高考理科数学模拟试题

合集下载

高三数学模拟试题理科

高三数学模拟试题理科

高三数学模拟试题理科一、选择题(每题5分,共30分)1. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的图像与x轴有两个交点,则下列说法正确的是:A. △ > 0B. △ = 0C. △ < 0D. △ ≤ 02. 已知点A(1,2),B(4,6),则直线AB的斜率k为:A. 1B. 2C. 3D. 43. 函数y = log_a x(a > 0, a ≠ 1)的图像不经过的象限是:A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 若sinθ + cosθ = 1/2,θ ∈ [0, π],则tanθ的值为:A. -3B. 3C. 1/3D. -1/35. 已知等差数列{an}的前n项和为S_n,若S_3 = 9,S_4 = 16,则该数列的公差d为:A. 3B. 2C. 1D. -16. 已知双曲线x^2/a^2 - y^2/b^2 = 1的焦点坐标为(±c, 0),若c^2 = a^2 + b^2,则该双曲线的离心率为:A. √2B. √3C. 2D. 1二、填空题(每题4分,共20分)7. 已知等比数列的首项为2,公比为3,其第五项为______。

8. 若函数g(x) = √x + 1的定义域为[0, +∞),则g(1/4)的值为______。

9. 已知圆心在原点,半径为2的圆的方程为______。

10. 若直线l:y = 3x + b与圆x^2 + y^2 = 25相切,则b的值为______。

11. 已知正弦函数的周期为π,那么该函数的最小正周期为______。

三、解答题(共50分)12.(10分)设函数f(x) = x^3 - 3x^2 + 2x,求函数f(x)的单调区间及极值。

13.(10分)已知某工厂生产的产品在t年时的产量为Q(t) = 200 +50t - 5t^2,求该工厂在第3年和第4年的总产量。

14.(15分)已知三角形ABC的三个顶点分别为A(1,2),B(4,3),C(-1,-1),求三角形ABC的面积。

2024届高三数学仿真模拟卷(全国卷)(理科)(全解全析)

2024届高三数学仿真模拟卷(全国卷)(理科)(全解全析)

