高中数学说课稿:人教A版数学必修五《正弦定理》说课稿模板-精选学习文档
高中数学人教A版必修五《正弦定理》说课稿
高中数学人教A版必修五《正弦定理》说课稿一、教材分析1.1 教材内容本节课主要介绍了高中数学中的正弦定理的概念和应用。
通过学习正弦定理,学生能够进一步了解三角形的性质和应用,掌握灵活运用正弦定理解决实际问题的能力。
1.2 教学目标•理解正弦定理的概念和定理表述;•掌握正弦定理的应用方法,并能够熟练运用;•能够利用正弦定理解决实际问题;•培养学生的逻辑思维能力和综合运用知识的能力。
1.3 教学重点与难点•教学重点:正弦定理的概念和应用方法;•教学难点:利用正弦定理解决实际问题。
二、教学过程2.1 导入与承前启后本节课是学习正弦定理的第一堂课,与前面学习的角的概念、三角函数的定义和性质等内容有着紧密联系。
请同学们回顾一下前面学习的内容,以便更好地理解和掌握正弦定理。
同时,将本节课与下一节要学习的余弦定理进行对比,引出正弦定理与余弦定理的关系,为下一节课的学习做好铺垫。
2.2 引入正弦定理首先,通过一个生动的例子向学生介绍正弦定理的应用背景,例如:一个风筝高度为h米,线长为l米,线与地面的夹角为α°,请问风筝的高度应该如何计算?引入正弦定理的概念和定理表述,解释正弦定理的由来和基本思想,让学生明白正弦定理是通过三角形中的正弦比来描述三角形的性质。
2.3 学习正弦定理的应用方法详细介绍正弦定理的应用方法,包括直角三角形的应用和一般三角形的应用。
通过具体例题的讲解,引导学生掌握正弦定理的正确应用方法,并通过多个例题进行练习,加深对正弦定理的理解。
2.4 锻炼学生解决实际问题的能力选择若干实际问题,让学生运用正弦定理进行求解。
通过让学生解答问题并交流思路,培养学生的逻辑思维能力和综合运用知识的能力。
2.5 总结与拓展对本节课学习的内容进行总结,强调正弦定理的重要性和应用价值,同时引导学生思考正弦定理在实际生活中的更多应用。
同时,展示一些关于三角形性质的拓展知识,如余弦定理、海伦公式等,为下一步的学习打下基础。
人教版正弦定理说课稿(共14篇)
人教版正弦定理说课稿〔共14篇〕篇1:《正弦定理》说课稿大家好,今天我向大家说课的题目是《正弦定理》。
下面我将从以下几个方面介绍我这堂课的教学设计。
一、教材分析^p本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的根本关系有亲密的'联络与断定三角形的全等也有亲密联络,在日常生活和工业消费中也时常有解三角形的问题,而且解三角形和三角函数联络在高考当中也时常考一些解答题。
因此,正弦定理和余弦定理的知识非常重要。
根据上述教材内容分析^p ,考虑到学生已有的认知构造心理特征及原有知识程度,制定如下教学目的:认知目的:通过创设问题情境,引导学生发现正弦定理的内容,掌握正弦定理的内容及其证明方法,使学生会运用正弦定理解决两类根本的解三角形问题。
才能目的:引导学生通过观察,推导,比拟,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维才能,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。
情感目的:面向全体学生,创造平等的教学气氛,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,激发学生学习的兴趣。
教学重点:正弦定理的内容,正弦定理的证明及根本应用。
教学难点:两边和其中一边的对角解三角形时判断解的个数。
二、教法根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的开展为本,遵照学生的认识规律,本讲遵照以老师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学形式,即在教学过程中,在老师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为根本探究内容,以生活实际为参照对象,让学生的思维由问题开场,到猜测的得出,猜测的探究,定理的推导,并逐步得到深化。
三、学法指导学生掌握“观察――猜测――证明――应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。
最新高中数学必修5《正弦定理》说课稿精编版
2020年高中数学必修5《正弦定理》说课稿精编版正弦定理人教A版普通高中课程标准实验教科书(必修5)第一章第一节《正弦定理》(第一课时)正弦定理是三角形边角关系的量化,是解三角形的重要依据之一。
这一内容仅一课时,我主要针对正弦定理的发现、证明与应用谈谈我对教学的理解与设计,敬请各位专家斧正。
一、教材分析1.1教材的地位与作用三角形是最基本的几何图形,有着极其广泛的应用。
在实际问题中,经常遇到解任意三角形的问题,因此必须进一步学习任意三角形的边角关系和解任意三角形的基本方法。
本节课是在学生已经于初中学习了直角三角形的边角关系和解直角三角形的方法,在高中学习了三角函数与平面向量的基础上的深化拓展。
故在此引入正弦定理,使得“解三角形”的学习变得合情合理,学生在思想上易于接受。
