐和聚磷酸密铵(MPP)。

有机磷系阻燃剂包括磷酸酯、亚磷酸酯、膦酸酯等。

含磷阻燃剂主要在固相发生作用,受热分解由磷系阻燃剂—磷酸—偏磷酸—聚偏磷酸。

聚偏磷酸不易挥发,具有强脱水性,在聚合物表面形成石墨状的碳化膜,使聚合物与空气隔绝;脱出的水吸收大量的热,使聚合物表面温度下降。

适用于尼龙66的含磷阻燃剂有红磷、次磷酸盐及反应型含磷阻燃剂等。

红磷中有效磷含量高,在燃烧时比其它磷化合物产生更多的磷酸。

在尼龙66中添加小于10%的红磷就能很好地解决材料的阻燃性和耐漏电性的矛盾。

次膦酸盐是新一代磷系阻燃剂,其在凝聚相发挥阻燃作用,是有效的成炭促进剂,以它为活性组分,再加人含氮成分的协效剂可取得良好的阻燃效果。

氮系阻燃剂:挥发性小、本身及分解产物的毒性低符合尼龙66的含氮阻燃剂主要有三聚氰胺(MA)、氰脲酸三聚氰胺(MCA)、聚磷酸三聚氰胺(MPP)等。

三聚氰胺系阻燃剂具有较高的阻燃效率,它燃烧时释放CO2、NH3、N2惰性气源,可稀释氧气和高聚物分解产生的可燃气体浓度;另外生成的不燃气体可带走一部分热量,降低聚合物表面温度;生成的从能捕获自由基,抑制高聚物的连锁反应,从而阻止聚合物的燃烧。

三聚氰胺系阻燃剂多与含磷阻燃剂、成炭剂复配组成膨胀型阻燃体系。

膨胀型阻燃剂:以磷、氮为主要活性组分,不含卤素,也不采用氧化锑为协效剂。

一般由酸源、碳源、气源三部分组成。

酸源一般指无机酸或加热至一定温度能生成无机酸的化合物,碳源主要是一些含碳量高的多羟基化合物,它是形成泡沫炭化层的基础,气源也称发泡源,一般为三聚氢胺、聚磷酸铵等。

尼龙阻燃

尼龙阻燃

尼龙阻燃目前可用于尼龙(聚酰胺)的阻燃剂种类较多,溴系阻燃剂如十溴联苯醚、十溴联苯乙烷等,磷系阻燃剂如红磷、三聚氰胺、氰脲酸盐(MCA),固体阻燃剂如三氧化二锑、硼酸锌等,一些阻燃剂之间的协同效果。

从使用效果和用量来看,在尼龙阻燃体系中,含卤阻燃剂体系是使用最为广泛的。

含卤阻燃体系中在国外应用比较广泛的是聚溴化苯乙烯,它是二溴苯乙烯的均聚物,具有优异的热稳定性及与尼龙良好的混熔性,且在加工过程中具有良好的流动性,但其光稳定性差且成本较高,在国内并未普及使用;在国内应用比较广泛的是十溴联苯醚,因其溴含量较高、添加量少、阻燃效果好且成本较低,而成为国内众多企业优先选用的最为经济的一类阻燃剂,但是其燃烧时释放出有害气体及有毒物质DPO(即所谓的二恶英)等对人体有极大的伤害性。

近年来,因欧盟RoHS/WEEE指令的颁布,业内的专家学者正致力于寻找实用高效的环保的无卤素阻燃剂。

无卤阻燃体系应用较广的是红磷和三聚氰胺盐类。

但是红磷因其本身带色的缘故只能用于黑色制品,且一般只用于尼龙6中,应用范围极窄;此外应用较为普遍的是三聚氰胺盐类,主要是三聚氰胺脲酸盐和磷酸盐,但是其阻燃效果不佳,添加量大且不能达到较高的阻燃等级,也只能适用于阻燃要求不高的场合。

尼龙的阻燃途径主要有:(1) 在复合过程中加入阻燃添加剂; 即通过机械混合方法,将阻燃剂加入到聚酰胺中,使其获得阻燃性,其优点是使用方便,适用面广,但对聚合物的使用性能有较大影响。

可用于聚酰胺的主要添加型阻燃剂有双(六氯环戊二烯) 环辛烷、多磷酸铵、十溴二苯醚等。

使用添加型阻燃剂是目前尼龙阻燃的主要方法;(2) 在聚合物链上或表面上接枝或键合阻燃基团; 即阻燃剂是作为一种反应单体参加反应,并结合到聚酰胺的主链或侧链上去,使聚酰胺本身含有阻燃成分。

其特点是稳定性好,毒性小,对材料的使用性能影响小,阻燃性持久,是一种较为理想的方法。

但操作和加工工艺复杂,在实际应用中不及添加型阻燃方法普遍。

磷系阻燃剂阻燃PBT复合材料的研究进展

磷系阻燃剂阻燃PBT复合材料的研究进展

磷系阻燃剂阻燃PBT复合材料的研究进展赵婉;何敏;张道海;秦舒浩;于杰【摘要】The inorganic phosphorus flame retardant agent (such as red phosphorus, phosphate)and organic phosphorus flame retardant agent (such as phosphonic acid salt, phosphate)were introduced,and the mechanism of the phosphorus flame retardant agent retardedpoly(butylene terephthalate)was expounded.Research progress of phosphorus flame retardant retarded poly(butylene terephthalate)has been reviewed in recent years.%介绍了无机磷系阻燃剂(如红磷、磷酸盐)和有机磷系阻燃剂(如次膦酸盐、磷酸酯),并且阐述了这些磷系阻燃剂阻燃聚对苯二甲酸丁二醇酯的阻燃机理,综述了近几年来磷系阻燃剂阻燃聚对苯二甲酸丁二醇酯的研究进展。

【期刊名称】《现代塑料加工应用》【年(卷),期】2016(028)005【总页数】4页(P48-51)【关键词】无机磷系阻燃剂;有机磷系阻燃剂;聚对苯二甲酸丁二醇酯;复合材料;进展【作者】赵婉;何敏;张道海;秦舒浩;于杰【作者单位】贵州大学材料与冶金学院,贵州贵阳,550025; 国家复合改性聚合物材料工程技术研究中心,贵州贵阳,550014;贵州大学材料与冶金学院,贵州贵阳,550025; 国家复合改性聚合物材料工程技术研究中心,贵州贵阳,550014;贵州大学材料与冶金学院,贵州贵阳,550025; 国家复合改性聚合物材料工程技术研究中心,贵州贵阳,550014;贵州大学材料与冶金学院,贵州贵阳,550025; 国家复合改性聚合物材料工程技术研究中心,贵州贵阳,550014;贵州大学材料与冶金学院,贵州贵阳,550025; 国家复合改性聚合物材料工程技术研究中心,贵州贵阳,550014【正文语种】中文聚对苯二甲酸丁二醇酯(PBT)是半结晶热塑性聚合物,具有较高的机械强度、耐化学性和优良的易加工成型性等[1],主要应用于电子电器、汽车工业和办公器械等领域。

尼龙-66的无卤阻燃研究与进展

尼龙-66的无卤阻燃研究与进展

尼龙-66的无卤阻燃研究与进展韩红丽;李巧玲;崔丽丽【摘要】尼龙-66属易燃的工程材料,为拓宽其应用领域,需对其进行阻燃处理.笔者综述了近几年尼龙-66常用无卤阻燃剂的种类及其阻燃机理.【期刊名称】《合成技术及应用》【年(卷),期】2007(022)003【总页数】4页(P34-37)【关键词】尼龙-66;无卤阻燃剂【作者】韩红丽;李巧玲;崔丽丽【作者单位】中北大学材料学院,山西,太原,030051;中北大学材料学院,山西,太原,030051;中北大学材料学院,山西,太原,030051【正文语种】中文【中图分类】TQ342.12尼龙自美国杜邦公司推出至今,已发展成为品种最多、应用最广的工程塑料。

而尼龙-66是尼龙系列产品中产量最大、应用最广的品种之一。

它具有机械强度高、刚性大、增强性强的特点,是生产工程塑料的主要原料[1],可用于制造各种机械、汽车、化工、电子电气装置的零部件[2]。

但尼龙-66较易燃,燃烧时容易滴落、起泡,限制了其在交通、建筑、电子电气等领域的应用,要使尼龙-66阻燃性能达到要求,必须添加适量的阻燃剂。

因此设计一种既能有效保持尼龙-66的力学性能,又低烟、低毒的有效阻燃体系,即开发尼龙-66的无卤阻燃越来越受到人们的关注。

1 尼龙-66阻燃的途径尼龙-66的阻燃主要通过两种途径实现:a) 使用添加型阻燃剂。

即通过机械共混方法,将阻燃剂和尼龙-66机械地掺和在一起,然后熔融挤出,使其获得阻燃性。

对于尼龙-66的添加阻燃多采用复配阻燃体系,在阻燃级别相同的情况下,采用复配阻燃体系可减少阻燃剂的用量。

b) 使用反应型阻燃剂。

阻燃剂是作为一种反应单体参加反应,并结合到尼龙-66大分子的主链或侧链上去,使尼龙-66本身含有阻燃成分。

其特点是不存在阻燃剂挥发、溶出、迁移和渗出问题,且由于其自身的化学结构,不需要阻燃处理即具有本质阻燃性,在将来有可能取代一部分以阻燃剂处理的阻燃高分子材料,是一种较为理想的方法,但操作和加工工艺复杂,成本也比较高,适用于具有高附加值的高弹性尼龙、聚酯、纤维等的阻燃。