2024年高考第三次模拟考试数学(理科)·全解全析(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,6【答案】A【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得.【详解】由260x x -≥,即()60x x -≥,解得6x ≥或0x ≤,所以{}(][)260,06,B x x x ∞∞=-≥=-⋃+,又{}24A x x =-≤≤,所以[]2,0A B ⋂=-.故选:A 2.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .14【答案】C【分析】运用复数代数运算及两复数相等的性质求解即可.【详解】由题意知,22231(i)i=i2422z a a=+=-+,所以23142a⎧-=⎪⎪=,解得12a=.故选:C.3.如图,已知AM是ABC的边BC上的中线,若AB a=,AC b=,则AM等于()A.()12a b-B.()12a b--C.()12a b+D.()12a b-+【答案】C【分析】根据平面向量线性运算法则计算可得.【详解】因为AM是ABC的边BC上的中线,所以12CM CB=,所以12AM AC CM AC CB=+=+()()()111222AC A CB A AC aBA b=+-=+=+.故选:C4.已知函数()()πtan0,02f x xωϕωϕ⎛⎫=+><<⎝⎭的最小正周期为2π,直线π3x=是()f x图象的一条对称轴,则()f x的单调递减区间为()A.()π5π2π,2πZ66k k k⎛⎤-+∈⎥⎝⎦B.()5π2π2π,2πZ33k k k⎛⎤--∈⎥⎝⎦C.()4ππ2π,2πZ33k k k⎛⎤--∈⎥⎝⎦D.()π2π2π,2πZ33k k k⎛⎤-+∈⎥⎝⎦【答案】B【分析】根据()()πtan0,02f x xωϕωϕ⎛⎫=+><<⎝⎭的最小正周期确定ω的值,根据函数的对称轴求出ϕ,结合正切函数的单调性,列出不等式,即可求得答案.【详解】由于()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象是将()tan y x ωϕ=+的图象在x 轴下方部分翻折到x 轴上方,且()tan y x ωϕ=+π0,02ωϕ⎛⎫><<⎪⎝⎭仅有单调递增区间,故()()tan f x x ωϕ=+和()tan y x ωϕ=+的最小正周期相同,均为2π,则π12π,2ωω=∴=,即()1tan 2f x x ϕ⎛⎫=+ ⎪⎝⎭,又直线π3x =是()f x 图象的一条对称轴,则1π1π,Z 232k k ϕ⋅+=∈,即1ππ,Z 26k k ϕ=-∈,结合π02ϕ<<,得π3ϕ=,故()1πtan 23f x x ⎛⎫=+ ⎪⎝⎭,令π1πππ,Z 223k x k k -<+≤∈,则5π2π2π2π,Z 33k x k k -<≤-∈,即()f x 的单调递减区间为()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦,故选:B5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件【答案】A【分析】根据充分性、必要性的定义,结合直线的斜率是否存在进行判断即可.【详解】当直线的斜率等于0时,直线的方程为1y =,代入方程224x y +=中,得x =,显然CD =;当直线的不存在斜率时,直线的方程为1x =,代入方程224x y +=中,得y =CD =因此是必要而不充分条件,故选:A6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种【答案】B【分析】根据题意,分2种情况讨论:①丙是最后一名,则丁可以为第二、三、四名,剩下的三人安排在其他三个名次,②丙不是最后一名,丙丁需要排在第二、三、四名,剩下的三人安排在其他三个名次,由加法原理计算可得答案.【详解】根据题意,丙丁都没有得到冠军,而丁不是最后一名,分2种情况讨论:①丙是最后一名,则丁可以为第二、三、四名,即丁有3种情况,剩下的三人安排在其他三个名次,有33A 6=种情况,此时有1863=⨯种名次排列情况;②丙不是最后一名,丙丁需要排在第二、三、四名,有23A 6=种情况,剩下的三人安排在其他三个名次,有33A 6=种情况,此时有6636⨯=种名次排列情况;则一共有361854+=种不同的名次情况,故选:B .7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.【答案】C【分析】先求出函数的定义域和奇偶性,排除BD ,再求出特殊点的函数值,得到答案.【详解】()πln sin ln cos 2x x x x f x x x⎛⎫⋅- ⎪⋅⎝⎭==定义域为()(),00,∞-+∞U ,且()()()ln cos ln cos x x x x f x f x x x-⋅-⋅-==-=--,所以函数()f x 是奇函数,图象关于原点中心对称,排除B 、D .又()ln 2cos 2202f ⋅=<,故A 错误.故选:C .8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α,则平面α与半球底面之间的几何体的体积是()A .3π24R B .3π24R C .3π12R D .3π12R 【答案】C 【分析】分别求得面α截圆锥时所得小圆锥的体积和平面α与圆柱下底面之间的部分的体积,结合祖暅原理可求得结果.【详解】 平面α截圆柱所得截面圆半径2r =,∴平面α截圆锥时所得小圆锥的体积2311ππ3212V r R R =⋅=,又平面α与圆柱下底面之间的部分的体积为232πV R R R =根据祖暅原理可知:平面α与半球底面之间的几何体体积33321πππ21212V V V R R R =-=-=.故选:C.9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<【答案】B【分析】用定义证明函数()f x 的奇偶性及在()0,1上的单调性,利用函数()f x 的奇偶性及单调性,对数函数ln y x =的性质及对数运算可得结果.【详解】因为函数()f x 的定义域为{}0x x ≠,又()()ln ln f x x x f x -=-==,所以()f x 为偶函数,当01x <<时,任取12x x >,()()12121221ln ln ln ln ln ln 0f x f x x x x x x x -=-=-=-<,即()()12f x f x <,所以()f x 在()0,1上为减函数,因为31ln2ln02>>>,所以()()()113ln ln2ln2ln2ln 22a f f f f f c-⎛⎫⎛⎫===-=<= ⎪ ⎪⎝⎭⎝⎭,即a c <,设3401,1x x <<<,则()4444ln ln ln f x x x x ===,()3333ln ln ln f x x x x ===-,若()()34f x f x =,则34ln ln x x -=,所以341x x =,因为2e ln 2ln212=->,所以22e 11ln e 22ln2ln 2b f f f ⎛⎫ ⎪⎛⎫⎛⎫=== ⎪ ⎪⎪-⎝⎭⎝⎭ ⎪ ⎪⎝⎭,又()21ln21ln202ln22ln2--=>--,即11ln202ln2>>>-,所以()1ln22ln2f f ⎛⎫< ⎪-⎝⎭,即b a <,故选:B.10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a=,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个【答案】B 【分析】由81a=,利用递推关系,分类讨论逆推出1a 的不同取值,进而可得答案.【详解】若81a =,又1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,根据上述运算法进行逆推,可得72a =,64a =,所以58a =或51a =;若58a =,则4316,32a a ==或35a =;当332a =时,2164,128a a ==或121a =;若35a =时,2110,20a a ==或13a =;当51a =,则4322,4,8a a a ===或21a =;当28a =时,116a =;当21a =时,12a =,故81a=时,1a 的所有可能的取值集合{}2,3,16,20,21,128M =即集合M 中含有6个元素.故选:B11.如图,已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为C 的离心率是()AB .32CD .3【答案】B【分析】根据斜率及双曲线的对称性得12BF F △为等边三角形,再根据同角间关系求解三角函数值,进而用正弦定理求出121410,33AF c AF c ==,由双曲线定义可得423c a =,从而得到离心率.【详解】由题意,直线1BF12π3BF F ∴∠=,又12BF BF =,所以12BF F △为等边三角形,故12122BF BF F F c ===,2112π2π,33BF F F F A ∠=∠=,在12AF F △中,21tan 0F F A ∠>,则21F F A ∠为锐角,则212111sin 14F F A F F A ∠=∠=,212πsin sin 3A F F A ⎛⎫=+∠= ⎪⎝⎭由正弦定理,12121221sin sin sin F F AF AF AF F AF F A==∠∠,=∴121410,33AF c AF c ==,由122AF AF a -=,得423c a =,32c e a ∴==.故答案选:B .12.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑【答案】D【分析】利用赋值法结合题目给定的条件可判断AC ,取()()2π2πsin,cos 33f x xg x x ==可判断B ,对于D ,通过观察选项可以推断()f x 很可能是周期函数,结合()()()(),f x g y g x f y 的特殊性及一些已经证明的结论,想到令1y =-和1y =时可构建出两个式子,两式相加即可得出()()()11f x f x f x ++-=-,进一步得出()f x 是周期函数,从而可求()20231n f n =∑的值.【详解】解:对于A ,令0x y ==,代入已知等式得()()()()()000000f f g g f =-=,得()00f =,故A错误;对于B ,取()()2π2πsin,cos 33f x xg x x ==,满足()()()()()f x y f x g y g x f y -=-及()()210f f -=≠,因为()3cos 2π10g ==≠,所以()g x 的图象不关于点()3,0对称,所以函数()21g x +的图象不关于点()1,0对称,故B 错误;对于C ,令0y =,1x =,代入已知等式得()()()()()11010f f g g f =-,可得()()()()110100f g g f ⎡⎤-=-=⎣⎦,结合()10f ≠得()100g -=,()01g =,再令0x =,代入已知等式得()()()()()00f y f g y g f y -=-,将()00f =,()01g =代入上式,得()()f y f y -=-,所以函数()f x 为奇函数.令1x =,1y =-,代入已知等式,得()()()()()21111f f g g f =---,因为()()11f f -=-,所以()()()()2111f f g g =-+⎡⎤⎣⎦,又因为()()()221f f f =--=-,所以()()()()1111f f g g -=-+⎡⎤⎣⎦,因为()10f ≠,所以()()111g g +-=-,故C 错误;对于D ,分别令1y =-和1y =,代入已知等式,得以下两个等式:()()()()()111f x f x g g x f +=---,()()()()()111f x f x g g x f -=-,两式相加易得()()()11f x f x f x ++-=-,所以有()()()21f x f x f x ++=-+,即:()()()12f x f x f x =-+-+,有:()()()()()()11120f x f x f x f x f x f x -+=++--+-+=,即:()()12f x f x -=+,所以()f x 为周期函数,且周期为3,因为()11f =,所以()21f -=,所以()()221f f =--=-,()()300f f ==,所以()()()1230f f f ++=,所以()()()()()()()2023111232023202311n f n f f f f f f ===++++===∑ ,故D 正确.故选:D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.【答案】3【分析】根据n S 求得n a ,再结合对勾函数的单调性,即可求得结果.【详解】因为2n S n n =+,则当2n ≥时,()()221112n n n a S S n n n n n -=-=+----=,又当1n =时,112a S ==,满足2n a n =,故2n a n =;则9n n S a +29191222n n n n n ++⎛⎫==++ ⎪⎝⎭,又9y x x=+在()1,3单调递减,在()3,+∞单调递增;故当3n =时,9n n+取得最小值,也即3n =时,9n n S a +取得最小值.故答案为:3.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.【答案】9542ω≤≤【分析】根据给定条件,利用辅助角公式化简函数()f x ,再利用正弦函数的性质求解即得.【详解】依题意,函数π()2sin(13f x x ω=+-,由()0f x =,得π1sin()32x ω+=,则ππ2π36x k ω+=+或π5π2π,Z 36x k k ω+=+∈,由[0,2π]x ∈,得πππ[,2π333x ωω+∈+,由()f x 在[0,2π]上恰有5个零点,得29ππ37π2π636ω≤+<,解得935412ω≤<,由3ππ22πx ω+≤-≤,得5ππ66x ωω-≤≤,即函数()f x 在5ππ[,66ωω-上单调递增,因此5ππ[,]ππ[,]41566ωω-⊆-,即45π6πω≤--,且π6π15ω≥,解得502ω<≤,所以正实数ω的取值范围为9542ω≤≤.故答案为:9542ω≤≤15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)【答案】15【分析】根据条件,两边求导得到12342345415(23)2345x a a x a x a x a x +=++++,再取=1x -,即可求出结果.【详解】因为52345012345(23)x a a x a x a x a x a x +=+++++,两边求导可得12342345415(23)2345x a a x a x a x a x +=++++,令=1x -,得到23454115(23)2345a a a a a -=-+-+,即12345234515a a a a a -+-+=,故答案为:15.16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数②(0,),()0x f x ∃∈+∞>③41(1)e f >④0x ∀>时,41()e xf x <【答案】②③【分析】根据构造函数的规律由令()()4e xg x f x =,再结合奇函数的性质可得①,求导分析单调性和极值可得②③④.【详解】令()()4e x g x f x =,则()()()()()4444e e e 4x x x g x f x f x f x f x '''=+=+⎡⎤⎣⎦,若()f x 是奇函数,则()()f x f x -=-,取0x =时,即()00f =,但(01f =),故①错误;因为4e 0,(0,)x x >∈+∞恒成立,且()4()0f x f x '+>,所以()0g x '>恒成立,()g x 在(0,)+∞上为单调递增函数,所以()()()()()44110e 101e g g f f f >⇒>⇒>,故②正确;由②可知,③正确;因为()g x 在(0,)+∞上为单调递增函数,所以当0x >时有()()()()0,001g x g g f >==,所以()()441e 1e x xf x f x >⇒>,故④错误;故答案为:②③三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC 的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.【答案】(1)35;(2)4.