组成原理课程设计
计算机组成原理_课程设计任务书
课程设计课程名称:计算机组成原理设计题目:一个非常简单的CPU的设计学院:信息工程与自动化专业:计算机科学与技术年级: 08级 1班学生姓名:张桥指导教师:李凌宇日期: 2010-9-9教务处制课程设计任务书信息工程与自动化学院计算机专业 08 1 年级学生姓名:张桥课程设计题目:一个简单的CPU的设计课程设计主要内容:设计一台完整的计算机。
首先要确定该计算机的功能和用途。
在设计中根据功能和用途确定指令系统,定义数据通路,设计每条指令的执行流程,要求利用微程序进行设计,每人至少要求4条CPU指令,可以自己选择;在设计中要求画出指令系统的格式并说明各位的意义;要求画出数据通路并定义微操作信号;要求画出微程序流程图。
设计指导教师(签字):教学基层组织负责人(签字):年月日一台模型计算机的设计一、教学目的、任务与实验设备融会贯通本课程各章节的内容,通过知识的综合运用,加深对计算机系统各模块的工作原理及相互联系的认识,加深计算机工作中“时间—空间”概念的理解,从而清晰地建立计算机的整机概念。
二、数据格式和指令系统本模型机是一个8位定点二进制计算机,具有四个通用寄存器:R 0~R 3,能执行11条指令,主存容量为256KB 。
1. 数据格式数据按规定采用定点补码表示法,字长为8位,其中最高位(第7位)为符号位,小数点位置定在符号位后面,其格式如下:数值相对于十进制数的表示范围为:-1≤X ≤1―2―72. 指令格式及功能由于本模型机机器字只有8位二进制长度,故使用单字长指令和双字长指令。
⑴ LDR Ri ,D格式 7 4 3 2 1 0功能:Ri ←M (D )(2) STR Ri ,D格式功能:M (D )←(Ri )(3) ADD Ri ,Rj格式 功能:Ri ←(Ri )+ (Rj )(4) SUB Ri ,Rj格式 7 4 3 2 1 0功能:Ri ←(Ri )- (Rj )(5) AND Ri ,Rj格式功能:Ri ←(Ri)∧(Rj)(6)OR Ri,Rj格式功能:Ri ←(Ri)∨(Rj)(7)MUL Ri,Rj格式7 4 3 2 1 0功能:Ri ←(Ri)×(Rj)(8)转移指令格式7 4 3 2 1 0功能:条件码00 无条件转移PC ←D01 有进位转移PC ←D10结果为0转移PC ←D11结果为负转移PC ←D⑼IN R i,M j格式其中M j为设备地址,可以指定四种外围设备,当M j=01时,选中实验箱的二进制代码开关。
计算机组成原理课程设计--用硬件描述语言设计CPU
用硬件描述语言设计CPU摘要本次设计完全用verilog硬件描述语言编写微处理器的各个部件,在顶层文件里将各个部件连接起来,形成一个简单的微处理器,加上一些外围模块来实现一些功能。
本次设计在合理性与实用性上没有考虑。
只为了达到技术指标,从原理上完成一个简单的cpu设计。
关键字:verilog,微处理器,CPU设计1Design CPU In Hardware Description LanguageAbstractThe design completely microprocessor verilog hardware description language in all parts, the top file in the various components connected together to form a simple microprocessor, plus some peripheral modules to achieve some functionality. The design does not have a reasonable and practical considerations. Only to achieve technical indicators, from the principles of the cpu to complete a simplecpu design.Key Words:verilog, microprocessor, CPU design目录2第1章设计任务和技术指标 (5)第2章简单介绍 (6)2.1微处理器硬件系统及原理 (6)2.1.1内部组成 (6)2.1.2外围模块 (8)2.2处理器指令系统及功能 (8)第3章各模块的设计及实现 (9)3.1时钟发生器的设计及实现 (9)3.2程序计数器的设计及实现 (12)3.3指令寄存器的设计及实现 (13)3.4运算器的设计及实现 (14)3.5累加器的设计及实现 (16)3.6地址选择器的设计及实现 (17)3.7数据选择器的设计及实现 (17)3.8控制器的设计及实现 (18)3.9 ROM的设计及实现 (25)3.10 RAM的设计及实现 (26)第4章CPU的测试 (27)4.1乘法测试 (29)4.2除法测试 (29)4.3减1测试 (29)4.4加、减1测试 (30)4.5测试结果 (30)第5章总结 (33)第6章参考文献 (34)3第1章设计任务和技术指标运用在“数字电路与逻辑设计”课程中学过的基本理论知识,设计并用可编程逻辑器件实现一个简单的八位操作数的微处理器。
