2013年普通高等学校统一招生考试数学试卷(湖北理)
新课标Ⅱ2013年普通高等学校招生统一考试数学(理)卷
绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题 共50分)一、 选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M={x|(x+1)2 < 4,x ∈R },N={-1,0,1,2,3},则M ∩N=( )(A ){0,1,2} (B ){-1,0,1,2}(C ){-1,0,2,3}(D ){0,1,2,3} (2)设复数z 满足(1-i )z=2 i ,则z= ( )(A )-1+i (B )-1-i (C )1+i (D )1-i(3)等比数列{a n }的前n 项和为S n ,已知S 3 = a 2 +10a 1 ,a 5 = 9,则a 1= ( )(A )(B )-(C ) (D )- (4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β。
直线l 满足l ⊥m ,l ⊥n ,l β,则( )(A )α∥β且l ∥α (B )α⊥β且l ⊥β(C )α与β相交,且交线垂直于l (D )α与β相交,且交线平行于l(5)已知(1+ɑx )(1+x)5的展开式中x 2的系数为5,则ɑ=(A )-4 (B )-3 (C )-2(D )-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A )1+ + +…+(B )1+ + +…+(C)1+ + +…+(D )1+ + +…+ (7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C)(D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a(C )a >c >b (D)a >b >c(9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a=(A)(B) (C)1 (D)2(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A )∑x α∈R f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-≦,x α)单调递减(D )若xn 是f (x )的极值点,则f 1(x α)=0(11)设抛物线y2=3px(p ≥0)的焦点为F ,点M 在C 上,|MF|=5若以MF 为直径的园过点(0,3),则C 的方程为(A )y2=4x 或y2=8x (B )y2=2x 或y2=8x(C )y2=4x 或y2=16x (D )y2=2x 或y2=16xx ≥1, x+y ≤3, y ≥a(x-3). {(12)已知点A(-1,0);B(1,0);C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是(A)(0,1)(B)(1-,1/2)( C)(1-,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。
【精校】2013年普通高等学校招生全国统一考试(湖北卷)数学理
2013年普通高等学校招生全国统一考试(湖北卷)数学理一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)在复平面内,复数(i为虚数单位)的共轭复数对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限解析:∵z====1+i,∴=1-i.∴对应的点(1,-1)位于第四象限,答案:D.2.(5分)已知全集为R,集合,则A∩C R B=( )A. {x|x≤0}B. {x|2≤x≤4}C. {x|0≤x<2或x>4}D. {x|0<x≤2或x≥4}解析:∵≤1=,∴x≥0,∴A={x|x≥0};又x2-6x+8≤0 (x-2)(x-4)≤0,∴2≤x≤4.∴B={x|2≤x≤4},∴C R B={x|x<2或x>4},∴A∩C R B={x|0≤x<2或x>4},答案:C.3.(5分)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A. (¬p)∨(¬q)B. p∨(¬q)C. (¬p)∧(¬q)D. p∨q解析:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).答案:A.4.(5分)将函数的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是( )A.B.C.D.解析:y=cosx+sinx=2(cosx+sinx)=2sin(x+),∴图象向左平移m(m>0)个单位长度得到y=2sin[(x+m)+]=2sin(x+m+),∵所得的图象关于y轴对称,∴m+=kπ+(k∈Z),则m的最小值为.答案:B5.(5分)已知0<θ<,则双曲线C1:-=1与C2:-=1的( )A. 实轴长相等B. 虚轴长相等C. 焦距相等D. 离心率相等解析:双曲线的实轴长为2cosθ,虚轴长2sinθ,焦距2,离心率,双曲线的实轴长为2sinθ,虚轴长2sinθtanθ,焦距2tanθ,离心率,故它们的离心率相同.答案:D.6.(5分)已知点A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量在方向上的投影为( )A.B.C.D.解析:,,则向量方向上的投影为:·cos <>=·===,答案:A.7.(5分)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度的单位:s,v的单位:m/s)行驶至停止,在此期间汽车继续行驶的距离(单位:m)是( )A. 1+25ln5B. 8+25lnC. 4+25ln5D. 4+50ln2解析:令v(t)=7-3t+,化为3t2-4t-32=0,又t>0,解得t=4.∴由刹车行驶至停止,在此期间汽车继续行驶的距离s===4+25ln5.答案:C.8.(5分)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )A. V1<V2<V4<V3B. V1<V3<V2<V4C. V2<V1<V3<V4D. V2<V3<V1<V4解析:由题意以及三视图可知,该几何体从上到下由:圆台、圆柱、正四棱柱、正四棱台组成,体积分别记λ为V1==.V2=12×π×2=2π,V3=2×2×2=8V4==;∵,∴V2<V1<V3<V4答案:C.9.(5分)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=( )A.B.C.D.解析:由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,∴P(X=3)=;②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,∴P(X=2)=;③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,∴P(X=1)=.④由以上可知:还剩下125-(8+36+54)=27个内部的小正方体的6个面都没有涂油漆,∴P(X=0)=.故X的分布列为因此E(X)==.答案:B.10.(5分)已知a为常数,函数f(x)=x(lnx-ax)有两个极值点x1,x2(x1<x2)( ) A.B.C.D.解析:∵=lnx+1-2ax,(x>0)令f′(x)=0,由题意可得lnx=2ax-1有两个解x1,x2⇔函数g(x)=lnx+1-2ax有且只有两个零点 g′(x)在(0,+∞)上的唯一的极值不等于0..①当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,应舍去.②当a>0时,令g′(x)=0,解得x=,∵x,g′(x)>0,函数g(x)单调递增;时,g′(x)<0,函数g(x)单调递减.∴x=是函数g(x)的极大值点,则>0,即>0,∴ln(2a)<0,∴0<2a<1,即.∵,f′(x1)=lnx1+1-2ax1=0,f′(x2)=lnx2+1-2ax2=0.且f(x1)=x1(lnx1-ax1)=x1(2ax1-1-ax1)=x1(ax1-1)<x1(-ax1)=<0,f(x2)=x2(lnx2-ax2)=x2(ax2-1)>=-.().答案:D.二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)11.(5分)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示:(Ⅰ)直方图中x的值为;(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为.解析:(Ⅰ)依题意及频率分布直方图知,0.0024×50+0.0036×50+0.0060×50+x×50+0.0024×50+0.0012×50=1,解得x=0.0044.(II)样本数据落在[100,150)内的频率为0.0036×50=0.18,样本数据落在[150,200)内的频率为0.006×50=0.3.样本数据落在[200,250)内的频率为0.0044×50=0.22,故在这些用户中,用电量落在区间[100,250)内的户数为(0.18+0.30+0.22)×100=70.答案:0.0044;70.12.(5分)阅读如图所示的程序框图,运行相应的程序,输出的结果i= .解析:框图首先给变量a和变量i赋值,a=4,i=1.判断10=4不成立,判断10是奇数不成立,执行,i=1+1=2;判断5=4不成立,判断5是奇数成立,执行a=3×5+1=16,i=2+1=3;判断16=4不成立,判断16是奇数不成立,执行,i=3+1=4;判断8=4不成立,判断8是奇数不成立,执行,i=4+1=5;判断4=4成立,跳出循环,输出i的值为5.答案:5.13.(5分)设x,y,z∈R,且满足:,则x+y+z= . 解析:根据柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2),当且仅当时,上式的等号成立,∵x2+y2+z2=1,∴(x+2y+3z)2≤14,结合,可得x+2y+3z恰好取到最大值,∴=,可得x=,y=,z=,因此,x+y+z=++=.答案:14.(5分)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数,正方形数N(n,4)=n2,五边形数,六边形数N(n,6)=2n2-n,…可以推测N(n,k)的表达式,由此计算N(10,24)= 1000 .解析:原已知式子可化为:,,,,由归纳推理可得,故=1100-100=1000答案:100015.(5分)(选修4-1:几何证明选讲)如图,圆O上一点C在直径AB上的射影为D,点D在半径OC上的射影为E.若AB=3AD,则的值为.解析:设圆O的半径OA=OB=OC=3x,∵AB=3AD,∴AD=2x,BD=4x,OD=x又∵点C在直径AB上的射影为D,在△ABC中,由射影定理得:CD2=AD·BD=8x2,在△ODC中,由射影定理得:OD2=OE·OC=x2,CD2=CE·OC=8x2,故==8答案:816.(选修4-4:坐标系与参数方程)在直角坐标系xOy中,椭圆C的参数方程为为参数,a>b>0).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为为非零常数)与ρ=b.若直线l经过椭圆C的焦点,且与圆O相切,则椭圆C的离心率为.解析:直线l的极坐标方程分别为为非零常数)化成直角坐标方程为x+y-m=0,它与x轴的交点坐标为(m,0),由题意知,(m,0)为椭圆的焦点,故|m|=c,又直线l与圆O:ρ=b相切,∴,从而c=b,又b2=a2-c2,∴c2=2(a2-c2),∴3c2=2a2,∴=.则椭圆C的离心率为. 答案:.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A-3cos(B+C)=1. (Ⅰ)求角A的大小;(Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值.解析:(I)利用倍角公式和诱导公式即可得出;(II)由三角形的面积公式即可得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2-2bccosA=25+16-20=21,即可得出a.又由正弦定理得即可得到即可得出.答案:(Ⅰ)由cos2A-3cos(B+C)=1,得2cos2A+3cosA-2=0,即(2cosA-1)(cosA+2)=0,解得(舍去).因为0<A<π,所以. (Ⅱ)由S===,得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2-2bccosA=25+16-20=21,故.又由正弦定理得.18.(12分)已知等比数列{a n}满足:|a2-a3|=10,a1a2a3=125.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在正整数m,使得?若存在,求m的最小值;若不存在,说明理由.解析:(I)设等比数列{a n}的公比为q,结合等比数列的通项公式表示已知条件,解方程可求a1,q,进而可求通项公式(Ⅱ)结合(I)可知是等比数列,结合等比数列的求和公式可求,即可判断答案:(Ⅰ)设等比数列{a n}的公比为q,则由已知可得解得故.(Ⅱ)若,则,故是首项为,公比为的等比数列,从而.若,则是首项为,公比为-1的等比数列,从而故.综上,对任何正整数m,总有.故不存在正整数m,使得成立.19.(12分)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F分别是PA,PC的中点.(Ⅰ)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;(Ⅱ)设(Ⅰ)中的直线l与圆O的另一个交点为D,且点Q满足.记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E-l-C的大小为β.求证:sinθ=sinαsinβ.解析:(I)直线l∥平面PAC.连接EF,利用三角形的中位线定理可得,EF∥AC;利用线面平行的判定定理即可得到EF∥平面ABC.由线面平行的性质定理可得EF∥l.再利用线面平行的判定定理即可证明直线l∥平面PAC.(II)综合法:利用线面垂直的判定定理可证明l⊥平面PBC.连接BE,BF,因为BF⊂平面PBC,所以l⊥BC.故∠CBF就是二面角E-l-C的平面角,即∠CBF=β.已知PC⊥平面ABC,可知CD是FD在平面ABC内的射影,故∠CDF就是直线PQ与平面ABC所成的角,即∠CDF=θ.由BD⊥平面PBC,有BD⊥BF,知∠BDF=α,分别利用三个直角三角形的边角关系即可证明结论;向量法:以点C为原点,向量所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系,利用两个平面的法向量的夹角即可得出二面角.答案:(Ⅰ)直线l∥平面PAC,证明如下:连接EF,因为E,F分别是PA,PC的中点,所以EF∥AC,又EF平面ABC,且AC⊂平面ABC,所以EF∥平面ABC.而EF⊂平面BEF,且平面BEF∩平面ABC=l,所以EF∥l.因为l平面PAC,EF⊂平面PAC,所以直线l∥平面PAC.(Ⅱ)(综合法)如图,连接BD,由(Ⅰ)可知交线l即为直线BD,且l∥AC.因为AB是⊙O的直径,所以AC⊥BC,于是l⊥BC.已知PC⊥平面ABC,而l⊂平面ABC,所以PC⊥l.而PC∩BC=C,所以l⊥平面PBC.连接BE,BF,因为BF⊂平面PBC,所以l⊥BF.故∠CBF就是二面角E-l-C的平面角,即∠CBF=β.由,作DQ∥CP,且.连接PQ,DF,因为F是CP的中点,CP=2PF,所以DQ=PF,从而四边形DQPF是平行四边形,PQ∥FD.连接CD,因为PC⊥平面ABC,所以CD是FD在平面ABC内的射影,故∠CDF就是直线PQ与平面ABC所成的角,即∠CDF=θ.又BD⊥平面PBC,有BD⊥BF,知∠BDF=α,于是在Rt△DCF,Rt△FBD,Rt△BCF中,分别可得,从而.(Ⅱ)(向量法)如图,由,作DQ∥CP,且.连接PQ,EF,BE,BF,BD,由(Ⅰ)可知交线l即为直线BD.以点C为原点,向量所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系,设CA=a,CB=b,CP=2c,则有C(0,0,0) ,A(a,0,0),B(0,b,0),P(0,0,2c),Q(a,b,c),E(12a,0,c),于是,∴=,从而,又取平面ABC的一个法向量为,可得,设平面BEF的一个法向量为,所以由可得.于是,从而.故,即sinθ=sinαsinβ.20.(12分)假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0.(Ⅰ)求p0的值;(参考数据:若X~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974.)(Ⅱ)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?答案:(I)变量服从正态分布N(800,502),即服从均值为800,标准差为50的正态分布,适合700<X≤900范围内取值即在(μ-2σ,μ+2σ)内取值,其概率为:95.44%,从而由正态分布的对称性得出不超过900的概率为p0.(II)设每天应派出A型x辆、B型车y辆,根据条件列出不等式组,即得线性约束条件,列出目标函数,画出可行域求解.答案:(Ⅰ)由于随机变量X服从正态分布N(800,502),故有μ=800,σ=50,P(700<X≤900)=0.9544.由正态分布的对称性,可得p0=(P(X≤900)=P(X≤800)+P(800<X≤900)=(Ⅱ)设A型、B型车辆的数量分别为x,y辆,则相应的营运成本为1600x+2400y.依题意,x,y还需满足:x+y≤21,y≤x+7,P(X≤36x+60y)≥p0.由(Ⅰ)知,p0=P(X≤900),故P(X≤360x+60y)≥p0等价于36x+60y≥900.于是问题等价于求满足约束条件且使目标函数z=1600x+2400y达到最小值的x,y.作可行域如图所示,可行域的三个顶点坐标分别为P(5,12),Q(7,14),R(15,6). 由图可知,当直线z=1600x+2400y经过可行域的点P时,直线z=1600x+2400y在y轴上截距最小,即z取得最小值.故应配备A型车5辆,B型车12辆.21.(13分)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN的面积分别为S1和S2.(Ⅰ)当直线l与y轴重合时,若S1=λS2,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.答案:(Ⅰ)设出两个椭圆的方程,当直线l与y轴重合时,求出△BDM和△ABN的面积S1和S2,直接由面积比=λ列式求λ的值;(Ⅱ)假设存在与坐标轴不重合的直线l,使得S1=λS2,设出直线方程,由点到直线的距离公式求出M和N到直线l的距离,利用数学转化思想把两个三角形的面积比转化为线段长度比,由弦长公式得到线段长度比的另一表达式,两式相等得到,换元后利用非零的k值存在讨论λ的取值范围.