中英文文献翻译-分动箱

合集下载

汽车差速器中英文对照外文翻译文献

汽车差速器中英文对照外文翻译文献

中英文对照外文翻译(文档含英文原文和中文翻译)Failure analysis of an automobile differential pinion shaft AbstractDifferential is used to decrease the speed and to provide moment increase for transmitting the movement coming from the engine to the wheels by turning it according to the suitable angle in vehicles and to provide that inner and outer wheels turn differently. Pinion gear and shaft at the entrance are manufactured as a single part whereas they are in different forms according to automobile types. Mirror gear which will work with this gear should become familiar before the assembly. In case of any breakdown, they should be changed as a pair. Generally, in these systems there are wear damages in gears. The gear inspected in this study has damage as a form of shaft fracture.In this study, failure analysis of the differential pinion shaft is carried out. Mechanical characteristics of the material are obtained first. Then, the microstructure and chemical compositions are determined. Some fractographic studies are 2005 Elsevier Ltd. All rights reserved.Keywords: Differential; Fracture; Power transfer; Pinion shaft1. IntroductionThe final-drive gears may be directly or indirectly driven from the output gearing of the gearbox. Directly driven final drives are used when the engine and transmission units are combined together to form an integral construction. Indirectly driven final drives are used at the rear of the vehicle being either sprung and attached to the body structure or unsprung and incorporated in the rear-axle casing. The final-drive gears are used in the transmission system for the following reasons [1]:(a) to redirect the drive from the gearbox or propeller shaft through 90°and,(b) to provide a permanent gear reduction between the engine and the driving road-wheels.In vehicles, differential is the main part which transmits the movement coming from the engine to the wheels On a smooth road, the movement comes to both wheels evenly. The inner wheel should turn less and the outer wheel should turn more to do the turning without lateral slipping and being flung. Differential, which is generally placed in the middle part of the rear bridge, consists of pinion gear, mirror gear, differential box, two axle gear and two pinion spider gears.A schematic illustration of a differential is given in Fig, 1. The technical drawing of pinion the fractured pinion shaft is also given in Fig, 2, Fig. 3 shows the photograph of the fractured pinion shaft and the fracture section is indicated.In differentials, mirror and pinion gear are made to get used to each other during manufacturing and the same serial number is given. Both of them are changed on condition that there are any problems. In these systems, the common damage is the wear of gears [2-4]. In this study, the pinion shaft of the differential of a minibus has been inspected. The minibus is a diesel vehicle driven at the rear axle and has a passenger capacity of 15 people. Maximum engine power is 90/4000 HP/rpm, and maximum torque is 205/1600 Nm/rpm. Its transmission box has manual system (5 forward, 1 back). The damage was caused by stopping and starting the minibus at a traffic lights. In this differential, entrance shaft which carries the pinion gear was broken. Various studies have been made to determine the type and possible reasons of the damage. These are:•studies carried out to determine the material of the shaft;•studies carried out to determine the micro-structure;•studies related to the fracture surface.There is a closer photograph of the fractured surfaces and fracture area in Fig. 4. The fracture was caused by taking out circular mark gear seen in the middle of surfaces.2. Experimental procedureSpecimens extracted from the shaft were subjected to various tests including hardness tests and metallographic and scanning electron microscopy as well as the determination of chemical composition. All tests were carried out at room temperature.2.1 Chemical and metallurgical analysisChemical analysis of the fractured differential material was carried out using a spectrometer. The chemical composition of the material is given in Table 1. Chemical composition shows that the material is a lowalloy carburizing steel of the AISI 8620 type.Hardenability of this steel is very low because of low carbon proportion. Therefore, surface area becomes hard and highly enduring, and inner areas becomes tough by increasing carbon proportion on the surface area with cementation operation. This is the kind of steel which is generally used in mechanical parts subjected do torsion and bending. High resistance is obtained on the surface and high fatigue endurance value can be obtained with compressive residual stressby making the surface harder [5-7].In which alloy elements distribute themselves in carbon steels depends primarily on the compound and carbide forming tendencies of each element. Nickel dissolves in the αferrite of the steel since it has less tendency to form carbides than iron Silicon combines to a limited extent with the oxygen present in the steel to form nonmetallic inclusions but otherwise dissolves in the ferrite. Most of the manganese added to carbon steels dissolves in the ferrite. Chromium, which has a somewhat stronger carbide-forming depends on the iron, partitions between the ferrite and carbide phases. The distribution of chromium depends on the amount of carbon present and if other stronger carbide-forming elements such as titanium and columbium amount of carbon present and if other stronger carbide-forming elements such as titanium and columbium are absent. Tungsten and molybdenum combine with carbon to form carbides is there is sufficient carbon present and if other stronger carbide-forming elements such da titanium and columbium are absent. Manganese and nickel lower the eutectoid temperature [8]. Preliminary micro structural examination of the failed differential material is shown in Fig. 5. It can be seen that the material has a mixed structure in which some ferrite exist probably as a result of slow cooling and high Si content. High Si content in this type of steel improves the heat treatment susceptibility as well asan improvement of yield strength and maximum stress without any reduction of ductility [9]. If the micro-structure cannot be inverted to martensite by quenching, a reduction of fatigue limit is observed.There are areas with carbon phase in Fig. 5(a). There is the transition boundary of carburization in Fig. 5(b) and (c) shows the matrix region without carburization. As far as it is seen in there photographs, the piece was first carburized, then the quenching operation was done than tempered. This situation can be understood from blind martensite plates.2.2 Hardness testsThe hardness measurements are carried out by a MetTest-HT type computer integrated hardness tester. The load is 1471 N. The medium hardness value of the interior regions is obtained as obtained as 43 HRC. Micro hard-ness measurements have been made to determine the chance of hardness values along cross-section be-cause of the hardening of surface area dueto carburization. The results of Vickers hardness measurement under a load of 4.903 N are illustrated in Table 2.2.3 Inspection of the fractureThe direct observations of the piece with fractured surfaces and SEM analyses are given in this chapter. The crack started because of a possible problem in the bottom of notch caused the shaft to be broken completely. The crack started on the outer part, after some time it continued beyond the centre and there was only a little part left. And this part was broken statically during sudden starting of the vehicle at the traffic lights. As a characteristic of the fatigue , there are two regions in the fractured surface. These are a smooth surface created by crack propagation and a rough surface created by sudden fracture. These two regions can be seen clearly for the entire problem as in Fig. 4. The fatigue crack propagation region covers more than 80% of the cross-section.Shaft works under the effect of bending, torsion and axial forces which affect repeatedlydepending on the usage place. There is a sharp fillet at level on the fractured section. For this reason, stress concentration factors of the area have been determined. K t = 2.4 value (for bending and tension), and K t = 1.9 value (for torsion) have been acquired according to calculations. These are quite high values for areas exposed to combined loading.These observations and analysis show that the piece was broken under the influence of torsion with low nominal stresses electron microscopy shows that the fracture has taken place in a ductile manner (Fig.6). There are some shear lips in the crack propagation region which is a glue of the plastic shear deformations. Fig. 7 shows the beach marks of the fatigue crack propagation. The distance between any lines is nearly 133 nm.3. ConclusionsA failed differential pinion shaft is analysed in this study. The pinion shaft is produced from AISI 8620 low carbon carburising steel which had a carbursing, quenching and tempering heat treatment process. Mechanical properties, micro structural properties, chemical compositions and fractographic analyses are carried out to determine the possible fracture reasons of the component. As a conclusion, the following statements can be drawn:•The fracture has taken place at a region having a high stress concentration by a fatigue procedure under a combined bending, torsion and axial stresses having highly reversible nature.•The crack of the fracture is initiated probably at a material defect region at the critical location.•The fracture is taken place in a ductile manner.•Possible later failures may easily be prevented by reducing the stress concentration at the critical locationAcknowledgementThe author is very indebted to Prof. S. Tasgetiren for his advice and recommendations during the srudy.References[1]Heisler H. Vehicle and engine technology. 2nd ed. London: SAE International; 1999.[2]Makevet E, Roman I. Failure analysis of a final drive transmission in off-road vehicles. EngFailure Anal 2002;9:579-92.[3]Orhan S, Aktu ¨rk N. Determination of physical faults in gearbox through vibrationanalysis. J Fac Eng Arch Gazi University 2003;18(3):97–106..[4]Tasgetiren S, Aslantas ? K, Ucun I. Effect of press-fitting pressure on the fatiguedamages of root in spur gears. Technol Res: EJMT 2004;2:21–9.[5]Nanawarea GK, Pableb MJ. Failures of rear axle shafts of 575 DI tractors. EngFailure Anal 2003;10:719–24.[6]Aslantas K, Tasgetiren S. A study of spur gear pitting formation and life prediction.Wear 2004;257:1167–75.[7]Savas V, O ¨ zek C. Investigation of the distribution of temperature on a shaft withrespect to the deflection. Technol Res: EJMT 2005;1:33–8.[8]Smith FW. Principles of materials science and engineering. 3rd ed. USA: McGraw-HillSeries; 1996. p. 517–18.[9]ASM metal handbook, vol. 1. Properties and selection, irons, steels, and highperformance alloys; 1991.[10]Voort GFV. Visual examination and light microscopy. ASM handbook metallographyand microstructures. Materials Park (OH): ASM International; 1991. p. 100–65.汽车差速器小齿轮轴的失效分析摘要差速器是用来降低速度增加扭矩并根据合适的角度向两轮传递动力。

中英文文献翻译-离合器

中英文文献翻译-离合器

附录 AClutch between engine and transmission installed in the car to travel from the start the whole process, often need to use the clutch. Its role is to make the engine and transmission can be gradually between the joint, thus ensuring a smooth start car; temporarily cut off the link between the engine and transmission to shift at the time of shift and reduce the impact; When the car when emergency braking from Separate role in preventing the transmission and other drive system overload, play a protective role.Clutch similar to the switch, splice or break away from the power transmission and, accordingly, have any form of auto clutch, but the form is different.By the friction plate clutch, springs, pressure plate and the power output shaft composed, arranged between the engine and gearbox, the engine flywheel to the torque is passed to the stored transmission, to ensure that vehicles in different driving conditions passed to the driver Wheel driving force and the right amount of torque, is the scope of the powertrain. In the half-time of linkage, clutch and power input power output allowed speed difference, that is, the speed error to achieve through its transfer an appropriate amount of power. Clutch is divided into three work status, ie the clutch all connections, some of the half clutch linkage and the clutch is not linked.When a vehicle in normal driving, the pressure plate is jammed against the friction plate on the flywheel, pressure plate and friction plate at this time the friction between the largest between the input shaft and output shaft remained relatively static friction, both the same speed . When the vehicle is started, the driver depresses the clutch, clutch pedal movement by pulling back pressure plate, which is the separation of the pressure plate and friction disc, pressure plate and flywheel at this time no contact, but also the relative friction does not exist. Last one, that is, half of the clutch linkage status. At this point, the pressure plate and friction disc friction less than the full-linked state. Clutch pressure plate and flywheel friction plate on the sliding friction between the state. Flywheel speed is greater than the output shaft speed, transmission out of the power from the flywheel to the transmission part of the pass. Between the engine and driving wheels at this time is equivalent to a soft connection status.In general, the clutch and the shift in the vehicle when starting to play a role, this time a transmission shaft and the speed difference between the two shafts, engine power must be cut with a shaft after the synchronizer can be very good a shaft speed will be kept synchronized with the second axis, gear hanging up after, and then through the clutch shaft and the engine power will be a combination of the power continue to be transmitted. In the clutch, there is an essential buffer device, which consists of two similar to the flywheel with the disc, the disc hit a rectangular groove, the groove arrangement of the spring, in the face of fierce shock between the two disc springs between the elastic effect, buffer external stimuli. Effective protection of the engine and clutch. Various parts of the clutch, pressure plate spring strength, friction coefficient of friction plate, clutch diameter, location, and the clutch friction disc clutch performance is to determine the number of key factors, the greater the stiffness of the spring, the higher the friction coefficient of friction plates, the larger the diameter of the clutch, clutch performance, the better.附录 B离合器安装在发动机与变速器之间,汽车从启动到行驶的整个过程中,经常需要使用离合器。

汽车变速器变速箱外文文献翻译、中英文翻译、外文翻译

汽车变速器变速箱外文文献翻译、中英文翻译、外文翻译

TRANSMISSIONOf all transmission technologies, the manual gearbox is the most efficient; around 96 per cent of the energy that is put in comes out of the other end. But not everyone can drive one or wants to. Because you have to dip the clutch pedal, it is less comfortable to drive in heavy traffic. It makes the driver tired and the torque interruptions’ head-nod effect on passengers can be wearing.The driver's clutch control and corresponding torque interruptions are also the manuals weak point. When accelerating up through the gearbox, each up-shift requires the driver to cut the torque momentarily by lifting the gas pedal and dipping the clutch. It may just take a second to complete the operation, but during this time the vehicle is losing speed and acceleration.At the opposite end of the spectrum is the traditional automatic. The modern transmission is by far, the most complicated mechanical component in today’s automobile. It is a type of transmission that shifts itself .A fluid coupling or torque converter is used instead of a manually operated clutch to connect the transmission to the engine.There are two basic types of automatic transmissions based on whetherthe vehicle is rear wheel drive . On a rear wheel drive car , the transmission is usually mounted to the back of the engine and is located under the hump in the center of the floorboard alongside the gas pedal position . A drive shaft connects the rear of the transmission to the final drive which is located in the rear axle and is used to send power to the rear wheel. Power flow on this system is simple and straight forward going from the engine, through the torque converter , then through the transmission and driver shaft until it reaches the final driver where it is split and sent to the two rear wheel .On a front wheel drive car, the transmission is usually combined .With the final drive to from what is called a transaxle. The engine on a front wheel driver car is usually mounted sideways in the car with the transaxle tucked under it onthe side of the engine facing the rear of the car. Front axles are connected directly to the transaxle and provide power to the front wheels. In this example, power flows from the engine through the torque converter to a large chain that sends the power through a 180 degree turn to the transmission that is along side the engine. From there,The power is routed through the transmission to the final drive where it is split and sent to the two front wheels through the drive axles.There are a number of other arrangements including front drive vehicles where the engine is mounted front to back instead of sideways and there are other systems that drive all four wheels but the two systems described here are by far the most popular. A must less popular rear drive arrangement has the transmission mounted to the final drive at the rear and is connected by a drive shaft to the torque converter which is still mounted on the engine. This system is found on the new corvette and is used in order to balance the weight evenly between the front and rear wheels for improved performance and handling. Another rear drive system mounts everything, the engine, transmission and final drive in the rear. This rear engine arrangement is popular on the Porsche.The modern automatic transmission consists of many components and systems that are designed to work together in a symphony of planetary gear sets, the hydraulic system, seals and gaskets, the torque converter, the governor and the modulator or throttle cable and computer consider being an art form.On the automobile planet gear mainly uses in two places, one is the driving axle reduction gear, two is the automatic transmission. Very many net friends all want to know that, the planet gear has any function, why automobile must have it . We knew very well the gear major part all rotates the spool thread fixed gear. For example mechanical type clock and watch, above all gears although all in make the rotation, but their rotation center (with center of a circle position superposition) often installs through the bearing on the cabinet, therefore, their rotating axis all is the relative cabinet fixed, thus also is called "dead axle gear" . Has must have surely moves, the corresponding place, some kind of not that manner knows very well is called "planet gear" the gear, their rotation spool thread is not fixed, but is installs the support which may rotate in (blue color) on(in chart black part is shell, yellow expression bearing). The planet gear (green) besides can look like the dead axle gear such to revolve own rotating axis (B-B) to rotate, their rotating axis also (is called planet) along with the blue color support to circle other gears the spool thread (A-A) to rotate. Circles oneself spool thread the rotation to be called "rotation", circles other gear spool threads the rotation to be called "revolution", looks like in solar system planet such, therefore acquires fame.The spool thread fixed gear drive principle is very simple, meshes mutually in a pair in the gear, some gear takes the driving pulley, the power spreads from its there, another gear takes the driven wheel, the power outputs from it toward outside. Also some gears only take the stopover station, at the same time meshes with the driving pulley, one side meshes in addition with the driven wheel, the power passes from its there.In contains the planet gear in the gear system, the situation was different. Because has the planet frame, in other words, may have three rotating axes permissions power input/Output, but also may use the coupling or the brake and so on method. in needs time limits axis the rotation, is left over two axes to carry on the transmission, as the matter stands, meshes mutually between the gear relations may have the many kinds of combinations: The power from sun gear input, outputs from other sun gear, the planet put through brake mechanism has checked dies; Power from sun gear input, from planet output, moreover a sun gear ecks dies; The power from a planet input, outputs from sun gear, moreover a sun gear checks dies; Two powers separately from two sun gears inputs, after synthesis from planet output; Two powers separately from the planet and sun gear input, after the synthesis output from other sun gear; The power from sun gear input, divides two groups outputs from other sun gear and the planet frame; The power from a planet input, divides two groups to output from two sun gears;Its shift quality is good thanks to its torque converter, but efficiency is relatively poor despite recent advances. Because of this, a lot of the current research is trying to find an efficient alternative to the conventional automatic.The main technologies are continuously variable transmissions (CVTs); dualclutch transmissions (DCTs) and automated manual transmission (AMTs).They all offer different benefits over the conventional planetary automatic.The CVT uses a belt chain or torodial shaped dish drive to vary an infinite number of gear ratios. It has improved efficiency and cost when compared to conventional automatics. Its advantage comes from its simplicity. It consists of very few components;usually a rubber or metal-link belt;a hydraulically operated driving pulley, a mechanical torque-sensing driving pulley, microprocessors and some sensors.The transmission works by varying the distance between the face of the two main pulleys. The pulleys have V-shaped grooves in which the connecting the belt rides. One side of the pulley is fixed axially; the other side moves, actuated by hydraulics.When actuated, the cylinder can increase or reduce the amount of space between the two sides of the pulley. This allows the belt to ride lower or higher along the walls of the pulley, depending on driving conditions. This changes the gear ratio. A torodial-type design works in a similar way but runs an discs and power- rollersThe "step less" nature of its design is CVT's biggest draw for automotive engineers .Because of this, a CVT can work to keep the engine in its optimum power range, thereby increasing efficiency and mileage. A CVT can convert every point on the equine’s operating curve to a corresponding point on its own operating curve.The transmission is most popular with Japanese carmakers and Japanese supplier JATCO is a major producer. But in the US and Europe driving styles are different. Uptake has been slow despite Audi and other manufacturers having Offered CVT operations on their ranges.The DCT is, in effect, two manual gearboxes coupled together. Gear shifts are made by switching from one clutch on one gearbox to another clutch on the other. The shift quality is equal to a conventional automatic, but slip, fluid drag and hydraulic losses in the system result in only slightly improved efficienc y and acceleration over the conventional planetary automatic. Developing the controlstrategy is costly too."Resent advances in conventional automatic technology have weakened the argument to develop and set up production for CVT or DCT," says Bill Martin, managing director of transmission firm Zeroshift "Some carmakers have cancelled DCT projects because of the cost."The cheapest way to build an automatic is with an AMT. AMTs use actuators to replace the clutch pedal and gear stick of a conventional manual. They keep the high efficiency and acceleration of a manual gearbox, but the shift quality on some models is lacking. Torque interruptions and the head-nod effect are the most common complaint.SO what is the alternative? There are always new ideas in transmissions, but Zeroshift says that its technology has efficiency benefits over a manual, delivering fuel economy improvements to city driving. Shift quality can also be equal to that of a refined automatic.Zeroshift's approach is an upgrade to the AMT. The synchromesh is replaced with an advanced dog engagement system.Dog engagement has been used for many years in motor sport to allow fast shifts. Conventional dog Boxes are unsuitable for road use as the large spaces between the drive lugs or 'dogs" create backlash, an uncomfortable shunt caused by the sudden change in torque direction.Zeroshift's technology solves this problem by adding a second set of drive dogs. It has also made each of The two sets of dogs only capable of transmitti ng torque in one or other opposing directions错误!未找到引用源。