反应P–N膨胀阻燃剂化学阻燃尼龙66 的研究

反应P–N膨胀阻燃剂化学阻燃尼龙66 的研究

反应P–N膨胀阻燃剂化学阻燃尼龙66 的研究徐久升摘要:以自制的1–氨基苯甲酸–3–酰胺基苯甲酸–苯基氧化膦(BNPPO)、己二胺、尼龙(PA)66 盐为原料,通过高压(1.7 MPa,210℃),高温(280℃,0.1 MPa) 两步聚合制备了阻燃PA66。

傅立叶变换红外光谱分析表明,BNPPO盐含有N–P 膨胀结构;热重分析表明,阻燃PA66 较纯PA66 有更优异的热稳定性;极限氧指数及垂直燃烧法结果显示,阻燃PA66 具有良好的阻燃性能;锥形量热法及扫描电子显微镜分析发现,BNPPO 以气相阻燃及凝聚相协效阻燃作用于PA66 基体材料;力学性能结果显示,BNPPO 化学阻燃PA66 依然保持有良好的力学性能。

关键词:PA66 ;阻燃性能;力学性能;阻燃机理;氮磷阻燃剂Study of Chemical Flame Retardancy PA66 with a Reaction P–N Intumescent Flame RetardantXu JiushengAbstract :A flame retardancy PA66 was prepared by the reactions between PA66 salt hexamethylenediamine and bis-(amidecarboxyphenyl)–(amide-carboxyphenyl-ethyl) phenyl phosphine oxide(BNPPO) which synthesized in lab. The FTIR results reveal that BNPPO contain P–N groups. The TGA results show that BNPPO possesses significantly thermal stability. Meanwhile,FTIR results reveal that BNPPO is grafted in the chain of PA66 successfully. Compared to pure PA66,the flame retardancy PA66 is provided with excellent thermal stability by TGA results. The LOI and UL 94 test results of flame retardancy PA66 reach to 28% and V–0 respectively when the content of BNPPO prepolymer reaches to 3wt%. The flammability and flame retardancy mechanism of flame retardancy PA66 are also studied by pyrolysis combustion flow calorimetry(PCFC) and SEM respectively. The mechanical properties results show that flame retardancy PA66 keep favorably mechanical properties with BNPPO.Keywords :PA66 ;flame retardancy property ;mechanical property ;flame retardancy mechanism ;P–N flame retardancy尼龙(PA)66 是一种广泛应用的工程塑料,具有熔点高、强度大、耐磨性好等优点,但PA66 的易燃性阻止了其在航空、电气、军工等特殊领域的应用。