【详解】(1)由()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =-- 垂直,得0m n ⋅=,...............1分即sin (5sin 6sin )(5sin 5sin )(sin sin )0B B C A C C A -++-=,整理得2226sin sin sin sin sin 5B C A B C +-=,...............2分在ABC 中,由正弦定理得22265b c a bc +-=,...............3分由余弦定理得2223cos 25b c a A bc +-==,所以cos A 的大小为35................5分(2)由(1)知,在ABC 中,3cos 5A =,则4sin 5A ==,...............6分由22265b c a bc +-=,得22266482555a b c bc bc bc bc ==+-≥-=,即10bc ≤,...................................................................................................8分当且仅当b c =时取等号,...................................................................................................9分因此ABC 的面积12sin 425ABC S bc A bc ==≤ ,..........................................................11分所以ABC 的面积的最大值是4.....................................................12分18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k 2.706 3.841 6.63510.828【答案】(1)列联表见解析,有99%的把握认为在此社区内“关注流行语与性别有关”;(2)35【详解】(1)依题意,关注流行语居民人数为81410638+++=,不关注流行语居民人数为81422+=,...................................................................................................2分所以22⨯列联表如下:男女合计关注流行语30838不关注流行语101222合计4020602K 的观测值2260(3012108)7.03 6.63540203822K ⨯-⨯=≈>⨯⨯⨯,................................................................4分所以有99%的把握认为在此社区内“关注流行语与性别有关”...................5分(2)依题意,男居民选出406660⨯=(人),.......................................6分记为a b c d ,,,,女居民选出2人,记为,E F ,从6人中任选3人的样本空间{,,,,,,,,,,abc abd abE abF acd acE acF adE adF aEF Ω=,,,,,,,,,}bcd bcE bcF bdE bdF bEF cdE cdF cEF dEF ,共20个,.................................9分选出的3人为2男1女的事件{,,,,,,,,,,,}A abE abF acE acF adE adF bcE bcF bdE bdF cdE cdF =,共12个,...........11分所以选出的3人为2男1女的概率123()205P A ==......................................12分19.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.【答案】(1)证明见解析(2)存在;4AP =-【详解】(1)证明:如图,设,M N 分别为,EF AB 边的中点,连接,,MN DM CN ,..1分因为⊥AE 平面,,5,4,3ABC AE CD BF AE CD BF ===∥∥,所以42AE BFMN CD +===,//MN BF ,进而MN CD ∥,即四边形CNMD 为平行四边形,可得MD CN ∥,......................................3分在底面正三角形ABC 中,N 为AB 边的中点,则CN AB ⊥,......................................4分又⊥AE 平面ABC ,且CN ⊂平面ABC ,所以AE CN ⊥.由于⋂=AE AB A ,且AE AB ⊂、平面ABFE ,所以CN ⊥平面ABFE ......................5分因为,MD CN CN ⊥∥平面ABFE ,则MD ⊥平面ABFE ,又MD ⊂平面DEF ,则平面DEF ⊥平面AEFB .......................................6分(2)如图,以点A为坐标原点,建立空间直角坐标系,则()())0,0,5,0,2,4,E D F .设点()0,0,P t,则)()()1,1,0,2,1,0,2,4DF DE DP t =--=-=--..................8分设平面PDF 的法向量为()1111,,n x y z = ,平面EDF 的法向量为()2222,,n x y z =.由题意知110,0,n DF n DP ⎧⋅=⎪⎨⋅=⎪⎩即()111110,240,y z y t z --=-+-=⎪⎩令12z =,则114,y t x =-=14,2n t ⎫=-⎪⎭ ,......................................9分220,0,n DF n DE ⎧⋅=⎪⎨⋅=⎪⎩即222220,20,y z y z --=-+=⎪⎩取22z =,则)22n = ,...............................10分由121212π1cos ,cos 32n n n n n n ⋅===,28290t t +-=,解得:4t =±-,由于点P 为线段AE 上一点,故05t ≤≤,所以4t =-,......................................11分当4t =-时,二面角P DF E --所成角为锐角,即存在点P 满足,此时4AP =.......................................12分20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.【答案】(1)22143x y +=(2)(ⅰ)证明见解析;(ⅱ)4【详解】(1)点31,2P ⎛⎫⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴,则有()1,0F 设椭圆C 的焦距为()20c c >,则1c =,.......................................................................1分点31,2P ⎛⎫ ⎪⎝⎭代入椭圆方程,有()222219191441a b a a +=+=-,解得2a =,则222413b a c =-=-=,所以椭圆C 的方程为22143x y +=...................................................................................3分(2)(ⅰ)设直线l 的方程为y kx m =+,由22143y y k x x m =+⎧⎪⎨⎪+⎩=,消去y ,整理得()2223484120kxkmx m +++-=,因为l 交椭圆C 于,A B 两点,所以()22Δ48430k m =-+>,设()()1122,,,A x y B x y ,所以21212228412,3434km m x x x x k k -+=-=++, (5)分因为直线AF 和直线BF 关于PF 对称,所以()()()()12121212121212220111111AF BF kx x m k x x my y kx m kx m k k x x x x x x +-+-+++=+=+==------所以()()()21212224128222203434m kmkx x m k x x m k m k m k k --+-+-=⨯+-⨯-=++所以222282488860km k km k m mk m --+--=解得4m k =-................................................................................................................7分所以直线l 的方程为()44y kx k k x =-=-,所以直线l 过定点()4,0................................,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.......8分(ⅱ)设直线l 的方程为4x ny =+,由224143x ny x y =+⎧⎪⎨+=⎪⎩,消去x ,整理得()223424360n y ny +++=,因为l 交椭圆C 于,A B 两点,所以()()()222Δ241443414440n n n =-+=->,解得24n >,........................................................................................................9分1212222436,3434n y y y y n n +=-=++,所以12y y -=所以121331822ABFS y y =⨯-=⨯⨯ .............................10分令()24,0n t t -=>则18184ABC S ==≤,当且仅当163t =时取等号,所以ABF △面积的最大值为4......................................................................12分21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.【答案】(1)单调递增区间为:(0,1),单调递减区间为:(,0)-∞和(1,)+∞;极大值21(1)f e =,极小值(0)0f =;(2)(]0,2e 【详解】(1)当2a =时,()22=exx f x ()()2222222e e 22(1)=e e x x xxx x x x f x ⋅-⋅⋅--'=......................................2分令()=0f x ',解得0x =或1x =,......................................3分所以()()x f x f x '、、的关系如下表:x(,0)-∞0(0,1)1(1,)+∞()f x '-+-()f x 单调递减0单调递增21e 单调递减所以函数()f x 的单调递增区间为:(0,1),单调递减区间为:(,0)-∞和(1,)+∞;......................................4分极大值21(1)f e=,极小值(0)0f =;......................................5分(2)[]222()cos ln ()ln 4cos ln 2ln 4e eaa x xx x f x f x a x x a x x ⎛⎫-≥-⇔-≥- ⎪⎝⎭ln 2e 2(ln 2)cos(ln 2)0a x x a x x a x x -⇔----≥......................................6分令()e 2cos t g t t t =--,其中ln 2a x x t -=,设l (2)n a x x F x =-,0a >2()2a a x x xF x --='=令()0F x '>,解得:02ax <<,......................................8分所以函数()F x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增,在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减,max ()ln 22a a F x F a a ⎛⎫==- ⎪⎝⎭,且当0x +→时,()F x →-∞,所以函数()F x 的值域为,ln 2a a a ⎛⎤-∞- ⎥⎝⎦;......................................9分又()e 2sin t g t t '=-+,设()e 2sin t h t t =-+,,ln 2a t a a ⎛⎤∈-∞- ⎥⎝⎦,则()e cos t h t t '=+,当0t ≤时,e 1,sin 1t t ≤≤,且等号不同时成立,即()0g t '<恒成立;当0t >时,e 1,cos 1t t >≥-,即()0h t '>恒成立,所以()h t 在(0,)+∞上单调递增,又(0)1g '=-,(1)e 2sin10g '=-+>,所以存在0(0,1)t ∈,使得0()0g t '=,当00t t <<时,()0g t '<,当0t t >时,()0g t '>,所以函数()g t 在0(,)t -∞上单调递减,在0(,)t +∞上单调递增,且(0)0g =......................................11分当ln 02aa a -≤即02e a <≤时,()0g t ≥恒成立,符合题意;当ln02a a a ->即2e a >时,取10min ln ,2a t a a t ⎧⎫=-⎨⎬⎩⎭,必有1()0g t <,不符合题意.综上所述:a 的取值范围为(]0,2e ......................................12分(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.(10分)在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C 与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.【答案】(1)C 的普通方程为()2214x y -+=,l 直角坐标方程为30x y -+=.(2)存在,坐标为33,,4444⎛⎛--- ⎪ ⎪⎝⎭⎝⎭【详解】(1)由题设曲线C 的参数方程,消参得()2214x y -+=,............................2分由cos ,sin x y ρθρθ==,且)πsin sin cos 4ρθρθρθ⎛⎫-=-=⎪⎝⎭y =30x y -+=,......................................4分∴C 的普通方程为()2214x y -+=,l 直角坐标方程为30x y -+=...............................5分(2)当0y =时,()33,0x A =-⇒-,易知()12cos ,2sin B a a +,设(),M x y ,可得()()3,,2cos 1,2sin AM x y MB a x a y =+=-+-,......................................6分32cos 1cos 1,2sin sin x a x x a AM MB y a y y a +=-+=-⎧⎧=⇒⎨⎨=-=⎩⎩(a 是参数),消参得方程为()2211,x y ++=......................................8分且1,2,1,3E C C E C E r r r r r r ==-=+=,则圆心距离2,d ==得C E C E r r d r r -<<+,则两圆相交,故两圆存在公共点,联立方程组()()22221114x y x y ⎧++=⎪⎨-+=⎪⎩,解得34x y ⎧=-⎪⎪⎨⎪=⎪⎩或34x y ⎧=-⎪⎪⎨⎪=⎪⎩,故坐标为33,,44⎛⎛--- ⎝⎭⎝⎭......................10分选修4-5:不等式选讲23.(10分)已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.【答案】(1)113x x x ⎧⎫≤≥⎨⎬⎩⎭或(2)证明见解析【详解】(1)()2122f x x x x =-+-+,当0x <时,532x -+≥,解得0x <,......................................1分当102x ≤<时,332x -+≥,解得103x ≤≤,......................................2分当112x ≤<时,12x +≥,解得x ∈∅,......................................3分当1x ≥时,532x -≥,解得1x ≥,......................................4分综上所述,()2f x ≥的解集为13x x ⎧≤⎨⎩或}1≥x .......................................5分(3)由已知可得()5301330211<12531x x x x f x x x x x -+<⎧⎪⎪-+≤≤⎪=⎨⎪+≤⎪⎪->⎩,所以当12x =时,()f x 的最小值为32...............................................................................................6分1a b ∴+=,211,24a b a b ab +⎛⎫+=∴≤= ⎪⎝⎭,当且仅当12a b ==取等,......................................8分令t ab =,则104t <≤,211()212225224a b ab a b ab ab t a b ab ab ab t +-⎛⎫⎛⎫++=++=+-=+-≥ ⎪⎪⎝⎭⎝⎭,当且仅当14t =取等,此时12a b ==.......................................10分。