自动变速器中英文对照外文翻译文献

自动变速器中英文对照外文翻译文献

中英文翻译外文翻译THE RESEARCHS OFAMT SHIFTING SCHEDULESVehicular Automatic Transmission can be divided into three types: Automatic Transmission (AT), Automated Mechanical Transmission (AMT) and Continuously Variable Transmission (CVT). AMT has become a kind of transmission that is full of potentiality, due to its high transfer efficiency, low cost and easiness to manufacture.The research on AMT shifting performance is key technology in the developing. Shifting performance directly influence the market competition and industrialization of AMT.AMT has good market expectation, but during the shifting procedure, the power must be cut off which causes the poor shifting performance than AT and CVT. Only through improving the shifting performance can the commercial competence be established. So the virtual important thing is to find the way to improve shifting performance.The development of AMT can be divided into three phases: semi-automatic, automatic and intelligent. The two major part of AMT are: the hardware including the mastered object, executor, sensors and TCU; and the software performing the control strategy.The performance of AT shift influences greatly the performance of the vehicle. So the research on at shift quality is an important problem in the domain of AT researching. Shift quality control of AT is accomplished by electronic andhydraulic system. To shift smoothly, according the real time throttle valve opening and vehicle speed signal, the controller sends electronic signals to control oil pressure changing curve of the applying elements. this paper analyzes and research detailed shift quality control system,the analyzing model of shifting process and pressure changing curve of the applying elements Firstly this paper summarizes the existing evaluated quota of shift quality, and fully analyzes and introduces the existing control manner of AT shift quality.To meet the needs of research of vehicle starting and the real time control of shift, this paper puts forward a simplified model of engine-torque and a dynamics model of AT shifting process. Through the applying of the established model, this paper fully analyzes the process of the AT shifting.This paper drafts the proper oil pressure changing curve of the applying elements which can improve the AT shift quality, and gives the material calculated methods of the AG4 AT. This paper simulates the AG4 AT’s shifting process of 2H to 3H.The results of the simulation validate the established simplified models and the expected oil pressure changing curve.This paper fully analyzes the mechanism of the pressure regulating and flow controlling system of the AG4 AT, and preparatory discusses the design of the block-diagram of the shift quality control. This paper test the control system and hydraulic system of the AG4 AT by the AT hydraulic-electronic testing-bed. The result of the test validates the correction of these analyses.Automated Mechanical Transmission, as so called AMT, is a new-style transmission system. AMT technology applies the automatic technology to the manual mechanical transmission and makes the selection-gear, shift, clutch and throttle implement automatically. AMT technology is suitable for the situation of our country, and has an expansive market and development foreground. Shift schedules decide the time to shift and are the soul of the AMT. When the AMT is working, by comparing the states of the vehicle with the optimal shift schedules, the AMT decides the optimal shift time and achieves the shift automatically. This will lessen the tiredness of the driver and improve the safety. At the same time, the power and fuel-economy of the vehicle can also be improved. Theauthor chooses the shift schedule as the key technology problem to be researched and the main study aim of this thesis is to get the optimal shift schedules for the AMT and so improve the power and fuel-economy of the vehicle. Through analyzing the influence factors of power and fuel-economy for the automobile, the author get the establishment methods for the optimal-power shift schedule and optimal fuel-economy shift schedule. In order to solve the influence of mass on the shift schedule, the author presents a variable-structure-controlled shift system. This enriches the theory of shift schedules. Because the computer simulation can save a lot of manpower and material resources comparing with the true-car test, so in this thesis, the author uses the simulation toolbox MATLAB/Simulate to setup the simulation model for shift schedules. Using this model, the optimal-power shift schedule and optimal fuel-economy shift schedule above are simulated and proved to be reasonable.Shifting performance is defined as the extent of swiftness and softness during the procedure of non-power shifting and to extend the life of the power train. The index is comfort of passenger, time duration and shock, nine factors maybe influence the shifting performance, and two experimental methods can be used to investigate the nature of this performance: one is collecting real-time data during road experiment and analyzing them, the other is the simulation of the operation conditions of the vehicle.The core of the AMT system is the control strategy, the principle of the clutch engagement, shifting procedure, the choice of control method and the CAN communication between TCU and ECU can influence the shifting performance.Shifting schedule is the schedule of auto shifting time between two shifts with controlling parameters. It includes economical and dynamical shifting schedule. At present, shifting schedule of two controlling parameters (vehicle speed and opening on throttle) is mainly used. If shifting schedule is not good, shifting will not happen at right time and the working condition of engine will be severe. It will make the sound of engine abnormally and stability badly through the whole shifting procession. Sometimes even flame out Schedule of clutchengagement is determined by releasing journey of clutch, opening of throttle, shifting, vehicle speed and loading. The mainControlling goals are engaging quantity and engaging speed. The engaging control of clutch is mainly referred to the control of engaging speed. It is divided into three stages: fast, slow, fast. Shifting quality is directly influenced by the second stage. If engaging harder, it will make shifting concussion, even flame out; if engaging more slowly, it will make the friction time longer and reduce its longevity. The main controlling parameters are difference between initiative and passive and torques on both sides. When torques being approximately equal, it is proved by experiments that it can guarantee shifting time and not make concussion through the procession of engagement at the time of difference of rotating speed below some value. Meanwhile, the abrasion of clutch is not severe.Shifting procedure is the procedure through working harmoniously among engine, clutch and transmission. Their cooperation will affect shifting time heavily. In order to decrease the shifting time, the time that is spent on the friction of the clutch should be decreased first. If we intend to increase the time of non-load stage, which helps to minimize the difference of the rotary speed between the driving disc and the driven disc. If we intend to shorten the time of the non-load stage, engage the clutch immediately after the gear change. The clutch can engage in a satisfying period if the new method of controlling the engaging speed of the clutch is realizable. And the time that is spent on synchronizing the gears should also be shortened. It can be realized in the following two ways. The first is to decrease the difference of the driving gear and the driven gear. The second is to increase the shifting force. If realizing the union control between ECU and TCU by CAN bus, AMT has the best control and the best shifting performance by use of communication strategy between TCU and ECU.Influence on shifting performance by hardwareThe elements in hardware system are the basis of proper functions of AMT. Executors, sensors, electronic components, hydraulic systems have influences onshifting performance, the choice of hardware parameters is of vital important to improvement of shifting performance.With the development of the theory and technology of vehicle, the technical increasingly mature of microprocessor and the extensive application of electronic technique on the car, people have no limit at satisfying the automotive means of transportation only, facing gradually from the request of the car power, economy and easily manipulating, flexibility, safety, an d the intelligent type of car becomes the focus in the vision of people increasingly. Company’s publicity slogan of" person, car, life"," make people the center" etc. On the side exhibit the expectation of people to the automotive individuation, humanity.In the development direction of the car intelligence, the intelligence of the automatic gearbox has important effect. But the intelligence of the automatic gearbox embodies at the establishment of the shift regulation. For the fashion, for satisfying people to the new automotive request, for competitive advantage of the car type, at present, each big factory in world worked very much in shift regulation of new car type. Among those, the most arresting is AL4 automatic gearbox developed by PEUGEOT/CITROEN and RENAULT in that there unexpectedly are the 10 kinds of so many shift regulations. In the big system of person— car — road, the good and bad of the car control, reflect primarily in the coordination of the vehicle and environment (road), the coordination of the vehicle and person. And so, the electronic automatic control system can save various regulations to provide the driver to choose to use, not only having the economic regulation, motive (call to sport the type again) regulation, but also still having the general (usual) regulation, environment temperature and regulation with the outsider condition variety etc. Namely, the point of shifting can be freely enacted for every kind of regulation. In the intelligence direction of the shift regulation, everyone has made much work up to now, parts of the results has been applied on the car. But the work that developing this intelligent shift regulation still is hard, this is mainly because of:1. The intelligence degree of the current intelligent gearbox needs to be increased, and it expresses at that accurate degree to identify environment is nothigh and to identify the driver’s driving can't give satisfaction.2. The intelligence function is still not perfect. The intelligent automatically shift system is an open system; it must be continuously perfect and plentiful on the current foundation. Only this way, it can adapt to the driving request of the different drivers, reducing the driver’s labor strength, increasing the performance of the whole vehicle.Conventional design method which used in the structure parameters' design of automobile gear box and synchronizer is a time-wasting job and hard work, and it is difficult to get idea design parameters and no good to the enhancement of products qualities. The optimum design of automobile gearbox and synchronizer which take the advantage of computers seeking the best structure parameters within constrains is a perfect and high-quality design method. The main target of this article is to set up a optimum mathematical model of structure parameters of the truck's gearbox and synchronizer, the auth or use a optimum method based on K-T equation to improve the design level of automobile gearbox and synchronizer. Gear box is a important part of transmission, so the optimization of automobile gearbox is very important because the transmission is a main part of automobile. According to the design request and character sofa sort of truck, the optimum mathematical model of truck's gearbox is analyzed and set up in this article to decrease its weight and volume when the strength, stiffness, and lifetime of parts are permitted. And we can receive a satisfaction result through optimizing it's parameter for instance.Synchronizer is a important part of automobile gearbox, it make drive gear and driven gear engaged after their synchronized, so it can decrease engaged shock and noise, it can decrease shift forcing and make it comfort to gear shift and increase the life of synchronizer. The synchronized process of synchronizer is analyzed in this article; we can receive a satisfaction result through optimizing its influence parameter for instance when the synchronized time is the shortest. The optimum toolbox of MATLAB is a convenient of ware of modern optimization with fast speed and powerful function. The algorithms of different mathematical subsets are divided into different librarians in the form offunctions in MATLAB optimum toolbox. When we use them, we just call the functions and give special parameters to solve the problems and this will be fast and accurate. The author gives an optimum design for automobile gearbox and synchronizer by using the optimum toolbox of MATLAB and receives a satisfaction result.自动变速器换档规律的研究车辆自动变速器通常分为液力机械式自动变速器(简称AT)、电控机械式自动变速器(简称AMT)和机械式无级变速器(简称CVT)。

中英文文献翻译—双离合变速器

中英文文献翻译—双离合变速器

附录外文文献Dual clutch transmissionFrom Wikipedia, the free encyclopediaA dual clutch transmission, commonly abbreviated to hoop DCT (sometimes informally referred to as a twin-clutch gearbox, double clutch transmission, or similar variations thereof), is a differing type of semi-automatic or automated manual automotive transmission. It utilises two separate clutches for odd and even gear sets. It can fundamentally be described as two separate manual transmissions (with their respective clutches) contained within one housing, and working as one unit. They are usually operated in a fully automatic mode, and many also have the ability to allow the driver to manually shift gears, albeit still carried out by the transmission's electro-hydraulics.This type of transmission was invented by Frenchman Adolphe Kégresse just prior to World War II but he never developed a working model. The first actual DCTs arrived from Porsche in-house development, for Porsche racing cars in the 1980s, when computers to control the transmission became compact enough: the Porsche Doppelkupplungsgetriebe (English: dual clutch gearbox) (PDK) used in the Porsche 956 and 962 Le Mans race cars from 1983, and the Audi Sport Quattro S1 rally car.A dual clutch transmission eliminates the torque converter as used in conventional epicyclic-geared automatic transmissions. Instead, dual clutch transmissions that are currently on the market primarily use two oil-bathed wet multi-plate clutches, similar to the clutches used in most motorcycles, though dry clutch versions are also available.The first series production road car to be fitted with a DCT was the 2003 V olkswagen Golf Mk4 R32.As of 2009, the largest number of sales of DCTs in Western Europe are by various marques of the German V olkswagen Group, though this is anticipated to lessen as other transmission makers and vehicle manufacturers make DCTs available in series production automobiles. In 2010, on BMW Canada's website for the 3 Series Coupe, it is described both as a 7-speed double clutch transmission and as a 7-speed automatic transmission. It is actually a dual clutch semi-automatic.In DCTs where the two clutches are arranged concentrically, the larger outer clutch drives the odd numbered gears, whilst the smaller inner clutch drives the even numbered gears. Shifts can be accomplished without interrupting torque distribution to the driven roadwheels, byapplying the engine's torque to one clutch at the same time as it is being disconnected from the other clutch. Since alternate gear ratios can pre-select an odd gear on one gear shaft whilst the vehicle is being driven in an even gear, (and vice versa), DCTs are able to shift more quickly than other cars equipped with single-clutch automated-manual transmissions (AMTs), a.k.a. single-clutch semi-automatics. Also, with a DCT, shifts can be made more smoothly than with an AMT, making a DCT more suitable for conventional road cars.Characteristic of Dual clutch gearboxAdvantages:1. Compared with the traditional planetary gear type automatic gearbox fuel economy is more advantageous to the ascension can reduce fuel consumption about 15 percent2. During the shift, almost no damage3. When high-grade gear is already in preparation condition, rise against extremely fast, achieve astonishing 8 millisecond4. No matter what is running mode accelerator or condition, can reach 600 shift time (at least from the odd block to millisecond odd block, or even block drop from even when it took about block, for 900 milliseconds, for example from the first five block to 3 block)Faults:1. The electric control system and hydraulic system due to the existence of gearbox efficiency, double clutch than traditional manual gearbox still used to deliver big torque, especially the wet dual clutch gearbox is even more so2. Dual clutch gearbox cost is higher, the development of precision and complex double clutch, resulting in higher prices3. When need to switch gears in preparation condition, not shift time relatively long, in some cases even more than 1 second4. Dual clutch gearbox, compared with the traditional manual gearbox heavier5. Dual clutch the biggest transfer torque transmission on the low side, restrain the engine of space6. Early dual clutch gearbox reliability poor7. Gearbox lubricant need according to factories require change regularly, and replacement costs is not cheap附录外文文献翻译双离合变速器双离合变速器是当前发展最迅速的新型变速箱,它以传统手动变速箱为基础加入双和电控组件,获得优异的性能表现和良好的燃油经济性。

汽车变速器外文文献翻译、中英文翻译、外文翻译

汽车变速器外文文献翻译、中英文翻译、外文翻译

TRANSMISSIONManual transmission is one of the most common transmission, referredto as MT. Its basic structure in a single sentence is a central axis, twoinput shaft, namely, the axial and axial oart, they constituted the transmission of the subject, and, of course, a reverse axis. Manual transmission gear transmission and manual, contain can in axial sliding gears, through different meshing gears to change gear of torsional purpose.The typical structure and principle of the manual transmission.Input shaft also says, it's in front of the spline shaft directly withclutch platen, thus the spline set by the engine relay of torque. The firstshaft gear meshing gears, often with oart as input shaft, and the gear on oart will turn. Also called shaft, because even more solid shaft of gear. The output shaft, and the second shaft position have the drive shaftgear, may at any time and under the influence of the control devices and the corresponding oart gear, thus changing the speed and torque itself. The output shaft is associated with tail spline shaft torque transmissionshaft, through to drive to gear reducer.Predictably, transmission gear drive forward path is: input shaftgear - oart gnaws gnaws gear - because the second shaft gear - corresponding corresponding gear. Pour on the axle gear can also controldevice, by moving axis in the strike, and the output shaft gear and oart gear, in the opposite direction.Most cars have five forward and reverse gear, each one has certain ratio,the majority of gear transmission more than 1, 4 gears transmission is 1, called directly, and ratio is less than 1 of article 5 gear shift accelerated called. The output axis gear in the mesh position, can acceptpower transmission.Due to the gearbox output shaft to input shaft and the speed of theirgear rotating, transform an "synchronization problem". Two rotating speeddifferent meshing gears forcibly inevitable impact and collision damage gear. Therefore, the old transmission shift to use "two feet clutch" method, ShengDang in neutral position shift to stay for a while, in the space location on the door, in order to reduce gear speed. But this operation is more complex, difficult to grasp accurately. Thereforedesigners to create "synchronizer", through the synchronizer will makethe meshing gears reach speed and smooth.Currently the synchronous transmission adopts is inertial synchronizer, it mainly consists of joints, synchronizer lock ring etc,it is characteristic of the friction effect on achieving synchronization.Mating, synchronizer and mating locking ring gear tooth circle have chamfering (locking horns), the synchronizer lock ring inside surface ofgear engagement ring and the friction surface contact. The lock horns with cone when designing the proper choice, has been made to the surface friction of meshing gears with gear synchronous, also can rapid producesa locking function, prevent the synchronous before meshing gears. When synchronous lock ring of gear engagement with surface contact surface, the outer circle in friction torque under the action of gear speed rapiddecrease (increase) or to synchronous speed equal, both locking ring spunconcurrent, relative to lock ring gear synchronous speed is zero, thus inertia moment also disappear, then in force, driven by the junction of unimpeded with synchronous lock ring gear engagement, and further to engagement with the engagement ring gear tooth and complete shift process.functional (1) change ratio, meet different driving conditions for tractionengine, the need to work in the favorable conditions and meet the speed may request. In a wide range of vehicle speed changing the size and automobile driving wheel on the size of the torque. Due to the differentdemands, automobile driving conditions of vehicle speed and torque can drive in a broad range of change. For example, in high speed can be reachedon 100km/h, while in the urban district, speed in 50km/h. In the empty flat roads, road, very little resistanceWhen When carrying carrying carrying uphill, uphill, uphill, driving driving driving resistance resistance resistance was was was great. great. great. And And And the thecharacteristics of automobile engine speed range is lesser, and torque changes more cannot meet the actual conditions range. (2) drive backward, to satisfy the need to drive car backwards. Realizing the backing, engine crankshaft are generally only to a direction,and sometimes need to back, so, often used in the transmission of reverseto realize the car drive backward.(3) in power, interruption, idle running engine starting, auto shift or need to stop the dynamic output, interrupted to transfer the power ofthe drive wheels.(4), when the clutch engagement realize gap, gearbox can not power output. For example, can ensure drivers in engine flameout loosen the clutch when leaving drivers seat.constituteBy continuously variable transmission gearbox and speed control twoparts. The main function of the variable transmission torque and speed is the change of numerical and direction, The main function of theoperation is controlled transmission mechanism, realize thetransformation of transmission ratio, shift to speed torque. Principle,Mechanical transmission main application of the principle of geartransmission velocity. Say simply, there are a number of differenttransmission gearbox group of gear pair of vehicle, and behavior, is alsoshifting gears trunk by manipulating institutions make different gearpair work. As in low-speed, ratio of gear pair work, and in high-speed, let ratio of small gear pair work.Classification,1, according to the change of transmission, transmission way, there can be divided into grade level and synthetical three.(a) : several levels of transmission ratio, can choose the fixed by gear. And can be divided into: gear axis of ordinary gear transmission and fixed gear planetary gear (part) of planetary gear transmission axisof rotation.b) stepless type transmission: ratio can be continuous variation within a certain range, commonly, mechanical and electric hydraulic typeetc.(c) comprehensive type transmission by a class type, transmission andstepless type transmission, the ratio of the maximum and minimum values can be in between the scope for several section stepless change.2, press control can be divided into compulsory manipulation, transmission, automatic control and semi-automatic control 3 kinds.(a) mandatory manipulation of transmission by direct manipulation, change gear shift lever drivers.(b) automatic control type transmission ratio of choice and change: the shift is automatic. Drivers simply manipulate accelerated pedal, transmission can according to the engine speed and load control signal signal actuator, realize the transformation of gear.(c) semi-automatic control type transmission can be divided into twokinds: one kind is part of gear, automatic shift gears, manual (mandatory)shift, Another kind is selected by button in mining under gear clutch pedalor accelerated release pedal, the executing agency to shift. Transmission of maintenance1 transmission gears maintenanceTransmission gears are always changing speed, load, gear toothsurface by bluntThe impact of load, which struck gear tooth surface (especially) damage. Common injuries are:(1) gear transmission is worn gear under normal working conditions, shows the wear uniform angled tooth gear, long wear along the directionTooth thickness shouldof the tooth should not exceed 30 percent longer,not exceed usd, Gear tooth surface area of not less than two-thirds, Running gear mesh clearance shall be commonly used, 0.15-0.26 mm to 0.8 mm limit, Gear engagement between 0.10-0.15 mm, should use limit for 0.60mm. Available batches or soft metal rivalries. If more than clearance method for measuring the pairs, should be replaced.due to fail togear clearance is mainly(2) gear teeth,broken toothmeet the requirements, gear meshing parts or work under great impact load.If you are not greater than 2mm edge of gear oil can smile ShiXiuafter-grinding continue to use, If the scope or have more than three pairs,should smile.(3) often mesh surface of the helical gear often wear face due. 10-0.30mm, in order to ensure that the axial clearance, if tooth gear good operation within the wear, can repair tank, but the amount of grinding grinding should not exceed. 50.(4) often meshing gears shaft neck, needle roller bearing and wear into seat hole hole meshing gears seat with needle bearings and shaft neckwith clearance should be 0.01 - three 0.08 mm, otherwise must be changed.2 the overhaul. Transmission shellGearbox shell is transmissions, to ensure the basis of each part of the transmission is correct position, work under load. Common injuries are:(1) the abrasion of shell bearing hole hole wear will destroy its bearing assembly relation with the bearing, the direct impact of input, output shaft transmission position relative to the hole. Bearing seat with0-0.03 mm clearance shall be used for the maximum limit, should be replacedor 0.10 mm) shell or pile hole repair.(2) shell threaded holes repair note oil ROM plug hole, dumping screwhole threads connecting bolts damage and between shellThreaded hole, can take damage with screw repair.3 transmission shaft of maintenanceTransmission in the process of operation, each bearing the torsionalmoment of change, and bending moment, JianChi part is under pressure, impact and sliding friction etc. Various axial load of common injuries are:(1) the shaft neck and neck too worn wear axis gear axis will not onlyoffset, and can bring the change gear clearance, when making noisetransmission shaft neck. Also make coordination relationship with bearingdamage, may cause ablation. So roller bearings in a place with no more than 0.02 axis wear mm needle bearing shaft neck wear with place, otherwisethan 0.07 mm landscape change or chrome.side of thein stress and more seriouswear JianChi wear(2) JianChispline. JianChi with check, when more than 0.25 or and wear with more thanusd keyway apprentice, gear engagement mm, combining with the gear with JianChi weeks, according to the mm apprentice woodruff key and shaft neckkeyways apprentice to JianChi 0.08 mm over there when the keyway weeks, or should be repaired or replaced shaft.(3) transmission shaft bending thimble resist transmission shaft withmaintenance on both ends of the roof, using pinhole batches of shaft radial micrometers, check the deviation should be less than 0.10 mm) pressure correction repair.4 synchronizer overhaulA. lock ring type inertial synchronizer ring maintenance: lock hornscone a about six degrees - 7 degrees, in use, cone Angle deformation ofrapid synchronous, and not be change in time. B. B. locking locking locking pin pin pin type type type inertial inertial inertial synchronizer: synchronizer: synchronizer: locking locking locking pin pin pin type type synchronizer major damage for cone rim wear, when, cone-disk cone rim on the thread of groove depth 0.40 mm wear to 010mm deep, should be replaced.If the cone rim are scratching, face to face, but two turning machining, must not be more than 1mm should be replaced.变速器手动变速器是最常见的变速器,简称MT MT。