新型阻燃剂_2_羧乙基苯基次膦酸及其阻燃共聚酯的制备_表征及热性能研究_英文_

新型阻燃剂_2_羧乙基苯基次膦酸及其阻燃共聚酯的制备_表征及热性能研究_英文_

Synthesis,Characterization and Therm al Properties of a Novel Phos2 phorus2Containing Copolyesters B ased on22carboxyethyl(phenylphos2 phinic)AcidHaiming Liu,1Rui Wang,2Xi Xu,1Xiao Kai Sun,2Xiaohui Zhou2 1Depart ment of Polymer Science and Materials,State Key Laboratory of Polymer Materials Engineering,Sichuan U niversity,Chengdu610064,China;2Depart ment of Materials Science and Engineering,Beijing Instit ute of Clot hing Technology,Beijing100029,ChinaAbstract:A novel reactive p ho sp horus2containing monomer,22carboxyet hyl(p henylp hosp hinic)acid (CEPPA)and corresponding p hosp horus2containing copolyesters were synt hesized and characterized by F TIR,1H NMR spect ra.The copolyester,which contains0.6wt%p hosp horus,can reach a lim2 iting oxygen index(LO I)value of29.4%.The t hermal p roperties of p hosp horus2containing flame re2 tardant copolyesters were investigated by differential scanning calorimeter(DSC),t hermogravimetry (T G)under air and nitrogen.DSC shows t hat t he glass2t ransition temperat ures(T g),t he melting point s(T m)and t he melting crystallizatio n temperat ures(T mc)of copolyesters decrease wit h increas2 ing p ho sp horus content,Meanwhile t he cold crystallization temperat ures(T cc)increase wit h increas2 ing p ho sp horus content.T GA shows t hat t he initial deco mposition temperat ures(T id)decrease and t he maximum2rate decomposition temperat ures(T max)increase at air and nit rogen at mo sp here,while char yields increase,wit h t he increase of p hosp horus content.The residues of copolyesters after T GA testing were st udied by Fourier transform infrared spectro scop y to better understand t he mechanism of flame retardancy,which show t hat t he charred residue is mainly composed of Ar2P group containing species.K ey w ords:flame retardant;synt hesis;p ho sp horus2containing copolyesters;t hermal properties Document code:A Article ID:100124381(2008)Suppl220420207IntroductionPolyester resin materials are widely used in a wide range of applications such as flooring,surface coatings,vehicle body panels and appliance housings due to having good mechanical and optical p roperties, resistance to fatigue,resistance to creep f ract ure and wear aspect s.1-3However,t he poor flame retardancy of polyester resins limit s t heir usage in which specific fire retardant properties are required.PET resins can be imparted flame retardance eit her by adding flame retardant s or by incorporating reactive flame retard2 ant s.Incorporating a chemically reactive p hosp horus2 containing monomer into t he polymer chain is one of t he most efficient met hods of imp roving t he flame re2 tardancy of polyesters,which impart s polyesters good flame retardancy,t hermal stabilities,and sim2 ultaneously can minimize negative impact upon p hysi2 cal and mechanical p roperties of t he polymer.4-7 Recently,t he researches mainly focus on t he re2 active p hosp horus2containing flame retardant.The mo st important met hod of synt hesis of flame retard2 ant polyesters is t he esterification of diols wit h p hos2 p horus2containing diacid such as22carboxyl et hyl (p henyl)p ho sp hinic acid(CEPPA).324,8211CEPPA containing carboxylic and p hosp hinic acid f unctional2 ities is a biof unctional copolymerizable p ho sp horus mo nomer disclosed by U.S.patent12,13,and can be copolymerized wit h et hylene glycol(EG)and terep h2 t halate(TPA)to form flame retardant poly(et hlene terep ht halate)and renders t he resulting copolyesters and fibers good fire resistance p roperties and t hermal stabilities.024 材料工程/2009年增刊2(SAMPE China2009) In t his work,we have synt hesised a p hosp horus2 containing flame retardant,namely22Carbo xyl et hyl (p henyl)p ho sp hinic acid(CEPPA),which after2 wards was int roduced into esterificatio n and polycon2 densatio n system to obtain polyesters wit h enhanced content of p ho sp horus and of aryl group s in t he st ruct ure.The incorporation of a bulky pendant group containing p ho sp horus into t he polyesters is expected to introduce new interesting properties such as high LOI value,enhanced t hermal stability,flame resistance and flexibility.The performances of t he corresponding copolyesters,such as t hermal p roper2 ties and flame retardancy,were st udied by t he con2 ventional met hods:DSC,T GA and LO I,respective2 ly.1 ExperimentalMaterialsDichlorop henyl p hosp hine(DCPP)and acrylic acids were p urchased f ro m Sinop harm Chemical Rea2 gent Beijing Co.,Lt d.(Beijing,China)wit h a p uri2 ty of97%and used wit hout f urt her p urification.Te2 rep ht halic acid(TPA),et hylene glycol(EG),and Sb2O3were supplied by Sinopec Tianjin Pet rochemi2 cal Co.,Lt d.(Tianjin,China).All ot her materials were commercially available.Synthesis of22carboxyethyl(phenylphosphinic)acid (CEPPA)22carboxyet hyl(p henylp ho sp hinic)acid(CEP2 PA)was synt hesized according to t he reported litera2 t ures.12,13Dichlorop henylp hosp hine,200.0g(1.12mol) was placed in a reactor under a nit rogen p urge, stirred and warmed to70℃.At temperat ure,drop2 wise addition of acrylic acid92.6g(1.29mol),was started and t he temperat ure was maintained at802 85℃.When t he addition was complete,t he mixt ure was maintained briefly at80285℃.and t hen heated f urt her to1252130℃.The mixt ure was maintained at 1252130°C for one hour and t hen cooled to ambient temperat ure.The desired22carbo xyet hyl(p henyl) p hosp hinic acid can be obtained after hydrolysis of t he above mixt ure which are composed of t he cyclic anhydride of CEPPA acid and t he mixed anhydride of acrylic acid wit h32chlorocarboxyet hyl(p henylp hos2 p hinic)acid.The synt hetic route is shown in Figure1.Fig11 The synt hetic route of CEPPASynthesis of phosphorus2containing copolyesters TPA,EG,CEPPA,and Sb2O3were int roduced in a15002ml four2necked round2bottomed flask e2 quipped wit h a t hermometer and a mechanical stirrer. The mixt ure was heated in nitrogen at mosp here to 235℃under a p ressure of0.3M Pa until t he conver2 sion of t his esterification is at96%.Then t he esteri2 fication product s were t ransferred to a1.0L reactor equipped wit h a nit rogen inlet,a condenser,and a mechanical stirrer.The reactor was fitted to a vacu2 um system and evacuated to remove all oxygen.The reactor was t hen heated to2802285℃under a p res2 sure of less t han50Pa and maintained for223h to give t he p ho sp horus2containing copolyesters.Finally t he heat and vacuum were removed and t he resulting polymer melt s were ext ruded at t he N2pressure and cooled wit h water.Thus copolyesters containing dif2 ferent amount of CEPPA were synt hesized.CharacterizationThe st ruct ure of CEPPA was determined by F T2 IR,1H NMR spect ra,which were performed on a Nicolet F TIR670inf rared spect rop hotometer(Nico2 let,U SA)and a Bruker500(5002M Hz)NMR spec2 t rometer(Fallanden,Switzerland)wit h DMSO2d as a solvent,respectively.The struct ure of p ho sp horus2 containing copolyesters was recorded by using a Nicolet F TIR670inf rared spectrop hotometer.The t hermal behavior of t he copolyesters sam2 ples was recorded using a DSC6200(Seiko Instru2 ment s Inc.,J apan).Indium was used as a standard for temperat ure calibration and t he analysis was made under a co nstant st ream of nit rogen(50ml/min). The weight s of DSC specimens are about5mg.They were heated to300℃,kept at t his temperat ure for10 min to eliminate any previous t hermal history,and124 Synthesis,Characterization and Thermal Properties of a Novel Phosphorus2containing Copolyesters Based on…t hen immediately cooled to room temperat ure.After t he t hermal t reat ment ,t hey were heated at 20℃/min to obtain t he melting endot herm and t he crystal 2lization exot herm f rom 25℃to 300℃and t hen were cooled at -20℃/min f rom 300℃to 50℃to obtain t he cooling crystallization exot herm.The t hermogravimet ric analysis (T GA )was per 2formed wit h a WC T 22D Thermal Analyzer (Beijing ,China )at a heating rate of 20°C /min under air at 2mo sp here and a nit rogen at a flow rate of 50ml/min ,and t he temperat ure ranged f rom room temperat ure to 800℃.Continuous records of sample temperat ure ,sample weight ,and it s first derivative were taken.The limiting oxygen index (LOI )values were measured on a J F 23oxygen index meter (Jiangning ,China )according to ASTM D2863,wit h sheet di 2mensions of 100mm ×6.5mm ×3mm.To investigate t he mechanism of flame retardan 2cy ,t he st ruct ure of chars of t he p hosp horus 2co ntai 2ning copolyesters after T GA test at air at mosp here was recorded by using a Nicolet F TIR 670infrared spect rop hotometer.2 R esults and discussionSynthesis and characterization of CEPPACEPPA was synt hesized t hrough t he reaction of DCPP and acrylic acid ,and sequent hydrolysis ac 2cording to Figure 1.The st ruct ure of CEPPA was determined by F TIR ,1H NMR spect ra.Figure 2shows t he F TIR spect rum of CEPPA.The st rong band in t he 330022500cm -1range is as 2signed to p ho sp horus acid and carboxylic acids O —H st retching ,which indicates t he formation of P —O H and C —O H.The stretching band observed near1731.13cm -1is att ributed to t he carboxylic acid C =O stretching.In addition ,t he peaks at 1225.90,1419.59and 943cm -1are assigned to carboxylic acid characteristic C —O st retching and in 2plane and out 2of 2plane O —H bending bands ,respectively.Simultaneously ,t he peak observed at about 2907.52cm -1belongs to t he absorption of —CH 2.The peaks at 1143.6and 1122.36cm -1are att ributed to P =O absorption.The peaks at 1050and 968cm -1can be assigned to p ho sp horus acid in 2plane and out 2of 2plane P —O H st retching.14However ,no charac 2teristic absorption peak for P —Cl is observed at a 2round 3002600cm -1,which demonst rates t hat ,t he reactio n of CEPPA proceeded completely.Figure 3shows t he 1H NMR spect rum of CEP 2PA.The peak at about 11.56pp m should be assignedto t he active 2O H (e )of CEPPA (carboxylic acids ).And t he multiplet between 7.48and 7.73pp m corre 2sponds to t he p henyl ring p rotons (a ).The peak at about 2.49pp m is assigned to t he solvent DMSO 2d6(f ).The multiplet between 2.26and 2.30,between 1.96and 2.02pp m can be assigned to t he C H 2p ro 2tons (c ,d )respectively.3,4Above characterizations confirm t hat t he target p roduct CEPPA was synt hesized successfully.Synthesis and characterization of phosphorus 2contai 2ning copolyestersFigure 4shows t he F TIR spect rum of t he p hos 2p horus 2containing copolyester.The absorption of —CH 2is observed at about 2977160cm -1.Thepeaksat1716136and1249.22cm -1are assigned to C =O and C —O ab 2sorption ,respectively.The peaks at 116148and1100.49cm -1are att ributed to t he vibration f rom P224 材料工程/2009年增刊2(SAMPE China 2009) =O gro up and t he peak at 1020.52cm -1can be as 2signed to P —O —C absorption.Meanwhile ,t he st rong band in t he 330022500cm -1range assigned to p hosp horus acid and carbox 2ylic acids O —H st retching disappears.In addition ,t he absorption of p ho sp horus