答案:以题意可设椭圆C1和C2的方程分别为,.其中a >m>n>0,.(Ⅰ)如图1,若直线l与y轴重合,即直线l的方程为x=0,则,,所以.在C1和C2的方程中分别令x=0,可得y A=m,y B=n,y D=-m,于是.若,则,化简得λ2-2λ-1=0,由λ>1,解得.故当直线l与y轴重合时,若S1=λS2,则.(Ⅱ)如图2,若存在与坐标轴不重合的直线l,使得S1=λS2,根据对称性,不妨设直线l:y=kx(k>0),点M(-a,0),N(a,0)到直线l的距离分别为d1,d2,则,所以d1=d2.又,所以,即|BD|=λ|AB|.由对称性可知|AB|=|CD|,所以|BC|=|BD|-|AB|=(λ-1)|AB|,|AD|=|BD|+|AB|=(λ+1)|AB|,于是.将l的方程分别与C1和C2的方程联立,可求得根据对称性可知x C=-x B,x D=-x A,于是②从而由①和②可得③令,则由m>n,可得t≠1,于是由③可得. 因为k≠0,所以k2>0.于是③关于k有解,当且仅当,等价于,由λ>1,解得,即,由λ>1,解得,所以当时,不存在与坐标轴不重合的直线l,使得S1=λS2;当时,存在与坐标轴不重合的直线l,使得S1=λS2.22.(14分)设n是正整数,r为正有理数.(Ⅰ)求函数f(x)=(1+x)r+1-(r+1)x-1(x>-1)的最小值;(Ⅱ)证明:;(Ⅲ)设x∈R,记[x]为不小于x的最小整数,例如.令的值.(参考数据:.答案:(Ⅰ)先求出函数f(x)的导函数f′(x),令f'(x)=0,解得x=0,再求出函数的单调区间,进而求出最小值为f(0)=0;(Ⅱ)根据(Ⅰ)知,即(1+x)r+1≥1+(r+1)x,令代入并化简得,再令得,,即结论得到证明;(Ⅲ)根据(Ⅱ)的结论,令,n分别取值81,82,83,…,125,分别列出不等式,再将各式相加得,,再由参考数据和条件进行求解.答案:(Ⅰ)由题意得f'(x)=(r+1)(1+x)r-(r+1)=(r+1)[(1+x)r-1],令f'(x)=0,解得x=0.当-1<x<0时,f'(x)<0,∴f(x)在(-1,0)内是减函数;当x>0时,f'(x)>0,∴f(x)在(0,+∞)内是增函数.故函数f(x)在x=0处,取得最小值为f(0)=0.(Ⅱ)由(Ⅰ),当x∈(-1,+∞)时,有f(x)≥f(0)=0,即(1+x)r+1≥1+(r+1)x,且等号当且仅当x=0时成立,故当x>-1且x≠0,有(1+x)r+1>1+(r+1)x,①在①中,令(这时x>-1且x≠0),得.上式两边同乘n r+1,得(n+1)r+1>n r+1+n r(r+1),即,②当n>1时,在①中令(这时x>-1且x≠0),类似可得,③且当n=1时,③也成立.综合②,③得,④(Ⅲ)在④中,令,n分别取值81,82,83, (125)得,,,…,将以上各式相加,并整理得.代入数据计算,可得由[S]的定义,得[S]=211.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
2013年湖北卷理科数学试卷解得(全解析)
湖北省教育考试院 保留版权 数学(理工类) 试卷A 型 第1页(共15页)2013年普通高等学校招生全国统一考试(湖北卷)数 学(理工类)【34】(A ,湖北,理1)在复平面内,复数2i 1iz=+(i 为虚数单位)的共轭复数对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限考点名称 数系的扩充与复数的概念 【34】(A ,湖北,理1)D 解析:i 1i)i(1i1i 2+=-=+=z ,则i 1-=z ,其对应点Z (1,-1)位于第四象限.【1】(A ,湖北,理2)已知全集为R ,集合1{()1}2xAx =≤,2{680}Bx x x =-+≤,则A B=R ðA .{0}x x ≤ B .{24}x x ≤≤C .{024}xx x ≤<>或D .{024}xx x <≤≥或考点名称 集合【1】(A ,湖北,理2)C解析:∵4,20862><⇔>+-x x x x ,0121≥⇔≤⎪⎭⎫⎝⎛x x,∴A B =R ð{024}x x x ≤<>或.【2】(A ,湖北,理3文3)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A .()p ⌝∨()q ⌝ B .p ∨()q ⌝ C .()p ⌝∧()q ⌝ D .p ∨q考点名称 常用逻辑语句 【2】(A ,湖北,理3文3)A解析:因为p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则p -是“没有降落在指定范围”,q -是“乙 没有降落在指定范围”,所以命题“至少有一位学员没有降落在指定范围”可表示为()p ⌝∨()q ⌝ . 【6】(B ,湖北,理4文6)将函数sin ()yx x x =+∈R 的图象向左平移(0)mm >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是 A .π12B .π6C .π3D .5π6考点名称 三角函数及其图象与性质 【6】(B ,湖北,理4文6)B第2页(共6页)解析:因为sin ()yx x x =+∈R 可化为)6cos(2π-=x y (x ∈R ),将它向左平移π6个单位得x x y cos 26)6(cos 2=⎥⎦⎤⎢⎣⎡-+=ππ,其图像关于y 轴对称. 【17】(B ,湖北,文2理5)已知π04θ<<,则双曲线1C :22221co s sin xyθθ-=与2C :222221sin sin tan yxθθθ-=的A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等考点名称 圆锥曲线及其标准方程 【17】(B ,湖北,文2理5)D解析:对于双曲线C1,有1sin cos 222=+=θθc ,θcos 1==a c e . 对于双曲线C2,有θθθθθ222222tan sec sin )tan 1(sin =⋅=+=c ,θθθcos 1sin tan ===ac e .即这两双曲线的离心率相等.【7】(B ,湖北,理6文7)已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量A B 在C D方向上的投影为A2B2C.2-D.2-考点名称 平面向量的概念及其运算 【7】(A ,湖北,理6文7)A解析:AB =(2,1),CD =(5,5),则向量AB 在向量CD 方向上的射影为22325515255)5,5()1,2(cos 22=⨯+⨯=+⋅=⋅=CD AB AB θ.【31】(C ,湖北,理7)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度25()731v t t t=-++(t的单位:s ,v 的单位:m/s )行驶至停止. 在此期间汽车继续行驶的距离(单位:m )是A .125ln 5+B .11825ln3+C .425ln 5+D .450ln 2+考点名称 定积分与微积分基本定理 【31】(C ,湖北,理7)C 解析:令25()731v t t t=-++=0,解得t =4或t =38-(不合题意,舍去),即汽车经过4秒中后停止,在此期第3页(共6页)间汽车继续行驶的距离为⎰⎰++-=44d )12537(d )(t t t t t v 42)1l n (25237⎪⎭⎫⎝⎛++-=t t t =5ln 254+. 【21】(B ,湖北,理8)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有 A .1243V V V V <<< B .1324V V V V <<< C .2134V V V V <<< D .2314V V V V <<<考点名称 空间几何体与三视图 【21】(B ,湖北,理8) C解析:显然32V V <,所以B 不正确. 又ππ37)1212(3221=⨯++=V ,ππ22122=⋅⋅=V ,8233==V ,328)2424(31224=⨯++=V ,从而2134V V V V <<<.【26】(B ,湖北,理9)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体. 经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值()E X = A .126125B .65C .168125D .75考点名称 统计【26】(B ,湖北,理9)B 125个同样大小的小正方体的面数共有125×6=750,涂了油漆的面数有25×6=150. 每一个小正方体的一个面涂漆的频率为51750150=,则它的涂漆面数为X 的均值()E X =56651=⨯.第8题图第9题图第4页(共6页)【29】(C ,湖北,理10)已知a 为常数,函数()(ln )f x x x ax =-有两个极值点1x ,212()x x x <,则A .1()0f x >,21()2f x >-B .1()0f x <,21()2f x <-C .1()0f x >,21()2f x <-D .1()0f x <,21()2f x >-考点名称 导数及其应用 【29】(C ,湖北,理10)D 解析: ax x x f 21ln )('-+=,由()(ln )f x x x ax =-由两个极值点,得0)('=x f 有两个不等的实数解,即12ln -=ax x 有两个实数解,从而直线12-=ax y 与曲线x y ln =有两个交点. 过点(0,-1)作xy ln =的切线,设切点为(x 0,y 0),则切线的斜率01x k =,切线方程为110-=x x y . 切点在切线上,则01000=-=x x y ,又切点在曲线x y ln =上,则10ln 00=⇒=x x ,即切点为(1,0),切线方程为1-=x y .再由直线12-=ax y 与曲线x y ln =有两个交点.,知直线12-=ax y 位于两直线0=y 和1-=x y 之间,如图所示,其斜率2a 满足:0<2a <1,解得0<a <21. .则这函数的两个极点21,x x 满足2110x x <<<,所以)()1()(21x f f x f <<,而)0,21()1(-∈-=a f ,即)()(21x f a x f <-<,所以21)(,0)(21-><x f x f .【26】(A ,湖北,理11)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示. (Ⅰ)直方图中x 的值为_________;(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为_________. 考点名称 统计【26】(A ,湖北,理11)(Ⅰ)0.0044 (Ⅱ)70 解析:(Ⅰ))]0012.00024.020036.00060.0(501[501+⨯++-=x=0.0044;第11题图第5页(共6页)(Ⅱ)用电量落在区间[100,250)内的户数为7010050)0044.00060.00036.0(=⨯⨯++. 【24】(A ,湖北,理12)阅读如图所示的程序框图,运行相应的程序,输出的结果i =_________.考点名称 算法初步与框图 【24】(A ,湖北,理12)5解析:已知初始值1,10==i a ,∵410≠=a ,则执行程序,得2,5==i a ;因为45≠=a ,则执行程序,得3,16==i a ;416≠=a ,则第三次执行程序,得4,8==i a ;∵48≠=a ,则第四次执行程序,得5,4==i a ;∵4=a ,执行输出i ,5=i .【13】(C ,湖北,理13)设,,x y z ∈R ,且满足:2221x y z ++=,23x y z ++=则x yz ++=_________.考点名称【13】(C ,湖北,理137解析:【39】(湖北理14)古希腊毕达哥拉斯学派的数学家研究过各种多边形数. 如三角形数1,3,6,10, ,第n 个三角形数为2(1)11222n n n n+=+. 记第n 个k 边形数为(,)(3)N n k k ≥,以下列出了部分k 边形数中第n个数的表达式:三角形数 211(,3)22N n n n=+,正方形数 2(,4)N n n =,五边形数 231(,5)22N n n n=-,六边形数2(,6)2N n n n=-,………………………………………可以推测(,)N n k 的表达式,由此计算(10,24)N =_________. 考点名称 创新与拓展【13】(C ,湖北,理13)1000解析:三角形数 211(,3)22N n n n=+,正方形数2(,4)N n n= =n n )2121()2121(2212-++个, 第12题图第6页(共6页)五边形数231(,5)22N n n n=-=n n )212121()212121(2213--+++个, 六边形数2(,6)2N n n n=- =n n )21212121()21212121(2122214----++++个个=, ………………………………………推测k 边形=),(k n N n n k k )21 (2121212)1()2121...2121(21)4(221)2(--------+++++个个n k n k )4(21)2(212---=.所以1000100110010)424(2110)224(21)24,10(2=-=⨯-⨯-⨯-⨯=N .【37】(B ,湖北,理15)如图,圆O 上一点C 在直径A B 上的射影为D ,点D 在半径O C 上的射影为E .若3AB AD=,则C E E O的值为_________.考点名称 选修4-1:几何证明选讲 【37】(B ,湖北,理15)8解析:根据题设,易知DO AO OC 3==, Rt △ODE ∽Rt △DCE ∽Rt △OCD ,∴13===ODOC DECD OEOD ,即CO=3OD=9OE ,在Rt △ODE 中,22222289OEOE OE OEDODE =-=-=,在Rt △CDE 中,22222289DEDEDEDECDCE=-=-=264OE=,即6422=EOCE ,∴8=EOCE .【36】(A ,湖北,理16)在直角坐标系xO y 中,椭圆C 的参数方程为co s ,sin x a y b ϕϕ=⎧⎨=⎩(ϕ为参数,0ab >>). 在极坐标系(与直角坐标系xO y 取相同的长度单位,且以原点O 为极点,以x 轴正半轴 为极轴)中,直线l 与圆O的极坐标方程分别为πsin ()42ρθ+=(m 为非零常数)与bρ=. 若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为_________.考点名称 选修4-4:坐标系与参数方程OD E BA第15题图C第7页(共6页)【36】(A ,湖北,理163椭圆C 的方程可以化为12222=+by ax ,圆O 的方程可化为222b yx =+,直线l 的方程可化为m y x =+,因为直线l 经过椭圆的焦点,且与圆O 相切,则m c =,m b 22=,m mm a 26222=+=,所以椭圆的离心率3626===m m ac e .【10】(B ,湖北,理17)在△A B C中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos 23cos()1A BC -+=.(Ⅰ)求角A 的大小; (Ⅱ)若△A B C的面积S=5b=,求sin sin B C 的值.考点名称 解三角形【10】(B ,湖北,理17)(Ⅰ)由cos 23cos()1A B C -+=,得22cos 3cos 20A A +-=,即(2cos 1)(cos 2)0A A -+=,解得1co s 2A=或cos 2A =-(舍去).因为0πA <<,所以π3A=.(Ⅱ)由11sin 2224Sb c A b c c ==⋅==得20b c=. 又5b =,知4c =.由余弦定理得2222cos 25162021,a b c bc A =+-=+-=故a=又由正弦定理得222035sin sin sin sin sin 2147b c b c B CA A A a a a=⋅==⨯=.【19】(B ,湖北,理18)已知等比数列{}n a 满足:23||10a a -=,123125a a a =.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)是否存在正整数m ,使得121111ma a a +++≥ ?若存在,求m 的最小值;若不存在,说明理由.考点名称 等比数列【19】(B ,湖北,理18)(Ⅰ)设等比数列{}n a 的公比为q ,则由已知可得331211125,||10,a q a q a q ⎧=⎪⎨-=⎪⎩解得15,33,a q ⎧=⎪⎨⎪=⎩或15,1.a q =-⎧⎨=-⎩故1533n na -=⋅,或15(1)n na -=-⋅-.第8页(共6页)(Ⅱ)若1533n na -=⋅,则1131()53n na -=⋅,故1{}na 是首项为35,公比为13的等比数列,从而131[1()]191953[1()]111031013mmm n n a =⋅-==⋅-<<-∑.若1(5)(1)n na -=-⋅-,则111(1)5n na -=--,故1{}na 是首项为15-,公比为1-的等比数列,从而11,21(),1502().mn nm k k a m k k +=+⎧-=-∈⎪=⎨⎪=∈⎩∑N N , 故111mn na =<∑.综上,对任何正整数m ,总有111mn na =<∑.故不存在正整数m ,使得121111ma a a +++≥ 成立.【23】(B ,湖北,理19)如图,A B 是圆O 的直径,点C 是圆O 上异于,A B的点,直线P C⊥平面A B C ,E ,F 分别是P A ,P C 的中点.(Ⅰ)记平面B E F 与平面A B C 的交线为l ,试判断直线l 与平面P A C 的位置关系,并加以证明;(Ⅱ)设(Ⅰ)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12D QC P =.记直线P Q 与平面A B C 所成的角为θ,异面直线P Q 与E F 所成的角为α,二面角El C--的大小为β,求证:sin sin sin θαβ=.考点名称 空间向量与立体几何【23】(B ,湖北,理19)(Ⅰ)直线l ∥平面P A C ,证明如下:连接E F ,因为E ,F 分别是P A ,P C 的中点,所以E F ∥A C . 又E F ⊄平面A B C ,且A C⊂平面A B C ,所以E F ∥平面A B C .而E F ⊂平面B E F ,且平面B E F平面A B Cl=,所以E F ∥l .因为l⊄平面P A C ,E F⊂平面P A C ,所以直线l ∥平面P A C .(Ⅱ)(综合法)如图1,连接B D ,由(Ⅰ)可知交线l 即为直线B D ,且l ∥A C . 因为A B 是O的直径,所以A CB C⊥,于是lB C⊥. 已知P C ⊥平面A B C ,而l⊂平面A B C ,所以P Cl⊥.而P CB C C= ,所以l⊥平面P B C.第19题图第19题解答图1第9页(共6页)连接B E ,B F ,因为B F ⊂平面P B C ,所以lB F⊥.故C B F ∠就是二面角El C--的平面角,即C B Fβ∠=.