中英文文献翻译对照

中英文文献翻译对照

Electronic power steering systemWhat it is:Electrically powered steering uses an electric motor to drive either the power steering hydraulic pump or the steering linkage directly. The power steering function is therefore independent of engine speed, resulting in significant energy savings.How it works:Conventional power steering systems use an engine accessory belt to drive the pump, providing pressurized fluid that operates a piston in the power steering gear or actuator to assist the driver.In electro-hydraulic steering, one electrically powered steering concept uses a high efficiency pump driven by an electric motor. Pump speed is regulated by an electric controller to vary pump pressure and flow, providing steering efforts tailored for different driving situations. The pump can be run at low speed or shut off to provide energy savings during straight ahead driving (which is most of the time in most world markets).Direct electric steering uses an electric motor attached to the steering rack via a gear mechanism (no pump or fluid). A variety of motor types and gear drives is possible. A microprocessor controls steering dynamics and driver effort. Inputs include vehicle speed and steering, wheel torque, angular position and turning rate.Working In Detail:A "steering sensor" is located on the input shaft where it enters the gearbox housing. The steering sensor is actually two sensors in one: a "torque sensor" that converts steering torque input and its direction into voltage signals, and a "rotation sensor" that converts the rotation speed and direction into voltage signals. An "interface" circuit that shares the same housing converts the signals from the torque sensor and rotation sensor into signals the control electronics can process. Inputs from the steering sensor are digested by a microprocessor controlunit that also monitors input from the vehicle's speed sensor. The sensor inputs are then compared to determine how much power assist is required according to a preprogrammed "force map" in the control unit's memory. The control unit then sends out the appropriate command to the "power unit" which then supplies the electric motor with current. The motor pushes the rack to the right or left depending on which way the voltage flows (reversing the current reverses the direction the motor spins). Increasing the current to the motor increases the amount of power assist.The system has three operating modes: a "normal" control mode in which left or right power assist is provided in response to input from the steering torque and rotation sensor's inputs;a "return" control mode which is used to assist steering return after completing a turn; and a "damper" control mode that changes with vehicle speed to improve road feel and dampen kickback.If the steering wheel is turned and held in the full-lock position and steering assist reaches a maximum, the control unit reduces current to the electric motor to prevent an overload situation that might damage the motor. The control unit is also designed to protect the motor against voltage surges from a faulty alternator or charging problem.The electronic steering control unit is capable of self-diagnosing faults by monitoring the system's inputs and outputs, and the driving current of the electric motor. If a problem occurs, the control unit turns the system off by actuating a fail-safe relay in the power unit. This eliminates all power assist, causing the system to revert back to manual steering. A dash EPS warning light is also illuminated to alert the driver. To diagnose the problem, a technician jumps the terminals on the service check connector and reads out the trouble codesElectric power steering systems promise weight reduction, fuel savings and package flexibility, at no cost penalty.Europe's high fuel prices and smaller vehicles make a fertile testbed for electric steering, a technology that promises automakers weight savings and fuel economy gains. And in a short time, electric steering will make it to the U.S., too. "It's just just a matter of time," sa ys Aly Badawy, director of research and development for Delphi Saginaw Steering Systems in Saginaw, Mich. "The issue was cost and that's behind us now. By 2002 here in the U.S. the cost of electric power steering will absolutely be a wash over hydraulic."Today, electric and hybrid-powered vehicles (EV), including Toyota's Prius and GM's EV-1, are the perfect domain for electric steering. But by 2010, a TRW Inc. internal study estimates that one out of every three cars produced in the world will be equipped with some form of electrically-assisted steering. The Cleveland-based supplier claims its new steering systems could improve fuel economy by up to 2 mpg, while enhancing handling. There are true bottom-line benefits as well for automakers by reducing overall costs and decreasing assembly time, since there's no need for pumps, hoses and fluids.Another claimed advantage is shortened development time. For instance, a Delphi groupdeveloped E-TUNE, a ride-and-handling software package that can be run off a laptop computer. "They can take that computer and plug it in, attach it to the controller and change all the handling parameters -- effort level, returnability, damping -- on the fly," Badawy says. "It used to take months." Delphi has one OEM customer that should start low-volume production in '99.Electric steering units are normally placed in one of three positions: column-drive, pinion-drive and rack-drive. Which system will become the norm is still unclear. Short term, OEMs will choose the steering system that is easiest to integrate into an existing platform. Obviously,greater potential comes from designing the system into an all-new platform. "We have all three designs under consideration," says Dr. Herman Strecker, group vice president of steering systems division at ZF in Schwaebisch Gmuend, Germany. "It's up to the market and OEMs which version finally will be used and manufactured." "The large manufacturers have all grabbed hold of what they consider a core technology," explains James Handy sides, TRW vice president, electrically assisted steering in Sterling Heights, Mich. His company offers a portfolio of electric steering systems (hybrid electric, rack-, pinion-, and column-drive). TRW originally concentrated on what it still believes is the purest engineering solution for electric steering--the rack-drive system. The system is sometimes refer to as direct drive or ball/nut drive. Still, this winter TRW hedged its bet, forming a joint venture with LucasVarity. The British supplier received $50 million in exchange for its electric column-drive steering technology and as sets. Initial production of the column and pinion drive electric steering systems is expected to begin in Birmingham, England, in 2000."What we lack is the credibility in the steering market," says Brendan Conner, managing director, TRW/LucasVarity Electric Steering Ltd. "The combination with TRW provides us witha good opportunity for us to bridge that gap." LucasVarity currently has experimental systems on11 different vehicle types, mostly European. TRW is currently supplying its EAS systems for Ford and Chrysler EVs in North America and for GM's new Opel Astra.In 1995, according to Delphi, traditional hydraulic power steering systems were on 7596 of all vehicles sold globally. That 37-million vehicle pool consumes about 10 million gallons in hydraulic fluid that could be superfluous, if electric steering really takes off.The present invention relates to an electrically powered drive mechamsm for providing powered assistance to a vehicle steering mechanism. According to one aspect of the present invention, there is provided an electrically powered driven mechanism for providing powered assistance to a vehicle steering mechanism having a manually rotatable member for operating the steering mechanism, the drive mechanism including a torque sensor operable to sense torque being manually applied to the rotatable member, an electrically powered drive motor drivingly connected to the rotatable member and a controller which is arranged to control the speed and direction of rotation of the drive motor in response to signals received from the torque sensor, the torque sensor including a sensor shaft adapted for connection to the rotatable member to form anextension thereof so that torque is transmitted through said sensor shaft when the rotatable member is manually rotated and a strain gauge mounted on the sensor shaft for producing a signal indicative of the amount of torque being transmitted through said shaft. Preferably the sensor shaft is non-rotatably mounted at one axial end in a first coupling member and is non-rotatably mounted at its opposite axial end in a second coupling member, the first and second coupling members being inter-engaged to permit limited rotation there between so that torque under a predetermined limit is transmitted by the sensor shaft only and so that torque above said predetermined limit is transmitted through the first and second coupling members. The first and second coupling members are preferably arranged to act as a bridge for drivingly connecting first and second portions of the rotating member to one another. Preferably the sensor shaft is of generally rectangular cross-section throughout the majority of its length. Preferably the strain gauge includes one or more SAW resonators secured to the sensor shaft. Preferably the motor is drivingly connected to the rotatable member via a clutch .Preferably the motor includes a gear box and is concentrically arranged relative to the rotatable member. Various aspects of the present invention will hereafter be described, with reference to the accompanying drawings, in which :Figure 1 is a diagrammatic view of a vehicle steering mechanism including an electrically powered drive mechanism according to the present invention, Figure 2 is a flow diagram illustrating interaction between various components of the drive mechanism shown in Figure 1 ,Figure 3 is an axial section through the drive mechanism shown in Figure 1, Figure 4 is a sectional view taken along lines IV-IV in Figure 3,Figure 5 is a more detailed exploded view of the input drives coupling shown in Figure 3, and Figure 6 is a more detailed exploded view of the clutch showing in Figure 3. Referring initially to Figure 1 , there is shown a vehicle steering mechanism 10 drivingly connected to a pair of steerable road wheels The steering mechanism 10 shown includes a rack and pinion assembly 14 connected to the road whee ls 12 via joints 15. The pinion(not shown) of assembly 14 is rotatably driven by a manually rotatable member in the form of a steering column 18 which is manually rotated by a steering wheel 19.The steering column 18 includes an electric powered drive mechanism 30 which includes an electric drive motor (not shown in Figure 1) for driving the pinion in response to torque loadings in the steering column 18 in order to provide power assistance for the operative when rotating the steering wheel 19.As schematically illustrated in Figure 2, the electric powered drive mechanism includes a torque sensor20 which measures the torque applied by the steering column 18 when driving the pinion and supplies a signal to a controller 40. The controller 40 is connected to a drive motor 50 and controls the electric current supplied to the motor 50 to control the amount of torque generated by the motor 50 and the direction of its rotation. The motor 50 is drivingly connected to the steering column 18 preferably via a gear box 60, preferably an epicyclic gear box, and a clutch 70. The clutch 70 is preferably permanently engaged during normal operation and is operative under certain conditions to isolate drive from the motor 50 to enable the pinionto be driven manually through the drive mechanism 30. This is a safety feature to enable the mechanism to function in the event of the motor 50 attempting to drive the steering column too fast and/or in the wrong direction or in the case where themotor and/or gear box have seized.The torque sensor 20 is preferably an assembly including a short sensor shaft on which is mounted a strain gauge capable of accurately measuring strain in the sensor shaft brought about by the application of torque within a predetermined range. Preferably the predetermined range of torque which is measured is 0-lONm; more preferably is about l-5Nm.Preferably the range of measured torque corresponds to about 0-1000 microstrain and the construction of the sensor shaft is chosen such that a torque of 5Nm will result in a twist of less than 2°in the shaft, more preferably less than 1 °.Preferably the strain gauge is a SAW resonator, a suitable SAW resonator being described in WO91/13832. Preferably a configuration similar to that shown in Figure 3 of WO91/13832 is utilised wherein two SAW resonators are arranged at 45° to the shaft axis and at 90° to one another. Preferably the resonators operate with a resonance frequency of between 200-400 MHz and are arranged to produce a signal to the controller 40 of 1 MHz ± 500 KHz depending upon the direction of rotation of the sensor shaft. Thus, when the sensor shaft is not being twisted due to the absence of torque, it produces a 1 MHz signal. When the sensor shaft is twisted in one direction it produces a signal between 1.0 to 1.5 MHz. When the sensor shaft is twisted in the opposite direction it produces a signal between 1.0 to 0.5 MHz. Thus the same sensor is able to produce a signal indicative of the degree of torque and also the direction of rotation of the sensor shaft. Preferably the amount of torque generated by the motor in response to a measured torque of between 0-10Nm is 0-40Nm and for a measured torque of between l-5Nm is 0-25Nm.Preferably a feed back circuit is provided whereby the electric current being used by the motor is measured and compared by the controller 40 to ensure that the motor is running in the correct direction and providing the desired amount of power assistance. Preferably the controller acts to reduce the measured torque to zero and so controls the motor to increase its torque output to reduce the measured torque. A vehicle speed sensor (not shown) is preferably provided which sends a signal indicative of vehicle speed to the controller. The controller uses this signal to modify the degree of power assistance provided in response to the measured torque. Thus at low vehicle speeds maximum power assistance will be provided and a high vehicle speeds minimum power assistance will be provided。

中英文文献翻译-离合器如何工作

中英文文献翻译-离合器如何工作

附录How Does the Clutch WorkThe clutch is a device to engage and disengage power from the engine, allowing the vehicle to stop and start.A pressure plate or “driving member” is bolted to the engine flywheel, and a clutch plate or “driven member” is loc ated between the flywheel and the pressure plate. The clutch plate is spline to the shaft extending from the transmission to the flywheel, commonly called a clutch shaft or input shaft. When the clutch and pressure plates are locked together by friction, the clutch shaft rotates with the engine crankshaft. Power is transferred from the engine to the transmission, where it is routed through different gear rations to obtain the best speed and power to start and keep the vehicle moving.The flywheel is located at the rear of the engine and is bolted to the crankshaft. It helps absorb power impulses, resulting in a smoothly-idling engine and provides momentum to carry the engine through its operating cycle. The rear surface of the flywheel is machined flat and the clutch components are attached to it. The driving member is commonly called the pressure plate. It is bolted to the engine flywheel and its main purpose is to exert pressure against the clutch plate, holding the plate tight against the flywheel and allowing the power to flow from the engine to the transmission. It must also be capable of interrupting the power flow by releasing the pressure on the clutch plate. This allows the clutch plate to stop rotating while the flywheel and pressure plate continues to rotate.The pressure plate consist of a heavy metal plate, coil springs or diaphragm spring, release levers (fingers), and a cover. When coil springs are used, they are evenly spaced around the metal plate and located between the plate and the metal cover. This places an even pressure against the plate, which in turn presses the clutch plate tight against the flywheel. The cover is bolted tightly to the flywheel and the metal pate is movable, due to internal linkages. The coil springs are arranged to exert direct or indirect tension on the metal plate, depending upon the manufacturer’s design. Three release levers (fingers), evenly spaced around the cover, are used on most pressure plates to release the holding pressure of the springs on the clutch plate, allowing it to disengage the power flow.When a diaphragm spring is used instead of coil springs, the internal linkage is necessarily different to provide an “over-center” action to release the clutch plate from the flywheel. Its operation can be compared to the operation of an oilcan. When depressing the slightly curved metal on the bottom of the oilcan, it goes over-center and gives out a loud “clicking” noise; when released, the noise is again heard as the metal returns to its originalposition. A click is not heard in the clutch operation, but the action of the diaphragm spring is the same as the oilcan.The clutch plate or driven member consists of a round metal plate attached to a splined hub. The outer portion of the round plate is covered with a friction material of molded or woven asbestos and is riveted or bonded to the plate. The thickness of the clutch plate and /or facings may be warped to give a softer clutch engagement. Coil springs are often installed in the hub to help provide a cushion against the twisting force of engagement. The splined hub is mated to (and turns) a splined transmission shaft when the clutch is engaged.The release (throw out) bearing is usually a ball bearing unit, mounted on a sleeve, and attached to the release or throw out lever. Its purpose is to apply pressure to the diaphragm spring or release levers in the pressure plate. When the clutch pedal is depressed, the pressure of the release bearing or lever actuates the internal linkages of the pressure plate, releasing the clutch plate and interrupting the power flow. The release bearing is not in constant contract with the pressure plate. A linkage adjustment clearance should be maintained.The clutch pedal provides mechanical means for the driver to control the engagement and disengagement of the clutch. The pedal is connected mechanically to either a cable or rods, which are directly connected to the release bearing lever.When the clutch pedal is depressed, the linkage moves the release bearing lever. The release lever is attached at the opposite end to a release bearing which straddles the transmission clutch shaft, and presses inward on the pressure plate gingers or the diaphragm spring. This inward pressure acts upon the fingers and internal linkage of the pressure plate and allows the clutch plate to move away from the flywheel, interrupting the flow of power.While the clutch pedal is depressed and the power flow interrupted, the transmission can be shifted in to any gear. The clutch pedal is slowly released to gradually move the clutch pate toward the flywheels under pressure of the pressure plate springs. The friction between the clutch plate and flywheel becomes greater as the pedal is released and the engine speed increased. Once the vehicle is moving, the need for clutch slippage is lessened, and the clutch pedal can be fully released.Coordination between the clutch pedal and accelerator is important to avoid engine stalling, shock to the driveline components and excessive clutch slippage and overheating.离合器如何工作离合器是传递和分离发动机动力的装置,实现车辆的停车和启动。

