湖北省2013届高三最新理科数学(精选试题16套+2008-2012五年湖北高考理科试题)分类汇编16:坐标系参数方程

合集下载

2013年湖北省高考数学试卷(理科)答案及解析

2013年湖北省高考数学试卷(理科)答案及解析

2013年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•湖北)在复平面内,复数(i为虚数单位)的共轭复数对应的点位于()A .第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2013•湖北)已知全集为R,集合,则A∩∁R B=()A .{x|x≤0}B.{x|2≤x≤4}C.{x|0≤x<2或x>4}D.{x|0<x≤2或x≥4}3.(5分)(2013•湖北)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A .(¬p)∨(¬q)B.p∨(¬q)C.(¬p )∧(¬q)D.p∨q4.(5分)(2013•湖北)将函数的图象向左平移m(m >0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A .B.C.D.5.(5分)(2013•湖北)已知,则双曲线的()A .实轴长相等B.虚轴长相等C.焦距相等D.离心率相等6.(5分)(2013•湖北)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D (3,4),则向量在方向上的投影为()A B C D7.(5分)(2013•湖北)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度的单位:s,v的单位:m/s)行驶至停止,在此期间汽车继续行驶的距离(单位:m)是()A .1+25ln5B.8+25ln C.4+25ln5D.4+50ln28.(5分)(2013•湖北)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有()A .V1<V2<V4<V3B.V1<V3<V2<V4C.V2<V1<V3<V4D.V2<V3<V1<V49.(5分)(2013•湖北)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X的均值E(X)=()A .B.C.D.10.(5分)(2013•湖北)已知a为常数,函数f(x)=x(lnx ﹣ax)有两个极值点x1,x2(x1<x2)()A B C D二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)11.(5分)(2013•湖北)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示:(Ⅰ)直方图中x的值为_________;(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为_________.12.(5分)(2013•湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果i=_________.13.(5分)(2013•湖北)设x,y,z∈R,且满足:,则x+y+z=_________.14.(5分)(2013•湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n 个数的表达式:三角形数,正方形数N(n,4)=n2,五边形数,六边形数N(n,6)=2n2﹣n,…可以推测N(n,k)的表达式,由此计算N(10,24)=_________.15.(5分)(2013•湖北)(选修4﹣1:几何证明选讲)如图,圆O上一点C在直径AB上的射影为D,点D在半径OC上的射影为E.若AB=3AD,则的值为_________.16.(2013•湖北)(选修4﹣4:坐标系与参数方程)在直角坐标系xOy中,椭圆C的参数方程为为参数,a>b>0).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为为非零常数)与ρ=b.若直线l经过椭圆C的焦点,且与圆O相切,则椭圆C的离心率为_________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2013•湖北)在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.(Ⅰ)求角A的大小;(Ⅱ)若△ABC的面积,求sinBsinC的值.18.(12分)(2013•湖北)已知等比数列{a n}满足:|a2﹣a3|=10,a1a2a3=125.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在正整数m,使得?若存在,求m的最小值;若不存在,说明理由.19.(12分)(2013•湖北)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F 分别是PA,PC的中点.(Ⅰ)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;(Ⅱ)设(Ⅰ)中的直线l与圆O的另一个交点为D,且点Q满足.记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E﹣l﹣C的大小为β.求证:sinθ=sinαsinβ.20.(12分)(2013•湖北)假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0.(Ⅰ)求p0的值;(参考数据:若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)(Ⅱ)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?21.(13分)(2013•湖北)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN的面积分别为S1和S2.(Ⅰ)当直线l与y轴重合时,若S1=λS2,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.22.(14分)(2013•湖北)设n是正整数,r为正有理数.(Ⅰ)求函数f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;(Ⅱ)证明:;(Ⅲ)设x∈R,记[x]为不小于x的最小整数,例如.令的值.(参考数据:.2013年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)考点:复数的代数表示法及其几何意义.专题:计算题.分析:将复数z=的分母实数化,求得z=1+i,即可求得,从而可知答案.解答:解:∵z====1+i,∴=1﹣i.∴对应的点(1,﹣1)位于第四象限,故选D.点评:本题考查复数的代数表示法及其几何意义,将复数z=的分母实数化是关键,属于基础题.2.(5分)考点:其他不等式的解法;交、并、补集的混合运算.专题:计算题;不等式的解法及应用.分析:利用指数函数的性质可求得集合A,通过解一元二次不等式可求得集合B,从而可求得A∩C R B.解答:解:∵≤1=,∴x≥0,∴A={x|x≥0};又x2﹣6x+8≤0⇔(x﹣2)(x﹣4)≤0,∴2≤x≤4.∴B={x|2≤x≤4},∴∁R B={x|x<2或x>4},∴A∩∁R B={x|0≤x<2或x>4},故选C.点评:本题考查指数函数的性质与元二次不等式,考查交、并、补集的混合运算,属于中档题.3.(5分)考点:复合命题的真假.专题:阅读型.分析:由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.解答:解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).故选A.点评:本题考查了复合命题的真假,解答的关键是熟记复合命题的真值表,是基础题.4.(5分)考点:两角和与差的正弦函数;函数y=Asin(ωx+φ)的图象变换.专三角函数的图像与性质.分析:函数解析式提取2变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用平移规律得到平移后的解析式,根据所得的图象关于y轴对称,即可求出m的最小值.解答:解:y=cosx+sinx=2(cosx+sinx)=2sin (x+),∴图象向左平移m(m >0)个单位长度得到y=2sin[(x+m)+]=2sin(x+m+),∵所得的图象关于y轴对称,∴m+=kπ+(k∈Z),则m的最小值为.故选B点评:此题考查了两角和与差的正弦函数公式,以及函数y=Asin(ωx+φ)的图象变换,熟练掌握公式是解本题的关键.5.(5分)考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据双曲线的标准方程求出双曲线的几何性质同,即可得出正确答案.解答:解:双曲线的实轴长为2cosθ,虚轴长2sinθ,焦距2,离心率,双曲线的实轴长为2sinθ,虚轴长2sinθtanθ,焦距2tanθ,离心率,故它们的离心率相同.故选D.点评:本题主要考查了双曲线的标准方程、双曲线的简单性质等,属于基础题.6.(5分)考平面向量数量积的含义与物理意义.专题:平面向量及应用.分析:先求出向量、,根据投影定义即可求得答案.解答:解:,,则向量方向上的投影为:•cos<>=•===,故选A.点评:本题考查平面向量数量积的含义与物理意义,考查向量投影定义,属基础题,正确理解相关概念是解决问题的关键.7.(5分)考点:定积分.专题:导数的综合应用.分析:令v(t)=0,解得t=4,则所求的距离S=,解出即可.解答:解:令v(t)=7﹣3t+,化为3t2﹣4t ﹣32=0,又t>0,解得t=4.∴由刹车行驶至停止,在此期间汽车继续行驶的距离s===4+25ln5.故选C.点评:熟练掌握导数的运算法则和定积分的几何意义是解题的关键.8.(5分)考点:由三视图求面积、体积.专题:计算题.分析:利用三视图与已知条件判断组合体的形状,分别求出几何体的体积,即可判断出正确选项.解答:解:由题意以及三视图可知,该几何体从上到下由:圆台、圆柱、正四棱柱、正四棱台组成,体积分别记λ为V1==.V2=12×π×2=2π,V3=2×2×2=8V4==;∵,∴V2<V1<V3<V4故选C.点评:本题考查简单组合体的三视图与几何体的体积的求法,正确判断几何体的形状与准确利用公式求解体积是解题的关键.9.(5分)考点:离散型随机变量的期望与方差.专题:压轴题;概率与统计.分析:由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,④由以上可知:还剩下125﹣(8=36+54)=27个内部的小正方体的6个面都没有涂油漆,根据上面的分析即可得出其概率及X的分布列,利用数学期望的计算公式即可得出.解答:解:由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,∴P(X=3)=;②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,∴P (X=2)=;③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,∴P(X=1)=.④由以上可知:还剩下125﹣(8+36+54)=27个内部的小正方体的6个面都没有涂油漆,∴P(X=0)=.X0123P故X的分布列为因此E(X)==.故选B.点评:正确找出所涂油漆的面数的正方体的个数及古典概型的概率计算公式、分布列与数学期望是解题的关键.10.(5分)考点:利用导数研究函数的极值;函数在某点取得极值的条件.专题:压轴题;导数的综合应用.分析:先求出f′(x),令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1,x2⇔函数g(x)=lnx+1﹣2ax有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0.利用导数与函数极值的关系即可得出.解答:解:∵=lnx+1﹣2ax,(x>0)令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1,x2⇔函数g(x)=lnx+1﹣2ax有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0..①当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,应舍去.②当a>0时,令g′(x)=0,解得x=,∵x,g′(x)>0,函数g(x )单调递增;时,g′(x )<0,函数g(x )单调递减.∴x=是函数g(x)的极大值点,则>0,即>0,∴ln(2a)<0,∴0<2a<1,即.∵,f′(x1)=lnx1+1﹣2ax1=0,f′(x2)=lnx2+1﹣2ax2=0.且f(x1)=x1(lnx1﹣ax1)=x1(2ax1﹣1﹣ax 1)=x 1(ax1﹣1)=﹣<0,f(x2)=x2(lnx2﹣ax2)=x2(ax 2﹣1)>=﹣.().故选D.点评:熟练掌握利用导数研究函数极值的方法是解题的关键.二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)11.(5分)考点:频率分布直方图.专题:图表型.分析:(I)根据频率分布直方图中,各组的频率之和为1,我们易得到一个关于x的方程,解方程即可得到答案.(II)由已知中的频率分布直方图,利用[100,250)之间各小组的纵坐标(矩形的高)乘以组距得到[100,250)的频率,利用频率乘以样本容量即可求出频数.解答:解:(Ⅰ)依题意及频率分布直方图知,0.0024×50+0.0036×50+0.0060×50+x×50+0.0024×50+0.0012×50=1,解得x=0.0044.(II)样本数据落在[100,150)内的频率为0.0036×50=0.18,样本数据落在[150,200)内的频率为0.006×50=0.3.样本数据落在[200,250)内的频率为0.0044×50=0.22,故在这些用户中,用电量落在区间[100,250)内的户数为(0.18+0.30+0.22)×100=70.故答案为:0.0044;70.点根据新高考服务于新教材的原则,作为新教材的新增内容﹣﹣频率分布直方图是新高考的重要考点.对评:于“频率分布直方图学习的关键是学会画图、看图和用图.12.(5分)考点:程序框图.分析:框图首先给变量a和变量i赋值,然后对a是否等于4进行判断,不等于4,继续判断a是否为奇数,是执行路径a=3a+1,否执行路径,再执行i=i+1,依次循环执行,当a等于4时跳出循环,输出i 的值.解答:解:框图首先给变量a和变量i赋值,a=4,i=1.判断10=4不成立,判断10是奇数不成立,执行,i=1+1=2;判断5=4不成立,判断5是奇数成立,执行a=3×5+1=16,i=2+1=3;判断16=4不成立,判断16是奇数不成立,执行,i=3+1=4;判断8=4不成立,判断8是奇数不成立,执行,i=4+1=5;判断4=4成立,跳出循环,输出i的值为5.故答案是5.点评:本题考查了程序框图,循环结构中含有条件结构,外面的循环结构为直到型,即不满足条件执行循环,直到条件满足跳出循环.是基础题.13.(5分)考点:一般形式的柯西不等式;进行简单的合情推理.专题:计算题;不等式的解法及应用.分析:根据柯西不等式,算出(x+2y+3z)2≤14(x2+y2+z2)=14,从而得到x+2y+3z恰好取到最大值,由不等式的等号成立的条件解出x=、y=且z=,由此即可得到x+y+z的值.解答:解:根据柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y 2+z 2)=14(x2+y2+z 2)当且仅当时,上式的等号成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,结合,可得x+2y+3z恰好取到最大值∴=,可得x=,y=,z=因此,x+y+z=++=故答案为:点评:本题给出x、y、z 的平方和等于1,在x+2y+3z恰好取到最大值的情况下求x+y+z的值.着重考查了运用柯西不等式求最值的方法,属于中档题.抓住柯西不等式的等号成立的条件,是本题得以解决的关键.14.(5分)考点:归纳推理.专题:计算题.分析:观察已知式子的规律,并改写形式,归纳可得,把n=10,k=24代入可得答案.解答:解:原已知式子可化为:,,,,由归纳推理可得,故=1100﹣100=1000故答案为:1000点评:本题考查归纳推理,观察已知式子的规律并改写形式是解决问题的关键,属基础题.15.(5分)考点:与圆有关的比例线段;直角三角形的射影定理.专题:压轴题;选作题.分析:设圆O的半径为3x,根据射影定理,可以求出OD2=OE•OC=x2,CD 2=CE•OC=8x2,进而得到的值.解解:设圆O的半径OA=OB=OC=3x,答:∵AB=3AD,∴AD=2x,BD=4x,OD=x又∵点C在直径AB上的射影为D,在△ABC中,由射影定理得:CD2=AD•BD=8x2,在△ODC中,由射影定理得:OD2=OE•OC=x2,CD2=CE•OC=8x2,故==8故答案为:8点评:本题考查的知识点是直角三角形射影定理,射影定理在使用时一定要注意其使用范围…“双垂直”.16.(2013•湖北)考点:参数方程化成普通方程;椭圆的简单性质;点的极坐标和直角坐标的互化.专题:压轴题;圆锥曲线的定义、性质与方程.分析:先根据极坐标与直角坐标的转换关系将直线l的极坐标方程分别为为非零常数)化成直角坐标方程,再利用直线l经过椭圆C的焦点,且与圆O相切,从而得到c=b,又b2=a2﹣c2,消去b后得到关于a,c的等式,即可求出椭圆C的离心率.解答:解:直线l的极坐标方程分别为为非零常数)化成直角坐标方程为x+y﹣m=0,它与x轴的交点坐标为(m,0),由题意知,(m ,0)为椭圆的焦点,故|m|=c,又直线l与圆O:ρ=b相切,∴,从而c=b,又b2=a2﹣c2,∴c2=2(a2﹣c2),∴3c2=2a2,∴=.则椭圆C的离心率为.故答案为:.点评:本题考查了椭圆的离心率,考查了参数方程化成普通方程,点的极坐标和直角坐标的互化,考查提高学生分析问题的能力.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)考点:余弦定理;正弦定理.专题:解三角形.分析:(I)利用倍角公式和诱导公式即可得出;(II)由三角形的面积公式即可得到bc=20.又b=5,解得c=4.由余弦定理得a 2=b2+c2﹣2bccosA=25+16﹣20=21,即可得出a .又由正弦定理得即可得到即可得出.解答:解:(Ⅰ)由cos2A﹣3cos(B+C)=1,得2cos2A+3cosA﹣2=0,即(2cosA﹣1)(cosA+2)=0,解得(舍去).因为0<A<π,所以.(Ⅱ)由S===,得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2﹣2bccosA=25+16﹣20=21,故.又由正弦定理得.点评:熟练掌握三角函数的倍角公式和诱导公式、三角形的面积公式、余弦定理得、正弦定理是解题的关键.18.(12分)考点:数列的求和;等比数列的通项公式;数列与不等式的综合.专题:计算题;等差数列与等比数列.分析:(I)设等比数列{a n}的公比为q,结合等比数列的通项公式表示已知条件,解方程可求a1,q,进而可求通项公式(Ⅱ)结合(I)可知是等比数列,结合等比数列的求和公式可求,即可判断解答:解:(Ⅰ)设等比数列{a n}的公比为q ,则由已知可得解得故.(Ⅱ)若,则,故是首项为,公比为的等比数列,从而.若,则是首项为,公比为﹣1的等比数列,从而故.综上,对任何正整数m,总有.故不存在正整数m,使得成立.点评:本题主要考查了等比数列的通项公式及求和公式的综合应用,还考查了一定的逻辑推理与运算的能力19.(12分)考点:用空间向量求平面间的夹角;空间中直线与平面之间的位置关系;直线与平面平行的判定;二面角的平面角及求法.专题:空间位置关系与距离;空间角.分析:(I)直线l∥平面PAC.连接EF,利用三角形的中位线定理可得,EF∥AC;利用线面平行的判定定理即可得到EF∥平面ABC.由线面平行的性质定理可得EF∥l.再利用线面平行的判定定理即可证明直线l∥平面PAC.(II)综合法:利用线面垂直的判定定理可证明l⊥平面PBC.连接BE,BF,因为BF⊂平面PBC,所以l⊥BC.故∠CBF就是二面角E﹣l﹣C的平面角,即∠CBF=β.已知PC⊥平面ABC,可知CD是FD在平面ABC内的射影,故∠CDF就是直线PQ与平面ABC所成的角,即∠CDF=θ.由BD⊥平面PBC,有BD⊥BF,知∠BDF=α,分别利用三个直角三角形的边角关系即可证明结论;向量法:以点C为原点,向量所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系,利用两个平面的法向量的夹角即可得出二面角.解答:解:(Ⅰ)直线l∥平面PAC,证明如下:连接EF,因为E,F分别是PA,PC的中点,所以EF∥AC,又EF⊄平面ABC,且AC⊂平面ABC,所以EF∥平面ABC.而EF⊂平面BEF,且平面BEF∩平面ABC=l,所以EF∥l.因为l⊄平面PAC,EF⊂平面PAC,所以直线l∥平面PAC.(Ⅱ)(综合法)如图1,连接BD,由(Ⅰ)可知交线l即为直线BD,且l∥AC.因为AB是⊙O的直径,所以AC⊥BC,于是l⊥BC.已知PC⊥平面ABC,而l⊂平面ABC,所以PC⊥l .而PC∩BC=C,所以l ⊥平面PBC.连接BE,BF,因为BF⊂平面PBC,所以l⊥BF.故∠CBF就是二面角E﹣l﹣C的平面角,即∠CBF=β.由,作DQ∥CP,且.连接PQ,DF,因为F是CP的中点,CP=2PF,所以DQ=PF,从而四边形DQPF是平行四边形,PQ∥FD.连接CD,因为PC⊥平面ABC,所以CD是FD在平面ABC 内的射影,故∠CDF就是直线PQ与平面ABC所成的角,即∠CDF=θ.又BD⊥平面PBC ,有BD⊥BF,知∠BDF=α,于是在Rt△DCF,Rt△FBD,Rt△BCF中,分别可得,从而.(Ⅱ)(向量法)如图2,由,作DQ∥CP,且.连接PQ,EF,BE,BF,BD,由(Ⅰ)可知交线l即为直线BD.以点C为原点,向量所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系,设CA=a,CB=b,CP=2c,则有.于是,∴=,从而,又取平面ABC的一个法向量为,可得,设平面BEF 的一个法向量为,所以由可得.于是,从而.故,即sinθ=sinαsinβ.点评:本题综合考查了线面平行的判定定理和性质定理、线面垂直的判定与性质定理、平行四边形的判定与性质定理、线面角、二面角、异面直线所成的角、通过建立空间直角坐标系利用法向量的夹角求二面角等基础知识与方法,需要较强的空间想象能力、推理能力和计算能力.20.(12分)考点:简单线性规划;正态分布曲线的特点及曲线所表示的意义.专题:不等式的解法及应用;概率与统计.分析:(I)变量服从正态分布N(800,502),即服从均值为800,标准差为50的正态分布,适合700<X≤900范围内取值即在(μ﹣2σ,μ+2σ)内取值,其概率为:95.44%,从而由正态分布的对称性得出不超过900的概率为p0.(II)设每天应派出A型x辆、B型车y辆,根据条件列出不等式组,即得线性约束条件,列出目标函数,画出可行域求解.解答:解:(Ⅰ)由于随机变量X服从正态分布N(800,502),故有μ=800,σ=50,P(700<X≤900)=0.9544.由正态分布的对称性,可得p0=(P(X≤900)=P(X≤800)+P(800<X≤900)=(Ⅱ)设A型、B型车辆的数量分别为x,y辆,则相应的营运成本为1600x+2400y.依题意,x,y还需满足:x+y≤21,y≤x+7,P(X≤36x+60y)≥p0.由(Ⅰ)知,p0=P(X≤900),故P(X≤360x+60y)≥p0等价于36x+60y≥900.于是问题等价于求满足约束条件且使目标函数z=1600x+2400y达到最小值的x,y.作可行域如图所示,可行域的三个顶点坐标分别为P(5,12),Q(7,14),R(15,6).由图可知,当直线z=1600x+2400y经过可行域的点P时,直线z=1600x+2400y在y轴上截距最小,即z取得最小值.故应配备A型车5辆,B型车12辆.点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查简单线性规划.本题解题的关键是列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.21.(13分)考点:直线与圆锥曲线的关系;三角形的面积公式;点到直线的距离公式.专题:压轴题;圆锥曲线的定义、性质与方程.分(Ⅰ)设出两个椭圆的方程,当直线l与y轴重合时,求出△BDM和△ABN的面积S1和S2,直接由面析:积比=λ列式求λ的值;(Ⅱ)假设存在与坐标轴不重合的直线l,使得S1=λS2,设出直线方程,由点到直线的距离公式求出M 和N到直线l的距离,利用数学转化思想把两个三角形的面积比转化为线段长度比,由弦长公式得到线段长度比的另一表达式,两式相等得到,换元后利用非零的k值存在讨论λ的取值范围.解答:解:以题意可设椭圆C1和C2的方程分别为,.其中a >m>n >0,.(Ⅰ)如图1,若直线l与y轴重合,即直线l的方程为x=0,则,,所以.在C1和C2的方程中分别令x=0,可得y A=m,y B=n ,y D=﹣m,于是.若,则,化简得λ2﹣2λ﹣1=0,由λ>1,解得.故当直线l与y轴重合时,若S1=λS2,则.(Ⅱ)如图2,若存在与坐标轴不重合的直线l,使得S1=λS2,根据对称性,不妨设直线l:y=kx(k >0),点M(﹣a ,0),N(a,0)到直线l的距离分别为d1,d2,则,所以d1=d2.又,所以,即|BD|=λ|AB|.由对称性可知|AB|=|CD|,所以|BC|=|BD|﹣|AB|=(λ﹣1)|AB|,|AD|=|BD|+|AB|=(λ+1)|AB|,于是.将l的方程分别与C1和C2的方程联立,可求得根据对称性可知x C =﹣x B,x D=﹣x A,于是②从而由①和②可得③令,则由m>n,可得t≠1,于是由③可得.因为k≠0,所以k 2>0.于是③关于k有解,当且仅当,等价于,由λ>1,解得,即,由λ>1,解得,所以当时,不存在与坐标轴不重合的直线l,使得S1=λS2;当时,存在与坐标轴不重合的直线l,使得S1=λS2.点评:本题考查了三角形的面积公式,考查了点到直线的距离公式,考查了直线与圆锥曲线的关系,该题重点考查了数学转化思想方法和分类讨论的数学思想方法,(Ⅱ)中判断λ的存在性是该题的难题,考查了灵活运用函数和不等式的思想方法.22.(14分)考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性;数列的求和;不等式的证明.专题:压轴题;导数的综合应用;不等式的解法及应用.分析:(Ⅰ)先求出函数f (x)的导函数f′(x),令f'(x)=0,解得x=0,再求出函数的单调区间,进而求出最小值为f(0)=0;(Ⅱ)根据(Ⅰ)知,即(1+x)r+1≥1+(r+1)x,令代入并化简得,再令得,,即结论得到证明;(Ⅲ)根据(Ⅱ)的结论,令,n分别取值81,82,83,…,125,分别列出不等式,再将各式相加得,,再由参考数据和条件进行求解.解答:解;(Ⅰ)由题意得f'(x)=(r+1)(1+x)r﹣(r+1)=(r+1)[(1+x)r﹣1],令f'(x)=0,解得x=0.当﹣1<x<0时,f'(x)<0,∴f(x)在(﹣1,0)内是减函数;当x>0时,f'(x)>0,∴f(x)在(0,+∞)内是增函数.故函数f(x)在x=0处,取得最小值为f (0)=0.(Ⅱ)由(Ⅰ),当x∈(﹣1,+∞)时,有f (x)≥f(0)=0,即(1+x)r+1≥1+(r+1)x,且等号当且仅当x=0时成立,故当x>﹣1且x≠0,有(1+x)r+1>1+(r+1)x,①在①中,令(这时x>﹣1且x≠0),得.上式两边同乘n r+1,得(n+1)r+1>n r+1+n r(r+1),即,②当n>1时,在①中令(这时x>﹣1且x≠0),类似可得,③且当n=1时,③也成立.综合②,③得,④(Ⅲ)在④中,令,n 分别取值81,82,83, (125)得,,,…,将以上各式相加,并整理得.代入数据计算,可得由[S]的定义,得[S]=211.点评:本题考查了利用导数研究函数的单调性和求最值,以及学生的创新精神,是否会观察,会抽象概括,会用类比的方法得出其它结论,难度较大,注意利用上一问的结论.。