计算机组成原理课程设计定点原码一名乘法器的设计
课程设计报告课程设计名称:计算机组成原理课程设计课程设计题目:定点原码一名乘法器的设计院(系):计算机学院专业:班级:4401102学号:208姓名:指导教师:完成日期:目录第1章整体设计方案 (1)设计原理 (1)设计环境 (2)第2章详细设计方案 (3)顶层方案图的设计与实现 (3)创建顶层图形设计文件 (3)器件的选择与引脚锁定 (4)2.2第二层模块的设计与实现 (5)功能模块的设计与实现 (5)2.3.1移位模块的设计与实现 (5)2.3.2 乘数移位模块的设计与实现 (7)2.3.3选择模块的设计与实现 (9)2.3.4 控制模块的设计与实现 (11)2.3.5 其他模块的设计与实现 (13)仿真调试 (13)第3章编程下载与硬件测试 (16)编程下载 (16)3.2硬件测试及结果分析 (16)参考文献 (17)附录(电路原理图) (18)第1章整体设计方案设计原理原码一名乘,两个原码数相乘,其乘积的符号为相乘两数符号的异或值,数值则为两数绝对值之积。
例:X=,Y=,计算乘积X*Y。
*00001100110011000.在计算时,逐次按乘数每1位上的值是1仍是0,决定相加数取被乘数的值仍是取零值,而且相加数逐次向左偏移1位,最后一路求积。
由于在计算机内多个数据一般不能同时相加,一次加法操作只能求出两数之和,因此每求得一个相加数,就与上次部份积相加每次计算时,相加数逐次向左偏移一名,由于最后的乘积位数是乘数(被乘数)的两倍,因此加法器也需增到两倍。
部份积右移时,乘数寄放器同时右移一名,所以用乘数寄放器的最低位来控制相加数取被乘数或零,同时乘数寄放器接收部份积右移出来的一名,完成运算后,部份积寄放器保留乘积的高位部份,乘数寄放器中保留乘积的低位部份。
按照人工算法可以知道,原码一名乘法的整体设计应包括乘数寄放器,被乘数寄放器,移位电路,控制器,部份积五大模块,包括一个输入、输出、控制器模块,并作为顶层设计,以上五大模块作为底层设计,采用硬件器件设计实现。
计算机组成原理(十二条指令)
计算机学院计算机科学与技术专业《计算机组成原理课程设计》报告(2008/2009学年第一学期)学生姓名:闫全胜学生班级:计算机062202H学生学号: 200620030227指导教师:康葆荣2009年1月3日目录1 关于此次课程设计 (2)1.1 设计的目的: (2)1.2 设计内容及要求: (2)2 分析阶段 (3)2.1指令译码电路分析 (3)2.2 寄存器译码电路分析 (4)2.3 微指令格式分析 (5)2.4 时序分析 (6)3 初步设计阶段 (7)3.1 数据格式 (7)3.2指令描述 (7)3.3 存储器分区 (9)3.4 控制台微程序流程: (10)3.5 运行微程序 (11)4 详细设计阶段 (12)4.1控制台流程分解 (12)4.2 运行微程序子流程 (15)4.3 微程序总流程图 (24)5 实现阶段 (25)5.1 所用模型机数据通路的介绍 (25)5.2 微程序代码设计与编写 (26)微程序二进制代码表 (26)5.3 机器指令的输入及运行 (28)心得体会 (30)参考资料 (31)1 关于此次课程设计1.1 设计的目的:本课程设计是计算机科学与技术专业重要的实践性教学环节之一,是在学生学习完《计算机组成原理》课程后进行的一次全面的综合设计。
目的是通过一个完整的8位指令系统结构(ISA)的设计和实现,加深对计算机组成原理课程内容的理解,建立起整机系统的概念,掌握计算机设计的基本方法,培养学生科学的工作作风和分析、解决实际问题的工作能力。
1.2 设计内容及要求:基于TDN-CM++计算机组成原理实验教学系统,设计和实现一个8位指令系统结构(ISA),通过调试和运行,使设计的计算机系统能够完成指定的功能。
设计过程中要求考虑到以下各方面的问题:1、指令系统风格(寄存器-寄存器,寄存器-存储器,存储器-存储器);2、数据类型(无符号数,有符号数,整型,浮点型);3、存储器划分(指令,数据);4、寻址方式(立即数寻址,寄存器寻址,直接寻址等);5、指令格式(单字节,双字节,多字节);6、指令功能类别(算术/逻辑运算,存储器访问,寄存器操作,程序流控制,输入/输出);7、依据CPI值对指令系统进行性能分析。
《计算机组成原理》教案
《计算机组成原理》教案教案名称:计算机组成原理教学设计教学目标:1.了解计算机的基本组成和工作原理;2.掌握计算机硬件组成要素的功能和作用;3.理解计算机的指令执行过程;4.学会设计简单的计算机硬件电路。
教学内容:1. 计算机硬件组成要素:中央处理器(CPU)、存储器(Memory)、输入设备、输出设备和外部设备;2.计算机指令的执行过程;3.计算机硬件电路的设计原理。
教学步骤:第一课时:1.导入:与学生讨论计算机的基本组成和工作原理,引发学生的兴趣和思考。
2. 介绍计算机硬件组成要素:中央处理器(CPU)、存储器(Memory)、输入设备、输出设备和外部设备。
3.分组讨论:学生分组讨论各个硬件组成要素的功能和作用,并向全班展示自己的讨论结果。