高考数学(理科)模拟考试卷(附参考答案与解析)

高考数学(理科)模拟考试卷(附参考答案与解析)

高考数学(理科)模拟考试卷(附参考答案与解析)一、单选题(本大题共12小题,共60.0分。

在每小题列出的选项中,选出符合题目的一项)1. 若复数z满足iz=4+3i,则复数z在复平面内对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 已知集合A={(x,y)|x2+y2=1}和B={(x,y)|y=x},则A∩B中元素的个数为( )A. 3B. 2C. 1D. 03. 已知向量a⃗,b⃗⃗满足|a⃗|=1,|b⃗⃗|=√ 3和|a⃗⃗−2b⃗⃗|=3,则a⃗⃗⋅(a⃗⃗+b⃗⃗)=( )A. −2B. −1C. 1D. 24. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如16=3+13.在不超过16的素数中,随机选取两个不同的数,其和等于16的概率是( )A. 15B. 215C. 115D. 255. 的展开式中x3y3的系数为40,则实数a的值为( )A. 4B. 2C. 1D. 126. 设椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1和F2,离心率为√ 22,P是C上一点,且F1P⊥F2P.若△PF1F2的面积为2,则a=( )A. 1B. 2C. √ 2D. 47. 在△ABC中cosC=23,AC=4和BC=3则cos A2=( )A. √ 306B. √ 33C. 13D. 568. 如图,四边形ABCD为正方形,ED⊥平面ABCD,FB//ED和AB=ED=2FB=2,则三棱锥F−ACE 的体积为( )A. 23B. 43C. 2D. √ 39. 在正方体AC1中,点M为平面ABB1A1内的一动点,d1是点M到平面ADD1A1的距离,d2是点M到直线BC的距离,且d1=λd2(λ>0)(λ为常数),则点M的轨迹不可能是( )A. 圆B. 椭圆C. 双曲线D. 抛物线10. 已知函数f(x)是定义在R上的奇函数,且f(x)的图象关于x=1对称.若f(1)=3,则f(2)+f(3)+⋯+f(50)=( )A. 3B. 2C. 0D. 5011. 设A,B,C,D是同一个半径为4的球的球面上四点,AB=AC=2√ 3和BC=6,则三棱锥D−ABC 体积的最大值为( )A. 3√ 3B. 6√ 3C. 12√ 3D. 18√ 312. 已知a∈R,设函数若关于x的不等式f(x)≥0在R上恒成立则a 的取值范围为( )A. [0,e2] B. [0,2] C. [0,1] D. [0,e]二、填空题(本大题共4小题,共20.0分)13. 已知等差数列{a n}前9项的和为27,且a10=8,则a15=______ .14.15. 在直线l:y=−2上取一点D作抛物线C:x2=4y的切线,切点分别为A,B,直线AB与圆E:x2+ y2−4x−2018=0交于M,N两点,当|MN|最小时,则D的横坐标是______ .16. 已知函数f(x)=sin(ωx+φ)(ω>0),下述四个结论:①若φ=π5,且f(x)在[0,2π]有且仅有5个零点,则f(x)在(0,2π)有且仅有3个极大值点;②若φ=π4,且f(x)在[0,2π]有且仅有4个零点,则f(x)在[0,2π]有且仅有2个极大值点; ③若φ=π5,且f(x)在[0,2π]有且仅有5个零点,则f(x)在(0,π10)上单调递增; ④若φ=π3,且f(x)在(0,π)有且仅有2个零点和3个极值点,则ω的范围是(136,83). 其中所有正确结论的编号是______ .三、解答题(本大题共7小题,共82.0分。

