Brief History of Fluid Mechanics

合集下载

the history of tublent

the history of tublent

The Turbulent History of Fluid MechanicsbyNaomi TsafnatMay 17, 1999.It all started with Archimedes, way back in BC,Who was faced with an interesting problem, you see…The king came to me, and this story he told:I am not sure if my crown is pure gold.You are a wise man, or so it is said,Tell me: is it real, or is it just lead?I paced and I thought, and I scratched my head,But the answer eluded me, to my dread.I sat in my bath, and pondered and tried,And then…”Eureka! Eureka! I found it!” I cried.As I sat in my tub and the water was splashing,I knew suddenly that a force had been acting.On me in the tub, it’s proportional, see,To the water that was where now there is me.Of course, Archimedes caused quite a sensationBut not because of his great revelation;As he was running through the streets of SyracuseHe didn’t notice he was wearing only his shoes.The great Leonardo – oh what a fellow…No, not diCaprio, DaVinci I tell you!He did more than just paint the lovely Mona,He also studied fluid transport phenomena.Then came Pascal, who clarified with agility,Basic concepts of pressure transmissibility.Everyone knows how a barometer looks,But he figured out just how it works.How can we talk about great scientists,Without mentioning one of the best:Sir Isaac Newton, the genius of mathematics,Also contributed to fluid mechanics.One thing he found, and it’s easy as pie,Is that shear stress, τ, equals µ dv/dy.His other work, though, was not as successful;His studies on drag were not all that useful.He thought he knew how fast sound is sent,But he was way off, by about twenty percent.And then there was Pitot, with his wonderful tubes, Which measure how fast an airplane moves. Poiseuille, d’Alembert, Lagrange and Venturi – Through his throats – fluid pass in a hurry.Here is another hero of fluid mechanics,In fact, he invented the word “hydrodynamics”.It would take a book to tell you about him fully,But here is the short tale of Daniel Bernoulli:Everyone thinks is just one Bernoulli…It is not so! There are many of us, truly.My family is big, many scientists in this house,With father Johan, nephew Jacob and brother Nicolaus. But the famous principle is mine, you know,It tells of the relationship of fluid flow,To pressure, velocity, and density too.I also invented the manometer – out of the blue!Yes, Bernoulli did much for fluids, you bet!He even proposed the use of a jet.There were others too, all wonderful folks,Like Lagrange, Laplace, Navier and Stokes.Here is another well-known name,A mathematician and scientist of great fame:He is Leonard Euler, I’m sure you all know,His equations are basis for inviscid flow.He did more than introduce the symbols π, I, e,He also derived the equation of continuity.And with much thought and keen derivation,He published the famous momentum equation.Those wonderful equations and diagrams you see? They are all thanks to Moody, Weisbach and Darcy. Then there was Mach, and the road that he paves, After studying the shocking field of shock waves. Rayleigh studied wave motion, and jet instability,How bubbles collapse, and dynamic similarity.He was also the first to correctly explain.Why the sky is blue – except when it rains. Osborne Reynolds, whose number we know, Found out all about turbulent flow.He also examined with much persistence, Cavitation, viscous flow, and pipe resistance.In the discovery of the boundary layerPrandtl was the major player.It’s no wonder that all the scientists say,He’s the father of Modern Fluid Mechanics, hooray! It is because of Prandtl that today we all can Describe the lift and drag of wings of finite span.If it weren’t for him, then the brothers Wright Would probably never have taken flight.And so we come to the end of this story,But it’s not the end of the tales of glory!The list goes on, and it will grow tooMaybe the next pioneer will be you?Archimedes 287-212 B.C. Sextus Julius Frontinus 40-103 B.C. Leonardo daVinci 1452-1519 Galileo Galilei 1564-1642 Evangelista Torricelli 1608-1647 Edme Mariotte 1620-1684 Blaise Pascal 1623-1662Sir Isaac Newton 1642-1727 Henri de Pitot 1695-1771 Daniel Bernoulli 1700-1782 Leonard Euler 1707-1783 Jean de Rond d’Alembert 1717-1783 Antoine Chezy 1718-1798 Jean Charles Borda 1733-1799 Joseph-Louis Lagrange 1736-1813 Giovanni Battista Venturi 1746-1822 Pierre-Simon Laplace 1749-1827 Claude Louis Marie Navier 1785-1836 Augustin Louis de Cauchy 1789-1857 Gotthilf H. Ludwig Hagen 1797-1884 Jean Louis Poiseuille 1799-1869 Henri Philibert Darcy 1803-1858 Julius Weisbach 1806-1871William Froude 1810-1879 Robert Manning 1816-1897 George Gabriel Stokes 1819-1903 Ernst Mach 1838-1916 Osborne Reynolds 1842-1912 Lord Rayleigh [John William Strutt] 1842-1919 Vincez Strouhal 1850-1922 Edgar Buckingham 1867-1940 Moritz Weber 1871-1951 Ludwig Prandtl 1875-1953 Lewis Ferry Moody 1880-1953 Theodor von Karman 1881-1963 Paul Richard Heinrich Blasius 1883-1970。

流体力学专业英语

流体力学专业英语

流体力学专业英语Fluid Mechanics: A Comprehensive ExplorationFluid mechanics is a captivating field of study that delves into the intricate behavior of fluids, encompassing both liquids and gases. This discipline is of paramount importance in numerous industries, from aerospace engineering to biomedical applications, and its principles are fundamental to our understanding of the natural world. As a specialized area of study, fluid mechanics requires a deep understanding of the underlying principles and the ability to apply them effectively in various contexts.One of the core concepts in fluid mechanics is the study of fluid statics, which focuses on the behavior of fluids at rest. This includes the analysis of pressure distributions, buoyancy, and the application of the hydrostatic equation. Understanding fluid statics is crucial in the design of hydraulic systems, underwater structures, and even in the study of atmospheric phenomena, such as weather patterns and ocean currents.In contrast, fluid dynamics explores the motion of fluids, examining the forces and principles that govern their behavior. This domainencompasses the study of viscosity, boundary layers, and the various types of fluid flow, including laminar, turbulent, and compressible flow. The application of fluid dynamics principles is essential in the design of aircraft, ships, and various engineering systems that involve the movement of fluids.Another important aspect of fluid mechanics is the concept of dimensional analysis and similarity. This approach allows researchers and engineers to draw parallels between different fluid systems, enabling the extrapolation of experimental data and the development of scaled models. By understanding the dimensionless parameters that govern fluid behavior, professionals can optimize the design and performance of a wide range of systems, from hydraulic turbines to wind tunnels.The field of fluid mechanics also encompasses the study of computational fluid dynamics (CFD), which utilizes advanced numerical techniques to simulate and analyze the behavior of fluids. CFD has become an indispensable tool in the design and optimization of various engineering systems, as it allows for the prediction of fluid flow patterns, pressure distributions, and other critical parameters without the need for extensive physical experimentation.In addition to its technical applications, fluid mechanics also plays acrucial role in the understanding of natural phenomena. The study of fluid mechanics has contributed to our understanding of meteorology, oceanography, and even the dynamics of the human circulatory system. By examining the behavior of fluids in these complex systems, researchers can better predict and mitigate the impact of natural disasters, improve the efficiency of renewable energy systems, and enhance our understanding of the human body.As a specialized field of study, fluid mechanics requires a strong foundation in mathematics, physics, and engineering principles. Professionals in this discipline must possess a deep understanding of the governing equations, such as the Navier-Stokes equations, and the ability to apply them in various contexts. Additionally, the ability to interpret experimental data, design and conduct fluid mechanics experiments, and effectively communicate findings to interdisciplinary teams is essential for success in this field.In conclusion, fluid mechanics is a dynamic and multifaceted discipline that plays a crucial role in a wide range of industries and scientific endeavors. From the design of aircraft and ships to the understanding of natural phenomena, the principles of fluid mechanics are fundamental to our ability to harness the power of fluids and improve the world around us. As technology continues to advance, the field of fluid mechanics will undoubtedly continue toevolve, offering new challenges and opportunities for researchers, engineers, and innovators alike.。