中英文文献翻译-驱动桥和差速器

中英文文献翻译-驱动桥和差速器

附录附录ADrive axle/differentialAll vehicles have some type of drive axle/differential assembly incorporated into the driveline. Whether it is front, rear or four wheel drive, differentials are necessary for the smooth application of engine power to the road.PowerflowThe drive axle must transmit power through a 90°angle. The flow of power in conventional front engine/rear wheel drive vehicles moves from the engine to the drive axle in approximately a straight line. However, at the drive axle, the power must be turned at right angles (from the line of the driveshaft) and directed to the drive wheels.This is accomplished by a pinion drive gear, which turns a circular ring gear. The ring gear is attached to a differential housing, containing a set of smaller gears that are splined to the inner end of each axle shaft. As the housing is rotated, the internal differential gears turn the axle shafts, which are also attached to the drive wheels.Fig 1 Drive axleRear-wheel driveRear-wheel-drive vehicles are mostly trucks, very large sedans and many sports car and coupe models. The typical rear wheel drive vehicle uses a front mounted engine and transmission assemblies with a driveshaft coupling the transmission to the rear drive axle. Drive in through the layout of the bridge, the bridge drive shaft arranged vertically in the same vertical plane, and not the drive axle shaft, respectively, in their own sub-actuator with a direct connection, but the actuator is located at the front or the back of the adjacent shaft of the two bridges is arranged in series. Vehicle before and after the two ends of the driving force of the drive axle, is the sub-actuator and the transmission through the middle of the bridge. The advantage is not only a reduction of the number of drive shaft, and raise the driving axle of the common parts of each other, and to simplify the structure, reduces the volume and quality.Fig 2 Rear-wheel-drive axleSome vehicles do not follow this typical example. Such as the older Porsche or Volkswagen vehicles which were rear engine, rear drive. These vehicles use a rear mounted transaxle with halfshafts connected to the drive wheels. Also, some vehicles were produced with a front engine, rear transaxle setup with a driveshaft connecting the engine to the transaxle, and halfshafts linking the transaxle to the drive wheels.Differential operationIn order to remove the wheel around in the kinematics due to the lack of co-ordination about the wheel diameter arising from a different or the same rolling radius of wheel travel required, inter-wheel motor vehicles are equipped with about differential, the latter to ensure that the car driver Bridge on both sides of the wheel when in range with a trip to the characteristics of rotating at different speeds to meet the requirements of the vehicle kinematics.Fig 3 Principle of differentialThe accompanying illustration has been provided to help understand how this occurs.1.The drive pinion, which is turned by the driveshaft, turns the ring gear.2.The ring gear, which is attached to the differential case, turns the case.3.The pinion shaft, located in a bore in the differential case, is at right angles to the axle shafts and turns with the case.4.The differential pinion (drive) gears are mounted on the pinion shaft and rotate with the shaft .5.Differential side gears (driven gears) are meshed with the pinion gears and turn with the differential housing and ring gear as a unit.6.The side gears are splined to the inner ends of the axle shafts and rotate the shafts as the housing turns.7.When both wheels have equal traction, the pinion gears do not rotate on the pinion shaft, since the input force of the pinion gears is divided equally between the two side gears.8.When it is necessary to turn a corner, the differential gearing becomes effective and allows the axle shafts to rotate at different speeds .Open-wheel differential on each general use the same amount of torque. To determine the size of the wheel torque to bear two factors: equipment and friction. In dry conditions, when a lot of friction, the wheel bearing torque by engine size and gear restrictions are hours in the friction (such as driving on ice), is restricted to a maximum torque, so that vehicles will not spin round. So even if the car can produce more torque, but also need to have sufficient traction to transfer torque to the ground. If you increase the throttle after the wheels slip, it will only make the wheels spin faster.Limited-slip and locking differential operationFig 5 Limited-slip differentialDifferential settlement of a car in the uneven road surface and steering wheel-driven speedat about the different requirements; but is followed by the existence of differential in theside car wheel skid can not be effective when the power transmission, that is, the wheel slipcan not produce the driving force, rather than spin the wheel and does not have enoughtorque. Good non-slip differential settlement of the car wheels skid on the side of the powertransmission when the issue, that is, locking differential, so that no longer serve a usefuldifferential right and left sides of the wheel can be the same torque.Limited-slip and locking differential operation can be divided into two major categories:(1) mandatory locking type in ordinary differential locking enforcement agencies toincrease, when the side of the wheel skid occurs, the driver can be electric, pneumatic ormechanical means to manipulate the locking body meshing sets of DIP Shell will be withthe axle differential lock into one, thus the temporary loss of differential role. Relatively simple structure in this way, but it must be operated by the driver, and good roads to stop locking and restore the role of differential.(2) self-locking differential installed in the oil viscosity or friction clutch coupling, when the side of the wheel skid occurs when both sides of the axle speed difference there, coupling or clutch friction resistance on the automatic, to make certain the other side of the wheel drive torque and the car continued to travel. When there is no speed difference on both sides of the wheel, the frictional resistance disappeared, the role of automatic restoration of differentials. More complicated structure in this way, but do not require drivers to operate. Has been increasingly applied in the car. About non-slip differential, not only used for the differential between the wheels, but also for all-wheel drive vehicle inter-axle differential/.Gear ratioThe drive axle of a vehicle is said to have a certain axle ratio. This number (usually a whole number and a decimal fraction) is actually a comparison of the number of gear teeth on the ring gear and the pinion gear. For example, a 4.11 rear means that theoretically, there are 4.11 teeth on the ring gear for each tooth on the pinion gear or, put another way, the driveshaft must turn 4.11 times to turn the wheels once. The role of the final drive is to reduce the speed from the drive shaft, thereby increasing the torque. Lord of the reduction ratio reducer, a driving force for car performance and fuel economy have a greater impact. In general, the more reduction ratio the greater the acceleration and climbing ability, and relatively poor fuel economy. However, if it is too large, it can not play the full power of the engine to achieve the proper speed. The main reduction ratio is more Smaller ,the speed is higher, fuel economy is better, but the acceleration and climbing ability will be poor.附录B驱动桥和差速器所有的汽车都装有不同类型的驱动桥和差速器来驱动汽车行驶。

汽车手动变速器外文文献翻译、中英文翻译、外文翻译

汽车手动变速器外文文献翻译、中英文翻译、外文翻译

附录外文文献Manual transmission is the most basic of transmission of a type, its effect is changing, and provide the transmission reverse and neutral. Usually, the pilot on the clutch pedal through manipulation and in any HuanDangGan can choose between gear. There are a few manual transmission, such as motorcycles, cars, some transmission shift transmission allows only sequence, the transmission is called sequence shift transmission. In recent years, along with the electronic control components durability, computerized automatic switching clutch automatic shift of transmission in Europe since the start line are more and more popular, car Volkswagen and ford are sold in the city on the double clutch provide updated generation, transmission from the start with two clutches, every shift automatically switch to another group of clutch engagement, need not as quick as traditional in manual have only one group separated again clutch engagement, shifting speed is faster, more small change gear vibration.Internal structure: shaftDecorate a form of transmission shaft type usually have two and three shaft type two kinds. Usually a rear wheel drive car will adopt three axis type, i.e. input shaft transmission, the output shaft and oart. Input shaft front associated with engine, borrow clutch output shaft back-end through the flange and universal transmission device connected.Input shaft and the output shaft in the same horizontal line, with their oart parallel arrangement. From the input shaft power through the gears to preach to the output shaft oart again. In many input and output shaft transmission shaft could engage in together, so to power, then the gear oart called directly. Direct files through uniaxial transmission, the ratio of 1:1, the highest transmission efficiency. Even in the transmission directly, cannot offer the input shaft, and the output shaft is decorated in a straight line to reduce work needed to inherit the torque transmission.Reversing deviceGenerally speaking, the reverse gear reducer than can alsosynchronizerIn synchronized meshing gears have type synchronizer Settings, can make two gear engagement in the first, before the speed reached synchronizer in all of this manual gear transmission of the car has been usedClutch,The clutch is can make two gear with a separate with mechanical parts, two gear transmission power can be combined, but when to speed, so will depend on the first two gear clutch, change gear ratio, the two gear transmission power, continue again Control:GearIn simple terms, the high speed, low speed ShengDang when the time cameEvery car high speedCompared with automatic transmissionThis refers to the automatic transmission of traditional hydraulic transmission, namely through hydraulic torque converter and planetary gear transmission power automatic transmission.Advantages: transmission efficiency than automatic gearboxes for high, of course, theoretically can compare economical.maintenance will be cheaper than transmission.If you want to higher cost, can begin from both the row of convenience and high power附录外文文献的中文翻译手动变速器是汽车变速器中最基本的一种类型,其作用是改变传动比,并提供倒档和空档。

变速器外文文献翻译、中英文翻译、外文翻译

变速器外文文献翻译、中英文翻译、外文翻译

TRANSMISSIONEngine output speed is very high, the power and the maximum torque in certain areas of the speed. In order to exert the engine, you must have the best performance, to coordinate the speed of the engine and the actual speeds. Transmission in automobile driving process between the engine and wheels, in different ratios, through the shift in the engine can work under the condition of the best performance. The development trend of the transmission is more complex, more and more is also high automation degree, automatic transmission is the mainstream of the future.Car engines in certain speed can reach the best state, the output power of the bigger, fuel economy and better. Therefore, we hope in the best condition engine always work. But, in the use of the car to have different speed, the contradictions. This contradiction through the transmission to solve.Auto transmission function in a single sentence, is called the speed change, which reduced growth slowing or thickening twist. Why can increase twist, and slowing growth and to reduce twist? Put the power output unchanged, the engine power can be expressed as N = wT, w is turning, T is the angular torque. When N fixed, w and T is inversely proportional to the. So the growth will be reduced, slow increase twist. Auto transmission gear transmission is based on the principle of variable twist, each corresponding to different into gear transmission, in order to adapt to the different operating conditions.General manual transmission shaft set the input and output shaft, and say, another three axis reverse axis. Three main transmission shaft type is the speed of the input shaft structure, the speed of the engine, is also the output shaft speed is presented. By output shaft gear generated between different speeds. The gear is different with different ratio, also have different speed. Such as Zhen Zhou Nissan ZN6481W2G type SUV driver’s dynamic transmission, it is respectively: 1 ratio of 1:3.704 gears, 2.202 2:1, 3:1; 1.414 4 gears, - 5 (1): overdrive dependent.When the car started when the driver choose 1 files, dial 1 1/2 shift fork synchronizer backward joints and 1 shift gear lock on the output shaft, and the power input shaft, and the output shaft shift gears, 1 shift gear drive output shaft, output shaft will power to transmission (red arrows). The typical one shift gear ratio is 3:1, i.e. input shaft turn 3 laps, output shaft turn 1 lap.When the car growth drivers choose 2 files, dial 1 1/2 shift fork synchronizer and 1 separateness from 2 after mating locking output shaft gear and power transmission line, which is similar to the output shaft gear with 2, 1 files output shaft gear. The typical 2 shift gear ratio is 2.2:1, input, output shaft turning 2.2 pivot, 1-1 RPMincreases, torque shift.When gas growth drivers choose 3, dial 1 1/2 shift fork to synchronizer, and back to space three/four file synchronizer will move until 3 gear lock in the output shaft, make the power from the first shaft -- -- on the output shaft transmission gears, 3 through the output shaft gear shifting speed. The typical 3 ratio was 1.7:1, the input shaft turning circle, the output shaft 1.7 turn 1 ring, is further growth.When gas growth drivers choose 4 gears, fork will 3/4 file synchronizer from 3 gear directly with the input shaft driving gear engagement, power transmission directly from the input shaft to the output shaft, and the output shaft is 1:1 ratio and the input shaft speed. Due to the force, and the direct oart shift, the gear transmission efficiency ratio. Cars run most time in order to achieve the best directly file fuel economy.Shift to go into space, transmission in the transmission gears have locked in the output shaft, they cannot drive the output shaft rotation, no power output.General car manual transmission ratio main points above 1-4, usually designers to first identify the lowest (1) and (4) transmission, the ratio between after general distribution according to form. In addition, there is a reverse and overdrive, overdrive called 5 files.When the car to accelerate whether isolated car drivers choose more than 5, 5 gear transmission is typical 0.87:1, namely with big gear drive pinion gear turns, when active 0.87 lap, passive gear has turned over one lap.When the reverse in the opposite direction to the output shaft rotation. If a gear when reverse rotation, plus a gear will become a positive spin. Using this principle, will add a reverse gear do "medium", the direction of rotation axis, so has reversed a reverse axis. Reverse transmission shaft independent in housing, and parallel axis, when oart in gear and gear and oart output shaft gear, output shaft to will instead.Usually the reverse synchronizer is controlled by the jointing, so May 5 files and reverse position is in the same side. Due to the middle, reverse gear transmission is generally greater than 1 gear transmission ratio, twist, some cars met with forward instead of steep open up in reverse.From driving gear transmission is smooth; more is better, more adjacent gear shift between the transmission ratio, shift easy and smooth. But the gear transmission fault is more complex structure, big volume and light auto transmission is now commonly 4-5. At the same time, the transmission ratio is not an integer, but with the decimal point, this is not the whole number of meshing gears, two gear ratio is the euploid number will lead to two gear surface non-uniform wear, tooth surface quality of differences.Manual transmission and synchronizerManual transmission is one of the most common transmissions, referred to as MT. Its basic structure in a single sentence is a central axis, two input shaft, namely, the axial and axial oart, they constituted the transmission of the subject, and, of course, a reverse axis. Manual transmission gear transmission and manual, contain can in axial sliding gears, through different meshing gears to change gear of torsional purpose. The typical structure and principle of the manual transmission.Input shaft also says, it's in front of the spline shaft directly with clutch platen, thus the spline set by the engine relay of torque. The first shaft gear meshing gears, often with oart as input shaft, and the gear on oart will turn. Also called shaft, because even more solid shaft of gear. The output shaft, and the second shaft position have the drive shaft gear, may at any time and under the influence of the control devices and the corresponding oart gear, thus changing the speed and torque itself. The output shaft is associated with tail spline shaft torque transmission shaft, through to drive to gear reducer.Predictably, transmission gear drive forward path is: input shaft gear - oart gnaws gear - because the second shaft gear - corresponding gear. Pour on the axle gear can also control device, by moving axis in the strike, and the output shaft gear and oart gear, in the opposite direction.Most cars have five forward and reverse gear, each one has certain ratio, the majority of gear transmission more than 1, 4 gears transmission is 1, called directly, and ratio is less than 1 of article 5 gear shift accelerated called. The output axis gear in the mesh position, can accept power transmission.Due to the gearbox output shaft to input shaft and the speed of their gear rotating, transform a "synchronization problem". Two rotating speed different meshing gears forcibly inevitable impact and collision damage gear. Therefore, the old transmission shift to use "two feet on-off" method, accelerate in neutral position shift to stay for a while, in the space location on the door, in order to reduce gear speed. But this operation is more complex, difficult to grasp accurately. Therefore designers to create "synchronizer", through the synchronizer will make the meshing gears reach speed and smooth.Currently the synchronous transmission adopts is inertial synchronizer, it mainly consists of joints, synchronizer lock ring etc, it is characteristic of the friction effect on achieving synchronization. Mating, synchronizer and mating locking ring gear tooth circle have chamfering (locking horns), the synchronizer lock ring inside surface of gear engagement ring and the friction surface contact. The lock horns with cone when designing the proper choice, has been made to the surface friction of meshinggears with gear synchronous, also can rapid produces a locking function, prevent the synchronous before meshing gears. When synchronous lock ring of gear engagement with surface contact surface, the outer circle in friction torque under the action of gear speed rapid decrease (increase) or to synchronous speed equal, both locking ring spun concurrent, relative to lock ring gear synchronous speed is zero, thus inertia moment also disappear, then in force, driven by the junction of unimpeded with synchronous lock ring gear engagement, and further to engagement with the engagement ring gear tooth and complete shift process变速器发动机的输出转速非常高,最大功率及最大扭矩在一定的转速区出现。

中英文文献翻译-汽车传动系统

中英文文献翻译-汽车传动系统

附录Auto transmission system will provide is to transfer the power of the engine, and so as to meet the needs of car form. In general the mechanical transmission in the car. A transmission can not completely solve the vehicle driving characteristics with the contradictions and structure required valve decorate on problems. First, because the vast majority of engine in the car is the longitudinal resettlement, in order to make its torque can drive wheels, must pass by around the main reducer drive to change the direction of transmission torque, through may still drive to solve the differential by starting to right and left the wheels of torque allocation problem. The second is the main task of the transmission by selecting the appropriate only in each file number and gear ratio, in order to make internal combustion engine torque - speed characteristics can adapt in all kinds of resistance to car under the dynamic requirements, but fish economy drive axle of the function of the main reducer lies in that when the transmission, the highest gear in cars had enough traction, appropriate maximum speed and good fuel economy. Therefore, it is required to transmission gearbox, will pass from the power, through the drive axle of the main reducer to further increase torque, reduce the speed of change. Accordingly, want to make auto transmission design is reasonable, first must choose good transmission ratio, and the total it properly allocated to the transmission and axles. The latter deceleration than than into primarily slowdown. When the transmission directly file in position, performance and fuel economy car than mainly dependent on the Lord slowdown. In a car's total layout design, should according to the working conditions and car engine, transmission, tires and other related parameters of the Lord, choosing the appropriate slowing the car with good board guarantee dynamic performance and fuel economy. Foreign some big car factory will often a certain type of automobile design has a variety of Lord deceleration than for selection and use of rising to meet the different needs of variant car and. Due to the improving, automobile engine power reduce weight and road conditions improved, than to have to reduce main slow development trend. The choice advocate deceleration than should consider when making car can meet high-speed request, and can in common speed range reduce engine speed, reducing fuel consumption, improve engine life and improve vibration and noise characteristics, etc.译文汽车传动系的总任务是传递发动机的动力,并使之适应于汽车形式的需要。