高考理科数学模拟试题含答案及解析5套).pptx

高考理科数学模拟试题含答案及解析5套).pptx

AF 4 15.抛物线 y2 4x 的焦点为 F ,过 F 的直线与抛物线交于 A , B 两点,且满足 BF ,
点 O 为原点,则 △AOF 的面积为

f x 2 3 sin xcosx 2cos2 x0
16.已知函数
22
2
的周期为
2π 3
,当
x
0,π3
时,函
数 g x f x m 恰有两个不同的零点,则实数m 的取值范围是
第Ⅰ卷(选择题 共 60 分)
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一
项是符合题目要求的.
1.已知a , b 都是实数,那么“ 2a 2b ”是“ a2 b2 ”的(

A.充分不必要条件 B.必要不充分条件 C.充要条件 条件
2.抛物线 x 2 py2 ( p 0) 的焦点坐标为( )
的距离相等,则
1 2
y1
y2
1 2
,即
y 1
y 2 1
.有
2x1 2x2 1 .由基本不等式 得: 2x1 2x2 ≥2 2x1 2x2 ,整理得 2x1x2 ≤ 1 ,解得
4
x1 x2 2 .(因为 x1 x2 ,等号取不到).故选 B.
10、【答案】C
学海无涯
【解析】如图所示,该四面体的四个顶点为长方体的四个顶点,设长、宽、高分
19、某高校在 2017 年自主招生考试成绩中随机抽取 100 名学生的笔试成绩,按成绩共分为
五组,得到如下的频率分布表:

号分
组频
数频

第一组 [145,155)
5
0.05
第二组 [155,165)

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案)高考理科数学模拟试卷(含答案)本试卷共分为选择题和非选择题两部分,第Ⅰ卷(选择题)在1至2页,第Ⅱ卷(非选择题)在3至4页,共4页,满分150分,考试时间为120分钟。

注意事项:1.答题前,请务必填写自己的姓名和考籍号。

2.答选择题时,请使用2B铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,请使用橡皮擦擦干净后再选涂其他答案标号。

3.答非选择题时,请使用0.5毫米黑色签字笔,在答题卡规定位置上书写答案。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,请只将答题卡交回。

第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={-1.0.1.2.3.4},B={y|y=x,x∈A},则A2B=A){0.1.2}B){0.1.4}C){-1.0.1.2}D){-1.0.1.4}2.已知复数z=1/(1+i),则|z|=A)2B)1C)2D)23.设函数f(x)为奇函数,当x>0时,f(x)=x-2,则f(f(1))=A)-1B)-2C)1D)24.已知单位向量e1,e2的夹角为π/2,则e1-2e2=A)3B)7C)3D)75.已知双曲线2x^2-y^2=1(a>0,b>0)的渐近线方程为y=±3x,则双曲线的离心率是A)10B)10/10C)10D)3/96.在等比数列{an}中,a1>0,则“a1<a4”是“a3<a5”的A)充分不必要条件B)必要不充分条件C)充要条件D)既不充分也不必要条件7.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是A)i≤6?B)i≤5?C)i≤4?D)i≤3?8.已知a、b为两条不同直线,α、β、γ为三个不同平面,则下列命题中正确的是①若α//β,α//γ,则β//γ;②若a//α,a//β,则α//β;③若α⊥γ,β⊥γ,则α⊥β;④若a⊥α,XXXα,则a//b。

高三数学理科模拟试题及答案

高三数学理科模拟试题及答案

一、选择题:10i 1.2-iA. -2+4iB.-2-4iC.2+4iD.2-4i10i(2+i) 2 4i.应选 A.解:原式(2-i)(2+i)2. 设会合Ax | x3 , Bx 1 B =x |,则AIx4A.B.3,4C.2,1D.4.解:Bx 1 x | ( x 1)( x 4) 0x |1 x 4.A IB (3,4) x |x 43. 已知ABC中,cot A12, 则 cosA5A.1255 12 13B.C.D.131313ABC中,cot A12 ( , ) .解:已知, A52.应选 B.1112 cos A131 tan2 A1 5 ) 2(12应选 D.x在点 1,1 处的切线方程为4. 曲线 y1 2xA. x y 20 B. x y 2 0 C. x 4 y 5 0 D. x 4 y 5 02x 1 2x[12 ]| x 11, 解:y |x 12 |x 1(2 x 1)(2 x 1)故切线方程为 y 1 ( x 1), 即 x y2 0应选 B.5. 已知正四棱柱 ABCD A 1 B 1C 1D 1 中, AA 1 2 AB ,E 为 AA 1 中点,则异面直线 BE 与 CD 1 所成的角的余弦值为A.10 B.1 C.310 D.3105105解:令AB 1则AA 12 ,连 A 1BQ C 1D ∥ A 1B 异面直线 BE 与 CD 1 所成的角即 A 1B与 BE 所成的角。

在A 1BE 中由余弦定理易得 cos A 1BE3 1010 。

应选 C6. 已知向量 a2,1 ,a b10,| a b | 5 2 ,则 |b |A.5B.10C. 5D. 25r r rr r rr r 解:Q 50 | a b |2 | a |22agb | b |2 5 20 | b |2 | b | 5 。

应选 C7. 设alog 3 , b log 2 3, c log 3 2 ,则A. a b cB. a c bC. b a cD. b c a解:Q log 32 log 2 2 log 23 b clog 2 3 log 2 2 log 3 3 log 3 a b a bc . 应选 A.8. 若 将 函 数ytanx的图像向右平移个单位长度后,与函数46y tan x6 的图像重合,则的最小值为A .1B.1 C.1D.16432向右平移 个单位解: ytanx6ytan[ ( x)] tanx464646k6 6k1( k Z) , 2又Q1min.应选 D29. 已 知直线 y k x2 k 0 与抛 物线 C : y 28x 相 交于A 、B 两点, F 为C 的焦点,若 | FA | 2 | FB |,则 kA.1 B.2 C.2 D.2 23333解 : 设 抛 物 线C : y 28x的 准 线 为 l : x 2 直 线y k x 2 k 0 恒过定点 P 2,0 . 如图过 A 、B 分 别作 AM l 于 M , 于 N ,由|FA| 2|FB|,则|AM | 2|BN|,点 B 为 AP 的中点. 连接OB ,则|OB| 1|AF|,2|OB| |BF|B1B(1,2 2)2 2 02 2 , 应选 D点 的横坐标为 故点 的坐标为 k,1 ( 2)310. 甲、乙两人从 4 门课程中各选修 2 门。

高考数学(理科)模拟试卷及答案3套

高考数学(理科)模拟试卷及答案3套

x2
x1
1
.
x2
选考题:请考生在第 22、 23 题中任选一题作答。如果多做,则按所做的第一题计分。 22. (选修 4-4 :坐标系与参数方程) (10 分)
在直角坐标系 xOy 中,曲线 C 的参数方程是
x 1 2 cos
( 为参数),以该直角坐标系的原点
y 2 sin
O 为极点, x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标方程为 3 sin
76516
70436
若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形
势一定是(