力学,流体力学,固体力学词汇英语翻译

力学,流体力学,固体力学词汇英语翻译

力学,流体力学,固体力学词汇英语翻译力学,流体力学,固体力学英语词汇翻译牛顿力学Newtonian mechanics经典力学classical mechanics静力学statics运动学kinematics动力学dynamics动理学kinetics宏观力学macroscopic mechanics,macromechanics 细观力学mesomechanics微观力学microscopic mechanics,micromechanics 一般力学general mechanics固体力学solid mechanics流体力学fluid mechanics理论力学theoretical mechanics应用力学applied mechanics工程力学engineering mechanics实验力学experimental mechanics计算力学computational mechanics理性力学rational mechanics物理力学physical mechanics地球动力学geodynamics力force作用点point of action作用线line of action力系system of forces力系的简化reduction of force system等效力系equivalent force system刚体rigid body力的可传性transmissibility of force平行四边形定则parallelogram rule力三角形force triangle力多边形force polygon零力系null-force system平衡equilibrium力的平衡equilibrium of forces平衡条件equilibrium condition平衡位置equilibrium position平衡态equilibrium state分析力学analytical mechanics拉格朗日乘子Lagrange multiplier拉格朗日[量] Lagrangian拉格朗日括号Lagrange bracket循环坐标cyclic coordinate循环积分cyclic integral哈密顿[量] Hamiltonian哈密顿函数Hamiltonian function正则方程canonical equation正则摄动canonical perturbation正则变换canonical transformation正则变量canonical variable哈密顿原理Hamilton principle作用量积分action integral哈密顿--雅可比方程Hamilton-Jacobi equation 作用--角度变量action-angle variables阿佩尔方程Appell equation劳斯方程Routh equation拉格朗日函数Lagrangian function诺特定理Noether theorem泊松括号poisson bracket边界积分法boundary integral method 并矢dyad运动稳定性stability of motion轨道稳定性orbital stability李雅普诺夫函数Lyapunov function渐近稳定性asymptotic stability结构稳定性structural stability久期不稳定性secular instability弗洛凯定理Floquet theorem倾覆力矩capsizing moment自由振动free vibration固有振动natural vibration暂态transient state环境振动ambient vibration反共振anti-resonance衰减attenuation库仑阻尼Coulomb damping同相分量in-phase component非同相分量out-of-phase component超调量overshoot参量[激励]振动parametric vibration模糊振动fuzzy vibration临界转速critical speed of rotation阻尼器damper半峰宽度half-peak width集总参量系统lumped parameter system 相平面法phase plane method相轨迹phase trajectory等倾线法isocline method跳跃现象jump phenomenon负阻尼negative damping达芬方程Duffing equation希尔方程Hill equationKBM方法KBM method, Krylov-Bogoliu-bov-Mitropol'skii method 马蒂厄方程Mathieu equation平均法averaging method组合音调combination tone解谐detuning耗散函数dissipative function硬激励hard excitation硬弹簧hard spring, hardening spring谐波平衡法harmonic balance method久期项secular term自激振动self-excited vibration分界线separatrix亚谐波subharmonic软弹簧soft spring ,softening spring软激励soft excitation邓克利公式Dunkerley formula瑞利定理Rayleigh theorem分布参量系统distributed parameter system优势频率dominant frequency模态分析modal analysis固有模态natural mode of vibration同步synchronization超谐波ultraharmonic范德波尔方程van der pol equation频谱frequency spectrum基频fundamental frequencyWKB方法WKB method, Wentzel-Kramers-Brillouin method 缓冲器buffer风激振动aeolian vibration嗡鸣buzz倒谱cepstrum颤动chatter蛇行hunting阻抗匹配impedance matching机械导纳mechanical admittance机械效率mechanical efficiency机械阻抗mechanical impedance随机振动stochastic vibration, random vibration隔振vibration isolation减振vibration reduction应力过冲stress overshoot喘振surge摆振shimmy起伏运动phugoid motion起伏振荡phugoid oscillation驰振galloping陀螺动力学gyrodynamics陀螺摆gyropendulum陀螺平台gyroplatform陀螺力矩gyroscoopic torque陀螺稳定器gyrostabilizer陀螺体gyrostat惯性导航inertial guidance姿态角attitude angle方位角azimuthal angle舒勒周期Schuler period机器人动力学robot dynamics多体系统multibody system多刚体系统multi-rigid-body system机动性maneuverability凯恩方法Kane method转子[系统]动力学rotor dynamics转子[一支承一基础]系统rotor-support-foundation system 静平衡static balancing动平衡dynamic balancing静不平衡static unbalance动不平衡dynamic unbalance现场平衡field balancing不平衡unbalance不平衡量unbalance互耦力cross force挠性转子flexible rotor分频进动fractional frequency precession半频进动half frequency precession油膜振荡oil whip转子临界转速rotor critical speed自动定心self-alignment亚临界转速subcritical speed涡动whirl连续过程continuous process碰撞截面collision cross section通用气体常数conventional gas constant燃烧不稳定性combustion instability稀释度dilution完全离解complete dissociation火焰传播flame propagation组份constituent碰撞反应速率collision reaction rate 燃烧理论combustion theory浓度梯度concentration gradient阴极腐蚀cathodic corrosion火焰速度flame speed火焰驻定flame stabilization火焰结构flame structure着火ignition湍流火焰turbulent flame层流火焰laminar flame燃烧带burning zone渗流flow in porous media, seepage 达西定律Darcy law赫尔-肖流Hele-Shaw flow毛[细]管流capillary flow过滤filtration爪进fingering不互溶驱替immiscible displacement 不互溶流体immiscible fluid互溶驱替miscible displacement互溶流体miscible fluid迁移率mobility流度比mobility ratio渗透率permeability孔隙度porosity多孔介质porous medium比面specific surface迂曲度tortuosity空隙void空隙分数void fraction注水water flooding可湿性wettability地球物理流体动力学geophysical fluid dynamics 物理海洋学physical oceanography大气环流atmospheric circulation海洋环流ocean circulation海洋流ocean current旋转流rotating flow平流advection埃克曼流Ekman flow埃克曼边界层Ekman boundary layer大气边界层atmospheric boundary layer大气-海洋相互作用atmosphere-ocean interaction埃克曼数Ekman number罗斯贝数Rossby unmber罗斯贝波Rossby wave斜压性baroclinicity正压性barotropy内磨擦internal friction海洋波ocean wave盐度salinity环境流体力学environmental fluid mechanics斯托克斯流Stokes flow羽流plume理查森数Richardson number污染源pollutant source污染物扩散pollutant diffusion噪声noise噪声级noise level噪声污染noise pollution排放物effulent工业流体力学industrical fluid mechanics流控技术fluidics轴向流axial flow并向流co-current flow对向流counter current flow横向流cross flow螺旋流spiral flow旋拧流swirling flow滞后流after flow混合层mixing layer抖振buffeting风压wind pressure附壁效应wall attachment effect, Coanda effect简约频率reduced frequency爆炸力学mechanics of explosion终点弹道学terminal ballistics动态超高压技术dynamic ultrahigh pressure technique 流体弹塑性体hydro-elastoplastic medium热塑不稳定性thermoplastic instability空中爆炸explosion in air地下爆炸underground explosion水下爆炸underwater explosion电爆炸discharge-induced