第二课时:1.复习上节课内容:与学生复习计算机硬件组成要素的功能和作用。
2.介绍计算机指令的执行过程:取指令、分析指令、执行指令、存储执行结果。
3.小组活动:学生分组进行实验,模拟计算机指令的执行过程,并给出实验过程和结果的报告。
第三课时:1.复习上节课内容:与学生复习计算机指令的执行过程。
2.介绍计算机硬件电路的设计原理:逻辑门、组合逻辑电路和时序电路的原理。
3.设计实践:学生进行计算机硬件电路的设计实践,根据给定的需求和限制条件进行设计,并给出设计思路和电路图。
第四课时:1.复习上节课内容:与学生复习计算机硬件电路的设计原理。
2.学习资源:引导学生利用教材和网络资源进一步了解计算机组成原理的相关知识和应用实例。
3.总结:与学生总结计算机组成原理的核心内容和重要概念,鼓励学生进行思考和提问。
教学评估:1.小组讨论报告:根据学生的小组讨论报告进行评估,评估内容包括对计算机硬件组成要素功能和作用的理解程度。
2.实验报告:根据学生的实验报告进行评估,评估内容包括对计算机指令执行过程的理解程度和实验结果的准确性。
3.设计报告:根据学生的设计报告进行评估,评估内容包括对计算机硬件电路设计原理的理解程度和设计思路的合理性。
计算机组成原理-简单模型机设计课设
目录摘要 (2)前言 (3)正文 (4)一、设计目的和设计原理 (4)1.1设计目的 (4)1.2设计原理 (4)二、总体设计 (7)三、详细设计 (8)3.1运算器的物理结构 (8)3.2存储器系统的组成与说明 (11)3.3指令系统的设计与指令分析 (12)3.4微程序控制器的逻辑结构及功能 (14)3.5微程序的设计与实现 (18)四、系统调试 (27)总结 (29)参考文献 (30)致谢 (31)摘要根据设计任务书要求,本设计要实现完成一个简单计算机的设计,主要设计部分有运算器,存储器,控制器以及微指令的设计。
其中运算器由运算芯片和寄存器来完成,存储器由总线和寄存器构成,使用硬布线的方式实现控制器,从而完成设计要求。
:关键词:基本模型机的设计;运算器;存储器;控制器;前言计算机组成原理是计算机科学技术学科的一门核心专业基础课程。
从课程的地位来说,它在先导课程和后续课程之间起着承上启下的作用。
计算机组成原理讲授单处理机系统的组成和工作原理,课程教学具有知识面广,内容多,难度大,更新快等特点。
此次课程设计目的就是为了加深对计算机的时间和空间概念的理解, 增强对计算机硬件和计算机指令系统的更进一步了解。
计算机组成原理课程设计目的是为加深对计算机工作原理的理解以及计算机软硬件之间的交互关系。
不仅能加深对计算机的时间和空间的关系的理解,更能增加如何实现计算机软件对硬件操作,让计算机有条不紊的工作。
正文一、设计目的和设计原理1.1设计目的融会贯通计算机组成原理课程中各章的内容,通过知识的综合运用,加深对计算机系统各模块的工作原理及相互联系的认识,特别是对硬连线控制器的认识,建立清晰的整机概念。
对计算机的基本组成、部件的设计、部件间的连接、微程序控制器的设计、微指令和微程序的编制与调试等过程有更深的了解,加深对理论课程的理解。
在掌握部件单元电路实验的基础上,进一步将其组成系统地构造一台基本模型计算机。
计算机组成原理课程设计---复杂模型机的设计与实现
计算机组成原理课程设计一~复杂模型机的设计与实现课程设计2011 年 12 月设计题目 学生姓名学 号 专业班级 指导教师复杂模型机的设计与实现范加林20092697计算机科学与技术09-2郭骏一、课程设计目的与要求设计目的:本课程设计是《计算机组成原理》课程之后开设的实践环节课程。
通过本课程设计,使学生进一步加深对计算机原理系列课程相关内容的理解,掌握CPU设计的基本方法和计算机系统的组成原理,进一步巩固所学的理论知识,提高运用所学知识分析和解决实际问题的能力;锻炼计算机硬件的设计能力、调试能力;培养严谨的科学实验作风、良好的工程素质及团队协作精神,为今后的工作打下基础。
设计要求:基于计算机组成原理教学实验系统设计并实现一个具有16条机器指令、采用微程序控制器的8位计算机。
并根据设计课题要求,给出模型机的设计方案(包括指令系统和硬件结构)。
画岀所设计计算机的硬件连接图,针对所设计的指令系统编写出相应的微程序。
对所设计的计算机进行安装与调试。
编写测试程序, 对系统进行验证。
编写课程设计报告。
二、指令格式和指令系统(-)指令格式K数据格式模型机规定采用定点补码表示数据,且字长为8位,其格式如下:7 6 5 4 3 2 1 0符号尾数其中第7位为符号位, 数值表7K范是:W X<lo2、指令格式模型机设计四大类指令共16条,其中包括算术逻辑指令、I/O指令、访问及转移指令和停机指令。
(1)算术逻辑指令设计9条算术逻辑指令并用单字节表示,寻址方式采用寄存器直接寻址,其格式如下:7 6 5 4 3 2 1 0OP-CODE Rs Rd其中,OPCODE为操作码,Rs为源寄存器,Rd为目的寄存器,并规定:Rs 或Rd选定的寄存器00R001R110R211R39条算术逻辑指令的名称、功能和具体格式见7-12-1o⑵访问指令及转移指令模型机设计2条访问指令,即存数(STA)、取数(LDA) , 2条转移指令,即无条件转移(JMP)、结果为零或有进位转移指令(BZC),指令格式为:其中“00 M”为源码段,2OP-CODE为目的码段(LDA、STA指令使用)。