2013高考真题理数湖北卷

2013高考真题理数湖北卷

绝密 ★ 启用前2013年普通高等学校招生全国统一考试(湖北卷)数 学(理科)一. 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中只有一项是符合题目要求的。

21.(1 A.B D iz i i=-在复平面内,复数为虚数单位)的共轭复数对应的点位于第一象限 .第二象限 C.第三象限 .第四象限{}212.R A=X ()'1,6X+80A2x B X X d B ⎧⎫≤=-≤=⎨⎬⎩⎭已知全集为,集合,则{}{}{}{}.0.2X 4.02X>4.02X 4A X X B X C X X D X X ≤≤≤≤<<≤≥或或3.在一次跳伞训练中,甲、乙两位学员各跳一次。

设命题p 是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A.(-p)(-q)B.p (-q)C.(-p)(-q)D.p q ∨∨∧∨4.将函数sin ()y x x x R =+∈的图像向左平移(0)m m >个单位长度后,所得到的图像关于y 轴对称,则m 的最小值是 A .12πB .6πC .3πD .56π 5.已知04πθ<< ,则双曲线22221222222:1:1cos sin sin sin tan x y y x C C θθθθθ-=-=与的 A .实轴长相等 B .虚轴长相等 C .焦距相等 D .离心率相等6.已知点A (-1,1)、B (1,2)、C (-2,1)、D (3,4),则向量AB 和CD 方向上的投影为ABCD7.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度25()73(,/)1v t t t s v m st=-++的单位:的单位:行驶至停止,在此期间汽车继续行驶的距离(单位:m)是A.1+25ln5B.118+25ln3C.4+25ln5D.4+50ln28.一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别为1234V V V V,,,,下面两个简单几何体均为多面体,则有1243.AV V V V<<<1324.BV V V V<<<2134.C V V V V<<<2314.DV V V V<<<9.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中抽取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=A.126125B.65C.168125D.75121210.I,(),x x z<已知a为常数,函数f(X)=X(nx-ax)有两个极值点x x则121212121A.f(x)>0,f(x)>=-21.f(x)<0,f(x)<=-21.f(x)>0,f(x)<=-21.f(x)<0,f(x)>=-2BCD11.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示。

湖北省2013届高三理科数学(精选试题16套2008-2012五年湖北高考理科试题)分类汇编5数列含答案(2013高考

湖北省2013届高三理科数学(精选试题16套2008-2012五年湖北高考理科试题)分类汇编5数列含答案(2013高考

在数列 an 中 , 已知
a1 2, a2 7, an 2 等于 an an 1(n N * ) 的个位数字 , 则 a2013 的值为
()
A. 8 【答案】 C
B. 6
C. 4
D. 2
11 .(湖北省浠水一中 2013 届高三理科数学模拟测试
) 已知数列 an 为等比数列 , 且
a4 a6 2 a5 , 设等差数列 bn 的前 n 项和为 Sn , 若 b5 2a5 , 则 S9 =
16
【答案】
29
22.( 2011 年全国高考理科数学试题及答案 -湖北)《九章算术》“竹九节”问题 : 现有一根 9
节的竹子 , 自上而下各节的容积成等差数列
共 4 升 , 则第 5 节的容积为 ________升 .
67
【答案】
66
, 上面 4 节的容积共为 3 升 , 下面 3 节的容积
23.(湖北省武汉市 2013 届高三 5 月供题训练数学理试题(二) ( word 版) )把正整数排列成
湖北省 2013 届高三最新理科数学 (精选试题 16 套+2008-2012 五年湖北高考 理科试题)分类汇编 5:数列
一、选择题
3
1 .( 湖北省武汉市 2013 届高三 5 月供题训练数学理试题 (三)( word 版) )设函数 f(x)=(x-3)
+x-1, 数列 {a n} 是公差不为 0 的等差数列 ,f(a 1)+f(a 2) + + f(a 7) =14, 则 a 1 +a 2 ++a 7 = (
f (x) 2x c o sx, g( x) 2 x s i nx,数列 { an } 是 公 差 为 的 等 差 数 列 , 若 8

2013年湖北省高考数学试卷(理科)

2013年湖北省高考数学试卷(理科)