自动变速器英文文献翻译之欧阳史创编

自动变速器英文文献翻译之欧阳史创编

毕业设计外文翻译THE RESEARCHS OFAMT SHIFTING SCHEDULESThe modern automatic transmission is by far,the most complicated mechanical component in today`s automobile.It is a type of transmission that sifts itself.A fluid coupling or torque converter is used instead of a manually operated clutch to connect the transmission to the engine.There are two basic types of automatic transmission based on whether the vehicle is rear wheel drive or front wheel drive.On a rear wheel drive car,the transmission is usually mounted to the back of the engine and is located under the hump in the center of the floorboard alongside the gas pedal position.A drive shaft connects the transmission to the final drive which is located in the rear axle and is used to send power to the rear wheels.Power flow on this system is simple and straight forward going from the engine,through the torque converter,then trough the transmission and drive shaft until it reaches the final drive where it is split and sent to the two rear transmission.On a front wheel drive car,the transmission is usually combined with the final drive to form what is called a transaxle.The engine on a front wheeldrive car is usually mounted sideways in the car with the transaxle tucked under it on the side of the engine facing the rear of the car.Front axles are connected directly to the transaxle and provide power to front wheels.In this example,power floes from the engine,through the torque converter to a larger chain that sends the power through a 180 degree turn to the transmission that is along side the engine.From there,the power is routed through the transmission to the final drive where it is split and sent to the two front wheels through the drive axles.There are a number of other arrangements including front drive vehicles where the engine is mounted front to back instead of sideways and there are other systems that drive all four wheels but the two systems described here are by far the most popular.A much less popular rear and is connected by a drive shaft to the torque converter which is still mounted on the engine.This system is found on the new Corvette and is used in order to balance the weight evenly between the front and rear wheels for improved performance and handling.Another rear drive system mounts everything,the engine,transmission and final drive in the rear.This rear engine arrangement is popular on the Porsche。

分动器外文翻译

分动器外文翻译

题目:汽车分动器外文翻译学生:指导教师:学院:职业技术教育学院专业班级:交通运输(汽车电子检测与维修)2009级2班汽车分动器外文翻译brief introductionActuator is a gear transmission system, the input shaft directly or through the second shaft, the transmission device and the transmission output shaft, has several, respectively, by the universal transmission device and the driving bridge. When the actuator hang into the low gear, the output torque is large.To avoid a rear axle overload axle must participate in the drive, to share part of the load.The motion control mechanism must guarantee: non first connected to the front axle, shall hang into the low gear; not to withdraw from the low-profile, do not take off the front axle.A drive car, when all wheel drive driving on uneven road surface or curve, or the front and rear driving wheels with tyre wear and running conditions of different radii, will cause the wear of engine power consumption, tire or transmission system parts.In order to overcome this shortcoming, the torque roughly according to the axle load proportion to the drive axle, some power divider is arranged with differential lock asymmetric planetary gear shaft of the speed difference between the SUV will often run in no roads and bad situations, especially military vehicle condition is worse, this it should increase the number of vehicle wheel, therefore, off-road vehicle use multi-axis drive.For example, if afront-wheel drive vehicle two wheel will both fall into the ditch (in this case, the bad roads often encountered), the car will not be the engine driving force through the friction wheel and the ground and continue to move forward.And if the four wheels of the car can have a driving force, then, there are two have not fallen into the ditch the wheel can work normally, the car continued to travel.In order to increase the transmission coefficient of maximum transmission ratio and file number, at present most of the cars are fitted with two gear actuator, which also plays the auxiliary transmission function.The first automatic transmission is a Benz Corp in 1914 launched the first, Chrysler 1914 launched with hydraulic coupling four speedsemi-automatic gearbox.Automatic actuator includes four basic systems of typical: torque converter, planet gear mechanism, hydraulic system and actuatorFunctionIn the multiple spindle actuation automobile, in order to power output to the drive axle is provided with a power divider.Actuator usually with high and low, in order to further expand the number of transmission ratio and gear driving in the difficult area of.Sub-actuator function is the allocation of power transmission output to the drive axle, and further increase the torque.Actuator is a gear transmission system, which separately fixed on the vehicle chassis, the input shaft and the output of the transmission shaft gear connected with universal joints, sub-actuator output shaft has a plurality of, respectively, via the universal transmission device connected the driving axle2, with inter axle differential actuatorMost actuator due to play down the role of increasing moment rather than transmission of the load, so the dynamic constant mesh gear in the helical gears, bearings and the bearing tapered roller bearingPrincipleActuator for each axis with two tapered roller bearing, the bearing tightness with the corresponding adjustment pad.Off-road vehicle in good road, in order to reduce the power consumption and transmission parts and tyre wear, to cut off the front axlepower.When driving off-road, for low power, to prevent the rear bridge and the bridge overload, should make the low power to share by all driving axles.Therefore, the dynamic control mechanism has the following requirements: not the first connected to the front axle not to hang up to speed, not to withdraw from the low speed, do not take off the front axleCommon faultNeutral hair.The crankshaft and the first axis misalignment;Second shaft bearing wear, oil, pilling;Constant mesh gear problem (wear uniform sound or individual tooth chipped regular gap impact sound);Constant mesh gear repair unpaired replacement, meshing;The first bearing damage, or old gear change gear.Gear ringGear change improper; differential gear or half axle gear keyway worn loose;The main, driven bevel gear clearance is too large; the driven bevel gear loose.FeverBearing too tight and / or gear gap is too small;The lack ofRandom fileTransmission control the amount of compression springs are not up to the requirements;Shift rod interlock pin wear.Jump filegear oil, gear oil viscosity is too small or Positioning device failure (gear shift fork groove or ball wear loose, positioning spring is too soft or broken);Gear wear, along the direction of the tapered tooth;The transmission shaft, bearing wear or axial clearance is too large, so that the shaft rotates beating or movement..Sub-actuator classification and buggies actuatoWith the actuator in the multiple spindle actuation automobile, it is located in the transmission chain between the transmission and driving axle, is used to increase the torque transmission output, to expand the range of speed, and the torque distribution to the drive axle.Actuator type and its characteristics: from the structure and function of view, actuator can be divided into two categories.1, the general gear actuatorGeneral gear actuator drive the two output shaft front, rear axle, drive in the joint of gear sets for rigid connection.This type of actuator is simple in structure, the past is widely used in all kinds of wheel drive car, the drawback is not the front, rear wheel ground speed equal to, in the running process inevitably produces power cycle phenomenon, this will make the driving wheel load increases, the tire and mechanical wear intensifies, fuel economy decline.Therefore, in the pneumatic separation device front axle drive another device (model), can be engaged in the automobile front axle through the slippery roadIn addition, the general gear type torque proportional actuator assigned to front, rear axle indefinite (along with the two bridge by adhesion ratio and variable).Although this will increase the adhesion conditions better driving force of the driving bridge, but may make the bridge from being 2, with inter axle differential actuatordamaged due to overloading.Therefore, at present, use this kind of actuator cars less 2, with inter axle differential actuator。

自动变速器英文文献翻译之欧阳体创编

自动变速器英文文献翻译之欧阳体创编

毕业设计外文翻译THE RESEARCHS OFAMT SHIFTING SCHEDULESThe modern automatic transmission is by far,the most complicated mechanical component in today`s automobile.It is a type of transmission that sifts itself.A fluid coupling or torque converter is used instead of a manually operated clutch to connect the transmission to the engine.There are two basic types of automatic transmission based on whether the vehicle is rear wheel drive or front wheel drive.On a rear wheel drive car,the transmission is usually mounted to the back of the engine and is located under the hump in the center of the floorboard alongside the gas pedal position.A drive shaft connects the transmission to the final drive which is located in the rear axle and is used to send power to the rear wheels.Power flow on this system is simple and straight forward going from the engine,through the torque converter,then trough the transmission and drive shaft until it reaches the final drive where it is split and sent to the two rear transmission.On a front wheel drive car,the transmission is usually combined with the final drive to form what is called a transaxle.The engine on a front wheel drive car is usually mounted sideways in the car with the transaxle tucked under it on the side of the engine facing the rear of the car.Front axles are connected directly to the transaxle and provide power to front wheels.In this example,power floes from the engine,through the torque converter to a larger chain that sends the power through a 180 degree turn to the transmission that isalong side the engine.From there,the power is routed through the transmission to the final drive where it is split and sent to the two front wheels through the drive axles.There are a number of other arrangements including front drive vehicles where the engine is mounted front to back instead of sideways and there are other systems that drive all four wheels but the two systems described here are by far the most popular.A much less popular rear and is connected by a drive shaft to the torque converter which is still mounted on the engine.This system is found on the new Corvette and is used in order to balance the weight evenly between the front and rear wheels for improved performance and handling.Another rear drive system mounts everything,the engine,transmission and final drive in the rear.This rear engine arrangement is popular on the Porsche。