组成原理课设阵列乘法器
组成原理课设阵列乘法器在现代科技的发展中,计算机和电子设备的性能提升日新月异。
而在这些设备中,乘法器是一个至关重要的组成部份。
乘法器的性能直接影响到整个系统的运算速度和效率。
因此,设计一个高效且可靠的乘法器是组成原理课程中的一项重要任务。
一、乘法器的基本概念乘法器是一种用于实现两个数相乘的电子电路。
在计算机中,乘法器的作用是进行大量的乘法运算,从而实现复杂的计算任务。
乘法器通常由多个逻辑门和触发器组成,其内部结构可以分为串行乘法器和并行乘法器两种类型。
二、串行乘法器的原理串行乘法器是一种逐位相乘的乘法器,它将两个数的每一位进行相乘,并将结果相加得到最终的乘积。
串行乘法器的原理可以通过以下步骤来说明:1. 将两个数的每一位进行相乘,得到部份积。
2. 将部份积与进位相加,得到新的部份积。
3. 重复以上步骤,直到所有位数都相乘完毕。
4. 将所有的部份积相加,得到最终的乘积。
串行乘法器的优点是结构简单,适合于小规模的乘法运算。
但是由于乘法运算是逐位进行的,所以串行乘法器的运算速度较慢。
三、并行乘法器的原理并行乘法器是一种同时进行多位乘法运算的乘法器,它可以大大提高乘法运算的速度。
并行乘法器的原理可以通过以下步骤来说明:1. 将两个数的每一位进行相乘,得到部份积。
2. 将所有的部份积同时进行相加,得到最终的乘积。
并行乘法器的优点是运算速度快,适合于大规模的乘法运算。
但是由于并行乘法器的结构复杂,所以其设计和实现难度较大。
四、阵列乘法器的原理阵列乘法器是一种基于并行乘法器的乘法器,它通过将乘法运算分解成多个子运算,并将这些子运算并行进行,从而提高乘法运算的速度。
阵列乘法器的原理可以通过以下步骤来说明:1. 将两个数的每一位进行相乘,得到部份积。
2. 将所有的部份积按照位数进行罗列,形成一个二维矩阵。
3. 将矩阵中的每一行进行相加,得到每一位的乘积。
4. 将所有的乘积相加,得到最终的乘积。
阵列乘法器的优点是结构简单、运算速度快,适合于大规模的乘法运算。
计算机组成原理八位原码加减法器电路课程设计
计算机组成原理八位原码加减法器电路课程设计是一个重要的课题,它涉及到计算机内部数字运算的实现方式。
在加减法器电路的设计中,我们需要考虑到输入数据的编码方式以及运算的性质。
在这个设计中,我们将使用八位原码进行加减法运算。
首先,我们需要明确输入的数据格式。
原码表示法是一种最直观的数值表示方法,它直接反映了数值的正负和绝对大小。
对于八位二进制原码,它的取值范围是-256到255。
在这个范围内,数值的大小和其对应的二进制表示之间的关系是简单的线性关系。
接下来,我们来看一下加减法器的电路设计。
由于我们需要进行的是加法和减法运算,我们需要使用两个不同的电路模块:加法器和减法器。
对于加法器,我们可以使用异或门和与门组合的方式来实现。
八位二进制数的异或运算具有"无进位"的性质,因此在需要加法运算时,我们可以通过异或门来实现逐位相加。
由于输入的数据是以原码形式给出的,因此在输出端需要进行一次模2取反操作,将加法结果转化为实际的数值大小。
这个过程可以用一个简单的逻辑表达式描述如下:C[7:0] = A[7:0] XOR B[7:0]D[7:0] = 255 - C[7:0]其中,C[7:0]是异或运算的结果,D[7:0]是实际数值大小。
对于减法器,我们同样可以使用异或门和与门来实现。
由于减法运算涉及到负数的情况,我们需要引入进位信号来处理负数减法的溢出问题。
具体的实现方式可以参考加法器的设计,只是在输出端需要进行一次模2加操作,将减法结果转化为实际的数值大小。
在进行电路设计时,我们还需要考虑到一些细节问题,比如输入输出端的延迟问题、电路的稳定性和抗干扰能力等。
这些因素都可能影响到电路的性能和精度。
因此,在进行电路设计时,我们需要充分考虑这些因素,并通过实验和测试来验证我们的设计是否满足要求。
总的来说,八位原码加减法器电路的设计是一个复杂而又重要的任务。
通过这个设计,我们可以更好地理解计算机内部数字运算的实现方式,也可以为更高级的计算机组成原理课程设计打下基础。
计算机组成原理课程设计报告书
计算机组成原理课程设计报告书计算机组成原理课程设计报告书目录一.实验计算机设计11.整机逻辑框图设计12.指令系统的设计23.微操作控制部件的设计54.设计组装实验计算机接线表135.编写调试程序14二.实验计算机的组装14三.实验计算机的调试151.调试前准备152.程序调试过程163.程序调试结果164.出错和故障分析16四.心得体会17五.参考文献17题目研制一台多累加器的计算机一实验计算机设计1.整机逻辑框图设计此模型机是由运算器,控制器,存储器,输入设备,输出设备五大部分组成。
1.运算器又是有299,74LS181完成控制信号功能的算逻部件,暂存器LDR1,LDR2,及三个通用寄存器R0,R1,R2等组成。
2.控制器由程序计数器PC、指令寄存器、地址寄存器、时序电路、控制存储器及相应的译码电路组成。