由12D Q C P= ,作D Q ∥C P ,且12D Q C P=.连接P Q ,D F ,因为F 是C P 的中点,2C PP F=,所以D QP F=,从而四边形D Q P F 是平行四边形,P Q ∥F D . 连接C D ,因为P C⊥平面A B C ,所以C D 是F D 在平面A B C 内的射影,故C D F ∠就是直线P Q 与平面A B C 所成的角,即C D F θ∠=.又B D⊥平面P B C ,有B DB F⊥,知B D F ∠为锐角,故B D F ∠为异面直线P Q 与E F 所成的角,即B D F α∠=,于是在R t △D C F,R t △F B D,R t △B C F中,分别可得sin C F D Fθ=,sin B F D F α=,sin C F B Fβ=, 从而sin sin sin C F B F C F B FD FD Fαβθ=⋅==,即sin sin sin θαβ=.(Ⅱ)(向量法)如图2,由12D Q C P=,作D Q ∥C P ,且12D QC P=.连接P Q ,E F ,B E ,B F ,B D ,由(Ⅰ)可知交线l 即为直线B D . 以点C 为原点,向量,,C A C B C P所在直线分别为,,x y z轴,建立如图所示的空间直角坐标系,设,,2C Aa C Bb C P c===,则有(0,0,0),(,0,0),(0,,0),(0,0,2),(,,)C A a B b P c Q a b c ,1(,0,),(0,0,)2E a cF c .于是1(,0,0)2F Ea =,(,,)Q P a b c =--,(0,,)B Fb c =-,所以||co s ||||F E Q P F E Q P α⋅==⋅,从而sin α=又取平面A B C 的一个法向量为(0,0,1)=m,可得||sin ||||Q P Q P θ⋅==⋅ m m ,设平面B E F 的一个法向量为(,,)x y z =n, 所以由0,0,F E B F ⎧⋅=⎪⎨⋅=⎪⎩ n n可得10,20.a x b y cz ⎧=⎪⎨⎪-+=⎩取(0,,)c b =n.第19题解答图2第10页(共6页)于是|||co s |||||β⋅==⋅m n m n,从而sin β=.故sin sin sin αβθ===,即sin sin sin θαβ=.【40】(B ,湖北,理20)假设每天从甲地去乙地的旅客人数X 是服从正态分布2(800,50)N 的随机变量. 记一天中从甲地去乙地的旅客人数不超过900的概率为0p .(Ⅰ)求0p 的值;(参考数据:若X ~2(,)N μσ,有()0.826P X μσμσ-<≤+=,(22)0.9544P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<≤+=.)(Ⅱ)某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A、B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆. 公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆. 若每天要以不小于0p 的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?考点名称 随机变量及其分布,简单的线性规划【40】(B ,湖北,理20)(Ⅰ)由于随机变量X 服从正态分布2(800,50)N ,故有800μ=,50σ=(700900)0.9544P X <≤=.由正态分布的对称性,可得0(900)(800)(800900)p P X P X P X =≤=≤+<≤11(700900)0.977222P X =+<≤=.(Ⅱ)设A 型、B 型车辆的数量分别为, x y 辆,则相应的营运成本为16002400x y+. 依题意,, x y还需满足:21, 7, (3660)x y y x P X x y p +≤≤+≤+≥.由(Ⅰ)知,0(900)p P X =≤,故0(3660)P Xx yp≤+≥等价于3660900x y+≥.于是问题等价于求满足约束条件21,7,3660900,, 0, ,x y y x x y x y x y +≤⎧⎪≤+⎪⎨+≥⎪⎪≥∈⎩N ,第20题解答图第11页(共6页)且使目标函数16002400zx y=+达到最小的,x y.作可行域如图所示, 可行域的三个顶点坐标分别为(5,12), (7,14), (15,6)P Q R . 由图可知,当直线16002400zx y=+经过可行域的点P 时,直线16002400zx y=+在y 轴上截距2400z 最小,即z 取得最小值. 故应配备A 型车5辆、B 型车12辆.【16】(C ,湖北,理21)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为M N 且在x 轴上,短轴长分别为2m ,2()nm n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记m nλ=,△B D M和△A B N的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.考点名称 直线与圆锥曲线【16】(C ,湖北,理21)依题意可设椭圆1C 和2C 的方程分别为1C :22221x y am+=,2C :22221x y an+=. 其中0am n >>>, 1.m nλ=>(Ⅰ)解法1:如图1,若直线l 与y 轴重合,即直线l 的方程为0x=,则111||||||22S B D O M a B D =⋅=,211||||||22S A B O N a A B =⋅=,所以12||||S B D S A B =.在C 1和C 2的方程中分别令0x =,可得Ay m=,By n=,Dy m=-,于是||||1||||1B D A B y y B D m n A B y y m nλλ-++===---.若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=.故当直线l 与y 轴重合时,若12S S λ=,则1λ=.解法2:如图1,若直线l 与y 轴重合,则||||||B D O B O D m n =+=+,||||||A B O A O B m n=-=-;111||||||22S B D O M a B D =⋅=,211||||||22S A B O N a A B =⋅=.第21题图第12页(共6页)所以12||1||1S B D m n S A B m n λλ++===--.若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=.故当直线l 与y 轴重合时,若12S S λ=,则1λ=.(Ⅱ)解法1:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性,不妨设直线l :(0)y kx k =>,点(,0)Ma -,(,0)N a 到直线l的距离分别为1d ,2d ,则因为1d ==2d ==,所以12d d =.又111||2S B D d =,221||2S A B d =,所以12||||S B D S A B λ==,即||||B D A B λ=.由对称性可知||||A B C D =,所以||||||(1)||B C B D A B A B λ=-=-,||||||(1)||A D B D A B A B λ=+=+,于是 ||1||1A DBC λλ+=-. ①将l 的方程分别与C 1,C 2的方程联立,可求得A x =,Bx =. 根据对称性可知CBx x =-,DAx x =-,于是2||||2A Bx A D B C x ===②从而由①和②式可得第21题解答图1第21题解答图2第13页(共6页)1(1)λλλ+=-. ③令1(1)tλλλ+=-,则由mn >,可得1t≠,于是由③可解得222222(1)(1)n t ka t λ-=-.因为0k ≠,所以2k>. 于是③式关于k 有解,当且仅当22222(1)0(1)n t a t λ->-,等价于2221(1)()0t t λ--<. 由1λ>,可解得11t λ<<,即111(1)λλλλ+<<-,由1λ>,解得1λ>+当11λ<≤+l ,使得12S S λ=;当1λ>+l 使得12S S λ=.解法2:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性,不妨设直线l :(0)y kx k =>,点(,0)Ma -,(,0)N a 到直线l的距离分别为1d ,2d ,则因为1d ==2d ==,所以12d d =.又111||2S B D d =,221||2S A B d =,所以12||||S B D S A B λ==.因为||||A B A Bx x B D A B x x λ+===-,所以11A Bx x λλ+=-.由点(,)A A A x kx ,(,)B B B x kx 分别在C 1,C 2上,可得222221A A x k x am+=,222221B B x k x an+=,两式相减可得22222222()A BA B x x k x x amλ--+=,依题意0A B x x >>,所以22ABx x >. 所以由上式解得22222222()()A B B A m x x ka x x λ-=-.因为2k>,所以由2222222()0()A B B A m x x a x x λ->-,可解得1A Bx x λ<<.从而111λλλ+<<-,解得1λ>+当11λ<≤+l ,使得12S S λ=;第14页(共6页)当1λ>+l 使得12S S λ=.【40】(湖北理22)设n 是正整数,r 为正有理数. (Ⅰ)求函数1()(1)(1)1(1)r f x x r x x +=+-+->-的最小值; (Ⅱ)证明:1111(1)(1)11r r r r rnn n nn r r ++++--+-<<++;(Ⅲ)设x ∈R ,记x ⎡⎤⎢⎥为不小于...x 的最小整数,例如22=⎡⎤⎢⎥,π4=⎡⎤⎢⎥,312⎡⎤-=-⎢⎥⎢⎥.令S=+,求S ⎡⎤⎢⎥的值.(参考数据:4380344.7≈,4381350.5≈,43124618.3≈,43126631.7≈)考点名称 导数,函数的性质,不等式,创新与拓展,交汇与整合 【40】(湖北理22)(Ⅰ)因为()(1)(1)(1)(1)[(1)1]r rf x r x r r x '=++-+=++-,令()0f x '=,解得0x=.当10x -<<时,()0f x '<,所以()f x 在(1,0)-内是减函数;当0x>时,()0f x '>,所以()f x 在(0,)+∞内是增函数.故函数()f x 在0x =处取得最小值(0)0f =.(Ⅱ)由(Ⅰ),当(1,)x ∈-+∞时,有()(0)0f x f ≥=,即1(1)1(1)r x r x++≥++,且等号当且仅当0x =时成立,故当1x>-且0x ≠时,有1(1)1(1)r x r x++>++. ①在①中,令1x n=(这时1x >-且0x ≠),得111(1)1r r nn+++>+.上式两边同乘1r n +,得11(1)(1)r r rnnn r +++>++,即11(1).1r r rn nn r +++-<+ ②当1n>时,在①中令1x n=-(这时1x >-且0x ≠),类似可得11(1).1r r rn n n r ++-->+ ③且当1n =时,③也成立.综合②,③得第15页(共6页)1111(1)(1).11r r r r rnn n nn r r ++++--+-<<++ ④(Ⅲ)在④中,令13r=,n 分别取值81,82,83,…,125,得44443333338180(8281)44-<-()<,44443333338281(8382)44-<-()<,44443333338382(8483)44-<<-(),………4444333333125124(126125)44-<-().将以上各式相加,并整理得444433333312580(12681)44S -<<-().代入数据计算,可得4433312580210.24-≈(),4433312681210.94-≈().由S ⎡⎤⎢⎥的定义,得211S =⎡⎤⎢⎥.。
2013高考湖北数学真题及答案
绝密★启用前2013年普通高等学校招生全国统一考试(湖北卷)数学(文史类)本试题卷共5页,22题。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸上无效。
3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。
答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则A. B. C. D.2.已知,则双曲线:与:的A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A.∨B.∨C.∧D.∨4.四名同学根据各自的样本数据研究变量之间的相关关系,并求得回归直线方程,分别得到以下四个结论:① y与x负相关且; ② y与x负相关且;③ y与x正相关且; ④ y与x正相关且.其中一定不正确的结论的序号是A.①②B.②③C.③④D. ①④5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是6.将函数的图象向左平移个单位长度后,所得到的图象关于y轴对称,则m的最小值是A. B. C. D.7.已知点、、、,则向量在方向上的投影为A. B. C. D.8.x为实数,表示不超过的最大整数,则函数在上为A.奇函数B.偶函数C.增函数D. 周期函数9.某旅行社租用、两种型号的客车安排900名客人旅行,、两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且型车不多于型车7辆.则租金最少为A.31200元B.36000元C.36800元D.38400元10.已知函数有两个极值点,则实数的取值范围是A. B. C. D.二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上. 答错位置,书写不清,模棱两可均不得分.11.为虚数单位,设复数,在复平面内对应的点关于原点对称,若,则 .12.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(Ⅰ)平均命中环数为 ;(Ⅱ)命中环数的标准差为 .13.阅读如图所示的程序框图,运行相应的程序. 若输入的值为2,则输出的结果 .14.已知圆:,直线:().设圆上到直线的距离等于1的点的个数为,则 .15.在区间上随机地取一个数x,若x满足的概率为,则 .16.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)17.在平面直角坐标系中,若点的坐标,均为整数,则称点为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为,其内部的格点数记为,边界上的格点数记为. 例如图中△是格点三角形,对应的,,.(Ⅰ)图中格点四边形DEFG对应的分别是 ;(Ⅱ)已知格点多边形的面积可表示为,其中a,b,c为常数.若某格点多边形对应的,,则 (用数值作答).三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.18.(本小题满分12分)在△中,角,,对应的边分别是,,. 已知.(Ⅰ)求角A的大小;(Ⅱ)若△的面积,,求的值.19.(本小题满分13分)已知是等比数列的前项和,,,成等差数列,且.(Ⅰ)求数列的通项公式;(Ⅱ)是否存在正整数,使得?若存在,求出符合条件的所有的集合;若不存在,说明理由.20.(本小题满分13分)如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为.同样可得在B,C处正下方的矿层厚度分别为,,且. 过,的中点,且与直线平行的平面截多面体所得的截面为该多面体的一个中截面,其面积记为.(Ⅰ)证明:中截面是梯形;(Ⅱ)在△ABC中,记,BC边上的高为,面积为. 在估测三角形区域内正下方的矿藏储量(即多面体的体积)时,可用近似公式来估算. 已知,试判断与V的大小关系,并加以证明.21.(本小题满分13分)设,,已知函数.(Ⅰ)当时,讨论函数的单调性;(Ⅱ)当时,称为、关于的加权平均数.(i)判断, ,是否成等比数列,并证明;(ii)、的几何平均数记为G. 称为、的调和平均数,记为H.若,求的取值范围.22.(本小题满分14分)如图,已知椭圆与的中心在坐标原点,长轴均为且在轴上,短轴长分别为,,过原点且不与轴重合的直线与,的四个交点按纵坐标从大到小依次为A,B,C,D.记,△和△的面积分别为和.(Ⅰ)当直线与轴重合时,若,求的值;(Ⅱ)当变化时,是否存在与坐标轴不重合的直线l,使得?并说明理由.。
【纯Word版解析】2013年普通高等学校招生统一考试——理科数学(湖北卷)1
2013年湖北省理科数学高考试题WORD 解析版一、选择题 1、在复平面内,复数21iz i=+(i 为虚数单位)的共轭复数对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 【解析与答案】211iz i i==++,1z i ∴=-。
故选D【相关知识点】复数的运算2、已知全集为R ,集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R A C B =( )A.{}|0x x ≤B.C. {}|024x x x ≤<>或D.{}|024x x x <≤≥或 【解析与答案】[)0,A =+∞,[]2,4B =,[)()0,24,R AC B ∴=+∞。
故选C【相关知识点】不等式的求解,集合的运算3、在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) A.()()p q ⌝∨⌝ B. ()p q ∨⌝ C. ()()p q ⌝∧⌝ D.p q ∨ 【解析与答案】“至少有一位学员没有降落在指定范围” 即:“甲或乙没有降落在指定范围内”。
故选A 。
【相关知识点】命题及逻辑连接词4、将函数()sin y x x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是( ) A.12π B.6π C.3π D.56π【解析与答案】2cos 6y x π⎛⎫=-⎪⎝⎭的图像向左平移()0m m >个长度单位后变成2cos 6y x m π⎛⎫=-+ ⎪⎝⎭,所以m 的最小值是6π。
故选B 。
【相关知识点】三角函数图象及其变换5、已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的( )A.实轴长相等B.虚轴长相等C.焦距相等D. 离心率相等 【解析与答案】双曲线1C 的离心率是11cos e θ=,双曲线2C 的离心率是21cos e θ==,故选D 【相关知识点】双曲线的离心率,三角恒等变形6、已知点()1,1A -、()1,2B 、()2,1C --、()3,4D ,则向量AB 在CD 方向上的投影为( )A.C. D.【解析与答案】()2,1AB =,()5,5CD =,5AB CD CD∴==A 。
2013年高考理科数学全国卷1(含详细答案)