acid in 2plane and out 2of 2plane P —O H st retching observed at 1050and 968cm 21,respectively disappears ,which indicates t he re 2action of CEPPA and EG ,t he formation of p ho s 2p horus acid ester and Carboxylic acidester.Figure 4 F TIR spectrum of PET 2co 2CEPPATable 1 Phosphorus Content ,Phosphorus Comonomer Molar Fraction ,and Thermal Propertiesof Various Phosphorus 2Containing PolyestersSample code P /wt %CEPPA/mol %T g /℃T cc /℃T m /℃T mc /℃PET00079.07134.33255.24200.49PET030.311.1877.75135.77249.72184.36PET060.622.3775.84151.93245.00181.18PET090.923.1875.18160.80241.65169.78PET12 1.226.7772.20163.17236.94160.38PET15 1.529.5171.51164.38230.12152.95PET181.831.6870.68165.85228.43149.90Differential scanning calorimetry (DSC)analysisDifferential Scanning Calorimet ry (DSC )is use 2f ul in t he determination of relationship s between p roperties and molecular st ruct ures.Samples were heated f rom 25to 300℃in nit rogen at mosp here at a flow rate of 50ml/min and a heating rate of 20℃/min ,and t hen were cooled f rom 300to 25℃at a flow rate of 50ml/min and a heating rate of 220℃/min.As shown in Figure 5,6and Table I ,t he glass 2t ran 2sition temperat ures (T g )and t he melting point s (T m )of copolyesters decrease wit h increasing p ho sp horus content.This is because incorporation of CEPPA dis 2rupt s t he original struct ure and makes t he resulting copolymer chain more flexible.Meanwhile t he cold crystallization temperat ures (T cc )increase and t he melting crystallization temperat ures (T mc )decrease wit h increasing p hosp horus content ,respectively ,in 2dicating difficulty in crystallization wit h increased CEPPA concent ration.3,16In addition ,t he addition of CEPPA in PET greatly affect s t he crystallization and st ruct ure.Fig 2ure 5,6shows t hat t he T m and T mc of t he copolyes 2ters decrease wit h t he increasing content of CEPPA.And t he T cc value increases wit h t he increasing con 2324 Synthesis ,Characterization and Thermal Properties of a Novel Phosphorus 2containing Copolyesters Based on …tent of CEPPA.While t he content of p hosp horus va 2ries f rom 0wt %to 1.8wt %,t he T mc and T m value of copolyesters varies from 200.49℃to 149.90℃and f rom 255.24℃to 228.43℃,respectively.And t hecontent of p ho sp horus varies from 0wt %to 1.8wt %,t he T cc value of copolyesters varied from 134.33℃to 165.85℃.Table 2 Decomposition Temperature ,Residual Char ,and LOI Values of Phosphorus 2Containing CopolyestersSample code Air at mosphereT id /℃T max /℃Char yield at 700℃/wt %N 2at mosphereT id /℃T max /℃Char yield at 700℃/wt %LOI PET0418.2445.38/575.21 1.37415.79453.279.2023.3PET03412.2448.80/570.39 1.40415.55454.0411.426.9PET06411.8449.11/575.52 1.44414.72454.2014.729.4PET09411.8450.97/576.30 1.90414.50455.2915.130.4PET12410.4451.13/581.43 2.10414.07459.5315.531.5PET15409.3451.60/583.76 2.82413.86461.2316.733.7PET18402.3453.15/574.603.41412.16461.3917.735.9Therm al decomposition behaviors of phosphorus 2con 2taining copolyestersThe effect of CEPPA on t he t hermal stability of t he copolyesters was st udied by means of t hermo 2gravimet ric experiment s carried out at a heating rate of 20℃/min under air and nit rogen at mosp here.Figure 7,8show t he mass lo ss and mass lo ss rate curves obtained from T GA experiment s in air and nit rogen ,Table II gives t he initial decompo sitiontemperat ures (T id ),t he maximum decompo sition rate temperat ures (T max )and t he residues of samples at 700℃.As can be seen in Figure 7,8and table II ,t he p ure PET and t heir copolyesters have similar t hermal stabilities.And t he initial decompo sition temperat ures (T id )of t he copolyesters decrease wit h increasing p ho sp horus content under nit rogen and air at mo sp heres ,which is att ributed to t he poorer stabil 2ity of O =P —O t han —C —C —bond.17,18424 材料工程/2009年增刊2(SAMPE China 2009) Furt hermore,Figure7shows two stage decom2 position patterns.The first is similar to t heir t hermal degradatio n in nit rogen(Figure8),located f rom a2 bout3002520℃.The second is not found in t heir degradatio n in nit rogen at mo sp here,which is owing to a f urt her oxidative degradation of carbonaceous residue located from5202650℃.The maximum2rate degradation temperat ures of t he first stage increase wit h increasing p hosp horus content under nit rogen and air at mo sp heres.Howev2 er,t he maximum2rate degradation temperat ures of second stage under air at mosp here slightly changes wit h increasing p ho sp horus content.This behaviour may be att ributed to p ho sp horus2containing group s t hat decompo se at earlier stages and forms a p ho s2 p horous2rich char layer.The t hick layer prevent s f urt her decompo sition of t he copolyesters by raising t he maximum2rate degradation temperat ure of second stage and leads to a high char yield.On t he ot her hand,t he char yield of copolyesters increase wit h increasing p hosp horus content under ni2 t rogen and air at mosp here.Simultaneously,t he a2 mount of char formed f ro m t he samples depends on t he amount of CEPPA,and correlates well wit h t he LOI values of t he copolyesters.This is because p ho s2 p horus2containing copolyesters are easy to form p ho s2 p horic acid or anhydrides which can cause acid2catal2 ysed char accumulation and tend to inhibit complete oxidation of t he carbon to carbon dioxide,and conse2 quently contributed to increase t he amount of char and t he LO I values of copolyesters.Thus,t he char formation can cause increase in t he amount of residue and a retardation of t he release of volatile f uel,lower t he t hermal co nductivity of t he burning materials, and consequently,reduce t he mass loss of t he poly2 mers.19-21Limited oxygen index(LOI)testTo investigate flame retardancy of p hosp horus2 containing copolyesters,t he limited oxygen index (LO I)values of t he copolyesters wit h different CEP2 PA content s,and t he compositions of p hosp horus2 containing copolyesters and correspo nding LO I values are listed in Table II.The LOI values of copolyesters increase wit h t he increasing content of CEPPA. While t he content of p hosp horus reaches1.8wt%,t he LO I value of copolyester is reached35.8demon2 st rating t hat CEPPA has good flame retardant effect on t he copolyesters.The structure of the residues of copolyesters after TG AtestFigure9 F TIR spectra of residues of PET18after T GAtest at different temperat ures at air at mosphereTo f urt her understand t he oxidative t hermal de2 compo sition of p hosp horus2containing copolyesters, Changes in t he F TIR spectra wit h temperat ure for t he copolyester(PET18)at air at mosp here are inves2 tigated.Figure9displays t he F TIR spectra of resi2 dues after T GA test f rom room temperat ure to 525℃.As shown in F TIR spect ra,at450℃,t he ab2 sorption bands between2500and3700cm-1assigned to O—H group become broadened.The intensities of absorption bands at170021720cm-1and124021250 cm-1which are att ributed to C=O and C—O st retc2 hing,respectively decrease f rom room temperat ure to 450℃.At450℃,The peak at1122.39cm-1(P=O absorption)disappears and t he intensity of t he peak at1099.24cm-1(P=O absorption)decreases,indi2 cating t he gradual degradation of t he group s in t he rage f rom room temperat ure to450℃.22,23Simultaneously,at400℃,new peak assigned to C=C st retch of benzene ring and Ar2P st retch was observed at1600-1550cm-1and about1415cm-1, respectively indicating t he existence of species contai2 ning Ar2P group.The copolyester after t hermal deg2 radation at575℃at air at mosp here shows a typical spect rum of highly carbonized materials.As shown in Figures8,at temperat ure up to575℃,changes in t he peak absorption became evident.The vibration band of C—H group appearing at2980-2960cm-1524 Synthesis,Characterization and Thermal Properties of a Novel Phosphorus2containing Copolyesters Based on…disappear and t he absorption bands between2500and 3700cm-1assigned to O—H group become more broadened.24At525℃,The peaks at1700-1720cm-1and 124021250cm-1att ributed to C=O and C-O st retc2 hing,respectively and t he peaks at1122.39and 1099.24cm-1assigned to P=O absorption respec2 tively,decrease nearly entirely.The intensity of t he broadened peaks at160021610cm-1and1415cm-1 greatly increase,which show t he residue is mainly composed of Ar2P group and p hosp hate.A similar suggestion was reported by Wei Liu.253 ConclusionsCEPPA can be copolymerized wit h TPA and EG in t he conventio nal melt polymerizatio n p rocess used for PET.The copoyester,which contains0.6% p hosp horus,can reach a limiting oxygen index(LO I) value of29.4%.Incorporation of CEPPA into PET increases t he cold crystallization temperat ure and re2 duces t he glass2transition temperat ures,t he melting point s,t he heating crystallization temperat ures of t he resulting copolymers.Meanwhile,t he t hermal stabilities of p hosp2containing copolyesters de2 crease,while char yields increase wit h increasing p hosp horus content.F TIR spectra of residues of t he copolyester show t hat t he charred residue is mainly composed of Ar2P group containing species.References[1] Tachita Vlad2Bubulac;Corneliu Hamciuc;Oana Petreus.HighPerform.Polym.2006,18,255.[2] P. A.At kinson1;P.J.Haines;G.A.Skinner;T.J.Lever.J.Therm.Anal.Calorim.2000,59,395.[3] Jawed Asrar;Aierre A.Berger;J effrey Hurlbut.J Polym SciPart A:Polym Chem1999,37,3119.[4] Li2Sheng Wang;Hui2Bao Kang;Shu2Bo Wang;Y ong Liu;RanWang.Fluid Phase Equilibria2007,258,99.[5] Li2Sheng Wang;Xin2Lan Wang;Gui2Lin Yan.Polym.Degrad.Stab.2000,69,127.[6] Shinn2J en Chang;Yuung2Ching Sheen;Rong2Shuh Chang;Feng2Chih Chang.Polym.Degrad.Stab.1996,54,365.[7] De2Y i Wang;Xin2Guo Ge;Yu2Zhong Wang.Macromol.Mater.Eng.2006,291,638.[8] Hong Zhao;Yu2Zhong Wang;De2Y i Wang;Bo Wu;Dan2Qi Chen;Xiu2Li Wang;Ke2Ke Yang.Polym.Degrad.Stab.2003,80, 135.[9] Mei2Lan Chena;Wei Yan;Y ongxin Chen;Zhishen Jia;YanZhub.J.Chromatogr.A2007,1155,47.[10] Sergei V.Levchik;edward D.Weil.J.Fire Sci.2006,24,345.[11] Seung Cheol Yang;J ae Pil K im.J.Appl.Polym.Sci.2008,108,2297.[12] Weinkauff DJ,Paulik Patent6320071;2001.[13] Weinkauff DJ,Paulik Patent6399814;2002.[14] Li2Ping Gao;De2Y i Wang;Yu2Zhong Wang;J un2Sheng Wang;Bing Yang.Polym.Degrad.Stab.2008,93,1308.[15] Chenguang Yao,Tingxiu Xie,Guisheng Yang.J.Appl.Polym.Sci.2008,109,3562.[16] Handbook of Chemistry and Physics,73rd edition,edited by Da2vid R Lide,1993.[17] Lin CH,Wang CS.Polymer2001,42,1869.[18] Avondo G,Vovelle C and Delbourgo bust.Flame1978,31,7..[19] Suebsaeng T,Wilkie C A,Burger V T,Carter J and Brown C E.J.Polym.Sci.:Polym.Let.Ed.1984,22,625.[20] Brauman S K.J.Fire Ret.Chem.1980,7,61.[21] Hanfang Zhong;Ping Wei;Pingkai Jiang;and Genlin Wang.FireMater.2007,31,411.[22] Weiyi Xing;Lei Song;Hongdian Lu;Yuan Hu;Shun Zhoua.Polym.Adv.Technol.2008,19,1.[23] Murashko EA,Levchik GF,Levchik SV,Bright DA,Da2shevsky S.J.Appl.Polym.Sci.1999,71,1863.[24] Wei Liu;Dan2Qi Chen;Yu2Zhong Wang;De2Y i Wang;Ming2Hai Qu.Polym.Degrad.Stab.2007,92,1046.基金项目:中国石油化工股份有限公司(206031)作者简介:刘海明(1979—),男,在读博士,研究方向为高分子材料结构与性能。