3.存储器RAM是通过CE和W/R两个微命令来完成数据和程序的的存放功能的。
4输入设备是由置数开关SW控制完成的。
5.输出设备有两位LED数码管和W/R控制完成的LR0LR1LR2寄存器AxBxCxR0-GR1-GR2-G数据总线(D_BUS)ALU-GALUMCNS3S2S1S0暂存器LT1暂存器LT2LDR1LDR2移位寄存器MS1S0G-299输入设备DIJ-G微控器脉冲源及时序指令寄存器LDIR图中所有控制信号LPCPC-G程序计数器LOADLAR地址寄存器存储器6116CEWE输出设备D-GW/RCPU图1整机的逻辑框图图1-1中运算器ALU由U7--U10四片74LS181构成,暂存器1由U3、U4两片74LS273构成,暂存器2由U5、U6两片74LS273构成。
微控器部分控存由U13--U15三片2816构成。
除此之外,CPU的其他部分都由EP1K10集成。
存储器部分由两片6116构成16位存储器,地址总线只有低八位有效,因而其存储空间为00H--FFH。
输出设备由底板上的四个LED数码管及其译码、驱动构成,当D-G和W/R均为低电平时将数据总线的数据送入数码管显示。
《计算机组成原理》课程设计大纲
《计算机组成原理》课程设计大纲课程名称:计算机组成原理课程设计实验学时:1周/人课程编号:学分:1课程总学时:30 实验周学时:2课程总学分:1适用专业及年级:计算机科学与技术二年级课程负责人:大纲主撰人:XXX编写日期:2003年12月一、实验教学目标与基本要求通过该课程设计的学习,利用先进的EDA设计手段,总结计算机组成原理课程的学习内容,学会QuartusII的使用、层次化设计方法、多路开关,逻辑运算部件,移位器设计、微程序控制的运算器设计、微程序控制的存储器设计、简单计算机的设计,从而巩固课堂知识、深化学习内容、完成教学大纲要求,学好计算机科学与技术专业的专业基础课。
每个同学必须将自己做的内容以PPT的方式进行讲解,同时提交一份纸质的实验报告和电子文档。
二、实验课程内容和学时分配业、科研、生产、其他。
三、考核办法1. 同学们在实验前应该认真准备实验,根据实验讲义和课堂上学到的知识写出实验报告,带到实验现场。
2.QuartusII的使用在本次实验中,学会QuartusII软件的使用,然后利用此系统完成:〈1〉一位全加器设计〈2〉并行八位寄存器设计下载到实验箱上,在实验箱上验证。
评分细则:参加实验: 0.2分完成实验报告: 0.2分完成一位全加器设计: 0.3分完成八位并行寄存器设计:0.3分3.层次化设计方法在本次实验中,学会层次化设计方法,利用该方法完成:〈1〉同步二进制计数器〈2〉多位二进制加法器下载到实验箱上,在实验箱上验证评分细则:参加实验: 0.2分完成实验报告: 0.2分完成同步二进制计数器 0.3分完成多位二进制加法器 0.3分4.复杂模型机设计利用TD-CMA平台,设计一套完整的指令系统,并下载到实验平台进行验证。
评分细则:参加实验: 0.3分完成实验报告: 0.3分完成所要求的复杂模型机设计 0.45分正确进行操作并回答问题 0.45分5.微程序控制器设计设计一个微程序控制器,并能在TD-CMA平台上进行验证。
《计算机组成原理》教案
《计算机组成原理》教案教学目标:1.了解计算机的基本组成结构和工作原理;2.掌握计算机硬件组成部分的功能、特点和工作原理;3.了解计算机内部数据的表示和处理方式;4.掌握计算机软件与硬件之间的协作关系。
教学内容:1.计算机的基本组成结构和工作原理;2.计算机硬件组成部分的功能、特点和工作原理;3.计算机内部数据的表示和处理方式;4.计算机软件与硬件之间的协作关系。
教学过程:一、导入(10分钟)通过提问和引入相关问题,引起学生对计算机组成原理的兴趣,激发学习动机。
二、知识讲解(30分钟)1.计算机的基本组成结构和工作原理(10分钟)-计算机的五大组成部分:中央处理器、存储器、输入设备、输出设备、控制器;-计算机的工作原理:采用冯·诺依曼体系结构,以程序控制和数据流动为主要特征。
2.计算机硬件组成部分的功能、特点和工作原理(10分钟)-中央处理器(CPU):运算和控制的核心,包括运算器和控制器;-存储器:存储数据和程序的地方,包括主存储器和辅助存储器;-输入设备:将外部数据输入计算机,如键盘、鼠标、扫描仪等;-输出设备:将计算机处理结果输出到外部,如显示器、打印机、扬声器等;-控制器:指挥各部件进行协调工作,实现程序的执行。
3.计算机内部数据的表示和处理方式(5分钟)-二进制表示:计算机只能理解二进制代码;-补码表示:用于表示有符号数,简化了数据的加减运算;-浮点数表示:用于表示实数,采用指数和尾数的形式。
4.计算机软件与硬件之间的协作关系(5分钟)-系统软件:提供计算机基本功能和资源管理,如操作系统;-应用软件:为用户提供各类应用功能和服务,如文字处理软件、图像处理软件等;-编译器和解释器:将高级语言程序翻译成机器语言的工具。
三、实践操作与讨论(30分钟)1.分组讨论:请学生分组,针对不同的硬件组成部分,讨论其功能、特点和工作原理,并给出实际例子进行说明。