汽车车辆类分动箱的工作分析应用外文文献翻译、中英文翻译、外文翻译

汽车车辆类分动箱的工作分析应用外文文献翻译、中英文翻译、外文翻译

附录所谓分动箱,就是将发动机的动力进行分配,分别输出给前轴和后轴的装置。

从这个角度可以看出,分动箱实际上是四驱车上的一个配件。

随着四驱技术的发展,分动箱也一直进行着改变,并逐渐形成了风格迥异的分动箱,匹配在不同诉求的四驱车上,它们的基本原理和功能也都是各不相同的。

最早的四驱技术,是基于提高车辆的通过性开发的,我们把它称作越野四驱。

这类车型的鼻祖威利斯吉普,就是二战美军为了加强前线步兵和指挥官作战的机动性开发出来的。

它采用的分动箱是最基本的分时四驱分动箱,是一种纯机械的装置。

这种结构的分动箱,在挂上4驱模式的时候,前后轴是刚性连接的,可以实现前后动力50∶50的分配,对于提高车辆的通过性非常有利。

另外由于它的纯机械结构,可靠性很高,这对于经常在缺少救援的荒野行驶的车型是至关重要的。

即使到现在,仍然有大量的硬派越野车采用这种分动箱,就是基于它这个特点。

下面我们就来看看这种分动箱的基本结构和原理。

在此类车型的分动箱挡把上,我们会看到2H、4H、N、和4L的切换挡位。

当挂2H时,此类车型就是一台后驱车,发动机的动力经过变速箱以后,通过一根传动轴直接连接到后轴上。

而分动箱的作用,就是在变速箱上,再引出一根输出端,并通过静音链条,将动力传递到前轴的输出轴。

当然,这并不是直接连接的,否则就无法切换4驱和2驱了。

事实上,它是通过两组齿轮实现分离和连接的,它的结构和原理类似于变速箱的一轴和二轴。

切换时,扳动分动箱的挡把,通过拨叉将动力与前传动轴接通和断开。

与现在主流的带同步器的变速箱不同,这个部位的切换是没有同步器的,它需要转速与轮速的完全匹配。

这就是这种分动箱的基本原理。

但实际情况并不会这么简单,为了提高通过性能,这类分动箱还会有一个加力挡,也就是挡把上的4L模式。

在变速箱上,有一个齿比更大的齿轮,当挂上这个齿轮时,能提供比日常驾驶高很多的主传动比。

我们发现,当我们需要挂4L时,必须经过一个N挡,此时变速箱会将动力与每个传动轴分开,而挂上4L时,将接通这个齿比更大的齿轮。

自动变速器英文文献翻译

自动变速器英文文献翻译

毕业设计外文翻译THE RESEARCHS OFAMT SHIFTING SCHEDULESThe modern automatic transmission is by far,the most complicated mechanical component in today`s automobile.It is a type of transmission that sifts itself.A fluid coupling or torque converter is used instead of a manually operated clutch to connect the transmission to the engine.There are two basic types of automatic transmission based on whether the vehicle is rear wheel drive or front wheel drive.On a rear wheel drive car,the transmission is usually mounted to the back of the engine and is located under the hump in the center of the floorboard alongside the gas pedal position.A drive shaft connects the transmission to the final drive which is located in the rear axle and is used to send power to the rear wheels.Power flow on this system is simple and straight forward going from the engine,through the torque converter,then trough the transmission and drive shaft until it reaches the final drive where it is split and sent to the two rear transmission.On a front wheel drive car,the transmission is usually combined with the final drive to form what is called a transaxle.The engine on a front wheel drive car is usually mounted sideways in the car with the transaxle tucked under it on the side of the engine facing the rear of the car.Front axles are connected directly to the transaxle and provide power to front wheels.In this example,power floes from the engine,through the torque converter to a larger chain that sends the power through a 180 degree turn to the transmission that is along side the engine.From there,the power is routedthrough the transmission to the final drive where it is split and sent to the two front wheels through the drive axles.There are a number of other arrangements including front drive vehicles where the engine is mounted front to back instead of sideways and there are other systems that drive all four wheels but the two systems described here are by far the most popular.A much less popular rear and is connected by a drive shaft to the torque converter which is still mounted on the engine.This system is found on the new Corvette and is used in order to balance the weight evenly between the front and rear wheels for improved performance and handling.Another rear drive system mounts everything,the engine,transmission and final drive in the rear.This rear engine arrangement is popular on the Porsche.The modern automatic transmission consists of many components and systems that designed to work together in a symphony of planetary gear sets,the hydraulic system, seals and gaskets,the torque converter,the governor and the modulator or throttle cable and computer controls that has evolved over the years into what many mechanical inclined individuals consider to be an art from.Here try to used simple,generic explanation where possible to describe these systems.1)Planetary gear setsAutomatic transmission contain many gears in various combinations.In a manual transmission,gears slide along shafts as you move the shift lever from one position to another,engaging various sizes gears as required in order to provide the correct gear ratio.In an automatic transmission,how ever,the gears are never physically moved and are always engaged to the same gears.This is accomplishedthrough the use of planetary gear sets.The basic planetary gear set consists of a sun gear,a ring and two or more planet gears,all remaining in constant mesh.The planet gears are connected to each other through a common carrier which allows the gears to spin on shafts called “pinions” which are attached to the carrier.One example of a way that this system can be used is by connecting the ring gear to the input shaft coming from the engine,connecting the planet carrier to the output shaft,and locking the sun gear so that it can`t move.In this scenario,when we turn the ring gear,the planets will “walk”along the sun gear ( which is held stationary ) causing the planet carrier to turn the output shaft in the same direction as the input shaft but at a slower speed causing gear reduction ( similar to a car in first gear ).If we unlock the sun gear and lock any two elements together,this will cause all three elements to turn at the same speed so that to output shaft will turn at the same rate of speed as the input shaft.This is like a car that is third or high gear.Another way we can use a planetary gear set is by locking the planet carrier from moving,then applying power to the ring gear which will cause the sun gear to turn in opposite direction giving us reverse gear.The illustration in Figure shows how the simple system described above would look in an actual transmission.The input shaft is connected to the ring gear,the output shaft is connected to the planet carrier which is also connected to a “Multi-disk” clutch pack.The sun gear is connected to drum which is also connected to the other half of the clutch pack.Surrounding the outside of the drum is a band that can be tightened around the drum when required to prevent the drumwith the attached sun gear from turning.The clutch pack is used,in this instance,to lock the planet carrier with the sun gear forcing both to turn at the same speed.If both the clutch pack and the band were released,the system would be in neutral.Turning the input shaft would turn the planet gears against the sun gear,but since noting is holding the sun gear,it will just spin free and have no effect on the output shaft.To place the unit in first gear,the band is applied to hold the sun gear from moving.To shift from first to high gear,the band is released and the clutch is applied causing the output shaft to turn at the same speed as the input shaft.Many more combinations are possible using two or more planetary sets connected in various way to provide the different forward speeds and reverse that are found in modern automatic transmission.2)Clutch packA clutch pack consists of alternating disks that fit inside a clutch drum.Half of the disks are steel and have splines that fit into groves on the inside of the drum.The other half have a friction material bonded to their surface and have splines on the inside edge that fit groves on the outer surface of the adjoining hub.There is a piston inside the drum that is activated by oil pressure at the appropriate time to squeeze the clutch pack together so that the two components become locked and turn as one.3)One-way ClutchA one-way clutch ( also known as a “sprag” clutch ) is a device that will allow a component such as ring gear to turn freely in one direction but not in the other.This effect is just like that bicycle,where the pedals will turn the wheelwhen pedaling forward,but will spin free when pedaling backward.A common place where a one-way clutch is used is in first gear when the shifter is in the drive position.When you begin to accelerate from a stop,the transmission starts out in first gear.But have you ever noticed what happens if you release the gas while it is still in first gear ? The vehicle continues to coast as if you were in neutral.Now,shift into Low gear instead of Drive.When you let go of the gas in this case,you will feel the engine slow you down just like a standard shift car.The reason for this is that in Drive,one-way clutch is used whereas in Low,a clutch pack or a band is used.4)Torque ConverterOn automatic transmission,the torque converter takes the place of the clutch found on standard shift vehicles.It is there to allow the engine to continue running when the vehicle comes to a stop.The principle behind a torque converter is like taking a fan that is plugged into the wall and blowing air into another fan which is unplugged.If you grab the blade on the unplugged fan,you are able to hold it from turning but as soon as you let go,it will begin to speed up until it comes close to speed of the powered fan.The difference with a torque converter is that instead of using air it used oil or transmission fluid,to be more precise.A torque converter is a lager doughnut shaped device that is mounted between the engine and the transmission.It consists of three internal elements that work together to transmit power to the transmission.The three elements of the torque converter are the pump,the Turbine,and the Stator.The pump is mounted directly to the torque housing which in turn is bolted directly to the engine’s crankshaft and turns at enginespeed.The turbine is inside the housing and is connected directly to the input shaft of the transmission providing power to move the vehicle.The stator is mounted to a one-way clutch so that it can spin freely in one direction but not in the other.Each of the three elements has fins mounted in them to precisely direct the flow of oil through the converter.With the engine running,transmission fluid is pulled into the pump section and is pushed outward by centrifugal force until it reaches the turbine section which stars it running.The fluid continues in a circular motion back towards the center of the turbine where it enters the stator.If the turbine is moving considerably slower than the pump,the fluid will make contact with the front of the stator fins which push the stator into the one way clutch and prevent it from turning.With the stator stopped,the fluid is directed by the stator fins to re-enter the pump at a “help” angle providing a torque increase.As the speed of the turbine catches up with the pump,the fluid starts hitting the stator blades on the back-side causing the stator to turn in the same direction as the pump and turbine.As the speed increase,all three elements begin to turn at approximately the same speed.Sine the ‘80s,in order to improve fuel economy,torque converters have been equipped with a lockup clutch which locks the turbine to the pump as the vehicle reaches approximately 40-50 mph.This lockup is controlled by computer and usually won’t engage unless the transmission is in 3rd or 4th gear.5)Hydraulic SystemThe hydraulic system is a complex maze of passage and tubes that sends that sends transmission fluid and under pressure to all parts of the transmission and torque converter and.Transmission fluid serves a number of purpose including :shift control ,general lubrication and transmission cooling.Unlike the engine ,which uses oil primary for lubrication ,every aspect of a transmission ‘s function is dependant on a constant supply of fluid is send pressure.In order to keep the transmission at normal operating temperature,a portion of the fluid is send to through one of two steel tubes to a special chamber that is submerged in anti-freeze in the radiator.Fluid passing through this chamber is cooled and then returned to the transmission through the other steel tube.A typical transmission has an avenge of ten quarts of fluid between the transmission,torque converter,and cooler tank,In fact,most of the components of a transmission are constantly submerged in fluid including the clutch packs and bands.The friction surfaces on these parts are designed to operate properly only when they are submerged in oil.6)Oil PumpThe transmission oil pump ( not to confused with the pump element inside the torque converter ) is responsible for producing all the oil pressure that is required in the transmission.The oil pump is mounted to front of the transmission case and is directly connected to a flange on the engine crankshaft,the pump will produce pressure whenever the engine is running as there is a sufficient amount of transmission fluid available.The oil enters the pump through a filter that is located at bottom of the transmission oil pan and travels up a pickup tube directly to the oil pump.The oil is then sent,under pressure to the pressure regulator,the valve body and the rest of the components,as required.7)Valve BodyThe valve body is the control center of the automatic transmission.It contains a maze of channels and passages thatdirect hydraulic fluid to the numerous valves which when activate the appropriate clutch pack of band servo to smoothly shift to the appropriate gear for each driving situation.Each of the many valves in the valve body has a specific purpose and is named for that function.For example the 2-3 shift valve activates the 2nd gear up-shift or the 3-2 shift timing valve which determines when a downshift should occur.The most important valve and the one that you have direct control over is the manual valve. The manual valve is directly connected to the gear shift handle and covers and uncovers various passages depending on what position the gear shift is paced in.When you place the gear shift in Drive,for instance,the manual valve directs fluid to the clutch pack ( s ) that activates 1st gear.It also sets up to monitor vehicle speed and throttle position so that it can determine the optimal time and the force for the 1-2 shift.On computer controlled transmission,you will also have electrical solenoids that are mounted in the valve body to direct fluid to the appropriate clutch packs or bands under computer control to more precisely control shift points.8)Seals and GasketsAn automatic transmission has many seals and gaskets to control the flow of hydraulic fluid and to keep it from leaking out.There are two main external seals : the front seal and the rear seal.The front seal seals the point where the torque converter mounts to the transmission case.This seal allows fluid to freely move from the converter to the transmission but keeps the fluid from leaking out.The rear seal keeps fluid from leaking past the output shaft.A seal is usually made of rubber ( similar to the rubber in a windshield wiper blade ) and is used to keep oil fromleaking past a moving part such as a spinning shaft.In some cases,the rubber is assisted by a spring that holds he rubber in close contact with the spinning shaft.A gasket is a type of seal used to seal two stationary parts that are fasted together.Some common gasket materials are : paper,cork,rubber,silicone and soft metal.Aside from the main seals,there are also a number of other seals and gasket that vary from transmission to transmission.A common example is the rubber O-ring that seals the shaft for the shift control lever.This is the shaft that you move when you manipulate the gear shifter.Another example that is common to most transmission is the oil pan gasket.In fact,seals are required anywhere that a device needs to pass through the transmission case with each one being a potential source for leaks.9)Computer ControlsThe computer uses sensors on the engine and transmission to detect such things as throttle position,vehicle speed,engine speed,engine load,stop light switch position,etc.to control exact shift points as well as how soft or firm the shift should be.Some computerized transmission even learn your driving style and constantly adapt to it so that every shift is timed precisely when you would need it.Because of computer controls,sports models are coming out with the ability to take manual control of the transmission as through it were a stick shift lever through a special gate,then tapping it in one direction or the other in order to up-shift at will.The computer monitors this activity to make sure that the driver dose not select a gear that could over speed the engine and damage it.Another advantage to these “ smart” transmission is thatthey have a self diagnostic mode which can detect a problem early on and warn you with an indicator light on the dash.A technician can then plug test equipment in and retrieve a list of trouble codes that will help pinpoint where the problem is.Vehicular Automatic Transmission can be divided into three types: Automatic Transmission(AT), Automated Mechanical Transmission (AMT) and Continuously Variable Transmission(CVT). LMT has become a kind of transmission that is full of potentiality, due to its high transferefficiency, low cost and easiness to manufacture.The research on AMT shifting performance is key technology in the developing. Shiftingperformance directly influence the market competition and industrialization of AMT.AMT has good market expectation, but during the shifting procedure, the power must be cutoff which causes the poor shifting performance than AT and CVT. Only through improving theshitting performance can the commercial competence be established. So the virtual importantthing is to find the way to improve shifting performance.The development of AMT can be divided into three phases: semi-automatic, automatic, andintelligent. The two major part of AMT are: the hardware including the mastered object,executor,sensors and TCU; and the software performing the control strategy.The performance of AT shift influences greatly the performance of the vehicle. So theresearch on at shift quality is an important problem in the domain of AT researching. 5hi代q notify control of AT is accomplished by electronic and hydraulic system. To shift smoothly, accordingthe real time throttle calve opening and vehicle speed signal, the controller sends electronicsignals to control oil pressurechanging curve of the applying elements. this paper analyzes andresearch detailed shift quality control system, the analyzing model ofshifting process and pressurechanging curve of the applying elements.Firstly this paper summaries the existing evaluated quota of shift quality, and fully analyzesand introduces the existing control manner of AT shift quality.To meet the needs of research of vehicle starting and the real time control of shift, this paperputs forward a simplified model of engine-torque and a dynamics model of AT shifting process. Through the applying of the established model, this paper fully analyses the process al' the AT shitting.This paper drafts the proper oil pressure changing curve of the applying elements which canimprove the AT shift quality, and gives the material calculated methods of the AG4 AT. Thispaper simulates the AG4 AT's shifting process of 2H to 3H.The results of the simulation validatethe established simplified models and the expected oil pressure changing curve.This paper fully analyses the mechanism of the pressure regulating and flow controllingsystem of the AG4 AT, and preparatory discusses the design of the block-diagram of the shiftquality control. This paper test the control system and hydraulic system of the AG4 AT by the AThydraulic-electronic testing-bed. The result of the test validates the correction of these analyses.Automated Mechanical Transmission, as so called AMT, is a new-style transmission system.AMT technology applies the automatic. technology to the manual mechanical transmission andmakes the selection-gear, shift, clutch and throttle implement automatically. AMT technology issuitable for thesituation of our country, and has an expansive market arid development foreground.Shift schedules decide the time to shill and are the soul of the AMT. When the AMT is working, by comparing the states of the vehicle with the optimal shift schedules, the AMT decides theoptimal shift time and achieves the shill automatically. This will lessen the tiredness of thedrier and improve the safety. all the same time, the power and fuel-economy of the vehicle canalso be improved. The author chooses the shift schedule as the key technology problem to beresearched and the main study aim of this thesis is to get the optimal shill schedules for the AMTand so improvethe power and fuel-economy of the vehicle. Through analyzing the influence factors of power and fuel-economy far the automobile, the author get the establishment methodsfor the optimal-power shift schedule and optimal fuel-economy shill schedule. In order to solvethe influence of mass on the shift schedule, the author presents a variable-structure-controlled shiftsystem. This enriches the theory of shift schedules. Because the computer simulation can save alot of manpower and material resources comparing with the true-car test, so in this thesis, theauthor uses the simulation toolbox MATLABI/Simulate to setup the simulation model for shiftschedules. Using this model, the optimal-power shift schedule and optimal fuel-economy shiftschedule above are simulated and proved to be reasonable.Shifting performance is defined as the extent of swiftness and softness during the procedureofnon-power shifting and to extend the left of the power train. The index is comfort ofpassenger,time duration and shock, nine Factors maybe influence the shifting performance, and twoexperimental methods can be used to investigate the nature of thisperformance: one is collectingreal-time data during road experiment and analyzing them, the other is the simulation of theoperation conditions of the vehicle.The core of the AMT system is the control strategy, the principle of the clutch engagement,shifting procedure, the choice of` control method and the CAN communication between TCU andECU can influence the shifting performance.Shilling schedule is the schedule of auto shifting time between two shifts with controllingparameters. It includes economical and dynamical shilling schedule. At present, shilling scheduleof two controlling parameters (Vehicle speed and opening on throttle) is mainly used. If shiftingschedule is not good, shifting will not happen at right time and the working condition of engine will be severe. It will make the sound of engine abnormally and stability badly through the wholeshifting procession. Sometimes even flame out Schedule of clutch engagement is determined byreleasing journey of clutch, opening of throttle, shifting, Vehicle speed and loading. The main.Controlling goals are engaging quantity and engaging speed. The engaging control of clutchis mainly referred to the control of engaging speed. It is divided into three stages: fast, slow, Fast.Shifting quality is directly influenced by the second stage. Ifengaging harder, it will make shitting concussion, even flame out: if` engaging more slowly, it will make the Friction time longer andreduce its longevity. The main controlling parameters are difference between initiative andpassive and torques on bothsides. When torques being approximately equal, it is proved byexperiments that it can guarantee shifting time and not make concussion through the processionof engagement at the time of difference of rotatingspeed below some Value. Meanwhile, theabrasion of clutch is not severe.Shifting procedure is the procedure through working harmoniously among engine, clutch andtransmission. Their cooperation will affect shifting time heavily. In order to decrease the shiningtune, the time that is spent on the Friction of the clutch should be decreased First. If we intendto increase the time ofnon-load stage, which helps to minimize the difference of the rotary speedbetween the driving disc and the driven disc. If we intend to shorten the time of the non-toad stage,engage the clutch immediately after the gear change. The clutch can engage in a satisfying periodii` the new method of controlling the engaging speed of the clutch is realizable. And the time thatis spent on synchronizing the gears should also he shortened. It can be realized in the followingtwo ways. The first is to decrease the difference of the driving gear and the driven gear. Thesecond is to increase the shifting force. If realizing the union control between E.CU and TCU byCAN bus, AMT has the best control and the best shitting performance by use of communicationstrategy between TCU and ECU.Influence on shifting performance by hardware.The elements in hardware system are the basis of proper functions of AMT. Executors,sensors, electronic components, hydraulic systems have influences on shifting performance, thechoice of hardware parameters is of` vital important to improvement of shilling performance.With the development of the theory and technology of vehicle, the technical increasinglymature of microprocessor and the extensive application of electronic technique on the car, peoplehave no limit at satisfying the automotive means oftransportation only, facing gradually from therequest of the ear power, economy and easily manipulating, flexibility, safety, an d the intelligenttype of car becomes the focus in the vision of people increasingly. Company's publicity slogan of"person, car, life"," make people the center" etc. On the side exhibit the expectation of people tothe automotive individuation, humanity.In the development direction of the car intelligence, the intelligence of the automatic gearboxhas important effect. But the intelligence of the automatic. gearbox embodies at the establishmentof the shill regulation. For the fashion, for satisfying people to the new automotive request, far competitive advantage of the car type, at present each big factory in world worked very much inshill regulation of new car type. Among those, the mast arresting is AL4 automatic gearboxdeveloped by PELIGEGTICITROEN and RENAULT in that there unexpectedly are the 1 D kindsof so many shift regulations. In the big system of person-car-road,the goad and had of the car control, reflect primarily in the coordination of the vehicle and environment (road, thecoordination of the vehicle and person. And so, the electronic automatic control system can samevarious regulations to provide the driver to choose to use, not only having the economic regulation,motive (ca11 to sport the type again] regulation, but also still having the general (usual) regulation,environment temperature and regulation with the outsider condition variety etc._ Namely, the pointof` shilling can be Li-eely enacted for every kind of regulation. In the intelligence direction of` theshill regulation, everyone has made much work up to now, parts of the results has been appliedon the car. But the work that developing this intelligent shill regulation still is hard, this is mainly.because of:1 .The intelligence degree of the current intelligent gearbox needs to be increased, and it expresses at that accurate degree to identify environment t,riot high and to identify the driver's driving can't give satisfaction.2. The intelligence function is still not perfect. The intelligent automatically ship system is anopen system; it must he continuously perfect and plentiful on the current foundation. Only this way, it can adapt to the driving request of the different drivers, reducing the driver's labor strength,Increasingthe performance of the whole vehicle.Conventional design method which used in the structure parameters' design of automobilegear box and synchronizer is a time-wasting job and hard work and it is difficult to get ideadesign parameters and no good to the enhancement of products qualities. The optimum design of automobile gearbox and synchronizer which take the advantage of computers seeking the beststructure parameters within constrains is a perfect and high-quality design method. The maintarget of this article is to set up a optimum mathematical model of structure parameters of thetruck's gearbox and synchronizer, the auth or use a optimum method based an K-T equation toimprove the design level automobile gearbox and synchronizer. Gearbox is a important part oftransmission, so the optimization of automobile gearbox is very important because thetransmission is a main part of automobile. According to the design request and character sofasort of truck, the optimum mathematical model of` track's gearbox is analyzed and set up in thisarticle to decrease iGs weight and volume when the strength, stiffness, and lifetime of parts arepermitted. hind we can receive a satisfaction result through optimizingit's parameter for instance.Synchronizer is a important part of automobile gearbox, it make drive gear and driven gearengaged after their synchronized, so it can decrease engaged shock and noise, it can decrease shiftforcing and make it comfort to gear shill and increase the life of synchronizer. The synchronizedprocess of synchronizer is analyzed in this article; we can recei4'e a satisfaction result throughoptimizing its influence parameter for instance when the synchronized time is the shortest. Theoptimum toolbox of MATLAB is a convenient of ware of modern optimization with fast speedand powerful function. The algorithms of different mathematical subsets are divided into differentlibrarians in the form of functions in MALTLAB optimum toolbox. When we use them, we just callthe functions and give special parameters to solve the proble.rns and this will be fast and accurate. The author gives an optimum design for automobile gearbox and synchronizer by using theoptimum toolbox of MALTLAB and receives a satisfaction result.主动变速器换档纪律的研讨对于现代的汽车,主动变速器是一个庞杂的组件,这种传递动力的方法,是液力变矩器充当聚散器来衔接发念头和变速器.两个根本类型的主动变速器基于该车辆是否是前驱动或后驱动.对发念头前置后驱动的汽车,变速器平日装配在发念头后底盘中间与油门合营.变速器输出轴衔接到后桥,把发念头的动力传递到后轮,动力传输体系是直线的,从发念头,经由过程液力变矩器.变速器.传动轴.最后直接到到达车轮.对于发念头前置前轮驱动的汽车,变速器平日和差速器装在一路.对于前驱动的汽车,变速器装配在发念头一侧,前车轴直接衔接到差速器上,把动力传递给前轮.在这个安插中,动力来自于发念头,经由过程液力变矩器.变速器输出的动力经由过程了一个180度大转弯,经由变速器沿发念头侧边经由过程传动轴输出到前轮.。