2013年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)在复平面内,复数z=(i为虚数单位)的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)已知全集为R,集合A={x|()x≤1},B={x|x2﹣6x+8≤0},则A∩(∁R B)=()A.{x|x≤0}B.{x|2≤x≤4}C.{x|0≤x<2或x>4} D.{x|0<x≤2或x≥4} 3.(5分)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q 4.(5分)将函数y=cosx+sinx(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A.B.C.D.5.(5分)已知0<θ<,则双曲线与C2:﹣=1的()A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等6.(5分)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为()A.B.C.D.7.(5分)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度的单位:s,v的单位:m/s)行驶至停止,在此期间汽车继续行驶的距离(单位:m)是()A.1+25ln5 B.8+25ln C.4+25ln5 D.4+50ln28.(5分)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有()A.V1<V2<V4<V3B.V1<V3<V2<V4C.V2<V1<V3<V4D.V2<V3<V1<V4 9.(5分)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=()A. B.C. D.10.(5分)已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2)()A. B.C. D.二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)11.(5分)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示:(Ⅰ)直方图中x的值为;(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为.12.(5分)阅读如图所示的程序框图,运行相应的程序,输出的结果i=.13.(5分)设x,y,z∈R,且满足:,则x+y+z=.14.(5分)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数,正方形数N(n,4)=n2,五边形数,六边形数N(n,6)=2n2﹣n,…可以推测N(n,k)的表达式,由此计算N(10,24)=.15.(5分)(选修4﹣1:几何证明选讲)如图,圆O上一点C在直径AB上的射影为D,点D在半径OC上的射影为E.若AB=3AD,则的值为.16.(选修4﹣4:坐标系与参数方程)在直角坐标系xOy中,椭圆C的参数方程为为参数,a>b>0).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为为非零常数)与ρ=b.若直线l经过椭圆C的焦点,且与圆O相切,则椭圆C的离心率为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.(Ⅰ)求角A的大小;(Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值.18.(12分)已知等比数列{a n}满足:|a2﹣a3|=10,a1a2a3=125.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在正整数m,使得?若存在,求m的最小值;若不存在,说明理由.19.(12分)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC ⊥平面ABC,E,F分别是PA,PC的中点.(Ⅰ)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;(Ⅱ)设(Ⅰ)中的直线l与圆O的另一个交点为D,且点Q满足.记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E ﹣l﹣C的大小为β.求证:sinθ=sinαsinβ.20.(12分)假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0.(Ⅰ)求p0的值;(参考数据:若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X ≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)(Ⅱ)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B型车各多少辆?21.(13分)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x 轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN 的面积分别为S1和S2.(Ⅰ)当直线l与y轴重合时,若S1=λS2,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.22.(14分)设n是正整数,r为正有理数.(Ⅰ)求函数f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;(Ⅱ)证明:;(Ⅲ)设x∈R,记[x]为不小于x的最小整数,例如.令的值.(参考数据:.2013年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)在复平面内,复数z=(i为虚数单位)的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】将复数z=的分母实数化,求得z=1+i,即可求得,从而可知答案.【解答】解:∵z====1+i,∴=1﹣i.∴对应的点(1,﹣1)位于第四象限,故选:D.【点评】本题考查复数的代数表示法及其几何意义,将复数z=的分母实数化是关键,属于基础题.2.(5分)已知全集为R,集合A={x|()x≤1},B={x|x2﹣6x+8≤0},则A∩(∁R B)=()A.{x|x≤0}B.{x|2≤x≤4}C.{x|0≤x<2或x>4} D.{x|0<x≤2或x≥4}【分析】利用指数函数的性质可求得集合A,通过解一元二次不等式可求得集合B,从而可求得A∩C R B.【解答】解:∵≤1=,∴x≥0,∴A={x|x≥0};又x2﹣6x+8≤0⇔(x﹣2)(x﹣4)≤0,∴2≤x≤4.∴B={x|2≤x≤4},∴∁R B={x|x<2或x>4},∴A∩∁R B={x|0≤x<2或x>4},故选:C.【点评】本题考查指数函数的性质与元二次不等式,考查交、并、补集的混合运算,属于中档题.3.(5分)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q【分析】由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.【解答】解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).故选:A.【点评】本题考查了复合命题的真假,解答的关键是熟记复合命题的真值表,是基础题.4.(5分)将函数y=cosx+sinx(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A.B.C.D.【分析】函数解析式提取2变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用平移规律得到平移后的解析式,根据所得的图象关于y轴对称,即可求出m的最小值.【解答】解:y=cosx+sinx=2(cosx+sinx)=2sin(x+),∴图象向左平移m(m>0)个单位长度得到y=2sin[(x+m)+]=2sin(x+m+),∵所得的图象关于y轴对称,∴m+=kπ+(k∈Z),则m的最小值为.故选:B.【点评】此题考查了两角和与差的正弦函数公式,以及函数y=Asin(ωx+φ)的图象变换,熟练掌握公式是解本题的关键.5.(5分)已知0<θ<,则双曲线与C2:﹣=1的()A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等【分析】根据双曲线的标准方程求出双曲线的几何性质同,即可得出正确答案.【解答】解:双曲线的实轴长为2cosθ,虚轴长2sinθ,焦距2,离心率,双曲线的实轴长为2sinθ,虚轴长2sinθtanθ,焦距2tanθ,离心率,故它们的离心率相同.故选:D.【点评】本题主要考查了双曲线的标准方程、双曲线的简单性质等,属于基础题.6.(5分)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为()A.B.C.D.【分析】先求出向量、,根据投影定义即可求得答案.【解答】解:,,则向量方向上的投影为:•cos<>=•===,故选:A.【点评】本题考查平面向量数量积的含义与物理意义,考查向量投影定义,属基础题,正确理解相关概念是解决问题的关键.7.(5分)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度的单位:s,v的单位:m/s)行驶至停止,在此期间汽车继续行驶的距离(单位:m)是()A.1+25ln5 B.8+25ln C.4+25ln5 D.4+50ln2【分析】令v(t)=0,解得t=4,则所求的距离S=,解出即可.【解答】解:令v(t)=7﹣3t+,化为3t2﹣4t﹣32=0,又t>0,解得t=4.∴由刹车行驶至停止,在此期间汽车继续行驶的距离s===4+25ln5.故选:C.【点评】熟练掌握导数的运算法则和定积分的几何意义是解题的关键.8.(5分)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有()A.V1<V2<V4<V3B.V1<V3<V2<V4C.V2<V1<V3<V4D.V2<V3<V1<V4【分析】利用三视图与已知条件判断组合体的形状,分别求出几何体的体积,即可判断出正确选项.【解答】解:由题意以及三视图可知,该几何体从上到下由:圆台、圆柱、正四棱柱、正四棱台组成,体积分别记为V1==.V2=12×π×2=2π,V3=2×2×2=8V4==;∵,∴V2<V1<V3<V4故选:C.【点评】本题考查简单组合体的三视图与几何体的体积的求法,正确判断几何体的形状与准确利用公式求解体积是解题的关键.9.(5分)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=()A. B.C. D.【分析】由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,④由以上可知:还剩下125﹣(8+36+54)=27个内部的小正方体的6个面都没有涂油漆,根据上面的分析即可得出其概率及X 的分布列,利用数学期望的计算公式即可得出.【解答】解:由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,∴P(X=3)=;②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,∴P(X=2)=;③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,∴P(X=1)=.④由以上可知:还剩下125﹣(8+36+54)=27个内部的小正方体的6个面都没有涂油漆,∴P(X=0)=.故X的分布列为因此E(X)==.故选:B.【点评】正确找出所涂油漆的面数的正方体的个数及古典概型的概率计算公式、分布列与数学期望是解题的关键.10.(5分)已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2)()A. B.C. D.【分析】先求出f′(x),令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1,x2⇔函数g(x)=lnx+1﹣2ax有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0.利用导数与函数极值的关系即可得出.【解答】解:∵f′(x)=lnx+1﹣2ax,(x>0)令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1,x2⇔函数g(x)=lnx+1﹣2ax 有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0..①当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,应舍去.②当a>0时,令g′(x)=0,解得x=,∵x,g′(x)>0,函数g(x)单调递增;时,g′(x)<0,函数g(x)单调递减.∴x=是函数g(x)的极大值点,则>0,即>0,∴ln(2a)<0,∴0<2a<1,即.故当0<a<时,g(x)=0有两个根x1,x2,且x1<<x2,又g(1)=1﹣2a >0,∴x1<1<<x2,从而可知函数f(x)在区间(0,x1)上递减,在区间(x1,x2)上递增,在区间(x2,+∞)上递减.∴f(x1)<f(1)=﹣a<0,f(x2)>f(1)=﹣a>﹣.故选:D.【点评】本题考查了利用导数研究函数极值的方法,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)11.(5分)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示:(Ⅰ)直方图中x的值为0.0044;(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为70.【分析】(I)根据频率分布直方图中,各组的频率之和为1,我们易得到一个关于x的方程,解方程即可得到答案.(II)由已知中的频率分布直方图,利用[100,250)之间各小组的纵坐标(矩形的高)乘以组距得到[100,250)的频率,利用频率乘以样本容量即可求出频数.【解答】解:(Ⅰ)依题意及频率分布直方图知,0.0024×50+0.0036×50+0.0060×50+x×50+0.0024×50+0.0012×50=1,解得x=0.0044.(II)样本数据落在[100,150)内的频率为0.0036×50=0.18,样本数据落在[150,200)内的频率为0.006×50=0.3.样本数据落在[200,250)内的频率为0.0044×50=0.22,故在这些用户中,用电量落在区间[100,250)内的户数为(0.18+0.30+0.22)×100=70.故答案为:0.0044;70.【点评】根据新高考服务于新教材的原则,作为新教材的新增内容﹣﹣频率分布直方图是新高考的重要考点.对于“频率分布直方图学习的关键是学会画图、看图和用图.12.(5分)阅读如图所示的程序框图,运行相应的程序,输出的结果i=5.【分析】框图首先给变量a和变量i赋值,然后对a是否等于4进行判断,不等于4,继续判断a是否为奇数,是执行路径a=3a+1,否执行路径,再执行i=i+1,依次循环执行,当a等于4时跳出循环,输出i的值.【解答】解:框图首先给变量a和变量i赋值,a=4,i=1.判断10=4不成立,判断10是奇数不成立,执行,i=1+1=2;判断5=4不成立,判断5是奇数成立,执行a=3×5+1=16,i=2+1=3;判断16=4不成立,判断16是奇数不成立,执行,i=3+1=4;判断8=4不成立,判断8是奇数不成立,执行,i=4+1=5;判断4=4成立,跳出循环,输出i的值为5.故答案是5.【点评】本题考查了程序框图,循环结构中含有条件结构,外面的循环结构为直到型,即不满足条件执行循环,直到条件满足跳出循环.是基础题.13.(5分)设x,y,z∈R,且满足:,则x+y+z=.【分析】根据柯西不等式,算出(x+2y+3z)2≤14(x2+y2+z2)=14,从而得到x+2y+3z恰好取到最大值,由不等式的等号成立的条件解出x=、y=且z=,由此即可得到x+y+z的值.【解答】解:根据柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)当且仅当时,上式的等号成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,结合,可得x+2y+3z恰好取到最大值∴=,可得x=,y=,z=因此,x+y+z=++=故答案为:【点评】本题给出x、y、z的平方和等于1,在x+2y+3z恰好取到最大值的情况下求x+y+z的值.着重考查了运用柯西不等式求最值的方法,属于中档题.抓住柯西不等式的等号成立的条件,是本题得以解决的关键.14.(5分)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数,正方形数N(n,4)=n2,五边形数,六边形数N(n,6)=2n2﹣n,…可以推测N(n,k)的表达式,由此计算N(10,24)=1000.【分析】观察已知式子的规律,并改写形式,归纳可得,把n=10,k=24代入可得答案.【解答】解:原已知式子可化为:,,,,由归纳推理可得,故=1100﹣100=1000故答案为:1000【点评】本题考查归纳推理,观察已知式子的规律并改写形式是解决问题的关键,属基础题.15.(5分)(选修4﹣1:几何证明选讲)如图,圆O上一点C在直径AB上的射影为D,点D在半径OC上的射影为E.若AB=3AD,则的值为8.【分析】设圆O的半径为3x,根据射影定理,可以求出OD2=OE•OC=x2,CD2=CE•OC=8x2,进而得到的值.【解答】解:设圆O的半径OA=OB=OC=3x,∵AB=3AD,∴AD=2x,BD=4x,OD=x又∵点C在直径AB上的射影为D,在△ABC中,由射影定理得:CD2=AD•BD=8x2,在△ODC中,由射影定理得:OD2=OE•OC=x2,CD2=CE•OC=8x2,故==8故答案为:8【点评】本题考查的知识点是直角三角形射影定理,射影定理在使用时一定要注意其使用范围…“双垂直”.16.(选修4﹣4:坐标系与参数方程)在直角坐标系xOy中,椭圆C的参数方程为为参数,a>b>0).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为为非零常数)与ρ=b.若直线l经过椭圆C的焦点,且与圆O相切,则椭圆C的离心率为.【分析】先根据极坐标与直角坐标的转换关系将直线l的极坐标方程分别为为非零常数)化成直角坐标方程,再利用直线l经过椭圆C的焦点,且与圆O相切,从而得到c=b,又b2=a2﹣c2,消去b后得到关于a,c的等式,即可求出椭圆C的离心率.【解答】解:直线l的极坐标方程分别为为非零常数)化成直角坐标方程为x+y﹣m=0,它与x轴的交点坐标为(m,0),由题意知,(m,0)为椭圆的焦点,故|m|=c,又直线l与圆O:ρ=b相切,∴,从而c=b,又b2=a2﹣c2,∴c2=2(a2﹣c2),∴3c2=2a2,∴=.则椭圆C的离心率为.故答案为:.【点评】本题考查了椭圆的离心率,考查了参数方程化成普通方程,点的极坐标和直角坐标的互化,考查提高学生分析问题的能力.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.(Ⅰ)求角A的大小;(Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值.【分析】(I)利用倍角公式和诱导公式即可得出;(II)由三角形的面积公式即可得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2﹣2bccosA=25+16﹣20=21,即可得出a.又由正弦定理得即可得到即可得出.【解答】解:(Ⅰ)由cos2A﹣3cos(B+C)=1,得2cos2A+3cosA﹣2=0,即(2cosA﹣1)(cosA+2)=0,解得(舍去).因为0<A<π,所以.(Ⅱ)由S===,得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2﹣2bccosA=25+16﹣20=21,故.又由正弦定理得.【点评】熟练掌握三角函数的倍角公式和诱导公式、三角形的面积公式、余弦定理得、正弦定理是解题的关键.18.(12分)已知等比数列{a n}满足:|a2﹣a3|=10,a1a2a3=125.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在正整数m,使得?若存在,求m的最小值;若不存在,说明理由.【分析】(I)设等比数列{a n}的公比为q,结合等比数列的通项公式表示已知条件,解方程可求a1,q,进而可求通项公式(Ⅱ)结合(I)可知是等比数列,结合等比数列的求和公式可求,即可判断【解答】解:(Ⅰ)设等比数列{a n}的公比为q,则由已知可得解得故.(Ⅱ)若,则,故是首项为,公比为的等比数列,从而.若,则是首项为,公比为﹣1的等比数列,从而故.综上,对任何正整数m,总有.故不存在正整数m,使得成立.【点评】本题主要考查了等比数列的通项公式及求和公式的综合应用,还考查了一定的逻辑推理与运算的能力19.(12分)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC ⊥平面ABC,E,F分别是PA,PC的中点.(Ⅰ)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;(Ⅱ)设(Ⅰ)中的直线l与圆O的另一个交点为D,且点Q满足.记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E ﹣l﹣C的大小为β.求证:sinθ=sinαsinβ.【分析】(I)直线l∥平面PAC.连接EF,利用三角形的中位线定理可得,EF∥AC;利用线面平行的判定定理即可得到EF∥平面ABC.由线面平行的性质定理可得EF∥l.再利用线面平行的判定定理即可证明直线l∥平面PAC.(II)综合法:利用线面垂直的判定定理可证明l⊥平面PBC.连接BE,BF,因为BF⊂平面PBC,所以l⊥BC.故∠CBF就是二面角E﹣l﹣C的平面角,即∠CBF=β.已知PC⊥平面ABC,可知CD是FD在平面ABC内的射影,故∠CDF就是直线PQ 与平面ABC所成的角,即∠CDF=θ.由BD⊥平面PBC,有BD⊥BF,知∠BDF=α,分别利用三个直角三角形的边角关系即可证明结论;向量法:以点C为原点,向量所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系,利用两个平面的法向量的夹角即可得出二面角.【解答】解:(Ⅰ)直线l∥平面PAC,证明如下:连接EF,因为E,F分别是PA,PC的中点,所以EF∥AC,又EF⊄平面ABC,且AC⊂平面ABC,所以EF∥平面ABC.而EF⊂平面BEF,且平面BEF∩平面ABC=l,所以EF∥l.因为l⊄平面PAC,EF⊂平面PAC,所以直线l∥平面PAC.(Ⅱ)(综合法)如图1,连接BD,由(Ⅰ)可知交线l即为直线BD,且l∥AC.因为AB是⊙O的直径,所以AC⊥BC,于是l⊥BC.已知PC⊥平面ABC,而l⊂平面ABC,所以PC⊥l.而PC∩BC=C,所以l⊥平面PBC.连接BE,BF,因为BF⊂平面PBC,所以l⊥BF.故∠CBF就是二面角E﹣l﹣C的平面角,即∠CBF=β.由,作DQ∥CP,且.连接PQ,DF,因为F是CP的中点,CP=2PF,所以DQ=PF,从而四边形DQPF是平行四边形,PQ∥FD.连接CD,因为PC⊥平面ABC,所以CD是FD在平面ABC内的射影,故∠CDF就是直线PQ与平面ABC所成的角,即∠CDF=θ.又BD⊥平面PBC,有BD⊥BF,知∠BDF=α,于是在Rt△DCF,Rt△FBD,Rt△BCF中,分别可得,从而.(Ⅱ)(向量法)如图2,由,作DQ∥CP,且.连接PQ,EF,BE,BF,BD,由(Ⅰ)可知交线l即为直线BD.以点C为原点,向量所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系,设CA=a,CB=b,CP=2c,则有.于是,∴=,从而,又取平面ABC的一个法向量为,可得,设平面BEF的一个法向量为,所以由可得取=(0,c,b),于是,从而.故,即sinθ=sinαsinβ.【点评】本题综合考查了线面平行的判定定理和性质定理、线面垂直的判定与性质定理、平行四边形的判定与性质定理、线面角、二面角、异面直线所成的角、通过建立空间直角坐标系利用法向量的夹角求二面角等基础知识与方法,需要较强的空间想象能力、推理能力和计算能力.20.(12分)假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0.(Ⅰ)求p0的值;(参考数据:若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X ≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)(Ⅱ)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B型车各多少辆?【分析】(I)变量服从正态分布N(800,502),即服从均值为800,标准差为50的正态分布,适合700<X≤900范围内取值即在(μ﹣2σ,μ+2σ)内取值,其概率为:95.44%,从而由正态分布的对称性得出不超过900的概率为p0.(II)设每天应派出A型x辆、B型车y辆,根据条件列出不等式组,即得线性约束条件,列出目标函数,画出可行域求解.【解答】解:(Ⅰ)由于随机变量X服从正态分布N(800,502),故有μ=800,σ=50,P(700<X≤900)=0.9544.由正态分布的对称性,可得p0=(P(X≤900)=P(X≤800)+P(800<X≤900)=(Ⅱ)设A型、B型车辆的数量分别为x,y辆,则相应的营运成本为1600x+2400y.依题意,x,y还需满足:x+y≤21,y≤x+7,P(X≤36x+60y)≥p0.由(Ⅰ)知,p0=P(X≤900),故P(X≤36x+60y)≥p0等价于36x+60y≥900.于是问题等价于求满足约束条件且使目标函数z=1600x+2400y达到最小值的x,y.作可行域如图所示,可行域的三个顶点坐标分别为P(5,12),Q(7,14),R (15,6).由图可知,当直线z=1600x+2400y经过可行域的点P时,直线z=1600x+2400y在y轴上截距最小,即z取得最小值.故应配备A型车5辆,B型车12辆.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查简单线性规划.本题解题的关键是列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.21.(13分)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x 轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN 的面积分别为S1和S2.(Ⅰ)当直线l与y轴重合时,若S1=λS2,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.【分析】(Ⅰ)设出两个椭圆的方程,当直线l与y轴重合时,求出△BDM和△ABN的面积S1和S2,直接由面积比=λ列式求λ的值;(Ⅱ)假设存在与坐标轴不重合的直线l,使得S1=λS2,设出直线方程,由点到直线的距离公式求出M和N到直线l的距离,利用数学转化思想把两个三角形的面积比转化为线段长度比,由弦长公式得到线段长度比的另一表达式,两式相等得到,换元后利用非零的k值存在讨论λ的取值范围.【解答】解:以题意可设椭圆C1和C2的方程分别为,.其中a>m>n>0,>1.(Ⅰ)如图1,若直线l与y轴重合,即直线l的方程为x=0,则,,所以.在C1和C2的方程中分别令x=0,可得y A=m,y B=n,y D=﹣m,于是.若,则,化简得λ2﹣2λ﹣1=0,由λ>1,解得.故当直线l与y轴重合时,若S1=λS2,则.(Ⅱ)如图2,若存在与坐标轴不重合的直线l,使得S1=λS2,根据对称性,不妨设直线l:y=kx(k>0),点M(﹣a,0),N(a,0)到直线l的距离分别为d1,d2,则,所以d1=d2.又,所以,即|BD|=λ|AB|.由对称性可知|AB|=|CD|,所以|BC|=|BD|﹣|AB|=(λ﹣1)|AB|,|AD|=|BD|+|AB|=(λ+1)|AB|,于是.将l的方程分别与C1和C2的方程联立,可求得根据对称性可知x C=﹣x B,x D=﹣x A,于是②从而由①和②可得③令,则由m>n,可得t≠1,于是由③可得.因为k≠0,所以k2>0.于是③关于k有解,当且仅当,等价于,由λ>1,解得,即,由λ>1,解得,所以当时,不存在与坐标轴不重合的直线l,使得S1=λS2;当时,存在与坐标轴不重合的直线l,使得S1=λS2.【点评】本题考查了三角形的面积公式,考查了点到直线的距离公式,考查了直线与圆锥曲线的关系,该题重点考查了数学转化思想方法和分类讨论的数学思想方法,(Ⅱ)中判断λ的存在性是该题的难题,考查了灵活运用函数和不等式的思想方法.22.(14分)设n是正整数,r为正有理数.(Ⅰ)求函数f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;(Ⅱ)证明:;。