2.实际操作:将学生分组进行实际操作,通过拆装计算机硬件组件的过程,加深对计算机硬件组成部分的理解和认识。
组成原理课程设计(16位全加器电路的设计与实现)
16位全加器电路的设计与实现学生姓名:杨传福指导老师:王新摘要本课程设计主要利用门电路完成一个16位的全加器电路的设计与实现。
本设计采用逐步求解的方法,即先设计一位全加器,再利用一位全加器设计出四位全加器,最后在四位全加器的基础上设计出16位全加器,并使用VHDL语言编写程序,在MAX-PLUSⅡ仿真平台上进行仿真。
仿真结果表明,本课程设计中设计出的16位全加器能正确完成16位二进制数的加法运算。
关键词全加器;门电路;先行进位Abstract:This curriculum design primarily use the gate circuit to complete a 16-bit full-adder circuit.The design solve this problem with step-by-step approach, namely start designing one full-adder, and then use one full-adder design a four full-adder , the last design the 16-bit full-adder based on the four full-adder,and use VHDL language programming, at MAX-PLUS Ⅱsimulation on simulation platform. The simulation results show that the design of the curriculum design of the 16-bit full-adder to add a 16-bit binary number addition operations.Keywords:Full-adder; Gate circuit; First binary1引言1.1课程设计的背景随着计算机科学技术的发展,人们获得信息的途径更加多样,获取信息的速度更加快捷。
组成原理第5章
第5章计算机组成原理课程设计在上一章中,我们详细地介绍了计算组成原理课程设计平台系统,知道了在模式开关的控制下有两种不同的工作平台。
《计算机组成原理》的所有课程设计都将在这两种工作模式下完满的得到实施。
一个完整的课程设计可以用多种形式来描述。
例如,一个简单的设计可能用硬件描述语言来描述就够了。
但一个复杂的设计可能要分成若干个功能模块来描述,而其中的每一个功能模块可能用硬件描述语言来描述,也可能用原理图来描述,这样的描述方式就是混合输入的设计方法。
结合《计算机组成原理》课程设计的特点和学生的实际情况,原理图输入方式最适合课程设计的实施。
以此为基点,《计算机组成原理》课程设计的步骤如图5-1所示。
课程设计共分三个阶段:1、设计初始阶段在该阶段中,学生根据所学内容,按照《计算机组成原理》课程设计的要求,在课程设计报告书中完成方案设计并画出逻辑线路图。
2、编程设计阶段在该阶段中,学生将以PC机为平台,在WINDOWS环境下,利用编程软件系统在PC机上生成所画出的逻辑线路,这就是所谓的原理图输入方式。
在逻辑线路的生成过程中,可调用元件库提供的元件(例算术逻辑部件、多路开关、寄存器、译码器、逻辑门等),也可以自定义元件。
这与常规《计算机组成原理》课程设计相比较,充分地体现了设计的灵活性,满足了学生的灵活设计思路,是对设计能力的最好体现。
当原理图输入完毕后,编程软件系统可对原理图文件进行编译、优化、适配,将错误消灭在设计阶段。
最后生成对isp LSI的编程文件。
3、isp LSI编程和测试阶段当一个设计完成且产生编程文件后,就可以对isp LSI进行编程。
对isp LSI的编程是由编程软件系统中的下载软件驱动的。
对ispLSI编程与测试阶段图5-1 课程设计步骤下载结束后,逻辑线路就固化在isp LSI1032E中,在模式开关的控制下选用不同的平台,利用提供的开关、指示灯、存储器等硬件资源对逻辑线路进行功能测试,若有错误,则通过审查、修改原理图文件、重新下载、重新测试直至成功为止。
计算机组成原理课程设计
计算机组成原理课程设计
计算机组成原理课程设计
一、课程介绍
本课程主要介绍计算机组成原理,包括计算机的结构,功能,性能,介绍CPU,存储器,总线,输入/输出系统,及这些部件之间的工作关系。
二、课程目标
1. 学生能够认识计算机的概念、主要组成部分及功能。
2. 了解计算机基本工作原理,包括CPU,存储器,总线,输入/输出系统,以及这些部件之间的工作关系。
3. 掌握主要软件技术,包括汇编语言,编译语言,操作系统等。
三、内容安排
本课程包括以下主要内容:
1. 计算机基本概念:计算机的构成,计算机系统和计算机网络。
2. CPU:架构、指令集、运算法则和程序控制。
3. 存储器:存储器的类型、特性和性能。
4. 总线:总线的结构、架构及特点。
5. 输入输出系统:计算机系统的输入输出结构、设备接口、通信协议。