1.2教材的主体结构编者的意图如何呢?通过提出问题:如何量化“大边对大角,小边对小角”,引发学生思考;从特殊的三角形——直角三角形入手,将结论推广到一般的情况——任意三角形,让学生感受“由特殊到一般”的数学思想方法;分三种情况证明定理,让学生体会“分类讨论”和“先猜想,后证明”的方法。
从而建立严谨的数学知识体系,使得探究的过程变得简单而有效。
1.3教学的重点难点重点:正弦定理的发现与证明,及利用定理解三角形。
难点:锐角三角形中正弦定理的证明;已知“两边及其一边对角”解三角形的情况。
难点依据:在证明方面,锐角和钝角的情况需要类比直角三角形,而学生在理论证明中的转化能力较弱;在应用方面,解两边及其一边对角的情况时,需要应用正弦函数的图像,学生综合判断能力不强。
因此构成了学生对本节课学习的难点。
1.4教学的三维目标1.知识与能力目标:①掌握正弦定理,能利用正弦定理解三角形,判断解的个数;②培养学生归纳、猜想、论证的能力;③培养学生的创新意识与逻辑思维能力。
目标分析:此目标体现了基础知识的落实、基本技能的形成,这是数学教学的首要环节,符合新课标的要求.2.过程与方法目标:①分析研究正弦定理的探索过程;②体验先猜想后证明,由特殊到一般,分类讨论的数学思想方法。
【说课稿】人教A版高中数学必修5第一章1.1.1正弦定理 说课稿
《正弦定理》说课稿---人教A版高中数学必修5第一章1.1.1一、教材分析1.教材的地位:正弦定理是从以前初中教材逐步分离并划归到高中教材的一部分内容,学生在初中直角三角形部分的习题中见过正弦定理的结论,并且有一些学生能用面积法来证明。
从知识体系上看,应属于三角函数这一章,从研究方法上看,应属于向量应用的一方面。
教材用向量作为工具推导出正弦定理,并应用它们解斜三角形问题和一些实际问题。
从某种意义讲,本节课是用代数方法解决几何问题的典型内容之一。
2.教学目标知识目标:在创设的问题情境中,学生主动地去发现正弦定理和推证正弦定理。
能力目标:引导学生观察发现、猜想和实验探索,培养学生的创新能力和动手能力情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,实现共同探究、教学相长的教学情境。
3.教学重难点重点:正弦定理的发现和推导难点:正弦定理的推导二、教学方法和手段课堂教学应有利于学生的数学素质的形成与发展,即在课堂教学过程中,创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则。
根据这样的原则及所要达成的教学目标,我采用如下的教学方法和手段:(1)教学方法:观察发现、启发引导、动手实验相结合的教学方法。
在此基础上,通过学生交流与合作,从而扩展自已的数学知识和使用数学知识及数学工具的能力,实现自觉地、主动地、积极地学习。
(2)教学手段:没有学生参与的教学活动几乎是无效(起码是低效)的教学活动。
以往的计算机辅助教学只是把教师做好的课件展示给学生,学生只是把焦点集中在感观的形象上,而忽视了学生主体的地位。
“高中数学课程应提倡利用信息技术来呈现以往教学难以呈现的课程内容”“尽可能的利用教育技术平台,加强数学与信息技术的结合,鼓励学生运用计算机计算器等进行探索活动”本节课地点选在多媒体教室,学生利用软件《几何画板》,来主动地去验证自已猜想,发现规律,让信息技术成为探讨数索问题、做数学实验的平台。
正弦定理说课稿
正弦定理说课稿大家好!我说课的题目是人民教育出版社普通高中课程标准实验教科书A版必修五第一章第一节“正弦定理”。
我将从以下五个方面进行我的说课:一、教材分析:1、教材的地位和作用:本节知识是《解三角形》的第一节内容,与初中学习的三角形边角关系由密切的联系。
在日常生活和航海、航天的测量技术也涉及三角形边角关系,而且,正弦定理在以后的解三角形以及解决几何问题中的使用频率非常高。
所以,学好正弦定理很有必要。
2、教材的重难点分析:由于高中学生的推理证明能力比较有限,根据对教材的分析以及学生所处的认知发展阶段,我确定本节课的重点是正弦定理的证明及运用。
难点是正弦定理在解三角形中的应用思路。
二、学情分析:学生在初中时已经学习过了三角形的边角关系以及直接三角形正弦值的计算,这为本节课的学习打下了良好的基础。
高中阶段的学生思维比较活跃,有一定的推理证明能力,但思维方式不够成熟、全面,需要老师的进一步指导。
基于此,特制定如下三维目标:三、目标分析:知识与技能:通过对三角形边角关系的探究,发现并掌握三角形边角的数量关系。
并能正确运用它们解决实际问题。
过程与方法:通过对特殊例子对定理进行猜想再从特殊到一般对猜想进行推理证明,从而得出答案。
情感态度价值观:通过对定理的推理证明,提高推理证明能力。
生活中的实际问题得以解决,体验学习带来的成功,激发学习兴趣。
四、教法学法分析:根据以学生为中心的教学理念,在教法上采用教师引导启发,师生共同探究的教学方法,在学法上采用情景导学,推理证明的方法。
五、教学过程首先利用学生生活中熟悉的例子,请学生帮忙解决问题,激发学习兴趣;接着引入新课,师生共同探究证明结论;紧接着利用所得结论解决问题,最后趁热打铁对新知识加以巩固。
我的具体教学过程将在线面为大家呈现。
正弦定理说课稿