explosion激光爆炸laser-induced explosion核爆炸nuclear explosion点爆炸point-source explosion殉爆sympathatic detonation强爆炸intense explosion粒子束爆炸explosion by beam radiation 聚爆implosion起爆initiation of explosion爆破blasting霍普金森杆Hopkinson bar电炮electric gun电磁炮electromagnetic gun爆炸洞explosion chamber轻气炮light gas gun马赫反射Mach reflection基浪base surge成坑cratering能量沉积energy deposition爆心explosion center爆炸当量explosion equivalent火球fire ball爆高height of burst蘑菇云mushroom侵彻penetration规则反射regular reflection崩落spallation应变率史strain rate history流变学rheology聚合物减阻drag reduction by polymers挤出[物]胀大extrusion swell, die swell无管虹吸tubeless siphon剪胀效应dilatancy effect孔压[误差]效应hole-pressure[error]effect 剪切致稠shear thickening剪切致稀shear thinning触变性thixotropy反触变性anti-thixotropy超塑性superplasticity粘弹塑性材料viscoelasto-plastic material 滞弹性材料anelastic material本构关系constitutive relation麦克斯韦模型Maxwell model沃伊特-开尔文模型Voigt-Kelvin model宾厄姆模型Bingham model奥伊洛特模型Oldroyd model幂律模型power law model应力松驰stress relaxation应变史strain history应力史stress history记忆函数memory function衰退记忆fading memory应力增长stress growing粘度函数voscosity function相对粘度relative viscosity复态粘度complex viscosity拉伸粘度elongational viscosity拉伸流动elongational flow第一法向应力差first normal-stress difference第二法向应力差second normal-stress difference 德博拉数Deborah number魏森贝格数Weissenberg number动态模量dynamic modulus振荡剪切流oscillatory shear flow宇宙气体动力学cosmic gas dynamics等离[子]体动力学plasma dynamics电离气体ionized gas行星边界层planetary boundary layer阿尔文波Alfven wave泊肃叶-哈特曼流] Poiseuille-Hartman flow哈特曼数Hartman number生物流变学biorheology生物流体biofluid生物屈服点bioyield point生物屈服应力bioyield stress电气体力学electro-gas dynamics铁流体力学ferro-hydrodynamics血液流变学hemorheology, blood rheology血液动力学hemodynamics磁流体力学magneto fluid mechanics磁流体动力学magnetohydrodynamics, MHD磁流体动力波magnetohydrodynamic wave磁流体流magnetohydrodynamic flow磁流体动力稳定性magnetohydrodynamic stability 生物力学biomechanics生物流体力学biological fluid mechanics生物固体力学biological solid mechanics宾厄姆塑性流Bingham plastic flow开尔文体Kelvin body沃伊特体Voigt body可贴变形applicable deformation可贴曲面applicable surface边界润滑boundary lubrication液膜润滑fluid film lubrication向心收缩功concentric work离心收缩功eccentric work关节反作用力joint reaction force微循环力学microcyclic mechanics微纤维microfibril渗透性permeability生理横截面积physiological cross-sectional area 农业生物力学agrobiomechanics纤维度fibrousness硬皮度rustiness胶粘度gumminess粘稠度stickiness嫩度tenderness渗透流osmotic flow易位流translocation flow蒸腾流transpirational flow过滤阻力filtration resistance压扁wafering风雪流snow-driving wind停滞堆积accretion遇阻堆积encroachment沙漠地面desert floor流沙固定fixation of shifting sand流动阈值fluid threshold连续介质力学mechanics of continuous media 介质medium 流体质点fluid particle无粘性流体nonviscous fluid, inviscid fluid连续介质假设continuous medium hypothesis流体运动学fluid kinematics水静力学hydrostatics液体静力学hydrostatics支配方程governing equation伯努利方程Bernoulli equation伯努利定理Bernonlli theorem毕奥-萨伐尔定律Biot-Savart law欧拉方程Euler equation亥姆霍兹定理Helmholtz theorem开尔文定理Kelvin theorem涡片vortex sheet库塔-茹可夫斯基条件Kutta-Zhoukowski condition 布拉休斯解Blasius solution达朗贝尔佯廖d'Alembert paradox雷诺数Reynolds number施特鲁哈尔数Strouhal number随体导数material derivative不可压缩流体incompressible fluid质量守恒conservation of mass动量守恒conservation of momentum能量守恒conservation of energy动量方程momentum equation能量方程energy equation控制体积control volume液体静压hydrostatic pressure涡量拟能enstrophy压差differential pressure流[动] flow流线stream line流面stream surface流管stream tube迹线path, path line流场flow field流态flow regime流动参量flow parameter流量flow rate, flow discharge 涡旋vortex涡量vorticity涡丝vortex filament涡线vortex line涡面vortex surface涡层vortex layer涡环vortex ring涡对vortex pair涡管vortex tube涡街vortex street卡门涡街Karman vortex street 马蹄涡horseshoe vortex对流涡胞convective cell卷筒涡胞roll cell涡eddy涡粘性eddy viscosity环流circulation环量circulation速度环量velocity circulation 偶极子doublet, dipole驻点stagnation point总压[力] total pressure总压头total head静压头static head总焓total enthalpy能量输运energy transport速度剖面velocity profile库埃特流Couette flow单相流single phase flow单组份流single-component flow均匀流uniform flow非均匀流nonuniform flow二维流two-dimensional flow三维流three-dimensional flow准定常流quasi-steady flow非定常流unsteady flow, non-steady flow 暂态流transient flow 周期流periodic flow振荡流oscillatory flow分层流stratified flow无旋流irrotational flow有旋流rotational flow轴对称流axisymmetric flow不可压缩性incompressibility不可压缩流[动] incompressible flow浮体floating body定倾中心metacenter阻力drag, resistance减阻drag reduction表面力surface force表面张力surface tension毛细[管]作用capillarity来流incoming flow自由流free stream自由流线free stream line外流external flow进口entrance, inlet出口exit, outlet扰动disturbance, perturbation分布distribution传播propagation色散dispersion弥散dispersion附加质量added mass ,associated mass 收缩contraction镜象法image method无量纲参数dimensionless parameter几何相似geometric similarity运动相似kinematic similarity动力相似[性] dynamic similarity平面流plane flow势potential势流potential flow速度势velocity potential复势complex potential复速度complex velocity流函数stream function源source汇sink速度[水]头velocity head拐角流corner flow空泡流cavity flow超空泡supercavity超空泡流supercavity flow空气动力学aerodynamics低速空气动力学low-speed aerodynamics 高速空气动力学high-speed aerodynamics 气动热力学aerothermodynamics 亚声速流[动] subsonic flow跨声速流[动] transonic flow超声速流[动] supersonic flow锥形流conical flow楔流wedge flow叶栅流cascade flow非平衡流[动] non-equilibrium flow 细长体slender body细长度slenderness钝头体bluff body钝体blunt body翼型airfoil翼弦chord薄翼理论thin-airfoil theory构型configuration后缘trailing edge迎角angle of attack失速stall脱体激波detached shock wave波阻wave drag诱导阻力induced drag诱导速度induced velocity临界雷诺数critical Reynolds number 前缘涡leading edge vortex附着涡bound vortex约束涡confined vortex气动中心aerodynamic center气动力aerodynamic force气动噪声aerodynamic noise气动加热aerodynamic