A.计算机行业好于化工行业
B .建筑行业好于物流行业
C.机械行业就业最困难
D.营销行业比贸易行业就业困难
9. 右图是某三棱锥的三视图,其中网格纸上小正方形的边长为
1,则该三棱锥的体积
60o ?若存在,求出
CP
的值;若不存在,请说明理由
.
CB
21. ( 12 分)已知函数 f ( x) 1 ax2 x 2a2 ln x (a 0) . 2
( 1)讨论 f ( x) 的单调性;
( 2)当 a
1
时,设 f (x) 的两个极值点为
3
x1 , x2 ,证明 :
f ( x1 ) x1
f ( x2 ) < 1
uuur uuur 2ED ,则 AE BE

) A. 4
9
2
B

9
2 C .9
D .4 9
6. 数列 an 满足 an 1
2n 2 an
N
, a1
3 ,则 a2019

高三数学(理科)模拟试卷及答案3套

高三数学(理科)模拟试卷及答案3套

高三数学(理科)模拟试卷及答案3套模拟试卷一时间:120分钟 分值:150分―、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数312z i=-(i 是虚数单位),则复数z 的共轭复数z =( ) A.3655i + B. 3655i - C. 1255i - D. 1255i +2.(错题再现)下列命题正确的是( )A .123x x +--≥B .若a 与b 共线,b 与c 共线,则a 与c 共线C .若|a +b |=|a -b |,则a ·b =0D .2213x x ++-≤3.函数()=sin 3f x x πω⎛⎫- ⎪⎝⎭在区间[]0,2π上至少存在5个不同的零点,则正整数ω的最小值为()A. 3B.2C. 4D. 54.从分别写有A 、B 、C 、D 、E 的5张卡片中任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率是( ) A.25B.15C. 103D. 355.执行如图所示的程序框图,则输出S 的值为( )A. 213log 32+ B. 2log 3C. 2D. 36.若x ,y 满足不等式组1010330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则232z x y =-+的最小值为( )A. -5B. -4C. -3D. -27.已知函数22,1()log ,1a x ax x f x x x ⎧-+-≤=⎨>⎩在R 上单调递增,则实数a 的取值范围是( )A. 13a <≤B. 2a ≥C. 23a ≤≤D. 02a <≤或3a ≥8.设P ,Q 分别为22(6)2x y +-=和椭圆22110x y +=上的点,则P ,Q 两点间的最大距离是( ) A. 52B. 246+C. 27+D. 269.已知() f x 为定义在R 上的奇函数, ()()g x f x x =-,且当(],0x ∈-∞时, ()g x 单调递增,则不等式()()2123f x f x x --+≥-的解集为( )A. ()3,+∞B. [)3,+∞C. (,3]-∞D. (,3)-∞ 10.已知球O 的半径为4,矩形ABCD 的顶点都在球O 的球面上,球心O 到平面ABCD 的距离为2,则此矩形的最大面积为() A. 12 B. 18 C. 24 D. 30 11.已知正数,a b 满足221a b ab +=+,则()312a b -+的最大值为()A. 22B. 2C. 2D. 112.设n S 是数列{}n a 的前n 项和,且11a =,11n n n a S S ++=-,则使22110n nnS S +取得最大值时n 的值为( ) A. 2 B. 5 C. 4 D. 3二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡相应位置上。

高考数学理科模拟试题(附答案)

高考数学理科模拟试题(附答案)

高三年级第一次模拟考试数 学 试 题(理)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟。

第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,将答案涂在答题卡上.........。

1.复数23()1i i +-= ( )A .-3-4iB .-3+4iC .3-4iD .3+4i2.已知条件:|1|2,:,p x q x a +>>⌝⌝条件且p 是q 的充分不必要条件,则实数a 的取值范围是( ) A .1a ≥ B .1a ≤ C .1a ≥- D .3a ≤-3.函数()|2|ln f x x x =--在定义域内零点可能落在下列哪个区间内( )A .(0,1)B .(2,3)C .(3,4)D .(4,5) 4.如右图,是一程序框图,则输出结果为( )A .49B .511 C .712 D .613 5.已知n S 为等差数列{}n a 的前n 项和,若641241,4,S S S S S ==则 的值为( )A .94B .32C .54D .46.要得到函数()sin(2)3f x x π=+的导函数'()f x 的图象,只需将()f x 的图象( )A .向左平移2π个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)B .向左平移2π个单位,再把各点的纵坐标缩短到原来的12倍(横坐标不变)C .向右平移4π个单位,再把各点的纵坐标伸长到原来的12倍(横坐标不变)D .向右平移4π个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变) 7.过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 引它的渐近线的垂线,垂足为M ,延长FM 交y 轴于E ,若|FM|=2|ME|,则该双曲线的离心率为( )A .3B .2C .3D .28.如图所示的每个开关都有闭合与不闭合两种可能,因此5个开关共有25种可能,在这25种可能中电路从P 到Q 接通的情况有( )A .30种B .10种C .24种D .16种第Ⅱ卷(非选择题,共110分)二、填空题:本大题共6小题,每小题5分,共30分,将答案填写在答题纸上。

高三数学(理科)模拟试卷及答案3套

高三数学(理科)模拟试卷及答案3套

高三数学(理科)模拟试卷3套模拟试卷一第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、已知集合,则中元素的个数为A .9B .8C .5D .4 2、已知复数满足:i i z +=-1)1(2(i 为虚数单位),则z为( )A .21B .22C .2D .13、下列叙述中正确的是( )A .若a ,b ,c ∈R ,且a >c ,则“ab 2>cb 2”B .命题“对任意x ∈R,有x 2≥0”的否定是“存在x ∈R,有x 2≤0” C .“φ=π2”是“y =sin(2x +φ)为偶函数”的充要条件 D .l 是一条直线,α,β是两个不同的平面,若l ⊥α,l ⊥β,则α∥β4、已知函数()()()210cos 0x x f x x x ⎧+>⎪=⎨≤⎪⎩,则下列结论正确的是() A .()f x 是偶函数 B .()f x 在(),-∞+∞上是增函数 C .()f x 是周期函数 D .()f x 的值域为[1,)-+∞ 5、能够把圆:的周长和面积同时分为相等的两部分的函数称为圆的“等分函数”,下列函数不是圆的“等分函数”的是 A .f (x )=3x B .C .D .6、如果双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与直线3x -y +3=0平行,则双曲线的离心率为 A .3B .2C . 3D . 27、已知函数f (x )=23sin(π-x )·cos x +2cos 2x -1,其中x ∈R,则下列结论中正确的是A .f (x )是最小正周期为π的奇函数;B .f (x )的一条对称轴是x =π2C .f (x )在⎣⎡⎦⎤-π3,π6上单调递增D .将函数y =2sin 2x 的图象左移π6个单位得到函数f (x )的图象 8、已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax +by (a >0,b >0)在该约束条件下取到最小值25时,a 2+b 2的最小值为A .4B .3C . 5D .29、在正方体ABCD –A 1B 1C 1D 1中,点O 是四边形ABCD 的中心,关于直线A 1O ,下列说法正确的是A .A 1O ∥D 1CB .A 1O ⊥BCC .A 1O ∥平面B 1CD 1D .A 1O ⊥平面AB 1D 110、2016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议通过,正式开始实施.如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行.若用2c 1和2c 2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a 1和2a 2分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子: ①a 1+c 1=a 2+c 2; ②a 1-c 1=a 2-c 2; ③c 1a 2>a 1c 2. ④c 1a 1<c 2a 2其中正确式子的序号是 A .①③B .②③C .①④D .②④11、已知直三棱柱的6个顶点都在球的球面上,若,,则球的半径为A .B .C .D .12、设 ()ln f x x =,若函数 ()()g x f x ax =-在区间(0,4)上有三个零点,则实数a 的取值范围是A .10,e ⎛⎫ ⎪⎝⎭B .ln 2,2e ⎛⎫⎪⎝⎭ C .ln 20,2⎛⎫ ⎪⎝⎭ D .ln 21,2e ⎛⎫⎪⎝⎭二、填空题:本大题共4小题,每小题5分共20分.13、已知函数f (x )=log a (x -2)+4(a >0且a ≠1),其图象过定点P ,角α的始边与x 轴的正半轴重合,顶点与坐标原点重合,终边过点P ,则sin α+2cos αsin α-cos α=________. 14、等差数列{}n a 中,3a ,7a 是函数f (x )=x 2﹣4x+3的两个零点,则{}n a 的前9项和等于 .15、已知向量a =(x ,-1),b =(y ,x 2+4)且a ⊥b ,,则实数y 的取值范围是 .16、已知椭圆192522=+y x 的左、右焦点分别为F 1、F 2,过F 1且垂直于长轴的直线交椭圆于A ,B 两点,则△ABF 2内切圆的半径为 .三、解答题:共70分,解答时应写出必要的文字说明、演算步骤.17、(本题满分12分)已知锐角ABC ∆中,内角A B C 、、的对边分别为a b c 、、,且2cos cos a b Bc C-=. (1)求角C 的大小;(2)求函数sin sin y A B =+的值域.18.(本小题满分12分)已知正项等比数列{}n a 的前n 项和为n S ,且532a =, 6347S S a -=, (1)求数列{}n a 的通项公式; (2)求数列{}n na 的前n 项和n T .19.(本小题满分12分)如图1,在直角梯形CD AB 中,D//C A B ,D 2π∠BA =,C 1AB =B =,D 2A =,E 是D A 的中点,O 是C A 与BE 的交点.将∆ABE 沿BE折起到1∆A BE 的位置,如图2. (1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.20、(本小题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为21,短轴的一个端点到右焦点的距离为2. (1)求椭圆C 的方程;(2)过点()01G ,作直线l 与曲线C 交于A 、B 两点,点A 关于原点O 的对称点为D ,求ABD △ 的面积S 的最大值.21.(本小题满分12分)已知函数()1ln ()f x ax x a R =--∈.(1)讨论函数()f x 的极值点的个数;(2)若函数()f x 在1x =处取得极值,()(0,),2x f x bx ∀∈+∞≥-恒成立,求实数b 的最大值.22、(本小题满分10分)已知曲线C 的极坐标方程为θθρ222sin 4cos 312+=,直线l 的参数方程为 为参数)(42222-1⎪⎪⎩⎪⎪⎨⎧+=+=t t y t x (1)求曲线C 的直角坐标方程和直线l 的普通方程; (2)求曲线C 上的点M 到直线l 的最大距离。