正弦定理说课稿大家好,今天我向大家说课的题目是《正弦定理》一、教材结构、地位与作用1.教材结构《正弦定理》是高中数学必修5第一章第一节的内容。
在此之前学生已学习了三角函数、平面向量知识,这为过渡到本章的学习做好了铺垫作用。
正弦定理是三角函数知识与平面知识在三角形中的交会应用。
正弦定理教学时数的安排为2课时,它涉及定理的推导教学和应用教学两大部分,本节课的内容是定理的推导及定理的简单应用。
2.新旧教材对比新旧教材中均运用归纳思想,在直角三角形中揭示边角关系sin sin sin a b c ABC并进一步进行探索,证实在斜三角形中此关系也成立;不同点在于定理的证明新教材多给出了一种向量的证明的方法,这样的设置给学生们眼前一亮的感觉,同时留给学生们更多的对数学知识的相关性更多的思考空间。
二、教学目标、重点难点与教学模式1.教学目标根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。
能力目标:正弦定理是一节在实际生活中受到广泛应用的定理,通过定理的教学,不仅培养学生解三角形的应用能力,更重要的是提高应用所学知识解决实际问题的意识和能力;同时引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。
情感目标:通过感受数学美激发学生热爱科学勇于探索的精神,通过自主学习的发展体验获取知识的感受,培养学生勇于创新,多方位审视问题的创造技巧,通过知识的纵横迁移感受数学的系统特征、辨证特征、开放特征。
2.教学重、难点教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明3.教学模式本节课采用探究式课堂教学模式,教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的深入探讨。
高中数学说课稿:人教版教材必修五《正弦定理》教学设计
高中数学说课稿:人教版教材必修五《正弦定理》教学设计《正弦定理》教学设计2019级数学课程与教学论专业华娜学号201902101146一、教材分析《正弦定理》是人教版教材必修五第一章《解三角形》的第一节内容,也是三角形理论中的一个重要内容,与初中学习的三角形的边和角的基本关系有密切的联系。
在此之前,学生已经学习过了正弦函数和余弦函数,知识储备已足够。
它是后续课程中解三角形的理论依据,也是解决实际生活中许多测量问题的工具。
因此熟练掌握正弦定理能为接下来学习解三角形打下坚实基础,并能在实际应用中灵活变通。
二、教学目标根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。
能力目标:探索正弦定理的证明过程,用归纳法得出结论,并能掌握多种证明方法。
情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。
三、教学重难点教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
四、教法分析依据本节课内容的特点,学生的认识规律,本节知识遵循以教师为主导,以学生为主体的指导思想,采用与学生共同探索的教学方法,命题教学的发生型模式,以问题实际为参照对象,激发学生学习数学的好奇心和求知欲,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化,并且运用例题和习题来强化内容的掌握,突破重难点。
即指导学生掌握“观察——猜想——证明——应用”这一思维方法。
学生采用自主式、合作式、探讨式的学习方法,这样能使学生积极参与数学学习活动,培养学生的合作意识和探究精神。
五、教学过程本节知识教学采用发生型模式:1、问题情境有一个旅游景点,为了吸引更多的游客,想在风景区两座相邻的山之间搭建一条观光索道。
已知一座山A到山脚C的上面斜距离是1500米,在山脚测得两座山顶之间的夹角是450,在另一座山顶B测得山脚与A山顶之间的夹角是300。
高中数学人教A版数学必修五《正弦定理》说课稿模板
高中数学人教A版数学必修五《正弦定理》说课稿模板一、教学设计背景《正弦定理》是高中数学中的重要内容之一,它是解决非直角三角形中的边长和角度的关系问题的重要工具。
本节课的教学内容是《正弦定理》,通过引入相关实际问题,培养学生运用正弦定理解决实际问题的能力,同时巩固和扩展已学过的相关概念和知识。
二、教学目标1.知识与技能目标:–掌握正弦定理的概念和基本推导过程;–理解正弦定理在解决实际问题中的应用;–能够运用正弦定理解决实际问题。
2.过程与方法目标:–培养学生的观察、思维和分析问题的能力;–通过小组合作、讨论和展示,培养学生合作与交流的能力;–通过引入实际问题,培养学生运用正弦定理解决问题的能力。
3.情感与态度目标:–培养学生的自主学习与探究的兴趣和乐趣;–培养学生的合作意识和团队精神;–培养学生的责任心和集体荣誉感。
三、教学重点与难点1.教学重点:–正弦定理的概念和基本推导过程;–正弦定理在实际问题中的应用。
2.教学难点:–运用正弦定理解决实际问题。
四、教学过程1.导入与导入环节:–创设情境,以实际问题引入正弦定理的概念。
2.理论学习:–通过示意图和推导过程,介绍正弦定理的概念和基本推导方法;–引导学生理解和掌握正弦定理的几何意义。