数学试卷 第1页(共48页)数学试卷 第2页(共48页)数学试卷 第3页(共48页)绝密★启用前2013年普通高等学校招生全国统一考试(全国新课标卷1)理科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合20{}|2A x x x =->,{|55}B x x <<=-,则( )A .AB =R B .A B =∅C .B A ⊆D .A B ⊆ 2.若复数z 满足(34i)|43i|z -=+,则z 的虚部为( )A .4-B .45-C .4D .453.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.已知双曲线C :22221(0,0)x y a b a b-=>>的离心率为5,则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±5.执行如图的程序框图,如果输入的[1,3]t ∈-,则输出的s 属于 ( )A .[3,4]-B .[5,2]-C .[4,3]-D .[2,5]-6.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球 面恰好接触水面时测得水深为6cm ,如果不计容器的 厚度,则球的体积为( )A .3866πcm 3 B .3500πcm 3 C .31372πcm 3D .32048πcm 37.设等差数列{}n a 的前n 项和为n S ,12m S -=-,0m S =,13m S +=,则m =( )A .3B .4C .5D .68.某几何体的三视图如图所示,则该几何的体积为 ( ) A .168π+ B .88π+ C .1616π+ D .816π+9.设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b .若137a b =,则m =( )A .5B .6C .7D .810.已知椭圆E :22221(0)x y a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y += 11.已知函数22,0,()ln(1),0.x x x f x x x ⎧-+=⎨+>⎩≤若|()|f x ax ≥,则a 的取值范围是 ( )A .(,1]-∞B .(,0]-∞C .[2,1]-D .[2,0]-12.设n n n A B C △的三边长分别为n a ,n b ,n c ,n n n A B C △的面积为n S ,1,2,3,n =.若11b c >,1112b c a +=,1n n a a +=,12n n n c a b ++=,12n nn b a c ++=,则( )A .{}n S 为递增数列B .{}n S 为递减数列C .21{}n S -为递增数列,2{}n S 为递减数列D .21{}n S -为递减数列,2{}n S 为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a ,b 的夹角为60,(1)t t =+-c a b .若0=b c ,则t =________.14.若数列{}n a 的前n 项和2133n n S a =+,则{}n a 的通项公式是n a =________. 15.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=________.16.设函数22()(1)()f x x x ax b =-++的图象关于直线2x =-对称,则()f x 的最大值为________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图,在ABC △中,90ABC ∠=,3AB =,1BC =,P 为ABC △内一点,90BPC ∠=.(Ⅰ)若12PB =,求PA ; (Ⅱ)若150APB ∠=,求tan PBA ∠.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共48页)数学试卷 第5页(共48页) 数学试卷 第6页(共48页)18.(本小题满分12分)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=. (Ⅰ)证明:1AB AC ⊥; (Ⅱ)若平面ABC ⊥平面11AA B B ,AB CB =,求直线1A C 与平面11BB C C 所成角的正弦值.19.(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果3n =,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果4n =,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立. (Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.20.(本小题满分12分)已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求||AB .21.(本小题满分12分)设函数2()f x x ax b =++,()e ()xg x cx d =+.若曲线()y f x =和曲线()y g x =都过点(0,2)P ,且在点P 处有相同的切线42y x =+.(Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若2x -≥时,()()f x kg x ≤,求k 的取值范围.请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(Ⅰ)证明:DB DC =;(Ⅱ)设圆的半径为1,3BC =,延长CE 交AB 于点F ,求BCF △外接圆的半径.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程为45cos ,55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (Ⅰ)把1C 的参数方程化为极坐标方程; (Ⅱ)求1C 与2C 交点的极坐标(0,02π)ρθ≥≤<.24.(本小题满分10分)选修4—5:不等式选讲已知函数()|21||2|f x x x a =-++,()3g x x =+. (Ⅰ)当2a =-时,求不等式()()f x g x <的解集;(Ⅱ)设1a ->,且当1[,)22a x ∈-时,()()f x g x ≤,求a 的取值范围.=|2A B x{A B=R,故选【提示】根据一元二次不等式的解法,求出集合,再根据的定义求出A B和A B.【考点】并集及其运算,一元二次不等式的解法【答案】D4i)34=+,故z的虚部等于i553/ 16故选A.=,解得1)1245 / 16故选A .(2)(2+1)7!!!(+1)!m m m m m m =⨯,即13,再利用组合数的计算公式,解方程综上可知:[,0]2a∈-.(步骤4)67 / 16【提示】由1n n a a +=可知n n n A B C △的边n n B C 为定值1a ,由111112(2)2n n n n b c a b c a +++=+--及1112b c a +=得12n n b c a +=,则在n n n A B C △中边长1n n B C a =为定值,另两边n n n n A C A B 、的长度之和12n n b c a +=为定值,由此可知顶点n A 在以n n B C 、为焦点的椭圆上,根据111()2n n n n b c b c ++=---,得1111()2n n n b c b c -⎛⎫=- ⎪⎝⎭-,可知n →+∞时n n b c →,据此可判断n n n A B C △的边n n B C 的高n h 随着n 的增大而增大,再由三角形面积公式可得到答案. 【答案】2t =【解析】∵(1)c ta t b =-+,∴2(+1)||b t b ab t =-.(步骤又∵||||1a b ==,且a 与b 夹角为60,b c ⊥,∴0|cos6|||0+t a b =︒2【提示】由于0b c =,对式子(1)c ta t b =-+两边与b 作数量积可得|cos6|||0+a b ︒【考点】平面向量的数量积.85)(22,--+)(25,-+5)单调递增,在5)2-+单调递增,在9 / 161OCOA O =,所以1OAC 平面两两相互垂直.为坐标原点,OA的方向为|OA|为单位长,建立如图所示的空间直角坐标系则(1,0,BC=,11(1,BB AA==-,(0,3,AC=-设,,()n x y z=10,0,n BCn BB⎧=⎪⎨=⎪⎩即可取,1(3,n=-10cos,5||||n ACn ACn AC=-〈〉=BB1C1C所成角的正弦值为51111得1AB AC⊥;(Ⅱ)易证OA,1OA,OC两两垂直.以O为坐标原点,OA的方向为x轴的正向,||OA为单位长,建立坐标系,可得BC,1BB,AC的坐标,设,,()n x y z=10,0,n BCn BB⎧=⎪⎨=⎪⎩,可解得,1(3,n=-,n AC〈〉,即为所求正弦值.1011 / 1622)()A B ,411161616⨯+1【提示】(Ⅰ)设动圆的半径为R ,由已知动圆P 与圆M 外切并与圆N 内切,可得1212()()|+|+++4PM PN R r r R r r ==-=||,而||2NM =,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为长轴长的椭圆,求出即可;(Ⅱ)设曲线C 上任意一点,()P x y ,由于||2222PM PN R ≤|-|=-,所以2R ≤,当且仅当圆P 的圆心为所以可设l :4)+(y k x =,与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【考点】圆的标准方程及其性质,椭圆的的定义及其几何性质,直线与双曲线的位置关系.21.【答案】(Ⅰ)4a =2b =2c =2d =(Ⅱ)2[1,]e【解析】(Ⅰ)由已知得(0)2f =,(0)2g =,(0)4f '=,(0)4g '=.(步骤1)而+()2f x x a =',((+))+x g x e cx d c '=,故2b =,2d =,4a =,+4d c =.(步骤2)从而4a =,2b =,2c =,2d =.(步骤3)13 / 16(Ⅱ)由(Ⅰ)知,2()+4+2f x x x =,()21)+(x g x e x =.设函数2()()()2()+142x F x kg x f x ke x x x =-=---,则()2+()2242+1(2())x x F x ke x x x ke '=--=-.由题设可得(0)0F ≥,即1k ≥(步骤4)令()0F x '=得1ln x k =-,22x -=.(步骤5)①若21k e ≤<,则120x <≤-.从而当12(),x x ∈-时,()0F x '<;当1(),+x x ∈∞时,()0F x '>.即()F x 在1()2,x -单调递减,在1(),+x ∞单调递增.故()F x 在[)2,+-∞的最小值为1()F x .(步骤6)而1111211()2+24+0)22(F x x x x x x =--=-≥-.故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤7)②若2k e =,则2222+()()()2x F e x e e x -'=-.从而当2x >-时,)0(F x '>,即F (x )在()2,+-∞单调递增.而()20F -=,故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤8)③若2k e >,则22222+220()()F ke e k e ---=-=-<-.从而当2x ≥-时,()()f kg x x ≤不可能恒成立.综上,k 的取值范围是2[1,]e .(步骤9)【提示】(Ⅰ)对()f x ,()g x 进行求导,已知在交点处有相同的切线及曲线()y f x =和曲线()y g x =都过点(0,2)P ,从而解出a ,b ,c ,d 的值;(Ⅱ)由(Ⅰ)得出()f x ,()g x 的解析式,再求出()F x 及它的导函数,通过对k 的讨论,判断出()F x 的90,由勾股定理可得,故DG 60.30,所以CF ⊥BF ,故60.从而30.得到15 / 16【提示】(Ⅰ)对于曲线1C 利用三角函数的平方关系式22sin cos 1t t +=即可得到圆1C 的普通方程;再利用极坐标与直角坐标的互化公式即可得到1C 的极坐标方程;(Ⅱ)先求出曲线2C 的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标3⎝⎦21||23|2|x x y x +-=---,画出函数y 的图象,数形结合可得结论.。
2013湖北卷 (理数)真题解析
数学(理工类) 第1页(共19页)绝密★启用前2013年普通高等学校招生全国统一考试(湖北卷)数 学(理工类)本试题卷共6页,22题,其中第15、16题为选考题。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸上无效。
3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。
答在试题卷、草稿纸上无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用统一提供的2B 铅笔涂黑。
考生应根据自己选做的题目准确填涂题号,不得多选。
答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数2i1iz =+(i 为虚数单位)的共轭复数对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限答案:D考点:复数的概念与除法运算 分析:复数的基本运算解答:2i 11i z i = =+,2i1iz =+的共轭复数1i ,故答案为D.备注:考点:复数的基本运算.难度A .2.已知全集为R ,集合1{()1}2x A x = ,2{680}B x x x = ,则A B =R IA .{0}x xB .{24}x xC .{024}x x x <或D .{024}x x x < 或答案:C数学(理工类) 第2页(共6页)考点:集合分析:集合的基本运算解答:{0}A x x = ,{24}B x x = ,故答案为C. 备注:考点:集合的基本运算.难度A .3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A .()p ∨()q B .p ∨()qC .()p ∧()qD .p ∨q答案:A考点:逻辑连接词或、且、非 分析:p 与p解答:设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()p ∨()q故答案为A.备注:考点:逻辑连接词或、且、非.难度A .4.将函数sin ()y x x x = +R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是A .π12B .π6C .π3D .5π6答案:B考点:三角函数的图像平移与函数的对称性分析:sin 2sin()3y x x x= + ,2cos y x =为偶函数解答:sin 2sin()3y x x x= + ,2cos y x =为偶函数,故左移π6,故答案为B备注:考点:三角函数的图像平移与函数的对称性.难度A .5.已知π04 < ,则双曲线1C :22221cos sin x y 与2C :222221sin sin tan y x的 A .实轴长相等 B .虚轴长相等 C .焦距相等 D .离心率相等 答案:D考点:双曲线的标准方程与几何性质 分析:双曲线的标准方程与几何性质解答:22220cos sin x y 与222220sin sin tan y x 等价,故渐近线相同,所以离心率一样,故答案为C.备注:考点:双曲线的标准方程与几何性质.难度A .6.已知点(1,1)A 、(1,2)B 、(2,1)C 、(3,4)D ,则向量AB uðu ð在CD uðu ð方向上的投影为数学(理工类) 第3页(共6页)ABC. D. 答案:A考点:平面向量分析:平面向量的投影的计算解答:向量AB uðu ð在CD uðu ð方向上的投影为AB CD CD ×uðu ðuðr ð,(2,1)AB =uðu ð,(5,5)CD =uðu ð,AB CD CD ×=uðu ðuðr ð故答案为A.备注:考点:平面向量.难度A .7.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度25()731v t t t=+(t 的单位:s ,v 的单位:m/s )行驶至停止. 在此期间汽车继续行驶的距离(单位:m )是A .125ln 5+B .11825ln 3+ C .425ln 5+ D .450ln 2+答案:C.考点:定积分的意义分析:0)(=t v 时即停止,由4012537)(= =++=t tt t v ,即行驶第4s 时停止。
2013年普通高等学校招生全国统一考试数学理试题(新课标II卷,解析版1)
2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M={x|(x-1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N=( )(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1,a5 = 9,则a1=()(A)13(B)13-(C)19(D)19-(4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β。
直线l 满足l ⊥m ,l ⊥n ,,l l αβ⊄⊄,则( )(A )α∥β且l ∥α(B )α⊥β且l ⊥β (C )α与β相交,且交线垂直于l (D )α与β相交,且交线平行于l(5)已知(1+ɑx )(1+x )5的展开式中x 2的系数为5,则ɑ=( )(A )-4(B )-3 (C )-2 (D )-1(6)执行右面的程序框图,如果输入的N=10,那么输出的S=(A )11112310++++ (B )11112!3!10!++++(C )11112311++++ (D )11112!3!11!++++。
2013年普通高等学校招生全国统一考试(全国新课标II卷)数学试题 (理科) word解析版