2013年湖北省高考数学试卷(理科)答案及解析

2013年湖北省高考数学试卷(理科)答案及解析

2013年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•湖北)在复平面内,复数(i为虚数单位)的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2013•湖北)已知全集为R,集合,则A∩∁R B=()A.{x|x≤0} B.{x|2≤x≤4} C.{x|0≤x<2或x>4} D.{x|0<x≤2或x≥4}3.(5分)(2013•湖北)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q4.(5分)(2013•湖北)将函数的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A.B.C.D.5.(5分)(2013•湖北)已知,则双曲线的()A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等6.(5分)(2013•湖北)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为()A.B.C.D.7.(5分)(2013•湖北)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度的单位:s,v的单位:m/s)行驶至停止,在此期间汽车继续行驶的距离(单位:m)是()A.1+25ln5 B.C.4+25ln5 D.4+50ln28+25ln8.(5分)(2013•湖北)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有()A.V1<V2<V4<V3B.V1<V3<V2<V4C.V2<V1<V3<V4D.V2<V3<V1<V49.(5分)(2013•湖北)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=()A.B.C.D.10.(5分)(2013•湖北)已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2)()A.B.C.D.二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)11.(5分)(2013•湖北)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示:(Ⅰ)直方图中x的值为_________;(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为_________.12.(5分)(2013•湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果i=_________.13.(5分)(2013•湖北)设x,y,z∈R,且满足:,则x+y+z=_________.14.(5分)(2013•湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数,正方形数N(n,4)=n2,五边形数,六边形数N(n,6)=2n2﹣n,…可以推测N(n,k)的表达式,由此计算N(10,24)=_________.15.(5分)(2013•湖北)(选修4﹣1:几何证明选讲)如图,圆O上一点C在直径AB上的射影为D,点D在半径OC上的射影为E.若AB=3AD,则的值为_________.16.(2013•湖北)(选修4﹣4:坐标系与参数方程)在直角坐标系xOy中,椭圆C的参数方程为为参数,a>b>0).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为为非零常数)与ρ=b.若直线l经过椭圆C的焦点,且与圆O相切,则椭圆C的离心率为_________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2013•湖北)在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.(Ⅰ)求角A的大小;(Ⅱ)若△ABC的面积,求sinBsinC的值.18.(12分)(2013•湖北)已知等比数列{a n}满足:|a2﹣a3|=10,a1a2a3=125.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在正整数m,使得?若存在,求m的最小值;若不存在,说明理由.19.(12分)(2013•湖北)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F 分别是PA,PC的中点.(Ⅰ)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;(Ⅱ)设(Ⅰ)中的直线l与圆O的另一个交点为D,且点Q满足.记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E﹣l﹣C的大小为β.求证:sinθ=sinαsinβ.20.(12分)(2013•湖北)假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0.(Ⅰ)求p0的值;(参考数据:若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)(Ⅱ)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?21.(13分)(2013•湖北)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN的面积分别为S1和S2.(Ⅰ)当直线l与y轴重合时,若S1=λS2,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.22.(14分)(2013•湖北)设n是正整数,r为正有理数.(Ⅰ)求函数f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;(Ⅱ)证明:;(Ⅲ)设x∈R,记[x]为不小于x的最小整数,例如.令的值.(参考数据:.2013年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)考点:复数的代数表示法及其几何意义.专题:计算题.分析:将复数z=的分母实数化,求得z=1+i,即可求得,从而可知答案.解答:解:∵z====1+i,∴=1﹣i.∴对应的点(1,﹣1)位于第四象限,故选D.点评:本题考查复数的代数表示法及其几何意义,将复数z=的分母实数化是关键,属于基础题.2.(5分)考点:其他不等式的解法;交、并、补集的混合运算.专题:计算题;不等式的解法及应用.分析:利用指数函数的性质可求得集合A,通过解一元二次不等式可求得集合B,从而可求得A∩C R B.解答:解:∵≤1=,∴x≥0,∴A={x|x≥0};又x2﹣6x+8≤0⇔(x﹣2)(x﹣4)≤0,∴2≤x≤4.∴B={x|2≤x≤4},∴∁R B={x|x<2或x>4},∴A∩∁R B={x|0≤x<2或x>4},故选C.点评:本题考查指数函数的性质与元二次不等式,考查交、并、补集的混合运算,属于中档题.3.(5分)考点:复合命题的真假.专题:阅读型.分析:由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.解答:解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).故选A.点评:本题考查了复合命题的真假,解答的关键是熟记复合命题的真值表,是基础题.4.(5分)考点:两角和与差的正弦函数;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:函数解析式提取2变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用平移规律得到平移后的解析式,根据所得的图象关于y轴对称,即可求出m的最小值.解答:解:y=cosx+sinx=2(cosx+sinx)=2sin(x+),∴图象向左平移m(m>0)个单位长度得到y=2sin[(x+m)+]=2sin(x+m+),∵所得的图象关于y轴对称,∴m+=kπ+(k∈Z),则m的最小值为.故选B点评:此题考查了两角和与差的正弦函数公式,以及函数y=Asin(ωx+φ)的图象变换,熟练掌握公式是解本题的关键.5.(5分)考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据双曲线的标准方程求出双曲线的几何性质同,即可得出正确答案.解答:解:双曲线的实轴长为2cosθ,虚轴长2sinθ,焦距2,离心率,双曲线的实轴长为2sinθ,虚轴长2sinθtanθ,焦距2tanθ,离心率,故它们的离心率相同.故选D.点评:本题主要考查了双曲线的标准方程、双曲线的简单性质等,属于基础题.6.(5分)考点:平面向量数量积的含义与物理意义.专题:平面向量及应用.分析:先求出向量、,根据投影定义即可求得答案.解答:解:,,则向量方向上的投影为:•cos<>=•===,故选A.点评:本题考查平面向量数量积的含义与物理意义,考查向量投影定义,属基础题,正确理解相关概念是解决问题的关键.7.(5分)考点:定积分.专题:导数的综合应用.分析:令v(t)=0,解得t=4,则所求的距离S=,解出即可.解答:解:令v(t)=7﹣3t+,化为3t2﹣4t﹣32=0,又t>0,解得t=4.∴由刹车行驶至停止,在此期间汽车继续行驶的距离s===4+25ln5.故选C.点评:熟练掌握导数的运算法则和定积分的几何意义是解题的关键.8.(5分)考点:由三视图求面积、体积.专题:计算题.分析:利用三视图与已知条件判断组合体的形状,分别求出几何体的体积,即可判断出正确选项.解答:解:由题意以及三视图可知,该几何体从上到下由:圆台、圆柱、正四棱柱、正四棱台组成,体积分别记λ为V1==.V2=12×π×2=2π,V3=2×2×2=8V4==;∵,∴V2<V1<V3<V4故选C.点评:本题考查简单组合体的三视图与几何体的体积的求法,正确判断几何体的形状与准确利用公式求解体积是解题的关键.9.(5分)考点:离散型随机变量的期望与方差.专题:压轴题;概率与统计.分析:由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,④由以上可知:还剩下125﹣(8=36+54)=27个内部的小正方体的6个面都没有涂油漆,根据上面的分析即可得出其概率及X的分布列,利用数学期望的计算公式即可得出.解答:解:由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,∴P(X=3)=;②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,∴P(X=2)=;③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,∴P(X=1)=.④由以上可知:还剩下125﹣(8+36+54)=27个内部的小正方体的6个面都没有涂油漆,∴P(X=0)=.X 0 1 2 3P故X的分布列为因此E(X)==.故选B.点评:正确找出所涂油漆的面数的正方体的个数及古典概型的概率计算公式、分布列与数学期望是解题的关键.考点:利用导数研究函数的极值;函数在某点取得极值的条件.专题:压轴题;导数的综合应用.分析:先求出f′(x),令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1,x2⇔函数g(x)=lnx+1﹣2ax有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0.利用导数与函数极值的关系即可得出.解答:解:∵=lnx+1﹣2ax,(x>0)令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1,x2⇔函数g(x)=lnx+1﹣2ax有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0..①当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,应舍去.②当a>0时,令g′(x)=0,解得x=,∵x,g′(x)>0,函数g(x)单调递增;时,g′(x)<0,函数g(x)单调递减.∴x=是函数g(x)的极大值点,则>0,即>0,∴ln(2a)<0,∴0<2a<1,即.∵,f′(x1)=lnx1+1﹣2ax1=0,f′(x2)=lnx2+1﹣2ax2=0.且f(x1)=x1(lnx1﹣ax1)=x1(2ax1﹣1﹣ax1)=x1(ax1﹣1)=﹣<0,f(x2)=x2(lnx2﹣ax2)=x2(ax2﹣1)>=﹣.().故选D.点评:熟练掌握利用导数研究函数极值的方法是解题的关键.二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)11.(5分)考点:频率分布直方图.专题:图表型.分析:(I)根据频率分布直方图中,各组的频率之和为1,我们易得到一个关于x的方程,解方程即可得到答案.(II)由已知中的频率分布直方图,利用[100,250)之间各小组的纵坐标(矩形的高)乘以组距得到[100,250)的频率,利用频率乘以样本容量即可求出频数.解答:解:(Ⅰ)依题意及频率分布直方图知,0.0024×50+0.0036×50+0.0060×50+x×50+0.0024×50+0.0012×50=1,解得x=0.0044.(II)样本数据落在[100,150)内的频率为0.0036×50=0.18,样本数据落在[150,200)内的频率为0.006×50=0.3.样本数据落在[200,250)内的频率为0.0044×50=0.22,故在这些用户中,用电量落在区间[100,250)内的户数为(0.18+0.30+0.22)×100=70.故答案为:0.0044;70.点评:根据新高考服务于新教材的原则,作为新教材的新增内容﹣﹣频率分布直方图是新高考的重要考点.对于“频率分布直方图学习的关键是学会画图、看图和用图.考点:程序框图.分析:框图首先给变量a和变量i赋值,然后对a是否等于4进行判断,不等于4,继续判断a是否为奇数,是执行路径a=3a+1,否执行路径,再执行i=i+1,依次循环执行,当a等于4时跳出循环,输出i的值.解答:解:框图首先给变量a和变量i赋值,a=4,i=1.判断10=4不成立,判断10是奇数不成立,执行,i=1+1=2;判断5=4不成立,判断5是奇数成立,执行a=3×5+1=16,i=2+1=3;判断16=4不成立,判断16是奇数不成立,执行,i=3+1=4;判断8=4不成立,判断8是奇数不成立,执行,i=4+1=5;判断4=4成立,跳出循环,输出i的值为5.故答案是5.点评:本题考查了程序框图,循环结构中含有条件结构,外面的循环结构为直到型,即不满足条件执行循环,直到条件满足跳出循环.是基础题.13.(5分)考点:一般形式的柯西不等式;进行简单的合情推理.专题:计算题;不等式的解法及应用.分析:根据柯西不等式,算出(x+2y+3z)2≤14(x2+y2+z2)=14,从而得到x+2y+3z恰好取到最大值,由不等式的等号成立的条件解出x=、y=且z=,由此即可得到x+y+z的值.解答:解:根据柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)当且仅当时,上式的等号成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,结合,可得x+2y+3z恰好取到最大值∴=,可得x=,y=,z=因此,x+y+z=++=故答案为:点评:本题给出x、y、z的平方和等于1,在x+2y+3z恰好取到最大值的情况下求x+y+z的值.着重考查了运用柯西不等式求最值的方法,属于中档题.抓住柯西不等式的等号成立的条件,是本题得以解决的关键.14.(5分)考点:归纳推理.专题:计算题.分析:观察已知式子的规律,并改写形式,归纳可得,把n=10,k=24代入可得答案.解答:解:原已知式子可化为:,,,,由归纳推理可得,故=1100﹣100=1000故答案为:1000点评:本题考查归纳推理,观察已知式子的规律并改写形式是解决问题的关键,属基础题.15.(5分)考点:与圆有关的比例线段;直角三角形的射影定理.专题:压轴题;选作题.分析:设圆O的半径为3x,根据射影定理,可以求出OD2=OE•OC=x2,CD2=CE•OC=8x2,进而得到的值.解答:解:设圆O的半径OA=OB=OC=3x,∵AB=3AD,∴AD=2x,BD=4x,OD=x又∵点C在直径AB上的射影为D,在△ABC中,由射影定理得:CD2=AD•BD=8x2,在△ODC中,由射影定理得:OD2=OE•OC=x2,CD2=CE•OC=8x2,故==8故答案为:8点评:本题考查的知识点是直角三角形射影定理,射影定理在使用时一定要注意其使用范围…“双垂直”.16.(2013•湖北)考点:参数方程化成普通方程;椭圆的简单性质;点的极坐标和直角坐标的互化.专题:压轴题;圆锥曲线的定义、性质与方程.分析:先根据极坐标与直角坐标的转换关系将直线l的极坐标方程分别为为非零常数)化成直角坐标方程,再利用直线l经过椭圆C的焦点,且与圆O相切,从而得到c=b,又b2=a2﹣c2,消去b后得到关于a,c的等式,即可求出椭圆C的离心率.解答:解:直线l的极坐标方程分别为为非零常数)化成直角坐标方程为x+y﹣m=0,它与x轴的交点坐标为(m,0),由题意知,(m,0)为椭圆的焦点,故|m|=c,又直线l与圆O:ρ=b相切,∴,从而c=b,又b2=a2﹣c2,∴c2=2(a2﹣c2),∴3c2=2a2,∴=.则椭圆C的离心率为.故答案为:.点评:本题考查了椭圆的离心率,考查了参数方程化成普通方程,点的极坐标和直角坐标的互化,考查提高学生分析问题的能力.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)考点:余弦定理;正弦定理.专题:解三角形.分析:(I)利用倍角公式和诱导公式即可得出;(II)由三角形的面积公式即可得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2﹣2bccosA=25+16﹣20=21,即可得出a.又由正弦定理得即可得到即可得出.解答:解:(Ⅰ)由cos2A﹣3cos(B+C)=1,得2cos2A+3cosA﹣2=0,即(2cosA﹣1)(cosA+2)=0,解得(舍去).因为0<A<π,所以.(Ⅱ)由S===,得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2﹣2bccosA=25+16﹣20=21,故.又由正弦定理得.点评:熟练掌握三角函数的倍角公式和诱导公式、三角形的面积公式、余弦定理得、正弦定理是解题的关键.18.(12分)考点:数列的求和;等比数列的通项公式;数列与不等式的综合.专题:计算题;等差数列与等比数列.分析:(I)设等比数列{a n}的公比为q,结合等比数列的通项公式表示已知条件,解方程可求a1,q,进而可求通项公式(Ⅱ)结合(I)可知是等比数列,结合等比数列的求和公式可求,即可判断解答:解:(Ⅰ)设等比数列{a n}的公比为q,则由已知可得解得故.(Ⅱ)若,则,故是首项为,公比为的等比数列,从而.若,则是首项为,公比为﹣1的等比数列,从而故.综上,对任何正整数m ,总有.故不存在正整数m ,使得成立.点评: 本题主要考查了等比数列的通项公式及求和公式的综合应用,还考查了一定的逻辑推理与运算的能力 19.(12分)考点: 用空间向量求平面间的夹角;空间中直线与平面之间的位置关系;直线与平面平行的判定;二面角的平面角及求法.专题:空间位置关系与距离;空间角. 分析: (I )直线l ∥平面PAC .连接EF ,利用三角形的中位线定理可得,EF ∥AC ;利用线面平行的判定定理即可得到EF ∥平面ABC .由线面平行的性质定理可得EF ∥l .再利用线面平行的判定定理即可证明直线l ∥平面PAC .(II )综合法:利用线面垂直的判定定理可证明l ⊥平面PBC .连接BE ,BF ,因为BF ⊂平面PBC ,所以l ⊥BC .故∠CBF 就是二面角E ﹣l ﹣C 的平面角,即∠CBF=β.已知PC ⊥平面ABC ,可知CD 是FD 在平面ABC 内的射影,故∠CDF 就是直线PQ 与平面ABC 所成的角,即∠CDF=θ.由BD ⊥平面PBC ,有BD ⊥BF ,知∠BDF=α,分别利用三个直角三角形的边角关系即可证明结论;向量法:以点C 为原点,向量所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,利用两个平面的法向量的夹角即可得出二面角. 解答: 解:(Ⅰ)直线l ∥平面PAC ,证明如下: 连接EF ,因为E ,F 分别是PA ,PC 的中点,所以EF ∥AC ,又EF ⊄平面ABC ,且AC ⊂平面ABC ,所以EF ∥平面ABC . 而EF ⊂平面BEF ,且平面BEF ∩平面ABC=l ,所以EF ∥l . 因为l ⊄平面PAC ,EF ⊂平面PAC ,所以直线l ∥平面PAC . (Ⅱ)(综合法)如图1,连接BD ,由(Ⅰ)可知交线l 即为直线BD ,且l ∥AC . 因为AB 是⊙O 的直径,所以AC ⊥BC ,于是l ⊥BC . 已知PC ⊥平面ABC ,而l ⊂平面ABC ,所以PC ⊥l . 而PC ∩BC=C ,所以l ⊥平面PBC .连接BE ,BF ,因为BF ⊂平面PBC ,所以l ⊥BF .故∠CBF 就是二面角E ﹣l ﹣C 的平面角,即∠CBF=β.由,作DQ ∥CP ,且.连接PQ ,DF ,因为F 是CP 的中点,CP=2PF ,所以DQ=PF , 从而四边形DQPF 是平行四边形,PQ ∥FD .连接CD ,因为PC ⊥平面ABC ,所以CD 是FD 在平面ABC 内的射影, 故∠CDF 就是直线PQ 与平面ABC 所成的角,即∠CDF=θ. 又BD ⊥平面PBC ,有BD ⊥BF ,知∠BDF=α, 于是在Rt △DCF ,Rt △FBD ,Rt △BCF 中,分别可得,从而. (Ⅱ)(向量法)如图2,由,作DQ ∥CP ,且.连接PQ ,EF ,BE ,BF ,BD ,由(Ⅰ)可知交线l 即为直线BD .以点C 为原点,向量所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,设CA=a ,CB=b ,CP=2c ,则有. 于是,∴=,从而,又取平面ABC 的一个法向量为,可得,设平面BEF 的一个法向量为,所以由可得.于是,从而.故,即sin θ=sin αsin β.点评: 本题综合考查了线面平行的判定定理和性质定理、线面垂直的判定与性质定理、平行四边形的判定与性质定理、线面角、二面角、异面直线所成的角、通过建立空间直角坐标系利用法向量的夹角求二面角等基础知识与方法,需要较强的空间想象能力、推理能力和计算能力. 20.(12分)考点: 简单线性规划;正态分布曲线的特点及曲线所表示的意义. 专题: 不等式的解法及应用;概率与统计. 分析: (I )变量服从正态分布N (800,502),即服从均值为800,标准差为50的正态分布,适合700<X ≤900范围内取值即在(μ﹣2σ,μ+2σ)内取值,其概率为:95.44%,从而由正态分布的对称性得出不超过900的概率为p 0.(II )设每天应派出A 型x 辆、B 型车y 辆,根据条件列出不等式组,即得线性约束条件,列出目标函数,画出可行域求解.解答: 解:(Ⅰ)由于随机变量X 服从正态分布N (800,502),故有μ=800,σ=50,P (700<X ≤900)=0.9544.由正态分布的对称性,可得p 0=(P (X ≤900)=P (X ≤800)+P (800<X ≤900)=(Ⅱ)设A 型、B 型车辆的数量分别为x ,y 辆,则相应的营运成本为1600x+2400y .依题意,x ,y 还需满足:x+y ≤21,y ≤x+7,P (X ≤36x+60y )≥p 0.由(Ⅰ)知,p0=P(X≤900),故P(X≤360x+60y)≥p0等价于36x+60y≥900.于是问题等价于求满足约束条件且使目标函数z=1600x+2400y达到最小值的x,y.作可行域如图所示,可行域的三个顶点坐标分别为P(5,12),Q(7,14),R(15,6).由图可知,当直线z=1600x+2400y经过可行域的点P时,直线z=1600x+2400y在y轴上截距最小,即z取得最小值.故应配备A型车5辆,B型车12辆.点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查简单线性规划.本题解题的关键是列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.21.(13分)考点:直线与圆锥曲线的关系;三角形的面积公式;点到直线的距离公式.专题:压轴题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设出两个椭圆的方程,当直线l与y轴重合时,求出△BDM和△ABN的面积S1和S2,直接由面积比=λ列式求λ的值;(Ⅱ)假设存在与坐标轴不重合的直线l,使得S1=λS2,设出直线方程,由点到直线的距离公式求出M和N到直线l的距离,利用数学转化思想把两个三角形的面积比转化为线段长度比,由弦长公式得到线段长度比的另一表达式,两式相等得到,换元后利用非零的k值存在讨论λ的取值范围.解答:解:以题意可设椭圆C1和C2的方程分别为,.其中a>m>n>0,.(Ⅰ)如图1,若直线l与y轴重合,即直线l的方程为x=0,则,,所以.在C1和C2的方程中分别令x=0,可得y A=m,y B=n,y D=﹣m,于是.若,则,化简得λ2﹣2λ﹣1=0,由λ>1,解得.故当直线l与y轴重合时,若S1=λS2,则.(Ⅱ)如图2,若存在与坐标轴不重合的直线l,使得S1=λS2,根据对称性,不妨设直线l:y=kx(k>0),点M(﹣a,0),N(a,0)到直线l的距离分别为d1,d2,则,所以d1=d2.又,所以,即|BD|=λ|AB|.由对称性可知|AB|=|CD|,所以|BC|=|BD|﹣|AB|=(λ﹣1)|AB|,|AD|=|BD|+|AB|=(λ+1)|AB|,于是.将l的方程分别与C1和C2的方程联立,可求得根据对称性可知x C=﹣x B,x D=﹣x A,于是②从而由①和②可得③令,则由m>n,可得t≠1,于是由③可得.因为k≠0,所以k2>0.于是③关于k有解,当且仅当,等价于,由λ>1,解得,即,由λ>1,解得,所以当时,不存在与坐标轴不重合的直线l,使得S1=λS2;当时,存在与坐标轴不重合的直线l,使得S1=λS2.点评: 本题考查了三角形的面积公式,考查了点到直线的距离公式,考查了直线与圆锥曲线的关系,该题重点考查了数学转化思想方法和分类讨论的数学思想方法,(Ⅱ)中判断λ的存在性是该题的难题,考查了灵活运用函数和不等式的思想方法.22.(14分)考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性;数列的求和;不等式的证明. 专题:压轴题;导数的综合应用;不等式的解法及应用. 分析: (Ⅰ)先求出函数f (x )的导函数f ′(x ),令f'(x )=0,解得x=0,再求出函数的单调区间,进而求出最小值为f (0)=0;(Ⅱ)根据(Ⅰ)知,即(1+x )r+1≥1+(r+1)x ,令代入并化简得,再令得,,即结论得到证明;(Ⅲ)根据(Ⅱ)的结论,令,n 分别取值81,82,83,…,125,分别列出不等式,再将各式相加得,,再由参考数据和条件进行求解.解答: 解;(Ⅰ)由题意得f'(x )=(r+1)(1+x )r ﹣(r+1)=(r+1)[(1+x )r ﹣1], 令f'(x )=0,解得x=0.当﹣1<x <0时,f'(x )<0,∴f (x )在(﹣1,0)内是减函数; 当x >0时,f'(x )>0,∴f (x )在(0,+∞)内是增函数. 故函数f (x )在x=0处,取得最小值为f (0)=0. (Ⅱ)由(Ⅰ),当x ∈(﹣1,+∞)时,有f (x )≥f (0)=0, 即(1+x )r+1≥1+(r+1)x ,且等号当且仅当x=0时成立, 故当x >﹣1且x ≠0,有(1+x )r+1>1+(r+1)x ,①在①中,令(这时x >﹣1且x ≠0),得.上式两边同乘n r+1,得(n+1)r+1>n r+1+n r (r+1), 即,②当n >1时,在①中令(这时x >﹣1且x ≠0),类似可得,③且当n=1时,③也成立. 综合②,③得,④(Ⅲ)在④中,令,n 分别取值81,82,83, (125)得,,,…,将以上各式相加,并整理得.代入数据计算,可得由[S ]的定义,得[S ]=211.点评: 本题考查了利用导数研究函数的单调性和求最值,以及学生的创新精神,是否会观察,会抽象概括,会用类比的方法得出其它结论,难度较大,注意利用上一问的结论.。