3.案例分析:–通过具体案例,引导学生运用正弦定理解决实际问题;–分组合作,讨论并展示解题过程和思路。
4.练习与巩固:–结合教材中的练习题,让学生进行练习和巩固;–鼓励学生提出问题、解答问题,并给予及时的反馈与指导。
5.拓展与应用:–提供更复杂的问题和挑战性的应用题,让学生进行拓展和应用;–强调解题方法和思维的灵活运用。
6.总结与归纳:–小结本节课的学习内容,强调正弦定理的重要性和应用价值;–激发学生对数学的兴趣和探究的欲望。
五、教学评价与作业布置1.教学评价方式:–观察学生在课堂上的表现,包括参与度、思维能力、团队合作等;–批改学生的练习册和作业,给予细致的评价和指导。
人教A版高中数学必修5《正弦定理》说课稿
正弦定理
教材 分析 教法 分析
教学 反思
说课目录
教学 程序
板书 设计
学法 分析
一.教材分析
1
教材的地位和作用
三角形是基本的几何图形之一,有着极其广泛的应用。 在实际问题中,经常遇到解任意三角形 的问题,因此必 须 进一步学习任意三角形的边角关系和解任意三角形的一些 基本方法。 本节课是在学生已经于初中学习了直角三角形的边角 关系和解直角三角形的基本方法,在高中学习了三角函数 和平面向量的基础上的深化拓展。所以在此引入正弦定理 使得“解三角形”的学习变得合情合理 ,学生易于接受。
学生猜想
四.教学程序
(二)归纳猜想,证明定理(2)
学生结论 学生猜想
直角
(1)sinA sinB sinC = ab (2)abc = c3sinA sinB sinC c2
a b c = = 是否对任意三角形都成立呢? sinA sinB sinC
锐角
钝角
突破难点
C
北
若学生直接回答出做高转化为直角三角形, 60t 则由学生叙述证明的思路,教师板书过程; 若学生未能回答思路,则教师提示情境问 题的转化思路,让学生类比证明。 ?
A
解放军
30t
40°
50° B
海盗
四.教学程序
钝角的证明思路同锐角情况, 由学生课后完成
C
a B 过C作CD⊥AB,则有 b b sinA = CD = a b CD sinA = b sinA sinB a a sinB = CD = CD sinB a c A 同理可得,过B作BE⊥AC,则有 = sinA sinC
《正弦定理》的说课稿优秀5篇
《正弦定理》的说课稿优秀5篇作为一名默默奉献的教育工作者,往往需要进行说课稿编写工作,借助说课稿可以让教学工作更科学化。
怎样写说课稿才更能起到其作用呢?旧书不厌百回读,熟读精思子自知,本文是美丽的编辑给大伙儿找到的《正弦定理》的说课稿优秀5篇,希望对大家有所帮助。
《正弦定理》的说课稿篇一大家好,今天我说课的题目是《正弦定理》。
新课标指出:高中教育属于基础教育,具有基础性,且具有多样性与选择性,使不同的学生在数学上得到不同的发展。
今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材教师对教材的掌握程度,是评判一位教师是否能上好一堂课的基本标准。
在正式内容开始之前,我要先谈一谈对教材的理解。
《正弦定理》是人教A版必修5一章一节的内容,其主要内容是正弦定理及其应用。
此前学习了三角函数的相关知识,且积累很多的证明、推导的经验,为本节课的学习都起到了一定的铺垫作用。
本节课的学习,也为以后学习和解决生活中的一些问题提供帮助。
因此本节的学习有着特别重要的地位。
二、说学情合理把握学情是上好一堂课的基础,下面我来谈谈学生的实际情况。
这一阶段的学生已经具备了一定的分析问题、解决问题的能力,且在知识方面也有了一定的积累。
所以,教学中,利用学生的特点以及原有经验进行教学,增强学生的课堂参与度。
三、说教学目标根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:(一)知识与技能能证明正弦定理,并能利用正弦定理解决实际问题。
(二)过程与方法通过正弦定理的'推导过程,提高分析问题、解决问题的能力。
(三)情感、态度与价值观在正弦定理的推导过程中,感受数学的严谨,提升对数学的兴趣。
四、说教学重难点我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。
而教学重点的确立与我本节课的内容肯定是密不可分的。
那么根据授课内容可以确定本节课的教学重点为:正弦定理。
难点:正弦定理的证明。
正弦定理说课稿
正弦定理说课稿正弦定理说课稿1正弦定理位于人教版全日制普通高级中学数学第一册(下)第五章第5。
9节。
正弦定理揭示了任意三角形边角之间的客观规律,是解三角形的重要工具,也是前阶段学习的三角函数知识与平面向量知识在三角形的交汇应用,并为以后学习余弦定理提供了方法上的模式,为进一步运用正、余弦定理解决测量、工业、几何等方面的实际问题提供了理论基础,使学生又进一步了解数学在实际中的应用,激发他们的学习兴趣。
因此学好本节课的知识就显的尤为重要。
由于高一学生对初中几何中的三角形研究的较透彻,记忆深刻,针对我校学生的实际情况,学生们对新问题有一定的探求欲望,但对问题的分析能力尚未成熟。
我在教学中从学生已有经验出发,提出问题引起学生对结论迫切追求的愿望,把问题作为教学的出发点,将学生置于主动参与的地位,引导他们进行分析研究。