2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题 共50分)一、 选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N 等于( ) A .{0,1,2} B .{-1,0,1,2} C .{-1,0,2,3} D .{0,1,2,3} 答案 A解析 化简集合M 得M ={x |-1<x <3,x ∈R },则M ∩N ={0,1,2}.2.设复数z 满足(1-i)z =2i ,则z =( )A .-1+iB .-1-IC .1+iD .1-i 答案 A解析 由已知得z =2i1-i =2i (1+i )(1-i )(1+i )=-1+i.3.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1等于( )A.13 B .-13 C.19 D .-19 答案 C解析 设等比数列{a n }的公比为q ,由S 3=a 2+10a 1得a 1+a 2+a 3=a 2+10a 1,即a 3=9a 1,q 2=9,又a 5=a 1q 4=9,所以a 1=19.4.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( ) A .α∥β且l ∥α B .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l 答案 D解析 假设α∥β,由m ⊥平面α,n ⊥平面β,则m ∥n ,这与已知m ,n 为异面直线矛盾,那么α与β相交,设交线为l 1,则l 1⊥m ,l 1⊥n ,在直线m 上任取一点作n 1平行于n ,那么l 1和l 都垂直于直线m 与n 1所确定的平面,所以l 1∥l .5.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a 等于( ) A .-4 B .-3 C .-2 D .-1 答案 D解析 (1+ax )(1+x )5中含x 2的项为:(C 25+C 15a )x 2,即C 25+C 15a =5,a =- 1.6.执行右面的程序框图,如果输入的N =10,那么输出的S =( )A .1+12+13+…+110B .1+12!+13!+…+110!C .1+12+13+…+111D .1+12!+13!+…+111!答案 B解析 k =1,T =11,S =1,k =2,T =11×2=12!,S =1+12!,k =3,T =11×2×3=13!,S =1+12!+13!,…由于N =10,即k >10时,结束循环,共执行10次.所以输出S =1+12!+13!+…+110!.7.一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,1,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为()答案 A解析 在空间直角坐标系中,先画出四面体O -ABC 的直观图,以zOx 平面为投影面,则得到正视图,所以选A.8.设a =log 36,b =log 510,c =log 714,则( )A .c >b >aB .b >c >aC .a >c >bD .a >b >c 答案 D解析 设a =log 36=1+log 32=1+1log 23,b =log 510=1+log 52=1+1log 25,c =log 714=1+log 72=1+1log 27,显然a >b >c.(9)已知a >0,x ,y 满足约束条件()133x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩,若z=2x+y 的最小值为1,则a=(A) 14 (B) 12(C)1(D)210.已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( ) A .∃x 0∈R ,f (x 0)=0B .函数y =f (x )的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(-∞,x 0)上单调递减D .若x 0是f (x )的极值点,则f ′(x 0)=0 答案 C解析 若c =0,则有f (0)=0,所以A 正确.由f (x )=x 3+ax 2+bx +c 得f (x )-c =x 3+ax 2+bx ,因为函数f (x )=x 3+ax 2+bx 的对称中心为(0,0),所以f (x )=x 3+ax 2+bx +c 的对称中心为(0,c ),所以B 正确.由三次函数的图象可知,若x 0是f (x )的极小值点,则极大值点在x 0的左侧,所以函数在区间(-∞,x 0 )单调递减是错误的,D 正确.选C.11.设抛物线C :y 2=2px (p ≥0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( ) A .y 2=4x 或y 2=8x B .y 2=2x 或y 2=8x C .y 2=4x 或y 2=16x D .y 2=2x 或y 2=16x 答案 C解析 由题意知:F ⎝⎛⎭⎫p 2,0,抛物线的准线方程为x =-p 2,则由抛物线的定义知,x M =5-p2,设以MF 为直径的圆的圆心为⎝⎛⎭⎫52,y M 2,所以圆的方程为⎝⎛⎭⎫x -522+⎝⎛⎭⎫y -y M 22=254,又因为圆过点(0,2),所以y M =4,又因为点M 在C 上,所以16=2p ⎝⎛⎭⎫5-p2,解得p =2或p =8,所以抛物线C 的方程为y 2=4x 或y 2=16x ,故选C.12.已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫1-22,12 C.⎝⎛⎭⎫1-22,13 D.⎣⎡⎭⎫13,12 答案 B二、填空题13.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 答案 2解析 由题意知:AE →·BD →=(AD →+DE →)·(AD →-AB →)=(AD →+12AB →)·(AD →-AB →)=AD →2-12AD →·AB →-12AB →2=4-0-2=2.14.从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=________. 答案 8解析 由题意,取出的两个数只可能是1与4,2与3这两种情况,∴在n 个数中任意取出两个不同的数的总情况应该是C 2n=n (n -1)2=2÷114=28,∴n =8.15.设θ为第二象限角,若tan ⎝⎛⎭⎫θ+π4=12,则sin θ+cos θ=________. 答案 -105解析 ∵tan ⎝⎛⎭⎫θ+π4=12,∴tan θ=-13,即{ 3sin θ=-cos θ,2θ+cos 2θ=1,解得sin θ=1010,cos θ=-31010. ∴sin θ+cos θ=-105.16.等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________. 答案 -49解析 由题意知a 1+a 10=0,a 1+a 15=103.两式相减得a 15-a 10=103=5d ,∴d =23,a 1=-3.∴nS n =n ·⎝⎛⎭⎫na 1+n (n -1)2d =n 3-10n 23=f (n ), f ′(n )=13n (3n -20).由函数的单调性知f (6)=-48,f (7)=-49. ∴nS n 的最小值为-49.三、解答题17.△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,已知a =bcos C +c sin B . (1)求B ;(2)若b =2,求△ABC 面积的最大值. 解 (1)由已知及正弦定理得sin A =sin B cos C +sin C sin B ,① 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①,②和C ∈(0,π)得sin B =cos B .又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2ac cos π4.又a 2+c 2≥2ac ,故ac ≤42-2,当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为2+1.18.如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1∥平面A 1CD ;(2)求二面角D -A 1C -E 的正弦值.(1)证明 连结AC 1交A 1C 于点F ,则F 为AC 1的中点. 又D 是AB 的中点,连结DF ,则BC 1∥DF . 因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD , 所以BC 1∥平面A 1CD .(2)解 由AC =CB =22AB 得,AC ⊥BC .以C 为坐标原点,CA →的方向为x 轴正方向,CB →的方向为y 轴正方向,CC 1→的方向为z 轴正方向,建立如图所示的空间直角坐标系C -xyz .设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2), CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则{n ·CD →=0,n ·CA 1→=0,即{ x 1+y 1=0,x 1+2z 1=0.可取n =(1,-1,-1).同理,设m 是平面A 1CE 的法向量,则{m ·CE →=0,m ·CA 1→=0.可取m =(2,1,-2).从而cos 〈n ,m 〉=n ·m |n ||m |=33,故sin 〈n ,m 〉=63.即二面角D -A 1C -E 的正弦值为63.19.经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位: t,100≤X ≤150)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率; (3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的T 的数学期望.解 (1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000. 当X ∈[130,150]时,T =500×130=65 000.所以T ={ 800X -39 000,100≤X <130,,130≤X ≤150. (2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.(3)依题意可得T 的分布列为所以E (T )=45 000×20.平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形的最大值.解 (1)设A (x 1,y 1),B (x 2,y 2),则 x 21a 2+y 21b 2=1① x 22a 2+y 22b2=1②①-②,得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0.因为y 1-y 2x 1-x 2=-1,设P (x 0,y 0),因为P 为AB 的中点,且OP 的斜率为12,所以y 0=12x 0,即y 1+y 2=12(x 1+x 2).所以可以解得a 2=2b 2,即a 2=2(a 2-c 2),即a 2=2c 2, 又因为c =3,所以a 2=6,所以M 的方程为x 26+y 23=1.(2)因为CD ⊥AB ,直线AB 方程为x +y -3=0, 所以设直线CD 方程为y =x +m ,将x +y -3=0代入x 26+y 23=1得:3x 2-43x =0,即A (0,3),B ⎝⎛⎭⎫433,-33, 所以可得|AB |=463;将y =x +m 代入x 26+y 23=1得:3x 2+4mx +2m 2-6=0, 设C (x 3,y 3),D (x 4,y 4),则|CD |=2(x 3+x 4)2-4x 3x 4=22318-2m 2,又因为Δ=16m 2-12(2m 2-6)>0,即-3<m <3,所以当m =0时,|CD |取得最大值4,所以四边形ACBD 面积的最大值为12|AB |·|CD |=863.21.已知函数f (x )=e x -ln(x +m ).(1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; (2)当m ≤2时,证明f (x )>0.(1)解 f (x )=e x -ln(x +m )⇒f ′(x )=e x -1x +m ⇒f ′(0)=e 0-10+m=0⇒m =1,定义域为{x |x >-1},f ′(x )=e x-1x +m =e x (x +1)-1x +1,令1)1()(-+=x e x g x ,则0)2()(>+='x e x g x ,又0)0(=g显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增.(2)证明 令g (x )=e x -ln(x +2),则g ′(x )=e x -1x +2(x >-2).h (x )=g ′(x )=e x -1x +2(x >-2)⇒h ′(x )=e x +1(x +2)2>0,所以h (x )是增函数,h (x )=0至多只有一个实数根,又g ′(-12)=1e -132<0,g ′(0)=1-12>0,所以h (x )=g ′(x )=0的唯一实根在区间⎝⎛⎭⎫-12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0⎝⎛⎭⎫-12<t <0,所以,e t =1t +2⇒t +2=e -t , 当x ∈(-2,t )时,g ′(x )<g ′(t )=0,g (x )单调递减; 当x ∈(t ,+∞)时,g ′(x )>g ′(t )=0,g (x )单调递增;所以g (x )min =g (t )=e t-ln(t +2)=1t +2+t =(1+t )2t +2>0,当m ≤2时,有ln(x +m )≤ln(x +2),所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0.22.[选修4-1]几何证明选讲如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,E 、F 分别为弦AB 与弦AC 上的点,且BC ·AE =DC ·AF ,B 、E 、F 、C 四点共圆.(1)证明:CA 是△ABC 外接圆的直径;(2)若DB =BE =EA ,求过B 、E 、F 、C 四点的圆的面积与△ABC 外接圆面积的比值.(1)证明 因为CD 为△ABC 外接圆的切线,所以∠DCB =∠A ,由题设知BC F A =DCEA,故△CDB ∽△AEF ,所以∠DBC =∠EF A .因为B ,E ,F ,C 四点共圆,所以∠CFE =∠DBC , 故∠EF A =∠CFE =90°. 所以∠CBA =90°,因此CA 是△ABC 外接圆的直径.(2)解 连结CE ,因为∠CBE =90°,所以过B ,E ,F ,C 四点的圆的直径为CE , 由DB =BE ,有CE =DC , 又BC 2=DB ·BA =2DB 2, 所以CA 2=4DB 2+BC 2=6DB 2. 而DC 2=DB ·DA =3DB 2,故过B ,E ,F ,C 四点的圆的面积与△ABC外接圆面积的比值为12.23.[选修4-4]坐标系与参数方程已知动点P 、Q 都在曲线C :{ x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解 (1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α), 因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为{ x =cos α+cos 2α,y =sin α+sin 2α,(α为参数,0<α<2π). (2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π). 当α=π,d =0,故M 的轨迹过坐标原点.24.[选修4-5]不等式选讲设a 、b 、c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a ≥1.证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得 a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c2a +a ≥2c ,故a 2b +b 2c +c2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a ≥1.。
2013年普通高等学校招生全国统一考试(湖北卷)数学理
2013年普通高等学校招生全国统一考试(湖北卷)数学理一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)在复平面内,复数(i为虚数单位)的共轭复数对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限解析:∵z====1+i,∴=1-i.∴对应的点(1,-1)位于第四象限,答案:D.2.(5分)已知全集为R,集合,则A∩C R B=( )A. {x|x≤0}B. {x|2≤x≤4}C. {x|0≤x<2或x>4}D. {x|0<x≤2或x≥4}解析:∵≤1=,∴x≥0,∴A={x|x≥0};又x2-6x+8≤0 (x-2)(x-4)≤0,∴2≤x≤4.∴B={x|2≤x≤4},∴C R B={x|x<2或x>4},∴A∩C R B={x|0≤x<2或x>4},答案:C.3.(5分)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A. (¬p)∨(¬q)B. p∨(¬q)C. (¬p)∧(¬q)D. p∨q解析:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).答案:A.4.(5分)将函数的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是( )A.B.C.D.解析:y=cosx+sinx=2(cosx+sinx)=2sin(x+),∴图象向左平移m(m>0)个单位长度得到y=2sin[(x+m)+]=2sin(x+m+),∵所得的图象关于y轴对称,∴m+=kπ+(k∈Z),则m的最小值为.答案:B5.(5分)已知0<θ<,则双曲线C1:-=1与C2:-=1的( )A. 实轴长相等B. 虚轴长相等C. 焦距相等D. 离心率相等解析:双曲线的实轴长为2cosθ,虚轴长2sinθ,焦距2,离心率,双曲线的实轴长为2sinθ,虚轴长2sinθtanθ,焦距2tanθ,离心率,故它们的离心率相同.答案:D.6.(5分)已知点A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量在方向上的投影为( )A.B.C.D.解析:,,则向量方向上的投影为:·cos<>=·===,答案:A.7.(5分)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度的单位:s,v的单位:m/s)行驶至停止,在此期间汽车继续行驶的距离(单位:m)是( )A. 1+25ln5B. 8+25lnC. 4+25ln5D. 4+50ln2解析:令v(t)=7-3t+,化为3t2-4t-32=0,又t>0,解得t=4.∴由刹车行驶至停止,在此期间汽车继续行驶的距离s===4+25ln5.答案:C.8.