反应型含磷阻燃剂的应用研究进展_李清英

反应型含磷阻燃剂的应用研究进展_李清英

2012年第31卷第8期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·1751·化工进展反应型含磷阻燃剂的应用研究进展李清英1,夏正斌1,范方强1,陈均炽2(1华南理工大学化学与化工学院,广东广州 510640;2广东嘉宝莉化工集团股份有限公司,广东江门 529085)摘要:含磷阻燃剂具有低烟无毒、阻燃效果好的特点,是典型的无卤阻燃剂。

本文阐述了含磷阻燃剂的阻燃机理,综述了将反应型含磷阻燃剂引入聚氨酯、环氧树脂和丙烯酸树脂等体系中所采用的不同改性方法,这些反应型阻燃聚合物均是主链或侧链含磷。

本文还对近几年来国内外关于含磷阻燃剂在这些体系中的应用研究进展进行了概述,提出未来应加深对阻燃剂协同机理及含磷阻燃剂水性化和光固化的研究。

关键词:含磷阻燃剂;聚氨酯;环氧树脂;丙烯酸中图分类号:TQ 021.8 文献标志码:A 文章编号:1000–6613(2012)08–1751–06 Research progress in reactive phosphorus-containing flame retardantLI Qingying,XIA Zhengbin,F AN Fangqiang,CHEN Junchi(1School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China;2Guangdong Carpoly Chemical Group Co.,Ltd,Jiangmen 529085,Guangdong,China)Abstract:Phosphorus-containing flame retardant,which exhibits the characteristics of low smoke,non-toxic and good flame retardancy,is a significant type of halogen-free flame retardants. In this paper,we described the mechanism of phosphorus-containing flame retardant,and introduced the different modification methods to incorporate phosphorus into the main chain or side chain of polymer,especially in the application of polyurethane,epoxy and acrylic resin. In addition,we reviewed the development of reactive phosphorus-containing flame retardant in recent years. Finally,the suggestions for further study on the synergistic mechanism of flame retardants as well as the development of the waterborne and UV-curable flame retardant polymer were proposed.Key words:phosphorus-containing flame retardant;polyurethane;epoxy;acrylic阻燃聚合物材料已经广泛应用于建筑、电子电器和交通等领域[1],并且需求量呈现不断上升的趋势。