自动变速器英文文献翻译

自动变速器英文文献翻译

毕业设计外文翻译THE RESEARCHS OFAMT SHIFTING SCHEDULESThe modern automatic transmission is by far,the most complicated mechanical component in today`s automobile. It is a type of transmission that sifts itself.A fluid coupling or torque converter is used instead of a manually operated clutch to connect the transmission to the engine.There are two basic types of automatic transmission based on whether the vehicle is rear wheel drive or front wheel drive. On a rear wheel drive car,the transmission is usually mounted to the back of the engine and is located under the hump in the center of the floorboard alongside the gas pedal position. A drive shaft connects the transmission to the final drive which is located in the rear axle and is used to send power to the rear wheels. Power flow on this system is simple and straight forward going from the engine,through the torque converter,then trough the transmission and drive shaft until it reaches the final drive where it is split and sent to the two rear transmission.On a front wheel drive car,the transmission is usually combined with the final drive to form what is called a transaxle. The engine on a front wheel drive car is usually mounted sideways in the car with the transaxle tucked under it on the side of the engine facing the rear of the car. Front axles are connected directly to the transaxle and provide power to front wheels. In this example,power floes from the engine,through the torque converter to a larger chain that sends the power through a 180 degree turn to the transmission that is along side the engine. From there,the power is routed through the transmission to the final drive where it is split and sent to the two front wheels throughthe drive axles.There are a number of other arrangements including front drive vehicles where the engine is mounted front to back instead of sideways and there are other systems that drive all four wheels but the two systems described here are by far the most popular. A much less popular rear and is connected by a drive shaft to the torque converter which is still mounted on the engine. This system is found on the new Corvette and is used in order to balance the weight evenly between the front and rear wheels for improved performance and handling. Another rear drive system mounts everything,the engine,transmission and final drive in the rear. This rear engine arrangement is popular on the Porsche;The modern automatic transmission consists of many components and systems that designed to work together in a symphony of planetary gear sets,the hydraulic system, seals and gaskets,the torque converter,the governor and the modulator or throttle cable and computer controls that has evolved over the years into what many mechanical inclined individuals consider to be an art from. Here try to used simple,generic explanation where possible to describe these systems.1Planetary gear setsAutomatic transmission contain many gears in various combinations. In a manual transmission,gears slide along shafts as you move the shift lever from one position to another,engaging various sizes gears as required in order to provide the correct gear ratio. In an automatic transmission,how ever,the gears are never physically moved and are always engaged to the same gears. This is accomplished through the use of planetary gear sets.The basic planetary gear set consists of a sun gear,a ring and two or more planet gears,all remaining in constant mesh. The planet gears are connected to each other through a common carrier which allows the gears to spin on shafts called “pinions” which are attached to the carrier.One example of a way that this system can be used is by connecting the ring gear to the input shaft coming from the engine,connecting the planet carrier to the output shaft,and locking the sun gear so that it can`t move. In this scenario,when we turn the ring gear,the planets will “walk” along the sun gearwhich is held stationary causing the planet carrier to turn the output shaftin the same direction as the input shaft but at a slower speed causing gearreduction similar to a car in first gear .If we unlock the sun gear and lock any two elements together,this will causeall three elements to turn at the same speed so that to output shaft will turnat the same rate of speed as the input shaft. This is like a car that is thirdor high gear. Another way we can use a planetary gear set is by locking the planetcarrier from moving,then applying power to the ring gear which will cause thesun gear to turn in opposite direction giving us reverse gear.The illustration in Figure shows how the simple system described above wouldlook in an actual transmission. The input shaft is connected to the ring gear,theoutput shaft is connected to the planet carrier which is also connected to a“Multi-disk” clutch pack. The sun gear is connected to drum which is also connected to the other half of the clutch pack. Surrounding the outside of thedrum is a band that can be tightened around the drum when required to preventthe drum with the attached sun gear from turning.The clutch pack is used,in this instance,to lock the planet carrier with thesun gear forcing both to turn at the same speed. If both the clutch pack andthe band were released,the system would be in neutral. Turning the input shaftwould turn the planet gears against the sun gear,but since noting is holdingthe sun gear,it will just spin free and have no effect on the output shaft. Toplace the unit in first gear,the band is applied to hold the sun gear from moving.To shift from first to high gear,the band is released and the clutch is appliedcausing the output shaft to turn at the same speed as the input shaft.Many more combinations are possible using two or more planetary sets connected in various way to provide the different forward speeds and reversethat are found in modern automatic transmission.2Clutch packA clutch pack consists of alternating disks that fit inside a clutch drum.Half of the disks are steel and have splines that fit into groves on the insideof the drum. The other half have a friction material bonded to their surfaceand have splines on the inside edge that fit groves on the outer surface of the adjoining hub. There is a piston inside the drum that is activated by oil pressure at the appropriate time to squeeze the clutch pack together so that the two components become locked and turn as one.3One-way ClutchA one-way clutch also known as a “sprag” clutch is a device that will allow a component such as ring gear to turn freely in one direction but not in the other. This effect is just like that bicycle,where the pedals will turn the wheel when pedaling forward,but will spin free when pedaling backward.A common place where a one-way clutch is used is in first gear when the shifter is in the drive position. When you begin to accelerate from a stop,the transmission starts out in first gear. But have you ever noticed what happens if you release the gas while it is still in first gearThe vehicle continues to coast as if you were in neutral. Now,shift into Low gear instead of Drive. When you let go of the gas in this case,you will feel the engine slow you down just like a standard shift car. The reason for this is that in Drive,one-way clutch is used whereas in Low,a clutch pack or a band is used.4Torque ConverterOn automatic transmission,the torque converter takes the place of the clutch found on standard shift vehicles. It is there to allow the engine to continue running when the vehicle comes to a stop. The principle behind a torque converter is like taking a fan that is plugged into the wall and blowing air into another fan which is unplugged. If you grab the blade on the unplugged fan,you are able to hold it from turning but as soon as you let go,it will begin to speed up until it comes close to speed of the powered fan. The difference with a torque converter is that instead of using air it used oil or transmission fluid,to be more precise.A torque converter is a lager doughnut shaped device that is mounted between the engine and the transmission. It consists of three internal elements that work together to transmit power to the transmission. The three elements of the torque converter are the pump,the Turbine,and the Stator. The pump is mounteddirectly to the torque housing which in turn is bolted directly to the engine’s crankshaft and turns at engine speed. The turbine is inside the housing and is connected directly to the input shaft of the transmission providing power to move the vehicle. The stator is mounted to a one-way clutch so that it can spin freely in one direction but not in the other. Each of the three elements has fins mounted in them to precisely direct the flow of oil through the converter.With the engine running,transmission fluid is pulled into the pump section and is pushed outward by centrifugal force until it reaches the turbine section which stars it running. The fluid continues in a circular motion back towards the center of the turbine where it enters the stator. If the turbine is moving considerably slower than the pump,the fluid will make contact with the front of the stator fins which push the stator into the one way clutch and prevent it from turning. With the stator stopped,the fluid is directed by the stator fins to re-enter the pump at a “help” angle providing a torque increase. As the speed of the turbine catches up with the pump,the fluid starts hitting the stator blades on the back-side causing the stator to turn in the same direction as the pump and turbine. As the speed increase,all three elements begin to turn at approximately the same speed. Sine the ‘80s,in order to improve fuel economy,torque converters have been equipped with a lockup clutch which locks the turbine to the pump as the vehicle reaches approximately 40-50 mph. This lockup is controlled by computer and usually won’t engage unless the transmission is in 3rd or 4th gear.5Hydraulic SystemThe hydraulic system is a complex maze of passage and tubes that sends that sends transmission fluid and under pressure to all parts of the transmission and torque converter and. Transmission fluid serves a number of purpose including : shift control ,general lubrication and transmission cooling;Unlike the engine ,which uses oil primary for lubrication ,every aspect of a transmission ‘s function is dependant on a constant supply of fluid is send pressure. In order to keep the transmission at normal operating temperature,aportion of the fluid is send to through one of two steel tubes to a special chamber that is submerged in anti-freeze in the radiator. Fluid passing through this chamber is cooled and then returned to the transmission through the other steel tube. A typical transmission has an avenge of ten quarts of fluid between the transmission,torque converter,and cooler tank,In fact,most of the components of a transmission are constantly submerged in fluid including the clutch packs and bands. The friction surfaces on these parts are designed to operate properly only when they are submerged in oil.6Oil PumpThe transmission oil pump not to confused with the pump element inside the torque converter is responsible for producing all the oil pressure that is required in the transmission. The oil pump is mounted to front of the transmission case and is directly connected to a flange on the engine crankshaft,the pump will produce pressure whenever the engine is running as there is a sufficient amount of transmission fluid available. The oil enters the pump through a filter that is located at bottom of the transmission oil pan and travels up a pickup tube directly to the oil pump. The oil is then sent,under pressure to the pressure regulator,the valve body and the rest of the components,as required.7Valve BodyThe valve body is the control center of the automatic transmission. It contains a maze of channels and passages that direct hydraulic fluid to the numerous valves which when activate the appropriate clutch pack of band servo to smoothly shift to the appropriate gear for each driving situation. Each of the many valves in the valve body has a specific purpose and is named for that function. For example the 2-3 shift valve activates the 2nd gear up-shift or the 3-2 shift timing valve which determines when a downshift should occur.The most important valve and the one that you have direct control over is the manual valve. The manual valve is directly connected to the gear shift handle and covers and uncovers various passages depending on what position the gear shift is paced in. When you place the gear shift in Drive,for instance,the manual valve directs fluid to the clutch pack s that activates 1st gear. Italso sets up to monitor vehicle speed and throttle position so that it can determine the optimal time and the force for the 1-2 shift. On computer controlled transmission,you will also have electrical solenoids that are mounted in the valve body to direct fluid to the appropriate clutch packs or bands under computer control to more precisely control shift points.8Seals and GasketsAn automatic transmission has many seals and gaskets to control the flow of hydraulic fluid and to keep it from leaking out. There are two main external seals : the front seal and the rear seal. The front seal seals the point where the torque converter mounts to the transmission case. This seal allows fluid to freely move from the converter to the transmission but keeps the fluid from leaking out. The rear seal keeps fluid from leaking past the output shaft.A seal is usually made of rubber similar to the rubber in a windshield wiper blade and is used to keep oil from leaking past a moving part such as a spinning shaft. In some cases,the rubber is assisted by a spring that holds he rubber in close contact with the spinning shaft.A gasket is a type of seal used to seal two stationary parts that are fasted together. Some common gasket materials are : paper,cork,rubber,silicone and soft metal.Aside from the main seals,there are also a number of other seals and gasket that vary from transmission to transmission. A common example is the rubber O-ring that seals the shaft for the shift control lever. This is the shaft that you move when you manipulate the gear shifter. Another example that is common to most transmission is the oil pan gasket. In fact,seals are required anywhere that a device needs to pass through the transmission case with each one being a potential source for leaks.9Computer ControlsThe computer uses sensors on the engine and transmission to detect such things as throttle position,vehicle speed,engine speed,engine load,stop light switch position,etc. to control exact shift points as well as how soft or firm the shift should be. Some computerized transmission even learn your driving style andconstantly adapt to it so that every shift is timed precisely when you would need it.Because of computer controls,sports models are coming out with the ability to take manual control of the transmission as through it were a stick shift lever through a special gate,then tapping it in one direction or the other in order to up-shift at will. The computer monitors this activity to make sure that the driver dose not select a gear that could over speed the engine and damage it.Another advantage to these “ smart” transmission is that they have a self diagnostic mode which can detect a problem early on and warn you with an indicator light on the dash. A technician can then plug test equipment in and retrieve a list of trouble codes that will help pinpoint where the problem is.Vehicular Automatic Transmission can be divided into three types: Automatic TransmissionAT, Automated Mechanical Transmission AMT and Continuously Variable TransmissionCVT. LMT has become a kind of transmission that is full of potentiality, due to its high transfer efficiency, low cost and easiness to manufacture.The research on AMT shifting performance is key technology in the developing. Shifting performance directly influence the market competition and industrialization of AMT.AMT has good market expectation, but during the shifting procedure, the power must be cut off which causes the poor shifting performance than AT and CVT. Only through improving the shitting performance can the commercial competence be established. So the virtual important thing is to find the way to improve shifting performance.The development of AMT can be divided into three phases: semi-automatic, automatic, and intelligent. The two major part of AMT are: the hardware including the mastered object, executor , sensors and TCU; and the software performing the control strategy.The performance of AT shift influences greatly the performance of the vehicle. So the research on at shift quality is an important problem in the domain of AT researching. 5hi代q notify control of AT is accomplished by electronic andhydraulic system. To shift smoothly, according the real time throttle calve opening and vehicle speed signal, the controller sends electronic signals to control oil pressure changing curve of the applying elements. this paper analyzes and research detailed shift quality control system, the analyzing model of shifting process and pressure changing curve of the applying elements.Firstly this paper summaries the existing evaluated quota of shift quality, and fully analyzes and introduces the existing control manner of AT shift quality.To meet the needs of research of vehicle starting and the real time control of shift, this paper puts forward a simplified model of engine-torque and a dynamics model of AT shifting process. Through the applying of the established model, this paper fully analyses the process al' the AT shitting.This paper drafts the proper oil pressure changing curve of the applying elements which can improve the AT shift quality, and gives the material calculated methods of the AG4 AT. This paper simulates the AG4 AT's shifting process of 2H to results of the simulation validate the established simplified models and the expected oil pressure changing curve.This paper fully analyses the mechanism of the pressure regulating and flow controlling system of the AG4 AT, and preparatory discusses the design of the block-diagram of the shift quality control. This paper test the control system and hydraulic system of the AG4 AT by the AT hydraulic-electronic testing-bed. The result of the test validates the correction of these analyses.Automated Mechanical Transmission, as so called AMT, is a new-style transmission technology applies the automatic. technology to the manual mechanical transmission and makes the selection-gear, shift, clutch and throttle implement automatically. AMT technology is suitable for the situation of our country, and has an expansive market arid development foreground. Shift schedules decide the time to shill and are the soul of the AMT. When the AMT is working, by comparing the states of the vehicle with the optimal shift schedules, the AMT decides the optimal shift time and achieves the shill automatically. This will lessen the tiredness of the drier and improve thesafety. all the same time, the power and fuel-economy of the vehicle can also be improved. The author chooses the shift schedule as the key technology problem to be researched and the main study aim of this thesis is to get the optimal shill schedules for the AMT and so improve the power and fuel-economy of the vehicle. Through analyzing the influence factors of power and fuel-economy far the automobile, the author get the establishment methods for the optimal-power shift schedule and optimal fuel-economy shill schedule. In order to solve the influence of mass on the shift schedule, the author presents a variable-structure-controlled shift system. This enriches the theory of shift schedules. Because the computer simulation can save a lot of manpower and material resources comparing with the true-car test, so in this thesis, the author uses the simulation toolbox MATLABI/Simulate to setup the simulation model for shift schedules. Using this model, the optimal-power shift schedule and optimal fuel-economy shift schedule above are simulated and proved to be reasonable.Shifting performance is defined as the extent of swiftness and softness during the procedure of non-power shifting and to extend the left of the power train. The index is comfort of passenger, time duration and shock, nine Factors maybe influence the shifting performance, and two experimental methods can be used to investigate the nature of this performance: one is collecting real-time data during road experiment and analyzing them, the other is the simulation of the operation conditions of the vehicle.The core of the AMT system is the control strategy, the principle of the clutch engagement, shifting procedure, the choice of` control method and the CAN communication between TCU and ECU can influence the shifting performance.Shilling schedule is the schedule of auto shifting time between two shifts with controlling parameters. It includes economical and dynamical shilling schedule. At present, shilling schedule of two controlling parameters Vehicle speed and opening on throttle is mainly used. If shifting schedule is not good, shifting will not happen at right time and the working condition of engine will be severe. It will make the sound of engine abnormally and stability badly throughthe whole shifting procession. Sometimes even flame out Schedule of clutch engagement is determined by releasing journey of clutch, opening of throttle, shifting, Vehicle speed and loading. The main.Controlling goals are engaging quantity and engaging speed. The engaging control of clutch is mainly referred to the control of engaging speed. It is divided into three stages: fast, slow, Fast. Shifting quality is directly influenced by the second stage. If engaging harder, it will make shitting concussion, even flame out: if` engaging more slowly, it will make the Friction time longer and reduce its longevity. The main controlling parameters are difference between initiative and passive and torques on both sides. When torques being approximately equal, it is proved by experiments that it can guarantee shifting time and not make concussion through the procession of engagement at the time of difference of rotating speed below some Value. Meanwhile, the abrasion of clutch is not severe.Shifting procedure is the procedure through working harmoniously among engine, clutch and transmission. Their cooperation will affect shifting time heavily. In order to decrease the shining tune, the time that is spent on the Friction of the clutch should be decreased First. If we intend to increase the time of non-load stage, which helps to minimize the difference of the rotary speed between the driving disc and the driven disc. If we intend to shorten the time of the non-toad stage, engage the clutch immediately after the gear change. The clutch can engage in a satisfying period ii` the new method of controlling the engaging speed of the clutch is realizable. And the time that is spent on synchronizing the gears should also he shortened. It can be realized in the following two ways. The first is to decrease the difference of the driving gear and the driven gear. The second is to increase the shifting force. If realizing the union control between and TCU by CAN bus, AMT has the best control and the best shitting performance by use of communication strategy between TCU and ECU.Influence on shifting performance by hardware.The elements in hardware system are the basis of proper functions of AMT. Executors, sensors, electronic components, hydraulic systems have influenceson shifting performance, the choice of hardware parameters is of` vital important to improvement of shilling performance.With the development of the theory and technology of vehicle, the technical increasingly mature of microprocessor and the extensive application of electronic technique on the car, people have no limit at satisfying the automotive means of transportation only, facing gradually from the request of the ear power, economy and easily manipulating, flexibility, safety, an d the intelligent type of car becomes the focus in the vision of people increasingly. Company's publicity slogan of" person, car, life"," make people the center" etc. On the side exhibit the expectation of people to the automotive individuation, humanity.In the development direction of the car intelligence, the intelligence of the automatic gearbox has important effect. But the intelligence of the automatic. gearbox embodies at the establishment of the shill regulation. For the fashion, for satisfying people to the new automotive request, far competitive advantage of the car type, at present each big factory in world worked very much in shill regulation of new car type. Among those, the mast arresting is AL4 automatic gearbox developed by PELIGEGTICITROEN and RENAULT in that there unexpectedly are the 1 D kinds of so many shift regulations. In the big system of person-car-road, the goad and had of the car control, reflect primarily in the coordination of the vehicle and environment road, the coordination of the vehicle and person. And so, the electronic automatic control system can same various regulations to provide the driver to choose to use, not only having the economic regulation ,motive ca11 to sport the type again regulation, but also still having the general usual regulation ,environment temperature and regulation with the outsider condition variety Namely, the point of` shilling can be Li-eely enacted for every kind of regulation. In the intelligence direction of` the shill regulation, everyone has made much work up to now, parts of the results has been applied on the car. But the work that developing this intelligent shill regulation still is hard, this is mainly.because of:1 .The intelligence degree of the current intelligent gearbox needs to be increased, and it expresses at that accurate degree to identify environment t,riot high and to identify the driver's driving can't give satisfaction.2. The intelligence function is still not perfect. The intelligent automatically ship system is an open system; it must he continuously perfect and plentiful on the current foundation. Only this way, it can adapt to the driving request of the different drivers, reducing the driver's labor strength, Increasing the performance of the whole vehicle.Conventional design method which used in the structure parameters' design of automobile gear box and synchronizer is a time-wasting job and hard work and it is difficult to get idea design parameters and no good to the enhancement of products qualities. The optimum design of automobile gearbox and synchronizer which take the advantage of computers seeking the best structure parameters within constrains is a perfect and high-quality design method. The main target of this article is to set up a optimum mathematical model of structure parameters of the truck's gearbox and synchronizer, the auth or use a optimum method based an K-T equation to improve the design level automobile gearbox and synchronizer. Gearbox is a important part of transmission, so the optimization of automobile gearbox is very important because the transmission is a main part of automobile. According to the design request and character sofa sort of truck, the optimum mathematical model of` track's gearbox is analyzed and set up in this article to decrease iGs weight and volume when the strength, stiffness, and lifetime of parts are permitted. hind we can receive a satisfaction result through optimizing it's parameter for instance.Synchronizer is a important part of automobile gearbox, it make drive gear and driven gear engaged after their synchronized, so it can decrease engaged shock and noise, it can decrease shift forcing and make it comfort to gear shill and increase the life of synchronizer. The synchronized process of synchronizer is analyzed in this article; we can recei4'e a satisfaction result through optimizing its influence parameter for instance when the synchronized time is the shortest. The optimum toolbox of MATLAB is a convenient of ware of modern。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附录所谓分动箱,就是将发动机的动力进行分配,分别输出给前轴和后轴的装置。

从这个角度可以看出,分动箱实际上是四驱车上的一个配件。

随着四驱技术的发展,分动箱也一直进行着改变,并逐渐形成了风格迥异的分动箱,匹配在不同诉求的四驱车上,它们的基本原理和功能也都是各不相同的。

最早的四驱技术,是基于提高车辆的通过性开发的,我们把它称作越野四驱。

这类车型的鼻祖威利斯吉普,就是二战美军为了加强前线步兵和指挥官作战的机动性开发出来的。

它采用的分动箱是最基本的分时四驱分动箱,是一种纯机械的装置。

这种结构的分动箱,在挂上4驱模式的时候,前后轴是刚性连接的,可以实现前后动力50∶50的分配,对于提高车辆的通过性非常有利。

另外由于它的纯机械结构,可靠性很高,这对于经常在缺少救援的荒野行驶的车型是至关重要的。

即使到现在,仍然有大量的硬派越野车采用这种分动箱,就是基于它这个特点。

下面我们就来看看这种分动箱的基本结构和原理。

在此类车型的分动箱挡把上,我们会看到2H、4H、N、和4L的切换挡位。

当挂2H时,此类车型就是一台后驱车,发动机的动力经过变速箱以后,通过一根传动轴直接连接到后轴上。

而分动箱的作用,就是在变速箱上,再引出一根输出端,并通过静音链条,将动力传递到前轴的输出轴。

当然,这并不是直接连接的,否则就无法切换4驱和2驱了。

事实上,它是通过两组齿轮实现分离和连接的,它的结构和原理类似于变速箱的一轴和二轴。

切换时,扳动分动箱的挡把,通过拨叉将动力与前传动轴接通和断开。

与现在主流的带同步器的变速箱不同,这个部位的切换是没有同步器的,它需要转速与轮速的完全匹配。

这就是这种分动箱的基本原理。

但实际情况并不会这么简单,为了提高通过性能,这类分动箱还会有一个加力挡,也就是挡把上的4L模式。

在变速箱上,有一个齿比更大的齿轮,当挂上这个齿轮时,能提供比日常驾驶高很多的主传动比。

我们发现,当我们需要挂4L时,必须经过一个N挡,此时变速箱会将动力与每个传动轴分开,而挂上4L时,将接通这个齿比更大的齿轮。

这个切换的过程,也是没有同步器的。

知道了这个原理,我们再来看看此类分动箱各个模式的操作特性。

熟悉传统越野车的车友都知道,这种分动箱,在2H和4H之间切换时,不需要停车,一般可以在80公里/小时的时速下自由切换。

而切换到2L时,则必须停车切换,否则根本挂不进去,这是为什么呢?无论是2H模式还是4H模式,动力一直是与后轴接通的,后轮的轮速与发动机转速完全匹配。

而此时只要车轮没有打滑,前轮与后轮的轮速是一样的,因此在2H与4H之间切换时,发动机转速与前输出轴的转速是匹配的,即使没有同步器,也完全可以进行切换。

因此在2H模式和4H模式间切换,完全可以在行车中进行,不需要停车切换。

但到了4L模式的转换时,情况就完全不同了。

从4H切换到4L模式,需要先将分动箱切换为N挡,此时发动机动力与每个车轮都断开,发动机转为怠速工况。

此时如果挂4L,车轮的轮速与发动机的转速会很难匹配,相当于一台不带同步器的车行驶过程中想挂一挡,这显然是很难的。

这种分动箱前后轴之间是没有差速器的,因此在附着力高的公路上驾驶只能挂2H,4驱模式仅仅是在沙石路面以及OFF-ROAD路段为提高通过性而设计。

因此采用这种分动箱的四驱车一般都是硬派越野车,它在OFF-ROAD路段很厉害,但在公路上则表现平平。

早期的分时四驱,是完全靠手动切换的,发展到后来,出现了电动切换的分时四驱,它的基本原理与手动切换的分时四驱是一样的,只不过所有的切换是通过电机来完成罢了。

1.全时四驱分动箱随着四驱技术的发展,人们已经不能仅仅满足于只能越野的四驱车。

在公路上,采用四驱技术的车辆能提供更好的驱动力和操控性能,因此全时四驱诞生了。

硬轴连接的四驱车不能实现公路四驱驾驶的最主要的原因,是它无法在公路上高速转弯。

因为在转弯的时候,每个车轮所压过的弧线长度不一样,这就意味着每个车轮的转速都不能一样。

事实上,前轮的转速是会高于后轮的,如果刚性地把发动机的动力通过传动轴分配给前后车轮的话,那么前后车轮的转速就必须保持一致,这个矛盾将导致前后车轮在转向的时候发生转向干涉。