(5分)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )A. V1<V2<V4<V3B. V1<V3<V2<V4C. V2<V1<V3<V4D. V2<V3<V1<V4解析:由题意以及三视图可知,该几何体从上到下由:圆台、圆柱、正四棱柱、正四棱台组成,体积分别记λ为V1==.V2=12×π×2=2π,V3=2×2×2=8V4==;∵,∴V2<V1<V3<V4答案:C.9.(5分)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=( )A.B.C.D.解析:由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,∴P(X=3)=;②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,∴P(X=2)=;③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,∴P(X=1)=.④由以上可知:还剩下125-(8+36+54)=27个内部的小正方体的6个面都没有涂油漆,∴P(X=0)=.故X的分布列为因此E(X)==.答案:B.10.(5分)已知a为常数,函数f(x)=x(lnx-ax)有两个极值点x1,x2(x1<x2)( )A.B.C.D.解析:∵=lnx+1-2ax,(x>0)令f′(x)=0,由题意可得lnx=2ax-1有两个解x1,x2⇔函数g(x)=lnx+1-2ax有且只有两个零点 g′(x)在(0,+∞)上的唯一的极值不等于0..①当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,应舍去.②当a>0时,令g′(x)=0,解得x=,∵x,g′(x)>0,函数g(x)单调递增;时,g′(x)<0,函数g(x)单调递减.∴x=是函数g(x)的极大值点,则>0,即>0,∴ln(2a)<0,∴0<2a<1,即.∵,f′(x1)=lnx1+1-2ax1=0,f′(x2)=lnx2+1-2ax2=0.且f(x1)=x1(lnx1-ax1)=x1(2ax1-1-ax1)=x1(ax1-1)<x1(-ax1)=<0,f(x2)=x2(lnx2-ax2)=x2(ax2-1)>=-.().答案:D.二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)11.(5分)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示:(Ⅰ)直方图中x的值为;(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为.解析:(Ⅰ)依题意及频率分布直方图知,0.0024×50+0.0036×50+0.0060×50+x×50+0.0024×50+0.0012×50=1,解得x=0.0044. (II)样本数据落在[100,150)内的频率为0.0036×50=0.18,样本数据落在[150,200)内的频率为0.006×50=0.3.样本数据落在[200,250)内的频率为0.0044×50=0.22,故在这些用户中,用电量落在区间[100,250)内的户数为(0.18+0.30+0.22)×100=70.答案:0.0044;70.12.(5分)阅读如图所示的程序框图,运行相应的程序,输出的结果i= .解析:框图首先给变量a和变量i赋值,a=4,i=1.判断10=4不成立,判断10是奇数不成立,执行,i=1+1=2;判断5=4不成立,判断5是奇数成立,执行a=3×5+1=16,i=2+1=3;判断16=4不成立,判断16是奇数不成立,执行,i=3+1=4;判断8=4不成立,判断8是奇数不成立,执行,i=4+1=5;判断4=4成立,跳出循环,输出i的值为5.答案:5.13.(5分)设x,y,z∈R,且满足:,则x+y+z= . 解析:根据柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2),当且仅当时,上式的等号成立,∵x2+y2+z2=1,∴(x+2y+3z)2≤14,结合,可得x+2y+3z恰好取到最大值,∴=,可得x=,y=,z=,因此,x+y+z=++=.答案:14.(5分)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数,正方形数N(n,4)=n2,五边形数,六边形数N(n,6)=2n2-n,…可以推测N(n,k)的表达式,由此计算N(10,24)= 1000 .解析:原已知式子可化为:,,,,由归纳推理可得,故=1100-100=1000答案:100015.(5分)(选修4-1:几何证明选讲)如图,圆O上一点C在直径AB上的射影为D,点D在半径OC上的射影为E.若AB=3AD,则的值为.解析:设圆O的半径OA=OB=OC=3x,∵AB=3AD,∴AD=2x,BD=4x,OD=x又∵点C在直径AB上的射影为D,在△ABC中,由射影定理得:CD2=AD·BD=8x2,在△ODC中,由射影定理得:OD2=OE·OC=x2,CD2=CE·OC=8x2,故==8答案:816.(选修4-4:坐标系与参数方程)在直角坐标系xOy中,椭圆C的参数方程为为参数,a>b>0).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为为非零常数)与ρ=b.若直线l 经过椭圆C的焦点,且与圆O相切,则椭圆C的离心率为.解析:直线l的极坐标方程分别为为非零常数)化成直角坐标方程为x+y-m=0,它与x轴的交点坐标为(m,0),由题意知,(m,0)为椭圆的焦点,故|m|=c,又直线l与圆O:ρ=b相切,∴,从而c=b,又b2=a2-c2,∴c2=2(a2-c2),∴3c2=2a2,∴=.则椭圆C的离心率为. 答案:.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A-3cos(B+C)=1. (Ⅰ)求角A的大小;(Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值.解析:(I)利用倍角公式和诱导公式即可得出;(II)由三角形的面积公式即可得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2-2bccosA=25+16-20=21,即可得出a.又由正弦定理得即可得到即可得出.答案:(Ⅰ)由cos2A-3cos(B+C)=1,得2cos2A+3cosA-2=0,即(2cosA-1)(cosA+2)=0,解得(舍去).因为0<A<π,所以. (Ⅱ)由S===,得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2-2bccosA=25+16-20=21,故.又由正弦定理得.18.(12分)已知等比数列{a n}满足:|a2-a3|=10,a1a2a3=125.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在正整数m,使得?若存在,求m的最小值;若不存在,说明理由.解析:(I)设等比数列{a n}的公比为q,结合等比数列的通项公式表示已知条件,解方程可求a1,q,进而可求通项公式(Ⅱ)结合(I)可知是等比数列,结合等比数列的求和公式可求,即可判断答案:(Ⅰ)设等比数列{a n}的公比为q,则由已知可得解得故.(Ⅱ)若,则,故是首项为,公比为的等比数列,从而.若,则是首项为,公比为-1的等比数列,从而故.综上,对任何正整数m,总有.故不存在正整数m,使得成立.19.(12分)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F分别是PA,PC的中点.(Ⅰ)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;(Ⅱ)设(Ⅰ)中的直线l与圆O的另一个交点为D,且点Q满足.记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E-l-C的大小为β.求证:sinθ=sinαsinβ.解析:(I)直线l∥平面PAC.连接EF,利用三角形的中位线定理可得,EF∥AC;利用线面平行的判定定理即可得到EF∥平面ABC.由线面平行的性质定理可得EF∥l.再利用线面平行的判定定理即可证明直线l∥平面PAC.(II)综合法:利用线面垂直的判定定理可证明l⊥平面PBC.连接BE,BF,因为BF 平面PBC,所以l⊥BC.故∠CBF就是二面角E-l-C的平面角,即∠CBF=β.已知PC⊥平面ABC,可知CD是FD在平面ABC内的射影,故∠CDF就是直线PQ与平面ABC 所成的角,即∠CDF=θ.由BD⊥平面PBC,有BD⊥BF,知∠BDF=α,分别利用三个直角三角形的边角关系即可证明结论;向量法:以点C为原点,向量所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系,利用两个平面的法向量的夹角即可得出二面角.答案:(Ⅰ)直线l∥平面PAC,证明如下:连接EF,因为E,F分别是PA,PC的中点,所以EF∥AC,又EF平面ABC,且AC⊂平面ABC,所以EF∥平面ABC.而EF⊂平面BEF,且平面BEF∩平面ABC=l,所以EF∥l.因为l平面PAC,EF⊂平面PAC,所以直线l∥平面PAC.(Ⅱ)(综合法)如图,连接BD,由(Ⅰ)可知交线l即为直线BD,且l∥AC.因为AB是⊙O的直径,所以AC⊥BC,于是l⊥BC.已知PC⊥平面ABC,而l⊂平面ABC,所以PC⊥l.而PC∩BC=C,所以l⊥平面PBC.连接BE,BF,因为BF⊂平面PBC,所以l⊥BF.故∠CBF就是二面角E-l-C的平面角,即∠CBF=β.由,作DQ∥CP,且.连接PQ,DF,因为F是CP的中点,CP=2PF,所以DQ=PF,从而四边形DQPF是平行四边形,PQ∥FD.连接CD,因为PC⊥平面ABC,所以CD是FD在平面ABC内的射影,故∠CDF就是直线PQ与平面ABC所成的角,即∠CDF=θ.又BD⊥平面PBC,有BD⊥BF,知∠BDF=α,于是在Rt△DCF,Rt△FBD,Rt△BCF中,分别可得,从而.(Ⅱ)(向量法)如图,由,作DQ∥CP,且.连接PQ,EF,BE,BF,BD,由(Ⅰ)可知交线l即为直线BD.以点C为原点,向量所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系,设CA=a,CB=b,CP=2c,则有C(0,0,0) ,A(a,0,0),B(0,b,0),P(0,0,2c),Q(a,b,c),E(12a,0,c),于是,∴=,从而,又取平面ABC的一个法向量为,可得,设平面BEF的一个法向量为,所以由可得.于是,从而.故,即sinθ=sinαsinβ.20.(12分)假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0.(Ⅰ)求p0的值;(参考数据:若X~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974.)(Ⅱ)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?答案:(I)变量服从正态分布N(800,502),即服从均值为800,标准差为50的正态分布,适合700<X≤900范围内取值即在(μ-2σ,μ+2σ)内取值,其概率为:95.44%,从而由正态分布的对称性得出不超过900的概率为p0.(II)设每天应派出A型x辆、B型车y辆,根据条件列出不等式组,即得线性约束条件,列出目标函数,画出可行域求解.答案:(Ⅰ)由于随机变量X服从正态分布N(800,502),故有μ=800,σ=50,P(700<X≤900)=0.9544.由正态分布的对称性,可得p0=(P(X≤900)=P(X≤800)+P(800<X≤900)=(Ⅱ)设A型、B型车辆的数量分别为x,y辆,则相应的营运成本为1600x+2400y.依题意,x,y还需满足:x+y≤21,y≤x+7,P(X≤36x+60y)≥p0.由(Ⅰ)知,p0=P(X≤900),故P(X≤360x+60y)≥p0等价于36x+60y≥900.于是问题等价于求满足约束条件且使目标函数z=1600x+2400y达到最小值的x,y.作可行域如图所示,可行域的三个顶点坐标分别为P(5,12),Q(7,14),R(15,6).由图可知,当直线z=1600x+2400y经过可行域的点P时,直线z=1600x+2400y在y轴上截距最小,即z取得最小值.故应配备A型车5辆,B型车12辆.21.(13分)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN的面积分别为S1和S2.(Ⅰ)当直线l与y轴重合时,若S1=λS2,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.答案:(Ⅰ)设出两个椭圆的方程,当直线l与y轴重合时,求出△BDM和△ABN的面积S1和S2,直接由面积比=λ列式求λ的值;(Ⅱ)假设存在与坐标轴不重合的直线l,使得S1=λS2,设出直线方程,由点到直线的距离公式求出M和N到直线l的距离,利用数学转化思想把两个三角形的面积比转化为线段长度比,由弦长公式得到线段长度比的另一表达式,两式相等得到,换元后利用非零的k值存在讨论λ的取值范围.答案:以题意可设椭圆C1和C2的方程分别为,.其中a>m >n>0,.(Ⅰ)如图1,若直线l与y轴重合,即直线l的方程为x=0,则,,所以. 在C1和C2的方程中分别令x=0,可得y A=m,y B=n,y D=-m,于是.若,则,化简得λ2-2λ-1=0,由λ>1,解得.故当直线l与y轴重合时,若S1=λS2,则.(Ⅱ)如图2,若存在与坐标轴不重合的直线l,使得S1=λS2,根据对称性,不妨设直线l:y=kx(k>0),点M(-a,0),N(a,0)到直线l的距离分别为d1,d2,则,所以d1=d2.又,所以,即|BD|=λ|AB|.由对称性可知|AB|=|CD|,所以|BC|=|BD|-|AB|=(λ-1)|AB|,|AD|=|BD|+|AB|=(λ+1)|AB|,于是.将l的方程分别与C1和C2的方程联立,可求得根据对称性可知x C=-x B,x D=-x A,于是②从而由①和②可得③令,则由m>n,可得t≠1,于是由③可得.因为k≠0,所以k2>0.于是③关于k有解,当且仅当,等价于,由λ>1,解得,即,由λ>1,解得,所以当时,不存在与坐标轴不重合的直线l,使得S1=λS2;当时,存在与坐标轴不重合的直线l,使得S1=λS2.22.(14分)设n是正整数,r为正有理数.(Ⅰ)求函数f(x)=(1+x)r+1-(r+1)x-1(x>-1)的最小值;(Ⅱ)证明:;(Ⅲ)设x∈R,记[x]为不小于x的最小整数,例如.令的值.(参考数据:.答案:(Ⅰ)先求出函数f(x)的导函数f′(x),令f'(x)=0,解得x=0,再求出函数的单调区间,进而求出最小值为f(0)=0;(Ⅱ)根据(Ⅰ)知,即(1+x)r+1≥1+(r+1)x,令代入并化简得,再令得,,即结论得到证明;(Ⅲ)根据(Ⅱ)的结论,令,n分别取值81,82,83,…,125,分别列出不等式,再将各式相加得,,再由参考数据和条件进行求解.答案:(Ⅰ)由题意得f'(x)=(r+1)(1+x)r-(r+1)=(r+1)[(1+x)r-1],令f'(x)=0,解得x=0.当-1<x<0时,f'(x)<0,∴f(x)在(-1,0)内是减函数;当x>0时,f'(x)>0,∴f(x)在(0,+∞)内是增函数.故函数f(x)在x=0处,取得最小值为f(0)=0.(Ⅱ)由(Ⅰ),当x∈(-1,+∞)时,有f(x)≥f(0)=0,即(1+x)r+1≥1+(r+1)x,且等号当且仅当x=0时成立,故当x>-1且x≠0,有(1+x)r+1>1+(r+1)x,①在①中,令(这时x>-1且x≠0),得.上式两边同乘n r+1,得(n+1)r+1>n r+1+n r(r+1),即,②当n>1时,在①中令(这时x>-1且x≠0),类似可得,③且当n=1时,③也成立.综合②,③得,④(Ⅲ)在④中,令,n分别取值81,82,83, (125)得,,,…,将以上各式相加,并整理得. 代入数据计算,可得由[S]的定义,得[S]=211.。
2013年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学
绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题 共50分)一、 选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M={x|(x+1)2 < 4,x ∈R },N={-1,0,1,2,3},则M ∩N= ( )(A ){0,1,2} (B ){-1,0,1,2}(C ){-1,0,2,3} (D ){0,1,2,3}(2)设复数z 满足(1-i )z=2 i ,则z= ( )(A )-1+i (B )-1-i (C )1+i (D )1-i(3)等比数列{a n }的前n 项和为S n ,已知S 3 = a 2 +10a 1 ,a 5 = 9,则a 1=( ) (A )(B )-(C ) (D )-(4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β。
直线l 满足l ⊥m ,l ⊥n ,l β,则( )(A )α∥β且l ∥α (B )α⊥β且l ⊥β(C )α与β相交,且交线垂直于l (D )α与β相交,且交线平行于l(5)已知(1+ɑx )(1+x)5的展开式中x 2的系数为5,则ɑ=(A )-4 (B )-3 (C )-2 (D )-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A )1+ + +…+(B )1+ + +…+(C )1+ + +…+(D )1+ + +…+(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a(C )a >c >b (D)a >b >c(9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a=(A)(B) (C)1 (D)2(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A )∑x α∈R f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若xn 是f (x )的极值点,则f 1(x α)=0(11)设抛物线y2=3px(p ≥0)的焦点为F ,点M 在C 上,|MF|=5若以MF 为直径的园过点(0,3),则C 的方程为(A )y2=4x 或y2=8x (B )y2=2x 或y2=8x(C )y2=4x 或y2=16x (D )y2=2x 或y2=16x(12)已知点A (-1,0);B (1,0);C (0,1),直线y=ax+b(a>0)将△ABC 分割为面积相等的两部分,则b 的取值范围是(A )(0,1)(B)(1-,1/2)( C)(1-,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。
2013年湖北高考理科数学试卷答案解析