阻燃剂的分类和阻燃剂用途

阻燃剂的分类和阻燃剂用途

阻燃剂的分类和阻燃剂用途阻燃剂,又称难燃剂,耐火剂或防火剂:赋予易燃聚合物难燃性的功能性助剂;依应用方式分为添加型阻燃剂和反应型阻燃剂.阻燃剂防火液,无毒、无腐蚀剂、防火效果好、价格低廉、使用方便.阻燃剂的分类:阻燃聚丙烯①卤-锑体系,即气相阻燃机理.常用的卤系阻燃剂是十溴二苯醚、六溴环十二烷、八溴醚、四溴双酚A等,加上阻燃协效剂,具有添加量少,阻燃效果好的特点.但卤素类阻燃剂一直受到绿色环保组织的非难,以至在有些国家受到制约,被明令禁止使用.然而美国、日本等国家仍允许使用,那么作为发展中国家的中国,卤系阻燃剂的寿命至少还有10年以上.②用含溴烷基磷酸酯来处理PP.这类阻燃剂兼有PBr协同效应,使阻燃效果显着,同时还能改善PP的流变性及加工性能,对PP的物理机械性能影响也小.③近十年来在PP阻燃技术上,以意大利都灵大学教授Camino首创的膨胀型阻燃剂发挥了巨大的作用,这类PN系阻燃剂具有高效、热和光稳定性高、低毒、低烟、低腐蚀,对加工和机械性能影响小,不会引起环境污染.在PP中只要添加2530份即可达到UL94V0级.国内刚有膨胀型阻燃剂产品的生产报道.④丙烯酸五溴苄酯与三元乙丙橡胶的接枝共聚物阻燃的聚丙烯.这类阻燃处理的PP具有很高的抗冲击强度,在某些场合可用作工程塑料.⑤无机填充料阻燃聚丙烯所谓的无机填充料即指氢氧化铝和氢氧化镁,它们具有阻燃、抑烟的作用.但要达到预期的效果,微粒化及表面处理是关键技术,应用于不同塑料.要慎重选择匹配的表面活性剂,使其与塑料相容性好,并在塑料中得以均匀的分散,又不致太大地影响塑料的机械性能.由于ATH和氢氧化镁能在不同的温度范围内起到阻燃抑烟作用,因此二者的复配使用可以使塑料在较宽的温度范围内发挥持续阻燃效果.这里要强调的是,在用氢氧化镁处理PP时,为达到更好的阻燃效果及合适的机械性能,在添加氢氧化镁混炼工艺中,宜采用二步加料方式,这样会得到比一次加料更好的结果.2.2 阻燃聚乙烯①一般来讲,适用于PP的阻燃剂都可用于PE处理技术中,但由于两者结构上的差异,热稳定性和裂解温度的不同,某些芳香族溴系阻燃剂如十溴二苯醚在PE特别是在LDPE上的应用效果会更好一些.②这里还要指出,氯系阻燃剂如氯化石蜡、敌克隆美国西方石油化工公司产品商品名在某些场合中应用效果会更好.比如敌克隆在电缆用PE绝缘层中的应用,使PE有极佳的耐电压性能和阻燃效果.有的文献报道氯系阻燃剂与溴系阻燃剂联用时,会产生某种协效作用,尽管不明显,但比它们单独使用阻燃效果要好.2.3 阻燃聚氯乙稀在PVC中添加大量增塑剂,使之成为软PVC时,对它的阻燃处理就很有必要.这里需强调的是,除了阻燃剂以外,抑烟也是PVC迫切需要解决的问题.①选用阻燃增塑剂———芳基磷酸酯、芳基烷基磷酸酯这里要慎重选用阻燃增塑剂,避免在增加阻燃性能的同时恶化了塑料的其它性能,特别要注意材料的低温柔顺性.②抑烟剂传统的抑烟剂有三氧化钼、氢氧化镁、八钼酸铵、硼酸锌、二茂铁等物.添加钼系抑烟剂一般量在2%3%之间,可降低30%80%的生烟量,如与ATH、氢氧化镁或碳酸钙复合使用会有更好的效果.2.4 阻燃聚苯乙烯和高抗冲聚苯乙烯①对于挤出PS泡沫来讲,使用普通的六溴环十二烷HBCD即可达到阻燃目的.这种处理不必使用阻燃协效剂,因为起不到协效作用,反而由于它的存在会使体系燃烧时产生熔滴.②对于常用的普通聚苯乙烯阻燃,要求使用热稳定性能好的HBCD,PS的加工温度在180℃210℃左右,在此加工温度下,普通的HBCD会产生不稳定,易分解.因此,要求使用耐高温的HBCD它耐温达230℃240℃.③高抗冲聚苯乙烯阻燃技术更难,由于它要用于电子、电器元件,阻燃级别要求更高,需达到UL94V0级.如果使用溴系阻燃剂就可达到这种要求,但要注意材料的耐光性、热变形温度、抗冲强度、阻燃剂有否渗出等各方面因素是否受到影响.常用的溴系阻燃剂有十溴二苯醚、溴化环氧树脂BER、耐高温HBCD等.2.5 阻燃ABS①处理ABS阻燃时一定要考虑冲击强度是否下降、热变形温度、熔体流动指数和光稳定性是否受到影响.常用的有十溴二苯醚、溴化环氧树脂BER、四溴双酚A等.一些新开发的溴化环氧树脂BER能保持ABS原有的热稳定性、热老化性、加工性、光稳定性以及阻燃剂本身不渗出等特点.②这里为保证ABS原有的抗冲击强度、光泽性以及透明度,可使用胶体五氧化二锑为阻燃协效剂.③GE公司开发的阻燃硅树脂SFR100和SFR1000能有效地应用于聚烯烃阻燃处理中,当它们与硬脂酸镁或ATH、APP以及季戊四醇联用时,不仅能促进炭层的形成,以阻止烟的产生和阻挡火焰的蔓延,还能改善聚烯烃表面的光滑性.尤其与硬脂酸镁合用时可提高阻燃体系的抗冲击强度,所以硅树脂在ABS、HIPS的阻燃处理技术中是一种很好的阻燃剂,可惜价格太贵,非特殊用途,一般很少有人问津.但我国四川晨光化工研究院小批量生产的硅树脂阻燃剂与美国GE公司SFR1000性能相近,不妨可以一试.2.6 阻燃聚酰胺①对阻燃PA来讲,一般要求达到UL94V0级,主要用添加型阻燃剂,比如十溴二苯醚、溴化聚苯乙烯BPS、溴化环氧树脂BER等.选择阻燃剂时,一定要考虑阻燃剂要不易从PA中渗出,不要导致体系耐光性和材料抗冲击强度下降.②为改善添加型阻燃剂的某些缺点,已经合成一些新的含活性官能团的氧化膦单体,比如三芳基氧化膦TPO,与尼龙66盐及己二胺共聚可制得主链含TPO的尼龙66共聚物.这类阻燃PA是在凝聚相及气相中均可发挥阻燃效能,由于阻燃元素成为阻燃PA中的一部分,因此它具有持久的阻燃性.③另外MCA三聚氰胺氰尿酸盐作为添加型阻燃剂与红磷复配在PA阻燃处理中也被经常使用,也能获得较理想的阻燃效果.2.7 阻燃聚碳酸酯PC本身有一定阻燃性能,可达到UL94V2级,但要获得V0级水平则需要作阻燃处理.①一般来讲,作为PC的添加型阻燃剂有含溴芳基磷酸酯、四溴双酚A、十溴二苯醚、聚二溴苯醚等,其中含BrP阻燃剂会更有效.这里需要指出,由于三氧化二锑是PC的解聚催化剂,因此绝对不能使用三氧化二锑来作为含溴阻燃剂的协效剂.②与阻燃ABS一样,利用含活性官能团的氧化膦单体比如TPO去制备含磷阻燃共聚PC.③利用PC本身特性制备的PC/PBT、PC/ABS、PC/PET塑料合金的阻燃处理,一般都是利用添加型阻燃剂.PC/PBT溴代聚苯乙烯BPS、含溴芳基磷酸酯等.PC/ABS三苯基磷酸酯TPP、三甲基磷酸酯TCP、间苯二酚双磷酸酯RDP以及含溴芳基磷酸酯等.PC/PETTPP、RDP等.2.8 阻燃PBT和PET线性聚酯PBT和PET是两种重要的工程塑料,广泛应用于电子、仪表及汽车工业中,它的阻燃制品被使用在阻燃性要求较高的部件中.它们的阻燃处理如下:①添加溴系阻燃剂常用的有十溴二苯醚、溴代聚苯乙烯BPS、溴化环氧树脂BER、双三溴苯氧基乙烷等.举例来讲:添加10%15%的溴素阻燃剂,3%5%的三氧化二锑可使含30%玻纤的PBT达到UL94V0级别,氧指数可达27%29%.使用添加型阻燃剂必须要注意在PBT和PET中的分散性,易渗出性,以及对聚酯的光泽、机械强度的影响.②添加含溴磷酸酯常用的是三二溴苯基磷酸酯TDBPPE,由于同一分子中含有Br、P元素,因此具有卤磷协同效应,在PBT及PET中阻燃效率甚高.这里要注意的是在阻燃处理中常添加三氧化二锑来协效,如果作氧指数测试,那么极限氧指数会有增加,但在富氧的测试环境中,Sb与P似乎会有一种互相对抗的作用,因此,用UL94垂直燃烧法来评价体系的难燃性能是最合适的.③阻燃PET用作阻燃纤维和织物通常有两种方法:其一是用六溴环十二烷对PET织物作阻燃后处理.这种织物可作窗帘、幕布、包墙布等室内装饰用布.由于是后整理方法处理,阻燃剂易渗出,织物手感和阻燃耐久性会逊色一些.其二是用共聚阻燃改性,这些反应型阻燃单体主要是含溴芳香族化合物、含芳基氧化膦化合物、含溴代芳香基氧化膦化合物等.由于是阻燃元素成为齐聚物分子中心的一部分,所以具有阻燃效果长久、手感好、耐光等优点,是当今我国PET阻燃纤维和织物的主要阻燃方法.2.9 阻燃不饱和聚酯不饱和聚酯是非常重要的热固性树脂,主要用于玻璃钢制品中,以前化工部专门有文件要求所有的玻璃钢设备一定要有阻燃性能,作了强制命令.这种材料的阻燃处理,一般有两种方法:①反应型阻燃剂———利用含阻燃元素的原料合成不饱和聚酯.一般都是含卤素的二元酸、酐、醇以及环氧化合物.如:含溴的多元醇、四溴邻苯二甲酸酐TBPA、四溴双酚ATBBPA、四氯双酚ATCBPA、环氧氯丙烷等.最近有人研究利用含磷化合物通过酯交换反应而进入不饱和聚酯,利用XP协同效应增加阻燃性能.②添加型阻燃剂———最好选择加入几种具有协同效应的阻燃剂以及抑烟剂等,使阻燃、抑烟性能发挥得更加出色.这些阻燃剂有:ATH、微胶囊红磷、硼酸锌、三聚氰胺、卤代磷膦酸酯以及它们之间的协同使用.2.10 阻燃PU泡沫塑料PU泡沫用途非常广泛,涉及国民经济各个领域,由于它的结构特殊,即氧气涉及率极高,因此,它的阻燃处理尤为重要.那么,如从它的结构中进行改性最好,一般可在PU链中引入异氰尿酸酯结构,以提高体系炭化倾向来降低其可燃性.但该方法应用有限,常用的还是添加型或反应型阻燃剂.①添加型阻燃剂———一般为液态的含卤磷酸酯和膦酸酯.而固态的阻燃剂有:三聚氰胺、红磷、硼酸锌、氯化石蜡、ATH、TBC等.不管哪种阻燃剂都要求与PU中各组分相容性要好,不会产生“烧芯”现象.②反应型阻燃剂———主要是各种液态及固态的含磷或含卤多元醇.2.11 阻燃环氧树脂环氧树脂也是热固性树脂中一大品种5,它在涂料、土木建筑、电子、胶粘剂、航空事业等已广泛应用.但它的易燃性及离火持续自燃使它们的应用必须在阻燃处理之后.针对它的燃烧特点,选用含卤阻燃剂比较适宜.含卤阻燃剂是在燃烧过程中产生高活性自由基捕获剂,能有效地在气相中阻止燃烧.目前国内已有阻燃剂级别的高分子量环氧树脂生产,其也将是一个应用前景良好的反应型阻燃剂.一般来讲,阻燃环氧树脂的制备是用含磷、含溴的阻燃剂原料来合成.其中在环氧树脂骨架结构中引入含磷元素可提高树脂的热稳定性和阻燃性.一般原料有磷酸酯、四溴双酚A等.。

简述阻燃纤维发展现状与面料标准等情况

简述阻燃纤维发展现状与面料标准等情况

简述阻燃纤维发展现状与面料标准等情况【作者:赵春保】一、前言随着经济的发展和国家法制的健全,阻燃纺织品的推广应用必将引起全社会的重视。

国外对阻燃织物的开发及研究较多,一些工业发达国家早在20世纪70年代中期就制定了纺织品的阻燃法规,而且近年来要求越来越高,规定越来越细。

1998年9月1日开始实施的《中华人民共和国消防法》,促进了我国阻燃纺织品技术的发展。

近年来,我国对阻燃纺织品的研究开发逐渐增多,并已取得了相当大的进展。

随着城市现代化建设的加快,旅游、交通运输业的发展,以及外销纺织品需求的增加,阻燃纺织品存在着巨大的潜在市场。

据调查,阻燃产品的消费量主要分布于钢铁铸造业、消防服务业及化学制造业等;政府单位主要如:医院、军队、森林救火服务队。

除衣着外,汽车、火车、飞机用阻燃纺品前景亦是潜力无穷。

此外,若再加上电影、剧院、礼堂的座位用套布,则更是可观。

聚酯(聚对苯二甲酸乙二酯,PET)具有诸多优点,其纺织品应用广泛,已成为用途最广、耗量最大的品种,因此它的阻燃化更加引起了世界范围的广泛关注。

二、阻燃纤维的发展历史自20世纪70年代以来,阻燃聚酯纤维的研究一直是聚酯研究的一个热点,我国在这方面的研究和应用虽起步较晚,但发展较快。

近年来,我国一些科研院校及企业如四川大学、青岛大学、北京理工大学济南正昊化纤新材料有限公司等已经开发出了或正在竞相研究和开发阻燃聚酯纤维,以提高产品附加值。

其实,早在20世纪60年代至今,世界阻燃剂市场经历了一个蓬勃发展的阶段,目前已有数百个不同的品种,而且新型阻燃剂品种仍层出不穷,但用于PET阻燃的主要是卤系、磷系以及新型的阻燃聚酯/无机纳米复合材料。