2013年普通高等学校招生全国统一考试(湖北卷)数学试题 (理科) word解析版

2013年普通高等学校招生全国统一考试(湖北卷)数学试题 (理科) word解析版

2013年普通高等学校招生全国统一考试(湖北卷)数 学(理工类)解析版一、选择题 1、在复平面内,复数21iz i=+(i 为虚数单位)的共轭复数对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【解析与答案】211iz i i==++,1z i ∴=-。

故选D 【相关知识点】复数的运算2.已知全集为R ,集合1{()1}2x A x =≤,2{680}B x x x =-+≤,则R A C B =( )A .{0}x x ≤B .{24}x x ≤≤C .{024}x x x ≤<>或D .{024}x x x <≤≥或 【解析与答案】[)0,A =+∞,[]2,4B =,[)()0,24,R AC B ∴=+∞。

故选C【相关知识点】不等式的求解,集合的运算3、在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) A.()()p q ⌝∨⌝ B. ()p q ∨⌝ C. ()()p q ⌝∧⌝ D.p q ∨【解析与答案】“至少有一位学员没有降落在指定范围”即:“甲或乙没有降落在指定范围内”。

故选A 。

【相关知识点】命题及逻辑连接词4、将函数()sin y x x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是( )A. 12πB. 6πC. 3πD. 56π 【解析与答案】2cos 6y x π⎛⎫=- ⎪⎝⎭的图像向左平移()0m m >个长度单位后变成2cos 6y x m π⎛⎫=-+ ⎪⎝⎭,所以m 的最小值是6π。

故选B 。

【相关知识点】三角函数图象及其变换5、已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的( )A.实轴长相等B.虚轴长相等C.焦距相等D. 离心率相等 【解析与答案】双曲线1C 的离心率是11cos e θ=,双曲线2C 的离心率是21cos e θ==,故选D 【相关知识点】双曲线的离心率,三角恒等变形6、已知点()1,1A -、()1,2B 、()2,1C --、()3,4D ,则向量AB 在CD 方向上的投影为( )A.C.D. 【解析与答案】()2,1AB =,()5,5CD =,5AB CD CD∴==,故选A 。

2013年高考理科数学湖北卷(含详细答案)

2013年高考理科数学湖北卷(含详细答案)