本节课又是在学习了平面向量数量积的基础上来对定理加以证明的,所以重要的是用向量来推导定理的证明方法。
根据上述教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:知识与技能目标:理解用向量的方法推导正弦定理的过程,掌握正弦定理,初步运用正弦定理解决两类基本的解三角形问题。
过程与方法目标:通过对定理的探究,培养学生合情推理发现数学规律的思维方法与能力;通过对定理的证明和应用,培养学生独立解决问题的能力和体会数形结合的思想方法。
情感、态度与价值观目标:通过利用向量证明正弦定理了解向量的工具性,体会知识的内在联系,体会事物之间相互联系与辨证统一。
由于正弦定理的证明有很多种方法,本教材是以向量的方法进行了证明,这主要是由于利用向量的数量积,可以把三角形的边长和内角的三角函数联系起来,从而把几何问题转化为代数运算;这样处理不但能对知识进行综合运用,而且还涉及到数形结合、分类讨论等多种数学思想,有利于培养学生的数学思维,因此确立教学重点:正弦定理的证明极其应用。
教学难点:定理的探究和向量知识在证明正弦定理时的应用。
正弦定理说课稿
《正弦定理》说课稿各位评委、各位专家,大家好!今天我向大家说课题是《正弦定理》。
下面我将从以下几个来介绍我这堂课的设计。
一、教学内容分析《正弦定理》是高中课程人教版 (必修5) 第一章第一节内容,本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证实,最后进行简单的应用。
正弦定理的主要内容有三大特点:一是研究任意三角形边角之间关系的重要开端;二是用正弦定理解三角形,是典型的用代数的方法来解决的几何问题的类型;三是作为三角形中的一个定理,在日常生活和工业生产中的应用又十分广泛,因此,正弦定理的地位体现在它的基础性,作用体现在它的工具性。
二、学生学情分析正弦定理是学生在必修(4)已经系统学习了平面几何,解直角三角形,三角函数,平面向量等知识基础上进行的。
而且对于高一学生来说,有一定观察、分析、解决问题的能力,只要教师恰当引导,调动学生学习主动性,注重前后知识间的联系,激起学生学习新知的兴趣和欲望,就能得出正弦定理。
三、教学目标分析根据上述教材内容分析,学生学情分析考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:由此,我确定了以下三个层面的教学目标:1、知识与技能:通过定理的“观察-猜想-证明-应用”培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。
2、过程与方法:让学生从实际问题出发,结合以前学习过的直角三角形中的边角关系,引导学生从特殊到一般方法发现并证明正弦定理。
3、情感态度与价值观:通过参与、思考、交流,体验正弦定理的发现过程,逐步培养探索精神和创新意识。
教学重点、难点我认为正弦定理的推导有利于培养的学生发散思维,学生能体验数学的探索过程,所以正弦定理的证明是本节课的重点之一;同时,数学知识的学习最终是为了应用,所以正弦定理以及正弦定理的应用也是本节课的重点之一。
难点则是在正弦定理运用时,已知两边和其中一边的对角解三角形时,解的个数判断。
高中数学说课稿《正弦定理》优秀9篇
高中数学说课稿《正弦定理》优秀9篇作为一名教学工作者,就难以避免地要准备说课稿,说课稿有助于顺利而有效地开展教学活动。
那么应当如何写说课稿呢?读书之法,在循序而渐进,熟读而精思,以下是小编帮大伙儿整理的高中数学说课稿《正弦定理》优秀9篇,欢迎借鉴,希望对大家有所帮助。
余弦定理说课稿篇一尊敬的评委老师们:你们好,我今天说课的题目是余弦定理。
(说教材)"余弦定理"是人教A版数学第必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中"勾股定理"内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。
本节课是"正弦定理、余弦定理"教学的第二节课,其主要任务是引入并证明余弦定理,在课型上属于"定理教学课".这堂课并不是将余弦定理全盘呈现给学生,而是从实际问题的求解困难,造成学生认知上的冲突,从而激发学生探索新知识的强烈欲望。
另外,本节与教材其他课文的共性是都要掌握定理内容及证明方法,会解决相关的问题。
下面说一说我的教学思路。
(教学目的)通过对教材的分析钻研制定了教学目的:1.掌握余弦定理的内容及证明余弦定理的向量方法,会运用余弦定理解决两类基本的解三角形问题。
2.培养学生在方程思想指导下解三角形问题的运算能力。
3.培养学生合情推理探索数学规律的思维能力。
4.通过三角函数、余弦定理、向量的数量积等知识的'联系,来理解事物普遍联系与辩证统一。
(教学重点)余弦定理揭示了任意三角形边角之间的客观规律,是解三角形的重要工具。
余弦定理是初中学习的勾股定理的拓广,也是前阶段学习的三角函数知识与平面向量知识在三角形中的交汇应用。
本节课的重点内容是余弦定理的发现和证明过程及基本应用,其中发现余弦定理的过程是检验和训练学生思维品质的重要素材。
高中数学必修五《正弦定理》说课稿