heating离解dissociation地面效应ground effect气体动力学gas dynamics稀疏波rarefaction wave热状态方程thermal equation of state喷管Nozzle普朗特-迈耶流Prandtl-Meyer flow瑞利流Rayleigh flow可压缩流[动] compressible flow可压缩流体compressible fluid绝热流adiabatic flow非绝热流diabatic flow未扰动流undisturbed flow等熵流isentropic flow匀熵流homoentropic flow兰金-于戈尼奥条件Rankine-Hugoniot condition 状态方程equation of state量热状态方程caloric equation of state完全气体perfect gas拉瓦尔喷管Laval nozzle马赫角Mach angle马赫锥Mach cone马赫线Mach line马赫数Mach number马赫波Mach wave当地马赫数local Mach number冲击波shock wave激波shock wave正激波normal shock wave斜激波oblique shock wave头波bow wave附体激波attached shock wave激波阵面shock front激波层shock layer压缩波compression wave反射reflection折射refraction散射scattering衍射diffraction绕射diffraction出口压力exit pressure超压[强] over pressure反压back pressure爆炸explosion爆轰detonation缓燃deflagration水动力学hydrodynamics液体动力学hydrodynamics泰勒不稳定性Taylor instability盖斯特纳波Gerstner wave斯托克斯波Stokes wave瑞利数Rayleigh number自由面free surface波速wave speed, wave velocity 波高wave height 波列wave train波群wave group波能wave energy表面波surface wave表面张力波capillary wave规则波regular wave不规则波irregular wave浅水波shallow water wave深水波deep water wave重力波gravity wave椭圆余弦波cnoidal wave潮波tidal wave涌波surge wave破碎波breaking wave船波ship wave非线性波nonlinear wave孤立子soliton水动[力]噪声hydrodynamic noise 水击water hammer 空化cavitation空化数cavitation number空蚀cavitation damage超空化流supercavitating flow水翼hydrofoil水力学hydraulics洪水波flood wave涟漪ripple消能energy dissipation海洋水动力学marine hydrodynamics谢齐公式Chezy formula欧拉数Euler number弗劳德数Froude number水力半径hydraulic radius水力坡度hvdraulic slope高度水头elevating head水头损失head loss水位water level水跃hydraulic jump含水层aquifer排水drainage排放量discharge壅水曲线back water curve压[强水]头pressure head过水断面flow cross-section明槽流open channel flow孔流orifice flow无压流free surface flow有压流pressure flow缓流subcritical flow急流supercritical flow渐变流gradually varied flow急变流rapidly varied flow临界流critical flow异重流density current, gravity flow堰流weir flow掺气流aerated flow含沙流sediment-laden stream降水曲线dropdown curve沉积物sediment, deposit沉[降堆]积sedimentation, deposition沉降速度settling velocity流动稳定性flow stability不稳定性instability奥尔-索末菲方程Orr-Sommerfeld equation 涡量方程vorticity equation泊肃叶流Poiseuille flow奥辛流Oseen flow剪切流shear flow粘性流[动] viscous flow层流laminar flow分离流separated flow二次流secondary flow近场流near field flow远场流far field flow滞止流stagnation flow尾流wake [flow]回流back flow反流reverse flow射流jet自由射流free jet管流pipe flow, tube flow内流internal flow拟序结构coherent structure 猝发过程bursting process表观粘度apparent viscosity 运动粘性kinematic viscosity 动力粘性dynamic viscosity泊poise厘泊centipoise厘沱centistoke剪切层shear layer次层sublayer流动分离flow separation层流分离laminar separation 湍流分离turbulent separation 分离点separation point附着点attachment point再附reattachment再层流化relaminarization起动涡starting vortex驻涡standing vortex涡旋破碎vortex breakdown涡旋脱落vortex shedding压[力]降pressure drop压差阻力pressure drag压力能pressure energy型阻profile drag滑移速度slip velocity无滑移条件non-slip condition壁剪应力skin friction, frictional drag壁剪切速度friction velocity磨擦损失friction loss磨擦因子friction factor耗散dissipation滞后lag相似性解similar solution局域相似local similarity气体润滑gas lubrication液体动力润滑hydrodynamic lubrication浆体slurry泰勒数Taylor number纳维-斯托克斯方程Navier-Stokes equation 牛顿流体Newtonian fluid边界层理论boundary later theory边界层方程boundary layer equation边界层boundary layer附面层boundary layer层流边界层laminar boundary layer湍流边界层turbulent boundary layer温度边界层thermal boundary layer边界层转捩boundary layer transition边界层分离boundary layer separation边界层厚度boundary layer thickness 位移厚度displacement thickness能量厚度energy thickness焓厚度enthalpy thickness注入injection吸出suction泰勒涡Taylor vortex速度亏损律velocity defect law形状因子shape factor测速法anemometry粘度测定法visco[si] metry流动显示flow visualization油烟显示oil smoke visualization孔板流量计orifice meter频率响应frequency response油膜显示oil film visualization阴影法shadow method纹影法schlieren method烟丝法smoke wire method丝线法tuft method氢泡法nydrogen bubble method相似理论similarity theory相似律similarity law部分相似partial similarity定理pi theorem, Buckingham theorem 静[态]校准static calibration动态校准dynamic calibration风洞wind tunnel激波管shock tube激波管风洞shock tube wind tunnel水洞water tunnel拖曳水池towing tank旋臂水池rotating arm basin扩散段diffuser测压孔pressure tap皮托管pitot tube普雷斯顿管preston tube斯坦顿管Stanton tube文丘里管Venturi tubeU形管U-tube压强计manometer微压计micromanometer多管压强计multiple manometer静压管static [pressure]tube流速计anemometer风速管Pitot- static tube激光多普勒测速计laser Doppler anemometer, laser Doppler velocimeter 热线流速计hot-wire anemometer热膜流速计hot- film anemometer流量计flow meter粘度计visco[si] meter涡量计vorticity meter传感器transducer, sensor压强传感器pressure transducer热敏电阻thermistor示踪物tracer时间线time line脉线streak line尺度效应scale effect壁效应wall effect堵塞blockage堵寒效应blockage effect动态响应dynamic response响应频率response frequency底压base pressure菲克定律Fick law巴塞特力Basset force埃克特数Eckert number格拉斯霍夫数Grashof number努塞特数Nusselt number普朗特数prandtl number雷诺比拟Reynolds analogy施密特数schmidt number斯坦顿数Stanton number对流convection自由对流natural convection, free convec-tion 强迫对流forced convection热对流heat convection质量传递mass transfer传质系数mass transfer coefficient热量传递heat transfer传热系数heat transfer coefficient对流传热convective heat transfer辐射传热radiative heat transfer动量交换momentum transfer能量传递energy transfer传导conduction热传导conductive heat transfer热交换heat exchange临界热通量critical heat flux浓度concentration扩散diffusion扩散性diffusivity扩散率diffusivity扩散速度diffusion velocity分子扩散molecular diffusion沸腾boiling蒸发evaporation气化gasification凝结condensation成核nucleation计算流体力学computational fluid mechanics 多重尺度问题multiple scale problem伯格斯方程Burgers equation对流扩散方程convection diffusion equation KDU方程KDV equation修正微分方程modified differential equation。