绝密★启用前2013年普通高等学校招生全国统一考试(湖北卷)数学(理工类)本试题卷共6页,22题,其中第15、16题为选考题,全卷满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷、草稿纸上无效.3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内.答在试题卷、草稿纸上无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用统一提供的2B 铅笔涂黑.考生应根据自己选做的题目准确填涂题号,不得多选.答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效.5.考生必须保持答题卡的整洁.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在复平面内,复数2i1iz =+(i 为虚数单位)的共轭复数对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知全集为R ,集合1{|()1}2x A x =≤,2{|680}B x x x =-+≤,则R A B =ð ( )A .{|0}x x ≤B .{|24}x x ≤≤C .{|02x x ≤<或4}x >D .{|02x x <≤或4}x ≥3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 ( )A .()()p q ⌝∨⌝B .()p q ∨⌝C .()()p q ⌝∧⌝D .p q ∨4.将函数sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .π12 B .π6 C .π3D .5π65.已知π04θ<<,则双曲线1C :22221cos sin x y θθ-=与2C :222221sin sin tan y x θθθ-=的( ) A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等6.已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为 ( ) ABC. D. 7.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度25()731v t t t=-++(t 的单位:s ,v 的单位:m /s )行驶至停止.在此期间汽车继续行驶的距离(单位:m )是( ) A .125ln 5+B .11825ln 3+C .425ln 5+D .450ln 2+8.一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有 ( )A .1243V V V V <<<B .1324V V V V <<<C .2134V V V V <<<D .2314V V V V <<<9.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值()E X =( )A .126125 B .65 C .168125 D .7510.已知a 为常数,函数()(ln )f x x x ax =-有两个极值点1x ,212()x x x <,则( )A .1()0f x >,21()2f x >-B .1()0f x <,21()2f x <-C .1()0f x >,21()2f x <-D .1()0f x <,21()2f x >-二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答.题卡对应题号......的位置上.答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如图所示.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________(Ⅰ)直方图中x 的值为 .(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为 .12.阅读如图所示的程序框图,运行相应的程序,输出的结果i = .13.设x ,y ,z ∈R ,且满足:2221x y z ++=,23x y z ++则x y z ++= .14.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为2(1)11222n n n n +=+.记第n 个k 边形数为(,)(3)N n k k ≥,以下列出了部分k 边形数中第n 个数的表达式:三角形数 211(,3)22N n n n =+,正方形数 2(,4)N n n =,五边形数 231(,5)22N n n n =-,六边形数 2(,6)2N n n n =-, ……………………………………可以推测(,)N n k 的表达式,由此计算(10,24)N = .(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.) 15.(选修4—1:几何证明选讲)如图,圆O 上一点C 在直线AB 上的射影为D ,点D 在半径OC 上的射影为E .若3AB AD =,则CEEO的值为 . 16.(选修4—4:坐标系与参数方程)在直角坐标系xOy 中,椭圆C 的参数方程为cos ,sin ,x a y b ϕϕ=⎧⎨=⎩(ϕ为参数,0a b >>).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O的极坐标方程分别为πsin()4ρθ+=(m 为非零常数)与b ρ=.若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为 . 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC △中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos23cos()1A B C -+=. (Ⅰ)求角A 的大小;(Ⅱ)若ABC △的面积S =,5b =,求sin sin B C 的值.18.(本小题满分12分)已知等比数列{}n a 满足:23||10a a -=,123125a a a =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)是否存在正整数m ,使得121111ma a a +++≥?若存在,求m 的最小值;若不存在,说明理由.19.(本小题满分12分)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点.(Ⅰ)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(Ⅱ)设(Ⅰ)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =.记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=.20.(本小题满分12分)假设每天从甲地去乙地的旅客人数X 是服从正态分布2(800,50)N 的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为0p . (Ⅰ)求0p 的值; (参考数据:若2(,)XN μσ,有()0.6826P X μσμσ-+=<≤,(2P X μσ-<≤2)0.9544μσ+=,(33)0.9974P X μσμσ-+=<≤.)(Ⅱ)某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600 元/辆和2 400 元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天要以不小于0p 的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的运营成本最小,那么应配备A 型车、B 型车各多少辆? 21.(本小题满分13分)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2n ()m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,BDM △和ABN △的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值; (Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l , 使得12S S λ=?并说明理由. 22.(本小题满分14分)设n 是正整数,r 为正有理数.(Ⅰ)求函数1()(1)(1)1(1)r f x x r x x +=+-+->-的最小值;(Ⅱ)证明:1111(1)(1)11r r r r rn n n n n r r ++++--+-<<++;(Ⅲ)设x ∈R ,记x ⎡⎤⎢⎥为不小于...x 的最小整数,例如22=⎡⎤⎢⎥,π4=⎡⎤⎢⎥,312⎡⎤-=-⎢⎥⎢⎥.令3125S =+,求S ⎡⎤⎢⎥的值.(参考数据:4380344.7≈,4381350.5≈,43124618.3≈,43126631.7≈){A B=()ðRð【提示】利用指数函数的性质可求得集合A BR【解析】由题意可知(2,1)AB =,(5,5)CD =,故AB 在CD 方向上的投影为15||50AB CD CD =【提示】先求出向量AB ,CD ,根据投影定义即可求得答案由射影定理得28CD AD BD ==,则在Rt OCD △中,12OD CD DE OC ⨯==88-=,8AD BD =,得222cos 222m θθ⎫+=⎪⎪⎭3324bc bc =sin c bc AA a a =(Ⅰ)利用倍角公式和诱导公式即可得出sin cA A a即可得出【考点】余弦定理,正弦定理1533n -或1(1)5n n a -=-1533n -或1(1)5n n a -=- (Ⅱ)若1533n n a -=,则13153a ⎛⎫= ⎪⎝⎭,是首项为3,公比为的等比数列,31153911110313m m⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-1(1)5n --a ,则是首项为-11a ++≥q 1a ++,即可判断11 / 18BEFABC 平面PAC ,所以直线(综合法)证明:如图1,连接BD ,由(Ⅰ)可知交线因为AB 是O 的直径,所以已知PC ABC ⊥平面,而l 而PCBC C =,所以l ⊥连接BE ,BF ,因为BF ⊂CBF 就是二面角由1DQ CP =,作DQ 连接PQ DF ,,因为sin sin CFBF CFBF DF DFαβ===(向量法)证明:如图2,由12DQ CP =,作DQ ∥连接PQ EF BE BF ,,,,,由(Ⅰ)可知交线以点C 为原点,向量CA ,CB ,CP 所在直线分别为设CA a CB b CP ===,,则有0,0,0,0,0()()C A a ,,于是1FE a ⎛= ,,(a P Q =-,(0,BF =-2||||||FE QP a FE QP a =αABC 的一个法向量为||||m QP m QP a =BEF 的一个法向量为0,0,n FE n BF ==可得)c b ,,.于是2||||m n bn b =.222c b c=+PAC .连接=,分别利用三个直角三角形的边角关系即可证明结论;BDFα为原点,向量CA,CB,CP所在直线分别为【考点】用空间向量求平面间的夹角,空间中直线与平面之间的位置关系,直线与平面平行的判定,二面可行域的三个顶点坐标分别为(P13 / 18若直线l 与y 轴重合,即直线则111||||1=|||22|2BD OM S a BD ON a ==的方程中分别令B m y ==,11|||||22|BD OM a ON a==||||BD mAB m=(Ⅱ)解法1:如图2,15 / 18解法2:如图2,17 / 183 4。

2013湖北高考(理科)数学试题及答案(完整版)

2013湖北高考(理科)数学试题及答案(完整版)

2013年湖北高考数学试卷(理科)WORD 版绝密 ★ 启用前2013年普通高等学校招生全国统一考试(湖北卷)数 学(理科)4.将函数3cos sin ()y x x x R =+∈的图像向左平移(0)m m >个单位长度后,所得到的图像关于y 轴对称,则m 的最小值是 A .12πB .6πC .3πD .56π 5.已知04πθ<<,则双曲线22221222222:1:1cos sin sin sin tan x y y x C C θθθθθ-=-=与的 A .实轴长相等 B .虚轴长相等 C .焦距相等 D .离心率相等6.已知点A (-1,1)、B (1,2)、C (-2,1)、D (3,4),则向量AB 和CD 方向上的投影为A .322 B .3152 C .322 D .31527.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度25()73(,/)1v t t t s v m s t=-++的单位:的单位:行驶至停止,在此期间汽车继续行驶的距离(单位:m )是 A .1+25ln5 B .118+25ln3C .4+25ln5D .4+50ln 2 8.一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别为1234V V V V ,,,,这四个几何体为旋转体,下面两个简单几何体均为多面体,则有1243.AV V V V <<< 1324.BV V V V <<< 2134.C V V V V <<< 2314.DV V V V <<<9.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中抽取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)= A .126125 B .65 C .168125 D .7511.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示。

2013-年湖北省高考数学试卷(理科)答案及解析(最新编写)

2013-年湖北省高考数学试卷(理科)答案及解析(最新编写)