高中数学必修五《正弦定理》讲课稿一、教材地位与作用本节知识是必修五第一章《解三角形》的第一节内容与初中学习的三角形的边和角的基本关系有亲密的联系与判断三角形的全等也有亲密联系在平时生活和工业生产中也经常有解三角形的问题并且解三角形和三角函数联系在高考中间也经常考一些解答题所以正弦定理的知识特别重要二、学情剖析作为高一学生同学们已经掌握了基本的三角函数特别是在一些特别三角形中而学生们在解决随意三角形的边与角问题就比较困难教课要点:正弦定理的内容正弦定理的证明及基本应用教课难点:正弦定理的研究及证明已知两边和此中一边的对角解三角形时判断解的个数依据我的教课内容与学情剖析以及教课重难点我拟订了以下几点教课目的教课目的剖析:知识目标:理解并掌握正弦定理的证明运用正弦定理解三角形能力目标:研究正弦定理的证明过程用概括法得出结论感情目标:经过推导得出正弦定理让学生感觉数学公式的整齐对称美和数学的实质应用价值三、教法学法剖析教法:采纳研究式讲堂教课模式在教师的启迪指引下以学生独立自主和合作沟通为前提以“正弦定理的发现” 为基本研究内容以生活实质为参照对象让学生的思想由问题开始到猜想的得出猜想的研究定理的推导并逐渐获得深入学法:指导学生掌握“察看——猜想——证明——应用”这一思想方法采纳个人、小组、集体等多种解难释疑的试试活动将自己所学知识应用于对随意三角形性质的研究让学生在问题情况中学习察看类比思虑研究着手试试相联合加强学生由特别到一般的数学思想能力持之以恒的修业精神四、教课过程(一) 创建情境布疑激趣“兴趣是最好的老师”假如一节课有个好的开头那就意味着成功了一半本节课由一个实质问题引入“工人师傅的一个三角形的模型坏了只剩下如右图所示的部分∠ A=47°∠ B=53°AB长为 1m想修睦这个部件但他不知道 AC和 BC的长度是多少好去截料你能帮师傅这个忙?”激发学生帮助他人的热忱和学习的兴趣进而进入今日的学习课题( 二) 探访特例提出猜想1.激发学生思想从自己熟习的特例 ( 直角三角形 ) 下手进行研究发现正弦定理2.那结论对随意三角形都合用 ?指导学生疏小组用刻度尺、量角器、计算器等工具对一般三角形进行考证3.让学生总结实验结果得出猜想:在三角形中角与所对的边知足关系这为下一步证明建立信心不停的使学生对结论的认识从感性逐步上涨到理性(三) 逻辑推理证明猜想1.重申将猜想转变为定理需要严格的理论证明2.鼓舞学生经过作高转变为熟习的直角三角形进行证明3.提示学生思虑些知识能把长度和三角函数联系起来既而思虑向量剖析层面用数目积作为工具证明定理表现了数形联合的数学思想4.思虑能否还有其余的方法来证明正弦定理部署课后练习提示做三角形的外接圆结构直角三角形或用坐标法来证明(四) 概括总结简单应用1.让学生用文字表达正弦定理指引学生发现定理拥有对称和睦美提高对数学美的享受2.正弦定理的内容议论能够解决几类相关三角形的问题3.运用正弦定理求解本节课引入的三角形部件边长的问题自己参加实质问题的解决能激发学生知识后用于实质的价值观(五) 解说例题稳固定理1.例 1:在△ ABC中已知 A=32°B=81.8°a=42.9cm. 解三角形例 1 简单结果为独一解假如已知三角形两角两角所夹的边以及已知两角和此中一角的对边都可利用正弦定理来解三角形2.例 2:在△ ABC中已知 a=20cmb=28cmA=40°解三角形例 2 较难使学生明确利用正弦定理求角有两种可能要修业生熟习掌握已知两边和此中一边的对角时解三角形的各样情况完了把时间交给学生(六) 讲堂练习提高稳固1.在△ ABC中已知以下条件解三角形(1)A=45°C=30°c=10cm(2)A=60°B=45°c=20cm2.在△ ABC中已知以下条件解三角形(1)a=20cmb=11cmB=30°(2)c=54cmb=39cmC=115°学生板演老师巡视实时发现问题并解答(七) 小结反省提高认识经过以上的研究过程同学们主要学到了那些知识和方法?你对此有何领会 ?1.用向量证了然正弦定理表现了数形联合的数学思想2.它表述了三角形的边与对角的正弦值的关系3.定理证明分别从直角、锐角、钝角出发运用分类议论的思想(从实质问题出发经过猜想、实验、概括等思想方法最后获得了推导出正弦定理我们研究问题的突出特色是从特别到一般我们不单收获着结论并且整个研究过程我们也掌握了研究问题的一般方法在重申研究性学习方法着重学生的主体地位调换学生踊跃性使数学教学成为数学活动的教课)(八) 任务后延自主研究假如已知一个三角形的两边及其夹角要求第三边办?发现正弦定理不合用了那么自然过渡到下一节内容余弦定理部署作业预习下一节内容。
新人教A版高三数学正弦定理说课稿范文
新人教A 版高三数学正弦定理说课稿范文
学习可以这样来看,它是一个潜移默化、厚积薄发的过程。
编辑了高三数学正弦定理说课稿,希望对您有所帮助!
一、教材分析
1)教材的地位与作用
正弦定理是解三角形的导入课,主要内容是正弦定理的探究、证明以及正弦定理在解三角形中的简单应用,它为进一步学习余弦定理以及最后综合运用正弦定理和余弦定理来解三角形起到了铺垫的作用.
正弦定理是解直角三角形的延伸,是揭示三角形边、角之间数量关系的重要公式,在日常生活、工业生产以及物理学等其它学科中都有解三角形的问题,而解三角形在高考当中也时常考一些解答题.因此,正弦定理这节课的内容显得非常重要.
2)教学目标