流体力学复习资料及英文专有名词解释

流体力学复习资料及英文专有名词解释

Chapter 1 Fluid statics 流体静力学1. 连续介质假定(Continuum assumption):The real fluid is considered as no-gap continuousmedia, called the basic assumption of continuity of fluid, or the continuum hypothesis offluid.流体是由连续分布的流体质点(fluid particle)所组成,彼此间无间隙。

它是流体力学中最基本的假定,1755年由欧拉提出。

在连续性假设之下,表征流体状态的宏观物理量在空间和时间上都是连续分布的,都可以作为空间和时间的函数。

2. 流体质点(Fluid particle ): A fluid elementthat is small enough with enoughmoles to makesure that the macroscopic meandensity has definite valueis defined as a Fluid Particle.宏观上足够小,微观上足够大。

3. 流体的粘性(Viscosity ): is an internal property of a fluid that offers resistance to sheardeformation. It describes a fluid's internal resistance to flow and may be thought as a measure of fluid friction.流体在运动状态下抵抗剪切变形的性质,称为黏性或粘滞性。

它表示流体的内部流动阻力,也可当做一个流体摩擦力量。

The viscosity of a gas increases with temperature, the viscosity of a liquid decreases with temperature.4. 牛顿内摩擦定律(Newton’s law of viscosity ):5. The dynamic viscosity (动力黏度)is also called absolute viscosity (绝对黏度). The kinematicviscosity (运动黏度)is the ratio of dynamic viscosity to density.6. Compressibility (压缩性):As the temperature is constant, the magnitude ofcompressibility is expressed by coefficient of volume compressibility (体积压缩系数) к , a relative variation rate (相对变化率) of volume per unit pressure.The bulk modulus of elasticity (体积弹性模量) E is the reciprocal of coefficient of volume compressibility к.7. 流体的膨胀性(expansibility; dilatability):The coefficient of cubical expansion (体积热膨胀系数) αt is the relative variation rate of volume per unit temperature change.8. 表面张力Surfacetension : A property resulting from the attractive forces betweendu dzτμ=μνρ=molecules.σ-----单位长度所受拉力9. 表面力 Surface force ——is the force exerted on the contact surface by the contacted fluidor other body. Its value is proportional to contact area.作用在所研究流体外表面上与表面积大小成正比的力。

流体力学发展史

流体力学发展史

流体力学发展简史流体力学作为经典力学的一个重要分支,其发展与数学、力学的发展密不可分。

它同样是人类在长期与自然灾害作斗争的过程中逐步认识和掌握自然规律,逐渐发展形成的,是人类集体智慧的结晶。

人类最早对流体力学的认识是从治水、灌溉、航行等方面开始的。

在我国水力事业的历史十分悠久。

4000多年前的大禹治水,说明我国古代已有大规模的治河工程。

秦代,在公元前256-前210年间便修建了都江堰、郑国渠、灵渠三大水利工程,特别是李冰父子领导修建的都江堰,既有利于岷江洪水的疏排,又能常年用于灌溉农田,并总结出"深淘滩,低作堰"、"遇弯截角,逢正抽心"的治水原则。

说明当时对明槽水流和堰流流动规律的认识已经达到相当水平。

西汉武帝(公元前156-前87)时期,为引洛水灌溉农田,在黄土高原上修建了龙首渠,创造性地采用了井渠法,即用竖井沟通长十余里的穿山隧洞,有效地防止了黄土的塌方。

在古代,以水为动力的简单机械也有了长足的发展,例如用水轮提水,或通过简单的机械传动去碾米、磨面等。

东汉杜诗任南阳太守时(公元37年)曾创造水排(水力鼓风机),利用水力,通过传动机械,使皮制鼓风囊连续开合,将空气送入冶金炉,较西欧约早了一千一百年。

古代的铜壶滴漏(铜壶刻漏)--计时工具,就是利用孔口出流使铜壶的水位变化来计算时间的。

说明当时对孔口出流已有相当的认识。

北宋(960-1126)时期,在运河上修建的真州船闸与十四世纪末荷兰的同类船闸相比,约早三百多年。

明朝的水利家潘季顺(1521-1595)提出了"筑堤防溢,建坝减水,以堤束水,以水攻沙"和"借清刷黄"的治黄原则,并著有《两河管见》、《两河经略》和《河防一揽》。

清朝雍正年间,何梦瑶在《算迪》一书中提出流量等于过水断面面积乘以断面平均流速的计算方法。

欧美诸国历史上有记载的最早从事流体力学现象研究的是古希腊学者阿基米德(Archimedes,公元前287-212),在公元前250年发表学术论文《论浮体》,第一个阐明了相对密度的概念,发现了物体在流体中所受浮力的基本原理──阿基米德原理。

流体力学文献综述

流体力学文献综述

文献综述题目流体力学概述学院机电工程学院专业机械工程及自动化班级10机自本一学号10113003336 学生姓名徐石明任课教师李振哲温州大学教务处制一、前言部分:1、前言大千世界,被冠之以“流体”的流动介质无所不在.流体力学研究在各种力的作用下,流体的静止和运动状态以及流体和其他物体有相对运动时的相互作用和流动规律.流体力学既是探索自然规律的基础学科,也是解决工程实际问题的应用学科,它在现代科学中占有重要的地位。

事实上,它已成为当今科学和工程技术的基础之一。

为了造就力学人才,我国许多理工科院校都开设了流体力学课程,因为在中国目前看来,还缺少这方面的拔尖人才。

2、相关概念及综述范围2.1 概念:流体力学,是研究流体(液体和气体)的力学运动规律及其应用的学科。

主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。

流体力学是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。

它的主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和高等数学、物理学、化学的基础知识。

2.2 综述范围除水和空气以外,流体还指作为汽轮机工作介质的水蒸气、润滑油、地下石油、含泥沙的江水、血液、超高压作用下的金属和燃烧后产生成分复杂的气体、高温条件下的等离子体等等。

气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,汽车制造,以及天体物理的若干问题等等,都广泛地用到流体力学知识。

许多现代科学技术所关心的问题既受流体力学的指导,同时也促进了它不断地发展。

1950年后,电子计算机的发展又给予流体力学以极大的推动。

二、主题部分:1、历史17世纪,力学奠基人牛顿研究了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。

流体力学(英文资料)

流体力学(英文资料)

Chapter 1 Introduction
1.1 Preliminary Remarks
When you think about it, almost everything
on this planet either is a fluid or moves within or near a fluid.
Ludwig Prandtl (1875-1953)
Boundary layer theory(1904)
To be the single most important tool in modern flow analysis.
The father of modern fluid mechanics
Most engineering problems are concerned with physical dimensions much larger than this limiting volume.
* Small enough in macroscope(宏观).
微观无穷大
宏观无穷小
So density is essentially a point function and fluid properties can be thought of as varying continually in space .
Body forces act on the entire mass of the element. Gravity , electromagnetic. No cotact Per unit mass(单位质量) g
v vv v R Xi Yj Zk
1.5 Two different points of view in analyzing problems in mechanics