2013年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•湖北)在复平面内,复数(i为虚数单位)的共轭复数对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2013•湖北)已知全集为R,集合,则A∩∁R B=( ) A.{x|x≤0}B.{x|2≤x≤4}C.{x|0≤x<2或x>4}D.{x|0<x≤2或x≥4}3.(5分)(2013•湖北)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q4.(5分)(2013•湖北)将函数的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是( ) A.B.C.D.5.(5分)(2013•湖北)已知,则双曲线的( ) A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等6.(5分)(2013•湖北)已知点A(Ⅰ1,1),B(1,2),C(Ⅰ2,Ⅰ1),D(3,4),则向量在方向上的投影为( ) A.B.C.D.7.(5分)(2013•湖北)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度的单位:s,v的单位:m/s)行驶至停止,在此期间汽车继续行驶的距离(单位:m)是( )C.4+25ln5D.4+50ln2 A.1+25ln5B.8+25ln8.(5分)(2013•湖北)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( ) A.V1<V2<V4<V3B.V1<V3<V2<V4C.V2<V1<V3<V4D.V2<V3<V1<V49.(5分)(2013•湖北)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=( ) A.B.C.D.10.(5分)(2013•湖北)已知a为常数,函数f(x)=x(lnxⅠax)有两个极值点x1,x2(x1<x2)( ) A.B.C.D.二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)11.(5分)(2013•湖北)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示:(Ⅰ)直方图中x的值为 _________ ;(Ⅰ)在这些用户中,用电量落在区间[100,250)内的户数为 _________ .12.(5分)(2013•湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果i= _________ .13.(5分)(2013•湖北)设x,y,z∈R,且满足:,则x+y+z= _________ .14.(5分)(2013•湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数,正方形数N(n,4)=n2,五边形数,六边形数N(n,6)=2n2Ⅰn,…可以推测N(n,k)的表达式,由此计算N(10,24)= _________ .15.(5分)(2013•湖北)(选修4Ⅰ1:几何证明选讲)如图,圆O上一点C在直径AB上的射影为D,点D在半径OC上的射影为E.若AB=3AD,则的值为 _________ .16.(2013•湖北)(选修4Ⅰ4:坐标系与参数方程)在直角坐标系xOy中,椭圆C的参数方程为为参数,a>b>0).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为为非零常数)与ρ=b.若直线l经过椭圆C的焦点,且与圆O相切,则椭圆C的离心率为 _________ .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2013•湖北)在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2AⅠ3cos(B+C)=1.(Ⅰ)求角A的大小;(Ⅰ)若△ABC的面积,求sinBsinC的值.18.(12分)(2013•湖北)已知等比数列{a n}满足:|a2Ⅰa3|=10,a1a2a3=125.(Ⅰ)求数列{a n}的通项公式;(Ⅰ)是否存在正整数m,使得?若存在,求m的最小值;若不存在,说明理由.19.(12分)(2013•湖北)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F 分别是PA,PC的中点.(Ⅰ)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;(Ⅰ)设(Ⅰ)中的直线l与圆O的另一个交点为D,且点Q满足.记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角EⅠlⅠC的大小为β.求证:sinθ=sinαsinβ.20.(12分)(2013•湖北)假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0.(Ⅰ)求p0的值;(参考数据:若X~N(μ,σ2),有P(μⅠσ<X≤μ+σ)=0.6826,P(μⅠ2σ<X≤μ+2σ)=0.9544,P(μⅠ3σ<X≤μ+3σ)=0.9974.)(Ⅰ)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?21.(13分)(2013•湖北)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN的面积分别为S1和S2.(Ⅰ)当直线l与y轴重合时,若S1=λS2,求λ的值;(Ⅰ)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.22.(14分)(2013•湖北)设n是正整数,r为正有理数.(Ⅰ)求函数f(x)=(1+x)r+1Ⅰ(r+1)xⅠ1(x>Ⅰ1)的最小值;(Ⅰ)证明:;(Ⅰ)设x∈R,记[x]为不小于x的最小整数,例如.令的值.(参考数据:. 2013年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)考点:复数的代数表示法及其几何意义.专题:计算题.分析:将复数z=的分母实数化,求得z=1+i,即可求得,从而可知答案.解答:解:∵z====1+i,∴=1Ⅰi.∴对应的点(1,Ⅰ1)位于第四象限,故选D.点评:本题考查复数的代数表示法及其几何意义,将复数z=的分母实数化是关键,属于基础题.2.(5分)考点:其他不等式的解法;交、并、补集的混合运算.专题:计算题;不等式的解法及应用.分析:利用指数函数的性质可求得集合A,通过解一元二次不等式可求得集合B,从而可求得A∩C R B.解答:解:∵≤1=,∴x≥0,∴A={x|x≥0};又x2Ⅰ6x+8≤0⇔(xⅠ2)(xⅠ4)≤0,∴2≤x≤4.∴B={x|2≤x≤4},∴∁R B={x|x<2或x>4},∴A∩∁R B={x|0≤x<2或x>4},故选C.点评:本题考查指数函数的性质与元二次不等式,考查交、并、补集的混合运算,属于中档题.3.(5分)考点:复合命题的真假.专题:阅读型.分析:由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.解答:解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).故选A.点评:本题考查了复合命题的真假,解答的关键是熟记复合命题的真值表,是基础题.4.(5分)考点:两角和与差的正弦函数;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:函数解析式提取2变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用平移规律得到平移后的解析式,根据所得的图象关于y轴对称,即可求出m的最小值.解答:解:y=cosx+sinx=2(cosx+sinx)=2sin(x+),∴图象向左平移m(m>0)个单位长度得到y=2sin[(x+m)+]=2sin(x+m+),∵所得的图象关于y轴对称,∴m+=kπ+(k∈Z),则m的最小值为.故选B点评:此题考查了两角和与差的正弦函数公式,以及函数y=Asin(ωx+φ)的图象变换,熟练掌握公式是解本题的关键.5.(5分)考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据双曲线的标准方程求出双曲线的几何性质同,即可得出正确答案.解答:解:双曲线的实轴长为2cosθ,虚轴长2sinθ,焦距2,离心率,双曲线的实轴长为2sinθ,虚轴长2sinθtanθ,焦距2tanθ,离心率,故它们的离心率相同.故选D.点评:本题主要考查了双曲线的标准方程、双曲线的简单性质等,属于基础题.6.(5分)考点:平面向量数量积的含义与物理意义.专题:平面向量及应用.分析:先求出向量、,根据投影定义即可求得答案.解答:解:,,则向量方向上的投影为:•cos<>=•===,故选A.点评:本题考查平面向量数量积的含义与物理意义,考查向量投影定义,属基础题,正确理解相关概念是解决问题的关键.7.(5分)考点:定积分.专题:导数的综合应用.分析:令v(t)=0,解得t=4,则所求的距离S=,解出即可.解答:解:令v(t)=7Ⅰ3t+,化为3t2Ⅰ4tⅠ32=0,又t>0,解得t=4.∴由刹车行驶至停止,在此期间汽车继续行驶的距离s===4+25ln5.故选C.点评:熟练掌握导数的运算法则和定积分的几何意义是解题的关键.8.(5分)考点:由三视图求面积、体积.专题:计算题.分析:利用三视图与已知条件判断组合体的形状,分别求出几何体的体积,即可判断出正确选项.解答:解:由题意以及三视图可知,该几何体从上到下由:圆台、圆柱、正四棱柱、正四棱台组成,体积分别记λ为V1==.V2=12×π×2=2π,V3=2×2×2=8V4==;∵,∴V2<V1<V3<V4故选C.点评:本题考查简单组合体的三视图与几何体的体积的求法,正确判断几何体的形状与准确利用公式求解体积是解题的关键.9.(5分)考点:离散型随机变量的期望与方差.专题:压轴题;概率与统计.分析:由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,④由以上可知:还剩下125Ⅰ(8=36+54)=27个内部的小正方体的6个面都没有涂油漆,根据上面的分析即可得出其概率及X的分布列,利用数学期望的计算公式即可得出.解答:解:由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,∴P(X=3)=;②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,∴P(X=2)=;③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,∴P(X=1)=.④由以上可知:还剩下125Ⅰ(8+36+54)=27个内部的小正方体的6个面都没有涂油漆,∴P(X=0)=.X0123P故X的分布列为因此E(X)==.故选B.点评:正确找出所涂油漆的面数的正方体的个数及古典概型的概率计算公式、分布列与数学期望是解题的关键.10.(5分)考点:利用导数研究函数的极值;函数在某点取得极值的条件.专题:压轴题;导数的综合应用.分析:先求出f′(x),令f′(x)=0,由题意可得lnx=2axⅠ1有两个解x1,x2⇔函数g(x)=lnx+1Ⅰ2ax有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0.利用导数与函数极值的关系即可得出.解答:解:∵=lnx+1Ⅰ2ax,(x>0)令f′(x)=0,由题意可得lnx=2axⅠ1有两个解x1,x2⇔函数g(x)=lnx+1Ⅰ2ax有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0..①当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,应舍去.②当a>0时,令g′(x)=0,解得x=,∵x,g′(x)>0,函数g(x)单调递增;时,g′(x)<0,函数g(x)单调递减.∴x=是函数g(x)的极大值点,则>0,即>0,∴ln(2a)<0,∴0<2a<1,即.∵,f′(x1)=lnx1+1Ⅰ2ax1=0,f′(x2)=lnx2+1Ⅰ2ax2=0.且f(x1)=x1(lnx1Ⅰax1)=x1(2ax1Ⅰ1Ⅰax1)=x1(ax1Ⅰ1)=Ⅰ<0,f(x2)=x2(lnx2Ⅰax2)=x2(ax2Ⅰ1)>=Ⅰ.().故选D.点评:熟练掌握利用导数研究函数极值的方法是解题的关键.二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)11.(5分)考点:频率分布直方图.专题:图表型.分析:(I)根据频率分布直方图中,各组的频率之和为1,我们易得到一个关于x的方程,解方程即可得到答案.(II)由已知中的频率分布直方图,利用[100,250)之间各小组的纵坐标(矩形的高)乘以组距得到[100,250)的频率,利用频率乘以样本容量即可求出频数.解答:解:(Ⅰ)依题意及频率分布直方图知,0.0024×50+0.0036×50+0.0060×50+x×50+0.0024×50+0.0012×50=1,解得x=0.0044.(II)样本数据落在[100,150)内的频率为0.0036×50=0.18,样本数据落在[150,200)内的频率为0.006×50=0.3.样本数据落在[200,250)内的频率为0.0044×50=0.22,故在这些用户中,用电量落在区间[100,250)内的户数为(0.18+0.30+0.22)×100=70.故答案为:0.0044;70.点评:根据新高考服务于新教材的原则,作为新教材的新增内容ⅠⅠ频率分布直方图是新高考的重要考点.对于“频率分布直方图学习的关键是学会画图、看图和用图.12.(5分)考点:程序框图.分析:框图首先给变量a和变量i赋值,然后对a是否等于4进行判断,不等于4,继续判断a是否为奇数,是执行路径a=3a+1,否执行路径,再执行i=i+1,依次循环执行,当a等于4时跳出循环,输出i的值.解答:解:框图首先给变量a和变量i赋值,a=4,i=1.判断10=4不成立,判断10是奇数不成立,执行,i=1+1=2;判断5=4不成立,判断5是奇数成立,执行a=3×5+1=16,i=2+1=3;判断16=4不成立,判断16是奇数不成立,执行,i=3+1=4;判断8=4不成立,判断8是奇数不成立,执行,i=4+1=5;判断4=4成立,跳出循环,输出i的值为5.故答案是5.点评:本题考查了程序框图,循环结构中含有条件结构,外面的循环结构为直到型,即不满足条件执行循环,直到条件满足跳出循环.是基础题.13.(5分)考点:一般形式的柯西不等式;进行简单的合情推理.专题:计算题;不等式的解法及应用.分析:根据柯西不等式,算出(x+2y+3z)2≤14(x2+y2+z2)=14,从而得到x+2y+3z恰好取到最大值,由不等式的等号成立的条件解出x=、y=且z=,由此即可得到x+y+z的值.解答:解:根据柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)当且仅当时,上式的等号成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,结合,可得x+2y+3z恰好取到最大值∴=,可得x=,y=,z=因此,x+y+z=++=故答案为:点评:本题给出x、y、z的平方和等于1,在x+2y+3z恰好取到最大值的情况下求x+y+z的值.着重考查了运用柯西不等式求最值的方法,属于中档题.抓住柯西不等式的等号成立的条件,是本题得以解决的关键.14.(5分)考点:归纳推理.专题:计算题.分析:观察已知式子的规律,并改写形式,归纳可得,把n=10,k=24代入可得答案.解答:解:原已知式子可化为:,,,,由归纳推理可得,故=1100Ⅰ100=1000故答案为:1000点评:本题考查归纳推理,观察已知式子的规律并改写形式是解决问题的关键,属基础题.15.(5分)考点:与圆有关的比例线段;直角三角形的射影定理.专题:压轴题;选作题.分析:设圆O的半径为3x,根据射影定理,可以求出OD2=OE•OC=x2,CD2=CE•OC=8x2,进而得到的值.解答:解:设圆O的半径OA=OB=OC=3x,∵AB=3AD,∴AD=2x,BD=4x,OD=x又∵点C在直径AB上的射影为D,在△ABC中,由射影定理得:CD2=AD•BD=8x2,在△ODC中,由射影定理得:OD2=OE•OC=x2,CD2=CE•OC=8x2,故==8故答案为:8点评:本题考查的知识点是直角三角形射影定理,射影定理在使用时一定要注意其使用范围…“双垂直”.16.(2013•湖北)考点:参数方程化成普通方程;椭圆的简单性质;点的极坐标和直角坐标的互化.专题:压轴题;圆锥曲线的定义、性质与方程.分析:先根据极坐标与直角坐标的转换关系将直线l的极坐标方程分别为为非零常数)化成直角坐标方程,再利用直线l经过椭圆C的焦点,且与圆O相切,从而得到c=b,又b2=a2Ⅰc2,消去b后得到关于a,c的等式,即可求出椭圆C的离心率.解答:解:直线l的极坐标方程分别为为非零常数)化成直角坐标方程为x+yⅠm=0,它与x轴的交点坐标为(m,0),由题意知,(m,0)为椭圆的焦点,故|m|=c,又直线l与圆O:ρ=b相切,∴,从而c=b,又b2=a2Ⅰc2,∴c2=2(a2Ⅰc2),∴3c2=2a2,∴=.则椭圆C的离心率为.故答案为:.点评:本题考查了椭圆的离心率,考查了参数方程化成普通方程,点的极坐标和直角坐标的互化,考查提高学生分析问题的能力.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)考点:余弦定理;正弦定理.专题:解三角形.分析:(I)利用倍角公式和诱导公式即可得出;(II)由三角形的面积公式即可得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2Ⅰ2bccosA=25+16Ⅰ20=21,即可得出a.又由正弦定理得即可得到即可得出.解答:解:(Ⅰ)由cos2AⅠ3cos(B+C)=1,得2cos2A+3cosAⅠ2=0,即(2cosAⅠ1)(cosA+2)=0,解得(舍去).因为0<A<π,所以.(Ⅰ)由S===,得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2Ⅰ2bccosA=25+16Ⅰ20=21,故.又由正弦定理得.点评:熟练掌握三角函数的倍角公式和诱导公式、三角形的面积公式、余弦定理得、正弦定理是解题的关键.18.(12分)考点:数列的求和;等比数列的通项公式;数列与不等式的综合.专题:计算题;等差数列与等比数列.分析:(I)设等比数列{a n}的公比为q,结合等比数列的通项公式表示已知条件,解方程可求a1,q,进而可求通项公式(Ⅰ)结合(I)可知是等比数列,结合等比数列的求和公式可求,即可判断解答:解:(Ⅰ)设等比数列{a n}的公比为q,则由已知可得解得故.(Ⅰ)若,则,故是首项为,公比为的等比数列,从而.若,则是首项为,公比为Ⅰ1的等比数列,从而故.综上,对任何正整数m ,总有.故不存在正整数m ,使得成立.点评:本题主要考查了等比数列的通项公式及求和公式的综合应用,还考查了一定的逻辑推理与运算的能力19.(12分)考点:用空间向量求平面间的夹角;空间中直线与平面之间的位置关系;直线与平面平行的判定;二面角的平面角及求法.专题:空间位置关系与距离;空间角.分析:(I )直线l ∥平面PAC .连接EF ,利用三角形的中位线定理可得,EF ∥AC ;利用线面平行的判定定理即可得到EF ∥平面ABC .由线面平行的性质定理可得EF ∥l .再利用线面平行的判定定理即可证明直线l ∥平面PAC .(II )综合法:利用线面垂直的判定定理可证明l ⊥平面PBC .连接BE ,BF ,因为BF ⊂平面PBC ,所以l ⊥BC .故∠CBF 就是二面角E Ⅰl ⅠC 的平面角,即∠CBF=β.已知PC ⊥平面ABC ,可知CD 是FD 在平面ABC 内的射影,故∠CDF 就是直线PQ 与平面ABC 所成的角,即∠CDF=θ.由BD ⊥平面PBC ,有BD ⊥BF ,知∠BDF=α,分别利用三个直角三角形的边角关系即可证明结论;向量法:以点C 为原点,向量所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,利用两个平面的法向量的夹角即可得出二面角.解答:解:(Ⅰ)直线l ∥平面PAC ,证明如下:连接EF ,因为E ,F 分别是PA ,PC 的中点,所以EF ∥AC ,又EF ⊄平面ABC ,且AC ⊂平面ABC ,所以EF ∥平面ABC .而EF ⊂平面BEF ,且平面BEF ∩平面ABC=l ,所以EF ∥l .因为l ⊄平面PAC ,EF ⊂平面PAC ,所以直线l ∥平面PAC .(Ⅰ)(综合法)如图1,连接BD ,由(Ⅰ)可知交线l 即为直线BD ,且l ∥AC .因为AB 是⊙O 的直径,所以AC ⊥BC ,于是l ⊥BC .已知PC ⊥平面ABC ,而l ⊂平面ABC ,所以PC ⊥l .而PC ∩BC=C ,所以l ⊥平面PBC .连接BE ,BF ,因为BF ⊂平面PBC ,所以l ⊥BF .故∠CBF 就是二面角E Ⅰl ⅠC 的平面角,即∠CBF=β.由,作DQ ∥CP ,且.连接PQ ,DF ,因为F 是CP 的中点,CP=2PF ,所以DQ=PF ,从而四边形DQPF 是平行四边形,PQ ∥FD .连接CD ,因为PC ⊥平面ABC ,所以CD 是FD 在平面ABC 内的射影,故∠CDF 就是直线PQ 与平面ABC 所成的角,即∠CDF=θ.又BD ⊥平面PBC ,有BD ⊥BF ,知∠BDF=α,于是在Rt △DCF ,Rt △FBD ,Rt △BCF 中,分别可得,从而.(Ⅰ)(向量法)如图2,由,作DQ ∥CP ,且.连接PQ ,EF ,BE ,BF ,BD ,由(Ⅰ)可知交线l 即为直线BD .以点C 为原点,向量所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,设CA=a ,C B=b ,C P=2c ,则有.于是,∴=,从而,又取平面ABC 的一个法向量为,可得,设平面BEF 的一个法向量为,所以由可得.于是,从而.故,即sin θ=sin αsin β.点评:本题综合考查了线面平行的判定定理和性质定理、线面垂直的判定与性质定理、平行四边形的判定与性质定理、线面角、二面角、异面直线所成的角、通过建立空间直角坐标系利用法向量的夹角求二面角等基础知识与方法,需要较强的空间想象能力、推理能力和计算能力.20.(12分)考点:简单线性规划;正态分布曲线的特点及曲线所表示的意义.专题:不等式的解法及应用;概率与统计.分析:(I )变量服从正态分布N (800,502),即服从均值为800,标准差为50的正态分布,适合700<X ≤900范围内取值即在(μⅠ2σ,μ+2σ)内取值,其概率为:95.44%,从而由正态分布的对称性得出不超过900的概率为p 0.(II )设每天应派出A 型x 辆、B 型车y 辆,根据条件列出不等式组,即得线性约束条件,列出目标函数,画出可行域求解.解答:解:(Ⅰ)由于随机变量X 服从正态分布N (800,502),故有μ=800,σ=50,P (700<X ≤900)=0.9544.由正态分布的对称性,可得p 0=(P (X ≤900)=P (X ≤800)+P (800<X ≤900)=(Ⅰ)设A型、B型车辆的数量分别为x,y辆,则相应的营运成本为1600x+2400y.依题意,x,y还需满足:x+y≤21,y≤x+7,P(X≤36x+60y)≥p0.由(Ⅰ)知,p0=P(X≤900),故P(X≤360x+60y)≥p0等价于36x+60y≥900.于是问题等价于求满足约束条件且使目标函数z=1600x+2400y达到最小值的x,y.作可行域如图所示,可行域的三个顶点坐标分别为P(5,12),Q(7,14),R(15,6).由图可知,当直线z=1600x+2400y经过可行域的点P时,直线z=1600x+2400y在y轴上截距最小,即z取得最小值.故应配备A型车5辆,B型车12辆.点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查简单线性规划.本题解题的关键是列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.21.(13分)考点:直线与圆锥曲线的关系;三角形的面积公式;点到直线的距离公式.专题:压轴题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设出两个椭圆的方程,当直线l与y轴重合时,求出△BDM和△ABN的面积S1和S2,直接由面积比=λ列式求λ的值;(Ⅰ)假设存在与坐标轴不重合的直线l,使得S1=λS2,设出直线方程,由点到直线的距离公式求出M和N 到直线l的距离,利用数学转化思想把两个三角形的面积比转化为线段长度比,由弦长公式得到线段长度比的另一表达式,两式相等得到,换元后利用非零的k值存在讨论λ的取值范围.解答:解:以题意可设椭圆C1和C2的方程分别为,.其中a>m>n>0,.(Ⅰ)如图1,若直线l与y轴重合,即直线l的方程为x=0,则,,所以.在C1和C2的方程中分别令x=0,可得y A=m,y B=n,y D=Ⅰm,于是.若,则,化简得λ2Ⅰ2λⅠ1=0,由λ>1,解得.故当直线l与y轴重合时,若S1=λS2,则.(Ⅰ)如图2,若存在与坐标轴不重合的直线l,使得S1=λS2,根据对称性,不妨设直线l:y=kx(k>0),点M(Ⅰa,0),N(a,0)到直线l的距离分别为d1,d2,则,所以d1=d2.又,所以,即|BD|=λ|AB|.由对称性可知|AB|=|CD|,所以|BC|=|BD|Ⅰ|AB|=(λⅠ1)|AB|,|AD|=|BD|+|AB|=(λ+1)|AB|,于是.将l的方程分别与C1和C2的方程联立,可求得根据对称性可知x C=Ⅰx B,x D=Ⅰx A,于是②从而由①和②可得③令,则由m>n,可得t≠1,于是由③可得.因为k≠0,所以k2>0.于是③关于k有解,当且仅当,等价于,由λ>1,解得,即,由λ>1,解得,所以当时,不存在与坐标轴不重合的直线l,使得S1=λS2;当时,存在与坐标轴不重合的直线l,使得S1=λS2.点评:本题考查了三角形的面积公式,考查了点到直线的距离公式,考查了直线与圆锥曲线的关系,该题重点考查了数学转化思想方法和分类讨论的数学思想方法,(Ⅰ)中判断λ的存在性是该题的难题,考查了灵活运用函数和不等式的思想方法.22.(14分)考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性;数列的求和;不等式的证明.专题:压轴题;导数的综合应用;不等式的解法及应用.分析:(Ⅰ)先求出函数f (x )的导函数f ′(x ),令f'(x )=0,解得x=0,再求出函数的单调区间,进而求出最小值为f (0)=0;(Ⅰ)根据(Ⅰ)知,即(1+x )r+1≥1+(r+1)x ,令代入并化简得,再令得,,即结论得到证明;(Ⅰ)根据(Ⅰ)的结论,令,n 分别取值81,82,83,…,125,分别列出不等式,再将各式相加得,,再由参考数据和条件进行求解.解答:解;(Ⅰ)由题意得f'(x )=(r+1)(1+x )r Ⅰ(r+1)=(r+1)[(1+x )r Ⅰ1],令f'(x )=0,解得x=0.当Ⅰ1<x <0时,f'(x )<0,∴f (x )在(Ⅰ1,0)内是减函数;当x >0时,f'(x )>0,∴f (x )在(0,+∞)内是增函数.故函数f (x )在x=0处,取得最小值为f (0)=0.(Ⅰ)由(Ⅰ),当x ∈(Ⅰ1,+∞)时,有f (x )≥f (0)=0,即(1+x )r+1≥1+(r+1)x ,且等号当且仅当x=0时成立,故当x >Ⅰ1且x ≠0,有(1+x )r+1>1+(r+1)x ,①在①中,令(这时x >Ⅰ1且x ≠0),得.上式两边同乘n r+1,得(n+1)r+1>n r+1+n r (r+1),即,②当n >1时,在①中令(这时x >Ⅰ1且x ≠0),类似可得,③且当n=1时,③也成立.综合②,③得,④(Ⅰ)在④中,令,n 分别取值81,82,83, (125)得,,,…,将以上各式相加,并整理得.代入数据计算,可得由[S ]的定义,得[S ]=211.点评:本题考查了利用导数研究函数的单调性和求最值,以及学生的创新精神,是否会观察,会抽象概括,会用类比的方法得出其它结论,难度较大,注意利用上一问的结论. 。