根据以上分析,考虑到学生已有的认知结构心理特征及原有的知识水平,制定了本堂课的教学目标如下:
知识目标。
高中数学人教A版数学必修五《正弦定理》说课稿模板
高中数学人教A版数学必修五《正弦定理》说课稿模板一、教材分析“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。
这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。
从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。
而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验“观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。
同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。
二、学情分析我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。
但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。
三、教学目标1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。
过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。
情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。
树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。
2、教学重点、难点教学重点:正弦定理的发现与证明;正弦定理的简单应用。
高中数学说课稿:人教版教材必修五《正弦定理》教学设计
高中数学说课稿:人教版教材必修五《正弦定理》教学设计高中数学说课稿:人教版教材必修五《正弦定理》教学设计《正弦定理》教学设计2019级数学课程与教学论专业华娜学号201902101146一、教材分析《正弦定理》是人教版教材必修五第一章《解三角形》的第一节内容,也是三角形理论中的一个重要内容,与初中学习的三角形的边和角的基本关系有密切的联系。
在此之前,学生已经学习过了正弦函数和余弦函数,知识储备已足够。
它是后续课程中解三角形的理论依据,也是解决实际生活中许多测量问题的工具。
因此熟练掌握正弦定理能为接下来学习解三角形打下坚实基础,并能在实际应用中灵活变通。
二、教学目标根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。
能力目标:探索正弦定理的证明过程,用归纳法得出结论,并能掌握多种证明方法。
情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。
三、教学重难点可将问题数学符号化,抽象成数学图形。
即已知AC=1500m,∠C=450,∠B=300。
求AB=?此题可运用做辅助线BC边上的高来间接求解得出。
提问:有没有根据已提供的数据,直接一步就能解出来的方法?思考:我们知道,在任意三角形中有大边对大角,小边对小角的边角关系。
那我们能不能得到关于边、角关系准确量化的表示呢?2、归纳命题我们从特殊的三角形直角三角形中来探讨边与角的数量关系:在如图Rt三角形ABC中,根据正弦函数的定义点击完整版说课:《正弦定理》教学设计.rar。
2021年《正弦定理》说课稿
2021年《正弦定理》说课稿2021年《正弦定理》说课稿1教材地位与作用:本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。
因此,正弦定理的知识非常重要。
学情分析:作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
(根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)教学目标分析:知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。
能力目标:探索正弦定理的证明过程,用归纳法得出结论。
情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。
教法学法分析:教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。
学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。
让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。
教学过程(一)创设情境,布疑激趣“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学说课稿:人教A版数学必修五《正弦定
理》说课稿模板
人教A版数学必修五《正弦定理》说课稿
卢龙县木井中学贺永辉
尊敬的各位专家、评委:
大家好!