fluid mechanics英文流体力学第一章

fluid mechanics英文流体力学第一章

1Fluid MechanicsDr J SUN (孙金菊)School of Energy and Power Engineering2Application of Modern FM Approaches & branches of modern FM 3The earth is 75 percent covered with water and 100 percent covered with air.When you think about it, almost everything on this planet either is a fluid or moves within or 4Flows occur in all fields of our naturaland technical environmentWithout fluid flows, life would not bepossible on earth, and any technological processes could not run at all5are transported by mass flows and are thus carried to the cells, where they contribute to the build-up of our body and to its energy supply.6Flows in the entire fauna and flora (动、植物群) are equally important.Without these flows, there wouldn’t be any growth of plants and animals in nature and human beings would be deprived of the ”natural” food.7the weather and thus the climate of entire geographical regions.8Hurricane Rita (飓风丽塔)in the Gulf of Mexico, Sept. 22, 2005, is a true fluid flow, strongly influenced by the earth’s rotation and the ocean temperature.9industrial plants to transfer energy, generate lift forces, run combustion processes or take on control functions, etc..10our natural andtechnical world would be different, and might not even exist at all. Flows 1175 percent covered with water covered with air. The scope of fluid mechanics is vast and touches nearly every ).2. Fluid mechanics12Fluid mechanics concerns with fluids (gases and or at rest.The former is termed Fluid Dynamics (流体动Fluid Statics (流体静力学13Fluid mechanics dated back to the prehistory time. The people began to control water for irrigation and navigation in the ancient civilized nations of China, Egypt, Mesopotamia, and India.14橹桨) and irrigation system were both known in prehistory15z Archimedes (285-212 BC)(平行四边形)law for addition浮力定理16z Leonardo da Vinci (1452-1519)1-D Mass conservation Equation of质量守恒定理紊流17z Isaac Newton (1642-1727)Laws of motionLaws of viscosity of Newtonian fluid18z 18th century¾Mathematicians working ontheoretical aspects for inviscid flow (非粘性)Euler (欧拉):Euler equationBernoulli (伯努利) :Bernoulli equation¾Engineers working on hydraulics (水力学)relying on experimentChannels ,Ship resistance ,Pipe flows, Wave turbine Pitot Venturi Torricelli PoiseuilleD’Alembert (达朗贝尔)based on inviscid results showedD’Alembert paradox (佯谬,疑题)z 19th century¾Navier (1785-1836)Reynolds (1842-1912)did remarkable work on turbulence e.g. Famous experiment on flow transitionReynolds Number20The twentieth century foundations for the present state of the art in fluid mechanics were laid in a series of broad-based experiments and and his two chief friendly von Karman (1881-1963)(1886-1975).21I.taylor (1886-1975)These three men Laid foundation for the present state of the art in fluid mechanics22Suggested reading for FM history: Page 4-523Modern fluid mechanics is very useful to design efficient transportation, machinery, technological process, and energy transfer, etc., it is used in all the field of life and 24Aerospace25gas turbine engine 燃气轮机发动机26(Turbo-compressor + combustion chamber + turbine)27National defense28Transportation29Family car design improvement30Sporting recreationRacing car: down force31Golf (in the past)Golf (nowadays)32Biofluid flow and animal like machine3334Artificial fish made in China仿生机器鱼在太湖监测水质Lake water quality monitoring by fish like machine 35and branches of modern fluid numerical simulation method andare usually used in With tremendous development of high-capacity computer and other related technology, fast advancement in both methods have been made.36Numerical simulation methods, which isomputational F luid D ynamics)37DNS (Direct Numerical Simulation)modeling methods (eg. Latticee.g. Used for Micro Electro-Mechanical Systems or rarefied gas flow, etc.modeling methods eg. Nanoscale pores structure used in micro-直接模拟介观流动模拟涡方法纳米流动模拟38Experimental methods, which is oftenF luid D ynamics)Various kinds of modern and advanced instruments and techniques have been developed for flow and visualization.39(Particle Image Velocimetry ) (Laser Doppler Velocimeter)(Hot-wire Anemometer )40basic concepts, and fundamental Obtain problem-solving techniques (along with basic experimental techniques through the complimentary Laboratory your aptitude and interests in FM41Ultimately help you to move smoothly into anyof these specialized fields of the science of flow –and then be prepared for the newly emerged 42Fluid mechanics videos, in original English;EES (Engineering Equation Solver) for Fundamentals of Engineering Exam (FEE) quizzes,43Background and significance of concepts, definition, equations, etc.Assignment, review text book, laboratory 44Text book451 Introduction 3 Integral Relations for a Control Volume 4 Differential analysis for fluid flow 5 Dimensional analysis and similarity 6 Internal viscous flow (Duct flow)8 Incompressible inviscid flow --Potential flow 9 Introduction to compressible flows4630%70%47。

流体力学中英文词

流体力学中英文词
马赫数 Mach number
马赫波 Mach wave
当地马赫数 local Mach number
冲击波 shock wave
激波 shock wave
正激波 normal shock wave
斜激波 oblique shock wave
头波 bow wave
汇 sink
速度[水]头 velocity head
拐角流 corner flow
空泡流 cavity flow
超空泡 supercavity
超空泡流 supercavity flow
空气动力学 aerodynamics
低速空气动力学 low-speed aerodynamics
绝热流 adiabatic flow
非绝热流 diabatic flow
未扰动流 undisturbed flow
等熵流 isentropic flow
匀熵流 homoentropic flow
兰金-于戈尼奥条件 Rankine-Hugoniot condition
Solidworks的一个插件,真是委屈它了,这世道美女都找有钱的主,它找的是Solidworks,和其它求解器相比,它是花瓶。
CFDesign:
Cosmos Floworks的金兰姐妹,下嫁Pro/E,与Cosmos相比,各有千秋。
Numeca:
针对涡轮机械的,好东西,市场没搞好,目前不得志。
状态方程 equation of state
量热状态方程 caloric equation of state
完全气体 perfect gas
拉瓦尔喷管 Laval nozzle

journal of fluid mechanics格式-概述说明以及解释

journal of fluid mechanics格式-概述说明以及解释

journal of fluid mechanics格式-概述说明以及解释1.引言1.1 概述概述部分的内容应该是对整篇文章的一个总体介绍,可以包括以下要点:概述:流体力学是研究液体和气体在运动过程中行为和相互作用的学科。