湖北近五年(2008_2012年)高考数学最新分类汇编2函数理

湖北近五年(2008_2012年)高考数学最新分类汇编2函数理

湖北省2013届高三最新理科数学(精选试题16套+2008-2012五年湖北高考理科试题)分类汇编2:函数一、选择题 1 .(湖北省荆州市2013届高三3月质量检测(Ⅱ)数学(理)试题)函数f(x)=x+lgx-3的零点所在区间为 ( ) A .(3,+∞) B .(2,3) C .(1,2) D .(0,1) 【答案】B 2 .(湖北省黄冈市2013届高三数学(理科)综合训练题 )设函数()f x 的定义域为D ,若存在非零实数m 满足()x M M D ∀∈⊆,均有x m D +∈,且f (x +m )≥f (x ),则称()f x 为M 上的m 高调函数.如果定义域为R 的 函数()f x 是奇函数,当x ≥0时,22()f x x a a =--,且()f x 为R 上的4高调函数,那么实数a 的取值范围是 ( )A .]1,1[-B .)1,1(-C .]2,2[-D .)2,2(-【答案】A3 .(湖北省天门市2013届高三模拟测试(一)数学理试题)若5按x 升幂展开式的第三项为10,则y 关于x 的函数图象的大致形状为【答案】D4 .(2011年全国高考理科数学试题及答案-湖北)已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()222f x g x a a -+=-+(a >0,且0a ≠).若()2g a =,则()2f =( )A .2B .154C .174D .2a【答案】B 5 .(湖北省武汉市2013届高三5月供题训练数学理试题(二)(word 版) )设定义在R 上的函数⎪⎩⎪⎨⎧=≠-=3,13,|3|1)(x x x x f ,若关于x 的方程f 2(x) +af(x) +b=O 有5个不同实数解,则实数a 的取值范围是( )A .(0,1)B .(- ∞,-1)C .(1,+ ∞)D .( -∞,—2) U ( —2,— 1)【答案】D6 .(湖北省天门市2013届高三模拟测试(一)数学理试题 )设函数266,0()34,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数123,,x x x 满足123()()()f x f x f x ==,则123x x x ++的取值范围是 ( )A .11(,6]3B .2026(,)33C .2026(,]33D .11(,6)3【答案】D7 .(湖北省八市2013届高三3月联考数学(理)试题)已知函数21(0)()log (0)x x f x x x +⎧=⎨>⎩≤,则函数[()]1y f f x =+的零点个数是( )A .4B .3C .2D .1【答案】A8 .(2012年湖北高考试题(理数,word 解析版))函数2()cos f x x x =在区间[0,4]上的零点个数为( )A .4B .5C .6D .7【答案】C 【解析】由()2cos 0f x x x ==,得0x =或2cos 0x =.又[]0,4x ∈,所以[]20,16x ∈.由于()cos 02k k ππ⎛⎫+=∈⎪⎝⎭Z ,而在()2k k ππ+∈Z 的所有取值中,只有3579,,,,22222πππππ满足在[]0,16内.故零点个数为156+=.【点评】本题考查函数的零点个数的求解.求解函数的零点个数通常有两种方法:一、直接法,即求解出所有的零点;二、数形结合法,即转化为原函数的图象与x 轴的交点个数或分解为两个函数相等,进而判断两个函数图象的交点个数,此法往往更实用.本题是直接求解零点法,来年需注意数形结合法.9 .(湖北省八市2013届高三3月联考数学(理)试题)设a R ∈,函数()xxf x e a e-=+⋅的导函数是()f x ',且()f x '是奇函数,则a 的值为 ( )A .1B .12-C .12D .1-【答案】A10.(湖北省黄冈中学2013届高三第一次模拟考试数学(理)试题)已知定义在(0,)+∞上的单调函数()f x ,对(0,)x ∀∈+∞,都有2[()log ]3f f x x -=,则方程()'()2f x f x -=的解所在的区间是 ( ) A .(0,12) B .(1,12) C .(1,2) D .(2,3)[【答案】答案:C解析:由题2()log f x x C -=(C 为常数),则2()log f x x C =+故22[()log ]()log 3f f x x f C C C -==+=,得2C =,故2()log 2f x x =+,记21()()()2log ln 2g x f x f x x x '=--=-在(0,)+∞上为增函数 且112ln 21(1)0,(2)10ln 22ln 22ln 2g g -=-<=-=>, 故方程()'()2f x f x -=的解所在的区间是(1,2).11.(2012年湖北高考试题(理数,word 解析版))定义在(,0)(0,)-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}n a , {()}n f a 仍是等比数列,则称()f x 为“保等比数列函数”. 现有定义在(,0)(0,)-∞+∞上的如下函数:①2()f x x =; ②()2x f x =;③()f x =④()ln ||f x x =. 则其中是“保等比数列函数”的()f x 的序号为 ( )A .① ②B .③ ④C .① ③D .② ④【答案】C 【解析】设数列{}n a 的公比为q .对于①,22112()()n n n nf a a q f a a ++==,是常数,故①符合条件;对于②,111()22()2n n n n a a a n a n f a f a ++-+==,不是常数,故②不符合条件;对于③,1()()n n f a f a +===是常数,故③符合条件;对于④,11()ln ||()ln ||n n n n f a a f a a ++=,不是常数,故④不符合条件.由“保等比数列函数”的定义知应选 C .【点评】本题考查等比数列的新应用,函数的概念.对于创新性问题,首先要读懂题意,然后再去利用定义求解,抓住实质是关键.来年需要注意数列的通项,等比中项的性质等.12.(湖北省襄阳市2013届高三3月调研考试数学(理)试题)已知f(x)、g(x)都是定义域为R 的连续函数.已知g (x )满足:①当x > O 时,0)(>'x g 恒成立;②R x ∈∀都有g (x )= g (-x ).若关于;C 的不等式2()]([2+-≤a a g x f g是( )A .RB .[O, 1]【答案】D13.(2009高考(湖北理))设球的半径为时间t 的函数()R t .若球的体积以均匀速度c 增长,则球的表面积的增长速度与球半径( )A .成正比,比例系数为CB .成正比,比例系数为2CC .成反比,比例系数为CD .成反比,比例系数为2C【答案】 D .【解析】由题意可知球的体积为34()()3V t R t π=,则'2'()4()()c V t R t R t π==,由此可得'4()()()c R t R t R t π=,而球的表面积为2()4()S t R t π=, 所以'2'()4()8()()v S t R t R t R t ππ==表=, 即''''228()()24()()()()()()c c v R t R t R t R t R t R t R t R t ππ⨯表====,故选D14.(湖北省黄梅一中2013届高三下学期综合适应训练(四)数学(理)试题 )若函数f (x )满足)(21)1(x f x f =+,则f (x )的解析式在下列四式中只有可能是 ( )A .2x B .21+x C .x-2D .x 21log【答案】C 15.(2011年全国高考理科数学试题及答案-湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:300()2t M t M -=,其中M 0为t=0时铯137的含量.已知t=30时,铯137含量的变化率是-10In2(太贝克/年),则M(60)= ( ) A .5太贝克 B .75In2太贝克 C .150In2太贝克 D .150太贝克 【答案】D 16.(2012年湖北高考试题(理数,word 解析版))我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径. “开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式d . 人们还用过一些类似的近似公式. 根据π =3.14159判断,下列近似公式中最精确的一个是 ( )A .d ≈B .dC .d ≈D .d ≈【答案】D 【解析】设球的直径为d ,则球的体积为3344332d V r ππ⎛⎫== ⎪⎝⎭(,r d 分别为圆的半径、直径),所以d=≈,对于A项,d≈≈;对于C项, d≈≈对于D项,d≈≈;比较各选项的被开方数大小可知,选项D中的d与d=≈,故选D.【点评】本题考查球的直径与体积的关系,估算法.根据球的直径与体积的关系,即可用体积来表示直径;然后比较各选项中的表示直径的式子,看哪个最接近求出的式子即可.11年考查的是以放射性元素为背景,考查了导数的运算,难度不算大,主要是要读懂题意,本题承接了11年的思想,难度不大,重在考查数学知识在实际生活中的应用.来年需注意一些常见知识的实际应用,比如线性规划,函数的应用,数列的应用等.17.(湖北省黄冈市2013届高三4月调研考试数学(理)试题)已知函数),0()0,()(+∞⋃-∞是定义在xf上的偶函数,当0>x时,1)(4)(2),2(21,20,12)(|1|-=⎪⎩⎪⎨⎧>-≤<-=-xfxgxxfxxfx则函数的零点个数为()A.4 B.6 C.8 D.10【答案】D18.(湖北省武汉市2013届高三5月模拟考试数学(理)试题)下列函数中,在(0,)2π上有零点的函数是()A.()sinf x x x=-B.2()sinf x x xπ=-C.2()sinf x x x=-D.22()sinf x x xπ=-【答案】D19.(2008年普通高等学校招生全国统一考试理科数学试题及答案-湖北卷)函数f(x)=)4323(1122+--++-xxxxnx的定义域为()A.(- ∞,-4) ∪[2,+ ∞]B.(-4,0)∪(0,1)C.[-4,0]∪(0,1)D.[-4,0]∪(0,1)【答案】D20.(2009高考(湖北理))设a为非零实数,函数11(,)1axy x R xax a-=∈≠-+且的反函数是()A.11(,)1axy x R xax a-=∈≠-+且B.11(,)1axy x R xax a+=∈≠--且C.1(,1)(1)xy x R xa x+=∈≠-且D.1(,1)(1)xy x R xa x-=∈≠-+且【答案】 D .【解析】同文2 二、填空题21.(湖北省黄冈市2013届高三数学(理科)综合训练题 )设函数()ln(1)()x f x e x R =+∈可以表示成一个奇函数()g x 和一个偶函数()h x 之和,则()h x 的最小值是__________. 【答案】ln 2 ;22.(湖北省浠水一中2013届高三理科数学模拟测试 )若()()x xx f aal o gl o g2+-=对任意⎪⎭⎫⎝⎛∈21,0x 恒意义,则实数a 的范围________【答案】解析:0log 2>+-x x a 对⎪⎭⎫ ⎝⎛∈21,0x 恒成立,即2log x x a >由图像易知10<<a ,4121log ≥a解得)1,161[∈a 23.(湖北省天门市2013届高三模拟测试(一)数学理试题 )定义域是一切实数的函数)(x f y =,其图像是连续不断的,且存在常数)(R ∈λλ使得0)()(=++x f x f λλ对任意实数x 都成立,则称)(x f 是一个“λ—伴随函数”. 有下列关于“λ—伴随函数”的结论:①0)(=x f 是常数函数中唯一一个“λ—伴随函数”;②“21—伴随函数”至少有一个零点.;③2)(x x f =是一个“λ—伴随函数”;其中不正确的结论序号是________选做题:请考生在下列两题中任选一题作答,若两题都做,则按做的第一题评阅计分,本题 共5分.【答案】①③24.(湖北省武汉市2013届高三5月供题训练数学理试题(三)(word 版) )已知函数1|1|2--=x x y 的图象与函数y =kx 的图象恰有两个交点,则实数k 的取值范围 是_______. 【答案】(0,1)(1,2)⋃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省2013届高三最新理科数学(精选试题16套+2008-2012五年湖北高考理科试题)
分类汇编16:坐标系与参数方程
一、填空题
1 .(湖北省浠水一中2013届高三理科数学模拟测试 )(选修4-4:坐标系与参数方程)
已知曲线1C
的极坐标系方程为πsin()42ρθ+=,曲线2C 的参数方程为11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩
(t 为参数),则曲线1C 与2C 的交点的直角坐标为__________
【答案】解析:1C :1=+y x ,2C :422=-y x 联立解得2
3,25-==y x 2 .(湖北省武汉市2013届高三5月供题训练数学理试题(二)(word 版) )(选修4-4:坐标系与参数方程)
在极坐标系中,曲线C 1: 1)sin cos 2(=+θθρ与曲线C 2: ρ=a(a >0)只有一个公共点, 则 a =_______.
【答案】
3 .(湖北省武汉市2013届高三第二次(4月)调研考试数学(理)试题)(选修4-4:坐标系与参数方程) 在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线
⎩⎨⎧--=-=t
y x 41253(t 为参数)与曲线2ρ(cos 2θ-sin 2θ)=16相交于A,B 两点,则|AB| =______
4 .(湖北省襄阳市2013届高三3月调研考试数学(理)试题)(选修4-4:坐标系与参数方程)在直角坐标
系中,以坐标原点为极点,x 轴正半轴为极轴建 立极坐标系,曲线(a 为参数)与曲线
cos 22=-θρρ【答案】2
5 .(湖北省黄冈中学2013届高三第一次模拟考试数学(理)试题)(极坐标与参数方程)
已知抛物线C 的极坐标方程为2
sin 8cos 0ρθθ-=,若斜率为1的直线经过抛物线C 的焦点,与圆()2224(0)x y r r -+=>相切
,则r =________.
【答案】答案
解析:将2sin 8cos 0ρθθ-=化为普通方程即2
8y x =,得(2,0)F
6 .(湖北省八市2013届高三3月联考数学(理)试题)(选修4-4:坐标系与参数方程)设直线1l 的参数方程为13x t y a t =+⎧⎨=+⎩
(t 为参数),以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,另一直线2l 的方程为sin 3cos 40ρθρθ-+=,若直线1l 与2l
则实数a 的值为__________.
【答案】9或-11
7 .(湖北省天门市2013届高三模拟测试(一)数学理试题 )(坐标系与参数方程选做题)已知在平面直角坐
标系xoy 中,圆C
的参数方程为3cos ,(13sin x y θθθ
⎧=⎪⎨=+⎪⎩为参数),平面直角坐标系的原点作为极点,x 轴的
正半轴为以极轴,并在两种坐标系中取相同的单位长度建立极坐标系,直线l 的极坐标方程为
cos()06
πρθ+=,则直线l 截圆C 所得的弦长为__________.
【答案】
8 .(湖北省黄冈市2013届高三数学(理科)综合训练题 )(选修4-5:坐标系与参数方程)在直角坐标系xoy
中,直线l
的参数方程为12x t y ⎧=⎪⎪⎨⎪⎪⎩(t 为参数),若以直角坐标系xoy 的O 点为极点,ox 为极轴,且长度单位相同,建立极坐标系,得曲线C 的极坐标方程为2cos()4
πρθ=-.若直线l 与曲线C 交于,A B 两点,则AB =___________
【答案】 9 .(湖北省武汉市2013届高三5月供题训练数学理试题(三)(word 版) )(选修4- 4 :坐标系与参数方程)
在直角坐标系xOy 中,已知曲线C 1: ⎩⎨⎧-=+=t y t x 211(t 为参数)与曲线C 2: ⎩⎨⎧==θθcos 3sin y a x (θ为参数,a>0)
有一个公共点在x 轴上,则a=_____. 【答案】3
2
10.(2012年湖北高考试题(理数,word 解析版))(选修4-4:坐标系与参数方程)
在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系. 已知射线π4
θ=与曲线21,(1)x t y t =+⎧⎨=-⎩
(t 为参数)相交于A ,B 两点,则线段AB 的中点的直角坐标为__________.
【答案】55,22⎛⎫ ⎪⎝⎭【解析】曲线()
21,1x t y t =+⎧⎪⎨=-⎪⎩化为直角坐标方程是()22y x =-,射线4πθ=化为直角坐标方程是()0y x x =≥.联立()()22,0,
y x y x x ⎧=-⎪⎨=≥⎪⎩消去y 得2540x x -+=,解得121,4x x ==.所以
121,4y y ==.故线段AB 的中点的直角坐标为1122,22x y x y ++⎛⎫ ⎪⎝⎭,即55,22⎛⎫ ⎪⎝⎭
. 【点评】本题考查极坐标方程,参数方程与直角坐标方程的互化,中点坐标公式的应用问题.()()1122,,,A x y B x y 两点的中点坐标公式为1122,2
2x y x y ++⎛⎫ ⎪⎝⎭.来年需注意极坐标方程,参数方程与直角坐标方程的互化,直线与圆锥曲线的位置关系,交点个数等题型.
11.(湖北省黄冈市2013届高三4月调研考试数学(理)试题)(选修4—4,坐标与参数方程)在直角坐标系
xOy 中,曲线C 1的参数方程为⎪⎩
⎪⎨⎧==22,2t y t x (t 为参数),在以O 为极 点,以x 轴正半轴为极轴的极坐标系中,曲线C 2的方程为22)4sin(=+
πθρ,则C 1与C 2的交点个数为
________.
【答案】2
12.(湖北省七市2013届高三4月联考数学(理)试题)(坐标系与参数方程)在直角坐标平面内,以坐标原点0为极点,x 轴的非负半轴为极轴建立极坐标系,已知点M 的极坐标为
(42,π41),曲线C 的参数方程为⎪⎩⎪⎨⎧=+=α
αsin 2cos 21y x (α为参数),则点M 到曲线C 上的点的距离的最小值为____. 【答案】25-
13.(湖北省八校2013届高三第二次联考数学(理)试题)(选修4—4:坐标系与参数方程)在极坐标系中,过
圆 6cos ρ=θ的圆心,且垂直于极轴的直线的极坐标方程为_______________.
【答案】cos 3ρθ=
14.(湖北省荆州市2013届高三3月质量检测(Ⅱ)数学(理)试题)在极坐标系中,曲线ρ=2sinθ
与ρcosθ=-1(ρ>0,0≤θ<2π)的交点的极坐标为 .
【答案】3)4
π 15.(湖北省武汉市2013届高三5月模拟考试数学(理)试题)(坐标系与参数方程)
在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的参数方程为214x t y t
=⎧⎨=+⎩(t 为参数),曲线C
的极坐标方程为)4πρθ=+,则直线l 被曲线C 截得的弦长为__________________.
【答案】 16.(湖北省黄冈市2013届高三3月份质量检测数学(理)试题)(坐标系与参数方程)曲线C 1的极坐标方程为2
cos sin ,ρθθ=曲线C 2的参数方程为31x t y t =-⎧⎨=-⎩,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则曲线C 1上的点与曲线C 2上的点最近的距离为______. 【答案】82
7。

相关文档
最新文档