聚酯纤维和其他热塑性合成纤维材料一样,受热熔融、分解、燃烧,并且具有熔融滴落的现象,涤纶纤维的极限氧指数仅为21左右,达不到阻燃标准要求。

自上世纪70年代初开始,随着聚酯纤维的大量生产和应用,人们开始注意研究和开发阻燃涤纶品种。

中国及部分省市阻燃剂行业相关政策制定特殊场所耐火构件及阻燃防护产品标准

中国及部分省市阻燃剂行业相关政策制定特殊场所耐火构件及阻燃防护产品标准

中国及部分省市阻燃剂行业相关政策制定特殊场所耐火构件及阻燃防护产品标准
阻燃剂,赋予易燃聚合物难燃性的功能性助剂,主要是针对高分子材料的阻燃设计的;阻燃剂有多种类型,按使用方法分为添加型阻燃剂和反应型阻燃剂。

国家层面阻燃剂行业相关政策
近些年,为了促进阻燃剂行业发展,中国陆续发布了许多政策,如工信部2022年4月发布的关于化纤工业高质量发展的指导意见研发功能纤维用关键材料、辅料以及阻燃剂、改性剂、母粒、催化剂、油剂等添加剂。

地方层面阻燃剂行业政策
显示,为了响应国家号召,各省市积极推动阻燃剂行业发展,如山东省2022年4月发布的江西省新型冠状病毒肺炎方舱医院建设技术指南(试行)中要求:严格执行新建冷库国家节能标准要求,鼓励利用白然冷能、太阳能等清洁能源提高冷库、冷藏车等设施设备保温材料的保温和阻燃性能。

新型含磷共聚本质阻燃尼龙66的制备及性能

新型含磷共聚本质阻燃尼龙66的制备及性能

Z h a n gX u j i e, C u i Y i h u a, L v We n y a n, Y i nY u e h o n g
( D e p a r t me n t o f Ma t e r i a l s S c i e n c e a n d E n g i n e e i r n g , C o l l e g e o f Ma t e i r a l s S c i e n c e nd a T e c h n o l o g y,
d i p h e n y l p h o s p h i n e o x i d e( P DP P D) wh i c h wa s s y n t h e s i z e d i n l a b u n d e r 1 . 7 MP a . T h e f o u r i e r t r a n s f o r m i n f r a r e d r e s u l t s r e v e a l t h a t
Na ‘ mi n gU n i v e r s i t yo f Ae r o n a u t i c s a n dA s t r o n a u t i c s , Na n j i n g 2 1 0 0 1 6 , C h i n a )
A b s t r a c t : A l f a me r e t a r d a n c y Ny l o n 6 6 ( P A 6 6 ) r e s i n wa s p r e p a r e d b y t h e r e a c t i o n o f a d i p i c a c i d , P A 6 6 s a l t a n d p o l y — N, N’ 一

二乙基次膦酸铝阻燃机理

二乙基次膦酸铝阻燃机理

二乙基次膦酸铝阻燃机理
二乙基次膦酸铝阻燃机理
二乙基次膦酸铝(Aluminum diethylphosphinate,简称AlPi)是一种常用的阻燃剂,它通过特定的机理实现对燃烧的抑制作用。

以下是二乙基次膦酸铝的阻燃机理:
1. 水解反应:
AlPi在高温下发生水解反应,将燃烧产物中的水蒸气逐渐释放出来,吸收燃烧区域的热量。

这过程中产生的氢氧化铝薄膜会包覆在燃料表面,阻隔燃料与空气的接触,从而减缓燃烧速度。

2. 气相作用:
AlPi在燃烧的气相区域中,通过与自由基(如自由基H、OH、CH3和CH2O等)的反应,抑制自由基链反应的持续进行。

AlPi中的磷酸根离子(PO3-4)能够与自由基发生化学反应,降低自由基浓度,从而减缓燃烧速度。

3. 炭化作用:
AlPi在高温下可以炭化生成熔点较高的铝磷酸盐(如AlP),这种
炭化产物在燃烧过程中形成稳定的炭层,阻断了热传导和氧气的扩散。

这种炭化作用可以形成绝热层,减少燃料的氧化分解速率,防止火焰蔓延。

二乙基次膦酸铝通过以上机理,改变燃烧系统中的化学反应和热动力学过程,有效抑制了燃烧的进行。

它在阻燃材料中的应用可以提供良好的阻燃性能,降低火灾事故的风险,并保护人们的生命和财产安全。

需要注意的是,在实际应用中,二乙基次膦酸铝的配方比例和使用条件需要根据具体情况进行调整和优化,以达到最佳的阻燃效果。

反应型阻燃剂双(2-羧基乙基)膦酸的合成及在尼龙66上的阻燃应用

反应型阻燃剂双(2-羧基乙基)膦酸的合成及在尼龙66上的阻燃应用

反应型阻燃剂双(2-羧基乙基)膦酸的合成及在尼龙66上的阻燃应用杨敏芬;周岚;冯新星;陈建勇【摘要】以次磷酸、原甲酸三甲酯、丙烯腈等为原料合成了一种新的尼龙66阻燃剂双(2-羧基乙基)膦酸.应用傅里叶变换红外光谱仪(FTIR)、X射线能谱分析(EDS)、差示扫描量热分析(DSC)和热重分析仪(TGA)分别表征双(2-羧基乙基)膦酸的化学结构、元素组成和热稳定性,并将双(2-羧基乙基)膦酸加入到尼龙66的反应体系中,制备了阻燃尼龙66.研究结果表明:通过控制反应温度、反应时间和反应物摩尔比,双(2-羧基乙基)膦酸产率可达到50.79%;合成的阻燃剂具有双(2-羧基乙基)膦酸的分子结构特征;双(2-羧基乙基)膦酸的起始分解温度200℃,低于尼龙66聚合反应温度,但作为预聚体添加到尼龙66中,满足尼龙66合成工艺;在800℃时残炭量为6.36%,说明双(2-羧基乙基)膦酸具有较好的成炭性;当双(2-羧基乙基)膦酸添加量为6%时,阻燃尼龙66的LOI值达到28.0%;当双(2-羧基乙基)膦酸添加量达4%或更高时,垂直燃烧性能达到V-0级别.【期刊名称】《现代纺织技术》【年(卷),期】2016(024)006【总页数】6页(P13-18)【关键词】磷系阻燃剂;合成;双(2-羧基乙基)膦酸;阻燃尼龙66【作者】杨敏芬;周岚;冯新星;陈建勇【作者单位】浙江理工大学先进纺织材料与制备技术教育部重点实验室,杭州310018;浙江理工大学生态染整技术教育部工程研究中心,杭州310018;浙江理工大学先进纺织材料与制备技术教育部重点实验室,杭州310018;浙江理工大学生态染整技术教育部工程研究中心,杭州310018;中国人民解放军总后勤部军需装备研究所,北京100081;浙江理工大学先进纺织材料与制备技术教育部重点实验室,杭州310018【正文语种】中文【中图分类】TQ314.2在众多阻燃剂中,有机磷阻燃剂品种繁多,具有高效、抑烟、无毒、无卤等优点,因而被公认为是替代卤系阻燃剂的主要品种[1-4]。