本篇长文旨在对流体力学领域的一些关键问题展开讨论,并探索其在科学和工程领域的应用。

首先,我们将介绍流体力学的基础概念和原理。

通过引入关键概念,如流动、速度场、压力场和黏性力,我们可以建立起对流体行为的理解。

此外,我们还将简要介绍流体力学的数学描述方法和基本方程,如纳维-斯托克斯方程和连续性方程。

其次,我们将关注流体的流动行为和流动类型。

我们将讨论不可压缩流体和可压缩流体的特性,以及不同流动类型,如层流和湍流。

我们还将研究流体流动的稳定性和不稳定性,以及与湍流产生机制和湍流模型相关的问题。

在正文的后续部分,我们将探讨流体力学中的一些关键应用领域。

这包括但不限于工程领域中的流体力学问题,如流体力学在航空、汽车和航海等领域的应用。

我们还将研究生物医学领域中流体力学的应用,如血液流动和呼吸系统的研究。

最后,我们将对整篇文章进行总结,并提出一些未来研究的方向和潜在的应用领域。

我们将强调流体力学的重要性和广泛应用的潜力,以及对流体力学研究的持续关注和探索的必要性。

通过这篇长文,我们希望读者能够了解流体力学的基本概念和原理,以及它在各个领域中的重要性和应用。

我们相信,深入了解流体力学将有助于解决许多现实世界中的复杂问题,并为科学和工程领域的进步提供有价值的贡献。

1.2 文章结构文章结构部分旨在为读者提供整篇文章的框架,让他们能够更好地理解文章的组织和内容。

本文分为引言、正文和结论三个主要部分。

引言部分的目的是引入文章的主题,并提供背景信息以便读者能够理解后续的内容。

同时,引言部分还应该包括对文章结构的简要介绍,从而使读者能够预期到接下来的内容。

接下来,正文部分是文章的主体,通常包含多个章节或要点,用以详细说明研究问题、方法、实验过程和结果等。

流体机械的内流原理

流体机械的内流原理
稍后采用的简化流动模型是以如图1a所示的两个无限接近的厚度为dr的回转流面截割叶片而得到的所谓基元 级模型。整个流动通道就由无限多这样的基元级组成。将基元级沿周向展开就得到在平面上表示的动、静叶栅系 列。整级的性能就是基元级性能沿叶高的积分。通常将由圆柱流面截割的基元级展开而得到的叶栅称为平面叶栅。
旋转式流体机械有时也称为叶轮机械,应用广泛,原理比较复杂,它通常是由固定的静叶片(也称导向叶片 或喷嘴叶片)和装在旋转叶轮上的动叶片组成。流体相对于叶轮轴的流动方向可以是轴向、径向、斜向,而相应 的流体机械分别称为轴流式、径流或离心式、斜流式。一排静叶片加一排动叶片为一个级。随所需增压或降压参 量的不同可做成单级或多级的型式。在轮机或透平膨胀机中,静叶片设置在动叶片前面以便将流体的势能或热能 的全部或一部分先经过静叶片转化为动能,然后流经动叶片作功(图1右)。在压缩机中,静叶片常放置在动叶片 后面以便将流出动叶片的流体动能进一步转化为势能或压力能(图1左)。下面重点介绍旋转式流体机械中的流体 流动原理。
流体机械中的流体流动原理的另一个重要方面是功能转换关系。流体流经动叶片后,绝对坐标中的平均周向 速度Cu发生变化,作用在叶片上的周向力或叶片作用于流体上的力Fu等于进出口周向动量之差,即
功率为扭矩乘以角速度ω。(1)、(2)两式就是欧拉透平公式。由此可知:周向速度差△Cu愈大,叶片力 和扭矩也愈大。因周向速度差又与静、动叶片中的速度变化,进出口流动方向或叶型形状有关,所以上述公式也 是阐明流体机械原理和进行设计的最基本公式。设下标1、2分别表示动叶片进口和出口处的物理量。应用前面所 述的相对、绝对速度的矢量关系后,又可得到另一形式的欧拉透平公式:
流体流经以一定形状叶型组成的流体机械的叶栅时,在实现加速(透平机)或减速(压缩机)的同时还完成 流动方向的转折。流体绕流叶型时,在叶型的内弧和背弧上形成不同的速度和压力分布(图2)。但是流体机械的 叶栅与孤立翼型(例如飞机机翼)又不同,叶型的表面压力分布和受到的作用力不仅和叶型形状有关,也和流体 在叶栅槽道内的加速或减速方式和方向转折有关。根据儒科夫斯基机翼定理在叶栅上的推广(见举力),可得到 叶栅上的流体作用力F的表达式:

流体力学的发展历程与研究方法综述

流体力学的发展历程与研究方法综述

流体力学的发展历程与研究方法综述导言流体力学是研究流体(包括液体和气体)的运动规律和性质的科学分支。

作为物理学和工程学重要的基础学科,流体力学的发展历程可以追溯到古代。

从最早的实验观察和经验总结,到现代数值模拟和实验技术的发展,流体力学在科学研究和工程应用中发挥着重要作用。

本文将对流体力学的发展历程与研究方法进行综述。

古代流体力学的起源早在古埃及和古希腊时期,人们对流体的运动性质进行了观察和总结。

例如,埃及人通过灌溉系统的设计和运行,掌握了水流的基本规律。

希腊哲学家亚里士多德在其著作《流体论》中提出了流体力学的基本原理,阐述了流体的基本性质和运动规律。

这些古代文明的研究成果为后来的科学家提供了重要的启示。

流体力学的数学基础流体力学的数学基础主要包括连续性方程、动量方程和能量方程。

这些方程描述了流体的质量守恒、动量守恒和能量守恒等基本性质。

在17世纪和18世纪,许多数学家和物理学家对流体力学的基本方程进行了深入研究和推导。

瑞士数学家欧拉和伯努利等人对流体的运动进行了系统的数学分析,为流体力学建立了坚实的理论基础。

实验方法在流体力学研究中的应用实验方法在流体力学研究中扮演着重要角色。

通过搭建实验装置和进行定量观测,科学家们可以获取流体的运动参数和基本性质。

19世纪末和20世纪初,德国物理学家雷诺在他的著名流动实验中提出了“雷诺数”的概念,用以描述流体的流动特性。

实验结果验证了流体力学的基本原理,并为后来的理论研究提供了重要的实验数据。

数值模拟在流体力学研究中的应用随着计算机技术的发展,数值模拟方法在流体力学研究中得到了广泛应用。

数值模拟利用计算机模拟流体的运动过程,可以得到流体的详细信息和运动规律。

通过建立数值模型和采用数值方法,科学家们可以研究流体的复杂流动行为,探索流体力学中的一些难题。

数值模拟方法为流体力学的发展提供了新的视角和研究工具。

流体力学在工程领域的应用与进展流体力学在工程领域的应用广泛而深入。

流体力学 (Fluid Mechanics)

流体力学 (Fluid Mechanics)
Q 25000cm3 SV r2V
60s
V 132.5cm/ s
KE 1 V 2 8300Pa 62.25mmHg
2
请解释此现象
Aneurysm(动脉瘤)
若处动脉的半径增大N倍
血液流速就缩小N2倍 动能就缩小N4倍 病灶处的压强大幅度上升 该处血管壁薄,若血流瞬间 增大,会引血管破裂。
毛细血管的血流必定全部流过主动脉
令 n 为毛细血管 A0v0 nAV
n 6109 或 60 亿
毛细血管横截面的总面积是主 动脉横截面的 600 倍
Q A0v0 90cm3 / s 90ml / s
讨论
水笼头流出的水为什么会变得 越来越细?
水笼头流出的水最后从连续变 成了断续?
五、柏努利方程(Bernoulli’s equation)
Atherosclerosis(动脉粥样硬化)
若处动脉的半径缩小N倍 血液流速就增大N2倍
动能就增大N4倍,势能就要减小 导致: 病灶处的压强大幅度下降 导致该处血管容易塌陷,出现供血困难
如:冠状动脉粥样硬化 angina心绞痛,heart attack心脏病发作
脑部动脉粥样硬化 TIA(transient ischemic attack短暂 性脑缺血发作 ),stroke缺血性中风。
四、液流连续原理(Principle of continuity of flow)
适用范围:同一流管不可压缩液体的稳定流动
B SB
从一流管两端流入和流出的质量为:
mA ASAvAt A mB B SBvBtB
根据质量守恒方程
SA A
VB
A,B分别为同一流
VA
管中的两个不同截 面上的点
ASAvA B SBvB

The Physics of Fluid Mechanics and Transport

The Physics of Fluid Mechanics and Transport

The Physics of Fluid Mechanics andTransportFluid mechanics and transport are fascinating fields of study that deal with the flows and motions of liquids, gases, and other materials. This branch of physics is concerned with understanding the fundamental principles that govern the behavior of fluids and the transport phenomena that occur in them. In this article, we will explore the world of fluid mechanics and transport, and learn about some of the key concepts and applications of this fascinating area of physics.The Basics of Fluid MechanicsFluid mechanics is the branch of physics that studies the behavior of fluids. A fluid is any material that can flow and take the shape of its container, including liquids, gases, and plasmas. Fluids are essential to life and are found in a wide variety of settings, from the air we breathe to the blood that circulates in our bodies.One of the key concepts in fluid mechanics is viscosity, which is a measure of afluid's resistance to flow. Fluids with high viscosity (such as honey or tar) are thick and do not flow easily, while fluids with low viscosity (such as water or air) are thin and flow easily. The viscosity of a fluid is important in many practical applications, such as designing lubricants for machinery or optimizing the flow of fluids in pipelines and channels.Another important concept in fluid mechanics is turbulence, which is the chaotic and unpredictable motion that occurs when a fluid flows at high speeds or over rough surfaces. Turbulence is a major challenge in many engineering applications, such as designing aircraft engines, wind turbines, and water pumps. Understanding the physics of turbulence is essential for optimizing the efficiency and safety of these devices.Transport Phenomena in FluidsTransport phenomena are the processes by which matter and energy are transported in fluids. There are three main types of transport phenomena: diffusion, convection, and radiation.Diffusion is the process by which particles move from areas of high concentration to areas of low concentration, until the concentration becomes uniform throughout the fluid. This process is responsible for the spreading of odors and the dissolution of chemicals in liquids, and is important in many biological and chemical systems.Convection is the process by which heat or mass is transported in a fluid due to the motion of the fluid itself. This process occurs in many natural and industrial settings, such as the convective transfer of heat in the atmosphere or the motion of fluids in pipelines and channels. Understanding the physics of convection is essential for optimizing the efficiency and safety of many engineering applications.Radiation is the process by which energy is transferred through a fluid by electromagnetic radiation. This process is important in many natural phenomena, such as the transfer of solar radiation through the atmosphere, and in many industrial applications, such as the heating and cooling of buildings.Applications of Fluid Mechanics and TransportFluid mechanics and transport have a wide range of practical applications, from designing aircraft engines and wind turbines to optimizing the flow of blood in the human body. Some specific examples of these applications include:- Aerospace engineering: Fluid mechanics is essential for designing and optimizing the aerodynamics of aircraft engines, rockets, and spacecraft. Understanding the physics of fluid flow is essential for achieving high efficiency, stability, and safety in these devices.- Biomedical engineering: Fluid mechanics is important for understanding the flowof blood in the human body, and for designing medical devices such as respirators, oxygenators, and artificial hearts. Understanding the physics of fluid flow in biological systems is essential for optimizing the health and safety of patients.- Energy engineering: Fluid mechanics is essential for designing and optimizing energy systems such as wind turbines, hydroelectric dams, and nuclear reactors. Understanding the physics of fluid flow is essential for achieving high efficiency, reliability, and safety in these devices.- Chemical engineering: Transport phenomena are essential for designing and optimizing chemical processes such as distillation, absorption, and reaction. Understanding the physics of mass and energy transport in fluids is essential for achieving high efficiency and selectivity in these processes.ConclusionIn conclusion, fluid mechanics and transport are fascinating fields of study that deal with the flows and motions of liquids, gases, and other materials. These subjects are essential for understanding many natural and engineering phenomena, from the motion of blood in the human body to the design of wind turbines and aircraft engines. By studying the physics of fluid mechanics and transport, we can gain a deeper understanding of the fundamental principles that govern the behavior of fluids, and apply this knowledge to create new technologies and improve existing ones.。