6. 汇编语言程序设计:汇编语言基本语法,程序编写及调试。
7. 编译语言程序设计:编译语言程序设计,程序语言、数据结构、程序编写及调试。
8. 操作系统程序设计:操作系统概念、基本功能结构,虚拟存储器,任务调度,工作管理,系统文件管理等。
四、课程评价
课程主要采用学习报告、小组讨论、实验报告等方式进行评价。
计算机组成原理课程设计---——简单模型机的微程序设计
课程设计报告课程名称:计算机组成原理系别:姓名:班级:学号:成绩:指导教师:开课时间:20 -20 学年第学期一.设计题目计算机组成原理课程设计——简单模型机的微程序设计二.主要内容通过课程设计更清楚地理解下列基本概念:1.计算机的硬件基本组成;2.计算机中机器指令的设计3.计算机中机器指令的执行过程;4.微程序控制器的工作原理。
5.微指令的格式设计原则;在此基础上设计可以运行一些基本机器指令的微程序的设计三.具体要求置数指令 IN 置数开关SW(KD0~KD7)的状态→R0加法指令 ADD R0,,(addr):(R0)+(addr)→(R0)存数指令 STA R0,(addr):(R0)→(addr)输出指令 OUT (addr):(addr)→输出设备"LED"跳转指令 JMP (addr):addr→PC或指令OR RD,RS:(RS)或(RD)→(RD)新加法指令 NADD (addr1),(addr2):(addr1)加(addr2)→(RD)异或指令XOR (addr1),(addr2):(addr1)异或(addr2)→(RD)与指令AND RD,RS:(RS)与(RD)→(RD)求反指令 NOT RD:/(RD) →(RD)四.进度安排共1.5周11天的时间,具体安排如下:1~2天:对整个课程设计的内容做详细的讲解,并辅导学生完成课程设计指导书的学习,使其掌握和理解课程设计的核心内容;3 ~5天:学生在机房学习熟悉课程设计所使用的仿真软件,并深入了解该仿真软件所实现的模型机的指令系统(原有的5条指令)和微程序设计方法;6~9天:在原有5条机器指令的基础上增加实现下述各功能的机器指令,试设计相应的机器指令的格式并改写原来的微程序使其可以运行所有的机器指令。
10~11天:根据自己设计的微程序系统写出相应的课程设计实验报告五.成绩评定六. 正文一、模型机的CPU及系统硬件基本模型机的CPU及系统硬件组成如图1所示:图1 模型机的CPU及系统硬件组成各部件的功能及控制信号如下:运算器由算逻部件ALU(8位)、暂存器DR1、DR2及通用寄存器等组成。
计算机组成原理课程设计完整版
目录1 需求分析 (1)1.1课程设计目的 (1)1.2课程设计内容及要求 (1)1.3TDN-CM++计算机组成原理实验教学系统特点 (2)1.4微指令格式分析 (2)1.5指令译码电路分析 (5)1.6寄存器译码电路分析 (6)1.7时序分析 (7)2 总体设计 (9)2.1数据格式和机器指令描述 (9)2.2机器指令设计 (11)3 详细设计 (16)3.1控制台微程序流程的详细设计 (16)3.2运行微程序流程的详细设计 (19)4 实现阶段 (31)4.1所用模型机数据通路图及引脚接线图 (31)4.2 测试程序及结果 (33)心得体会 (35)参考资料 (36)1 需求分析1.1 课程设计目的本课程设计是计算机科学与技术专业重要的实践性教学环节之一,是在学生学习完《计算机组成原理》课程后进行的一次全面的综合设计。
目的是通过一个完整的8位指令系统结构(ISA)的设计和实现,加深对计算机组成原理课程内容的理解,建立起整机系统的概念,掌握计算机设计的基本方法,培养学生科学的工作作风和分析、解决实际问题的工作能力。
1.2 课程设计内容及要求基于TDN-CM++计算机组成原理实验教学系统,设计和实现一个8位指令系统结构(ISA),通过调试和运行,使设计的计算机系统能够完成指定的功能。
设计过程中要求考虑到以下各方面的问题:(1)指令系统风格(寄存器-寄存器,寄存器-存储器,存储器-存储器);(2)数据类型(无符号数,有符号数,整型,浮点型);(3)存储器划分(指令,数据);(4)寻址方式(立即数寻址,寄存器寻址,直接寻址等);(5)指令格式(单字节,双字节,多字节);(6)指令功能类别(算术/逻辑运算,存储器访问,寄存器操作,程序流控制,输入/输出)。
要求学生综合运用计算机组成原理、数字逻辑和汇编语言等相关课程的知识,理解和熟悉计算机系统的组成原理,掌握计算机主要功能部件的工作原理和设计方法,掌握指令系统结构设计的一般方法,掌握并运用微程序设计(Microprogramming)思想,在设计过程中能够发现、分析和解决各种问题,自行设计自己的指令系统结构(ISA)。
计算机组成原理课程设计3篇
计算机组成原理课程设计第一篇:CPU设计计算机中心处理器(Central Processing Unit, CPU)是计算机的心脏,它负责执行指令,完成计算和控制计算机的所有运算和数据传输。
在计算机组成原理课程设计中,设计一块CPU是非常重要的一步。
CPU的设计与制作需要有一定的基础和经验。
首先,需要了解CPU的工作原理和基本组成,包括寄存器、ALU、控制器和数据通路等。