高考模拟卷理科数学试卷

高考模拟卷理科数学试卷

一、选择题(本大题共10小题,每小题5分,共50分)1. 若复数z满足|z+2i|=3,则复数z的实部a的取值范围是()A. -5≤a≤1B. -3≤a≤3C. -1≤a≤5D. -3≤a≤12. 已知函数f(x)=ax^2+bx+c,若a>0,且f(-1)=2,f(1)=-2,则f(0)的值为()A. 0B. 2C. -2D. 不存在3. 在三角形ABC中,AB=AC,∠BAC=60°,若BC=4,则三角形ABC的面积S为()A. 4√3B. 8√3C. 6√3D. 12√34. 下列各数中,属于有理数的是()A. √2B. πC. √-1D. 0.1010010001…5. 已知数列{an}的通项公式为an=2n+1,则数列{an}的前10项和S10为()A. 110C. 130D. 1406. 若向量a=(1,2),向量b=(2,-1),则向量a·b的值为()A. 5B. -3C. 3D. -57. 函数f(x)=x^3-3x+2在区间[0,2]上的零点个数为()A. 1B. 2C. 3D. 48. 若函数y=2^x与函数y=log2x的图像关于直线y=x对称,则该直线上的任意一点P的坐标为()A. (1,1)B. (2,2)C. (3,3)D. (4,4)9. 已知等差数列{an}的首项为a1,公差为d,若a1=3,d=-2,则数列{an}的第10项an为()A. -13B. -15C. -1710. 在△ABC中,AB=AC,∠BAC=60°,若BC=6,则△ABC的外接圆半径R为()A. 2√3B. 3√3C. 4√3D. 5√3二、填空题(本大题共5小题,每小题10分,共50分)11. 已知复数z=3+4i,求|z|^2的值。

12. 若函数f(x)=x^2-4x+3在区间[1,3]上的最大值为5,则该函数的对称轴方程为______。

13. 在△ABC中,AB=AC,∠BAC=45°,若BC=8,则△ABC的周长为______。

高考理科数学模拟试题

高考理科数学模拟试题

高考理科数学模拟试题一、选择题(本题共8小题,每小题5分,共40分。

每小题只有一个选项符合题意)1. 若函数f(x) = 2x^2 - 3x + 1的图像关于x = 1对称,则下列哪个函数与f(x)的图像也关于x = 1对称?A. g(x) = 2(x-1)^2 - 3(x-1) + 1B. h(x) = 2x^2 + 3x + 1C. i(x) = -2x^2 + 3x - 1D. j(x) = 2x^2 - 3x - 12. 已知向量a = (3, -1),向量b = (-1, 2),则向量a与向量b的数量积为:A. -8B. 2C. -2D. 83. 若方程x^2 + 2x - 3 = 0的两个根为x1和x2,则x1 + x2的值为:A. 1B. -3C. -2D. 34. 函数y = ln(x)的导数为:A. 1/xB. xC. ln(x)D. 15. 已知双曲线C的方程为x^2/a^2 - y^2/b^2 = 1,其中a > 0,b > 0,若双曲线C的渐近线方程为y = ±(1/2)x,则a与b的关系为:A. a = 2bB. a = b/2C. b = 2aD. b = a/26. 一个几何体的三视图分别为正方形、等腰直角三角形和半圆,该几何体为:A. 球体B. 圆柱体C. 圆锥体D. 长方体7. 已知数列{an}的通项公式为an = 2n - 1,求该数列的前n项和Sn:A. n^2B. n^2 - nC. n^2 + nD. 2n^2 - n8. 函数y = sin(2x)的周期为:A. πB. 2πC. π/2D. 4π二、填空题(本题共4小题,每小题5分,共20分)9. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x) = ______。