我是卢龙县木井中学数学教师贺永辉,我今天说课的题目是:人教A版普通高中课程标准实验教科书数学必修5第一章第一节的第一课时《正弦定理》,依据新课程标准对教材的要求,结合我对教材的理解,我将从以下几个方面说明我的设计和构思。
一、教材分析
“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。
这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。
从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。
而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验“观察——猜想——证明——
应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。
同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。
二、学情分析
我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。
但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。
三、教学目标
1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。
过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。
情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩
证统一。
同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。
树立“数学与我有关,数学是有用的,我要用数学,我能用数
学”的理念。
2、教学重点、难点
教学重点:正弦定理的发现与证明;正弦定理的简单应用。
教学难点:正弦定理证明及应用。
四、教学方法与手段
为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程
中去,从中体验成功与失败,从而逐步建立完善的认知结构。
五、教学过程
为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:
(一)创设情景,揭示课题
问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?
1671年两个法国天文学家首次测出了地月之间的距离大约
为 385400km,你知道他们当时是怎样测出这个距离的吗?问题2:在现在的高科技时代,要想知道某座山的高度,没
必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题,其实并不难,只要你学好本章内容即可掌握其原理。
(板书课题《解三角形》)
[设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。
(二)特殊入手,发现规律
问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。
在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?
引导启发学生发现特殊情形下的正弦定理
(三)类比归纳,严格证明
问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?
[设计说明]此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上
黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。
问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角⊿ABC改为角钝角⊿ABC,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。
(启发引导学生用多种方法加以研究证明,尤其是向量法,在下节余弦定理的证明中还要用,因此务必启发学生用向量法完成证明。
)
[设计说明] 放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。
同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的同学有个参考,不至于闲呆着浪费时间。
问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理(此时板书课题并用红色粉笔标示出正弦定理内容)
教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔─威发﹝940-998﹞首先发现与证明的。
中亚细亚人阿尔比鲁尼﹝973-1048﹞给三角形的正弦定理作出了一个证明。
也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。
不管怎样,我们说在1000年以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。
老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的老师了。
当然,老师的希望能否变成现实,就要看大家的了。
[设计说明] 通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。
(四)强化理解,简单应用
下面请大家看我们的教材2-3页到例题1上边,并自学解三角形定义。
[设计说明] 让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。
我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢?我们先小试牛刀,来一个简单的
问题:
问题7:(教材例题1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。
(本题简单,找两位同学上黑板完成,其他同学在底下练习本上完成,同学可以小声音讨论,完成后教师根据学生实践中发现的问题给予必要的讲评)
[设计说明] 充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。
强化练习
让全体同学限时完成教材4页练习第一题,找两位同学上黑板。
问题8:(教材例题2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。
[设计说明]例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:《解三角形的进一步讨论》
(五)小结归纳,深化拓展
1、正弦定理
2、正弦定理的证明方法
3、正弦定理的应用
4、涉及的数学思想和方法。
[设计说明] 师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。
(六)布置作业,巩固提高
1、教材10页习题1.1A组第1题。
2、学有余力的同学探究10页B组第1题,体会正弦定理的其他证明方法。
证明:设三角形外接圆的半径是R,则a=2RsinA,b=2RsinB, c=2RsinC
[设计说明] 对不同水平的学生设计不同梯度的作业,尊重学生的个性差异,有利于因材施教的教学原则的贯彻。
(七)板书设计:(略)。