ABriefIntroductiontoFluidMechanics4th课程设计 (2)

ABriefIntroductiontoFluidMechanics4th课程设计 (2)

A Brief Introduction to Fluid Mechanics 4th 课程设计课程概述Fluid Mechanics(流体力学)是研究流体运动和相互作用的一门学科。

本课程设计是基于《Fluid Mechanics 4th》的内容,旨在让学生系统地了解流体力学的基础和应用。

在课程中,学生将学习流体力学的概念、方程、实验和计算方法。

此外,本课程还包括实验和计算题,以帮助学生更深入地理解和应用课程内容。

课程教材本课程教材为《Fluid Mechanics 4th》一书,由Frank M. White(弗兰克·怀特)教授编写。

该书内容详实,对流体力学的各个方面进行了全面且深入的介绍。

《Fluid Mechanics 4th》共分为18章,其中包括基础概念、动量方程、能量方程、伯努利方程、定常流、非定常流、层流和湍流等内容。

课程内容第一章:简介在本章中,学生将了解流体力学的基本概念、流体的性质和流动。

此外,本章还介绍了流体力学应用的范围和一些基本假设。

第二章:流体静力学本章介绍了流体静力学的概念和原理,包括压力、密度、浮力和气压等内容。

此外,本章还包括静压均衡和流体质量与重心的计算方法。

第三章:流体动力学概述这一章节介绍了流体动力学的基本方程,包括连续性方程、动量方程和能量方程。

此外,本章还介绍了雷诺数的定义,以及不同雷诺数下的流动特征。

第四章:不可压缩定常流本章讲解了不可压缩流体的运动和流量、速度分布、压力分布等基本概念。

此外,本章还包括雷诺数和黏性流体中的定常流动。

第五章:非定常流在本章中,学生将学习非定常流体的基本概念和特征。

本章包括无量纲数和抛物线运动等内容,同时还涵盖了无须数量和对流性的混合流以及有限体积法的介绍。

第六章:层流和湍流这一章节介绍了流体内部的流态转换,包括层流和湍流的概念和特征。

本章还介绍了不可压疏松介质中的流动,以及湍流理论和运动学。

课程设计实验在课程设计中,实验是一个重要的部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Brief History of Fluid Mechanics
Fluid mechanics has a history of erratically occurring early achievements, then an intermediate era of steady fundamental discoveries in the eighteenth and nineteenth centuries.
Ancient civilizations had enough knowledge to solve certain flow problems. Sailing ships with oars and irrigation systems were both known in prehistoric times. The Greeks produced quantitative information. Archimedes and Hero of Alexandria both postulated the parallelogram law for vector addition in the third century B.C.. Archmedes (285-212 B.C.) formulated the laws of buoyancy and applied them to floating and submerged bodies, actually deriving a form of the differential calculus as part of the analysis.
Up to the Renaissance, there was a steady improvement in the design of such flow systems as ships, canals, and water conduits, but no recorded evidence of fundamental improvements in flow analysis. Then Leonardo da Vinci (1452-1519) derived the equation of conservation of mass in one-dimensional steady flow. Leonardo was an excellent experimentalist, and his notes contain accurate descriptions of waves, jets, hydraulic jumps, eddy formation, and both low-drag (streamlined) and high-drag (parachute) designs. A Frenchman, Edme Mariotte (1620-1684), built the first wind tunnel and tested models in it.
In 1687, Isaac Newton (1642-1727) postulated his laws of motion and the law of viscosity of the linear fluids now called newtonian. The theory first yielded to the assumption of a “perfect” or frictionless fluid, and eighteenth-century mathematicians (Daniel Bernoulli, Leonhard Euler, Jean d’Alembert, Joseph-Louis Lagrange, and Pierre-Simon Laplace) produced many beautiful solutions of frictionless-flow problems. Euler developed both the differential equations of motion and their integrated form, now called the Bernoulli equation. D’Alembert used them to show his famous paradox: that a body immersed in a frictionless fluid has zero drag. These beautiful results amounted to overkill, since perfect-fluid assumptions have very limited applications in practice and most engineering flows are dominated by the effects of viscosity. Engineers began to reject what they regarded as a totally unrealistic theory and developed the science of hydraulics, relying almost entirely on experiment. Such experimentalists as Chézy, Pitot, Borda, Weber, Francis, Hagen, Poiseuille, Darcy, Manning, Bazin, and Weisbach produced data on a variety of flows such as open channels, ship resistance, pipe flows, waves, and turbines.
At the end of the nineteenth century, unification between experimental hydraulics and theoretical hydrodynamics finally began. William Froude (1810-1879) and his son Robert (1846-1924) developed laws of model testing, Lord Rayleigh (1842-1919) proposed the technique of dimensional analysis, and Osborne Reynolds (1842-1912) published the classic pipe experiment in 1883 which showed the importance of the dimensionless Reynolds number named after him. Meanwhile, viscous-flow theory was available but unexploited since Navier (1785-1836) and Stokes (1819-1903) had successfully added the newtonian viscous terms to the governing equations of motion. Unfortunately, the resulting Navier-Stokes equations were too difficult to analyze for arbitrary flows.
In 1904, a German engineer, Ludwig Prandtl (1875-1953), published perhaps the most important paper ever written on fluid mechanics. Prandtl pointed out that fluid flows with small viscosity (water and air flows) can be divided into a thin viscous layer, or boundary layer, near solid surfaces and interfaces, patched onto a nearly inviscid outer layer, where the Euler and Bernoulli equations apply. Boundary-layer theory has proven to be the single most important tool in modern flow analysis. The twentieth-century foundations for the present state of the art in fluid mechanics were laid in a series of broad-based experiments by Prandtl and his two chief friendly competitors, Theodore von Kármán (1881-1963) and Sir Geoffrey I. Taylor (1886-1975).。

相关文档
最新文档