2013年普通高等学校招生全国统一考试(湖北卷)数 学(理工类)【34】(A ,湖北,理1)在复平面内,复数2i1iz =+(i 为虚数单位)的共轭复数对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限考点名称 数系的扩充与复数的概念 【34】(A ,湖北,理1)D 解析:i 1i)i(1i1i2+=-=+=z ,则i 1-=z ,其对应点Z (1,-1)位于第四象限. 【1】(A ,湖北,理2)已知全集为R ,集合1{()1}2x A x =≤,2{680}B x x x =-+≤,则A B =R ðA .{0}x x ≤B .{24}x x ≤≤C .{024}x x x ≤<>或D .{024}x x x <≤≥或考点名称 集合【1】(A ,湖北,理2)C解析:∵4,20862><⇔>+-x x x x ,0121≥⇔≤⎪⎭⎫⎝⎛x x,∴A B =R ð{024}x x x ≤<>或.【2】(A ,湖北,理3文3)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A .()p ⌝∨()q ⌝ B .p ∨()q ⌝ C .()p ⌝∧()q ⌝ D .p ∨q考点名称 常用逻辑语句 【2】(A ,湖北,理3文3)A解析:因为p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则p -是“没有降落在指定范围”,q -是“乙 没有降落在指定范围”,所以命题“至少有一位学员没有降落在指定范围”可表示为()p ⌝∨()q ⌝ .【6】(B ,湖北,理4文6)将函数sin ()y x x x +∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是 A .π12B .π6C .π3D .5π6考点名称 三角函数及其图象与性质 【6】(B ,湖北,理4文6)B解析:因为sin ()y x x x +∈R 可化为)6cos(2π-=x y (x ∈R ),将它向左平移π6个单位得x x y cos 26)6(cos 2=⎥⎦⎤⎢⎣⎡-+=ππ,其图像关于y 轴对称.【17】(B ,湖北,文2理5)已知π04θ<<,则双曲线1C :22221cos sin x y θθ-=与2C :222221sin sin tan y x θθθ-=的A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等考点名称 圆锥曲线及其标准方程 【17】(B ,湖北,文2理5)D解析:对于双曲线C1,有1sin cos 222=+=θθc ,θcos 1==a c e . 对于双曲线C2,有θθθθθ222222tan sec sin )tan 1(sin =⋅=+=c ,θθθcos 1sin tan ===a c e .即这两双曲线的离心率相等. 【7】(B ,湖北,理6文7)已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为A B C . D .考点名称 平面向量的概念及其运算 【7】(A ,湖北,理6文7)A解析:AB =(2,1),CD =(5,5),则向量AB 在向量CD 方向上的射影为22325515255)5,5()1,2(cos 22=⨯+⨯=+⋅==AB θ. 【31】(C ,湖北,理7)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度25()731v t t t=-++(t 的单位:s ,v 的单位:m/s )行驶至停止. 在此期间汽车继续行驶的距离(单位:m )是A .125ln 5+B .11825ln3+ C .425ln 5+ D .450ln 2+考点名称 定积分与微积分基本定理 【31】(C ,湖北,理7)C 解析:令25()731v t t t =-++=0,解得t =4或t =38-(不合题意,舍去),即汽车经过4秒中后停止,在此期间汽车继续行驶的距离为⎰⎰++-=4040d )12537(d )(t t t t t v 42)1l n (25237⎪⎭⎫⎝⎛++-=t t t =5ln 254+. 【21】(B ,湖北,理8)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有 A .1243V V V V <<< B .1324V V V V <<< C .2134V V V V <<< D .2314V V V V <<<考点名称 空间几何体与三视图 【21】(B ,湖北,理8) C解析:显然32V V <,所以B 不正确. 又ππ37)1212(3221=⨯++=V ,ππ22122=⋅⋅=V , 8233==V ,328)2424(31224=⨯++=V ,从而2134V V V V <<<. 【26】(B ,湖北,理9)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体. 经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值()E X = A .126125 B .65C .168125D .75考点名称 统计【26】(B ,湖北,理9)B 125个同样大小的小正方体的面数共有125×6=750,涂了油漆的面数有25×6=150. 每一个小正方体的一个面涂漆的频率为51750150=,则它的涂漆面数为X 的均值()E X =56651=⨯.【29】(C ,湖北,理10)已知a 为常数,函数()(ln )f x x x ax =-有两个极值点1x ,212()x x x <,则A .1()0f x >,21()2f x >-B .1()0f x <,21()2f x <-C .1()0f x >,21()2f x <-D .1()0f x <,21()2f x >-考点名称 导数及其应用 【29】(C ,湖北,理10)D解析: ax x x f 21ln )('-+=,由()(ln )f x x x ax =-由两个极值点,得0)('=x f 有两个不等的实数解,即12ln -=ax x 有两个实数解,从而直线12-=ax y 与曲线x y ln =有两个交点. 过点(0,-1)作xy ln =的切线,设切点为(x 0,y 0),则切线的斜率01x k =,切线方程为11-=x x y . 切点在切线上,则0100=-=x x y ,又切点在曲线x y ln =上,则10ln 00=⇒=x x ,即切点为(1,0),切线方程为1-=x y . 再由直线12-=ax y 与曲线x y ln =有两个交点.,知直线12-=ax y 位于两直线0=y 和1-=x y 之间,第8题图第9题图如图所示,其斜率2a 满足:0<2a <1,解得0<a <21. .则这函数的两个极点21,x x 满足2110x x <<<,所以)()1()(21x f f x f <<,而)0,21()1(-∈-=a f ,即)()(21x f a x f <-<,所以21)(,0)(21-><x f x f . 【26】(A ,湖北,理11)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示. (Ⅰ)直方图中x 的值为_________;(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为_________. 考点名称 统计【26】(A ,湖北,理11)(Ⅰ)0.0044 (Ⅱ)70 解析:(Ⅰ))]0012.00024.020036.00060.0(501[501+⨯++-=x=0.0044;(Ⅱ)用电量落在区间[100,250)内的户数为7010050)0044.00060.00036.0(=⨯⨯++.【24】(A ,湖北,理12)阅读如图所示的程序框图,运行相应的程序,输出的结果i =_________. 考点名称 算法初步与框图 【24】(A ,湖北,理12)5解析:已知初始值1,10==i a ,∵410≠=a ,则执行程序,得2,5==i a ;因为45≠=a ,则执行程序,得3,16==i a ;416≠=a ,则第三次执行程序,得4,8==i a ;∵48≠=a ,则第四次执行程序,得5,4==i a ;∵4=a ,执行输出i ,5=i .【13】(C ,湖北,理13)设,,x y z ∈R ,且满足:2221x y z ++=,23x y z ++则x y z ++=_________. 考点名称【13】(C ,湖北,理13解析:【39】(湖北理14)古希腊毕达哥拉斯学派的数学家研究过各种多边形数. 如三角形数1,3,6,10,,第n 个三角形数为2(1)11222n n n n +=+. 记第n 个k 边形数为(,)(3)N n k k ≥,以下列出了部分k 边形数中第n 个数的表达式:三角形数 211(,3)22N n n n =+,第11题图第12题图正方形数 2(,4)N n n =,五边形数 231(,5)22N n n n =-,六边形数 2(,6)2N n n n =-, ………………………………………可以推测(,)N n k 的表达式,由此计算(10,24)N =_________. 考点名称 创新与拓展【13】(C ,湖北,理13)1000解析:三角形数 211(,3)22N n n n =+,正方形数 2(,4)N n n = =n n )2121()2121(2212-++个,五边形数 231(,5)22N n n n =-=n n )212121()212121(2213--+++个,六边形数 2(,6)2N n n n =- =n n )21212121()21212121(2122214----++++个个=, ………………………………………推测k 边形=),(k n N n n k k )21 (2121212)1()2121...2121(21)4(221)2(--------+++++个个n k n k )4(21)2(212---=.所以1000100110010)424(2110)224(21)24,10(2=-=⨯-⨯-⨯-⨯=N . 【37】(B ,湖北,理15)如图,圆O 上一点C 在直径AB 上的射影为D ,点D 在半径OC 上的射影为E .若3AB AD =,则CEEO的值为_________. 考点名称 选修4-1:几何证明选讲 【37】(B ,湖北,理15)8解析:根据题设,易知DO AO OC 3==, Rt △ODE ∽Rt △DCE ∽Rt △OCD ,∴13===OD OC DE CD OE OD ,即CO=3OD=9OE , 在Rt △ODE 中,22222289OE OE OE OE DO DE =-=-=,在Rt △CDE 中,22222289DE DE DE DE CD CE =-=-=264OE =,即6422=EO CE ,∴8=EO CE . 【36】(A ,湖北,理16)OD EBA 第15题图C在直角坐标系xOy 中,椭圆C 的参数方程为cos ,sin x a y b ϕϕ=⎧⎨=⎩(ϕ为参数,0a b >>). 在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O的极坐标方程分别为πsin()4ρθ+=(m 为非零常数)与b ρ=. 若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为_________. 考点名称 选修4-4:坐标系与参数方程【36】(A ,湖北,理16椭圆C 的方程可以化为12222=+by a x ,圆O 的方程可化为222b y x =+,直线l 的方程可化为m y x =+,因为直线l 经过椭圆的焦点,且与圆O 相切,则m c =,m b 22=,m m m a 26222=+=,所以椭圆的离心率3626===mm a c e . 【10】(B ,湖北,理17)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=. (Ⅰ)求角A 的大小;(Ⅱ)若△ABC的面积S =5b =,求sin sin B C 的值. 考点名称 解三角形【10】(B ,湖北,理17)(Ⅰ)由cos23cos()1A B C -+=,得22cos 3cos 20A A +-=, 即(2cos 1)(cos 2)0A A -+=,解得1cos 2A = 或cos 2A =-(舍去). 因为0πA <<,所以π3A =.(Ⅱ)由11sin 22S bc A bc ====得20bc =. 又5b =,知4c =. 由余弦定理得2222cos 25162021,a b c bc A =+-=+-=故a =又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.【19】(B ,湖北,理18)已知等比数列{}n a 满足:23||10a a -=,123125a a a =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)是否存在正整数m ,使得121111ma a a +++≥?若存在,求m 的最小值;若不存在,说明理由. 考点名称 等比数列【19】(B ,湖北,理18)(Ⅰ)设等比数列{}n a 的公比为q ,则由已知可得331211125,||10,a q a q a q ⎧=⎪⎨-=⎪⎩解得15,33,a q ⎧=⎪⎨⎪=⎩ 或15,1.a q =-⎧⎨=-⎩ 故1533n n a -=⋅,或15(1)n n a -=-⋅-.(Ⅱ)若1533n n a -=⋅,则1131()53n n a -=⋅,故1{}n a 是首项为35,公比为13的等比数列,从而131[1()]191953[1()]111031013m mm n na =⋅-==⋅-<<-∑.若1(5)(1)n n a -=-⋅-,则111(1)5n n a -=--,故1{}n a 是首项为15-,公比为1-的等比数列,从而11,21(),1502().mn n m k k a m k k +=+⎧-=-∈⎪=⎨⎪=∈⎩∑N N , 故111mn n a =<∑.综上,对任何正整数m ,总有111mn na =<∑. 故不存在正整数m ,使得121111ma a a +++≥成立. 【23】(B ,湖北,理19)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点.(Ⅰ)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(Ⅱ)设(Ⅰ)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =.记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=.考点名称 空间向量与立体几何【23】(B ,湖北,理19)(Ⅰ)直线l ∥平面PAC ,证明如下:连接EF ,因为E ,F 分别是PA ,PC 的中点,所以EF ∥AC . 又EF ⊄平面ABC ,且AC ⊂平面ABC ,所以EF ∥平面ABC . 而EF ⊂平面BEF ,且平面BEF平面ABC l =,所以EF ∥l .因为l ⊄平面PAC ,EF ⊂平面PAC ,所以直线l ∥平面PAC . (Ⅱ)(综合法)如图1,连接BD ,由(Ⅰ)可知交线l 即为直线BD ,且l ∥AC . 因为AB 是O 的直径,所以AC BC ⊥,于是l BC ⊥.已知PC ⊥平面ABC ,而l ⊂平面ABC ,所以PC l ⊥. 而PCBC C =,所以l ⊥平面PBC .连接BE ,BF,因为BF ⊂平面PBC ,所以l BF ⊥.第19题图第19题解答图1故CBF ∠就是二面角E l C --的平面角,即CBF β∠=.由12DQ CP =,作DQ ∥CP ,且12DQ CP =.连接PQ ,DF ,因为F 是CP 的中点,2CP PF =,所以DQ PF =, 从而四边形DQPF 是平行四边形,PQ ∥FD .连接CD ,因为PC ⊥平面ABC ,所以CD 是FD 在平面ABC 内的射影, 故CDF ∠就是直线PQ 与平面ABC 所成的角,即CDF θ∠=. 又BD ⊥平面PBC ,有BD BF ⊥,知BDF ∠为锐角,故BDF ∠为异面直线PQ 与EF 所成的角,即BDF α∠=, 于是在Rt △DCF ,Rt △FBD ,Rt △BCF 中,分别可得sin CF DF θ=,sin BF DFα=,sin CF BF β=, 从而sin sin sin CF BF CFBF DF DFαβθ=⋅==,即sin sin sin θαβ=. (Ⅱ)(向量法)如图2,由12DQ CP =,作DQ ∥CP ,且12DQ CP =.连接PQ ,EF ,BE ,BF ,BD ,由(Ⅰ)可知交线l 即为直线BD . 以点C 为原点,向量,,CA CB CP 所在直线分别为,,x y z 轴,建立如图所示的空间直角坐标系,设,,2CA a CB b CP c ===,则有 (0,0,0),(,0,0),(0,,0),(0,0,2),(,,)C A a B b P c Q a b c ,1(,0,),(0,0,)2E a cF c . 于是1(,0,0)2FE a =,(,,)QP a b c =--,(0,,)BF b c =-,所以||cos ||||FE QP FE QP aα⋅==⋅,从而sin α又取平面ABC 的一个法向量为(0,0,1)=m ,可得||sin ||||QP QP a θ⋅==⋅m m设平面BEF 的一个法向量为(,,)x y z =n ,所以由0,0,FE BF ⎧⋅=⎪⎨⋅=⎪⎩n n 可得10,20.ax bycz ⎧=⎪⎨⎪-+=⎩ 取(0,,)c b =n .于是|||cos |||||β⋅==⋅m n m n sinβ=.故sin sin sin αβθ===,即sin sin sin θαβ=.【40】(B ,湖北,理20)假设每天从甲地去乙地的旅客人数X 是服从正态分布2(800,50)N 的随机变量. 记第19题解答图2一天中从甲地去乙地的旅客人数不超过900的概率为0p . (Ⅰ)求0p 的值;(参考数据:若X ~2(,)N μσ,有()0.682P X μσμσ-<≤+=,(22)0.9544P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<≤+=.)(Ⅱ)某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次. A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆. 公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆. 若每天要以不小于0p 的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?考点名称 随机变量及其分布,简单的线性规划【40】(B ,湖北,理20)(Ⅰ)由于随机变量X 服从正态分布2(800,50)N ,故有800μ=,50σ=(700900)0.9544P X <≤=.由正态分布的对称性,可得0(900)(800)(800900)p P X P X P X =≤=≤+<≤11(700900)0.977222P X =+<≤=. (Ⅱ)设A 型、B 型车辆的数量分别为, x y 辆,则相应的营运成本为16002400x y +. 依题意, , x y 还需满足:021, 7, (3660)x y y x P X x y p +≤≤+≤+≥. 由(Ⅰ)知,0(900)p P X =≤,故0(3660)P X x y p ≤+≥等价于3660900x y +≥.