这在附着力低的沙石路面可以通过轮胎与地面的滑动摩擦解决,而在干燥路面则会产生一个制动力,让车不能前进,这就是我们常说的转向制动。

为了解决这个矛盾,工程师在分动器中加入了一个差速器,这就是我们现在常说的中央差速器。

这个差速器是开放式差速器,结构与前后轴的差速器一样,变速箱的输出轴通过行星齿轮组将动力分配给前后轴。

根据开放式差速器的原理,它可以调整转速差。

这样的结构是不是就算是全时四驱了呢?早期全时四驱的雏形确实是这样的,但我们会发现,这样的四驱系统对于提高通过性来说毫无意义。

我们知道,开放式差速器的功能是把发动机动力分配给受阻力小的车轮,如果一台车上使用了三个开放式差速器(前后轴各还有一个差速器)来调节转速差的话,那么如果有一个车轮受阻力最小,动力就会100%地传递给这个车轮。

显然这种四驱是毫无意义的。

为了解决这个问题,不同的工程师采用了两种不同的方案。

一种是差动限制器。

我们已经知道,开放式差速器会将动力传递给受阻力较小的车轮,那如果我们给这辆车人为施加一个阻力,动力自然就能传递给没有打滑(仍然有抓地力)的车轮了。

它的基本结构是一种类似于离合器的装置,只不过它有很多组,我们把它称作多片离合器式差动限制器。

在差速器壳体和两个输出轴各有一组钢片,它们相互交错,正常情况下互相之间是分离的。

如果此时前轮打滑,它会将与前轴的离合器片压合,从而将动力更多地传递给后轮,后轮打滑的道理是一样的。

这种差动限制器的种类有很多,有通过硅油实现的机械式(关于硅油的原理后文会详述),也有通过电子控制离合器开合的电子式。

在比较高档的车型上,它的差动限制器不仅解决车轮打滑的问题,还能起到主动分配动力的作用,甚至可以实现让动力从0-100%之间在前后轴自由分配。

另一种则是中央差速锁。

它实际上相当于在需要提高通过性的时候,可以将前后轴实现硬轴连接,动力按照50∶50分配给前后轴。

它的基本结构是,在前后轴之间装有摩擦钢片,当前轮或者后轮打滑时,机械装置会通过电磁阀的控制将二者咬合实现50∶50的固定动力分配。

还有一种全时四驱的分动器结构,那就是著名的奥迪QUAT-TRO。

它主要是通过蜗杆行星齿轮来实现的,结构很复杂,这里就不再详述了。

它这种结构能解决转速差的问题,起到开放式差速器的作用,同时又能自动将动力分配给受阻力最大的问题,起到差动限制器的作用。

它可以实现动力25%—75%之间的自由分配,而所有这些,都是通过它核心的托森差速器来实现的,更为神奇的是,这个托森差速器没有用到任何电磁装置,是纯机械式的。

无论多先进的电子设备都有响应滞后的问题,因此与其他厂家的技术相比,纯机械的QUATTRO在响应速度方面是无人能及的。

当然它也有弊端—结构复杂、造价高、动力传递损失大是它无法跨越的硬伤。

与全时四驱匹配的还有电子差速制动,主要是用来调整左右车轮的转速差的,相当于前差速锁和后差速锁。

与差动限制器相比,它的能量损耗较大,一般不用来实现前后车轮的动力分配。

2.适时四驱的分动箱在此之后,有些厂家的工程师们发现,并不是所有路况都需要四驱系统的,例如在正常公路巡航驾驶的时候,只通过两轮驱动就完全能满足所有的驾驶需求了。

此时如果仍采用全时四驱,既不经济,也没有必要。

因此,在多数情况下只是两轮驱动,而在必要的时候自动变为四驱的适时四驱诞生了。

适时四驱也有两种解决方案,一种是以本田CR-V为代表的通过粘性连轴节实现;一种是以上一代的4-MATIC为代表的通过多片离合器实现。

它们虽然都能达到正常时两轮驱动,驱动轮打滑时自动接通四驱的效果,但结构和功能还是有区别的。

CR-V为代表的这类适时四驱分动箱结构最为简单,它是基于前横置发动机前轮驱动的技术平台,在两驱方面,与之前的轿车平台完全一样。

在此基础上,工程师在变速箱上引出一根通往后轴的输出轴,与后桥差速器之间,采用粘性连轴节连接。

在这个连轴节里充满了硅油,它的特点是温度升高以后粘度也会迅速升高。

在连轴节的输出端和输入端,都装有一个叶片,就类似于液力变矩器的结构。

当正常行驶前轮没有打滑的时候,前后轮之间是没有轮速差的,这个粘性连轴节里的两根轴相互之间也就没有转速差。

此时动力是不会传递给后轴的。

当前轮打滑的时候,前轮的转速将大于后轮,此时粘性连轴节里的输入端转速会超过输出端,就如同液力变矩器一般,能够将动力传递给后轴。

不仅如此,由于转速差能导致硅油升温而变粘稠,从而进一步增加对动力的传递,驱动后轮。

通过这个结构我们会发现,它的响应速度是比较慢的,而且动力传递也很有限,很难将50%的动力分配给后轴。

但它的结构简单、成本低,对于以城市道路驾驶的SUV来说,基本能满足其需求。

上一代4-MATIC为代表的适时四驱分动箱,结构比粘性连轴节的适时四驱要复杂一些,与前面所说的中央差速锁有些类似,它是通过电磁离合器来实现四驱接通的。

它同样是基于两驱平台开发出来的四驱系统,在变速箱的一端通过盆型齿轮引出一根传动轴将动力传递给前轮,之间靠多片离合器连接。

它的接通与断开的原理与之前说的中央差速锁的原理类似,这里就不赘述了。

它的好处是结构比全时四驱简单,响应速度和动力分配比粘性连轴节要好。

随着结构的四驱技术的进一步发展,现在有些车型已经可以实现动力的自由分配了,很多的官方宣传把这种四驱也称作全时四驱,事实上是不准确的。

与具备中央差速锁的真正全时四驱相比,这种靠多片离合器实现动力分配的所谓全时四驱,最多只能将动力的50%分配给从动轮,而且在转弯时的动力分配等方面,都无法达到真正全时四驱的水平。

从本质上说,这类四驱仍然只能称作适时四驱,例如大众的4-Motion。

3.超选四驱分动箱这个称呼是三菱的,一直以来也被看做是三菱的看家技术。

从分动箱的挡把看,它更像是传统的分时四驱系统,所不同的是,它是具备中央差速器的。

当挂上4H的时候,不仅能在沙石路面上高速行驶,也能在普通公路上实现公路四驱的功能。

而它提供的4HLC和4LLC选项,则是锁上了中央差速锁的四驱模式,在这个时候,它与分时四驱的4H和4L的功能是一样的。

之所以三菱称之为超选,实际上是因为它比所有的四驱系统可选择的范围都要多。

一般的全时四驱车,只能选择四驱行驶,在不需要四驱的时候,这样的方式显然不经济;而适时四驱虽然可以实现两驱,但在四驱的时候无法达到真正的全时四驱的性能;分时四驱就不用说了,它完全不能实现公路四驱驾驶。

而所有这些,超选四驱都能选择—想经济性好,就挂上2H,想公路全时四驱就挂上4H,想达到与传统分时四驱一样的通过性,就挂上4HLC或者4LLC。

The so-called transfer case, is the power of the engine for the distribution, outp ut to front axle and rear axle respectively of the device. From this point of view ca n see, transfer case is actually the raider buggies a accessories. Along with the raide r buggies technology development, the transfer case also has been the change, and gradually form the style different transfer case, matching the raider is in different app eal, their basic principle and function are also different.The first raider technology, is based on the improve vehicle through sexual deve lopment, we called it the cross-country raider buggies. This kind of car is the ancest or of the second world war, American troops Willis jeep in order to strengthen the front line infantry and commander of the development of mobility out of combat. It used Transfer case is the most basic points raider Transfer case, is a pure mechani cal device.The structure of the Transfer case, hang up the 4 flooding patterns, rear a xle is before the rigid connection, may realize the power 50: the before and after 5 0 distribution, to improve the vehicles through sexual very favorable. Plus, because i t purely mechanical structure, high reliability, this to often lack the wilderness in res cue vehicles driving is very important. Even now, there are still a lot of hard sent by theTransfer case suv, is based on the characteristics of it. Let's take a look at thi s Transfer case basic principle and structure.In this kind of car Transfer case on the block, we will see 2H,4H,N and 4L s witching gears. When hang 2H, such models is a whip, the power of the engine dri ving after gearbox, through a shaft after root connected directly to the rear axle. An d Transfer case role, which is in the gearbox, and then lead to an output terminal, and through the mute chain, will power transfer to the front axle output shaft. Of c ourse, this is not to direct connection, it will not switch 4 flooding and 2 flooding. In fact, it is through the two groups of gear separated and connection of the structu re and principle, it is similar to the one axis, and two transmission shaft. When swit ching Transfer case throw of the block, through the fork will power and transmissio n through and disconnect before. And now the mainstream with synchronizer gearbo x, the part of the different switching is no synchronizer, it needs the wheel speed a nd the match. This is the Transfer case basic principle.But the truth is not so simple, in order to improve the performance of this kin d of Transfer case through, there will still be one block, also is the strength of the block on 4L model. In the gearbox, more than the gear tooth, when hung up the ge ar, can provide a much higher than daily driving the main transmission. We found t hat when we need to hang 4L, must go through a N block, at this time will power and each transmission shaft separated, and hang up 4L, will be through to this toot h more than the gear. The switch of the process, is also no synchronizer.Know the principle, we take a look at this Transfer case each mode of operation ch aracteristics. Familiar with traditional suvs, having know this Transfer case, in 2H an d 4H, we do not need to switch between parking, can generally in the 80 km/hourper hour free switch. And switch to 2L, it must stop switch, or fundamental hang in, is this why?Whether 2H mode or 4H mode, the power is always connected with rear-axle, t he rear wheels wheel and engine speed completely match. But at this time as long as no sliding, front wheel and rear wheel speed is same, so in 2H and 4H switch b etween, engine speed and output shaft speed is before the match, even without sync hronizer, also can switch. So in 2H mode and 4H mode, can switch between the on board, need not stop switch. But in the 4L mode switch, it was completely different.From 4H switch to 4L model, need to add Transfer case switch for N block, t his time of engine power and each wheel are disconnected, engine to idling process. If this time the wheels of L, hang 4 wheel and the speed of the engine can be ha rd to match, equivalent to a without synchronizer driving process want to hang a bl ock, this is clearly a very difficult.This Transfer case between front axle is not between the differential, therefore i n the high adhesion of the ROAD can only hang 2H, 4 flooding mode is only in t he gravel ROAD and OFF ROAD sections to improve-through sexual and design. So the method of this Transfer case buggies are generally hard-line rovers, it in the O FF-ROAD sections it bad, but in the highway is average performance.The early time, is totally by manual raider switch, later, there was electric switc h points raider buggies, it the basic principles and manual switching points raider is same, but all of the switch is through the motor to complete it.1.Transfer case full-time raider buggiesWith the development of the technology of raider buggies, people are not satisfi ed with just four drove cross-country only. In the highway, the raider buggies techn ology vehicles can offer a better driving force and control performance, so full-time raider was born.Hard shaft link of raider buggies can't achieve highway raider driving the main reason, is it not in freeway turn. Because in when turning, each wheel crushes the a rc length different, this means that each of the wheel speed are not the same. In fa ct, the speed of the front wheel is will be higher than the rear wheels, if the rigid to the power of the engine through the drive shaft before and after assigned to the wheel, then the before and after the wheel speed must be consistent, the contradictio n between before and after the steering wheel will lead to occur to interfere. The ad hesion of sand of pavement in low by the sliding friction tires and the ground, and in dry pavement solution will produce a braking, let the car won't go forward, this i s we often say to brake.In order to resolve the contradiction, the engineer in thansfer joined the a differ ential, this is we are now often say the central differential. The differential is open differentials, structure and the differential between front axle, as well as the output s haft transmission through planetary gear set will power distribution to rear axle befor e. According to the principle of differential open mode, it can adjust the speed diffe rence. This structure is even full-time raider? The prototype of the early full-time rai der is really such, but we will find, the raider buggies to improve the system throug h sexual makes no sense. We know, open mode is the function of differential the e ngine power distribution to the small resistance wheels, if a car use of three open d ifferential (between front axle and a differential) each to adjust the speed difference of words, so if there is a wheel has the least resistance, by motivation to transfer to the wheels by 100%. Obviously this raider is pointless.In order to solve this problem, different engineer USES two different project.One is the differential limit. We already know, open mode will be passed to th e power differential resistance smaller wheels, by that if we give the car a resistanc e on human nature, the power can be passed to the no sliding (there are still grip t he wheels of). Its basic structure is a kind of similar to the device, but it clutch ma ny groups, we called it the multi-gear clutch type differential limit device. In the dif ferential shell and two output shaft each have a set of pieces of steel, their mutual crisscross, normally between each other is separated. If the front wheels skid, it will front axle and the pressure and the clutch disc, which will power transfer to the re ar wheels more, rear wheel slippage, the truth is the same. This is the type of diffe rential limit has a lot of, have through the silicone oil of the realization of the mec hanical (about the principle of silicone oil after described the) and through the electr onic control of electronic electrical switching of the clutch. In the more upscale cars, it is not only the differential limit solution to the wheel slippage problem, still can have the initiative of the power distribution function, can even realize the power fr om 0 to 100% in the first free distribution between rear axles.Another is the central differential lock. It actually is equivalent to need to impr ove through the sex, can be hard to realize between front axle shaft link, power, ac cording to 50 50 assigned to rear axle before. Its basic structure is in between, bet ween front axle with friction, the current round of steel or rear wheels skid, mechan ical device will through the electromagnetic valve control of both a bite to realize t he fixed, 50 50 power distribution. There is a full-time raider buggies, that is the th ansfer structure of the famous audi QUATTRO. It is mainly through the worm plane tary gear to achieve, structure is complex, here no longer expatiatory.This structure can solve the problem of poor speed, plays the role of open diffe rential, at the same time can automatically will power distribution to the resistance o f the biggest problems that have the function of the differential limit. It can achieve 25%-75% of power between free distribution, and all this is through the core of it, to realize the differential's, more magical is, the "spider's without the use of any el ectromagnetic device that is pure mechanical. No matter how advanced electronic eq uipment are lags in response problem so and other manufacturers of technical, comp ared the purely mechanical QUATTRO in velocity response is no one can and. Of c ourse it has drawbacks-structure is complex, cost is high, power transmission loss is it could not cross the shortcomings.And full-time raider matching and electronic differential braking, is mainly used to adjust or so the wheel speed difference, before the lock and differential equivale nt after differential lock. And the differential limit, compared the energy loss is bigg er, generally do not to realize the wheels of before and after power distribution. 2.The raider Transfer case timelyAfter that, some manufacturer's engineers found that not all need raider system of the road, for example in the normal cruising highway driving, only through the t wo wheel drive was completely can meet all driving demand. If this time still use a full-time raider buggies, neither economy, also don't have to. Therefore, in most cas es only two wheel drive, and when necessary to be automatic into the raider buggie s timely raider was born.Timely raider buggies also have two solutions, one with Honda CR-V, as a rep resentative of the cohesive shaft quarter even through implementation; A is above ge neration of 4 MATIC-as a representative of the through the multi-gear clutch realize d. Although they can achieve normal when two wheel drive, the drive wheels skid a utomatically through the effect of raider buggies, but yet there are differences betwe en the structure and function.CR-V as a representative of this kind of timely raider Transfer case structure m ost simple, it is based on the horizontal buy before the engine front wheel drive tec hnology platform, in two aspects, and flooding the car platform is exactly the same as before. On this basis, the engineer in the gearbox brings the root to rear axle out put shaft, and driving axle differential between, use the cohesive shaft quarter even connection. Even in the shaft section is filled with silicone oil, it is characteristic of temperature rise will also rise after viscosity. Even the axis of the festival in outpu t and input, are equipped with a blade, similar to the hydraulic torque converter stru cture. When moving the nose wheel is not skid, there is no round between the cont rol speed difference, the cohesive shaft in the quarter even two shaft between eachother is no speed difference. At this time is not passed to power the rear axle. The current round of sliding, the speed of the front wheel will be greater than the rear wheels, even at this time of day cohesive shaft input speed will more than the out put, as hydraulic torque converter general, able to power transfer to rear axle. Not o nly that, because the rotation speed difference can cause heating up and become visc ous silicon oil, so as to further increase the power of transmission, rear wheel drive.Through this structure, we will find that the response speed, it is more slowly, and power transfer is limited, and it is difficult to will be 50% of power distributi on to rear axle. But its simple structure, low cost, for city road driving to the SUV, it can meet the basic needs.A generation 4 MATIC-as a representative of the timely Transfer case raider bu ggies, structure than even shaft section of the sticky timely raider is more complicat ed, and the above the central differential lock some similar, it is through the electro magnetic clutch to realize the raider buggies. It is also based on two flooding platfo rm is developed, the raider buggies system in one end of the transmission in the ba sin type gear shaft brings the root will power transfer to front wheel, by connection between multi-gear clutch. It's connected to the broken and principle and said befor e the central differential lock principle similar, there is no redundancy. Its advantage is than full-time raider simple structure, response speed and power distribution cohe sive shaft is better than even section.Along with the structure of the raider buggies the further development of techn ology, and now some of the vehicles already made the power of the free distributio n, a lot of official propaganda the raider buggies also known as full-time raider bug gies, in fact is not accurate. And is equipped with central differential locks, compare d to the real full-time raider buggies on multi-gear clutch realize power distribution of so-called full-time raider buggies, only 50% of the power distribution, and give t he driven pulley in turning power distribution, cannot reach the level of the raider b uggies full-time real. In essence, this kind of raider buggies still can only be calleda timely, for example the public want unless 4-amount.3.Super choose Transfer case raider buggiesThis call is the mitsubishi, long can also be seen as mitsubishi special technolo gy.From the Transfer case block to see, it is more like traditional timeshare raider system, which differs is, it is equipped with central differential. When hung up 4H, not only in ShaShiLu face high-speed, also can be in ordinary highway to realize t he function of the raider buggies highway. And it provides four HLC and 4LLC options, is locked the central differential lock mode of raider buggies, at this time, it a nd points of raider buggies 4H and 4L function is the same.Mitsubishi is called super choose, in fact because than all the raider buggies sy stem can the scope of the choice. The general full-time buggies, can only choose rai der is traveling in don't need raider buggies, this way clearly not economy; And tim ely raider although can realize two flooding, but in the raider can not reach the real full-time raider performance; Raider points need not say, it completely unable to re alize highway raider buggies to drive. And all these, super choose raider buggies ca n choose-want to economical, he hung up 2H, want to road full-time raider buggies will hang up 4H, want to achieve and traditional points of the same sex, the raider buggies will hang up 4HLC or 4LLC.。

相关文档
最新文档