其次,需要掌握数字逻辑、硬件描述语言和电子工艺制作等知识和技能,以实现CPU的具体功能。
设计一块CPU可分为以下几个步骤:1.确定CPU的整体架构和指令集。
根据需求和实际应用,确定CPU的整体架构和指令集。
可以参考现有的CPU设计,并根据实际情况进行优化和改进。
2.编写CPU的硬件描述语言代码。
使用硬件描述语言(如VHDL)编写CPU的硬件描述语言代码,包括寄存器、ALU、控制器和数据通路等。
3.使用仿真工具进行验证。
使用仿真工具模拟CPU的运行过程,验证硬件描述语言代码的正确性和功能实现。
4.设计和制作PCB电路板。
将CPU的硬件描述语言代码转换为PCB电路板设计,并制作出实际的电路板。
5.测试CPU的性能和功能。
对制作出的CPU进行测试,验证其性能和功能可靠性。
CPU的设计和制作是计算机组成原理课程设计中非常关键的一步,它直接影响到完成整个计算机系统的可靠性和性能。
因此,设计和制作一块优秀的CPU需要耐心和实践经验的积累。
第二篇:存储器设计存储器是计算机系统中重要的组成部分,用于存储数据和程序。
存储器需要具有读、写、删等常见操作,设计一块性能良好和容量适中的存储器是计算机组成原理课程设计的核心内容之一。
存储器的设计和制作需要掌握数字电路设计、电子工艺制作和人机交互等知识和技能。
下面是存储器设计的主要步骤:1.确定存储器的类型和容量。
根据实际需要和使用场景,确定存储器的类型和容量,包括SRAM、DRAM、FLASH等。
2.设计存储器的电路和控制线路。
组成原理课程设计任务书--BCD码转换成二进制
1月5日:利用Quartus II进行电路设计和仿真
1月6日:调试,撰写课程设计说明书,答辩
系(教研室)主任签字:2012年1月9日
2、选择适当的逻辑电路和芯片实现该功能。
3、对所设计的电路从性能上分析其性能优劣,及改善措施。
4、利用软件进行仿真。
三、知识点掌握
掌握进制之间的转换关系以及在计算机中的实现过程;
学会半加器和全加器的使用;
学会基本逻辑电路的具体设计方法;
了解Quartus II的使用。
四、时间安排
12月31日:Quartus II的安装及使用
《计算机组成原理》课程设计任务书
专业
计算机科学与技术
班级
题目
十进制整数(BCD)转换成二进制整数的电路的设计与实现
指导教师
答疑教师
设计时间
设计要求
一、设计目的
1.对已学过的组成原理知识知识进行综合运用;
2.能按要求设计出具有一定功能的逻辑电路二进制数;并设计完成此功能的逻辑电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组成原理课程设计
1
2020年4月19日
《计算机组成原理》
课程设计报告
设计题目:模型计算机控制器的设计
模型计算机控制器的设计
本课程设计以设计一个模型计算机的控制器(CU)为目标,经过课程设计,进一步加深对中央处理器的结构和功能的理解,掌握控制器的设计方法和步骤,为今后从事计算机系统设计打下初步的基础。
1 设计要求
1.1 功能指标和要求
1)支持一个规模较小、但功能相对完整的RISC指令系统,指令条数不超过32条;
2)采用I/O端口独立编址方式;
3)系统总线由CPU总线延伸形成,总线周期固定;
4)不支持中断及DMA功能;
5)采用组合逻辑控制方式;
6)忽略复位电路、时钟电路和时序电路的设计,但需说明对时序信号的要求。
1.2 性能指标要求
1)CPU字长8位,数据总线8位;
2)地址总线8位,最大寻址空间为256字节;
3)I/O采用独立编址方式,4位地址码,最大支持16个I/O端口;
4)时钟频率1MHz左右,机器周期为3-4个时钟周期;
5)CPU输出与外部读写控制的控制信号有/MR、/MW、/IOR、
1
2020年4月19日
/IOW。
1.3 课程设计要求
根据课程设计指导,完成模型机控制的设计,并提交课程设计报告。
1.4 时间安排
1)理解模型机的逻辑结构、数据通路以及指令系统和格式:1天2)数据通路设计及分析:1天
3)指令执行流程设计:1天
4)微操作的节拍安排与设计:1天
5)微操作命令逻辑表示式:1天
2
2020年4月19日
2 CPU逻辑结构设计
2.1 CPU逻辑结构的组成
1.运算器
1)ALU具有8种算术/逻辑运算功能,其运算功能由三位编码I2I1I0选择;ALU除了2个数据输入端R、S和数据输出端Y外,另有一个最低位进位输入信号C0,以及4个状态输入:进位输出C、结果零Z、运算溢出V和符号位S。
2)ALU输出移位器具有直通、左移一位和右移一位的功能,由两位编码I4I3选择;
3)ALU数据输入端有A和B两个数据锁存器,指令不可访问;
4)标志寄存器FLAG,4位,与数据总线的低4位连接,能独立置位或清零;
5)4个通用数据寄存器R0~R3;
6)堆栈指针SP(8位);
7)数据缓冲寄存器DR,指令不可访问;
8)地址寄存器AR(8位),指令不可访问。
2.控制器
1)程序计数器PC(8位),具有加1的功能;
2)指令寄存器IR(8位);
3)微操作控制信号发生器,采用组合逻辑控制方式;
4)时钟和时序信号发生器(不需设计)。
3
2020年4月19日。