10. 已知等差数列{an}的首项a1 = 2,公差d = 3,求该数列的第10项a10 = ______。

高三数学理科高考模拟试卷

高三数学理科高考模拟试卷

一、选择题(本大题共10小题,每小题5分,共50分)1. 若函数f(x) = ax² + bx + c(a≠0)的图像与x轴有两个不同的交点,则下列结论正确的是()A. a > 0,b² - 4ac > 0B. a < 0,b² - 4ac > 0C. a > 0,b² - 4ac < 0D. a < 0,b² - 4ac < 02. 已知复数z = 1 + bi(b∈R),且|z - 3i| = 5,则b的取值范围是()A. (-4, 4)B. (-5, 5)C. (-∞, -5) ∪ (5, +∞)D. (-∞, -4] ∪ [4, +∞)3. 在△ABC中,已知a=3,b=4,cosA=1/2,则sinB的值为()A. 3√3/8B. 3√3/4C. √3/2D. √3/84. 已知数列{an}满足a₁ = 1,an = an-1 + 2n(n≥2),则数列{an}的通项公式为()A. an = n² - n + 1B. an = n² - nC. an = n² + nD. an = n²5. 设函数f(x) = x³ - 3x² + 2,则f(x)的对称中心为()B. (0, 0)C. (1, -1)D. (0, -1)6. 已知向量a = (2, -1),b = (-1, 2),则向量a与b的夹角θ的余弦值为()A. 1/√2B. -1/√2C. 1D. -17. 若等差数列{an}的首项为a₁,公差为d,则第10项a₁₀的表达式为()A. a₁₀ = a₁ + 9dB. a₁₀ = a₁ + 10dC. a₁₀ = a₁ + 11dD. a₁₀ = a₁ + 12d8. 已知函数f(x) = log₂(x - 1),则f(x)的定义域为()A. (1, +∞)B. (2, +∞)C. (1, 2)D. (2, 3)9. 若不等式2x - 3 > x + 1的解集为A,则不等式x - 2 > -3的解集为()A. AB. A的补集C. A的子集10. 已知函数f(x) = |x - 1| + |x + 2|,则f(x)的最小值为()A. 1B. 2C. 3D. 4二、填空题(本大题共5小题,每小题5分,共25分)11. 已知复数z = 3 + 4i,则|z - 2i|的值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试求实数 的取值范围.
请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.
22.【选修4-4:坐标系与参数方程】在直角坐标系 中,曲线 的参数方程为 ( 为参数),直线 的方程为 ,以 为极点,以 轴正半轴为极轴,建立极坐标系,
(1)求曲线 和直线 的极坐标方程;
(2)若直线 与曲线 交于 两点,求 .
∵ ,∴ ,
∴过点 的切线方程为: ,即 .
(2)∵ 的定义域为: .
令 . 又∵函数 有两个极值点 ,
∴ 有两个不等实数根 ,
∴ ,且 ,从而 .
由不等式 恒成立 恒成立,
∵ ,
令 ,∴ ,当 时恒成立,
∴函数 在 上单调递减,∴ ,
故实数 的取值范围是: .
22.(1)曲线 的普通方程为 ,
则 的极坐标方程为 ,
18.证明:(Ⅰ)以 为坐标原点 长为单位长度,如图,建立空间直角坐标系,则各点为 , , , , , ,则 , ,故 ,所以 ,由题设知 ,且 与 是平面 内的两条相交直线,由此得 ,又 在平面 内,故平面 。
(Ⅱ)在 上取一点 ,则存在 ,使 ,连接 , , ,所以 , , 。要使 ,只要 ,即 ,解得 。可知当 时, 点坐标为 ,能使 ,此时, , ,所以 。由 , , ,所以 ,故所求二面角的余弦值为 。
体积为( )
A. B.
C. D.
7.已知函数 在 上单调递减,则a的取值范围是( )
A. B.
C. D.
8.执行如图所示的程序框图,若输出的结果为 ,则输入的正整数的
可能取值的集合是( )
B.
D.
9. 上的偶函数 满足 ,当 时, ,则
的零点个数为()
A. 4B. 8C. 5D. 10
10.如图,已知抛物线 的焦点为 ,直线 过 且依次交
抛物线及圆 于点 四点,则
的最小值为( )
A. B. C. D.
11.已知函数 在区间 上是增函数,
且在区间 上恰好取得一次最大值,则 的取值范围是( )
A. B. C. D.
12.已知数列 中, =1,且对任意的 ,都有 则 ()
A. B.
C.2D.
第II卷(非选择题)
二、填空题:本大题共4小题,每小题5分,满分20分.
高三上期第二次周练
数学(理科)
第Ⅰ卷(选择题,共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,
只有一项是符合题目要求的.
1.设集合 , ,则
A. B. C. D.
2.已知 是虚数单位,复数 满足 ,则 的虚部是( )
A. B. C. D.1
3.在等比数列 中, , ,
(Ⅱ)求二面角 的余弦值。
1Hale Waihona Puke .从某市的高一学生中随机抽取400名同学的体重进行统计,得到如图所示频率分布直方图.
(Ⅰ)估计从该市高一学生中随机抽取一人,体重超过 的概率;
(Ⅱ)假设该市高一学生的体重 服从正态分布 .
(ⅰ)估计该高一某个学生体重介于 之间的概率;
(ⅱ)从该市高一学生中随机抽取3人,记体重介于 之间的人数为 ,利用(ⅰ)的结论,
求 的分布列及 .
20.已知右焦点为 的椭圆 与直线 相交于 、 两点,
且 .(1)求椭圆 的方程;
(2) 为坐标原点, , , 是椭圆 上不同的三点,并且 为 的重心,
试探究 的面积是否为定值,若是,求出这个定值;若不是,说明理由.
21. 已知函数 .
(1)当 时,试求函数图像过点 的切线方程;
(2)若函数 有两个极值点 ,且不等式 恒成立,
23.【不等式选讲】已知 , .
(1)解不等式 ;
(2)若不等式 恒成立,求实数 的取值范围.
参考答案
1.B2.D3.C4.B5.C6.A,7.A8.A9.C10.C11.D12.D
13. 或 14. 15. 16.
17.(1) ,

的最大值为 ,此时

(2) , ,
由 得
又 ,故 ,即周长 的范围为 .
则数列 的前9项的和 ( )
A.255B.256C.511D.512
4.如图所示的阴影部分是由 轴,直线 以及曲线 围成,
现向矩形区域 内随机投掷一点,则该点落在阴影区域的概率是( )
A. B.
C. D.
5.在 的展开式中,含 的项的系数是( )
A.10B.20
C.30D.60
6.已知一个简单几何体的三视图如右图所示,则该几何体的
19.(Ⅰ)这400名学生中,体重超过 的频率为 ,
由此估计从该市高一学生中随机抽取一人,体重超过 的概率为 .
(Ⅱ)(ⅰ)∵ , ,∴ ,
∴ ,∴ .
(ⅱ)因为该市高一学生总体很大,所以从该市高一学生中随机抽取3人,可以视为独立重复实验,
其中体重介于 之间的人数 , , .
所以 的分布列为
.
20.(1)设 , ,则 ,
三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.已知向量 .
(1)求 的最大值及 取最大值时 的取值集合 ;
(2)在△ 中, 是角 的对边,若 且 ,求△ 的周长的取值范围.
18.如图,已知四棱锥 的底面为直角梯形, , , ,且 , , 是 的中点。
(Ⅰ)求证: ;
由于直线 过原点,且倾斜角为 ,故其极坐标为 (或 )
(2)由 得: ,故 , ,
∴ .
23(1) 解集为 或 ;(2) .
(1)当 时, 解得 .
当 时, 无解,当 时, 解得 .
∴ 的解集为 或 .
(2)由已知 恒成立.∴ 恒成立.
又 .∴ ,解得 .
∴ 时,不等式 恒成立
13.已知平面向量 ,且 ,则 __________.
14.若变量 满足 ,且 恒成立,则 的最大值为______________.
15.若双曲线 上存在一点 满足以 为边长的正方形的面积等于
(其中 为坐标原点),则双曲线的离心率的取值范围是__________.
16.若曲线 与曲线 存在公共切线,则 的取值范围为__________.
∴ ,即 ①,∵ ,∴ ,即 ②,
∴由①②得 ,又 , ,∴椭圆 的方程为 .
(2)设直线 方程为: ,
由 得 ,∴ ,
∵ 为重心,∴ ,
∵ 点在椭圆 上,故有 ,可得 ,
而 ,
点 到直线 的距离 ( 是原点到 距离的3倍得到),
∴ ,
当直线 斜率不存在时, , , ,∴ 的面积为定值 .
21.【解析】(1)当 时,有 .
相关文档
最新文档