于是问题等价于求满足约束条件21, 7,3660900,, 0, ,x y y x x y x y x y +≤⎧⎪≤+⎪⎨+≥⎪⎪≥∈⎩N ,且使目标函数16002400z x y =+达到最小的,x y . 作可行域如图所示, 可行域的三个顶点坐标分别为(5,12), (7,14), (15,6)P Q R .由图可知,当直线16002400z x y =+经过可行域的点P 时,直线16002400z x y =+在y 轴上截距2400z最小,即z 取得最小值. 故应配备A 型车5辆、B 型车12辆.【16】(C ,湖北,理21)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记第21题图第20题解答图mnλ=,△BDM 和△ABN 的面积分别为1S 和2S . (Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由. 考点名称 直线与圆锥曲线【16】(C ,湖北,理21)依题意可设椭圆1C 和2C 的方程分别为1C :22221x y a m +=,2C :22221x y a n +=. 其中0a m n >>>, 1.m n λ=>(Ⅰ)解法1:如图1,若直线l 与y 轴重合,即直线l 的方程为0x =,则111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=,所以12||||S BD S AB =. 在C 1和C 2的方程中分别令0x =,可得A y m =,B y n =,D y m =-, 于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ=. 解法2:如图1,若直线l 与y 轴重合,则||||||BD OB OD m n =+=+,||||||AB OA OB m n =-=-;111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=. 所以12||1||1S BD m n S AB m n λλ++===--. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ=.(Ⅱ)解法1:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则第21题解答图1第21题解答图2因为1d ==2d ==12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==,即||||BD AB λ=. 由对称性可知||||AB CD =,所以||||||(1)||BC BD AB AB λ=-=-, ||||||(1)||AD BD AB AB λ=+=+,于是||1||1AD BC λλ+=-. ① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x =.根据对称性可知C B x x =-,D A x x =-,于是2||||2A B x AD BC x == ② 从而由①和②式可得1(1)λλλ+=-. ③ 令1(1)t λλλ+=-,则由m n >,可得1t ≠,于是由③可解得222222(1)(1)n t k a t λ-=-.因为0k ≠,所以20k >. 于是③式关于k 有解,当且仅当22222(1)0(1)n t a t λ->-, 等价于2221(1)()0t t λ--<. 由1λ>,可解得11t λ<<,即111(1)λλλλ+<<-,由1λ>,解得1λ>+当11λ<≤l ,使得12S S λ=;当1λ>l 使得12S S λ=. 解法2:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==2d ==12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==.因为||||A B A Bx x BD AB x x λ+===-,所以11A B x x λλ+=-. 由点(,)A A A x kx ,(,)B B B x kx 分别在C 1,C 2上,可得222221A A x k x a m +=,222221B B x k x a n+=,两式相减可得22222222()0A B A B x x k x x a m λ--+=, 依题意0A B x x >>,所以22AB x x >. 所以由上式解得22222222()()A B B A m x x k a x x λ-=-. 因为20k >,所以由2222222()0()A B B A m x x a x x λ->-,可解得1A Bxx λ<<. 从而111λλλ+<<-,解得1λ>+当11λ<≤l ,使得12S S λ=;当1λ>l 使得12S S λ=. 【40】(湖北理22)设n 是正整数,r 为正有理数.(Ⅰ)求函数1()(1)(1)1(1)r f x x r x x +=+-+->-的最小值;(Ⅱ)证明:1111(1)(1)11r r r r rn n n n n r r ++++--+-<<++; (Ⅲ)设x ∈R ,记x ⎡⎤⎢⎥为不小于...x 的最小整数,例如22=⎡⎤⎢⎥,π4=⎡⎤⎢⎥,312⎡⎤-=-⎢⎥⎢⎥.令3125S =+,求S ⎡⎤⎢⎥的值.(参考数据:4380344.7≈,4381350.5≈,43124618.3≈,43126631.7≈) 考点名称 导数,函数的性质,不等式,创新与拓展,交汇与整合【40】(湖北理22)(Ⅰ)因为()(1)(1)(1)(1)[(1)1]r r f x r x r r x '=++-+=++-,令()0f x '=,解得0x =.当10x -<<时,()0f x '<,所以()f x 在(1,0)-内是减函数; 当0x >时,()0f x '>,所以()f x 在(0,)+∞内是增函数.故函数()f x 在0x =处取得最小值(0)0f =. (Ⅱ)由(Ⅰ),当(1,)x ∈-+∞时,有()(0)0f x f ≥=,即1(1)1(1)r x r x ++≥++,且等号当且仅当0x =时成立,故当1x >-且0x ≠时,有1(1)1(1)r x r x ++>++. ①在①中,令1x n =(这时1x >-且0x ≠),得111(1)1r r n n+++>+. 上式两边同乘1r n +,得11(1)(1)r r r n n n r +++>++,即11(1).1r r rn n n r +++-<+ ②当1n >时,在①中令1x n=-(这时1x >-且0x ≠),类似可得11(1).1r r rn n n r ++-->+ ③且当1n =时,③也成立. 综合②,③得1111(1)(1).11r r r r rn n n n n r r ++++--+-<<++ ④(Ⅲ)在④中,令13r =,n 分别取值81,82,83,…,125,得44443333338180(8281)44--(), 44443333338281(8382)44--(, 44443333338382(8483)44-<-(, ………4444333333125124(126125)44-<-(). 将以上各式相加,并整理得444433333312580(12681)44S -<<-(). 代入数据计算,可得4433312580210.24-≈(),4433312681210.94-≈(). 由S ⎡⎤⎢⎥的定义,得211S =⎡⎤⎢⎥. 新|课|标|第|一|网。
2013年普通高等学校招生全国统一考试(新课标卷)数学理科
绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N=()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)(B)-(C)(D)-(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。
直线l满足l ⊥m,l ⊥n,lβ,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A )1++ +…+(B )1++ +…+(C )1++ +…+(D )1++ +…+(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a(C )a >c >b (D)a >b >c(9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a=(A)(B) (C)1 (D)2(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A )∑x α∈R f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若xn 是f (x )的极值点,则f 1(x α)=0(11)设抛物线y2=3px(p ≥0)的焦点为F ,点M 在C 上,|MF|=5若以MF 为直径的园过点(0,3),则C 的方程为(A )y2=4x 或y2=8x (B )y2=2x 或y2=8xx ≥1,x+y ≤3, y ≥a(x-3). {(C)y2=4x或y2=16x (D)y2=2x或y2=16x(12)已知点A(-1,0);B(1,0);C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是(A)(0,1)(B)(1-,1/2)( C)(1-,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。
2013湖北高考(理科)数学试题及答案(完整版)
2013年湖北高考数学试卷(理科)WORD 版绝密 ★ 启用前2013年普通高等学校招生全国统一考试(湖北卷)数 学(理科)4.将函数3cos sin ()y x x x R =+∈的图像向左平移(0)m m >个单位长度后,所得到的图像关于y 轴对称,则m 的最小值是 A .12πB .6πC .3πD .56π 5.已知04πθ<<,则双曲线22221222222:1:1cos sin sin sin tan x y y x C C θθθθθ-=-=与的 A .实轴长相等 B .虚轴长相等 C .焦距相等 D .离心率相等6.已知点A (-1,1)、B (1,2)、C (-2,1)、D (3,4),则向量AB 和CD 方向上的投影为A .322 B .3152 C .322 D .31527.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度25()73(,/)1v t t t s v m s t=-++的单位:的单位:行驶至停止,在此期间汽车继续行驶的距离(单位:m )是 A .1+25ln5 B .118+25ln3C .4+25ln5D .4+50ln 2 8.一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别为1234V V V V ,,,,这四个几何体为旋转体,下面两个简单几何体均为多面体,则有1243.AV V V V <<< 1324.BV V V V <<< 2134.C V V V V <<< 2314.DV V V V <<<9.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中抽取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)= A .126125 B .65 C .168125 D .7511.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密 ★ 启用前
2013年普通高等学校招生全国统一考试(湖北卷)
数 学(理科)
4.将函数3cos sin ()y x x x R =+∈的图像向左平移(0)m m >个单位长度后,所得到的图像关于y 轴对称,则m 的最小值是
A .
12πB .6πC .3
πD .56π 5.已知04
π
θ<< ,则双曲线22221222222
:1:1cos sin sin sin tan x y y x C C θθθθθ-=-=与的 A .实轴长相等 B .虚轴长相等 C .焦距相等 D .离心率相等
6.已知点A (-1,1)、B (1,2)、C (-2,1)、D (3,4),则向量AB 和CD 方向上的投影为 A .
32 B .315 C .32 D .315
7.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度
25
()73(,/)1v t t t s v m s t
=-+
+的单位:的单位:行驶至停止,
在此期间汽车继续行驶的距离(单位:m )是
A .1+25ln5
B .11
8+25ln
3
C .4+25ln5
D .4+50ln 2 8.一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别为1234V V V V ,,,,这四个几何体为旋转体,下面两个简单几何体均为多面体,则有
1243.AV V V V <<< 1324.B V V V V <<< 2134.C V V V V <<< 2314.D V V V V
<<<
9.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中抽取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)= A .
126125 B .65 C .168125 D .7
5
11.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示。
(1)直方图中x 的值为___________;
(2)在这些用户中,用电量落在区间[100,250)内的户数为___________。
12.阅读如图所示的程序框图,运行相应的程序,输出的结果i=___________。
13.设,,x y z R ∈,且满足:222
+y +z =12+3x y z ,x+则x+y+z=___________。
14.古希腊毕达哥拉斯的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为
2(+1)11
=n +222
n n n ,记第n 个k 边形数为(,)(3)N n k k ≥,以下列出了部分k 边形数中第n 个数的表达式:
三角形数 211
(,3)=
+n 22N n n 正方形数 2
(,4)=N n n
五边形数 231
(,5)=-n 22N n n
六边形数 2
(,6)=2-n N n n
……………………………………………………………..
可以推测N(n,k)的表达式,由此计算N(10,24)=_________________。
二.填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分,请将答案填在答题卡的.....对应题号的位置上,答错位置,书写不清,模棱两可均不得分.
(二)选考题(请考生在第15、16两题中任选一题作答,请现在答题卡指定位置将你所选的题目序号后的方框图用2B 铅笔涂黑,如果全选,则按第15题作答结果计分.) 15.(选修4-1:几何证明选讲)
如图,圆O 上一点,.C AB D D OC E 在直径上的射影为点在半径上的射影为若
3,
CE
AB AD EO
=的值为 .
16.(选修4-4:坐标系与参数方程) 在直线坐标系xoy 中,椭圆C 的参数方程为
{
()cos sin ,0.x a y b a b ϕ
ϕ
ϕ==>>为参数在极坐标系(与直角坐标系
xoy 取相同的长度单位,且以原点O 为极点,以x 轴为正半轴 为极轴)中,直线l 与圆O 的极坐标分
别为()sin =.42
m m b πρθρ⎛⎫
+
= ⎪⎝
⎭为非零常数与若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆的离心率为 .
三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)
在,,.cos 23cos() 1.ABC A B C a b c A B C ∆-+=中,角、、对应的边分别为已知 (I )求角A 的大小;
(II
)若5,sin sin .ABC S b B C ∆==的面积求的值
18.(本小题满分12分)
已知等比数列{}n a 满足:2312310,125.a a a a a -== (I )求数列{}n a 的通项公式; (II )是否存在正整数,m 使得
12111
1?n
m a a a ++⋅⋅⋅⋅⋅⋅+>若存在,求的最小值;若不存在,说明理由.
19.(本小题满分12分)
如图,AB 是圆O 的直径,点C 是圆O 上异于A B 、的点,直线,PC ABC ⊥平面
,,E F PA PB 分别为的中点.
(I )记平面BEF ABC l l PAC 与平面的交线为,是判断与平面的位置关系,并加以说明;
(II )设(I )中的直线1
,.2
l O D Q DQ CP =与圆的另一个交点为且点满足记直线
,P Q A B C O 与平面所成的角为异面直线所成的锐角为o ,二面角sin sin sin .E l C βθαβ--=的大小为,求证:
20.(本小题满分12分)
假设每天从甲地去乙地的旅客人数()
2800,50X N 是服从正态分布的随机变量, 记一天中从甲地去乙地的旅客人数不超过900的概率为.n P 求n P 的值;
(I )(参考数据:若()()2,,0.6826,X
N P X μσμσμσ-<≤+=有)
()()220.9544,330.9974.P X P X μσμσμσμσ-<≤+=-<≤+=
(II )某客运公司用A B 、两种型号的车辆承担甲、乙两地间的长途客运业务,每年每天往返一次,A B 、两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆。
若每天要以不小于0P 的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备
A B 型车、型车各多少辆?
21.(本小题满分13分)
如图,已知椭圆12,C C O 与的中心原点坐标长轴均为MN x 且在轴上,短轴长分别为()22m n m n >、,过原点且不与x 轴重合的直线l 与12C C 、的四个交点按纵坐标从大到小依次为.A B C D 、、、记
12,.m
BDM ABN S S n
λ=
∆∆和的面积分别为、 (I )当直线l 与y 轴重合时,若12,S S λλ=求的值;
(II )当λ变化时,是否存在于坐标轴不重合的直线l ,使得12,.S S λ=并说明理由
22.(本小题满分14分)
设n 为正整数,r 为正有理数. (I )求函数()()
()()1
1111r f x x r x x +=+-+->-的最小值;
(II )证明:
()
()2
1
1111;1
1
r r r r r
n n n n n r r ++++--+-<<++
(III )设x R ∈,记[]x 为不小于...x 的最小整数,例如[][]322π⎡⎤-⎢⎥⎣⎦
=2,=4,=-1.
令[].S S =求的值
(参考数据:4
4443
3
3
3
80344.7,81350.5,124618.3,126631.7.====)。