阻燃型聚酰胺66的研究进展

阻燃型聚酰胺66的研究进展

阻燃型聚酰胺66的研究进展成沂南;田留华;吕文晏;崔益华【摘要】综述了近年来聚酰胺(PA)66阻燃剂的研究现状及前景.PA 66的机械强度高、耐磨性好、耐化学药品腐蚀性好,而阻燃型PA 66具有更好的阻燃性能,能够满足更多工业领域中零件的使用要求.用于PA 66的阻燃剂主要有卤系阻燃剂、磷系阻燃剂和氮系阻燃剂等.卤系阻燃剂阻燃效率高,但因其会释放有毒气体而将被限制使用,环境友好型的磷系阻燃剂和氮系阻燃剂的应用将更加广泛,高效、无毒的本质阻燃PA 66将是今后研究的重要方向.%This paper presents the situation and prospect of flame retardant used for polyamide (PA) 66.PA 66 features high mechanical properties,wear resistance and corrosionresistance,furthermore,the high flame retardant property of flame retardant PA 66 meets the requirements of parts in industry.The flame retardants used for PA 66 include halogenated,phosphorous and nitrogen types.Halogenated flame retardant has high flame retardant efficiency,but its application is limited due to the release of harmful gas.Environmentally friendly phosphorous and nitrogen flame retardant will be more widely used in various fields.Non-toxic intrinsically flame retardant PA 66 with high efficiency will be emerging field in future research.【期刊名称】《合成树脂及塑料》【年(卷),期】2017(034)001【总页数】5页(P81-84,90)【关键词】聚酰胺66;卤系阻燃剂;磷系阻燃剂;氮系阻燃剂;研究进展【作者】成沂南;田留华;吕文晏;崔益华【作者单位】南京航空航天大学材料科学与技术学院,江苏省南京市210016;南通江山农药化工股份有限公司,江苏省南通市226017;南京航空航天大学材料科学与技术学院,江苏省南京市210016;南京航空航天大学材料科学与技术学院,江苏省南京市210016【正文语种】中文【中图分类】O62聚酰胺(PA)自美国杜邦公司率先推出以来,在工业领域和日常生活中应用十分广泛,是重要的工程塑料之一[1]。

V-0玻纤增强阻燃尼龙66

V-0玻纤增强阻燃尼龙66

V-0玻纤增强阻燃尼龙66衡水金轮网销部讯:玻纤增强尼龙66具有高强度、尺寸稳定、耐高温的特点,但其易燃性限制了其应用范围,尤其在电子电气、交通运输领域,现在很多企业对材料的阻燃性要求越来越严格,V-0玻纤增强阻燃尼龙66研究具有一定的紧迫性。

目前主要通过两种途径来使材料获得更好的阻燃性:第一种是通过共混工艺将阻燃剂和材料掺和在一起,从而提高材料的耐燃性,形成了添加型阻燃材料;第二种是在聚合物结构中引入具有耐燃性质的基团或链段,提高热稳定性和耐高温性,形成反应型阻燃材料。

由于反应型阻燃材料成本高、加工困难,批量生产和应用受到限制,而添加型的由于对工艺和设备要求简单,易于实现工业化。

将烘干的PA66、阻燃剂、润滑剂及其他助剂等在混合器中充分搅拌混合后,加入到双螺杆挤出机料斗内,玻纤从真空口处引入,在挤出机内通过加热、熔融、共混进行挤出造粒,即可得到V-0玻纤增强阻燃尼龙66材料。

按常理来推断,玻璃纤维是不燃物且耐温高达上千度,添加后阻燃性肯定会进一步提升,然而经过试验和研究发现这种推理是错的。

经过玻纤增强的阻燃尼龙66阻燃性反而会下降,这主要是因为玻璃纤维在材料中会发生“烛芯效应”,热传导加快,本来能够达到V-0阻燃等级的材料也因此变成了V-1,所以要使玻纤增强尼龙66阻燃比纯尼龙66阻燃更困难,需要继续添加阻燃剂或者选择合适的阻燃剂类型搭配使用,才能使材料重新达到V-0。

经过进一步对不同类型的阻燃剂进一步研究,发现了很多新发现。

适用于尼龙66的阻燃剂主要有有机卤化物、磷化物和氮化物,还有锑化物、硼化物等有机阻燃剂。

无机阻燃剂对材料力学性能影响较大,暂不做比较。

我们选择卤化物、磷化物和氮化物作为玻纤增强尼龙66的阻燃剂做实验,加入卤系阻燃剂可得到较高阻燃等级和较高氧指数;较少量的红磷可达到同样的阻燃效果;氮系阻燃剂阻燃效果不如前两者。

氮系阻燃剂能促使玻纤增强尼龙66滴落,纯尼龙66在滴落前就会熄灭,而经过玻纤增强的材料由于有玻璃纤维作为烛芯反而不会熄灭,而是带有火源滴落下来,扩大燃烧,所以在实际应用中氮系阻燃剂使用量较少。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ab s t r a c t : A n o v e l f l a me r e t a r d a n t f o r n y l o n 6 6 b i s( 2 一 c a r b o x y e t h y 1 )p h o s p h i n i c a c i d wa s
( 1 a . Ke y La b o r a t o r y o f Ad v a n c e d Te x t i l e Ma t e r i a l s a n d Ma n u f a c t u r i n g Te c h n o l o g y ;
S c i - Te e h Un i v e r s i t y ,Ha n g z h o u 3 1 0 0 1 8 ,Ch i n a ;2 . Th e Qu a r t e r ma s t e r Re s e a r c h
I n s t i t u t e o f t h e Ge n e r a l L o g i s t i c s D e p a r t me n t o f t h e P L A,B e i j i n g 1 0 0 0 8 1 ,C h i n a )
分别 表征双 ( 2 一 羧基 乙基 ) 膦 酸的化学结构 、 元素组成和热稳定性 , 并将双 ( 2 - 羧 基 乙基 ) 膦酸加 入到尼龙 6 6的 反应 体系中 , 制备 了阻燃 尼龙 6 6 。研究 结果表 明 : 通 过控 制反应 温度 、 反应 时间 和反 应物摩 尔 比, 双( 2 一 羧基 乙基 ) 膦酸产率可达 到 5 o . 7 9 ; 合成 的阻燃剂具有 双( 2 一 羧基 乙基) 膦 酸的分 子结构特 征 ; 双( 2 一 羧基 乙基 ) 膦 酸的起 始分解温度 2 0 0 ℃, 低 于尼龙 6 6聚合反应温 度 , 但 作 为预聚体 添加 到尼龙 6 6中, 满 足尼龙 6 6合 成工
研究报告
2 0 1 6 年 纪代 饧识校f第 6 期
反 应 型 阻燃 剂 双 ( 2 一 羧 基 乙基 ) 膦 酸 的 合 成 及 在尼 龙 6 6上 的阻燃 应 用
杨敏 芬 。 周 岚 怕, 冯新 星 , 陈 建 勇h
( 1 . 浙江理工大学 a . 先进 纺织材料与制备技术教育部重 点实验室 ; b . 生态染整技术 教育部工程 研究 中心 , 杭州 摘 3 1 0 0 1 8 ; 2 . 中 国人 民解放军总后勤部 军需 装备 研究 所 , 北京 1 0 0 0 8 1 )
艺; 在 8 0 0℃时残炭量为 6 . 3 6 , 说明双( 2 一 羧基 乙基 ) 膦酸具有较好 的成炭性 ; 当双( 2 一 羧基 乙基) 膦 酸添加 量
为6 时, 阻燃尼龙 6 6的 L 0I 值达到 2 8 . O ; 当双( 2 一 羧基乙基) 膦 酸添加量 达 4 或更高时 , 垂 直燃 烧性 能达
S t u d y o n t h e S y n t h e s i s o f Re a c t i v e F l a me Re t a r d a n t Bi s ( 2 一 c a r b o x y e t h y 1 )Ph o s p h i n i c
Ac i d a nd I t s Fl m e a Re t a r di n g Appl i c a t i o n i n Ny l o n 6 6
Y ANG Mi n f e n h ,Z HOUL a n ,F E NG Xi n x i n g , C HE N J i a n y o n g
要: 以次磷酸 、 原 甲酸三甲酯 、 丙烯腈 等为原料合成 了一种新 的尼龙 6 6阻燃剂双 ( 2 一 羧基 乙基) 膦酸 。
应用 傅里叶变换红外光谱仪 ( F TI R) 、 X射 线能谱分析 ( E D S ) 、 差示 扫描量热分 析 ( DS C) 和热重 分析仪 ( T GA)
s y n t h e s i z e d b y h y p o p h o s p h o r o u s a c i d, t r i me t h y l o r t h o f o r ma t e a n d a c r y l o n i t r i l e e t c . Th e c h e mi c a l s t r u c t u r e ,e l e me n t a l c o mp o s i t i o n a n d t h e r mo s t a b i l i t y we r e c h a r a c t e r i z e d b y FTI R, EDS, TGA a n d DS C, r e s p e c t i v e l y .B i s( 2 一 c a r b o x y e t h y 1 ) p h o s p h i n i c a c i d wa s a d d e d i n t h e r e a c t i o n s y s t e m o f n y l o n 6 6 t o p r e p a r e f l a me r e t a r d a n t n y l o n 6 6 . Th e r e s u l t s i n d i c a t e t h a t :
l b . E n g i n e e r i n g Re s e a r c h C e n t e r f o r E c o - D y e i n g a n d F i n i s h i n g o f T e x t i l e s ,Z h e j i a n g燃剂 ; 合成 ; 双( 2 一 羧基 乙基 ) 膦酸 ; 阻燃尼龙 6 6
中 图分 类 号 : T Q3 1 4 . 2 文 献 标 志码 : A 文 章编 号 : 1 0 0 9 -2 6 5 X( 2 O 1 6 ) O 6 —0 O 1 3 —0 6
相关文档
最新文档